ggml.c 316 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. #define GGML_MLOCK_SUPPORT 0
  83. #ifdef __has_include
  84. #if __has_include(<sys/mman.h>)
  85. #undef GGML_MLOCK_SUPPORT
  86. #define GGML_MLOCK_SUPPORT 1
  87. #include <sys/mman.h>
  88. #endif
  89. #endif
  90. /*#define GGML_PERF*/
  91. #define GGML_DEBUG 0
  92. #define GGML_GELU_FP16
  93. #define GGML_SILU_FP16
  94. #define GGML_SOFT_MAX_UNROLL 4
  95. #define GGML_VEC_DOT_UNROLL 2
  96. #ifdef GGML_USE_ACCELERATE
  97. // uncomment to use vDSP for soft max computation
  98. // note: not sure if it is actually faster
  99. //#define GGML_SOFT_MAX_ACCELERATE
  100. #endif
  101. #if UINTPTR_MAX == 0xFFFFFFFF
  102. #define GGML_MEM_ALIGN 4
  103. #else
  104. #define GGML_MEM_ALIGN 16
  105. #endif
  106. #define UNUSED(x) (void)(x)
  107. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  108. #define GGML_ASSERT(x) \
  109. do { \
  110. if (!(x)) { \
  111. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  112. abort(); \
  113. } \
  114. } while (0)
  115. #ifdef GGML_USE_ACCELERATE
  116. #include <Accelerate/Accelerate.h>
  117. #elif GGML_USE_OPENBLAS
  118. #include <cblas.h>
  119. #endif
  120. #undef MIN
  121. #undef MAX
  122. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  123. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  124. // floating point type used to accumulate sums
  125. typedef double ggml_float;
  126. // 16-bit float
  127. // on Arm, we use __fp16
  128. // on x86, we use uint16_t
  129. #ifdef __ARM_NEON
  130. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  131. //
  132. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  133. //
  134. #include <arm_neon.h>
  135. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  136. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  137. #define GGML_FP16_TO_FP32(x) ((float) (x))
  138. #define GGML_FP32_TO_FP16(x) (x)
  139. #else
  140. #ifdef __wasm_simd128__
  141. #include <wasm_simd128.h>
  142. #else
  143. #ifdef __POWER9_VECTOR__
  144. #include <altivec.h>
  145. #undef bool
  146. #define bool _Bool
  147. #else
  148. #include <immintrin.h>
  149. #endif
  150. #endif
  151. #ifdef __F16C__
  152. #ifdef _MSC_VER
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  155. #else
  156. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  157. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  158. #endif
  159. #elif defined(__POWER9_VECTOR__)
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  162. /* the inline asm below is about 12% faster than the lookup method */
  163. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  164. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  165. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  166. register float f;
  167. register double d;
  168. __asm__(
  169. "mtfprd %0,%2\n"
  170. "xscvhpdp %0,%0\n"
  171. "frsp %1,%0\n" :
  172. /* temp */ "=d"(d),
  173. /* out */ "=f"(f):
  174. /* in */ "r"(h));
  175. return f;
  176. }
  177. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  178. register double d;
  179. register ggml_fp16_t r;
  180. __asm__( /* xscvdphp can work on double or single precision */
  181. "xscvdphp %0,%2\n"
  182. "mffprd %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=r"(r):
  185. /* in */ "f"(f));
  186. return r;
  187. }
  188. #else
  189. // FP16 <-> FP32
  190. // ref: https://github.com/Maratyszcza/FP16
  191. static inline float fp32_from_bits(uint32_t w) {
  192. union {
  193. uint32_t as_bits;
  194. float as_value;
  195. } fp32;
  196. fp32.as_bits = w;
  197. return fp32.as_value;
  198. }
  199. static inline uint32_t fp32_to_bits(float f) {
  200. union {
  201. float as_value;
  202. uint32_t as_bits;
  203. } fp32;
  204. fp32.as_value = f;
  205. return fp32.as_bits;
  206. }
  207. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  208. const uint32_t w = (uint32_t) h << 16;
  209. const uint32_t sign = w & UINT32_C(0x80000000);
  210. const uint32_t two_w = w + w;
  211. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  212. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  213. const float exp_scale = 0x1.0p-112f;
  214. #else
  215. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  216. #endif
  217. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  218. const uint32_t magic_mask = UINT32_C(126) << 23;
  219. const float magic_bias = 0.5f;
  220. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  221. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  222. const uint32_t result = sign |
  223. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  224. return fp32_from_bits(result);
  225. }
  226. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  227. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  228. const float scale_to_inf = 0x1.0p+112f;
  229. const float scale_to_zero = 0x1.0p-110f;
  230. #else
  231. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  232. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  233. #endif
  234. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  235. const uint32_t w = fp32_to_bits(f);
  236. const uint32_t shl1_w = w + w;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  239. if (bias < UINT32_C(0x71000000)) {
  240. bias = UINT32_C(0x71000000);
  241. }
  242. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  243. const uint32_t bits = fp32_to_bits(base);
  244. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  245. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  246. const uint32_t nonsign = exp_bits + mantissa_bits;
  247. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  248. }
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  251. #endif // __F16C__
  252. #endif // __ARM_NEON
  253. //
  254. // global data
  255. //
  256. // precomputed gelu table for f16 (128 KB)
  257. static ggml_fp16_t table_gelu_f16[1 << 16];
  258. // precomputed silu table for f16 (128 KB)
  259. static ggml_fp16_t table_silu_f16[1 << 16];
  260. // precomputed exp table for f16 (128 KB)
  261. static ggml_fp16_t table_exp_f16[1 << 16];
  262. // precomputed f32 table for f16 (256 KB)
  263. static float table_f32_f16[1 << 16];
  264. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  265. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  266. // This is also true for POWER9.
  267. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  268. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  269. uint16_t s;
  270. memcpy(&s, &f, sizeof(uint16_t));
  271. return table_f32_f16[s];
  272. }
  273. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  274. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  275. #endif
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return (float) GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. //
  285. // timing
  286. //
  287. #if defined(_MSC_VER) || defined(__MINGW32__)
  288. static int64_t timer_freq;
  289. void ggml_time_init(void) {
  290. LARGE_INTEGER frequency;
  291. QueryPerformanceFrequency(&frequency);
  292. timer_freq = frequency.QuadPart;
  293. }
  294. int64_t ggml_time_ms(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return (t.QuadPart * 1000) / timer_freq;
  298. }
  299. int64_t ggml_time_us(void) {
  300. LARGE_INTEGER t;
  301. QueryPerformanceCounter(&t);
  302. return (t.QuadPart * 1000000) / timer_freq;
  303. }
  304. #else
  305. void ggml_time_init(void) {}
  306. int64_t ggml_time_ms(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  310. }
  311. int64_t ggml_time_us(void) {
  312. struct timespec ts;
  313. clock_gettime(CLOCK_MONOTONIC, &ts);
  314. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  315. }
  316. #endif
  317. int64_t ggml_cycles(void) {
  318. return clock();
  319. }
  320. int64_t ggml_cycles_per_ms(void) {
  321. return CLOCKS_PER_SEC/1000;
  322. }
  323. #ifdef GGML_PERF
  324. #define ggml_perf_time_ms() ggml_time_ms()
  325. #define ggml_perf_time_us() ggml_time_us()
  326. #define ggml_perf_cycles() ggml_cycles()
  327. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  328. #else
  329. #define ggml_perf_time_ms() 0
  330. #define ggml_perf_time_us() 0
  331. #define ggml_perf_cycles() 0
  332. #define ggml_perf_cycles_per_ms() 0
  333. #endif
  334. //
  335. // cache line
  336. //
  337. #if defined(__cpp_lib_hardware_interference_size)
  338. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  339. #else
  340. #if defined(__POWER9_VECTOR__)
  341. #define CACHE_LINE_SIZE 128
  342. #else
  343. #define CACHE_LINE_SIZE 64
  344. #endif
  345. #endif
  346. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  347. //
  348. // quantization
  349. //
  350. #define QK 32
  351. // AVX routines provided by GH user Const-me
  352. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  353. #if __AVX2__ || __AVX512F__
  354. // Unpack 32 4-bit fields into 32 bytes
  355. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  356. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  357. {
  358. // Load 16 bytes from memory
  359. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  360. // Expand bytes into uint16_t values
  361. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  362. // Unpack values into individual bytes
  363. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  364. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  365. __m256i low = _mm256_and_si256( lowMask, bytes );
  366. high = _mm256_slli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. return bytes;
  369. }
  370. static inline __m128i packNibbles( __m256i bytes )
  371. {
  372. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  373. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  374. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  375. __m256i low = _mm256_and_si256( lowByte, bytes );
  376. high = _mm256_srli_epi16( high, 4 );
  377. bytes = _mm256_or_si256( low, high );
  378. // Compress uint16_t lanes into bytes
  379. __m128i r0 = _mm256_castsi256_si128( bytes );
  380. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  381. return _mm_packus_epi16( r0, r1 );
  382. }
  383. #endif
  384. // method 5
  385. // blocks of QK elements
  386. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  387. typedef struct {
  388. float d; // delta
  389. uint8_t qs[QK / 2]; // nibbles / quants
  390. } block_q4_0;
  391. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  392. // method 4
  393. // blocks of QK elements
  394. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  395. typedef struct {
  396. float d;
  397. float m;
  398. uint8_t qs[QK / 2]; // nibbles / quants
  399. } block_q4_1;
  400. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  401. // reference implementation for deterministic creation of model files
  402. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  403. assert(k % QK == 0);
  404. const int nb = k / QK;
  405. uint8_t pp[QK/2];
  406. for (int i = 0; i < nb; i++) {
  407. float amax = 0.0f; // absolute max
  408. for (int l = 0; l < QK; l++) {
  409. const float v = x[i*QK + l];
  410. amax = MAX(amax, fabsf(v));
  411. }
  412. const float d = amax / ((1 << 3) - 1);
  413. const float id = d ? 1.0f/d : 0.0f;
  414. y[i].d = d;
  415. for (int l = 0; l < QK; l += 2) {
  416. const float v0 = x[i*QK + l + 0]*id;
  417. const float v1 = x[i*QK + l + 1]*id;
  418. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  419. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  420. assert(vi0 >= 0 && vi0 < 16);
  421. assert(vi1 >= 0 && vi1 < 16);
  422. pp[l/2] = vi0 | (vi1 << 4);
  423. }
  424. memcpy(y[i].qs, pp, sizeof(pp));
  425. }
  426. }
  427. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  428. assert(k % QK == 0);
  429. const int nb = k / QK;
  430. block_q4_0 * restrict y = vy;
  431. #if defined(__POWER9_VECTOR__)
  432. const vector float v85 = vec_splats(8.5f);
  433. for (int i = 0; i < nb; i++) {
  434. float amax = 0.0f; // absolute max
  435. vector float srcv [8];
  436. vector float asrcv[8];
  437. vector float amaxv[8];
  438. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  439. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  440. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  441. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  442. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  443. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  444. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  445. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  446. amax = MAX(
  447. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  448. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  449. const float d = amax / ((1 << 3) - 1);
  450. const float id = d ? 1.0/d : 0.0;
  451. y[i].d = d;
  452. const vector float vid = vec_splats(id);
  453. uint8_t * restrict pb = y[i].qs;
  454. for (int l = 0; l < 8; l++) {
  455. const vector float vf = vec_madd(srcv[l], vid, v85);
  456. const vector signed int vi = vec_signed(vf);
  457. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  458. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  459. }
  460. }
  461. #elif __ARM_NEON
  462. for (int i = 0; i < nb; i++) {
  463. float32x4_t srcv [8];
  464. float32x4_t asrcv[8];
  465. float32x4_t amaxv[8];
  466. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  467. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  468. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  469. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  470. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  471. // absolute max
  472. const float amax = MAX(
  473. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  474. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  475. const float d = amax / ((1 << 3) - 1);
  476. const float id = d ? 1.0f/d : 0.0f;
  477. y[i].d = d;
  478. for (int l = 0; l < 8; l++) {
  479. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  480. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  481. const int32x4_t vi = vcvtq_s32_f32(vf);
  482. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  483. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  484. }
  485. }
  486. #elif defined(__AVX2__)
  487. for (int i = 0; i < nb; i++) {
  488. // Load elements into 4 AVX vectors
  489. __m256 v0 = _mm256_loadu_ps( x );
  490. __m256 v1 = _mm256_loadu_ps( x + 8 );
  491. __m256 v2 = _mm256_loadu_ps( x + 16 );
  492. __m256 v3 = _mm256_loadu_ps( x + 24 );
  493. x += 32;
  494. // Compute max(abs(e)) for the block
  495. const __m256 signBit = _mm256_set1_ps( -0.0f );
  496. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  497. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  498. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  499. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  500. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  501. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  502. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  503. const float maxScalar = _mm_cvtss_f32( max4 );
  504. // Quantize these floats
  505. const float d = maxScalar / 7.0f;
  506. y[i].d = d;
  507. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  508. const __m256 mul = _mm256_set1_ps( id );
  509. // Apply the multiplier
  510. v0 = _mm256_mul_ps( v0, mul );
  511. v1 = _mm256_mul_ps( v1, mul );
  512. v2 = _mm256_mul_ps( v2, mul );
  513. v3 = _mm256_mul_ps( v3, mul );
  514. // Round to nearest integer
  515. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  516. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  517. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  518. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  519. // Convert floats to integers
  520. __m256i i0 = _mm256_cvtps_epi32( v0 );
  521. __m256i i1 = _mm256_cvtps_epi32( v1 );
  522. __m256i i2 = _mm256_cvtps_epi32( v2 );
  523. __m256i i3 = _mm256_cvtps_epi32( v3 );
  524. // Convert int32 to int16
  525. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  526. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  527. // Convert int16 to int8
  528. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  529. // We got our precious signed bytes, but the order is now wrong
  530. // These AVX2 pack instructions process 16-byte pieces independently
  531. // The following instruction is fixing the order
  532. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  533. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  534. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  535. const __m256i off = _mm256_set1_epi8( 8 );
  536. i0 = _mm256_add_epi8( i0, off );
  537. // Compress the vector into 4 bit/value, and store
  538. __m128i res = packNibbles( i0 );
  539. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  540. }
  541. #elif defined(__wasm_simd128__)
  542. for (int i = 0; i < nb; i++) {
  543. float amax = 0.0f; // absolute max
  544. v128_t srcv [8];
  545. v128_t asrcv[8];
  546. v128_t amaxv[8];
  547. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  548. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  549. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  550. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  551. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  552. amax = MAX(
  553. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  554. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  555. const float d = amax / ((1 << 3) - 1);
  556. const float id = d ? 1.0/d : 0.0;
  557. y[i].d = d;
  558. for (int l = 0; l < 8; l++) {
  559. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  560. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  561. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  562. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  563. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  564. }
  565. }
  566. #else
  567. // scalar
  568. quantize_row_q4_0_reference(x, y, k);
  569. #endif
  570. }
  571. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  572. assert(k % QK == 0);
  573. const int nb = k / QK;
  574. block_q4_1 * restrict y = vy;
  575. uint8_t pp[QK/2];
  576. for (int i = 0; i < nb; i++) {
  577. float min = FLT_MAX;
  578. float max = -FLT_MAX;
  579. for (int l = 0; l < QK; l++) {
  580. const float v = x[i*QK + l];
  581. if (v < min) min = v;
  582. if (v > max) max = v;
  583. }
  584. const float d = (max - min) / ((1 << 4) - 1);
  585. const float id = d ? 1.0f/d : 0.0f;
  586. y[i].d = d;
  587. y[i].m = min;
  588. for (int l = 0; l < QK; l += 2) {
  589. const float v0 = (x[i*QK + l + 0] - min)*id;
  590. const float v1 = (x[i*QK + l + 1] - min)*id;
  591. const uint8_t vi0 = roundf(v0);
  592. const uint8_t vi1 = roundf(v1);
  593. assert(vi0 >= 0 && vi0 < 16);
  594. assert(vi1 >= 0 && vi1 < 16);
  595. pp[l/2] = vi0 | (vi1 << 4);
  596. }
  597. memcpy(y[i].qs, pp, sizeof(pp));
  598. }
  599. }
  600. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  601. assert(k % QK == 0);
  602. const int nb = k / QK;
  603. block_q4_1 * restrict y = vy;
  604. #if defined(__AVX2__)
  605. for (int i = 0; i < nb; i++) {
  606. // Load elements into 4 AVX vectors
  607. __m256 v0 = _mm256_loadu_ps( x );
  608. __m256 v1 = _mm256_loadu_ps( x + 8 );
  609. __m256 v2 = _mm256_loadu_ps( x + 16 );
  610. __m256 v3 = _mm256_loadu_ps( x + 24 );
  611. x += 32;
  612. // Compute max for the block
  613. __m256 vmax;
  614. vmax = _mm256_max_ps( v0, v1 );
  615. vmax = _mm256_max_ps( vmax, v2 );
  616. vmax = _mm256_max_ps( vmax, v3 );
  617. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  618. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  619. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  620. const float maxScalar = _mm_cvtss_f32( max4 );
  621. // Compute min for the block
  622. __m256 vmin;
  623. vmin = _mm256_min_ps( v0, v1 );
  624. vmin = _mm256_min_ps( vmin, v2 );
  625. vmin = _mm256_min_ps( vmin, v3 );
  626. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  627. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  628. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  629. const float minScalar = _mm_cvtss_f32( min4 );
  630. // Quantize these floats
  631. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  632. const float id = d ? 1.0f/d : 0.0f;
  633. y[i].m = minScalar;
  634. y[i].d = d;
  635. // x = (x-min)*id
  636. const __m256 mul = _mm256_set1_ps( id );
  637. const __m256 off = _mm256_set1_ps( minScalar );
  638. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  639. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  640. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  641. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  642. // Round to nearest integer
  643. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  644. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  645. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  646. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  647. // Convert floats to integers
  648. __m256i i0 = _mm256_cvtps_epi32( v0 );
  649. __m256i i1 = _mm256_cvtps_epi32( v1 );
  650. __m256i i2 = _mm256_cvtps_epi32( v2 );
  651. __m256i i3 = _mm256_cvtps_epi32( v3 );
  652. // Convert int32 to int16
  653. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  654. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  655. // Convert int16 to int8
  656. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  657. // We got our precious signed bytes, but the order is now wrong
  658. // These AVX2 pack instructions process 16-byte pieces independently
  659. // The following instruction is fixing the order
  660. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  661. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  662. // Compress the vector into 4 bit/value, and store
  663. __m128i res = packNibbles( i0 );
  664. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  665. }
  666. #elif __ARM_NEON
  667. for (int i = 0; i < nb; i++) {
  668. float32x4_t srcv[8];
  669. float32x4_t minv[8];
  670. float32x4_t maxv[8];
  671. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  672. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  673. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  674. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  675. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  676. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  677. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  678. const float min = vminvq_f32(minv[0]);
  679. const float max = vmaxvq_f32(maxv[0]);
  680. const float d = (max - min) / ((1 << 4) - 1);
  681. const float id = d ? 1.0f/d : 0.0f;
  682. y[i].d = d;
  683. y[i].m = min;
  684. const float32x4_t minv0 = vdupq_n_f32(min);
  685. for (int l = 0; l < 8; l++) {
  686. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  687. const int32x4_t vi = vcvtq_s32_f32(v);
  688. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  689. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  690. }
  691. }
  692. #else
  693. // scalar
  694. quantize_row_q4_1_reference(x, vy, k);
  695. #endif
  696. }
  697. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  698. assert(k % QK == 0);
  699. const int nb = k / QK;
  700. const block_q4_0 * restrict x = vx;
  701. #if defined(__AVX2__)
  702. for (int i = 0; i < nb; i++) {
  703. // scale factor
  704. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  705. const uint8_t * restrict pp = x[i].qs;
  706. for (int l = 0; l < QK; l += 32) {
  707. // Load 32x4-bit integers into 32x8-bit integers
  708. __m256i vx8 = bytesFromNibbles(pp+l/2);
  709. // Subtract 8 from the integers
  710. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  711. // Convert to 16-bit int
  712. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  713. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  714. // Convert to 32-bit int -> float 32
  715. const __m256 vf[4] = {
  716. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  717. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  718. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  719. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  720. };
  721. // Scale and store
  722. for (int j = 0; j < 4; j++) {
  723. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  724. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  725. }
  726. }
  727. }
  728. #elif defined(__ARM_NEON)
  729. for (int i = 0; i < nb; i++) {
  730. const float32x4_t vd = vdupq_n_f32(x[i].d);
  731. const uint8_t * restrict pp = x[i].qs;
  732. for (int l = 0; l < QK; l += 16) {
  733. // Load 16x4-bit integers into 8x8-bit integers
  734. const uint8x8_t v8 = vld1_u8(pp + l/2);
  735. // Expand 4-bit qs to 8-bit bytes
  736. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  737. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  738. // Convert to signed 8-bit integers
  739. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  740. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  741. // Subtract 8 from each byte
  742. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  743. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  744. // Interleave and combine
  745. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  746. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  747. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  748. // convert to 2x int16x8_t
  749. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  750. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  751. // convert to 4x float32x4_t
  752. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  753. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  754. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  755. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  756. // Multiply by d
  757. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  758. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  759. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  760. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  761. // Store
  762. vst1q_f32(y + i*QK + l + 0, r0);
  763. vst1q_f32(y + i*QK + l + 4, r1);
  764. vst1q_f32(y + i*QK + l + 8, r2);
  765. vst1q_f32(y + i*QK + l + 12, r3);
  766. }
  767. }
  768. #else
  769. // scalar
  770. for (int i = 0; i < nb; i++) {
  771. const float d = x[i].d;
  772. const uint8_t * restrict pp = x[i].qs;
  773. for (int l = 0; l < QK; l += 2) {
  774. const uint8_t vi = pp[l/2];
  775. const int8_t vi0 = vi & 0xf;
  776. const int8_t vi1 = vi >> 4;
  777. const float v0 = (vi0 - 8)*d;
  778. const float v1 = (vi1 - 8)*d;
  779. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  780. y[i*QK + l + 0] = v0;
  781. y[i*QK + l + 1] = v1;
  782. assert(!isnan(y[i*QK + l + 0]));
  783. assert(!isnan(y[i*QK + l + 1]));
  784. }
  785. }
  786. #endif
  787. }
  788. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  789. assert(k % QK == 0);
  790. const int nb = k / QK;
  791. const block_q4_1 * restrict x = vx;
  792. #if defined(__AVX2__)
  793. for (int i = 0; i < nb; i++) {
  794. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  795. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  796. const uint8_t * restrict pp = x[i].qs;
  797. for (int l = 0; l < QK; l += 32) {
  798. // Load 32x4-bit integers into 32x8-bit integers
  799. __m256i vx8 = bytesFromNibbles(pp+l/2);
  800. // Convert to 16-bit int
  801. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  802. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  803. // Convert to 32-bit int -> float 32
  804. const __m256 vf[4] = {
  805. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  806. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  807. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  808. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  809. };
  810. // Scale, add m and store
  811. for (int j = 0; j < 4; j++) {
  812. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  813. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  814. }
  815. }
  816. }
  817. #elif defined(__ARM_NEON)
  818. for (int i = 0; i < nb; i++) {
  819. const float32x4_t vd = vdupq_n_f32(x[i].d);
  820. const float32x4_t vm = vdupq_n_f32(x[i].m);
  821. const uint8_t * restrict pp = x[i].qs;
  822. for (int l = 0; l < QK; l += 16) {
  823. // Load 16x4-bit integers into 8x8-bit integers
  824. const uint8x8_t v8 = vld1_u8(pp + l/2);
  825. // Expand 4-bit qs to 8-bit bytes
  826. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  827. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  828. // Interleave and combine
  829. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  830. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  831. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  832. // convert to 2x uint16x8_t
  833. const uint16x8_t vi_0 = vmovl_s8(vget_low_u8 (vq));
  834. const uint16x8_t vi_1 = vmovl_s8(vget_high_u8(vq));
  835. // convert to 4x float32x4_t
  836. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  837. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  838. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  839. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  840. // multiply by d and add m
  841. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  842. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  843. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  844. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  845. // Store
  846. vst1q_f32(y + i*QK + l + 0, r0);
  847. vst1q_f32(y + i*QK + l + 4, r1);
  848. vst1q_f32(y + i*QK + l + 8, r2);
  849. vst1q_f32(y + i*QK + l + 12, r3);
  850. }
  851. }
  852. #else
  853. for (int i = 0; i < nb; i++) {
  854. const float d = x[i].d;
  855. const float m = x[i].m;
  856. const uint8_t * restrict pp = x[i].qs;
  857. for (int l = 0; l < QK; l += 2) {
  858. const uint8_t vi = pp[l/2];
  859. const int8_t vi0 = vi & 0xf;
  860. const int8_t vi1 = vi >> 4;
  861. const float v0 = vi0*d + m;
  862. const float v1 = vi1*d + m;
  863. y[i*QK + l + 0] = v0;
  864. y[i*QK + l + 1] = v1;
  865. assert(!isnan(y[i*QK + l + 0]));
  866. assert(!isnan(y[i*QK + l + 1]));
  867. }
  868. }
  869. #endif
  870. }
  871. //
  872. // simd mappings
  873. //
  874. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  875. // we then implement the fundamental computation operations below using only these macros
  876. // adding support for new architectures requires to define the corresponding SIMD macros
  877. //
  878. // GGML_F32_STEP / GGML_F16_STEP
  879. // number of elements to process in a single step
  880. //
  881. // GGML_F32_EPR / GGML_F16_EPR
  882. // number of elements to fit in a single register
  883. //
  884. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  885. #define GGML_SIMD
  886. // F32 NEON
  887. #define GGML_F32_STEP 16
  888. #define GGML_F32_EPR 4
  889. #define GGML_F32x4 float32x4_t
  890. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  891. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  892. #define GGML_F32x4_LOAD vld1q_f32
  893. #define GGML_F32x4_STORE vst1q_f32
  894. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  895. #define GGML_F32x4_ADD vaddq_f32
  896. #define GGML_F32x4_MUL vmulq_f32
  897. #if defined(__ARM_FEATURE_QRDMX)
  898. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  899. #else
  900. #define GGML_F32x4_REDUCE_ONE(x) \
  901. (vgetq_lane_f32(x, 0) + \
  902. vgetq_lane_f32(x, 1) + \
  903. vgetq_lane_f32(x, 2) + \
  904. vgetq_lane_f32(x, 3))
  905. #endif
  906. #define GGML_F32x4_REDUCE(res, x) \
  907. { \
  908. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  909. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  910. } \
  911. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  912. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  913. } \
  914. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  915. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  916. } \
  917. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  918. }
  919. #define GGML_F32_VEC GGML_F32x4
  920. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  921. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  922. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  923. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  924. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  925. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  926. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  927. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  928. // F16 NEON
  929. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  930. #define GGML_F16_STEP 32
  931. #define GGML_F16_EPR 8
  932. #define GGML_F16x8 float16x8_t
  933. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  934. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  935. #define GGML_F16x8_LOAD vld1q_f16
  936. #define GGML_F16x8_STORE vst1q_f16
  937. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  938. #define GGML_F16x8_ADD vaddq_f16
  939. #define GGML_F16x8_MUL vmulq_f16
  940. #define GGML_F16x8_REDUCE(res, x) \
  941. { \
  942. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  943. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  944. } \
  945. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  946. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  947. } \
  948. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  949. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  950. } \
  951. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  952. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  953. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  954. }
  955. #define GGML_F16_VEC GGML_F16x8
  956. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  957. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  958. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  959. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  960. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  961. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  962. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  963. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  964. #else
  965. // if FP16 vector arithmetic is not supported, we use FP32 instead
  966. // and take advantage of the vcvt_ functions to convert to/from FP16
  967. #define GGML_F16_STEP 16
  968. #define GGML_F16_EPR 4
  969. #define GGML_F32Cx4 float32x4_t
  970. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  971. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  972. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  973. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  974. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  975. #define GGML_F32Cx4_ADD vaddq_f32
  976. #define GGML_F32Cx4_MUL vmulq_f32
  977. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  978. #define GGML_F16_VEC GGML_F32Cx4
  979. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  980. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  981. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  982. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  983. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  984. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  985. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  986. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  987. #endif
  988. #elif defined(__AVX__)
  989. #define GGML_SIMD
  990. // F32 AVX
  991. #define GGML_F32_STEP 32
  992. #define GGML_F32_EPR 8
  993. #define GGML_F32x8 __m256
  994. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  995. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  996. #define GGML_F32x8_LOAD _mm256_loadu_ps
  997. #define GGML_F32x8_STORE _mm256_storeu_ps
  998. #if defined(__FMA__)
  999. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1000. #else
  1001. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1002. #endif
  1003. #define GGML_F32x8_ADD _mm256_add_ps
  1004. #define GGML_F32x8_MUL _mm256_mul_ps
  1005. #define GGML_F32x8_REDUCE(res, x) \
  1006. { \
  1007. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1008. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1009. } \
  1010. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1011. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1012. } \
  1013. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1014. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1015. } \
  1016. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1017. _mm256_extractf128_ps(x[0], 1)); \
  1018. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1019. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1020. }
  1021. // TODO: is this optimal ?
  1022. #define GGML_F32_VEC GGML_F32x8
  1023. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1024. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1025. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1026. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1027. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1028. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1029. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1030. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1031. // F16 AVX
  1032. #define GGML_F16_STEP 32
  1033. #define GGML_F16_EPR 8
  1034. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1035. #define GGML_F32Cx8 __m256
  1036. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1037. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1038. #if defined(__F16C__)
  1039. // the _mm256_cvt intrinsics require F16C
  1040. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1041. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1042. #else
  1043. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1044. float tmp[8];
  1045. for (int i = 0; i < 8; i++)
  1046. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1047. return _mm256_loadu_ps(tmp);
  1048. }
  1049. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1050. float arr[8];
  1051. _mm256_storeu_ps(arr, y);
  1052. for (int i = 0; i < 8; i++)
  1053. x[i] = GGML_FP16_TO_FP32(arr[i]);
  1054. }
  1055. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1056. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1057. #endif
  1058. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1059. #define GGML_F32Cx8_ADD _mm256_add_ps
  1060. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1061. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1062. #define GGML_F16_VEC GGML_F32Cx8
  1063. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1071. #elif defined(__POWER9_VECTOR__)
  1072. #define GGML_SIMD
  1073. // F32 POWER9
  1074. #define GGML_F32_STEP 32
  1075. #define GGML_F32_EPR 4
  1076. #define GGML_F32x4 vector float
  1077. #define GGML_F32x4_ZERO 0.0f
  1078. #define GGML_F32x4_SET1 vec_splats
  1079. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1080. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1081. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1082. #define GGML_F32x4_ADD vec_add
  1083. #define GGML_F32x4_MUL vec_mul
  1084. #define GGML_F32x4_REDUCE(res, x) \
  1085. { \
  1086. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1087. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1088. } \
  1089. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1090. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1091. } \
  1092. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1093. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1094. } \
  1095. res = vec_extract(x[0], 0) + \
  1096. vec_extract(x[0], 1) + \
  1097. vec_extract(x[0], 2) + \
  1098. vec_extract(x[0], 3); \
  1099. }
  1100. #define GGML_F32_VEC GGML_F32x4
  1101. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1102. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1103. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1104. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1105. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1106. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1107. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1108. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1109. // F16 POWER9
  1110. #define GGML_F16_STEP GGML_F32_STEP
  1111. #define GGML_F16_EPR GGML_F32_EPR
  1112. #define GGML_F16_VEC GGML_F32x4
  1113. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1114. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1115. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1116. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1117. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1118. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1119. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1120. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1121. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1122. #define GGML_F16_VEC_STORE(p, r, i) \
  1123. if (i & 0x1) \
  1124. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1125. r[i - GGML_ENDIAN_BYTE(0)]), \
  1126. 0, p - GGML_F16_EPR)
  1127. #elif defined(__wasm_simd128__)
  1128. #define GGML_SIMD
  1129. // F32 WASM
  1130. #define GGML_F32_STEP 16
  1131. #define GGML_F32_EPR 4
  1132. #define GGML_F32x4 v128_t
  1133. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1134. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1135. #define GGML_F32x4_LOAD wasm_v128_load
  1136. #define GGML_F32x4_STORE wasm_v128_store
  1137. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1138. #define GGML_F32x4_ADD wasm_f32x4_add
  1139. #define GGML_F32x4_MUL wasm_f32x4_mul
  1140. #define GGML_F32x4_REDUCE(res, x) \
  1141. { \
  1142. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1143. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1144. } \
  1145. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1146. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1147. } \
  1148. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1149. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1150. } \
  1151. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1152. wasm_f32x4_extract_lane(x[0], 1) + \
  1153. wasm_f32x4_extract_lane(x[0], 2) + \
  1154. wasm_f32x4_extract_lane(x[0], 3); \
  1155. }
  1156. #define GGML_F32_VEC GGML_F32x4
  1157. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1158. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1159. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1160. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1161. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // F16 WASM
  1166. #define GGML_F16_STEP 16
  1167. #define GGML_F16_EPR 4
  1168. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1169. float tmp[4];
  1170. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1171. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1172. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1173. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1174. return wasm_v128_load(tmp);
  1175. }
  1176. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1177. float tmp[4];
  1178. wasm_v128_store(tmp, x);
  1179. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1180. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1181. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1182. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1183. }
  1184. #define GGML_F16x4 v128_t
  1185. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1186. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1187. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1188. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1189. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1190. #define GGML_F16x4_ADD wasm_f32x4_add
  1191. #define GGML_F16x4_MUL wasm_f32x4_mul
  1192. #define GGML_F16x4_REDUCE(res, x) \
  1193. { \
  1194. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1195. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1196. } \
  1197. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1198. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1199. } \
  1200. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1201. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1202. } \
  1203. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1204. wasm_f32x4_extract_lane(x[0], 1) + \
  1205. wasm_f32x4_extract_lane(x[0], 2) + \
  1206. wasm_f32x4_extract_lane(x[0], 3); \
  1207. }
  1208. #define GGML_F16_VEC GGML_F16x4
  1209. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1210. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1211. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1212. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1213. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1214. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1215. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1216. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1217. #elif defined(__SSE3__)
  1218. #define GGML_SIMD
  1219. // F32 SSE
  1220. #define GGML_F32_STEP 32
  1221. #define GGML_F32_EPR 4
  1222. #define GGML_F32x4 __m128
  1223. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1224. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1225. #define GGML_F32x4_LOAD _mm_loadu_ps
  1226. #define GGML_F32x4_STORE _mm_storeu_ps
  1227. #if defined(__FMA__)
  1228. // TODO: Does this work?
  1229. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1230. #else
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1232. #endif
  1233. #define GGML_F32x4_ADD _mm_add_ps
  1234. #define GGML_F32x4_MUL _mm_mul_ps
  1235. #define GGML_F32x4_REDUCE(res, x) \
  1236. { \
  1237. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1238. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1239. } \
  1240. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1241. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1242. } \
  1243. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1244. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1245. } \
  1246. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1247. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1248. }
  1249. // TODO: is this optimal ?
  1250. #define GGML_F32_VEC GGML_F32x4
  1251. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1252. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1253. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1254. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1255. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1256. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1257. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1258. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1259. // F16 SSE
  1260. #define GGML_F16_STEP 32
  1261. #define GGML_F16_EPR 4
  1262. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1263. float tmp[4];
  1264. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1265. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1266. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1267. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1268. return _mm_loadu_ps(tmp);
  1269. }
  1270. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1271. float arr[4];
  1272. _mm_storeu_ps(arr, y);
  1273. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1274. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1275. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1276. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1277. }
  1278. #define GGML_F32Cx4 __m128
  1279. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1280. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1281. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1282. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1283. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1284. #define GGML_F32Cx4_ADD _mm_add_ps
  1285. #define GGML_F32Cx4_MUL _mm_mul_ps
  1286. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1287. #define GGML_F16_VEC GGML_F32Cx4
  1288. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1296. #endif
  1297. // GGML_F32_ARR / GGML_F16_ARR
  1298. // number of registers to use per step
  1299. #ifdef GGML_SIMD
  1300. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1301. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1302. #endif
  1303. //
  1304. // fundamental operations
  1305. //
  1306. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1307. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1308. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1309. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1310. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1311. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1312. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1313. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1314. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1316. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1317. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1318. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1319. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1320. #ifdef GGML_SIMD
  1321. float sumf = 0.0f;
  1322. const int np = (n & ~(GGML_F32_STEP - 1));
  1323. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1324. GGML_F32_VEC ax[GGML_F32_ARR];
  1325. GGML_F32_VEC ay[GGML_F32_ARR];
  1326. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1327. for (int j = 0; j < GGML_F32_ARR; j++) {
  1328. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1329. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1330. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1331. }
  1332. }
  1333. // reduce sum0..sum3 to sum0
  1334. GGML_F32_VEC_REDUCE(sumf, sum);
  1335. // leftovers
  1336. for (int i = np; i < n; ++i) {
  1337. sumf += x[i]*y[i];
  1338. }
  1339. #else
  1340. // scalar
  1341. ggml_float sumf = 0.0;
  1342. for (int i = 0; i < n; ++i) {
  1343. sumf += (ggml_float)(x[i]*y[i]);
  1344. }
  1345. #endif
  1346. *s = sumf;
  1347. }
  1348. #if __AVX512F__ && QK == 32
  1349. static inline __m512 dot_q4_0_oneblock_avx512(
  1350. __m512 acc,
  1351. const block_q4_0 * restrict x,
  1352. const block_q4_0 * restrict y,
  1353. int i
  1354. ) {
  1355. // Compute combined scale for the block
  1356. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1357. __m256i bx = bytesFromNibbles( x[i].qs );
  1358. __m256i by = bytesFromNibbles( y[i].qs );
  1359. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1360. const __m256i off = _mm256_set1_epi8( 8 );
  1361. bx = _mm256_sub_epi8( bx, off );
  1362. by = _mm256_sub_epi8( by, off );
  1363. // Sign-extend 16 signed bytes into int16_t
  1364. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1365. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1366. // Compute products of int16_t integers, add pairwise
  1367. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1368. // Convert int32_t to float
  1369. __m512 p = _mm512_cvtepi32_ps( i64 );
  1370. // Apply the scale, and accumulate
  1371. return _mm512_fmadd_ps( d, p, acc );
  1372. }
  1373. #endif
  1374. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1375. ggml_float sumf = 0.0;
  1376. #if defined(GGML_SIMD)
  1377. const int np = (n & ~(GGML_F16_STEP - 1));
  1378. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1379. GGML_F16_VEC ax[GGML_F16_ARR];
  1380. GGML_F16_VEC ay[GGML_F16_ARR];
  1381. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1382. for (int j = 0; j < GGML_F16_ARR; j++) {
  1383. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1384. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1385. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1386. }
  1387. }
  1388. // reduce sum0..sum3 to sum0
  1389. GGML_F16_VEC_REDUCE(sumf, sum);
  1390. // leftovers
  1391. for (int i = np; i < n; ++i) {
  1392. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1393. }
  1394. #else
  1395. for (int i = 0; i < n; ++i) {
  1396. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1397. }
  1398. #endif
  1399. *s = sumf;
  1400. }
  1401. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1402. const int nb = n / QK;
  1403. assert(n % QK == 0);
  1404. assert(nb % 2 == 0);
  1405. const block_q4_0 * restrict x = vx;
  1406. const block_q4_0 * restrict y = vy;
  1407. ggml_float sumf = 0.0;
  1408. #if defined(__ARM_NEON)
  1409. float sum0 = 0.0f;
  1410. float sum1 = 0.0f;
  1411. for (int i = 0; i < nb; i += 2) {
  1412. const block_q4_0 * restrict x0 = &x[i + 0];
  1413. const block_q4_0 * restrict y0 = &y[i + 0];
  1414. const block_q4_0 * restrict x1 = &x[i + 1];
  1415. const block_q4_0 * restrict y1 = &y[i + 1];
  1416. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1417. const int8x16_t s8b = vdupq_n_s8(0x8);
  1418. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1419. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1420. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1421. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1422. // 4-bit -> 8-bit
  1423. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1424. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1425. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1426. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1427. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1428. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1429. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1430. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1431. // sub 8
  1432. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1433. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1434. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1435. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1436. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1437. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1438. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1439. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1440. #if defined(__ARM_FEATURE_DOTPROD)
  1441. // dot product into int16x8_t
  1442. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1443. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1444. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1445. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1446. // scalar
  1447. #if defined(__ARM_FEATURE_QRDMX)
  1448. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1449. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1450. #else
  1451. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1452. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1453. #endif
  1454. #else
  1455. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1456. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1457. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1458. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1459. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1460. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1461. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1462. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1463. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1464. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1465. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1466. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1467. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1468. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1469. // scalar
  1470. #if defined(__ARM_FEATURE_QRDMX)
  1471. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1472. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1473. #else
  1474. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1475. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1476. #endif
  1477. #endif
  1478. }
  1479. sumf = (ggml_float)(sum0 + sum1);
  1480. #elif defined(__AVX512F__)
  1481. // Initialize accumulator with zeros
  1482. __m512 acc0 = _mm512_setzero_ps();
  1483. __m512 acc1 = _mm512_setzero_ps();
  1484. const int superblock_size = 8;
  1485. const int superblock_count = nb / superblock_size;
  1486. const int remainder = nb % superblock_size;
  1487. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1488. int i = superblock_ix * superblock_size;
  1489. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1490. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1491. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1492. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1493. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1494. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1495. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1496. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1497. }
  1498. // Remainders
  1499. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1500. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1501. }
  1502. // Horizontal sum of all lanes of the accumulator
  1503. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1504. #elif defined(__AVX2__)
  1505. // Initialize accumulator with zeros
  1506. __m256 acc = _mm256_setzero_ps();
  1507. // Main loop
  1508. for (int i = 0; i < nb; ++i) {
  1509. // Compute combined scale for the block
  1510. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1511. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1512. __m256i bx = bytesFromNibbles( x[i].qs );
  1513. __m256i by = bytesFromNibbles( y[i].qs );
  1514. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1515. const __m256i off = _mm256_set1_epi8( 8 );
  1516. bx = _mm256_sub_epi8( bx, off );
  1517. by = _mm256_sub_epi8( by, off );
  1518. // Sign-extend first 16 signed bytes into int16_t
  1519. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1520. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1521. // Compute products of int16_t integers, add pairwise
  1522. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1523. // Sign-extend last 16 signed bytes into int16_t vectors
  1524. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1525. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1526. // Accumulate products of int16_t integers
  1527. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1528. // Convert int32_t to float
  1529. __m256 p = _mm256_cvtepi32_ps( i32 );
  1530. // Apply the scale, and accumulate
  1531. acc = _mm256_fmadd_ps( d, p, acc );
  1532. }
  1533. // Return horizontal sum of the acc vector
  1534. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1535. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1536. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1537. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1538. sumf = _mm_cvtss_f32( res );
  1539. #elif defined(__wasm_simd128__)
  1540. // wasm simd
  1541. float sum0 = 0.0f;
  1542. float sum1 = 0.0f;
  1543. for (int i = 0; i < nb; i += 2) {
  1544. const block_q4_0 * restrict x0 = &px[i + 0];
  1545. const block_q4_0 * restrict y0 = &py[i + 0];
  1546. const block_q4_0 * restrict x1 = &px[i + 1];
  1547. const block_q4_0 * restrict y1 = &py[i + 1];
  1548. const v128_t m4b = wasm_u8x16_splat(0xf);
  1549. const v128_t s8b = wasm_i8x16_splat(0x8);
  1550. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1551. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1552. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1553. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1554. // 4-bit -> 8-bit
  1555. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1556. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1557. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1558. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1559. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1560. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1561. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1562. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1563. // sub 8
  1564. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1565. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1566. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1567. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1568. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1569. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1570. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1571. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1572. // dot product into int16x8_t
  1573. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1574. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1575. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1576. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1577. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1578. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1579. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1580. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1581. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1582. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1583. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1584. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1585. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1586. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1587. sum0 += x0->d * y0->d * (
  1588. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1589. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1590. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1591. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1592. sum1 += x1->d * y1->d * (
  1593. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1594. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1595. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1596. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1597. }
  1598. sumf = sum0 + sum1;
  1599. #else
  1600. // scalar
  1601. for (int i = 0; i < nb; i++) {
  1602. const float d0 = x[i].d;
  1603. const float d1 = y[i].d;
  1604. const uint8_t * restrict p0 = x[i].qs;
  1605. const uint8_t * restrict p1 = y[i].qs;
  1606. for (int j = 0; j < QK/2; j++) {
  1607. const uint8_t v0 = p0[j];
  1608. const uint8_t v1 = p1[j];
  1609. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1610. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1611. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1612. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1613. sumf += f0*f2 + f1*f3;
  1614. }
  1615. }
  1616. #endif
  1617. *s = sumf;
  1618. }
  1619. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1620. const int nb = n / QK;
  1621. const block_q4_1 * restrict x = vx;
  1622. const block_q4_1 * restrict y = vy;
  1623. float sumf = 0.0;
  1624. #if defined(__AVX2__)
  1625. // Initialize accumulator with zeros
  1626. __m256 acc = _mm256_setzero_ps();
  1627. // Accumulator for constant offsets
  1628. float acc_offset = 0.0f;
  1629. // Main loop
  1630. for (int i = 0; i < nb; ++i) {
  1631. const float * d0 = &x[i].d;
  1632. const float * d1 = &y[i].d;
  1633. const float * m0 = &x[i].m;
  1634. const float * m1 = &y[i].m;
  1635. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1636. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1637. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1638. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1639. // Compute combined scale for the block
  1640. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1641. // Compute cross scales for the block
  1642. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1643. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1644. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1645. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1646. __m256i bx = bytesFromNibbles( x[i].qs );
  1647. __m256i by = bytesFromNibbles( y[i].qs );
  1648. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1649. // Sign-extend first 16 signed bytes into int16_t
  1650. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1651. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1652. // Compute products of int16_t integers, add pairwise
  1653. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1654. // Sign-extend last 16 signed bytes into int16_t vectors
  1655. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1656. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1657. // Accumulate products of int16_t integers
  1658. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1659. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1660. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1661. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1662. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1663. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1664. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1665. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1666. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1667. // Convert int32_t to float
  1668. __m256 p = _mm256_cvtepi32_ps( i32 );
  1669. // Apply the scale, and accumulate
  1670. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1671. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1672. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1673. // acc_offset += m0*m1 (for each entry in the block)
  1674. acc_offset += (*m0)*(*m1);
  1675. }
  1676. // Return horizontal sum of the acc vector
  1677. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1678. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1679. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1680. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1681. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1682. #elif defined(__ARM_NEON)
  1683. float sum00 = 0.0f;
  1684. float sum01 = 0.0f;
  1685. float sum10 = 0.0f;
  1686. float sum11 = 0.0f;
  1687. for (int i = 0; i < nb; ++i) {
  1688. const block_q4_1 * restrict x0 = &x[i + 0];
  1689. const block_q4_1 * restrict y0 = &y[i + 0];
  1690. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1691. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1692. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1693. // and with 0xf
  1694. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1695. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1696. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1697. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1698. // dot product into uint16x8_t
  1699. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1700. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1701. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1702. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1703. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1704. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1705. sum00 += x0->m*y0->m;
  1706. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1707. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1708. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1709. }
  1710. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1711. #else
  1712. // scalar
  1713. for (int i = 0; i < nb; i++) {
  1714. const float d0 = x[i].d;
  1715. const float d1 = y[i].d;
  1716. const float m0 = x[i].m;
  1717. const float m1 = y[i].m;
  1718. const uint8_t * restrict p0 = x[i].qs;
  1719. const uint8_t * restrict p1 = y[i].qs;
  1720. for (int j = 0; j < QK/2; j++) {
  1721. const uint8_t v0 = p0[j];
  1722. const uint8_t v1 = p1[j];
  1723. const float f0 = d0*(v0 & 0xf) + m0;
  1724. const float f1 = d0*(v0 >> 4) + m0;
  1725. const float f2 = d1*(v1 & 0xf) + m1;
  1726. const float f3 = d1*(v1 >> 4) + m1;
  1727. sumf += f0*f2 + f1*f3;
  1728. }
  1729. }
  1730. #endif
  1731. *s = sumf;
  1732. }
  1733. // compute GGML_VEC_DOT_UNROLL dot products at once
  1734. // xs - x row stride in bytes
  1735. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1736. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1737. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1738. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1739. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1740. }
  1741. #if defined(GGML_SIMD)
  1742. const int np = (n & ~(GGML_F16_STEP - 1));
  1743. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1744. GGML_F16_VEC ax[GGML_F16_ARR];
  1745. GGML_F16_VEC ay[GGML_F16_ARR];
  1746. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1747. for (int j = 0; j < GGML_F16_ARR; j++) {
  1748. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1749. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1750. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1751. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1752. }
  1753. }
  1754. }
  1755. // reduce sum0..sum3 to sum0
  1756. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1757. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1758. }
  1759. // leftovers
  1760. for (int i = np; i < n; ++i) {
  1761. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1762. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1763. }
  1764. }
  1765. #else
  1766. for (int i = 0; i < n; ++i) {
  1767. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1768. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1769. }
  1770. }
  1771. #endif
  1772. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1773. s[i] = sumf[i];
  1774. }
  1775. }
  1776. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1777. #if defined(GGML_SIMD)
  1778. const int np = (n & ~(GGML_F32_STEP - 1));
  1779. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1780. GGML_F32_VEC ax[GGML_F32_ARR];
  1781. GGML_F32_VEC ay[GGML_F32_ARR];
  1782. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1783. for (int j = 0; j < GGML_F32_ARR; j++) {
  1784. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1785. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1786. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1787. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1788. }
  1789. }
  1790. // leftovers
  1791. for (int i = np; i < n; ++i) {
  1792. y[i] += x[i]*v;
  1793. }
  1794. #else
  1795. // scalar
  1796. for (int i = 0; i < n; ++i) {
  1797. y[i] += x[i]*v;
  1798. }
  1799. #endif
  1800. }
  1801. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1802. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1803. #if defined(GGML_SIMD)
  1804. const int np = (n & ~(GGML_F32_STEP - 1));
  1805. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1806. GGML_F32_VEC ay[GGML_F32_ARR];
  1807. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1808. for (int j = 0; j < GGML_F32_ARR; j++) {
  1809. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1810. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1811. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1812. }
  1813. }
  1814. // leftovers
  1815. for (int i = np; i < n; ++i) {
  1816. y[i] *= v;
  1817. }
  1818. #else
  1819. // scalar
  1820. for (int i = 0; i < n; ++i) {
  1821. y[i] *= v;
  1822. }
  1823. #endif
  1824. }
  1825. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1826. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1827. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1828. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1829. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1830. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1831. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1832. static const float GELU_COEF_A = 0.044715f;
  1833. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1834. inline static float ggml_gelu_f32(float x) {
  1835. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1836. }
  1837. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1838. const uint16_t * i16 = (const uint16_t *) x;
  1839. for (int i = 0; i < n; ++i) {
  1840. y[i] = table_gelu_f16[i16[i]];
  1841. }
  1842. }
  1843. #ifdef GGML_GELU_FP16
  1844. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1845. uint16_t t;
  1846. for (int i = 0; i < n; ++i) {
  1847. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1848. memcpy(&t, &fp16, sizeof(uint16_t));
  1849. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1850. }
  1851. }
  1852. #else
  1853. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1854. for (int i = 0; i < n; ++i) {
  1855. y[i] = ggml_gelu_f32(x[i]);
  1856. }
  1857. }
  1858. #endif
  1859. // Sigmoid Linear Unit (SiLU) function
  1860. inline static float ggml_silu_f32(float x) {
  1861. return x/(1.0f + expf(-x));
  1862. }
  1863. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1864. const uint16_t * i16 = (const uint16_t *) x;
  1865. for (int i = 0; i < n; ++i) {
  1866. y[i] = table_silu_f16[i16[i]];
  1867. }
  1868. }
  1869. #ifdef GGML_SILU_FP16
  1870. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1871. uint16_t t;
  1872. for (int i = 0; i < n; ++i) {
  1873. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1874. memcpy(&t, &fp16, sizeof(uint16_t));
  1875. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1876. }
  1877. }
  1878. #else
  1879. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1880. for (int i = 0; i < n; ++i) {
  1881. y[i] = ggml_silu_f32(x[i]);
  1882. }
  1883. }
  1884. #endif
  1885. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1886. #ifndef GGML_USE_ACCELERATE
  1887. ggml_float sum = 0.0;
  1888. for (int i = 0; i < n; ++i) {
  1889. sum += (ggml_float)x[i];
  1890. }
  1891. *s = sum;
  1892. #else
  1893. vDSP_sve(x, 1, s, n);
  1894. #endif
  1895. }
  1896. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1897. #ifndef GGML_USE_ACCELERATE
  1898. float max = -INFINITY;
  1899. for (int i = 0; i < n; ++i) {
  1900. max = MAX(max, x[i]);
  1901. }
  1902. *s = max;
  1903. #else
  1904. vDSP_maxv(x, 1, s, n);
  1905. #endif
  1906. }
  1907. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1908. ggml_vec_norm_f32(n, s, x);
  1909. *s = 1.f/(*s);
  1910. }
  1911. //
  1912. // logging
  1913. //
  1914. #if (GGML_DEBUG >= 1)
  1915. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1916. #else
  1917. #define GGML_PRINT_DEBUG(...)
  1918. #endif
  1919. #if (GGML_DEBUG >= 5)
  1920. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1921. #else
  1922. #define GGML_PRINT_DEBUG_5(...)
  1923. #endif
  1924. #if (GGML_DEBUG >= 10)
  1925. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1926. #else
  1927. #define GGML_PRINT_DEBUG_10(...)
  1928. #endif
  1929. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1930. //
  1931. // data types
  1932. //
  1933. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1934. QK,
  1935. QK,
  1936. 1,
  1937. 1,
  1938. 1,
  1939. 1,
  1940. 1,
  1941. };
  1942. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1943. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1944. sizeof(block_q4_0),
  1945. sizeof(block_q4_1),
  1946. sizeof(int8_t ),
  1947. sizeof(int16_t),
  1948. sizeof(int32_t),
  1949. sizeof(ggml_fp16_t),
  1950. sizeof(float ),
  1951. };
  1952. // don't forget to update the array above when adding new types
  1953. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1954. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1955. "NONE",
  1956. "DUP",
  1957. "ADD",
  1958. "SUB",
  1959. "MUL",
  1960. "DIV",
  1961. "SQR",
  1962. "SQRT",
  1963. "SUM",
  1964. "MEAN",
  1965. "REPEAT",
  1966. "ABS",
  1967. "SGN",
  1968. "NEG",
  1969. "STEP",
  1970. "RELU",
  1971. "GELU",
  1972. "SILU",
  1973. "NORM",
  1974. "RMS_NORM",
  1975. "MUL_MAT",
  1976. "SCALE",
  1977. "CPY",
  1978. "RESHAPE",
  1979. "VIEW",
  1980. "PERMUTE",
  1981. "TRANSPOSE",
  1982. "GET_ROWS",
  1983. "DIAG_MASK_INF",
  1984. "SOFT_MAX",
  1985. "ROPE",
  1986. "CONV_1D_1S",
  1987. "CONV_1D_2S",
  1988. "FLASH_ATTN",
  1989. "FLASH_FF",
  1990. };
  1991. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1992. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1993. "none",
  1994. "x",
  1995. "x+y",
  1996. "x-y",
  1997. "x*y",
  1998. "x/y",
  1999. "x^2",
  2000. "√x",
  2001. "Σx",
  2002. "Σx/n",
  2003. "repeat(x)",
  2004. "abs(x)",
  2005. "sgn(x)",
  2006. "-x",
  2007. "step(x)",
  2008. "relu(x)",
  2009. "gelu(x)",
  2010. "silu(x)",
  2011. "norm(x)",
  2012. "rms_norm(x)",
  2013. "X*Y",
  2014. "x*v",
  2015. "x-\\>y",
  2016. "reshape(x)",
  2017. "view(x)",
  2018. "permute(x)",
  2019. "transpose(x)",
  2020. "get_rows(x)",
  2021. "diag_mask_inf(x)",
  2022. "soft_max(x)",
  2023. "rope(x)",
  2024. "conv_1d_1s(x)",
  2025. "conv_1d_2s(x)",
  2026. "flash_attn(x)",
  2027. "flash_ff(x)",
  2028. };
  2029. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2030. //
  2031. // ggml object
  2032. //
  2033. struct ggml_object {
  2034. size_t offs;
  2035. size_t size;
  2036. struct ggml_object * next;
  2037. char padding[8];
  2038. };
  2039. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2040. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2041. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2042. //
  2043. // ggml context
  2044. //
  2045. struct ggml_context {
  2046. size_t mem_size;
  2047. void * mem_buffer;
  2048. bool mem_buffer_owned;
  2049. bool mem_buffer_mlocked;
  2050. int n_objects;
  2051. struct ggml_object * objects_begin;
  2052. struct ggml_object * objects_end;
  2053. struct ggml_scratch scratch;
  2054. struct ggml_scratch scratch_save;
  2055. };
  2056. struct ggml_context_container {
  2057. bool used;
  2058. struct ggml_context context;
  2059. };
  2060. //
  2061. // compute types
  2062. //
  2063. enum ggml_task_type {
  2064. GGML_TASK_INIT = 0,
  2065. GGML_TASK_COMPUTE,
  2066. GGML_TASK_FINALIZE,
  2067. };
  2068. struct ggml_compute_params {
  2069. enum ggml_task_type type;
  2070. int ith, nth;
  2071. // work buffer for all threads
  2072. size_t wsize;
  2073. void * wdata;
  2074. };
  2075. //
  2076. // ggml state
  2077. //
  2078. struct ggml_state {
  2079. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2080. };
  2081. // global state
  2082. static struct ggml_state g_state;
  2083. static atomic_int g_state_barrier = 0;
  2084. // barrier via spin lock
  2085. inline static void ggml_critical_section_start(void) {
  2086. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2087. while (processing > 0) {
  2088. // wait for other threads to finish
  2089. atomic_fetch_sub(&g_state_barrier, 1);
  2090. sched_yield(); // TODO: reconsider this
  2091. processing = atomic_fetch_add(&g_state_barrier, 1);
  2092. }
  2093. }
  2094. // TODO: make this somehow automatically executed
  2095. // some sort of "sentry" mechanism
  2096. inline static void ggml_critical_section_end(void) {
  2097. atomic_fetch_sub(&g_state_barrier, 1);
  2098. }
  2099. ////////////////////////////////////////////////////////////////////////////////
  2100. void ggml_print_object(const struct ggml_object * obj) {
  2101. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2102. obj->offs, obj->size, (const void *) obj->next);
  2103. }
  2104. void ggml_print_objects(const struct ggml_context * ctx) {
  2105. struct ggml_object * obj = ctx->objects_begin;
  2106. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2107. while (obj != NULL) {
  2108. ggml_print_object(obj);
  2109. obj = obj->next;
  2110. }
  2111. GGML_PRINT("%s: --- end ---\n", __func__);
  2112. }
  2113. int ggml_nelements(const struct ggml_tensor * tensor) {
  2114. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2115. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2116. }
  2117. int ggml_nrows(const struct ggml_tensor * tensor) {
  2118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2119. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2120. }
  2121. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2122. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2123. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2124. }
  2125. int ggml_blck_size(enum ggml_type type) {
  2126. return GGML_BLCK_SIZE[type];
  2127. }
  2128. size_t ggml_type_size(enum ggml_type type) {
  2129. return GGML_TYPE_SIZE[type];
  2130. }
  2131. float ggml_type_sizef(enum ggml_type type) {
  2132. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2133. }
  2134. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2135. return GGML_TYPE_SIZE[tensor->type];
  2136. }
  2137. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2138. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2139. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2140. }
  2141. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2142. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2143. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2144. }
  2145. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2146. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2147. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2148. }
  2149. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2150. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2151. return
  2152. (t0->ne[0] == t1->ne[0]) &&
  2153. (t0->ne[2] == t1->ne[2]) &&
  2154. (t0->ne[3] == t1->ne[3]);
  2155. }
  2156. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2157. return tensor->nb[0] > tensor->nb[1];
  2158. }
  2159. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2160. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2161. return
  2162. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2163. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2164. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2165. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2166. }
  2167. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2168. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2169. return
  2170. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2171. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2172. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2173. }
  2174. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2175. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2176. return
  2177. (t0->ne[0] == t1->ne[0] ) &&
  2178. (t0->ne[1] == t1->ne[1] ) &&
  2179. (t0->ne[2] == t1->ne[2] ) &&
  2180. (t0->ne[3] == t1->ne[3] );
  2181. }
  2182. // check if t1 can be represented as a repeatition of t0
  2183. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2184. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2185. return
  2186. (t1->ne[0]%t0->ne[0] == 0) &&
  2187. (t1->ne[1]%t0->ne[1] == 0) &&
  2188. (t1->ne[2]%t0->ne[2] == 0) &&
  2189. (t1->ne[3]%t0->ne[3] == 0);
  2190. }
  2191. static inline int ggml_up32(int n) {
  2192. return (n + 31) & ~31;
  2193. }
  2194. static inline int ggml_up64(int n) {
  2195. return (n + 63) & ~63;
  2196. }
  2197. static inline int ggml_up(int n, int m) {
  2198. // assert m is a power of 2
  2199. GGML_ASSERT((m & (m - 1)) == 0);
  2200. return (n + m - 1) & ~(m - 1);
  2201. }
  2202. // assert that pointer is aligned to GGML_MEM_ALIGN
  2203. #define ggml_assert_aligned(ptr) \
  2204. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2205. ////////////////////////////////////////////////////////////////////////////////
  2206. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2207. // make this function thread safe
  2208. ggml_critical_section_start();
  2209. static bool is_first_call = true;
  2210. if (is_first_call) {
  2211. // initialize time system (required on Windows)
  2212. ggml_time_init();
  2213. // initialize GELU, SILU and EXP F32 tables
  2214. {
  2215. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2216. ggml_fp16_t ii;
  2217. for (int i = 0; i < (1 << 16); ++i) {
  2218. uint16_t ui = i;
  2219. memcpy(&ii, &ui, sizeof(ii));
  2220. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2221. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2222. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2223. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2224. }
  2225. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2226. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2227. }
  2228. // initialize g_state
  2229. {
  2230. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2231. g_state = (struct ggml_state) {
  2232. /*.contexts =*/ { { 0 } },
  2233. };
  2234. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2235. g_state.contexts[i].used = false;
  2236. }
  2237. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2238. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2239. }
  2240. is_first_call = false;
  2241. }
  2242. // find non-used context in g_state
  2243. struct ggml_context * ctx = NULL;
  2244. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2245. if (!g_state.contexts[i].used) {
  2246. g_state.contexts[i].used = true;
  2247. ctx = &g_state.contexts[i].context;
  2248. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2249. break;
  2250. }
  2251. }
  2252. if (ctx == NULL) {
  2253. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2254. ggml_critical_section_end();
  2255. return NULL;
  2256. }
  2257. *ctx = (struct ggml_context) {
  2258. /*.mem_size =*/ params.mem_size,
  2259. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2260. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2261. /*.mem_buffer_mlocked =*/ false,
  2262. /*.n_objects =*/ 0,
  2263. /*.objects_begin =*/ NULL,
  2264. /*.objects_end =*/ NULL,
  2265. /*.scratch =*/ { 0, 0, NULL, },
  2266. /*.scratch_save =*/ { 0, 0, NULL, },
  2267. };
  2268. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2269. ggml_assert_aligned(ctx->mem_buffer);
  2270. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2271. ggml_critical_section_end();
  2272. return ctx;
  2273. }
  2274. void ggml_free(struct ggml_context * ctx) {
  2275. // make this function thread safe
  2276. ggml_critical_section_start();
  2277. bool found = false;
  2278. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2279. if (&g_state.contexts[i].context == ctx) {
  2280. g_state.contexts[i].used = false;
  2281. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2282. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2283. #if GGML_MLOCK_SUPPORT
  2284. if (ctx->mem_buffer_mlocked) {
  2285. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2286. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2287. }
  2288. }
  2289. #endif
  2290. if (ctx->mem_buffer_owned) {
  2291. free(ctx->mem_buffer);
  2292. }
  2293. found = true;
  2294. break;
  2295. }
  2296. }
  2297. if (!found) {
  2298. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2299. }
  2300. ggml_critical_section_end();
  2301. }
  2302. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2303. return ctx->objects_end->offs + ctx->objects_end->size;
  2304. }
  2305. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2306. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2307. ctx->scratch = scratch;
  2308. return result;
  2309. }
  2310. bool ggml_mlock_supported(void) {
  2311. return GGML_MLOCK_SUPPORT;
  2312. }
  2313. #if GGML_MLOCK_SUPPORT
  2314. #ifdef __APPLE__
  2315. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2316. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2317. #else
  2318. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2319. #endif
  2320. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2321. if (ctx->mem_buffer_mlocked) {
  2322. return true;
  2323. }
  2324. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2325. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2326. ctx->mem_size, strerror(errno));
  2327. GGML_ASSERT(ret >= 0);
  2328. return false;
  2329. }
  2330. ctx->mem_buffer_mlocked = true;
  2331. return true;
  2332. }
  2333. #else // GGML_MLOCK_SUPPORT
  2334. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2335. *err_p = strdup("can't mlock because it's not supported on this system");
  2336. return false;
  2337. }
  2338. #endif // GGML_MLOCK_SUPPORT
  2339. ////////////////////////////////////////////////////////////////////////////////
  2340. struct ggml_tensor * ggml_new_tensor_impl(
  2341. struct ggml_context * ctx,
  2342. enum ggml_type type,
  2343. int n_dims,
  2344. const int* ne,
  2345. void* data) {
  2346. // always insert objects at the end of the context's memory pool
  2347. struct ggml_object * obj_cur = ctx->objects_end;
  2348. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2349. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2350. const size_t cur_end = cur_offs + cur_size;
  2351. size_t size_needed = 0;
  2352. if (data == NULL) {
  2353. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2354. for (int i = 1; i < n_dims; i++) {
  2355. size_needed *= ne[i];
  2356. }
  2357. // align to GGML_MEM_ALIGN
  2358. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2359. }
  2360. char * const mem_buffer = ctx->mem_buffer;
  2361. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2362. if (ctx->scratch.data == NULL || data != NULL) {
  2363. size_needed += sizeof(struct ggml_tensor);
  2364. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2365. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2366. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2367. assert(false);
  2368. return NULL;
  2369. }
  2370. *obj_new = (struct ggml_object) {
  2371. .offs = cur_end + GGML_OBJECT_SIZE,
  2372. .size = size_needed,
  2373. .next = NULL,
  2374. };
  2375. } else {
  2376. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2377. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2378. assert(false);
  2379. return NULL;
  2380. }
  2381. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2382. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2383. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2384. assert(false);
  2385. return NULL;
  2386. }
  2387. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2388. *obj_new = (struct ggml_object) {
  2389. .offs = cur_end + GGML_OBJECT_SIZE,
  2390. .size = sizeof(struct ggml_tensor),
  2391. .next = NULL,
  2392. };
  2393. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2394. ctx->scratch.offs += size_needed;
  2395. }
  2396. if (obj_cur != NULL) {
  2397. obj_cur->next = obj_new;
  2398. } else {
  2399. // this is the first object in this context
  2400. ctx->objects_begin = obj_new;
  2401. }
  2402. ctx->objects_end = obj_new;
  2403. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2404. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2405. ggml_assert_aligned(result);
  2406. *result = (struct ggml_tensor) {
  2407. /*.type =*/ type,
  2408. /*.n_dims =*/ n_dims,
  2409. /*.ne =*/ { 1, 1, 1, 1 },
  2410. /*.nb =*/ { 0, 0, 0, 0 },
  2411. /*.op =*/ GGML_OP_NONE,
  2412. /*.is_param =*/ false,
  2413. /*.grad =*/ NULL,
  2414. /*.src0 =*/ NULL,
  2415. /*.src1 =*/ NULL,
  2416. /*.opt =*/ { NULL },
  2417. /*.n_tasks =*/ 0,
  2418. /*.perf_runs =*/ 0,
  2419. /*.perf_cycles =*/ 0,
  2420. /*.perf_time_us =*/ 0,
  2421. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2422. /*.pad =*/ { 0 },
  2423. };
  2424. ggml_assert_aligned(result->data);
  2425. for (int i = 0; i < n_dims; i++) {
  2426. result->ne[i] = ne[i];
  2427. }
  2428. result->nb[0] = GGML_TYPE_SIZE[type];
  2429. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2430. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2431. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2432. }
  2433. ctx->n_objects++;
  2434. return result;
  2435. }
  2436. struct ggml_tensor * ggml_new_tensor(
  2437. struct ggml_context * ctx,
  2438. enum ggml_type type,
  2439. int n_dims,
  2440. const int * ne) {
  2441. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2442. }
  2443. struct ggml_tensor * ggml_new_tensor_1d(
  2444. struct ggml_context * ctx,
  2445. enum ggml_type type,
  2446. int ne0) {
  2447. return ggml_new_tensor(ctx, type, 1, &ne0);
  2448. }
  2449. struct ggml_tensor * ggml_new_tensor_2d(
  2450. struct ggml_context * ctx,
  2451. enum ggml_type type,
  2452. int ne0,
  2453. int ne1) {
  2454. const int ne[2] = { ne0, ne1 };
  2455. return ggml_new_tensor(ctx, type, 2, ne);
  2456. }
  2457. struct ggml_tensor * ggml_new_tensor_3d(
  2458. struct ggml_context * ctx,
  2459. enum ggml_type type,
  2460. int ne0,
  2461. int ne1,
  2462. int ne2) {
  2463. const int ne[3] = { ne0, ne1, ne2 };
  2464. return ggml_new_tensor(ctx, type, 3, ne);
  2465. }
  2466. struct ggml_tensor * ggml_new_tensor_4d(
  2467. struct ggml_context * ctx,
  2468. enum ggml_type type,
  2469. int ne0,
  2470. int ne1,
  2471. int ne2,
  2472. int ne3) {
  2473. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2474. return ggml_new_tensor(ctx, type, 4, ne);
  2475. }
  2476. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2477. ctx->scratch_save = ctx->scratch;
  2478. ctx->scratch.data = NULL;
  2479. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2480. ctx->scratch = ctx->scratch_save;
  2481. ggml_set_i32(result, value);
  2482. return result;
  2483. }
  2484. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2485. ctx->scratch_save = ctx->scratch;
  2486. ctx->scratch.data = NULL;
  2487. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2488. ctx->scratch = ctx->scratch_save;
  2489. ggml_set_f32(result, value);
  2490. return result;
  2491. }
  2492. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2493. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2494. }
  2495. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2496. memset(tensor->data, 0, ggml_nbytes(tensor));
  2497. return tensor;
  2498. }
  2499. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2500. const int n = ggml_nrows(tensor);
  2501. const int nc = tensor->ne[0];
  2502. const size_t n1 = tensor->nb[1];
  2503. char * const data = tensor->data;
  2504. switch (tensor->type) {
  2505. case GGML_TYPE_Q4_0:
  2506. {
  2507. GGML_ASSERT(false);
  2508. } break;
  2509. case GGML_TYPE_Q4_1:
  2510. {
  2511. GGML_ASSERT(false);
  2512. } break;
  2513. case GGML_TYPE_I8:
  2514. {
  2515. assert(tensor->nb[0] == sizeof(int8_t));
  2516. for (int i = 0; i < n; i++) {
  2517. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2518. }
  2519. } break;
  2520. case GGML_TYPE_I16:
  2521. {
  2522. assert(tensor->nb[0] == sizeof(int16_t));
  2523. for (int i = 0; i < n; i++) {
  2524. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2525. }
  2526. } break;
  2527. case GGML_TYPE_I32:
  2528. {
  2529. assert(tensor->nb[0] == sizeof(int32_t));
  2530. for (int i = 0; i < n; i++) {
  2531. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2532. }
  2533. } break;
  2534. case GGML_TYPE_F16:
  2535. {
  2536. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2537. for (int i = 0; i < n; i++) {
  2538. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2539. }
  2540. } break;
  2541. case GGML_TYPE_F32:
  2542. {
  2543. assert(tensor->nb[0] == sizeof(float));
  2544. for (int i = 0; i < n; i++) {
  2545. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2546. }
  2547. } break;
  2548. case GGML_TYPE_COUNT:
  2549. {
  2550. GGML_ASSERT(false);
  2551. } break;
  2552. }
  2553. return tensor;
  2554. }
  2555. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2556. const int n = ggml_nrows(tensor);
  2557. const int nc = tensor->ne[0];
  2558. const size_t n1 = tensor->nb[1];
  2559. char * const data = tensor->data;
  2560. switch (tensor->type) {
  2561. case GGML_TYPE_Q4_0:
  2562. {
  2563. GGML_ASSERT(false);
  2564. } break;
  2565. case GGML_TYPE_Q4_1:
  2566. {
  2567. GGML_ASSERT(false);
  2568. } break;
  2569. case GGML_TYPE_I8:
  2570. {
  2571. assert(tensor->nb[0] == sizeof(int8_t));
  2572. for (int i = 0; i < n; i++) {
  2573. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2574. }
  2575. } break;
  2576. case GGML_TYPE_I16:
  2577. {
  2578. assert(tensor->nb[0] == sizeof(int16_t));
  2579. for (int i = 0; i < n; i++) {
  2580. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2581. }
  2582. } break;
  2583. case GGML_TYPE_I32:
  2584. {
  2585. assert(tensor->nb[0] == sizeof(int32_t));
  2586. for (int i = 0; i < n; i++) {
  2587. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2588. }
  2589. } break;
  2590. case GGML_TYPE_F16:
  2591. {
  2592. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2593. for (int i = 0; i < n; i++) {
  2594. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2595. }
  2596. } break;
  2597. case GGML_TYPE_F32:
  2598. {
  2599. assert(tensor->nb[0] == sizeof(float));
  2600. for (int i = 0; i < n; i++) {
  2601. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2602. }
  2603. } break;
  2604. case GGML_TYPE_COUNT:
  2605. {
  2606. GGML_ASSERT(false);
  2607. } break;
  2608. }
  2609. return tensor;
  2610. }
  2611. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2612. switch (tensor->type) {
  2613. case GGML_TYPE_Q4_0:
  2614. {
  2615. GGML_ASSERT(false);
  2616. } break;
  2617. case GGML_TYPE_Q4_1:
  2618. {
  2619. GGML_ASSERT(false);
  2620. } break;
  2621. case GGML_TYPE_I8:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2624. return ((int8_t *)(tensor->data))[i];
  2625. } break;
  2626. case GGML_TYPE_I16:
  2627. {
  2628. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2629. return ((int16_t *)(tensor->data))[i];
  2630. } break;
  2631. case GGML_TYPE_I32:
  2632. {
  2633. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2634. return ((int32_t *)(tensor->data))[i];
  2635. } break;
  2636. case GGML_TYPE_F16:
  2637. {
  2638. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2639. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2640. } break;
  2641. case GGML_TYPE_F32:
  2642. {
  2643. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2644. return ((float *)(tensor->data))[i];
  2645. } break;
  2646. case GGML_TYPE_COUNT:
  2647. {
  2648. GGML_ASSERT(false);
  2649. } break;
  2650. }
  2651. return 0.0f;
  2652. }
  2653. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2654. switch (tensor->type) {
  2655. case GGML_TYPE_Q4_0:
  2656. {
  2657. GGML_ASSERT(false);
  2658. } break;
  2659. case GGML_TYPE_Q4_1:
  2660. {
  2661. GGML_ASSERT(false);
  2662. } break;
  2663. case GGML_TYPE_I8:
  2664. {
  2665. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2666. ((int8_t *)(tensor->data))[i] = value;
  2667. } break;
  2668. case GGML_TYPE_I16:
  2669. {
  2670. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2671. ((int16_t *)(tensor->data))[i] = value;
  2672. } break;
  2673. case GGML_TYPE_I32:
  2674. {
  2675. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2676. ((int32_t *)(tensor->data))[i] = value;
  2677. } break;
  2678. case GGML_TYPE_F16:
  2679. {
  2680. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2681. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2682. } break;
  2683. case GGML_TYPE_F32:
  2684. {
  2685. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2686. ((float *)(tensor->data))[i] = value;
  2687. } break;
  2688. case GGML_TYPE_COUNT:
  2689. {
  2690. GGML_ASSERT(false);
  2691. } break;
  2692. }
  2693. }
  2694. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2695. switch (tensor->type) {
  2696. case GGML_TYPE_Q4_0:
  2697. {
  2698. GGML_ASSERT(false);
  2699. } break;
  2700. case GGML_TYPE_Q4_1:
  2701. {
  2702. GGML_ASSERT(false);
  2703. } break;
  2704. case GGML_TYPE_I8:
  2705. {
  2706. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2707. return ((int8_t *)(tensor->data))[i];
  2708. } break;
  2709. case GGML_TYPE_I16:
  2710. {
  2711. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2712. return ((int16_t *)(tensor->data))[i];
  2713. } break;
  2714. case GGML_TYPE_I32:
  2715. {
  2716. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2717. return ((int32_t *)(tensor->data))[i];
  2718. } break;
  2719. case GGML_TYPE_F16:
  2720. {
  2721. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2722. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2723. } break;
  2724. case GGML_TYPE_F32:
  2725. {
  2726. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2727. return ((float *)(tensor->data))[i];
  2728. } break;
  2729. case GGML_TYPE_COUNT:
  2730. {
  2731. GGML_ASSERT(false);
  2732. } break;
  2733. }
  2734. return 0.0f;
  2735. }
  2736. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2737. switch (tensor->type) {
  2738. case GGML_TYPE_Q4_0:
  2739. {
  2740. GGML_ASSERT(false);
  2741. } break;
  2742. case GGML_TYPE_Q4_1:
  2743. {
  2744. GGML_ASSERT(false);
  2745. } break;
  2746. case GGML_TYPE_I8:
  2747. {
  2748. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2749. ((int8_t *)(tensor->data))[i] = value;
  2750. } break;
  2751. case GGML_TYPE_I16:
  2752. {
  2753. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2754. ((int16_t *)(tensor->data))[i] = value;
  2755. } break;
  2756. case GGML_TYPE_I32:
  2757. {
  2758. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2759. ((int32_t *)(tensor->data))[i] = value;
  2760. } break;
  2761. case GGML_TYPE_F16:
  2762. {
  2763. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2764. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2765. } break;
  2766. case GGML_TYPE_F32:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2769. ((float *)(tensor->data))[i] = value;
  2770. } break;
  2771. case GGML_TYPE_COUNT:
  2772. {
  2773. GGML_ASSERT(false);
  2774. } break;
  2775. }
  2776. }
  2777. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2778. return tensor->data;
  2779. }
  2780. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2781. assert(tensor->type == GGML_TYPE_F32);
  2782. return (float *)(tensor->data);
  2783. }
  2784. struct ggml_tensor * ggml_view_tensor(
  2785. struct ggml_context * ctx,
  2786. const struct ggml_tensor * src) {
  2787. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2788. }
  2789. ////////////////////////////////////////////////////////////////////////////////
  2790. // ggml_dup
  2791. struct ggml_tensor * ggml_dup_impl(
  2792. struct ggml_context * ctx,
  2793. struct ggml_tensor * a,
  2794. bool inplace) {
  2795. bool is_node = false;
  2796. if (!inplace && (a->grad)) {
  2797. is_node = true;
  2798. }
  2799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2800. result->op = GGML_OP_DUP;
  2801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2802. result->src0 = a;
  2803. result->src1 = NULL;
  2804. return result;
  2805. }
  2806. struct ggml_tensor * ggml_dup(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a) {
  2809. return ggml_dup_impl(ctx, a, false);
  2810. }
  2811. struct ggml_tensor * ggml_dup_inplace(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a) {
  2814. return ggml_dup_impl(ctx, a, true);
  2815. }
  2816. // ggml_add
  2817. struct ggml_tensor * ggml_add_impl(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a,
  2820. struct ggml_tensor * b,
  2821. bool inplace) {
  2822. GGML_ASSERT(ggml_are_same_shape(a, b));
  2823. bool is_node = false;
  2824. if (!inplace && (a->grad || b->grad)) {
  2825. is_node = true;
  2826. }
  2827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2828. result->op = GGML_OP_ADD;
  2829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2830. result->src0 = a;
  2831. result->src1 = b;
  2832. return result;
  2833. }
  2834. struct ggml_tensor * ggml_add(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a,
  2837. struct ggml_tensor * b) {
  2838. return ggml_add_impl(ctx, a, b, false);
  2839. }
  2840. struct ggml_tensor * ggml_add_inplace(
  2841. struct ggml_context * ctx,
  2842. struct ggml_tensor * a,
  2843. struct ggml_tensor * b) {
  2844. return ggml_add_impl(ctx, a, b, true);
  2845. }
  2846. // ggml_sub
  2847. struct ggml_tensor * ggml_sub_impl(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a,
  2850. struct ggml_tensor * b,
  2851. bool inplace) {
  2852. GGML_ASSERT(ggml_are_same_shape(a, b));
  2853. bool is_node = false;
  2854. if (!inplace && (a->grad || b->grad)) {
  2855. is_node = true;
  2856. }
  2857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2858. result->op = GGML_OP_SUB;
  2859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2860. result->src0 = a;
  2861. result->src1 = b;
  2862. return result;
  2863. }
  2864. struct ggml_tensor * ggml_sub(
  2865. struct ggml_context * ctx,
  2866. struct ggml_tensor * a,
  2867. struct ggml_tensor * b) {
  2868. return ggml_sub_impl(ctx, a, b, false);
  2869. }
  2870. struct ggml_tensor * ggml_sub_inplace(
  2871. struct ggml_context * ctx,
  2872. struct ggml_tensor * a,
  2873. struct ggml_tensor * b) {
  2874. return ggml_sub_impl(ctx, a, b, true);
  2875. }
  2876. // ggml_mul
  2877. struct ggml_tensor * ggml_mul_impl(
  2878. struct ggml_context * ctx,
  2879. struct ggml_tensor * a,
  2880. struct ggml_tensor * b,
  2881. bool inplace) {
  2882. GGML_ASSERT(ggml_are_same_shape(a, b));
  2883. bool is_node = false;
  2884. if (!inplace && (a->grad || b->grad)) {
  2885. is_node = true;
  2886. }
  2887. if (inplace) {
  2888. GGML_ASSERT(is_node == false);
  2889. }
  2890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2891. result->op = GGML_OP_MUL;
  2892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2893. result->src0 = a;
  2894. result->src1 = b;
  2895. return result;
  2896. }
  2897. struct ggml_tensor * ggml_mul(
  2898. struct ggml_context * ctx,
  2899. struct ggml_tensor * a,
  2900. struct ggml_tensor * b) {
  2901. return ggml_mul_impl(ctx, a, b, false);
  2902. }
  2903. struct ggml_tensor * ggml_mul_inplace(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. struct ggml_tensor * b) {
  2907. return ggml_mul_impl(ctx, a, b, true);
  2908. }
  2909. // ggml_div
  2910. struct ggml_tensor * ggml_div_impl(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a,
  2913. struct ggml_tensor * b,
  2914. bool inplace) {
  2915. GGML_ASSERT(ggml_are_same_shape(a, b));
  2916. bool is_node = false;
  2917. if (!inplace && (a->grad || b->grad)) {
  2918. is_node = true;
  2919. }
  2920. if (inplace) {
  2921. GGML_ASSERT(is_node == false);
  2922. }
  2923. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2924. result->op = GGML_OP_DIV;
  2925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2926. result->src0 = a;
  2927. result->src1 = b;
  2928. return result;
  2929. }
  2930. struct ggml_tensor * ggml_div(
  2931. struct ggml_context * ctx,
  2932. struct ggml_tensor * a,
  2933. struct ggml_tensor * b) {
  2934. return ggml_div_impl(ctx, a, b, false);
  2935. }
  2936. struct ggml_tensor * ggml_div_inplace(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a,
  2939. struct ggml_tensor * b) {
  2940. return ggml_div_impl(ctx, a, b, true);
  2941. }
  2942. // ggml_sqr
  2943. struct ggml_tensor * ggml_sqr_impl(
  2944. struct ggml_context * ctx,
  2945. struct ggml_tensor * a,
  2946. bool inplace) {
  2947. bool is_node = false;
  2948. if (!inplace && (a->grad)) {
  2949. is_node = true;
  2950. }
  2951. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2952. result->op = GGML_OP_SQR;
  2953. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2954. result->src0 = a;
  2955. result->src1 = NULL;
  2956. return result;
  2957. }
  2958. struct ggml_tensor * ggml_sqr(
  2959. struct ggml_context * ctx,
  2960. struct ggml_tensor * a) {
  2961. return ggml_sqr_impl(ctx, a, false);
  2962. }
  2963. struct ggml_tensor * ggml_sqr_inplace(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a) {
  2966. return ggml_sqr_impl(ctx, a, true);
  2967. }
  2968. // ggml_sqrt
  2969. struct ggml_tensor * ggml_sqrt_impl(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a,
  2972. bool inplace) {
  2973. bool is_node = false;
  2974. if (!inplace && (a->grad)) {
  2975. is_node = true;
  2976. }
  2977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2978. result->op = GGML_OP_SQRT;
  2979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2980. result->src0 = a;
  2981. result->src1 = NULL;
  2982. return result;
  2983. }
  2984. struct ggml_tensor * ggml_sqrt(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. return ggml_sqrt_impl(ctx, a, false);
  2988. }
  2989. struct ggml_tensor * ggml_sqrt_inplace(
  2990. struct ggml_context * ctx,
  2991. struct ggml_tensor * a) {
  2992. return ggml_sqrt_impl(ctx, a, true);
  2993. }
  2994. // ggml_sum
  2995. struct ggml_tensor * ggml_sum(
  2996. struct ggml_context * ctx,
  2997. struct ggml_tensor * a) {
  2998. bool is_node = false;
  2999. if (a->grad) {
  3000. is_node = true;
  3001. }
  3002. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3003. result->op = GGML_OP_SUM;
  3004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3005. result->src0 = a;
  3006. result->src1 = NULL;
  3007. return result;
  3008. }
  3009. // ggml_mean
  3010. struct ggml_tensor * ggml_mean(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. bool is_node = false;
  3014. if (a->grad) {
  3015. GGML_ASSERT(false); // TODO: implement
  3016. is_node = true;
  3017. }
  3018. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3019. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3020. result->op = GGML_OP_MEAN;
  3021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3022. result->src0 = a;
  3023. result->src1 = NULL;
  3024. return result;
  3025. }
  3026. // ggml_repeat
  3027. struct ggml_tensor * ggml_repeat(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a,
  3030. struct ggml_tensor * b) {
  3031. GGML_ASSERT(ggml_can_repeat(a, b));
  3032. bool is_node = false;
  3033. if (a->grad) {
  3034. is_node = true;
  3035. }
  3036. if (ggml_are_same_shape(a, b) && !is_node) {
  3037. return a;
  3038. }
  3039. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3040. result->op = GGML_OP_REPEAT;
  3041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3042. result->src0 = a;
  3043. result->src1 = b;
  3044. return result;
  3045. }
  3046. // ggml_abs
  3047. struct ggml_tensor * ggml_abs_impl(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a,
  3050. bool inplace) {
  3051. bool is_node = false;
  3052. if (!inplace && (a->grad)) {
  3053. is_node = true;
  3054. }
  3055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3056. result->op = GGML_OP_ABS;
  3057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3058. result->src0 = a;
  3059. result->src1 = NULL;
  3060. return result;
  3061. }
  3062. struct ggml_tensor * ggml_abs(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a) {
  3065. return ggml_abs_impl(ctx, a, false);
  3066. }
  3067. struct ggml_tensor * ggml_abs_inplace(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a) {
  3070. return ggml_abs_impl(ctx, a, true);
  3071. }
  3072. // ggml_sgn
  3073. struct ggml_tensor * ggml_sgn_impl(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. bool inplace) {
  3077. bool is_node = false;
  3078. if (!inplace && (a->grad)) {
  3079. is_node = true;
  3080. }
  3081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3082. result->op = GGML_OP_SGN;
  3083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3084. result->src0 = a;
  3085. result->src1 = NULL;
  3086. return result;
  3087. }
  3088. struct ggml_tensor * ggml_sgn(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a) {
  3091. return ggml_sgn_impl(ctx, a, false);
  3092. }
  3093. struct ggml_tensor * ggml_sgn_inplace(
  3094. struct ggml_context * ctx,
  3095. struct ggml_tensor * a) {
  3096. return ggml_sgn_impl(ctx, a, true);
  3097. }
  3098. // ggml_neg
  3099. struct ggml_tensor * ggml_neg_impl(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a,
  3102. bool inplace) {
  3103. bool is_node = false;
  3104. if (!inplace && (a->grad)) {
  3105. is_node = true;
  3106. }
  3107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3108. result->op = GGML_OP_NEG;
  3109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3110. result->src0 = a;
  3111. result->src1 = NULL;
  3112. return result;
  3113. }
  3114. struct ggml_tensor * ggml_neg(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a) {
  3117. return ggml_neg_impl(ctx, a, false);
  3118. }
  3119. struct ggml_tensor * ggml_neg_inplace(
  3120. struct ggml_context * ctx,
  3121. struct ggml_tensor * a) {
  3122. return ggml_neg_impl(ctx, a, true);
  3123. }
  3124. // ggml_step
  3125. struct ggml_tensor * ggml_step_impl(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a,
  3128. bool inplace) {
  3129. bool is_node = false;
  3130. if (!inplace && (a->grad)) {
  3131. is_node = true;
  3132. }
  3133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3134. result->op = GGML_OP_STEP;
  3135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3136. result->src0 = a;
  3137. result->src1 = NULL;
  3138. return result;
  3139. }
  3140. struct ggml_tensor * ggml_step(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_step_impl(ctx, a, false);
  3144. }
  3145. struct ggml_tensor * ggml_step_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_step_impl(ctx, a, true);
  3149. }
  3150. // ggml_relu
  3151. struct ggml_tensor * ggml_relu_impl(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a,
  3154. bool inplace) {
  3155. bool is_node = false;
  3156. if (!inplace && (a->grad)) {
  3157. is_node = true;
  3158. }
  3159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3160. result->op = GGML_OP_RELU;
  3161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3162. result->src0 = a;
  3163. result->src1 = NULL;
  3164. return result;
  3165. }
  3166. struct ggml_tensor * ggml_relu(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_relu_impl(ctx, a, false);
  3170. }
  3171. struct ggml_tensor * ggml_relu_inplace(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_relu_impl(ctx, a, true);
  3175. }
  3176. // ggml_gelu
  3177. struct ggml_tensor * ggml_gelu_impl(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a,
  3180. bool inplace) {
  3181. bool is_node = false;
  3182. if (!inplace && (a->grad)) {
  3183. is_node = true;
  3184. }
  3185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3186. result->op = GGML_OP_GELU;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src0 = a;
  3189. result->src1 = NULL;
  3190. return result;
  3191. }
  3192. struct ggml_tensor * ggml_gelu(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_gelu_impl(ctx, a, false);
  3196. }
  3197. struct ggml_tensor * ggml_gelu_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_gelu_impl(ctx, a, true);
  3201. }
  3202. // ggml_silu
  3203. struct ggml_tensor * ggml_silu_impl(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a,
  3206. bool inplace) {
  3207. bool is_node = false;
  3208. if (!inplace && (a->grad)) {
  3209. is_node = true;
  3210. }
  3211. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3212. result->op = GGML_OP_SILU;
  3213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3214. result->src0 = a;
  3215. result->src1 = NULL;
  3216. return result;
  3217. }
  3218. struct ggml_tensor * ggml_silu(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a) {
  3221. return ggml_silu_impl(ctx, a, false);
  3222. }
  3223. struct ggml_tensor * ggml_silu_inplace(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a) {
  3226. return ggml_silu_impl(ctx, a, true);
  3227. }
  3228. // ggml_norm
  3229. struct ggml_tensor * ggml_norm_impl(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. bool inplace) {
  3233. bool is_node = false;
  3234. if (!inplace && (a->grad)) {
  3235. GGML_ASSERT(false); // TODO: implement backward
  3236. is_node = true;
  3237. }
  3238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3239. result->op = GGML_OP_NORM;
  3240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3241. result->src0 = a;
  3242. result->src1 = NULL; // TODO: maybe store epsilon here?
  3243. return result;
  3244. }
  3245. struct ggml_tensor * ggml_norm(
  3246. struct ggml_context * ctx,
  3247. struct ggml_tensor * a) {
  3248. return ggml_norm_impl(ctx, a, false);
  3249. }
  3250. struct ggml_tensor * ggml_norm_inplace(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a) {
  3253. return ggml_norm_impl(ctx, a, true);
  3254. }
  3255. struct ggml_tensor * ggml_rms_norm_impl(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. bool inplace) {
  3259. bool is_node = false;
  3260. if (!inplace && (a->grad)) {
  3261. GGML_ASSERT(false); // TODO: implement backward
  3262. is_node = true;
  3263. }
  3264. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3265. result->op = GGML_OP_RMS_NORM;
  3266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3267. result->src0 = a;
  3268. result->src1 = NULL; // TODO: maybe store epsilon here?
  3269. return result;
  3270. }
  3271. struct ggml_tensor * ggml_rms_norm(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a) {
  3274. return ggml_rms_norm_impl(ctx, a, false);
  3275. }
  3276. struct ggml_tensor * ggml_rms_norm_inplace(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a) {
  3279. return ggml_rms_norm_impl(ctx, a, true);
  3280. }
  3281. // ggml_mul_mat
  3282. struct ggml_tensor * ggml_mul_mat(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a,
  3285. struct ggml_tensor * b) {
  3286. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3287. GGML_ASSERT(!ggml_is_transposed(a));
  3288. bool is_node = false;
  3289. if (a->grad || b->grad) {
  3290. is_node = true;
  3291. }
  3292. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3293. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3294. result->op = GGML_OP_MUL_MAT;
  3295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3296. result->src0 = a;
  3297. result->src1 = b;
  3298. return result;
  3299. }
  3300. // ggml_scale
  3301. struct ggml_tensor * ggml_scale_impl(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. bool inplace) {
  3306. GGML_ASSERT(ggml_is_scalar(b));
  3307. GGML_ASSERT(ggml_is_padded_1d(a));
  3308. bool is_node = false;
  3309. if (!inplace && (a->grad || b->grad)) {
  3310. GGML_ASSERT(false); // TODO: implement backward
  3311. is_node = true;
  3312. }
  3313. // TODO: when implement backward, fix this:
  3314. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3316. result->op = GGML_OP_SCALE;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src0 = a;
  3319. result->src1 = b;
  3320. return result;
  3321. }
  3322. struct ggml_tensor * ggml_scale(
  3323. struct ggml_context * ctx,
  3324. struct ggml_tensor * a,
  3325. struct ggml_tensor * b) {
  3326. return ggml_scale_impl(ctx, a, b, false);
  3327. }
  3328. struct ggml_tensor * ggml_scale_inplace(
  3329. struct ggml_context * ctx,
  3330. struct ggml_tensor * a,
  3331. struct ggml_tensor * b) {
  3332. return ggml_scale_impl(ctx, a, b, true);
  3333. }
  3334. // ggml_cpy
  3335. struct ggml_tensor * ggml_cpy_impl(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. struct ggml_tensor * b,
  3339. bool inplace) {
  3340. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3341. bool is_node = false;
  3342. if (!inplace && (a->grad || b->grad)) {
  3343. GGML_ASSERT(false); // TODO: implement backward
  3344. is_node = true;
  3345. }
  3346. // make a view of the destination
  3347. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3348. result->op = GGML_OP_CPY;
  3349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3350. result->src0 = a;
  3351. result->src1 = b;
  3352. return result;
  3353. }
  3354. struct ggml_tensor * ggml_cpy(
  3355. struct ggml_context * ctx,
  3356. struct ggml_tensor * a,
  3357. struct ggml_tensor * b) {
  3358. return ggml_cpy_impl(ctx, a, b, false);
  3359. }
  3360. struct ggml_tensor * ggml_cpy_inplace(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a,
  3363. struct ggml_tensor * b) {
  3364. return ggml_cpy_impl(ctx, a, b, true);
  3365. }
  3366. // ggml_reshape
  3367. struct ggml_tensor * ggml_reshape(
  3368. struct ggml_context * ctx,
  3369. struct ggml_tensor * a,
  3370. struct ggml_tensor * b) {
  3371. GGML_ASSERT(ggml_is_contiguous(a));
  3372. GGML_ASSERT(ggml_is_contiguous(b));
  3373. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3374. bool is_node = false;
  3375. if (a->grad || b->grad) {
  3376. GGML_ASSERT(false); // TODO: implement backward
  3377. is_node = true;
  3378. }
  3379. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3380. result->op = GGML_OP_RESHAPE;
  3381. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3382. result->src0 = a;
  3383. result->src1 = NULL;
  3384. return result;
  3385. }
  3386. struct ggml_tensor * ggml_reshape_2d(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a,
  3389. int ne0,
  3390. int ne1) {
  3391. GGML_ASSERT(ggml_is_contiguous(a));
  3392. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3393. bool is_node = false;
  3394. if (a->grad) {
  3395. GGML_ASSERT(false); // TODO: implement backward
  3396. is_node = true;
  3397. }
  3398. const int ne[2] = { ne0, ne1 };
  3399. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3400. result->op = GGML_OP_RESHAPE;
  3401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3402. result->src0 = a;
  3403. result->src1 = NULL;
  3404. return result;
  3405. }
  3406. struct ggml_tensor * ggml_reshape_3d(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a,
  3409. int ne0,
  3410. int ne1,
  3411. int ne2) {
  3412. GGML_ASSERT(ggml_is_contiguous(a));
  3413. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3414. bool is_node = false;
  3415. if (a->grad) {
  3416. GGML_ASSERT(false); // TODO: implement backward
  3417. is_node = true;
  3418. }
  3419. const int ne[3] = { ne0, ne1, ne2 };
  3420. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3421. result->op = GGML_OP_RESHAPE;
  3422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3423. result->src0 = a;
  3424. result->src1 = NULL;
  3425. return result;
  3426. }
  3427. // ggml_view_1d
  3428. struct ggml_tensor * ggml_view_1d(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a,
  3431. int ne0,
  3432. size_t offset) {
  3433. if (a->grad) {
  3434. GGML_ASSERT(false); // gradient propagation is not supported
  3435. }
  3436. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3437. result->op = GGML_OP_VIEW;
  3438. result->grad = NULL;
  3439. result->src0 = a;
  3440. result->src1 = NULL; // TODO: maybe store the offset here?
  3441. return result;
  3442. }
  3443. // ggml_view_2d
  3444. struct ggml_tensor * ggml_view_2d(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. int ne0,
  3448. int ne1,
  3449. size_t nb1,
  3450. size_t offset) {
  3451. if (a->grad) {
  3452. GGML_ASSERT(false); // gradient propagation is not supported
  3453. }
  3454. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3455. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3456. result->nb[1] = nb1;
  3457. result->nb[2] = result->nb[1]*ne1;
  3458. result->nb[3] = result->nb[2];
  3459. result->op = GGML_OP_VIEW;
  3460. result->grad = NULL;
  3461. result->src0 = a;
  3462. result->src1 = NULL; // TODO: maybe store the offset here?
  3463. return result;
  3464. }
  3465. // ggml_permute
  3466. struct ggml_tensor * ggml_permute(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. int axis0,
  3470. int axis1,
  3471. int axis2,
  3472. int axis3) {
  3473. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3474. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3475. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3476. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3477. GGML_ASSERT(axis0 != axis1);
  3478. GGML_ASSERT(axis0 != axis2);
  3479. GGML_ASSERT(axis0 != axis3);
  3480. GGML_ASSERT(axis1 != axis2);
  3481. GGML_ASSERT(axis1 != axis3);
  3482. GGML_ASSERT(axis2 != axis3);
  3483. bool is_node = false;
  3484. if (a->grad) {
  3485. GGML_ASSERT(false); // TODO: implement backward
  3486. is_node = true;
  3487. }
  3488. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3489. int ne[GGML_MAX_DIMS];
  3490. int nb[GGML_MAX_DIMS];
  3491. ne[axis0] = a->ne[0];
  3492. ne[axis1] = a->ne[1];
  3493. ne[axis2] = a->ne[2];
  3494. ne[axis3] = a->ne[3];
  3495. nb[axis0] = a->nb[0];
  3496. nb[axis1] = a->nb[1];
  3497. nb[axis2] = a->nb[2];
  3498. nb[axis3] = a->nb[3];
  3499. result->ne[0] = ne[0];
  3500. result->ne[1] = ne[1];
  3501. result->ne[2] = ne[2];
  3502. result->ne[3] = ne[3];
  3503. result->nb[0] = nb[0];
  3504. result->nb[1] = nb[1];
  3505. result->nb[2] = nb[2];
  3506. result->nb[3] = nb[3];
  3507. result->op = GGML_OP_PERMUTE;
  3508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3509. result->src0 = a;
  3510. result->src1 = NULL; // TODO: maybe store the permutation here?
  3511. return result;
  3512. }
  3513. // ggml_transpose
  3514. struct ggml_tensor * ggml_transpose(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a) {
  3517. bool is_node = false;
  3518. if (a->grad) {
  3519. GGML_ASSERT(false); // TODO: implement backward
  3520. is_node = true;
  3521. }
  3522. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3523. result->ne[0] = a->ne[1];
  3524. result->ne[1] = a->ne[0];
  3525. result->nb[0] = a->nb[1];
  3526. result->nb[1] = a->nb[0];
  3527. result->op = GGML_OP_TRANSPOSE;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src0 = a;
  3530. result->src1 = NULL;
  3531. return result;
  3532. }
  3533. // ggml_get_rows
  3534. struct ggml_tensor * ggml_get_rows(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. struct ggml_tensor * b) {
  3538. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3539. bool is_node = false;
  3540. if (a->grad || b->grad) {
  3541. GGML_ASSERT(false); // TODO: implement backward
  3542. is_node = true;
  3543. }
  3544. // TODO: implement non F32 return
  3545. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3546. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3547. result->op = GGML_OP_GET_ROWS;
  3548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3549. result->src0 = a;
  3550. result->src1 = b;
  3551. return result;
  3552. }
  3553. // ggml_diag_mask_inf
  3554. struct ggml_tensor * ggml_diag_mask_inf(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int n_past) {
  3558. bool is_node = false;
  3559. if (a->grad) {
  3560. GGML_ASSERT(false); // TODO: implement backward
  3561. is_node = true;
  3562. }
  3563. // TODO: when implement backward, fix this:
  3564. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3565. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3566. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3567. result->op = GGML_OP_DIAG_MASK_INF;
  3568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3569. result->src0 = a;
  3570. result->src1 = b;
  3571. return result;
  3572. }
  3573. // ggml_soft_max
  3574. struct ggml_tensor * ggml_soft_max(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. bool is_node = false;
  3578. if (a->grad) {
  3579. GGML_ASSERT(false); // TODO: implement backward
  3580. is_node = true;
  3581. }
  3582. // TODO: when implement backward, fix this:
  3583. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3584. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3585. result->op = GGML_OP_SOFT_MAX;
  3586. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3587. result->src0 = a;
  3588. result->src1 = NULL;
  3589. return result;
  3590. }
  3591. // ggml_rope
  3592. struct ggml_tensor * ggml_rope(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. int n_past,
  3596. int n_dims,
  3597. int mode) {
  3598. GGML_ASSERT(n_past >= 0);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. GGML_ASSERT(false); // TODO: implement backward
  3602. is_node = true;
  3603. }
  3604. // TODO: when implement backward, fix this:
  3605. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3606. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3607. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3608. ((int32_t *) b->data)[0] = n_past;
  3609. ((int32_t *) b->data)[1] = n_dims;
  3610. ((int32_t *) b->data)[2] = mode;
  3611. result->op = GGML_OP_ROPE;
  3612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3613. result->src0 = a;
  3614. result->src1 = b;
  3615. return result;
  3616. }
  3617. // ggml_conv_1d_1s
  3618. struct ggml_tensor * ggml_conv_1d_1s(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. struct ggml_tensor * b) {
  3622. GGML_ASSERT(ggml_is_matrix(b));
  3623. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3624. GGML_ASSERT(a->ne[3] == 1);
  3625. bool is_node = false;
  3626. if (a->grad || b->grad) {
  3627. GGML_ASSERT(false); // TODO: implement backward
  3628. is_node = true;
  3629. }
  3630. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3631. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3632. result->op = GGML_OP_CONV_1D_1S;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src0 = a;
  3635. result->src1 = b;
  3636. return result;
  3637. }
  3638. // ggml_conv_1d_2s
  3639. struct ggml_tensor * ggml_conv_1d_2s(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a,
  3642. struct ggml_tensor * b) {
  3643. GGML_ASSERT(ggml_is_matrix(b));
  3644. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3645. GGML_ASSERT(a->ne[3] == 1);
  3646. bool is_node = false;
  3647. if (a->grad || b->grad) {
  3648. GGML_ASSERT(false); // TODO: implement backward
  3649. is_node = true;
  3650. }
  3651. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3652. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3653. result->op = GGML_OP_CONV_1D_2S;
  3654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3655. result->src0 = a;
  3656. result->src1 = b;
  3657. return result;
  3658. }
  3659. // ggml_flash_attn
  3660. struct ggml_tensor * ggml_flash_attn(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * q,
  3663. struct ggml_tensor * k,
  3664. struct ggml_tensor * v,
  3665. bool masked) {
  3666. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3667. // TODO: check if vT can be multiplied by (k*qT)
  3668. bool is_node = false;
  3669. if (q->grad || k->grad || v->grad) {
  3670. GGML_ASSERT(false); // TODO: implement backward
  3671. is_node = true;
  3672. }
  3673. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3674. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3675. result->op = GGML_OP_FLASH_ATTN;
  3676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3677. result->src0 = q;
  3678. result->src1 = k;
  3679. result->opt[0] = v;
  3680. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3681. return result;
  3682. }
  3683. // ggml_flash_ff
  3684. struct ggml_tensor * ggml_flash_ff(
  3685. struct ggml_context * ctx,
  3686. struct ggml_tensor * a,
  3687. struct ggml_tensor * b0,
  3688. struct ggml_tensor * b1,
  3689. struct ggml_tensor * c0,
  3690. struct ggml_tensor * c1) {
  3691. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3692. // TODO: more checks
  3693. bool is_node = false;
  3694. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3695. GGML_ASSERT(false); // TODO: implement backward
  3696. is_node = true;
  3697. }
  3698. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3700. result->op = GGML_OP_FLASH_FF;
  3701. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3702. result->src0 = a;
  3703. result->src1 = b0;
  3704. result->opt[0] = b1;
  3705. result->opt[1] = c0;
  3706. result->opt[2] = c1;
  3707. return result;
  3708. }
  3709. ////////////////////////////////////////////////////////////////////////////////
  3710. void ggml_set_param(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * tensor) {
  3713. tensor->is_param = true;
  3714. GGML_ASSERT(tensor->grad == NULL);
  3715. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3716. }
  3717. // ggml_compute_forward_dup
  3718. static void ggml_compute_forward_dup_f16(
  3719. const struct ggml_compute_params * params,
  3720. const struct ggml_tensor * src0,
  3721. struct ggml_tensor * dst) {
  3722. GGML_ASSERT(params->ith == 0);
  3723. GGML_ASSERT(ggml_is_contiguous(dst));
  3724. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3726. return;
  3727. }
  3728. const int ne00 = src0->ne[0];
  3729. const int ne01 = src0->ne[1];
  3730. const int ne02 = src0->ne[2];
  3731. const int ne03 = src0->ne[3];
  3732. const size_t nb00 = src0->nb[0];
  3733. const size_t nb01 = src0->nb[1];
  3734. const size_t nb02 = src0->nb[2];
  3735. const size_t nb03 = src0->nb[3];
  3736. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3737. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3738. return;
  3739. }
  3740. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3741. if (dst->type == GGML_TYPE_F16) {
  3742. size_t id = 0;
  3743. const size_t rs = ne00*nb00;
  3744. for (int i03 = 0; i03 < ne03; i03++) {
  3745. for (int i02 = 0; i02 < ne02; i02++) {
  3746. for (int i01 = 0; i01 < ne01; i01++) {
  3747. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3748. char * dst_ptr = (char *) dst->data + id*rs;
  3749. memcpy(dst_ptr, src0_ptr, rs);
  3750. id++;
  3751. }
  3752. }
  3753. }
  3754. } else if (dst->type == GGML_TYPE_F32) {
  3755. size_t id = 0;
  3756. float * dst_ptr = (float *) dst->data;
  3757. for (int i03 = 0; i03 < ne03; i03++) {
  3758. for (int i02 = 0; i02 < ne02; i02++) {
  3759. for (int i01 = 0; i01 < ne01; i01++) {
  3760. for (int i00 = 0; i00 < ne00; i00++) {
  3761. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3762. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3763. id++;
  3764. }
  3765. }
  3766. }
  3767. }
  3768. } else {
  3769. GGML_ASSERT(false); // TODO: implement
  3770. }
  3771. } else {
  3772. //printf("%s: this is not optimal - fix me\n", __func__);
  3773. if (dst->type == GGML_TYPE_F32) {
  3774. size_t id = 0;
  3775. float * dst_ptr = (float *) dst->data;
  3776. for (int i03 = 0; i03 < ne03; i03++) {
  3777. for (int i02 = 0; i02 < ne02; i02++) {
  3778. for (int i01 = 0; i01 < ne01; i01++) {
  3779. for (int i00 = 0; i00 < ne00; i00++) {
  3780. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3781. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3782. id++;
  3783. }
  3784. }
  3785. }
  3786. }
  3787. } else if (dst->type == GGML_TYPE_F16) {
  3788. size_t id = 0;
  3789. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3790. for (int i03 = 0; i03 < ne03; i03++) {
  3791. for (int i02 = 0; i02 < ne02; i02++) {
  3792. for (int i01 = 0; i01 < ne01; i01++) {
  3793. for (int i00 = 0; i00 < ne00; i00++) {
  3794. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3795. dst_ptr[id] = *src0_ptr;
  3796. id++;
  3797. }
  3798. }
  3799. }
  3800. }
  3801. } else {
  3802. GGML_ASSERT(false); // TODO: implement
  3803. }
  3804. }
  3805. }
  3806. static void ggml_compute_forward_dup_f32(
  3807. const struct ggml_compute_params * params,
  3808. const struct ggml_tensor * src0,
  3809. struct ggml_tensor * dst) {
  3810. GGML_ASSERT(params->ith == 0);
  3811. GGML_ASSERT(ggml_is_contiguous(dst));
  3812. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3814. return;
  3815. }
  3816. const int ne00 = src0->ne[0];
  3817. const int ne01 = src0->ne[1];
  3818. const int ne02 = src0->ne[2];
  3819. const int ne03 = src0->ne[3];
  3820. const size_t nb00 = src0->nb[0];
  3821. const size_t nb01 = src0->nb[1];
  3822. const size_t nb02 = src0->nb[2];
  3823. const size_t nb03 = src0->nb[3];
  3824. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3825. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3826. return;
  3827. }
  3828. if (src0->nb[0] == sizeof(float)) {
  3829. if (dst->type == GGML_TYPE_F32) {
  3830. size_t id = 0;
  3831. const size_t rs = ne00*nb00;
  3832. for (int i03 = 0; i03 < ne03; i03++) {
  3833. for (int i02 = 0; i02 < ne02; i02++) {
  3834. for (int i01 = 0; i01 < ne01; i01++) {
  3835. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3836. char * dst_ptr = (char *) dst->data + id*rs;
  3837. memcpy(dst_ptr, src0_ptr, rs);
  3838. id++;
  3839. }
  3840. }
  3841. }
  3842. } else if (dst->type == GGML_TYPE_F16) {
  3843. size_t id = 0;
  3844. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3845. for (int i03 = 0; i03 < ne03; i03++) {
  3846. for (int i02 = 0; i02 < ne02; i02++) {
  3847. for (int i01 = 0; i01 < ne01; i01++) {
  3848. for (int i00 = 0; i00 < ne00; i00++) {
  3849. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3850. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3851. id++;
  3852. }
  3853. }
  3854. }
  3855. }
  3856. } else {
  3857. GGML_ASSERT(false); // TODO: implement
  3858. }
  3859. } else {
  3860. //printf("%s: this is not optimal - fix me\n", __func__);
  3861. if (dst->type == GGML_TYPE_F32) {
  3862. size_t id = 0;
  3863. float * dst_ptr = (float *) dst->data;
  3864. for (int i03 = 0; i03 < ne03; i03++) {
  3865. for (int i02 = 0; i02 < ne02; i02++) {
  3866. for (int i01 = 0; i01 < ne01; i01++) {
  3867. for (int i00 = 0; i00 < ne00; i00++) {
  3868. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3869. dst_ptr[id] = *src0_ptr;
  3870. id++;
  3871. }
  3872. }
  3873. }
  3874. }
  3875. } else if (dst->type == GGML_TYPE_F16) {
  3876. size_t id = 0;
  3877. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3878. for (int i03 = 0; i03 < ne03; i03++) {
  3879. for (int i02 = 0; i02 < ne02; i02++) {
  3880. for (int i01 = 0; i01 < ne01; i01++) {
  3881. for (int i00 = 0; i00 < ne00; i00++) {
  3882. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3883. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3884. id++;
  3885. }
  3886. }
  3887. }
  3888. }
  3889. } else {
  3890. GGML_ASSERT(false); // TODO: implement
  3891. }
  3892. }
  3893. }
  3894. static void ggml_compute_forward_dup(
  3895. const struct ggml_compute_params * params,
  3896. const struct ggml_tensor * src0,
  3897. struct ggml_tensor * dst) {
  3898. switch (src0->type) {
  3899. case GGML_TYPE_F16:
  3900. {
  3901. ggml_compute_forward_dup_f16(params, src0, dst);
  3902. } break;
  3903. case GGML_TYPE_F32:
  3904. {
  3905. ggml_compute_forward_dup_f32(params, src0, dst);
  3906. } break;
  3907. case GGML_TYPE_Q4_0:
  3908. case GGML_TYPE_Q4_1:
  3909. case GGML_TYPE_I8:
  3910. case GGML_TYPE_I16:
  3911. case GGML_TYPE_I32:
  3912. case GGML_TYPE_COUNT:
  3913. {
  3914. GGML_ASSERT(false);
  3915. } break;
  3916. }
  3917. }
  3918. // ggml_compute_forward_add
  3919. static void ggml_compute_forward_add_f32(
  3920. const struct ggml_compute_params * params,
  3921. const struct ggml_tensor * src0,
  3922. const struct ggml_tensor * src1,
  3923. struct ggml_tensor * dst) {
  3924. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3926. return;
  3927. }
  3928. const int ith = params->ith;
  3929. const int nth = params->nth;
  3930. const int n = ggml_nrows(src0);
  3931. const int nc = src0->ne[0];
  3932. const size_t nb00 = src0->nb[0];
  3933. const size_t nb01 = src0->nb[1];
  3934. const size_t nb10 = src1->nb[0];
  3935. const size_t nb11 = src1->nb[1];
  3936. const size_t nb0 = dst->nb[0];
  3937. const size_t nb1 = dst->nb[1];
  3938. GGML_ASSERT( nb0 == sizeof(float));
  3939. GGML_ASSERT(nb00 == sizeof(float));
  3940. if (nb10 == sizeof(float)) {
  3941. const int j0 = (n/nth)*ith;
  3942. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3943. for (int j = j0; j < j1; j++) {
  3944. ggml_vec_add_f32(nc,
  3945. (float *) ((char *) dst->data + j*nb1),
  3946. (float *) ((char *) src0->data + j*nb01),
  3947. (float *) ((char *) src1->data + j*nb11));
  3948. }
  3949. } else {
  3950. // src1 is not contiguous
  3951. for (int j = ith; j < n; j += nth) {
  3952. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3953. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3954. for (int i = 0; i < nc; i++) {
  3955. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3956. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3957. }
  3958. }
  3959. }
  3960. }
  3961. static void ggml_compute_forward_add(
  3962. const struct ggml_compute_params * params,
  3963. const struct ggml_tensor * src0,
  3964. const struct ggml_tensor * src1,
  3965. struct ggml_tensor * dst) {
  3966. switch (src0->type) {
  3967. case GGML_TYPE_F32:
  3968. {
  3969. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3970. } break;
  3971. case GGML_TYPE_Q4_0:
  3972. case GGML_TYPE_Q4_1:
  3973. case GGML_TYPE_I8:
  3974. case GGML_TYPE_I16:
  3975. case GGML_TYPE_I32:
  3976. case GGML_TYPE_F16:
  3977. case GGML_TYPE_COUNT:
  3978. {
  3979. GGML_ASSERT(false);
  3980. } break;
  3981. }
  3982. }
  3983. // ggml_compute_forward_sub
  3984. static void ggml_compute_forward_sub_f32(
  3985. const struct ggml_compute_params * params,
  3986. const struct ggml_tensor * src0,
  3987. const struct ggml_tensor * src1,
  3988. struct ggml_tensor * dst) {
  3989. assert(params->ith == 0);
  3990. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3992. return;
  3993. }
  3994. const int n = ggml_nrows(src0);
  3995. const int nc = src0->ne[0];
  3996. assert( dst->nb[0] == sizeof(float));
  3997. assert(src0->nb[0] == sizeof(float));
  3998. assert(src1->nb[0] == sizeof(float));
  3999. for (int i = 0; i < n; i++) {
  4000. ggml_vec_sub_f32(nc,
  4001. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4002. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4003. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4004. }
  4005. }
  4006. static void ggml_compute_forward_sub(
  4007. const struct ggml_compute_params * params,
  4008. const struct ggml_tensor * src0,
  4009. const struct ggml_tensor * src1,
  4010. struct ggml_tensor * dst) {
  4011. switch (src0->type) {
  4012. case GGML_TYPE_F32:
  4013. {
  4014. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4015. } break;
  4016. case GGML_TYPE_Q4_0:
  4017. case GGML_TYPE_Q4_1:
  4018. case GGML_TYPE_I8:
  4019. case GGML_TYPE_I16:
  4020. case GGML_TYPE_I32:
  4021. case GGML_TYPE_F16:
  4022. case GGML_TYPE_COUNT:
  4023. {
  4024. GGML_ASSERT(false);
  4025. } break;
  4026. }
  4027. }
  4028. // ggml_compute_forward_mul
  4029. static void ggml_compute_forward_mul_f32(
  4030. const struct ggml_compute_params * params,
  4031. const struct ggml_tensor * src0,
  4032. const struct ggml_tensor * src1,
  4033. struct ggml_tensor * dst) {
  4034. assert(params->ith == 0);
  4035. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4037. return;
  4038. }
  4039. const int n = ggml_nrows(src0);
  4040. const int nc = src0->ne[0];
  4041. assert( dst->nb[0] == sizeof(float));
  4042. assert(src0->nb[0] == sizeof(float));
  4043. assert(src1->nb[0] == sizeof(float));
  4044. for (int i = 0; i < n; i++) {
  4045. ggml_vec_mul_f32(nc,
  4046. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4047. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4048. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4049. }
  4050. }
  4051. static void ggml_compute_forward_mul(
  4052. const struct ggml_compute_params * params,
  4053. const struct ggml_tensor * src0,
  4054. const struct ggml_tensor * src1,
  4055. struct ggml_tensor * dst) {
  4056. switch (src0->type) {
  4057. case GGML_TYPE_F32:
  4058. {
  4059. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4060. } break;
  4061. case GGML_TYPE_Q4_0:
  4062. case GGML_TYPE_Q4_1:
  4063. case GGML_TYPE_I8:
  4064. case GGML_TYPE_I16:
  4065. case GGML_TYPE_I32:
  4066. case GGML_TYPE_F16:
  4067. case GGML_TYPE_COUNT:
  4068. {
  4069. GGML_ASSERT(false);
  4070. } break;
  4071. }
  4072. }
  4073. // ggml_compute_forward_div
  4074. static void ggml_compute_forward_div_f32(
  4075. const struct ggml_compute_params * params,
  4076. const struct ggml_tensor * src0,
  4077. const struct ggml_tensor * src1,
  4078. struct ggml_tensor * dst) {
  4079. assert(params->ith == 0);
  4080. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4082. return;
  4083. }
  4084. const int n = ggml_nrows(src0);
  4085. const int nc = src0->ne[0];
  4086. assert( dst->nb[0] == sizeof(float));
  4087. assert(src0->nb[0] == sizeof(float));
  4088. assert(src1->nb[0] == sizeof(float));
  4089. for (int i = 0; i < n; i++) {
  4090. ggml_vec_div_f32(nc,
  4091. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4092. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4093. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4094. }
  4095. }
  4096. static void ggml_compute_forward_div(
  4097. const struct ggml_compute_params * params,
  4098. const struct ggml_tensor * src0,
  4099. const struct ggml_tensor * src1,
  4100. struct ggml_tensor * dst) {
  4101. switch (src0->type) {
  4102. case GGML_TYPE_F32:
  4103. {
  4104. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4105. } break;
  4106. case GGML_TYPE_Q4_0:
  4107. case GGML_TYPE_Q4_1:
  4108. case GGML_TYPE_I8:
  4109. case GGML_TYPE_I16:
  4110. case GGML_TYPE_I32:
  4111. case GGML_TYPE_F16:
  4112. case GGML_TYPE_COUNT:
  4113. {
  4114. GGML_ASSERT(false);
  4115. } break;
  4116. }
  4117. }
  4118. // ggml_compute_forward_sqr
  4119. static void ggml_compute_forward_sqr_f32(
  4120. const struct ggml_compute_params * params,
  4121. const struct ggml_tensor * src0,
  4122. struct ggml_tensor * dst) {
  4123. assert(params->ith == 0);
  4124. assert(ggml_are_same_shape(src0, dst));
  4125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4126. return;
  4127. }
  4128. const int n = ggml_nrows(src0);
  4129. const int nc = src0->ne[0];
  4130. assert( dst->nb[0] == sizeof(float));
  4131. assert(src0->nb[0] == sizeof(float));
  4132. for (int i = 0; i < n; i++) {
  4133. ggml_vec_sqr_f32(nc,
  4134. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4135. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4136. }
  4137. }
  4138. static void ggml_compute_forward_sqr(
  4139. const struct ggml_compute_params * params,
  4140. const struct ggml_tensor * src0,
  4141. struct ggml_tensor * dst) {
  4142. switch (src0->type) {
  4143. case GGML_TYPE_F32:
  4144. {
  4145. ggml_compute_forward_sqr_f32(params, src0, dst);
  4146. } break;
  4147. case GGML_TYPE_Q4_0:
  4148. case GGML_TYPE_Q4_1:
  4149. case GGML_TYPE_I8:
  4150. case GGML_TYPE_I16:
  4151. case GGML_TYPE_I32:
  4152. case GGML_TYPE_F16:
  4153. case GGML_TYPE_COUNT:
  4154. {
  4155. GGML_ASSERT(false);
  4156. } break;
  4157. }
  4158. }
  4159. // ggml_compute_forward_sqrt
  4160. static void ggml_compute_forward_sqrt_f32(
  4161. const struct ggml_compute_params * params,
  4162. const struct ggml_tensor * src0,
  4163. struct ggml_tensor * dst) {
  4164. assert(params->ith == 0);
  4165. assert(ggml_are_same_shape(src0, dst));
  4166. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4167. return;
  4168. }
  4169. const int n = ggml_nrows(src0);
  4170. const int nc = src0->ne[0];
  4171. assert( dst->nb[0] == sizeof(float));
  4172. assert(src0->nb[0] == sizeof(float));
  4173. for (int i = 0; i < n; i++) {
  4174. ggml_vec_sqrt_f32(nc,
  4175. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4176. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4177. }
  4178. }
  4179. static void ggml_compute_forward_sqrt(
  4180. const struct ggml_compute_params * params,
  4181. const struct ggml_tensor * src0,
  4182. struct ggml_tensor * dst) {
  4183. switch (src0->type) {
  4184. case GGML_TYPE_F32:
  4185. {
  4186. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4187. } break;
  4188. case GGML_TYPE_Q4_0:
  4189. case GGML_TYPE_Q4_1:
  4190. case GGML_TYPE_I8:
  4191. case GGML_TYPE_I16:
  4192. case GGML_TYPE_I32:
  4193. case GGML_TYPE_F16:
  4194. case GGML_TYPE_COUNT:
  4195. {
  4196. GGML_ASSERT(false);
  4197. } break;
  4198. }
  4199. }
  4200. // ggml_compute_forward_sum
  4201. static void ggml_compute_forward_sum_f32(
  4202. const struct ggml_compute_params * params,
  4203. const struct ggml_tensor * src0,
  4204. struct ggml_tensor * dst) {
  4205. assert(params->ith == 0);
  4206. assert(ggml_is_scalar(dst));
  4207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4208. return;
  4209. }
  4210. assert(ggml_is_scalar(dst));
  4211. assert(src0->nb[0] == sizeof(float));
  4212. const int ne00 = src0->ne[0];
  4213. const int ne01 = src0->ne[1];
  4214. const int ne02 = src0->ne[2];
  4215. const int ne03 = src0->ne[3];
  4216. const size_t nb01 = src0->nb[1];
  4217. const size_t nb02 = src0->nb[2];
  4218. const size_t nb03 = src0->nb[3];
  4219. for (int i03 = 0; i03 < ne03; i03++) {
  4220. for (int i02 = 0; i02 < ne02; i02++) {
  4221. for (int i01 = 0; i01 < ne01; i01++) {
  4222. ggml_vec_sum_f32(ne00,
  4223. (float *) (dst->data),
  4224. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4225. }
  4226. }
  4227. }
  4228. }
  4229. static void ggml_compute_forward_sum(
  4230. const struct ggml_compute_params * params,
  4231. const struct ggml_tensor * src0,
  4232. struct ggml_tensor * dst) {
  4233. switch (src0->type) {
  4234. case GGML_TYPE_F32:
  4235. {
  4236. ggml_compute_forward_sum_f32(params, src0, dst);
  4237. } break;
  4238. case GGML_TYPE_Q4_0:
  4239. case GGML_TYPE_Q4_1:
  4240. case GGML_TYPE_I8:
  4241. case GGML_TYPE_I16:
  4242. case GGML_TYPE_I32:
  4243. case GGML_TYPE_F16:
  4244. case GGML_TYPE_COUNT:
  4245. {
  4246. GGML_ASSERT(false);
  4247. } break;
  4248. }
  4249. }
  4250. // ggml_compute_forward_mean
  4251. static void ggml_compute_forward_mean_f32(
  4252. const struct ggml_compute_params * params,
  4253. const struct ggml_tensor * src0,
  4254. struct ggml_tensor * dst) {
  4255. assert(params->ith == 0);
  4256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4257. return;
  4258. }
  4259. assert(src0->nb[0] == sizeof(float));
  4260. const int ne00 = src0->ne[0];
  4261. const int ne01 = src0->ne[1];
  4262. const int ne02 = src0->ne[2];
  4263. const int ne03 = src0->ne[3];
  4264. const size_t nb01 = src0->nb[1];
  4265. const size_t nb02 = src0->nb[2];
  4266. const size_t nb03 = src0->nb[3];
  4267. const int ne0 = dst->ne[0];
  4268. const int ne1 = dst->ne[1];
  4269. const int ne2 = dst->ne[2];
  4270. const int ne3 = dst->ne[3];
  4271. assert(ne0 == 1);
  4272. assert(ne1 == ne01);
  4273. assert(ne2 == ne02);
  4274. assert(ne3 == ne03);
  4275. UNUSED(ne0);
  4276. UNUSED(ne1);
  4277. UNUSED(ne2);
  4278. UNUSED(ne3);
  4279. const size_t nb1 = dst->nb[1];
  4280. const size_t nb2 = dst->nb[2];
  4281. const size_t nb3 = dst->nb[3];
  4282. for (int i03 = 0; i03 < ne03; i03++) {
  4283. for (int i02 = 0; i02 < ne02; i02++) {
  4284. for (int i01 = 0; i01 < ne01; i01++) {
  4285. ggml_vec_sum_f32(ne00,
  4286. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4287. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4288. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4289. }
  4290. }
  4291. }
  4292. }
  4293. static void ggml_compute_forward_mean(
  4294. const struct ggml_compute_params * params,
  4295. const struct ggml_tensor * src0,
  4296. struct ggml_tensor * dst) {
  4297. switch (src0->type) {
  4298. case GGML_TYPE_F32:
  4299. {
  4300. ggml_compute_forward_mean_f32(params, src0, dst);
  4301. } break;
  4302. case GGML_TYPE_Q4_0:
  4303. case GGML_TYPE_Q4_1:
  4304. case GGML_TYPE_I8:
  4305. case GGML_TYPE_I16:
  4306. case GGML_TYPE_I32:
  4307. case GGML_TYPE_F16:
  4308. case GGML_TYPE_COUNT:
  4309. {
  4310. GGML_ASSERT(false);
  4311. } break;
  4312. }
  4313. }
  4314. // ggml_compute_forward_repeat
  4315. static void ggml_compute_forward_repeat_f32(
  4316. const struct ggml_compute_params * params,
  4317. const struct ggml_tensor * src0,
  4318. struct ggml_tensor * dst) {
  4319. assert(params->ith == 0);
  4320. assert(ggml_can_repeat(src0, dst));
  4321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4322. return;
  4323. }
  4324. // TODO: implement support for rank > 2 tensors
  4325. assert(src0->ne[2] == 1);
  4326. assert(src0->ne[3] == 1);
  4327. assert( dst->ne[2] == 1);
  4328. assert( dst->ne[3] == 1);
  4329. const int nc = dst->ne[0];
  4330. const int nr = dst->ne[1];
  4331. const int nc0 = src0->ne[0];
  4332. const int nr0 = src0->ne[1];
  4333. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4334. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4335. // TODO: support for transposed / permuted tensors
  4336. assert( dst->nb[0] == sizeof(float));
  4337. assert(src0->nb[0] == sizeof(float));
  4338. // TODO: maybe this is not optimal?
  4339. for (int i = 0; i < nrr; i++) {
  4340. for (int j = 0; j < ncr; j++) {
  4341. for (int k = 0; k < nr0; k++) {
  4342. ggml_vec_cpy_f32(nc0,
  4343. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4344. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4345. }
  4346. }
  4347. }
  4348. }
  4349. static void ggml_compute_forward_repeat(
  4350. const struct ggml_compute_params * params,
  4351. const struct ggml_tensor * src0,
  4352. struct ggml_tensor * dst) {
  4353. switch (src0->type) {
  4354. case GGML_TYPE_F32:
  4355. {
  4356. ggml_compute_forward_repeat_f32(params, src0, dst);
  4357. } break;
  4358. case GGML_TYPE_Q4_0:
  4359. case GGML_TYPE_Q4_1:
  4360. case GGML_TYPE_I8:
  4361. case GGML_TYPE_I16:
  4362. case GGML_TYPE_I32:
  4363. case GGML_TYPE_F16:
  4364. case GGML_TYPE_COUNT:
  4365. {
  4366. GGML_ASSERT(false);
  4367. } break;
  4368. }
  4369. }
  4370. // ggml_compute_forward_abs
  4371. static void ggml_compute_forward_abs_f32(
  4372. const struct ggml_compute_params * params,
  4373. const struct ggml_tensor * src0,
  4374. struct ggml_tensor * dst) {
  4375. assert(params->ith == 0);
  4376. assert(ggml_are_same_shape(src0, dst));
  4377. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4378. return;
  4379. }
  4380. const int n = ggml_nrows(src0);
  4381. const int nc = src0->ne[0];
  4382. assert(dst->nb[0] == sizeof(float));
  4383. assert(src0->nb[0] == sizeof(float));
  4384. for (int i = 0; i < n; i++) {
  4385. ggml_vec_abs_f32(nc,
  4386. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4387. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4388. }
  4389. }
  4390. static void ggml_compute_forward_abs(
  4391. const struct ggml_compute_params * params,
  4392. const struct ggml_tensor * src0,
  4393. struct ggml_tensor * dst) {
  4394. switch (src0->type) {
  4395. case GGML_TYPE_F32:
  4396. {
  4397. ggml_compute_forward_abs_f32(params, src0, dst);
  4398. } break;
  4399. case GGML_TYPE_Q4_0:
  4400. case GGML_TYPE_Q4_1:
  4401. case GGML_TYPE_I8:
  4402. case GGML_TYPE_I16:
  4403. case GGML_TYPE_I32:
  4404. case GGML_TYPE_F16:
  4405. case GGML_TYPE_COUNT:
  4406. {
  4407. GGML_ASSERT(false);
  4408. } break;
  4409. }
  4410. }
  4411. // ggml_compute_forward_sgn
  4412. static void ggml_compute_forward_sgn_f32(
  4413. const struct ggml_compute_params * params,
  4414. const struct ggml_tensor * src0,
  4415. struct ggml_tensor * dst) {
  4416. assert(params->ith == 0);
  4417. assert(ggml_are_same_shape(src0, dst));
  4418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4419. return;
  4420. }
  4421. const int n = ggml_nrows(src0);
  4422. const int nc = src0->ne[0];
  4423. assert(dst->nb[0] == sizeof(float));
  4424. assert(src0->nb[0] == sizeof(float));
  4425. for (int i = 0; i < n; i++) {
  4426. ggml_vec_sgn_f32(nc,
  4427. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4428. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4429. }
  4430. }
  4431. static void ggml_compute_forward_sgn(
  4432. const struct ggml_compute_params * params,
  4433. const struct ggml_tensor * src0,
  4434. struct ggml_tensor * dst) {
  4435. switch (src0->type) {
  4436. case GGML_TYPE_F32:
  4437. {
  4438. ggml_compute_forward_sgn_f32(params, src0, dst);
  4439. } break;
  4440. case GGML_TYPE_Q4_0:
  4441. case GGML_TYPE_Q4_1:
  4442. case GGML_TYPE_I8:
  4443. case GGML_TYPE_I16:
  4444. case GGML_TYPE_I32:
  4445. case GGML_TYPE_F16:
  4446. case GGML_TYPE_COUNT:
  4447. {
  4448. GGML_ASSERT(false);
  4449. } break;
  4450. }
  4451. }
  4452. // ggml_compute_forward_neg
  4453. static void ggml_compute_forward_neg_f32(
  4454. const struct ggml_compute_params * params,
  4455. const struct ggml_tensor * src0,
  4456. struct ggml_tensor * dst) {
  4457. assert(params->ith == 0);
  4458. assert(ggml_are_same_shape(src0, dst));
  4459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4460. return;
  4461. }
  4462. const int n = ggml_nrows(src0);
  4463. const int nc = src0->ne[0];
  4464. assert(dst->nb[0] == sizeof(float));
  4465. assert(src0->nb[0] == sizeof(float));
  4466. for (int i = 0; i < n; i++) {
  4467. ggml_vec_neg_f32(nc,
  4468. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4469. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4470. }
  4471. }
  4472. static void ggml_compute_forward_neg(
  4473. const struct ggml_compute_params * params,
  4474. const struct ggml_tensor * src0,
  4475. struct ggml_tensor * dst) {
  4476. switch (src0->type) {
  4477. case GGML_TYPE_F32:
  4478. {
  4479. ggml_compute_forward_neg_f32(params, src0, dst);
  4480. } break;
  4481. case GGML_TYPE_Q4_0:
  4482. case GGML_TYPE_Q4_1:
  4483. case GGML_TYPE_I8:
  4484. case GGML_TYPE_I16:
  4485. case GGML_TYPE_I32:
  4486. case GGML_TYPE_F16:
  4487. case GGML_TYPE_COUNT:
  4488. {
  4489. GGML_ASSERT(false);
  4490. } break;
  4491. }
  4492. }
  4493. // ggml_compute_forward_step
  4494. static void ggml_compute_forward_step_f32(
  4495. const struct ggml_compute_params * params,
  4496. const struct ggml_tensor * src0,
  4497. struct ggml_tensor * dst) {
  4498. assert(params->ith == 0);
  4499. assert(ggml_are_same_shape(src0, dst));
  4500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4501. return;
  4502. }
  4503. const int n = ggml_nrows(src0);
  4504. const int nc = src0->ne[0];
  4505. assert(dst->nb[0] == sizeof(float));
  4506. assert(src0->nb[0] == sizeof(float));
  4507. for (int i = 0; i < n; i++) {
  4508. ggml_vec_step_f32(nc,
  4509. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4510. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4511. }
  4512. }
  4513. static void ggml_compute_forward_step(
  4514. const struct ggml_compute_params * params,
  4515. const struct ggml_tensor * src0,
  4516. struct ggml_tensor * dst) {
  4517. switch (src0->type) {
  4518. case GGML_TYPE_F32:
  4519. {
  4520. ggml_compute_forward_step_f32(params, src0, dst);
  4521. } break;
  4522. case GGML_TYPE_Q4_0:
  4523. case GGML_TYPE_Q4_1:
  4524. case GGML_TYPE_I8:
  4525. case GGML_TYPE_I16:
  4526. case GGML_TYPE_I32:
  4527. case GGML_TYPE_F16:
  4528. case GGML_TYPE_COUNT:
  4529. {
  4530. GGML_ASSERT(false);
  4531. } break;
  4532. }
  4533. }
  4534. // ggml_compute_forward_relu
  4535. static void ggml_compute_forward_relu_f32(
  4536. const struct ggml_compute_params * params,
  4537. const struct ggml_tensor * src0,
  4538. struct ggml_tensor * dst) {
  4539. assert(params->ith == 0);
  4540. assert(ggml_are_same_shape(src0, dst));
  4541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4542. return;
  4543. }
  4544. const int n = ggml_nrows(src0);
  4545. const int nc = src0->ne[0];
  4546. assert(dst->nb[0] == sizeof(float));
  4547. assert(src0->nb[0] == sizeof(float));
  4548. for (int i = 0; i < n; i++) {
  4549. ggml_vec_relu_f32(nc,
  4550. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4551. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4552. }
  4553. }
  4554. static void ggml_compute_forward_relu(
  4555. const struct ggml_compute_params * params,
  4556. const struct ggml_tensor * src0,
  4557. struct ggml_tensor * dst) {
  4558. switch (src0->type) {
  4559. case GGML_TYPE_F32:
  4560. {
  4561. ggml_compute_forward_relu_f32(params, src0, dst);
  4562. } break;
  4563. case GGML_TYPE_Q4_0:
  4564. case GGML_TYPE_Q4_1:
  4565. case GGML_TYPE_I8:
  4566. case GGML_TYPE_I16:
  4567. case GGML_TYPE_I32:
  4568. case GGML_TYPE_F16:
  4569. case GGML_TYPE_COUNT:
  4570. {
  4571. GGML_ASSERT(false);
  4572. } break;
  4573. }
  4574. }
  4575. // ggml_compute_forward_gelu
  4576. static void ggml_compute_forward_gelu_f32(
  4577. const struct ggml_compute_params * params,
  4578. const struct ggml_tensor * src0,
  4579. struct ggml_tensor * dst) {
  4580. GGML_ASSERT(ggml_is_contiguous(src0));
  4581. GGML_ASSERT(ggml_is_contiguous(dst));
  4582. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4584. return;
  4585. }
  4586. const int ith = params->ith;
  4587. const int nth = params->nth;
  4588. const int nc = src0->ne[0];
  4589. const int nr = ggml_nrows(src0);
  4590. // rows per thread
  4591. const int dr = (nr + nth - 1)/nth;
  4592. // row range for this thread
  4593. const int ir0 = dr*ith;
  4594. const int ir1 = MIN(ir0 + dr, nr);
  4595. for (int i1 = ir0; i1 < ir1; i1++) {
  4596. ggml_vec_gelu_f32(nc,
  4597. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4598. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4599. #ifndef NDEBUG
  4600. for (int k = 0; k < nc; k++) {
  4601. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4602. UNUSED(x);
  4603. assert(!isnan(x));
  4604. assert(!isinf(x));
  4605. }
  4606. #endif
  4607. }
  4608. }
  4609. static void ggml_compute_forward_gelu(
  4610. const struct ggml_compute_params * params,
  4611. const struct ggml_tensor * src0,
  4612. struct ggml_tensor * dst) {
  4613. switch (src0->type) {
  4614. case GGML_TYPE_F32:
  4615. {
  4616. ggml_compute_forward_gelu_f32(params, src0, dst);
  4617. } break;
  4618. case GGML_TYPE_Q4_0:
  4619. case GGML_TYPE_Q4_1:
  4620. case GGML_TYPE_I8:
  4621. case GGML_TYPE_I16:
  4622. case GGML_TYPE_I32:
  4623. case GGML_TYPE_F16:
  4624. case GGML_TYPE_COUNT:
  4625. {
  4626. GGML_ASSERT(false);
  4627. } break;
  4628. }
  4629. //printf("XXXXXXXX gelu\n");
  4630. }
  4631. // ggml_compute_forward_silu
  4632. static void ggml_compute_forward_silu_f32(
  4633. const struct ggml_compute_params * params,
  4634. const struct ggml_tensor * src0,
  4635. struct ggml_tensor * dst) {
  4636. GGML_ASSERT(ggml_is_contiguous(src0));
  4637. GGML_ASSERT(ggml_is_contiguous(dst));
  4638. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4640. return;
  4641. }
  4642. const int ith = params->ith;
  4643. const int nth = params->nth;
  4644. const int nc = src0->ne[0];
  4645. const int nr = ggml_nrows(src0);
  4646. // rows per thread
  4647. const int dr = (nr + nth - 1)/nth;
  4648. // row range for this thread
  4649. const int ir0 = dr*ith;
  4650. const int ir1 = MIN(ir0 + dr, nr);
  4651. for (int i1 = ir0; i1 < ir1; i1++) {
  4652. ggml_vec_silu_f32(nc,
  4653. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4654. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4655. #ifndef NDEBUG
  4656. for (int k = 0; k < nc; k++) {
  4657. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4658. UNUSED(x);
  4659. assert(!isnan(x));
  4660. assert(!isinf(x));
  4661. }
  4662. #endif
  4663. }
  4664. }
  4665. static void ggml_compute_forward_silu(
  4666. const struct ggml_compute_params * params,
  4667. const struct ggml_tensor * src0,
  4668. struct ggml_tensor * dst) {
  4669. switch (src0->type) {
  4670. case GGML_TYPE_F32:
  4671. {
  4672. ggml_compute_forward_silu_f32(params, src0, dst);
  4673. } break;
  4674. case GGML_TYPE_Q4_0:
  4675. case GGML_TYPE_Q4_1:
  4676. case GGML_TYPE_I8:
  4677. case GGML_TYPE_I16:
  4678. case GGML_TYPE_I32:
  4679. case GGML_TYPE_F16:
  4680. case GGML_TYPE_COUNT:
  4681. {
  4682. GGML_ASSERT(false);
  4683. } break;
  4684. }
  4685. }
  4686. // ggml_compute_forward_norm
  4687. static void ggml_compute_forward_norm_f32(
  4688. const struct ggml_compute_params * params,
  4689. const struct ggml_tensor * src0,
  4690. struct ggml_tensor * dst) {
  4691. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4693. return;
  4694. }
  4695. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4696. const int ith = params->ith;
  4697. const int nth = params->nth;
  4698. const int ne00 = src0->ne[0];
  4699. const int ne01 = src0->ne[1];
  4700. const int ne02 = src0->ne[2];
  4701. const int ne03 = src0->ne[3];
  4702. const size_t nb01 = src0->nb[1];
  4703. const size_t nb02 = src0->nb[2];
  4704. const size_t nb03 = src0->nb[3];
  4705. const size_t nb1 = dst->nb[1];
  4706. const size_t nb2 = dst->nb[2];
  4707. const size_t nb3 = dst->nb[3];
  4708. const float eps = 1e-5f; // TODO: make this a parameter
  4709. // TODO: optimize
  4710. for (int i03 = 0; i03 < ne03; i03++) {
  4711. for (int i02 = 0; i02 < ne02; i02++) {
  4712. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4713. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4714. ggml_float sum = 0.0;
  4715. for (int i00 = 0; i00 < ne00; i00++) {
  4716. sum += (ggml_float)x[i00];
  4717. }
  4718. float mean = sum/ne00;
  4719. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4720. ggml_float sum2 = 0.0;
  4721. for (int i00 = 0; i00 < ne00; i00++) {
  4722. float v = x[i00] - mean;
  4723. y[i00] = v;
  4724. sum2 += (ggml_float)(v*v);
  4725. }
  4726. float variance = sum2/ne00;
  4727. const float scale = 1.0f/sqrtf(variance + eps);
  4728. ggml_vec_scale_f32(ne00, y, scale);
  4729. }
  4730. }
  4731. }
  4732. }
  4733. static void ggml_compute_forward_norm(
  4734. const struct ggml_compute_params * params,
  4735. const struct ggml_tensor * src0,
  4736. struct ggml_tensor * dst) {
  4737. switch (src0->type) {
  4738. case GGML_TYPE_F32:
  4739. {
  4740. ggml_compute_forward_norm_f32(params, src0, dst);
  4741. } break;
  4742. case GGML_TYPE_Q4_0:
  4743. case GGML_TYPE_Q4_1:
  4744. case GGML_TYPE_I8:
  4745. case GGML_TYPE_I16:
  4746. case GGML_TYPE_I32:
  4747. case GGML_TYPE_F16:
  4748. case GGML_TYPE_COUNT:
  4749. {
  4750. GGML_ASSERT(false);
  4751. } break;
  4752. }
  4753. }
  4754. static void ggml_compute_forward_rms_norm_f32(
  4755. const struct ggml_compute_params * params,
  4756. const struct ggml_tensor * src0,
  4757. struct ggml_tensor * dst) {
  4758. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4759. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4760. return;
  4761. }
  4762. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4763. const int ith = params->ith;
  4764. const int nth = params->nth;
  4765. const int ne00 = src0->ne[0];
  4766. const int ne01 = src0->ne[1];
  4767. const int ne02 = src0->ne[2];
  4768. const int ne03 = src0->ne[3];
  4769. const size_t nb01 = src0->nb[1];
  4770. const size_t nb02 = src0->nb[2];
  4771. const size_t nb03 = src0->nb[3];
  4772. const size_t nb1 = dst->nb[1];
  4773. const size_t nb2 = dst->nb[2];
  4774. const size_t nb3 = dst->nb[3];
  4775. const float eps = 1e-6f; // TODO: make this a parameter
  4776. // TODO: optimize
  4777. for (int i03 = 0; i03 < ne03; i03++) {
  4778. for (int i02 = 0; i02 < ne02; i02++) {
  4779. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4780. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4781. ggml_float sum = 0.0;
  4782. for (int i00 = 0; i00 < ne00; i00++) {
  4783. sum += (ggml_float)(x[i00] * x[i00]);
  4784. }
  4785. float mean = sum/ne00;
  4786. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4787. memcpy(y, x, ne00 * sizeof(float));
  4788. // for (int i00 = 0; i00 < ne00; i00++) {
  4789. // y[i00] = x[i00];
  4790. // }
  4791. const float scale = 1.0f/sqrtf(mean + eps);
  4792. ggml_vec_scale_f32(ne00, y, scale);
  4793. }
  4794. }
  4795. }
  4796. }
  4797. static void ggml_compute_forward_rms_norm(
  4798. const struct ggml_compute_params * params,
  4799. const struct ggml_tensor * src0,
  4800. struct ggml_tensor * dst) {
  4801. switch (src0->type) {
  4802. case GGML_TYPE_F32:
  4803. {
  4804. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4805. } break;
  4806. case GGML_TYPE_Q4_0:
  4807. case GGML_TYPE_Q4_1:
  4808. case GGML_TYPE_I8:
  4809. case GGML_TYPE_I16:
  4810. case GGML_TYPE_I32:
  4811. case GGML_TYPE_F16:
  4812. case GGML_TYPE_COUNT:
  4813. {
  4814. GGML_ASSERT(false);
  4815. } break;
  4816. }
  4817. }
  4818. // ggml_compute_forward_mul_mat
  4819. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4820. // helper function to determine if it is better to use BLAS or not
  4821. // for large matrices, BLAS is faster
  4822. static bool ggml_compute_forward_mul_mat_use_blas(
  4823. const struct ggml_tensor * src0,
  4824. const struct ggml_tensor * src1,
  4825. struct ggml_tensor * dst) {
  4826. //const int ne00 = src0->ne[0];
  4827. //const int ne01 = src0->ne[1];
  4828. const int ne10 = src1->ne[0];
  4829. const int ne0 = dst->ne[0];
  4830. const int ne1 = dst->ne[1];
  4831. // TODO: find the optimal values for these
  4832. if (ggml_is_contiguous(src0) &&
  4833. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4834. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4835. return true;
  4836. }
  4837. return false;
  4838. }
  4839. #endif
  4840. static void ggml_compute_forward_mul_mat_f32(
  4841. const struct ggml_compute_params * params,
  4842. const struct ggml_tensor * src0,
  4843. const struct ggml_tensor * src1,
  4844. struct ggml_tensor * dst) {
  4845. int64_t t0 = ggml_perf_time_us();
  4846. UNUSED(t0);
  4847. const int ne00 = src0->ne[0];
  4848. const int ne01 = src0->ne[1];
  4849. const int ne02 = src0->ne[2];
  4850. const int ne03 = src0->ne[3];
  4851. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4852. const int ne10 = src1->ne[0];
  4853. #endif
  4854. const int ne11 = src1->ne[1];
  4855. #ifndef NDEBUG
  4856. const int ne12 = src1->ne[2];
  4857. const int ne13 = src1->ne[3];
  4858. const int ne0 = dst->ne[0];
  4859. const int ne1 = dst->ne[1];
  4860. const int ne2 = dst->ne[2];
  4861. const int ne3 = dst->ne[3];
  4862. const int nb00 = src0->nb[0];
  4863. #endif
  4864. const int nb01 = src0->nb[1];
  4865. const int nb02 = src0->nb[2];
  4866. const int nb03 = src0->nb[3];
  4867. #ifndef NDEBUG
  4868. const int nb10 = src1->nb[0];
  4869. #endif
  4870. const int nb11 = src1->nb[1];
  4871. const int nb12 = src1->nb[2];
  4872. const int nb13 = src1->nb[3];
  4873. const int nb0 = dst->nb[0];
  4874. const int nb1 = dst->nb[1];
  4875. const int nb2 = dst->nb[2];
  4876. const int nb3 = dst->nb[3];
  4877. const int ith = params->ith;
  4878. const int nth = params->nth;
  4879. assert(ne02 == ne12);
  4880. assert(ne03 == ne13);
  4881. assert(ne2 == ne12);
  4882. assert(ne3 == ne13);
  4883. // we don't support permuted src0 or src1
  4884. assert(nb00 == sizeof(float));
  4885. assert(nb10 == sizeof(float));
  4886. // dst cannot be transposed or permuted
  4887. assert(nb0 == sizeof(float));
  4888. assert(nb0 <= nb1);
  4889. assert(nb1 <= nb2);
  4890. assert(nb2 <= nb3);
  4891. assert(ne0 == ne01);
  4892. assert(ne1 == ne11);
  4893. assert(ne2 == ne02);
  4894. assert(ne3 == ne03);
  4895. // nb01 >= nb00 - src0 is not transposed
  4896. // compute by src0 rows
  4897. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4898. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4899. if (params->ith != 0) {
  4900. return;
  4901. }
  4902. if (params->type == GGML_TASK_INIT) {
  4903. return;
  4904. }
  4905. if (params->type == GGML_TASK_FINALIZE) {
  4906. return;
  4907. }
  4908. for (int i03 = 0; i03 < ne03; i03++) {
  4909. for (int i02 = 0; i02 < ne02; i02++) {
  4910. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4911. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4912. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4913. // zT = y * xT
  4914. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4915. ne11, ne01, ne10,
  4916. 1.0f, y, ne10,
  4917. x, ne10,
  4918. 0.0f, d, ne01);
  4919. }
  4920. }
  4921. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4922. return;
  4923. }
  4924. #endif
  4925. if (params->type == GGML_TASK_INIT) {
  4926. return;
  4927. }
  4928. if (params->type == GGML_TASK_FINALIZE) {
  4929. return;
  4930. }
  4931. // parallelize by src0 rows using ggml_vec_dot_f32
  4932. // total rows in src0
  4933. const int nr = ne01*ne02*ne03;
  4934. // rows per thread
  4935. const int dr = (nr + nth - 1)/nth;
  4936. // row range for this thread
  4937. const int ir0 = dr*ith;
  4938. const int ir1 = MIN(ir0 + dr, nr);
  4939. for (int ir = ir0; ir < ir1; ++ir) {
  4940. // src0 indices
  4941. const int i03 = ir/(ne02*ne01);
  4942. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4943. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4944. for (int ic = 0; ic < ne11; ++ic) {
  4945. // src1 indices
  4946. const int i13 = i03;
  4947. const int i12 = i02;
  4948. const int i11 = ic;
  4949. // dst indices
  4950. const int i0 = i01;
  4951. const int i1 = i11;
  4952. const int i2 = i02;
  4953. const int i3 = i03;
  4954. ggml_vec_dot_f32(ne00,
  4955. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4956. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4957. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4958. }
  4959. }
  4960. //int64_t t1 = ggml_perf_time_us();
  4961. //static int64_t acc = 0;
  4962. //acc += t1 - t0;
  4963. //if (t1 - t0 > 10) {
  4964. // printf("\n");
  4965. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4966. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4967. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4968. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4969. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4970. //}
  4971. }
  4972. static void ggml_compute_forward_mul_mat_f16_f32(
  4973. const struct ggml_compute_params * params,
  4974. const struct ggml_tensor * src0,
  4975. const struct ggml_tensor * src1,
  4976. struct ggml_tensor * dst) {
  4977. int64_t t0 = ggml_perf_time_us();
  4978. UNUSED(t0);
  4979. const int ne00 = src0->ne[0];
  4980. const int ne01 = src0->ne[1];
  4981. const int ne02 = src0->ne[2];
  4982. const int ne03 = src0->ne[3];
  4983. const int ne10 = src1->ne[0];
  4984. const int ne11 = src1->ne[1];
  4985. const int ne12 = src1->ne[2];
  4986. const int ne13 = src1->ne[3];
  4987. const int ne0 = dst->ne[0];
  4988. const int ne1 = dst->ne[1];
  4989. const int ne2 = dst->ne[2];
  4990. const int ne3 = dst->ne[3];
  4991. //const int ne = ne0*ne1*ne2*ne3;
  4992. const int nb00 = src0->nb[0];
  4993. const int nb01 = src0->nb[1];
  4994. const int nb02 = src0->nb[2];
  4995. const int nb03 = src0->nb[3];
  4996. const int nb10 = src1->nb[0];
  4997. const int nb11 = src1->nb[1];
  4998. const int nb12 = src1->nb[2];
  4999. const int nb13 = src1->nb[3];
  5000. const int nb0 = dst->nb[0];
  5001. const int nb1 = dst->nb[1];
  5002. const int nb2 = dst->nb[2];
  5003. const int nb3 = dst->nb[3];
  5004. const int ith = params->ith;
  5005. const int nth = params->nth;
  5006. GGML_ASSERT(ne02 == ne12);
  5007. GGML_ASSERT(ne03 == ne13);
  5008. GGML_ASSERT(ne2 == ne12);
  5009. GGML_ASSERT(ne3 == ne13);
  5010. // TODO: we don't support permuted src0
  5011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5012. // dst cannot be transposed or permuted
  5013. GGML_ASSERT(nb0 == sizeof(float));
  5014. GGML_ASSERT(nb0 <= nb1);
  5015. GGML_ASSERT(nb1 <= nb2);
  5016. GGML_ASSERT(nb2 <= nb3);
  5017. GGML_ASSERT(ne0 == ne01);
  5018. GGML_ASSERT(ne1 == ne11);
  5019. GGML_ASSERT(ne2 == ne02);
  5020. GGML_ASSERT(ne3 == ne03);
  5021. // nb01 >= nb00 - src0 is not transposed
  5022. // compute by src0 rows
  5023. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5024. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5025. GGML_ASSERT(nb10 == sizeof(float));
  5026. if (params->ith != 0) {
  5027. return;
  5028. }
  5029. if (params->type == GGML_TASK_INIT) {
  5030. return;
  5031. }
  5032. if (params->type == GGML_TASK_FINALIZE) {
  5033. return;
  5034. }
  5035. float * const wdata = params->wdata;
  5036. for (int i03 = 0; i03 < ne03; i03++) {
  5037. for (int i02 = 0; i02 < ne02; i02++) {
  5038. {
  5039. size_t id = 0;
  5040. for (int i01 = 0; i01 < ne01; ++i01) {
  5041. for (int i00 = 0; i00 < ne00; ++i00) {
  5042. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5043. }
  5044. }
  5045. }
  5046. const float * x = wdata;
  5047. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5048. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5049. // zT = y * xT
  5050. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5051. ne11, ne01, ne10,
  5052. 1.0f, y, ne10,
  5053. x, ne10,
  5054. 0.0f, d, ne01);
  5055. }
  5056. }
  5057. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5058. return;
  5059. }
  5060. #endif
  5061. if (params->type == GGML_TASK_INIT) {
  5062. ggml_fp16_t * const wdata = params->wdata;
  5063. size_t id = 0;
  5064. for (int i13 = 0; i13 < ne13; ++i13) {
  5065. for (int i12 = 0; i12 < ne12; ++i12) {
  5066. for (int i11 = 0; i11 < ne11; ++i11) {
  5067. for (int i10 = 0; i10 < ne10; ++i10) {
  5068. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5069. }
  5070. }
  5071. }
  5072. }
  5073. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5074. return;
  5075. }
  5076. if (params->type == GGML_TASK_FINALIZE) {
  5077. return;
  5078. }
  5079. // fp16 -> half the size, so divide by 2
  5080. // TODO: do not support transposed src1
  5081. assert(nb10/2 == sizeof(ggml_fp16_t));
  5082. // parallelize by src0 rows using ggml_vec_dot_f16
  5083. // total rows in src0
  5084. const int nr = ne01*ne02*ne03;
  5085. // rows per thread
  5086. const int dr = (nr + nth - 1)/nth;
  5087. // row range for this thread
  5088. const int ir0 = dr*ith;
  5089. const int ir1 = MIN(ir0 + dr, nr);
  5090. ggml_fp16_t * wdata = params->wdata;
  5091. for (int ir = ir0; ir < ir1; ++ir) {
  5092. // src0 indices
  5093. const int i03 = ir/(ne02*ne01);
  5094. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5095. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5096. const int i13 = i03;
  5097. const int i12 = i02;
  5098. const int i0 = i01;
  5099. const int i2 = i02;
  5100. const int i3 = i03;
  5101. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5102. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5103. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5104. for (int ic = 0; ic < ne11; ++ic) {
  5105. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5106. }
  5107. }
  5108. //int64_t t1 = ggml_time_us();
  5109. //static int64_t acc = 0;
  5110. //acc += t1 - t0;
  5111. //if (t1 - t0 > 10) {
  5112. // printf("\n");
  5113. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5114. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5115. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5116. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5117. //}
  5118. }
  5119. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5120. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5121. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5122. typedef struct {
  5123. dequantize_row_q_t dequantize_row_q;
  5124. quantize_row_q_t quantize_row_q;
  5125. vec_dot_q_t vec_dot_q;
  5126. } quantize_fns_t;
  5127. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5128. [GGML_TYPE_Q4_0] = {
  5129. .dequantize_row_q = dequantize_row_q4_0,
  5130. .quantize_row_q = quantize_row_q4_0,
  5131. .vec_dot_q = ggml_vec_dot_q4_0,
  5132. },
  5133. [GGML_TYPE_Q4_1] = {
  5134. .dequantize_row_q = dequantize_row_q4_1,
  5135. .quantize_row_q = quantize_row_q4_1,
  5136. .vec_dot_q = ggml_vec_dot_q4_1,
  5137. },
  5138. };
  5139. static void ggml_compute_forward_mul_mat_q_f32(
  5140. const struct ggml_compute_params * params,
  5141. const struct ggml_tensor * src0,
  5142. const struct ggml_tensor * src1,
  5143. struct ggml_tensor * dst) {
  5144. int64_t t0 = ggml_perf_time_us();
  5145. UNUSED(t0);
  5146. const int ne00 = src0->ne[0];
  5147. const int ne01 = src0->ne[1];
  5148. const int ne02 = src0->ne[2];
  5149. const int ne03 = src0->ne[3];
  5150. const int ne10 = src1->ne[0];
  5151. const int ne11 = src1->ne[1];
  5152. const int ne12 = src1->ne[2];
  5153. const int ne13 = src1->ne[3];
  5154. const int ne0 = dst->ne[0];
  5155. const int ne1 = dst->ne[1];
  5156. const int ne2 = dst->ne[2];
  5157. const int ne3 = dst->ne[3];
  5158. const int nb00 = src0->nb[0];
  5159. const int nb01 = src0->nb[1];
  5160. const int nb02 = src0->nb[2];
  5161. const int nb03 = src0->nb[3];
  5162. const int nb10 = src1->nb[0];
  5163. const int nb11 = src1->nb[1];
  5164. const int nb12 = src1->nb[2];
  5165. const int nb13 = src1->nb[3];
  5166. const int nb0 = dst->nb[0];
  5167. const int nb1 = dst->nb[1];
  5168. const int nb2 = dst->nb[2];
  5169. const int nb3 = dst->nb[3];
  5170. const int ith = params->ith;
  5171. const int nth = params->nth;
  5172. GGML_ASSERT(ne02 == ne12);
  5173. GGML_ASSERT(ne03 == ne13);
  5174. GGML_ASSERT(ne2 == ne12);
  5175. GGML_ASSERT(ne3 == ne13);
  5176. const enum ggml_type type = src0->type;
  5177. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5178. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5179. // we don't support permuted src0 or src1
  5180. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5181. GGML_ASSERT(nb10 == sizeof(float));
  5182. // dst cannot be transposed or permuted
  5183. GGML_ASSERT(nb0 == sizeof(float));
  5184. GGML_ASSERT(nb0 <= nb1);
  5185. GGML_ASSERT(nb1 <= nb2);
  5186. GGML_ASSERT(nb2 <= nb3);
  5187. GGML_ASSERT(ne0 == ne01);
  5188. GGML_ASSERT(ne1 == ne11);
  5189. GGML_ASSERT(ne2 == ne02);
  5190. GGML_ASSERT(ne3 == ne03);
  5191. // nb01 >= nb00 - src0 is not transposed
  5192. // compute by src0 rows
  5193. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5194. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5195. if (params->ith != 0) {
  5196. return;
  5197. }
  5198. if (params->type == GGML_TASK_INIT) {
  5199. return;
  5200. }
  5201. if (params->type == GGML_TASK_FINALIZE) {
  5202. return;
  5203. }
  5204. float * const wdata = params->wdata;
  5205. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5206. for (int i03 = 0; i03 < ne03; i03++) {
  5207. for (int i02 = 0; i02 < ne02; i02++) {
  5208. {
  5209. size_t id = 0;
  5210. for (int i01 = 0; i01 < ne01; ++i01) {
  5211. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5212. id += ne00;
  5213. }
  5214. }
  5215. const float * x = wdata;
  5216. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5217. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5218. // zT = y * xT
  5219. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5220. ne11, ne01, ne10,
  5221. 1.0f, y, ne10,
  5222. x, ne10,
  5223. 0.0f, d, ne01);
  5224. }
  5225. }
  5226. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5227. return;
  5228. }
  5229. #endif
  5230. if (params->type == GGML_TASK_INIT) {
  5231. char * wdata = params->wdata;
  5232. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5233. for (int i13 = 0; i13 < ne13; ++i13) {
  5234. for (int i12 = 0; i12 < ne12; ++i12) {
  5235. for (int i11 = 0; i11 < ne11; ++i11) {
  5236. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5237. wdata += row_size;
  5238. }
  5239. }
  5240. }
  5241. return;
  5242. }
  5243. if (params->type == GGML_TASK_FINALIZE) {
  5244. return;
  5245. }
  5246. // parallelize by src0 rows using ggml_vec_dot_q
  5247. // total rows in src0
  5248. const int nr = ne01*ne02*ne03;
  5249. // rows per thread
  5250. const int dr = (nr + nth - 1)/nth;
  5251. // row range for this thread
  5252. const int ir0 = dr*ith;
  5253. const int ir1 = MIN(ir0 + dr, nr);
  5254. void * wdata = params->wdata;
  5255. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5256. for (int ir = ir0; ir < ir1; ++ir) {
  5257. // src0 indices
  5258. const int i03 = ir/(ne02*ne01);
  5259. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5260. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5261. const int i13 = i03;
  5262. const int i12 = i02;
  5263. const int i0 = i01;
  5264. const int i2 = i02;
  5265. const int i3 = i03;
  5266. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5267. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5268. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5269. assert(ne00 % 32 == 0);
  5270. for (int ic = 0; ic < ne11; ++ic) {
  5271. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5272. }
  5273. }
  5274. //int64_t t1 = ggml_time_us();
  5275. //static int64_t acc = 0;
  5276. //acc += t1 - t0;
  5277. //if (t1 - t0 > 10) {
  5278. // printf("\n");
  5279. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5280. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5281. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5282. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5283. //}
  5284. }
  5285. static void ggml_compute_forward_mul_mat(
  5286. const struct ggml_compute_params * params,
  5287. const struct ggml_tensor * src0,
  5288. const struct ggml_tensor * src1,
  5289. struct ggml_tensor * dst) {
  5290. switch (src0->type) {
  5291. case GGML_TYPE_Q4_0:
  5292. case GGML_TYPE_Q4_1:
  5293. {
  5294. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5295. } break;
  5296. case GGML_TYPE_F16:
  5297. {
  5298. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5299. } break;
  5300. case GGML_TYPE_F32:
  5301. {
  5302. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5303. } break;
  5304. case GGML_TYPE_I8:
  5305. case GGML_TYPE_I16:
  5306. case GGML_TYPE_I32:
  5307. case GGML_TYPE_COUNT:
  5308. {
  5309. GGML_ASSERT(false);
  5310. } break;
  5311. }
  5312. #if 0
  5313. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5314. static int first = 8;
  5315. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5316. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5317. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5318. if (first) {
  5319. --first;
  5320. } else {
  5321. for (int k = 0; k < dst->ne[1]; ++k) {
  5322. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5323. for (int i = 0; i < 16; ++i) {
  5324. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5325. }
  5326. printf("\n");
  5327. }
  5328. printf("\n");
  5329. }
  5330. printf("\n");
  5331. exit(0);
  5332. }
  5333. } else {
  5334. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5335. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5336. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5337. }
  5338. #endif
  5339. }
  5340. // ggml_compute_forward_scale
  5341. static void ggml_compute_forward_scale_f32(
  5342. const struct ggml_compute_params * params,
  5343. const struct ggml_tensor * src0,
  5344. const struct ggml_tensor * src1,
  5345. struct ggml_tensor * dst) {
  5346. GGML_ASSERT(ggml_is_contiguous(src0));
  5347. GGML_ASSERT(ggml_is_contiguous(dst));
  5348. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5349. GGML_ASSERT(ggml_is_scalar(src1));
  5350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5351. return;
  5352. }
  5353. // scale factor
  5354. const float v = *(float *) src1->data;
  5355. const int ith = params->ith;
  5356. const int nth = params->nth;
  5357. const int nc = src0->ne[0];
  5358. const int nr = ggml_nrows(src0);
  5359. // rows per thread
  5360. const int dr = (nr + nth - 1)/nth;
  5361. // row range for this thread
  5362. const int ir0 = dr*ith;
  5363. const int ir1 = MIN(ir0 + dr, nr);
  5364. for (int i1 = ir0; i1 < ir1; i1++) {
  5365. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5366. }
  5367. }
  5368. static void ggml_compute_forward_scale(
  5369. const struct ggml_compute_params * params,
  5370. const struct ggml_tensor * src0,
  5371. const struct ggml_tensor * src1,
  5372. struct ggml_tensor * dst) {
  5373. switch (src0->type) {
  5374. case GGML_TYPE_F32:
  5375. {
  5376. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5377. } break;
  5378. case GGML_TYPE_Q4_0:
  5379. case GGML_TYPE_Q4_1:
  5380. case GGML_TYPE_I8:
  5381. case GGML_TYPE_I16:
  5382. case GGML_TYPE_I32:
  5383. case GGML_TYPE_F16:
  5384. case GGML_TYPE_COUNT:
  5385. {
  5386. GGML_ASSERT(false);
  5387. } break;
  5388. }
  5389. }
  5390. // ggml_compute_forward_cpy
  5391. static void ggml_compute_forward_cpy(
  5392. const struct ggml_compute_params * params,
  5393. const struct ggml_tensor * src0,
  5394. struct ggml_tensor * dst) {
  5395. ggml_compute_forward_dup(params, src0, dst);
  5396. }
  5397. // ggml_compute_forward_reshape
  5398. static void ggml_compute_forward_reshape(
  5399. const struct ggml_compute_params * params,
  5400. const struct ggml_tensor * src0,
  5401. struct ggml_tensor * dst) {
  5402. // NOP
  5403. UNUSED(params);
  5404. UNUSED(src0);
  5405. UNUSED(dst);
  5406. }
  5407. // ggml_compute_forward_view
  5408. static void ggml_compute_forward_view(
  5409. const struct ggml_compute_params * params,
  5410. const struct ggml_tensor * src0) {
  5411. // NOP
  5412. UNUSED(params);
  5413. UNUSED(src0);
  5414. }
  5415. // ggml_compute_forward_permute
  5416. static void ggml_compute_forward_permute(
  5417. const struct ggml_compute_params * params,
  5418. const struct ggml_tensor * src0) {
  5419. // NOP
  5420. UNUSED(params);
  5421. UNUSED(src0);
  5422. }
  5423. // ggml_compute_forward_transpose
  5424. static void ggml_compute_forward_transpose(
  5425. const struct ggml_compute_params * params,
  5426. const struct ggml_tensor * src0) {
  5427. // NOP
  5428. UNUSED(params);
  5429. UNUSED(src0);
  5430. }
  5431. // ggml_compute_forward_get_rows
  5432. static void ggml_compute_forward_get_rows_q(
  5433. const struct ggml_compute_params * params,
  5434. const struct ggml_tensor * src0,
  5435. const struct ggml_tensor * src1,
  5436. struct ggml_tensor * dst) {
  5437. assert(params->ith == 0);
  5438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5439. return;
  5440. }
  5441. const int nc = src0->ne[0];
  5442. const int nr = ggml_nelements(src1);
  5443. const enum ggml_type type = src0->type;
  5444. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5445. assert( dst->ne[0] == nc);
  5446. assert( dst->ne[1] == nr);
  5447. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5448. for (int i = 0; i < nr; ++i) {
  5449. const int r = ((int32_t *) src1->data)[i];
  5450. dequantize_row_q(
  5451. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5452. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5453. }
  5454. }
  5455. static void ggml_compute_forward_get_rows_f16(
  5456. const struct ggml_compute_params * params,
  5457. const struct ggml_tensor * src0,
  5458. const struct ggml_tensor * src1,
  5459. struct ggml_tensor * dst) {
  5460. assert(params->ith == 0);
  5461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5462. return;
  5463. }
  5464. const int nc = src0->ne[0];
  5465. const int nr = ggml_nelements(src1);
  5466. assert( dst->ne[0] == nc);
  5467. assert( dst->ne[1] == nr);
  5468. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5469. for (int i = 0; i < nr; ++i) {
  5470. const int r = ((int32_t *) src1->data)[i];
  5471. for (int j = 0; j < nc; ++j) {
  5472. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5473. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5474. }
  5475. }
  5476. }
  5477. static void ggml_compute_forward_get_rows_f32(
  5478. const struct ggml_compute_params * params,
  5479. const struct ggml_tensor * src0,
  5480. const struct ggml_tensor * src1,
  5481. struct ggml_tensor * dst) {
  5482. assert(params->ith == 0);
  5483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5484. return;
  5485. }
  5486. const int nc = src0->ne[0];
  5487. const int nr = ggml_nelements(src1);
  5488. assert( dst->ne[0] == nc);
  5489. assert( dst->ne[1] == nr);
  5490. assert(src0->nb[0] == sizeof(float));
  5491. for (int i = 0; i < nr; ++i) {
  5492. const int r = ((int32_t *) src1->data)[i];
  5493. ggml_vec_cpy_f32(nc,
  5494. (float *) ((char *) dst->data + i*dst->nb[1]),
  5495. (float *) ((char *) src0->data + r*src0->nb[1]));
  5496. }
  5497. }
  5498. static void ggml_compute_forward_get_rows(
  5499. const struct ggml_compute_params * params,
  5500. const struct ggml_tensor * src0,
  5501. const struct ggml_tensor * src1,
  5502. struct ggml_tensor * dst) {
  5503. switch (src0->type) {
  5504. case GGML_TYPE_Q4_0:
  5505. case GGML_TYPE_Q4_1:
  5506. {
  5507. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5508. } break;
  5509. case GGML_TYPE_F16:
  5510. {
  5511. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5512. } break;
  5513. case GGML_TYPE_F32:
  5514. {
  5515. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5516. } break;
  5517. case GGML_TYPE_I8:
  5518. case GGML_TYPE_I16:
  5519. case GGML_TYPE_I32:
  5520. case GGML_TYPE_COUNT:
  5521. {
  5522. GGML_ASSERT(false);
  5523. } break;
  5524. }
  5525. //static bool first = true;
  5526. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5527. //if (first) {
  5528. // first = false;
  5529. //} else {
  5530. // for (int k = 0; k < dst->ne[1]; ++k) {
  5531. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5532. // for (int i = 0; i < 16; ++i) {
  5533. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5534. // }
  5535. // printf("\n");
  5536. // }
  5537. // printf("\n");
  5538. // }
  5539. // printf("\n");
  5540. // exit(0);
  5541. //}
  5542. }
  5543. // ggml_compute_forward_diag_mask_inf
  5544. static void ggml_compute_forward_diag_mask_inf_f32(
  5545. const struct ggml_compute_params * params,
  5546. const struct ggml_tensor * src0,
  5547. const struct ggml_tensor * src1,
  5548. struct ggml_tensor * dst) {
  5549. assert(params->ith == 0);
  5550. assert(src1->type == GGML_TYPE_I32);
  5551. assert(ggml_nelements(src1) == 1);
  5552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5553. return;
  5554. }
  5555. const int n_past = ((int32_t *) src1->data)[0];
  5556. // TODO: handle transposed/permuted matrices
  5557. const int n = ggml_nrows(src0);
  5558. const int nc = src0->ne[0];
  5559. const int nr = src0->ne[1];
  5560. const int nz = n/nr;
  5561. assert( dst->nb[0] == sizeof(float));
  5562. assert(src0->nb[0] == sizeof(float));
  5563. for (int k = 0; k < nz; k++) {
  5564. for (int j = 0; j < nr; j++) {
  5565. for (int i = n_past; i < nc; i++) {
  5566. if (i > n_past + j) {
  5567. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5568. }
  5569. }
  5570. }
  5571. }
  5572. }
  5573. static void ggml_compute_forward_diag_mask_inf(
  5574. const struct ggml_compute_params * params,
  5575. const struct ggml_tensor * src0,
  5576. const struct ggml_tensor * src1,
  5577. struct ggml_tensor * dst) {
  5578. switch (src0->type) {
  5579. case GGML_TYPE_F32:
  5580. {
  5581. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5582. } break;
  5583. case GGML_TYPE_Q4_0:
  5584. case GGML_TYPE_Q4_1:
  5585. case GGML_TYPE_I8:
  5586. case GGML_TYPE_I16:
  5587. case GGML_TYPE_I32:
  5588. case GGML_TYPE_F16:
  5589. case GGML_TYPE_COUNT:
  5590. {
  5591. GGML_ASSERT(false);
  5592. } break;
  5593. }
  5594. }
  5595. // ggml_compute_forward_soft_max
  5596. static void ggml_compute_forward_soft_max_f32(
  5597. const struct ggml_compute_params * params,
  5598. const struct ggml_tensor * src0,
  5599. struct ggml_tensor * dst) {
  5600. GGML_ASSERT(ggml_is_contiguous(src0));
  5601. GGML_ASSERT(ggml_is_contiguous(dst));
  5602. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5604. return;
  5605. }
  5606. // TODO: handle transposed/permuted matrices
  5607. const int ith = params->ith;
  5608. const int nth = params->nth;
  5609. const int nc = src0->ne[0];
  5610. const int nr = ggml_nrows(src0);
  5611. // rows per thread
  5612. const int dr = (nr + nth - 1)/nth;
  5613. // row range for this thread
  5614. const int ir0 = dr*ith;
  5615. const int ir1 = MIN(ir0 + dr, nr);
  5616. for (int i1 = ir0; i1 < ir1; i1++) {
  5617. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5618. #ifndef NDEBUG
  5619. for (int i = 0; i < nc; ++i) {
  5620. //printf("p[%d] = %f\n", i, p[i]);
  5621. assert(!isnan(p[i]));
  5622. }
  5623. #endif
  5624. float max = -INFINITY;
  5625. ggml_vec_max_f32(nc, &max, p);
  5626. ggml_float sum = 0.0;
  5627. uint16_t scvt;
  5628. for (int i = 0; i < nc; i++) {
  5629. if (p[i] == -INFINITY) {
  5630. p[i] = 0.0f;
  5631. } else {
  5632. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5633. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5634. memcpy(&scvt, &s, sizeof(scvt));
  5635. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5636. sum += (ggml_float)val;
  5637. p[i] = val;
  5638. }
  5639. }
  5640. assert(sum > 0.0);
  5641. sum = 1.0/sum;
  5642. ggml_vec_scale_f32(nc, p, sum);
  5643. #ifndef NDEBUG
  5644. for (int i = 0; i < nc; ++i) {
  5645. assert(!isnan(p[i]));
  5646. assert(!isinf(p[i]));
  5647. }
  5648. #endif
  5649. }
  5650. }
  5651. static void ggml_compute_forward_soft_max(
  5652. const struct ggml_compute_params * params,
  5653. const struct ggml_tensor * src0,
  5654. struct ggml_tensor * dst) {
  5655. switch (src0->type) {
  5656. case GGML_TYPE_F32:
  5657. {
  5658. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5659. } break;
  5660. case GGML_TYPE_Q4_0:
  5661. case GGML_TYPE_Q4_1:
  5662. case GGML_TYPE_I8:
  5663. case GGML_TYPE_I16:
  5664. case GGML_TYPE_I32:
  5665. case GGML_TYPE_F16:
  5666. case GGML_TYPE_COUNT:
  5667. {
  5668. GGML_ASSERT(false);
  5669. } break;
  5670. }
  5671. }
  5672. // ggml_compute_forward_rope
  5673. static void ggml_compute_forward_rope_f32(
  5674. const struct ggml_compute_params * params,
  5675. const struct ggml_tensor * src0,
  5676. const struct ggml_tensor * src1,
  5677. struct ggml_tensor * dst) {
  5678. assert(params->ith == 0);
  5679. assert(src1->type == GGML_TYPE_I32);
  5680. assert(ggml_nelements(src1) == 3);
  5681. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5682. return;
  5683. }
  5684. const int n_past = ((int32_t *) src1->data)[0];
  5685. const int n_dims = ((int32_t *) src1->data)[1];
  5686. const int mode = ((int32_t *) src1->data)[2];
  5687. //const int ne0 = src0->ne[0];
  5688. const int ne1 = src0->ne[1];
  5689. const int ne2 = src0->ne[2];
  5690. const int ne3 = src0->ne[3];
  5691. const int nb0 = src0->nb[0];
  5692. const int nb1 = src0->nb[1];
  5693. const int nb2 = src0->nb[2];
  5694. const int nb3 = src0->nb[3];
  5695. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5696. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5697. assert(nb0 == sizeof(float));
  5698. // TODO: optimize
  5699. for (int i3 = 0; i3 < ne3; i3++) {
  5700. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5701. const int p = (mode == 0 ? n_past + i2 : i2);
  5702. for (int i1 = 0; i1 < ne1; i1++) {
  5703. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5704. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5705. const float cos_theta = cosf(p*theta);
  5706. const float sin_theta = sinf(p*theta);
  5707. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5708. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5709. const float x0 = src[0];
  5710. const float x1 = src[1];
  5711. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5712. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5713. }
  5714. }
  5715. }
  5716. }
  5717. }
  5718. static void ggml_compute_forward_rope_f16(
  5719. const struct ggml_compute_params * params,
  5720. const struct ggml_tensor * src0,
  5721. const struct ggml_tensor * src1,
  5722. struct ggml_tensor * dst) {
  5723. assert(params->ith == 0);
  5724. assert(src1->type == GGML_TYPE_I32);
  5725. assert(ggml_nelements(src1) == 3);
  5726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5727. return;
  5728. }
  5729. const int n_past = ((int32_t *) src1->data)[0];
  5730. const int n_dims = ((int32_t *) src1->data)[1];
  5731. const int mode = ((int32_t *) src1->data)[2];
  5732. //const int ne0 = src0->ne[0];
  5733. const int ne1 = src0->ne[1];
  5734. const int ne2 = src0->ne[2];
  5735. const int ne3 = src0->ne[3];
  5736. const int nb0 = src0->nb[0];
  5737. const int nb1 = src0->nb[1];
  5738. const int nb2 = src0->nb[2];
  5739. const int nb3 = src0->nb[3];
  5740. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5741. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5742. assert(nb0 == sizeof(ggml_fp16_t));
  5743. for (int i3 = 0; i3 < ne3; i3++) {
  5744. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5745. const int p = (mode == 0 ? n_past + i2 : i2);
  5746. for (int i1 = 0; i1 < ne1; i1++) {
  5747. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5748. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5749. const float cos_theta = cosf(p*theta);
  5750. const float sin_theta = sinf(p*theta);
  5751. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5752. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5753. const float x0 = ggml_fp16_to_fp32(src[0]);
  5754. const float x1 = ggml_fp16_to_fp32(src[1]);
  5755. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5756. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5757. }
  5758. }
  5759. }
  5760. }
  5761. }
  5762. static void ggml_compute_forward_rope(
  5763. const struct ggml_compute_params * params,
  5764. const struct ggml_tensor * src0,
  5765. const struct ggml_tensor * src1,
  5766. struct ggml_tensor * dst) {
  5767. switch (src0->type) {
  5768. case GGML_TYPE_F16:
  5769. {
  5770. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5771. } break;
  5772. case GGML_TYPE_F32:
  5773. {
  5774. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5775. } break;
  5776. case GGML_TYPE_Q4_0:
  5777. case GGML_TYPE_Q4_1:
  5778. case GGML_TYPE_I8:
  5779. case GGML_TYPE_I16:
  5780. case GGML_TYPE_I32:
  5781. case GGML_TYPE_COUNT:
  5782. {
  5783. GGML_ASSERT(false);
  5784. } break;
  5785. }
  5786. }
  5787. // ggml_compute_forward_conv_1d_1s
  5788. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5789. const struct ggml_compute_params * params,
  5790. const struct ggml_tensor * src0,
  5791. const struct ggml_tensor * src1,
  5792. struct ggml_tensor * dst) {
  5793. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5794. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5795. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5796. int64_t t0 = ggml_perf_time_us();
  5797. UNUSED(t0);
  5798. const int ne00 = src0->ne[0];
  5799. const int ne01 = src0->ne[1];
  5800. const int ne02 = src0->ne[2];
  5801. //const int ne03 = src0->ne[3];
  5802. const int ne10 = src1->ne[0];
  5803. const int ne11 = src1->ne[1];
  5804. //const int ne12 = src1->ne[2];
  5805. //const int ne13 = src1->ne[3];
  5806. //const int ne0 = dst->ne[0];
  5807. //const int ne1 = dst->ne[1];
  5808. //const int ne2 = dst->ne[2];
  5809. //const int ne3 = dst->ne[3];
  5810. //const int ne = ne0*ne1*ne2*ne3;
  5811. const int nb00 = src0->nb[0];
  5812. const int nb01 = src0->nb[1];
  5813. const int nb02 = src0->nb[2];
  5814. //const int nb03 = src0->nb[3];
  5815. const int nb10 = src1->nb[0];
  5816. const int nb11 = src1->nb[1];
  5817. //const int nb12 = src1->nb[2];
  5818. //const int nb13 = src1->nb[3];
  5819. //const int nb0 = dst->nb[0];
  5820. const int nb1 = dst->nb[1];
  5821. //const int nb2 = dst->nb[2];
  5822. //const int nb3 = dst->nb[3];
  5823. const int ith = params->ith;
  5824. const int nth = params->nth;
  5825. const int nk = ne00;
  5826. const int nh = nk/2;
  5827. const int ew0 = ggml_up32(ne01);
  5828. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5829. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5830. GGML_ASSERT(nb10 == sizeof(float));
  5831. if (params->type == GGML_TASK_INIT) {
  5832. // TODO: fix this memset (wsize is overestimated)
  5833. memset(params->wdata, 0, params->wsize);
  5834. // prepare kernel data (src0)
  5835. {
  5836. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5837. for (int i02 = 0; i02 < ne02; i02++) {
  5838. for (int i01 = 0; i01 < ne01; i01++) {
  5839. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5840. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5841. for (int i00 = 0; i00 < ne00; i00++) {
  5842. dst_data[i00*ew0 + i01] = src[i00];
  5843. }
  5844. }
  5845. }
  5846. }
  5847. // prepare source data (src1)
  5848. {
  5849. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5850. for (int i11 = 0; i11 < ne11; i11++) {
  5851. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5852. ggml_fp16_t * dst_data = wdata;
  5853. for (int i10 = 0; i10 < ne10; i10++) {
  5854. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5855. }
  5856. }
  5857. }
  5858. return;
  5859. }
  5860. if (params->type == GGML_TASK_FINALIZE) {
  5861. return;
  5862. }
  5863. // total rows in dst
  5864. const int nr = ne02;
  5865. // rows per thread
  5866. const int dr = (nr + nth - 1)/nth;
  5867. // row range for this thread
  5868. const int ir0 = dr*ith;
  5869. const int ir1 = MIN(ir0 + dr, nr);
  5870. for (int i1 = ir0; i1 < ir1; i1++) {
  5871. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5872. for (int i0 = 0; i0 < ne10; ++i0) {
  5873. dst_data[i0] = 0;
  5874. for (int k = -nh; k <= nh; k++) {
  5875. float v = 0.0f;
  5876. ggml_vec_dot_f16(ew0, &v,
  5877. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5878. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5879. dst_data[i0] += v;
  5880. }
  5881. }
  5882. }
  5883. }
  5884. static void ggml_compute_forward_conv_1d_1s_f32(
  5885. const struct ggml_compute_params * params,
  5886. const struct ggml_tensor * src0,
  5887. const struct ggml_tensor * src1,
  5888. struct ggml_tensor * dst) {
  5889. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5890. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5891. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5892. int64_t t0 = ggml_perf_time_us();
  5893. UNUSED(t0);
  5894. const int ne00 = src0->ne[0];
  5895. const int ne01 = src0->ne[1];
  5896. const int ne02 = src0->ne[2];
  5897. //const int ne03 = src0->ne[3];
  5898. const int ne10 = src1->ne[0];
  5899. const int ne11 = src1->ne[1];
  5900. //const int ne12 = src1->ne[2];
  5901. //const int ne13 = src1->ne[3];
  5902. //const int ne0 = dst->ne[0];
  5903. //const int ne1 = dst->ne[1];
  5904. //const int ne2 = dst->ne[2];
  5905. //const int ne3 = dst->ne[3];
  5906. //const int ne = ne0*ne1*ne2*ne3;
  5907. const int nb00 = src0->nb[0];
  5908. const int nb01 = src0->nb[1];
  5909. const int nb02 = src0->nb[2];
  5910. //const int nb03 = src0->nb[3];
  5911. const int nb10 = src1->nb[0];
  5912. const int nb11 = src1->nb[1];
  5913. //const int nb12 = src1->nb[2];
  5914. //const int nb13 = src1->nb[3];
  5915. //const int nb0 = dst->nb[0];
  5916. const int nb1 = dst->nb[1];
  5917. //const int nb2 = dst->nb[2];
  5918. //const int nb3 = dst->nb[3];
  5919. const int ith = params->ith;
  5920. const int nth = params->nth;
  5921. const int nk = ne00;
  5922. const int nh = nk/2;
  5923. const int ew0 = ggml_up32(ne01);
  5924. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5925. GGML_ASSERT(nb00 == sizeof(float));
  5926. GGML_ASSERT(nb10 == sizeof(float));
  5927. if (params->type == GGML_TASK_INIT) {
  5928. // TODO: fix this memset (wsize is overestimated)
  5929. memset(params->wdata, 0, params->wsize);
  5930. // prepare kernel data (src0)
  5931. {
  5932. float * const wdata = (float *) params->wdata + 0;
  5933. for (int i02 = 0; i02 < ne02; i02++) {
  5934. for (int i01 = 0; i01 < ne01; i01++) {
  5935. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5936. float * dst_data = wdata + i02*ew0*ne00;
  5937. for (int i00 = 0; i00 < ne00; i00++) {
  5938. dst_data[i00*ew0 + i01] = src[i00];
  5939. }
  5940. }
  5941. }
  5942. }
  5943. // prepare source data (src1)
  5944. {
  5945. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5946. for (int i11 = 0; i11 < ne11; i11++) {
  5947. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5948. float * dst_data = wdata;
  5949. for (int i10 = 0; i10 < ne10; i10++) {
  5950. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5951. }
  5952. }
  5953. }
  5954. return;
  5955. }
  5956. if (params->type == GGML_TASK_FINALIZE) {
  5957. return;
  5958. }
  5959. // total rows in dst
  5960. const int nr = ne02;
  5961. // rows per thread
  5962. const int dr = (nr + nth - 1)/nth;
  5963. // row range for this thread
  5964. const int ir0 = dr*ith;
  5965. const int ir1 = MIN(ir0 + dr, nr);
  5966. for (int i1 = ir0; i1 < ir1; i1++) {
  5967. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5968. for (int i0 = 0; i0 < ne10; ++i0) {
  5969. dst_data[i0] = 0;
  5970. for (int k = -nh; k <= nh; k++) {
  5971. float v = 0.0f;
  5972. ggml_vec_dot_f32(ew0, &v,
  5973. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5974. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5975. dst_data[i0] += v;
  5976. }
  5977. }
  5978. }
  5979. }
  5980. static void ggml_compute_forward_conv_1d_1s(
  5981. const struct ggml_compute_params * params,
  5982. const struct ggml_tensor * src0,
  5983. const struct ggml_tensor * src1,
  5984. struct ggml_tensor * dst) {
  5985. switch (src0->type) {
  5986. case GGML_TYPE_F16:
  5987. {
  5988. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5989. } break;
  5990. case GGML_TYPE_F32:
  5991. {
  5992. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5993. } break;
  5994. case GGML_TYPE_Q4_0:
  5995. case GGML_TYPE_Q4_1:
  5996. case GGML_TYPE_I8:
  5997. case GGML_TYPE_I16:
  5998. case GGML_TYPE_I32:
  5999. case GGML_TYPE_COUNT:
  6000. {
  6001. GGML_ASSERT(false);
  6002. } break;
  6003. }
  6004. }
  6005. // ggml_compute_forward_conv_1d_2s
  6006. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6007. const struct ggml_compute_params * params,
  6008. const struct ggml_tensor * src0,
  6009. const struct ggml_tensor * src1,
  6010. struct ggml_tensor * dst) {
  6011. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6012. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6013. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6014. int64_t t0 = ggml_perf_time_us();
  6015. UNUSED(t0);
  6016. const int ne00 = src0->ne[0];
  6017. const int ne01 = src0->ne[1];
  6018. const int ne02 = src0->ne[2];
  6019. //const int ne03 = src0->ne[3];
  6020. const int ne10 = src1->ne[0];
  6021. const int ne11 = src1->ne[1];
  6022. //const int ne12 = src1->ne[2];
  6023. //const int ne13 = src1->ne[3];
  6024. //const int ne0 = dst->ne[0];
  6025. //const int ne1 = dst->ne[1];
  6026. //const int ne2 = dst->ne[2];
  6027. //const int ne3 = dst->ne[3];
  6028. //const int ne = ne0*ne1*ne2*ne3;
  6029. const int nb00 = src0->nb[0];
  6030. const int nb01 = src0->nb[1];
  6031. const int nb02 = src0->nb[2];
  6032. //const int nb03 = src0->nb[3];
  6033. const int nb10 = src1->nb[0];
  6034. const int nb11 = src1->nb[1];
  6035. //const int nb12 = src1->nb[2];
  6036. //const int nb13 = src1->nb[3];
  6037. //const int nb0 = dst->nb[0];
  6038. const int nb1 = dst->nb[1];
  6039. //const int nb2 = dst->nb[2];
  6040. //const int nb3 = dst->nb[3];
  6041. const int ith = params->ith;
  6042. const int nth = params->nth;
  6043. const int nk = ne00;
  6044. const int nh = nk/2;
  6045. const int ew0 = ggml_up32(ne01);
  6046. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6047. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6048. GGML_ASSERT(nb10 == sizeof(float));
  6049. if (params->type == GGML_TASK_INIT) {
  6050. // TODO: fix this memset (wsize is overestimated)
  6051. memset(params->wdata, 0, params->wsize);
  6052. // prepare kernel data (src0)
  6053. {
  6054. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6055. for (int i02 = 0; i02 < ne02; i02++) {
  6056. for (int i01 = 0; i01 < ne01; i01++) {
  6057. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6058. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6059. for (int i00 = 0; i00 < ne00; i00++) {
  6060. dst_data[i00*ew0 + i01] = src[i00];
  6061. }
  6062. }
  6063. }
  6064. }
  6065. // prepare source data (src1)
  6066. {
  6067. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6068. for (int i11 = 0; i11 < ne11; i11++) {
  6069. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6070. ggml_fp16_t * dst_data = wdata;
  6071. for (int i10 = 0; i10 < ne10; i10++) {
  6072. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6073. }
  6074. }
  6075. }
  6076. return;
  6077. }
  6078. if (params->type == GGML_TASK_FINALIZE) {
  6079. return;
  6080. }
  6081. // total rows in dst
  6082. const int nr = ne02;
  6083. // rows per thread
  6084. const int dr = (nr + nth - 1)/nth;
  6085. // row range for this thread
  6086. const int ir0 = dr*ith;
  6087. const int ir1 = MIN(ir0 + dr, nr);
  6088. for (int i1 = ir0; i1 < ir1; i1++) {
  6089. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6090. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6091. dst_data[i0/2] = 0;
  6092. for (int k = -nh; k <= nh; k++) {
  6093. float v = 0.0f;
  6094. ggml_vec_dot_f16(ew0, &v,
  6095. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6096. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6097. dst_data[i0/2] += v;
  6098. }
  6099. }
  6100. }
  6101. }
  6102. static void ggml_compute_forward_conv_1d_2s_f32(
  6103. const struct ggml_compute_params * params,
  6104. const struct ggml_tensor * src0,
  6105. const struct ggml_tensor * src1,
  6106. struct ggml_tensor * dst) {
  6107. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6108. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6109. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6110. int64_t t0 = ggml_perf_time_us();
  6111. UNUSED(t0);
  6112. const int ne00 = src0->ne[0];
  6113. const int ne01 = src0->ne[1];
  6114. const int ne02 = src0->ne[2];
  6115. //const int ne03 = src0->ne[3];
  6116. const int ne10 = src1->ne[0];
  6117. const int ne11 = src1->ne[1];
  6118. //const int ne12 = src1->ne[2];
  6119. //const int ne13 = src1->ne[3];
  6120. //const int ne0 = dst->ne[0];
  6121. //const int ne1 = dst->ne[1];
  6122. //const int ne2 = dst->ne[2];
  6123. //const int ne3 = dst->ne[3];
  6124. //const int ne = ne0*ne1*ne2*ne3;
  6125. const int nb00 = src0->nb[0];
  6126. const int nb01 = src0->nb[1];
  6127. const int nb02 = src0->nb[2];
  6128. //const int nb03 = src0->nb[3];
  6129. const int nb10 = src1->nb[0];
  6130. const int nb11 = src1->nb[1];
  6131. //const int nb12 = src1->nb[2];
  6132. //const int nb13 = src1->nb[3];
  6133. //const int nb0 = dst->nb[0];
  6134. const int nb1 = dst->nb[1];
  6135. //const int nb2 = dst->nb[2];
  6136. //const int nb3 = dst->nb[3];
  6137. const int ith = params->ith;
  6138. const int nth = params->nth;
  6139. const int nk = ne00;
  6140. const int nh = nk/2;
  6141. const int ew0 = ggml_up32(ne01);
  6142. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6143. GGML_ASSERT(nb00 == sizeof(float));
  6144. GGML_ASSERT(nb10 == sizeof(float));
  6145. if (params->type == GGML_TASK_INIT) {
  6146. // TODO: fix this memset (wsize is overestimated)
  6147. memset(params->wdata, 0, params->wsize);
  6148. // prepare kernel data (src0)
  6149. {
  6150. float * const wdata = (float *) params->wdata + 0;
  6151. for (int i02 = 0; i02 < ne02; i02++) {
  6152. for (int i01 = 0; i01 < ne01; i01++) {
  6153. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6154. float * dst_data = wdata + i02*ew0*ne00;
  6155. for (int i00 = 0; i00 < ne00; i00++) {
  6156. dst_data[i00*ew0 + i01] = src[i00];
  6157. }
  6158. }
  6159. }
  6160. }
  6161. // prepare source data (src1)
  6162. {
  6163. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6164. for (int i11 = 0; i11 < ne11; i11++) {
  6165. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6166. float * dst_data = wdata;
  6167. for (int i10 = 0; i10 < ne10; i10++) {
  6168. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6169. }
  6170. }
  6171. }
  6172. return;
  6173. }
  6174. if (params->type == GGML_TASK_FINALIZE) {
  6175. return;
  6176. }
  6177. // total rows in dst
  6178. const int nr = ne02;
  6179. // rows per thread
  6180. const int dr = (nr + nth - 1)/nth;
  6181. // row range for this thread
  6182. const int ir0 = dr*ith;
  6183. const int ir1 = MIN(ir0 + dr, nr);
  6184. for (int i1 = ir0; i1 < ir1; i1++) {
  6185. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6186. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6187. dst_data[i0/2] = 0;
  6188. for (int k = -nh; k <= nh; k++) {
  6189. float v = 0.0f;
  6190. ggml_vec_dot_f32(ew0, &v,
  6191. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6192. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6193. dst_data[i0/2] += v;
  6194. }
  6195. }
  6196. }
  6197. }
  6198. static void ggml_compute_forward_conv_1d_2s(
  6199. const struct ggml_compute_params * params,
  6200. const struct ggml_tensor * src0,
  6201. const struct ggml_tensor * src1,
  6202. struct ggml_tensor * dst) {
  6203. switch (src0->type) {
  6204. case GGML_TYPE_F16:
  6205. {
  6206. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6207. } break;
  6208. case GGML_TYPE_F32:
  6209. {
  6210. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6211. } break;
  6212. case GGML_TYPE_Q4_0:
  6213. case GGML_TYPE_Q4_1:
  6214. case GGML_TYPE_I8:
  6215. case GGML_TYPE_I16:
  6216. case GGML_TYPE_I32:
  6217. case GGML_TYPE_COUNT:
  6218. {
  6219. GGML_ASSERT(false);
  6220. } break;
  6221. }
  6222. }
  6223. // ggml_compute_forward_flash_attn
  6224. static void ggml_compute_forward_flash_attn_f32(
  6225. const struct ggml_compute_params * params,
  6226. const struct ggml_tensor * q,
  6227. const struct ggml_tensor * k,
  6228. const struct ggml_tensor * v,
  6229. const bool masked,
  6230. struct ggml_tensor * dst) {
  6231. int64_t t0 = ggml_perf_time_us();
  6232. UNUSED(t0);
  6233. const int neq0 = q->ne[0];
  6234. const int neq1 = q->ne[1];
  6235. const int neq2 = q->ne[2];
  6236. const int neq3 = q->ne[3];
  6237. const int nek0 = k->ne[0];
  6238. const int nek1 = k->ne[1];
  6239. //const int nek2 = k->ne[2];
  6240. //const int nek3 = k->ne[3];
  6241. //const int nev0 = v->ne[0];
  6242. const int nev1 = v->ne[1];
  6243. //const int nev2 = v->ne[2];
  6244. //const int nev3 = v->ne[3];
  6245. const int ne0 = dst->ne[0];
  6246. const int ne1 = dst->ne[1];
  6247. //const int ne2 = dst->ne[2];
  6248. //const int ne3 = dst->ne[3];
  6249. const int nbk0 = k->nb[0];
  6250. const int nbk1 = k->nb[1];
  6251. const int nbk2 = k->nb[2];
  6252. const int nbk3 = k->nb[3];
  6253. const int nbq0 = q->nb[0];
  6254. const int nbq1 = q->nb[1];
  6255. const int nbq2 = q->nb[2];
  6256. const int nbq3 = q->nb[3];
  6257. const int nbv0 = v->nb[0];
  6258. const int nbv1 = v->nb[1];
  6259. const int nbv2 = v->nb[2];
  6260. const int nbv3 = v->nb[3];
  6261. const int nb0 = dst->nb[0];
  6262. const int nb1 = dst->nb[1];
  6263. const int nb2 = dst->nb[2];
  6264. const int nb3 = dst->nb[3];
  6265. const int ith = params->ith;
  6266. const int nth = params->nth;
  6267. const int D = neq0;
  6268. const int N = neq1;
  6269. const int P = nek1 - N;
  6270. const int M = P + N;
  6271. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6272. GGML_ASSERT(ne0 == D);
  6273. GGML_ASSERT(ne1 == N);
  6274. GGML_ASSERT(P >= 0);
  6275. GGML_ASSERT(nbq0 == sizeof(float));
  6276. GGML_ASSERT(nbk0 == sizeof(float));
  6277. GGML_ASSERT(nbv0 == sizeof(float));
  6278. GGML_ASSERT(neq0 == D);
  6279. GGML_ASSERT(nek0 == D);
  6280. GGML_ASSERT(nev1 == D);
  6281. GGML_ASSERT(neq1 == N);
  6282. GGML_ASSERT(nek1 == N + P);
  6283. GGML_ASSERT(nev1 == D);
  6284. // dst cannot be transposed or permuted
  6285. GGML_ASSERT(nb0 == sizeof(float));
  6286. GGML_ASSERT(nb0 <= nb1);
  6287. GGML_ASSERT(nb1 <= nb2);
  6288. GGML_ASSERT(nb2 <= nb3);
  6289. if (params->type == GGML_TASK_INIT) {
  6290. return;
  6291. }
  6292. if (params->type == GGML_TASK_FINALIZE) {
  6293. return;
  6294. }
  6295. // parallelize by q rows using ggml_vec_dot_f32
  6296. // total rows in q
  6297. const int nr = neq1*neq2*neq3;
  6298. // rows per thread
  6299. const int dr = (nr + nth - 1)/nth;
  6300. // row range for this thread
  6301. const int ir0 = dr*ith;
  6302. const int ir1 = MIN(ir0 + dr, nr);
  6303. const float scale = 1.0f/sqrtf(D);
  6304. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6305. for (int ir = ir0; ir < ir1; ++ir) {
  6306. // q indices
  6307. const int iq3 = ir/(neq2*neq1);
  6308. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6309. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6310. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6311. for (int i = M; i < Mup; ++i) {
  6312. S[i] = -INFINITY;
  6313. }
  6314. for (int ic = 0; ic < nek1; ++ic) {
  6315. // k indices
  6316. const int ik3 = iq3;
  6317. const int ik2 = iq2;
  6318. const int ik1 = ic;
  6319. // S indices
  6320. const int i1 = ik1;
  6321. ggml_vec_dot_f32(neq0,
  6322. S + i1,
  6323. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6324. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6325. }
  6326. // scale
  6327. ggml_vec_scale_f32(nek1, S, scale);
  6328. if (masked) {
  6329. for (int i = P; i < M; i++) {
  6330. if (i > P + iq1) {
  6331. S[i] = -INFINITY;
  6332. }
  6333. }
  6334. }
  6335. // softmax
  6336. {
  6337. float max = -INFINITY;
  6338. ggml_vec_max_f32(M, &max, S);
  6339. ggml_float sum = 0.0;
  6340. {
  6341. #ifdef GGML_SOFT_MAX_ACCELERATE
  6342. max = -max;
  6343. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6344. vvexpf(S, S, &Mup);
  6345. ggml_vec_sum_f32(Mup, &sum, S);
  6346. #else
  6347. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6348. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6349. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6350. float * SS = S + i;
  6351. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6352. if (SS[j] == -INFINITY) {
  6353. SS[j] = 0.0f;
  6354. } else {
  6355. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6356. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6357. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6358. sump[j] += (ggml_float)val;
  6359. SS[j] = val;
  6360. }
  6361. }
  6362. }
  6363. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6364. sum += sump[i];
  6365. }
  6366. #endif
  6367. }
  6368. assert(sum > 0.0);
  6369. sum = 1.0/sum;
  6370. ggml_vec_scale_f32(M, S, sum);
  6371. #ifndef NDEBUG
  6372. for (int i = 0; i < M; ++i) {
  6373. assert(!isnan(S[i]));
  6374. assert(!isinf(S[i]));
  6375. }
  6376. #endif
  6377. }
  6378. for (int ic = 0; ic < nev1; ++ic) {
  6379. // dst indices
  6380. const int i1 = iq1;
  6381. const int i2 = iq2;
  6382. const int i3 = iq3;
  6383. ggml_vec_dot_f32(nek1,
  6384. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6385. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6386. S);
  6387. }
  6388. }
  6389. }
  6390. static void ggml_compute_forward_flash_attn_f16(
  6391. const struct ggml_compute_params * params,
  6392. const struct ggml_tensor * q,
  6393. const struct ggml_tensor * k,
  6394. const struct ggml_tensor * v,
  6395. const bool masked,
  6396. struct ggml_tensor * dst) {
  6397. int64_t t0 = ggml_perf_time_us();
  6398. UNUSED(t0);
  6399. const int neq0 = q->ne[0];
  6400. const int neq1 = q->ne[1];
  6401. const int neq2 = q->ne[2];
  6402. const int neq3 = q->ne[3];
  6403. const int nek0 = k->ne[0];
  6404. const int nek1 = k->ne[1];
  6405. //const int nek2 = k->ne[2];
  6406. //const int nek3 = k->ne[3];
  6407. //const int nev0 = v->ne[0];
  6408. const int nev1 = v->ne[1];
  6409. //const int nev2 = v->ne[2];
  6410. //const int nev3 = v->ne[3];
  6411. const int ne0 = dst->ne[0];
  6412. const int ne1 = dst->ne[1];
  6413. //const int ne2 = dst->ne[2];
  6414. //const int ne3 = dst->ne[3];
  6415. const int nbk0 = k->nb[0];
  6416. const int nbk1 = k->nb[1];
  6417. const int nbk2 = k->nb[2];
  6418. const int nbk3 = k->nb[3];
  6419. const int nbq0 = q->nb[0];
  6420. const int nbq1 = q->nb[1];
  6421. const int nbq2 = q->nb[2];
  6422. const int nbq3 = q->nb[3];
  6423. const int nbv0 = v->nb[0];
  6424. const int nbv1 = v->nb[1];
  6425. const int nbv2 = v->nb[2];
  6426. const int nbv3 = v->nb[3];
  6427. const int nb0 = dst->nb[0];
  6428. const int nb1 = dst->nb[1];
  6429. const int nb2 = dst->nb[2];
  6430. const int nb3 = dst->nb[3];
  6431. const int ith = params->ith;
  6432. const int nth = params->nth;
  6433. const int D = neq0;
  6434. const int N = neq1;
  6435. const int P = nek1 - N;
  6436. const int M = P + N;
  6437. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6438. GGML_ASSERT(ne0 == D);
  6439. GGML_ASSERT(ne1 == N);
  6440. GGML_ASSERT(P >= 0);
  6441. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6442. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6443. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6444. GGML_ASSERT(neq0 == D);
  6445. GGML_ASSERT(nek0 == D);
  6446. GGML_ASSERT(nev1 == D);
  6447. GGML_ASSERT(neq1 == N);
  6448. GGML_ASSERT(nek1 == N + P);
  6449. GGML_ASSERT(nev1 == D);
  6450. // dst cannot be transposed or permuted
  6451. GGML_ASSERT(nb0 == sizeof(float));
  6452. GGML_ASSERT(nb0 <= nb1);
  6453. GGML_ASSERT(nb1 <= nb2);
  6454. GGML_ASSERT(nb2 <= nb3);
  6455. if (params->type == GGML_TASK_INIT) {
  6456. return;
  6457. }
  6458. if (params->type == GGML_TASK_FINALIZE) {
  6459. return;
  6460. }
  6461. // parallelize by q rows using ggml_vec_dot_f32
  6462. // total rows in q
  6463. const int nr = neq1*neq2*neq3;
  6464. // rows per thread
  6465. const int dr = (nr + nth - 1)/nth;
  6466. // row range for this thread
  6467. const int ir0 = dr*ith;
  6468. const int ir1 = MIN(ir0 + dr, nr);
  6469. const float scale = 1.0f/sqrtf(D);
  6470. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6471. for (int ir = ir0; ir < ir1; ++ir) {
  6472. // q indices
  6473. const int iq3 = ir/(neq2*neq1);
  6474. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6475. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6476. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6477. for (int i = M; i < Mup; ++i) {
  6478. S[i] = -INFINITY;
  6479. }
  6480. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6481. for (int ic = 0; ic < nek1; ++ic) {
  6482. // k indices
  6483. const int ik3 = iq3;
  6484. const int ik2 = iq2;
  6485. const int ik1 = ic;
  6486. // S indices
  6487. const int i1 = ik1;
  6488. ggml_vec_dot_f16(neq0,
  6489. S + i1,
  6490. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6491. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6492. }
  6493. } else {
  6494. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6495. // k indices
  6496. const int ik3 = iq3;
  6497. const int ik2 = iq2;
  6498. const int ik1 = ic;
  6499. // S indices
  6500. const int i1 = ik1;
  6501. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6502. S + i1,
  6503. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6504. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6505. }
  6506. }
  6507. // scale
  6508. ggml_vec_scale_f32(nek1, S, scale);
  6509. if (masked) {
  6510. for (int i = P; i < M; i++) {
  6511. if (i > P + iq1) {
  6512. S[i] = -INFINITY;
  6513. }
  6514. }
  6515. }
  6516. // softmax
  6517. {
  6518. float max = -INFINITY;
  6519. ggml_vec_max_f32(M, &max, S);
  6520. ggml_float sum = 0.0;
  6521. {
  6522. #ifdef GGML_SOFT_MAX_ACCELERATE
  6523. max = -max;
  6524. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6525. vvexpf(S, S, &Mup);
  6526. ggml_vec_sum_f32(Mup, &sum, S);
  6527. #else
  6528. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6529. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6530. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6531. float * SS = S + i;
  6532. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6533. if (SS[j] == -INFINITY) {
  6534. SS[j] = 0.0f;
  6535. } else {
  6536. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6537. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6538. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6539. sump[j] += (ggml_float)val;
  6540. SS[j] = val;
  6541. }
  6542. }
  6543. }
  6544. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6545. sum += sump[i];
  6546. }
  6547. #endif
  6548. }
  6549. assert(sum > 0.0);
  6550. sum = 1.0/sum;
  6551. ggml_vec_scale_f32(M, S, sum);
  6552. #ifndef NDEBUG
  6553. for (int i = 0; i < M; ++i) {
  6554. assert(!isnan(S[i]));
  6555. assert(!isinf(S[i]));
  6556. }
  6557. #endif
  6558. }
  6559. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6560. for (int i = 0; i < M; i++) {
  6561. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6562. }
  6563. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6564. for (int ic = 0; ic < nev1; ++ic) {
  6565. // dst indices
  6566. const int i1 = iq1;
  6567. const int i2 = iq2;
  6568. const int i3 = iq3;
  6569. ggml_vec_dot_f16(nek1,
  6570. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6571. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6572. S16);
  6573. }
  6574. } else {
  6575. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6576. // dst indices
  6577. const int i1 = iq1;
  6578. const int i2 = iq2;
  6579. const int i3 = iq3;
  6580. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6581. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6582. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6583. S16);
  6584. }
  6585. }
  6586. }
  6587. }
  6588. static void ggml_compute_forward_flash_attn(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * q,
  6591. const struct ggml_tensor * k,
  6592. const struct ggml_tensor * v,
  6593. const bool masked,
  6594. struct ggml_tensor * dst) {
  6595. switch (q->type) {
  6596. case GGML_TYPE_F16:
  6597. {
  6598. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6599. } break;
  6600. case GGML_TYPE_F32:
  6601. {
  6602. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6603. } break;
  6604. case GGML_TYPE_Q4_0:
  6605. case GGML_TYPE_Q4_1:
  6606. case GGML_TYPE_I8:
  6607. case GGML_TYPE_I16:
  6608. case GGML_TYPE_I32:
  6609. case GGML_TYPE_COUNT:
  6610. {
  6611. GGML_ASSERT(false);
  6612. } break;
  6613. }
  6614. }
  6615. // ggml_compute_forward_flash_ff
  6616. static void ggml_compute_forward_flash_ff_f16(
  6617. const struct ggml_compute_params * params,
  6618. const struct ggml_tensor * a, // F16
  6619. const struct ggml_tensor * b0, // F16 fc_w
  6620. const struct ggml_tensor * b1, // F32 fc_b
  6621. const struct ggml_tensor * c0, // F16 proj_w
  6622. const struct ggml_tensor * c1, // F32 proj_b
  6623. struct ggml_tensor * dst) {
  6624. int64_t t0 = ggml_perf_time_us();
  6625. UNUSED(t0);
  6626. const int nea0 = a->ne[0];
  6627. const int nea1 = a->ne[1];
  6628. const int nea2 = a->ne[2];
  6629. const int nea3 = a->ne[3];
  6630. const int neb00 = b0->ne[0];
  6631. const int neb01 = b0->ne[1];
  6632. //const int neb02 = b0->ne[2];
  6633. //const int neb03 = b0->ne[3];
  6634. const int neb10 = b1->ne[0];
  6635. const int neb11 = b1->ne[1];
  6636. //const int neb12 = b1->ne[2];
  6637. //const int neb13 = b1->ne[3];
  6638. const int nec00 = c0->ne[0];
  6639. const int nec01 = c0->ne[1];
  6640. //const int nec02 = c0->ne[2];
  6641. //const int nec03 = c0->ne[3];
  6642. const int nec10 = c1->ne[0];
  6643. const int nec11 = c1->ne[1];
  6644. //const int nec12 = c1->ne[2];
  6645. //const int nec13 = c1->ne[3];
  6646. const int ne0 = dst->ne[0];
  6647. const int ne1 = dst->ne[1];
  6648. const int ne2 = dst->ne[2];
  6649. //const int ne3 = dst->ne[3];
  6650. const int nba0 = a->nb[0];
  6651. const int nba1 = a->nb[1];
  6652. const int nba2 = a->nb[2];
  6653. const int nba3 = a->nb[3];
  6654. const int nbb00 = b0->nb[0];
  6655. const int nbb01 = b0->nb[1];
  6656. const int nbb02 = b0->nb[2];
  6657. const int nbb03 = b0->nb[3];
  6658. const int nbb10 = b1->nb[0];
  6659. //const int nbb11 = b1->nb[1];
  6660. //const int nbb12 = b1->nb[2];
  6661. //const int nbb13 = b1->nb[3];
  6662. const int nbc00 = c0->nb[0];
  6663. const int nbc01 = c0->nb[1];
  6664. const int nbc02 = c0->nb[2];
  6665. const int nbc03 = c0->nb[3];
  6666. const int nbc10 = c1->nb[0];
  6667. //const int nbc11 = c1->nb[1];
  6668. //const int nbc12 = c1->nb[2];
  6669. //const int nbc13 = c1->nb[3];
  6670. const int nb0 = dst->nb[0];
  6671. const int nb1 = dst->nb[1];
  6672. const int nb2 = dst->nb[2];
  6673. const int nb3 = dst->nb[3];
  6674. const int ith = params->ith;
  6675. const int nth = params->nth;
  6676. const int D = nea0;
  6677. //const int N = nea1;
  6678. const int M = neb01;
  6679. GGML_ASSERT(ne0 == nea0);
  6680. GGML_ASSERT(ne1 == nea1);
  6681. GGML_ASSERT(ne2 == nea2);
  6682. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6683. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6684. GGML_ASSERT(nbb10 == sizeof(float));
  6685. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6686. GGML_ASSERT(nbc10 == sizeof(float));
  6687. GGML_ASSERT(neb00 == D);
  6688. GGML_ASSERT(neb01 == M);
  6689. GGML_ASSERT(neb10 == M);
  6690. GGML_ASSERT(neb11 == 1);
  6691. GGML_ASSERT(nec00 == M);
  6692. GGML_ASSERT(nec01 == D);
  6693. GGML_ASSERT(nec10 == D);
  6694. GGML_ASSERT(nec11 == 1);
  6695. // dst cannot be transposed or permuted
  6696. GGML_ASSERT(nb0 == sizeof(float));
  6697. GGML_ASSERT(nb0 <= nb1);
  6698. GGML_ASSERT(nb1 <= nb2);
  6699. GGML_ASSERT(nb2 <= nb3);
  6700. if (params->type == GGML_TASK_INIT) {
  6701. return;
  6702. }
  6703. if (params->type == GGML_TASK_FINALIZE) {
  6704. return;
  6705. }
  6706. // parallelize by a rows using ggml_vec_dot_f32
  6707. // total rows in a
  6708. const int nr = nea1*nea2*nea3;
  6709. // rows per thread
  6710. const int dr = (nr + nth - 1)/nth;
  6711. // row range for this thread
  6712. const int ir0 = dr*ith;
  6713. const int ir1 = MIN(ir0 + dr, nr);
  6714. for (int ir = ir0; ir < ir1; ++ir) {
  6715. // a indices
  6716. const int ia3 = ir/(nea2*nea1);
  6717. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6718. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6719. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6720. for (int ic = 0; ic < neb01; ++ic) {
  6721. // b0 indices
  6722. const int ib03 = ia3;
  6723. const int ib02 = ia2;
  6724. const int ib01 = ic;
  6725. // S indices
  6726. const int i1 = ib01;
  6727. ggml_vec_dot_f16(nea0,
  6728. S + i1,
  6729. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6730. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6731. }
  6732. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6733. //ggml_vec_gelu_f32(neb01, S, S);
  6734. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6735. for (int i = 0; i < M; i++) {
  6736. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6737. }
  6738. ggml_vec_gelu_f16(neb01, S16, S16);
  6739. {
  6740. // dst indices
  6741. const int i1 = ia1;
  6742. const int i2 = ia2;
  6743. const int i3 = ia3;
  6744. for (int ic = 0; ic < nec01; ++ic) {
  6745. ggml_vec_dot_f16(neb01,
  6746. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6747. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6748. S16);
  6749. }
  6750. ggml_vec_add_f32(nec01,
  6751. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6752. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6753. (float *) c1->data);
  6754. }
  6755. }
  6756. }
  6757. static void ggml_compute_forward_flash_ff(
  6758. const struct ggml_compute_params * params,
  6759. const struct ggml_tensor * a,
  6760. const struct ggml_tensor * b0,
  6761. const struct ggml_tensor * b1,
  6762. const struct ggml_tensor * c0,
  6763. const struct ggml_tensor * c1,
  6764. struct ggml_tensor * dst) {
  6765. switch (b0->type) {
  6766. case GGML_TYPE_F16:
  6767. {
  6768. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6769. } break;
  6770. case GGML_TYPE_F32:
  6771. {
  6772. GGML_ASSERT(false); // TODO
  6773. } break;
  6774. case GGML_TYPE_Q4_0:
  6775. case GGML_TYPE_Q4_1:
  6776. case GGML_TYPE_I8:
  6777. case GGML_TYPE_I16:
  6778. case GGML_TYPE_I32:
  6779. case GGML_TYPE_COUNT:
  6780. {
  6781. GGML_ASSERT(false);
  6782. } break;
  6783. }
  6784. }
  6785. /////////////////////////////////
  6786. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6787. GGML_ASSERT(params);
  6788. switch (tensor->op) {
  6789. case GGML_OP_DUP:
  6790. {
  6791. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6792. } break;
  6793. case GGML_OP_ADD:
  6794. {
  6795. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6796. } break;
  6797. case GGML_OP_SUB:
  6798. {
  6799. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6800. } break;
  6801. case GGML_OP_MUL:
  6802. {
  6803. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6804. } break;
  6805. case GGML_OP_DIV:
  6806. {
  6807. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6808. } break;
  6809. case GGML_OP_SQR:
  6810. {
  6811. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6812. } break;
  6813. case GGML_OP_SQRT:
  6814. {
  6815. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6816. } break;
  6817. case GGML_OP_SUM:
  6818. {
  6819. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6820. } break;
  6821. case GGML_OP_MEAN:
  6822. {
  6823. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6824. } break;
  6825. case GGML_OP_REPEAT:
  6826. {
  6827. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6828. } break;
  6829. case GGML_OP_ABS:
  6830. {
  6831. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6832. } break;
  6833. case GGML_OP_SGN:
  6834. {
  6835. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6836. } break;
  6837. case GGML_OP_NEG:
  6838. {
  6839. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6840. } break;
  6841. case GGML_OP_STEP:
  6842. {
  6843. ggml_compute_forward_step(params, tensor->src0, tensor);
  6844. } break;
  6845. case GGML_OP_RELU:
  6846. {
  6847. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6848. } break;
  6849. case GGML_OP_GELU:
  6850. {
  6851. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6852. } break;
  6853. case GGML_OP_SILU:
  6854. {
  6855. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6856. } break;
  6857. case GGML_OP_NORM:
  6858. {
  6859. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6860. } break;
  6861. case GGML_OP_RMS_NORM:
  6862. {
  6863. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6864. } break;
  6865. case GGML_OP_MUL_MAT:
  6866. {
  6867. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6868. } break;
  6869. case GGML_OP_SCALE:
  6870. {
  6871. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6872. } break;
  6873. case GGML_OP_CPY:
  6874. {
  6875. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6876. } break;
  6877. case GGML_OP_RESHAPE:
  6878. {
  6879. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6880. } break;
  6881. case GGML_OP_VIEW:
  6882. {
  6883. ggml_compute_forward_view(params, tensor->src0);
  6884. } break;
  6885. case GGML_OP_PERMUTE:
  6886. {
  6887. ggml_compute_forward_permute(params, tensor->src0);
  6888. } break;
  6889. case GGML_OP_TRANSPOSE:
  6890. {
  6891. ggml_compute_forward_transpose(params, tensor->src0);
  6892. } break;
  6893. case GGML_OP_GET_ROWS:
  6894. {
  6895. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6896. } break;
  6897. case GGML_OP_DIAG_MASK_INF:
  6898. {
  6899. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6900. } break;
  6901. case GGML_OP_SOFT_MAX:
  6902. {
  6903. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6904. } break;
  6905. case GGML_OP_ROPE:
  6906. {
  6907. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6908. } break;
  6909. case GGML_OP_CONV_1D_1S:
  6910. {
  6911. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6912. } break;
  6913. case GGML_OP_CONV_1D_2S:
  6914. {
  6915. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6916. } break;
  6917. case GGML_OP_FLASH_ATTN:
  6918. {
  6919. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6920. GGML_ASSERT(t == 0 || t == 1);
  6921. bool masked = t != 0;
  6922. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6923. } break;
  6924. case GGML_OP_FLASH_FF:
  6925. {
  6926. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6927. } break;
  6928. case GGML_OP_NONE:
  6929. {
  6930. // nop
  6931. } break;
  6932. case GGML_OP_COUNT:
  6933. {
  6934. GGML_ASSERT(false);
  6935. } break;
  6936. }
  6937. }
  6938. ////////////////////////////////////////////////////////////////////////////////
  6939. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6940. struct ggml_tensor * src0 = tensor->src0;
  6941. struct ggml_tensor * src1 = tensor->src1;
  6942. switch (tensor->op) {
  6943. case GGML_OP_DUP:
  6944. {
  6945. if (src0->grad) {
  6946. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6947. }
  6948. } break;
  6949. case GGML_OP_ADD:
  6950. {
  6951. if (src0->grad) {
  6952. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6953. }
  6954. if (src1->grad) {
  6955. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6956. }
  6957. } break;
  6958. case GGML_OP_SUB:
  6959. {
  6960. if (src0->grad) {
  6961. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6962. }
  6963. if (src1->grad) {
  6964. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6965. }
  6966. } break;
  6967. case GGML_OP_MUL:
  6968. {
  6969. if (src0->grad) {
  6970. src0->grad =
  6971. ggml_add_impl(ctx,
  6972. src0->grad,
  6973. ggml_mul(ctx, src1, tensor->grad),
  6974. inplace);
  6975. }
  6976. if (src1->grad) {
  6977. src1->grad =
  6978. ggml_add_impl(ctx,
  6979. src1->grad,
  6980. ggml_mul(ctx, src0, tensor->grad),
  6981. inplace);
  6982. }
  6983. } break;
  6984. case GGML_OP_DIV:
  6985. {
  6986. if (src0->grad) {
  6987. src0->grad =
  6988. ggml_add_impl(ctx,
  6989. src0->grad,
  6990. ggml_div(ctx, tensor->grad, src1),
  6991. inplace);
  6992. }
  6993. if (src1->grad) {
  6994. src1->grad =
  6995. ggml_sub_impl(ctx,
  6996. src1->grad,
  6997. ggml_mul(ctx,
  6998. tensor->grad,
  6999. ggml_div(ctx, tensor, src1)),
  7000. inplace);
  7001. }
  7002. } break;
  7003. case GGML_OP_SQR:
  7004. {
  7005. if (src0->grad) {
  7006. src0->grad =
  7007. ggml_add_impl(ctx,
  7008. src0->grad,
  7009. ggml_mul(ctx,
  7010. ggml_mul(ctx, src0, tensor->grad),
  7011. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7012. inplace);
  7013. }
  7014. } break;
  7015. case GGML_OP_SQRT:
  7016. {
  7017. if (src0->grad) {
  7018. src0->grad =
  7019. ggml_add_impl(ctx,
  7020. src0->grad,
  7021. ggml_div(ctx,
  7022. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7023. tensor),
  7024. inplace);
  7025. }
  7026. } break;
  7027. case GGML_OP_SUM:
  7028. {
  7029. if (src0->grad) {
  7030. src0->grad =
  7031. ggml_add_impl(ctx,
  7032. src0->grad,
  7033. ggml_repeat(ctx, tensor->grad, src0->grad),
  7034. inplace);
  7035. }
  7036. } break;
  7037. case GGML_OP_MEAN:
  7038. {
  7039. GGML_ASSERT(false); // TODO: implement
  7040. } break;
  7041. case GGML_OP_REPEAT:
  7042. {
  7043. if (src0->grad) {
  7044. src0->grad =
  7045. ggml_add_impl(ctx,
  7046. src0->grad,
  7047. ggml_sum(ctx, tensor->grad),
  7048. inplace);
  7049. }
  7050. } break;
  7051. case GGML_OP_ABS:
  7052. {
  7053. if (src0->grad) {
  7054. src0->grad =
  7055. ggml_add_impl(ctx,
  7056. src0->grad,
  7057. ggml_mul(ctx,
  7058. ggml_sgn(ctx, src0),
  7059. tensor->grad),
  7060. inplace);
  7061. }
  7062. } break;
  7063. case GGML_OP_SGN:
  7064. {
  7065. if (src0->grad) {
  7066. // noop
  7067. }
  7068. } break;
  7069. case GGML_OP_NEG:
  7070. {
  7071. if (src0->grad) {
  7072. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7073. }
  7074. } break;
  7075. case GGML_OP_STEP:
  7076. {
  7077. if (src0->grad) {
  7078. // noop
  7079. }
  7080. } break;
  7081. case GGML_OP_RELU:
  7082. {
  7083. if (src0->grad) {
  7084. src0->grad = ggml_sub_impl(ctx,
  7085. src0->grad,
  7086. ggml_mul(ctx,
  7087. ggml_step(ctx, src0),
  7088. tensor->grad),
  7089. inplace);
  7090. }
  7091. } break;
  7092. case GGML_OP_GELU:
  7093. {
  7094. GGML_ASSERT(false); // TODO: not implemented
  7095. } break;
  7096. case GGML_OP_SILU:
  7097. {
  7098. GGML_ASSERT(false); // TODO: not implemented
  7099. } break;
  7100. case GGML_OP_NORM:
  7101. {
  7102. GGML_ASSERT(false); // TODO: not implemented
  7103. } break;
  7104. case GGML_OP_RMS_NORM:
  7105. {
  7106. GGML_ASSERT(false); // TODO: not implemented
  7107. } break;
  7108. case GGML_OP_MUL_MAT:
  7109. {
  7110. if (src0->grad) {
  7111. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7112. GGML_ASSERT(false);
  7113. }
  7114. if (src1->grad) {
  7115. src1->grad =
  7116. ggml_add_impl(ctx,
  7117. src1->grad,
  7118. // TODO: fix transpose, the node will break the graph connections
  7119. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7120. inplace);
  7121. }
  7122. } break;
  7123. case GGML_OP_SCALE:
  7124. {
  7125. GGML_ASSERT(false); // TODO: not implemented
  7126. } break;
  7127. case GGML_OP_CPY:
  7128. {
  7129. GGML_ASSERT(false); // TODO: not implemented
  7130. } break;
  7131. case GGML_OP_RESHAPE:
  7132. {
  7133. GGML_ASSERT(false); // TODO: not implemented
  7134. } break;
  7135. case GGML_OP_VIEW:
  7136. {
  7137. GGML_ASSERT(false); // not supported
  7138. } break;
  7139. case GGML_OP_PERMUTE:
  7140. {
  7141. GGML_ASSERT(false); // TODO: not implemented
  7142. } break;
  7143. case GGML_OP_TRANSPOSE:
  7144. {
  7145. GGML_ASSERT(false); // TODO: not implemented
  7146. } break;
  7147. case GGML_OP_GET_ROWS:
  7148. {
  7149. GGML_ASSERT(false); // TODO: not implemented
  7150. } break;
  7151. case GGML_OP_DIAG_MASK_INF:
  7152. {
  7153. GGML_ASSERT(false); // TODO: not implemented
  7154. } break;
  7155. case GGML_OP_SOFT_MAX:
  7156. {
  7157. GGML_ASSERT(false); // TODO: not implemented
  7158. } break;
  7159. case GGML_OP_ROPE:
  7160. {
  7161. GGML_ASSERT(false); // TODO: not implemented
  7162. } break;
  7163. case GGML_OP_CONV_1D_1S:
  7164. {
  7165. GGML_ASSERT(false); // TODO: not implemented
  7166. } break;
  7167. case GGML_OP_CONV_1D_2S:
  7168. {
  7169. GGML_ASSERT(false); // TODO: not implemented
  7170. } break;
  7171. case GGML_OP_FLASH_ATTN:
  7172. {
  7173. GGML_ASSERT(false); // not supported
  7174. } break;
  7175. case GGML_OP_FLASH_FF:
  7176. {
  7177. GGML_ASSERT(false); // not supported
  7178. } break;
  7179. case GGML_OP_NONE:
  7180. {
  7181. // nop
  7182. } break;
  7183. case GGML_OP_COUNT:
  7184. {
  7185. GGML_ASSERT(false);
  7186. } break;
  7187. }
  7188. }
  7189. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7190. if (node->grad == NULL) {
  7191. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7192. // it can also happen during forward pass, if the user performs computations with constants
  7193. if (node->op != GGML_OP_NONE) {
  7194. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7195. }
  7196. }
  7197. // check if already visited
  7198. for (int i = 0; i < cgraph->n_nodes; i++) {
  7199. if (cgraph->nodes[i] == node) {
  7200. return;
  7201. }
  7202. }
  7203. for (int i = 0; i < cgraph->n_leafs; i++) {
  7204. if (cgraph->leafs[i] == node) {
  7205. return;
  7206. }
  7207. }
  7208. if (node->src0) {
  7209. ggml_visit_parents(cgraph, node->src0);
  7210. }
  7211. if (node->src1) {
  7212. ggml_visit_parents(cgraph, node->src1);
  7213. }
  7214. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7215. if (node->opt[i]) {
  7216. ggml_visit_parents(cgraph, node->opt[i]);
  7217. }
  7218. }
  7219. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7220. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7221. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7222. cgraph->leafs[cgraph->n_leafs] = node;
  7223. cgraph->n_leafs++;
  7224. } else {
  7225. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7226. cgraph->nodes[cgraph->n_nodes] = node;
  7227. cgraph->grads[cgraph->n_nodes] = node->grad;
  7228. cgraph->n_nodes++;
  7229. }
  7230. }
  7231. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7232. if (!expand) {
  7233. cgraph->n_nodes = 0;
  7234. cgraph->n_leafs = 0;
  7235. }
  7236. const int n0 = cgraph->n_nodes;
  7237. UNUSED(n0);
  7238. ggml_visit_parents(cgraph, tensor);
  7239. const int n_new = cgraph->n_nodes - n0;
  7240. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7241. if (n_new > 0) {
  7242. // the last added node should always be starting point
  7243. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7244. }
  7245. }
  7246. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7247. ggml_build_forward_impl(cgraph, tensor, true);
  7248. }
  7249. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7250. struct ggml_cgraph result = {
  7251. /*.n_nodes =*/ 0,
  7252. /*.n_leafs =*/ 0,
  7253. /*.n_threads =*/ 0,
  7254. /*.work_size =*/ 0,
  7255. /*.work =*/ NULL,
  7256. /*.nodes =*/ { NULL },
  7257. /*.grads =*/ { NULL },
  7258. /*.leafs =*/ { NULL },
  7259. /*.perf_runs =*/ 0,
  7260. /*.perf_cycles =*/ 0,
  7261. /*.perf_time_us =*/ 0,
  7262. };
  7263. ggml_build_forward_impl(&result, tensor, false);
  7264. return result;
  7265. }
  7266. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7267. struct ggml_cgraph result = *gf;
  7268. GGML_ASSERT(gf->n_nodes > 0);
  7269. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7270. if (keep) {
  7271. for (int i = 0; i < gf->n_nodes; i++) {
  7272. struct ggml_tensor * node = gf->nodes[i];
  7273. if (node->grad) {
  7274. node->grad = ggml_dup_tensor(ctx, node);
  7275. gf->grads[i] = node->grad;
  7276. }
  7277. }
  7278. }
  7279. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7280. struct ggml_tensor * node = gf->nodes[i];
  7281. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7282. if (node->grad) {
  7283. ggml_compute_backward(ctx, node, keep);
  7284. }
  7285. }
  7286. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7287. struct ggml_tensor * node = gf->nodes[i];
  7288. if (node->is_param) {
  7289. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7290. ggml_build_forward_impl(&result, node->grad, true);
  7291. }
  7292. }
  7293. return result;
  7294. }
  7295. //
  7296. // thread data
  7297. //
  7298. // synchronization is done via busy loops
  7299. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7300. //
  7301. #ifdef __APPLE__
  7302. //#include <os/lock.h>
  7303. //
  7304. //typedef os_unfair_lock ggml_lock_t;
  7305. //
  7306. //#define ggml_lock_init(x) UNUSED(x)
  7307. //#define ggml_lock_destroy(x) UNUSED(x)
  7308. //#define ggml_lock_lock os_unfair_lock_lock
  7309. //#define ggml_lock_unlock os_unfair_lock_unlock
  7310. //
  7311. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7312. typedef int ggml_lock_t;
  7313. #define ggml_lock_init(x) UNUSED(x)
  7314. #define ggml_lock_destroy(x) UNUSED(x)
  7315. #define ggml_lock_lock(x) UNUSED(x)
  7316. #define ggml_lock_unlock(x) UNUSED(x)
  7317. #define GGML_LOCK_INITIALIZER 0
  7318. typedef pthread_t ggml_thread_t;
  7319. #define ggml_thread_create pthread_create
  7320. #define ggml_thread_join pthread_join
  7321. #else
  7322. //typedef pthread_spinlock_t ggml_lock_t;
  7323. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7324. //#define ggml_lock_destroy pthread_spin_destroy
  7325. //#define ggml_lock_lock pthread_spin_lock
  7326. //#define ggml_lock_unlock pthread_spin_unlock
  7327. typedef int ggml_lock_t;
  7328. #define ggml_lock_init(x) UNUSED(x)
  7329. #define ggml_lock_destroy(x) UNUSED(x)
  7330. #define ggml_lock_lock(x) UNUSED(x)
  7331. #define ggml_lock_unlock(x) UNUSED(x)
  7332. #define GGML_LOCK_INITIALIZER 0
  7333. typedef pthread_t ggml_thread_t;
  7334. #define ggml_thread_create pthread_create
  7335. #define ggml_thread_join pthread_join
  7336. #endif
  7337. struct ggml_compute_state_shared {
  7338. ggml_lock_t spin;
  7339. int n_threads;
  7340. // synchronization primitives
  7341. atomic_int n_ready;
  7342. atomic_bool has_work;
  7343. atomic_bool stop; // stop all threads
  7344. };
  7345. struct ggml_compute_state {
  7346. ggml_thread_t thrd;
  7347. struct ggml_compute_params params;
  7348. struct ggml_tensor * node;
  7349. struct ggml_compute_state_shared * shared;
  7350. };
  7351. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7352. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7353. const int n_threads = state->shared->n_threads;
  7354. while (true) {
  7355. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7356. atomic_store(&state->shared->has_work, false);
  7357. } else {
  7358. while (atomic_load(&state->shared->has_work)) {
  7359. if (atomic_load(&state->shared->stop)) {
  7360. return 0;
  7361. }
  7362. ggml_lock_lock (&state->shared->spin);
  7363. ggml_lock_unlock(&state->shared->spin);
  7364. }
  7365. }
  7366. atomic_fetch_sub(&state->shared->n_ready, 1);
  7367. // wait for work
  7368. while (!atomic_load(&state->shared->has_work)) {
  7369. if (atomic_load(&state->shared->stop)) {
  7370. return 0;
  7371. }
  7372. ggml_lock_lock (&state->shared->spin);
  7373. ggml_lock_unlock(&state->shared->spin);
  7374. }
  7375. // check if we should stop
  7376. if (atomic_load(&state->shared->stop)) {
  7377. break;
  7378. }
  7379. if (state->node) {
  7380. if (state->params.ith < state->params.nth) {
  7381. ggml_compute_forward(&state->params, state->node);
  7382. }
  7383. state->node = NULL;
  7384. } else {
  7385. break;
  7386. }
  7387. }
  7388. return 0;
  7389. }
  7390. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7391. const int n_threads = cgraph->n_threads;
  7392. struct ggml_compute_state_shared state_shared = {
  7393. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7394. /*.n_threads =*/ n_threads,
  7395. /*.n_ready =*/ 0,
  7396. /*.has_work =*/ false,
  7397. /*.stop =*/ false,
  7398. };
  7399. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7400. // create thread pool
  7401. if (n_threads > 1) {
  7402. ggml_lock_init(&state_shared.spin);
  7403. atomic_store(&state_shared.has_work, true);
  7404. for (int j = 0; j < n_threads - 1; j++) {
  7405. workers[j] = (struct ggml_compute_state) {
  7406. .thrd = 0,
  7407. .params = {
  7408. .type = GGML_TASK_COMPUTE,
  7409. .ith = j + 1,
  7410. .nth = n_threads,
  7411. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7412. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7413. },
  7414. .node = NULL,
  7415. .shared = &state_shared,
  7416. };
  7417. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7418. GGML_ASSERT(rc == 0);
  7419. UNUSED(rc);
  7420. }
  7421. }
  7422. // initialize tasks + work buffer
  7423. {
  7424. size_t work_size = 0;
  7425. // thread scheduling for the different operations
  7426. for (int i = 0; i < cgraph->n_nodes; i++) {
  7427. struct ggml_tensor * node = cgraph->nodes[i];
  7428. switch (node->op) {
  7429. case GGML_OP_DUP:
  7430. {
  7431. node->n_tasks = 1;
  7432. } break;
  7433. case GGML_OP_ADD:
  7434. {
  7435. node->n_tasks = n_threads;
  7436. } break;
  7437. case GGML_OP_SUB:
  7438. case GGML_OP_MUL:
  7439. case GGML_OP_DIV:
  7440. case GGML_OP_SQR:
  7441. case GGML_OP_SQRT:
  7442. case GGML_OP_SUM:
  7443. case GGML_OP_MEAN:
  7444. case GGML_OP_REPEAT:
  7445. case GGML_OP_ABS:
  7446. case GGML_OP_SGN:
  7447. case GGML_OP_NEG:
  7448. case GGML_OP_STEP:
  7449. case GGML_OP_RELU:
  7450. {
  7451. node->n_tasks = 1;
  7452. } break;
  7453. case GGML_OP_GELU:
  7454. {
  7455. node->n_tasks = n_threads;
  7456. } break;
  7457. case GGML_OP_SILU:
  7458. {
  7459. node->n_tasks = n_threads;
  7460. } break;
  7461. case GGML_OP_NORM:
  7462. case GGML_OP_RMS_NORM:
  7463. {
  7464. node->n_tasks = n_threads;
  7465. } break;
  7466. case GGML_OP_MUL_MAT:
  7467. {
  7468. node->n_tasks = n_threads;
  7469. // TODO: use different scheduling for different matrix sizes
  7470. //const int nr0 = ggml_nrows(node->src0);
  7471. //const int nr1 = ggml_nrows(node->src1);
  7472. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7473. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7474. size_t cur = 0;
  7475. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7476. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7477. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7478. node->n_tasks = 1; // TODO: this actually is doing nothing
  7479. // the threads are still spinning
  7480. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7481. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7482. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7483. //printf("cur = %zu\n", cur);
  7484. } else {
  7485. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7486. }
  7487. #else
  7488. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7489. #endif
  7490. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7491. cur = 0;
  7492. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7493. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7494. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7495. node->n_tasks = 1;
  7496. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7497. } else
  7498. #endif
  7499. {
  7500. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7501. }
  7502. } else {
  7503. GGML_ASSERT(false);
  7504. }
  7505. work_size = MAX(work_size, cur);
  7506. } break;
  7507. case GGML_OP_SCALE:
  7508. {
  7509. node->n_tasks = n_threads;
  7510. } break;
  7511. case GGML_OP_CPY:
  7512. case GGML_OP_RESHAPE:
  7513. case GGML_OP_VIEW:
  7514. case GGML_OP_PERMUTE:
  7515. case GGML_OP_TRANSPOSE:
  7516. case GGML_OP_GET_ROWS:
  7517. case GGML_OP_DIAG_MASK_INF:
  7518. {
  7519. node->n_tasks = 1;
  7520. } break;
  7521. case GGML_OP_SOFT_MAX:
  7522. {
  7523. node->n_tasks = n_threads;
  7524. } break;
  7525. case GGML_OP_ROPE:
  7526. {
  7527. node->n_tasks = 1;
  7528. } break;
  7529. case GGML_OP_CONV_1D_1S:
  7530. case GGML_OP_CONV_1D_2S:
  7531. {
  7532. node->n_tasks = n_threads;
  7533. GGML_ASSERT(node->src0->ne[3] == 1);
  7534. GGML_ASSERT(node->src1->ne[2] == 1);
  7535. GGML_ASSERT(node->src1->ne[3] == 1);
  7536. size_t cur = 0;
  7537. const int nk = node->src0->ne[0];
  7538. if (node->src0->type == GGML_TYPE_F16 &&
  7539. node->src1->type == GGML_TYPE_F32) {
  7540. cur = sizeof(ggml_fp16_t)*(
  7541. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7542. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7543. );
  7544. } else if (node->src0->type == GGML_TYPE_F32 &&
  7545. node->src1->type == GGML_TYPE_F32) {
  7546. cur = sizeof(float)*(
  7547. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7548. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7549. );
  7550. } else {
  7551. GGML_ASSERT(false);
  7552. }
  7553. work_size = MAX(work_size, cur);
  7554. } break;
  7555. case GGML_OP_FLASH_ATTN:
  7556. {
  7557. node->n_tasks = n_threads;
  7558. size_t cur = 0;
  7559. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7560. if (node->src1->type == GGML_TYPE_F32) {
  7561. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7562. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7563. }
  7564. if (node->src1->type == GGML_TYPE_F16) {
  7565. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7566. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7567. }
  7568. work_size = MAX(work_size, cur);
  7569. } break;
  7570. case GGML_OP_FLASH_FF:
  7571. {
  7572. node->n_tasks = n_threads;
  7573. size_t cur = 0;
  7574. if (node->src1->type == GGML_TYPE_F32) {
  7575. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7576. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7577. }
  7578. if (node->src1->type == GGML_TYPE_F16) {
  7579. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7580. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7581. }
  7582. work_size = MAX(work_size, cur);
  7583. } break;
  7584. case GGML_OP_NONE:
  7585. {
  7586. node->n_tasks = 1;
  7587. } break;
  7588. case GGML_OP_COUNT:
  7589. {
  7590. GGML_ASSERT(false);
  7591. } break;
  7592. }
  7593. }
  7594. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7595. GGML_ASSERT(false); // TODO: better handling
  7596. }
  7597. if (work_size > 0 && cgraph->work == NULL) {
  7598. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7599. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7600. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7601. }
  7602. }
  7603. const int64_t perf_start_cycles = ggml_perf_cycles();
  7604. const int64_t perf_start_time_us = ggml_perf_time_us();
  7605. for (int i = 0; i < cgraph->n_nodes; i++) {
  7606. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7607. struct ggml_tensor * node = cgraph->nodes[i];
  7608. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7609. //if (node->grad == NULL && node->perf_runs > 0) {
  7610. // continue;
  7611. //}
  7612. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7613. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7614. // INIT
  7615. struct ggml_compute_params params = {
  7616. /*.type =*/ GGML_TASK_INIT,
  7617. /*.ith =*/ 0,
  7618. /*.nth =*/ node->n_tasks,
  7619. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7620. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7621. };
  7622. ggml_compute_forward(&params, node);
  7623. // COMPUTE
  7624. if (node->n_tasks > 1) {
  7625. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7626. atomic_store(&state_shared.has_work, false);
  7627. }
  7628. while (atomic_load(&state_shared.has_work)) {
  7629. ggml_lock_lock (&state_shared.spin);
  7630. ggml_lock_unlock(&state_shared.spin);
  7631. }
  7632. // launch thread pool
  7633. for (int j = 0; j < n_threads - 1; j++) {
  7634. workers[j].params = (struct ggml_compute_params) {
  7635. .type = GGML_TASK_COMPUTE,
  7636. .ith = j + 1,
  7637. .nth = node->n_tasks,
  7638. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7639. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7640. };
  7641. workers[j].node = node;
  7642. }
  7643. atomic_fetch_sub(&state_shared.n_ready, 1);
  7644. while (atomic_load(&state_shared.n_ready) > 0) {
  7645. ggml_lock_lock (&state_shared.spin);
  7646. ggml_lock_unlock(&state_shared.spin);
  7647. }
  7648. atomic_store(&state_shared.has_work, true);
  7649. }
  7650. params.type = GGML_TASK_COMPUTE;
  7651. ggml_compute_forward(&params, node);
  7652. // wait for thread pool
  7653. if (node->n_tasks > 1) {
  7654. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7655. atomic_store(&state_shared.has_work, false);
  7656. }
  7657. while (atomic_load(&state_shared.has_work)) {
  7658. ggml_lock_lock (&state_shared.spin);
  7659. ggml_lock_unlock(&state_shared.spin);
  7660. }
  7661. atomic_fetch_sub(&state_shared.n_ready, 1);
  7662. while (atomic_load(&state_shared.n_ready) != 0) {
  7663. ggml_lock_lock (&state_shared.spin);
  7664. ggml_lock_unlock(&state_shared.spin);
  7665. }
  7666. }
  7667. // FINALIZE
  7668. if (node->n_tasks > 1) {
  7669. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7670. atomic_store(&state_shared.has_work, false);
  7671. }
  7672. while (atomic_load(&state_shared.has_work)) {
  7673. ggml_lock_lock (&state_shared.spin);
  7674. ggml_lock_unlock(&state_shared.spin);
  7675. }
  7676. // launch thread pool
  7677. for (int j = 0; j < n_threads - 1; j++) {
  7678. workers[j].params = (struct ggml_compute_params) {
  7679. .type = GGML_TASK_FINALIZE,
  7680. .ith = j + 1,
  7681. .nth = node->n_tasks,
  7682. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7683. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7684. };
  7685. workers[j].node = node;
  7686. }
  7687. atomic_fetch_sub(&state_shared.n_ready, 1);
  7688. while (atomic_load(&state_shared.n_ready) > 0) {
  7689. ggml_lock_lock (&state_shared.spin);
  7690. ggml_lock_unlock(&state_shared.spin);
  7691. }
  7692. atomic_store(&state_shared.has_work, true);
  7693. }
  7694. params.type = GGML_TASK_FINALIZE;
  7695. ggml_compute_forward(&params, node);
  7696. // wait for thread pool
  7697. if (node->n_tasks > 1) {
  7698. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7699. atomic_store(&state_shared.has_work, false);
  7700. }
  7701. while (atomic_load(&state_shared.has_work)) {
  7702. ggml_lock_lock (&state_shared.spin);
  7703. ggml_lock_unlock(&state_shared.spin);
  7704. }
  7705. atomic_fetch_sub(&state_shared.n_ready, 1);
  7706. while (atomic_load(&state_shared.n_ready) != 0) {
  7707. ggml_lock_lock (&state_shared.spin);
  7708. ggml_lock_unlock(&state_shared.spin);
  7709. }
  7710. }
  7711. // performance stats (node)
  7712. {
  7713. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7714. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7715. node->perf_runs++;
  7716. node->perf_cycles += perf_cycles_cur;
  7717. node->perf_time_us += perf_time_us_cur;
  7718. }
  7719. }
  7720. // join thread pool
  7721. if (n_threads > 1) {
  7722. atomic_store(&state_shared.stop, true);
  7723. atomic_store(&state_shared.has_work, true);
  7724. for (int j = 0; j < n_threads - 1; j++) {
  7725. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7726. GGML_ASSERT(rc == 0);
  7727. UNUSED(rc);
  7728. }
  7729. ggml_lock_destroy(&state_shared.spin);
  7730. }
  7731. // performance stats (graph)
  7732. {
  7733. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7734. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7735. cgraph->perf_runs++;
  7736. cgraph->perf_cycles += perf_cycles_cur;
  7737. cgraph->perf_time_us += perf_time_us_cur;
  7738. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7739. __func__, cgraph->perf_runs,
  7740. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7741. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7742. (double) perf_time_us_cur / 1000.0,
  7743. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7744. }
  7745. }
  7746. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7747. for (int i = 0; i < cgraph->n_nodes; i++) {
  7748. struct ggml_tensor * grad = cgraph->grads[i];
  7749. if (grad) {
  7750. ggml_set_zero(grad);
  7751. }
  7752. }
  7753. }
  7754. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7755. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7756. GGML_PRINT("=== GRAPH ===\n");
  7757. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7758. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7759. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7760. for (int i = 0; i < cgraph->n_nodes; i++) {
  7761. struct ggml_tensor * node = cgraph->nodes[i];
  7762. perf_total_per_op_us[node->op] += node->perf_time_us;
  7763. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7764. i,
  7765. node->ne[0], node->ne[1], node->ne[2],
  7766. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7767. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7768. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7769. (double) node->perf_time_us / 1000.0,
  7770. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7771. }
  7772. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7773. for (int i = 0; i < cgraph->n_leafs; i++) {
  7774. struct ggml_tensor * node = cgraph->leafs[i];
  7775. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7776. i,
  7777. node->ne[0], node->ne[1],
  7778. GGML_OP_LABEL[node->op]);
  7779. }
  7780. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7781. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7782. }
  7783. GGML_PRINT("========================================\n");
  7784. }
  7785. // check if node is part of the graph
  7786. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7787. if (cgraph == NULL) {
  7788. return true;
  7789. }
  7790. for (int i = 0; i < cgraph->n_nodes; i++) {
  7791. if (cgraph->nodes[i] == node) {
  7792. return true;
  7793. }
  7794. }
  7795. return false;
  7796. }
  7797. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7798. for (int i = 0; i < cgraph->n_nodes; i++) {
  7799. struct ggml_tensor * parent = cgraph->nodes[i];
  7800. if (parent->grad == node) {
  7801. return parent;
  7802. }
  7803. }
  7804. return NULL;
  7805. }
  7806. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7807. char color[16];
  7808. FILE * fp = fopen(filename, "w");
  7809. GGML_ASSERT(fp);
  7810. fprintf(fp, "digraph G {\n");
  7811. fprintf(fp, " newrank = true;\n");
  7812. fprintf(fp, " rankdir = LR;\n");
  7813. for (int i = 0; i < gb->n_nodes; i++) {
  7814. struct ggml_tensor * node = gb->nodes[i];
  7815. if (ggml_graph_get_parent(gb, node) != NULL) {
  7816. continue;
  7817. }
  7818. if (node->is_param) {
  7819. snprintf(color, sizeof(color), "yellow");
  7820. } else if (node->grad) {
  7821. if (ggml_graph_find(gf, node)) {
  7822. snprintf(color, sizeof(color), "green");
  7823. } else {
  7824. snprintf(color, sizeof(color), "lightblue");
  7825. }
  7826. } else {
  7827. snprintf(color, sizeof(color), "white");
  7828. }
  7829. fprintf(fp, " \"%p\" [ \
  7830. style = filled; fillcolor = %s; shape = record; \
  7831. label=\"%d [%d, %d] | <x>%s",
  7832. (void *) node, color,
  7833. i, node->ne[0], node->ne[1],
  7834. GGML_OP_SYMBOL[node->op]);
  7835. if (node->grad) {
  7836. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7837. } else {
  7838. fprintf(fp, "\"; ]\n");
  7839. }
  7840. }
  7841. for (int i = 0; i < gb->n_leafs; i++) {
  7842. struct ggml_tensor * node = gb->leafs[i];
  7843. snprintf(color, sizeof(color), "pink");
  7844. if (ggml_nelements(node) == 1) {
  7845. fprintf(fp, " \"%p\" [ \
  7846. style = filled; fillcolor = %s; shape = record; \
  7847. label=\"<x>%.1e\"; ]\n",
  7848. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7849. } else {
  7850. fprintf(fp, " \"%p\" [ \
  7851. style = filled; fillcolor = %s; shape = record; \
  7852. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7853. (void *) node, color,
  7854. i, node->ne[0], node->ne[1]);
  7855. }
  7856. }
  7857. for (int i = 0; i < gb->n_nodes; i++) {
  7858. struct ggml_tensor * node = gb->nodes[i];
  7859. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7860. if (node->src0) {
  7861. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7862. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7863. parent0 ? (void *) parent0 : (void *) node->src0,
  7864. parent0 ? "g" : "x",
  7865. parent ? (void *) parent : (void *) node,
  7866. parent ? "g" : "x",
  7867. parent ? "empty" : "vee",
  7868. parent ? "dashed" : "solid");
  7869. }
  7870. if (node->src1) {
  7871. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7872. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7873. parent1 ? (void *) parent1 : (void *) node->src1,
  7874. parent1 ? "g" : "x",
  7875. parent ? (void *) parent : (void *) node,
  7876. parent ? "g" : "x",
  7877. parent ? "empty" : "vee",
  7878. parent ? "dashed" : "solid");
  7879. }
  7880. }
  7881. for (int i = 0; i < gb->n_leafs; i++) {
  7882. struct ggml_tensor * node = gb->leafs[i];
  7883. if (node->src0) {
  7884. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7885. (void *) node->src0, "x",
  7886. (void *) node, "x");
  7887. }
  7888. if (node->src1) {
  7889. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7890. (void *) node->src1, "x",
  7891. (void *) node, "x");
  7892. }
  7893. }
  7894. fprintf(fp, "}\n");
  7895. fclose(fp);
  7896. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7897. }
  7898. ////////////////////////////////////////////////////////////////////////////////
  7899. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7900. int i = 0;
  7901. for (int p = 0; p < np; ++p) {
  7902. const int ne = ggml_nelements(ps[p]) ;
  7903. // TODO: add function to set tensor from array
  7904. for (int j = 0; j < ne; ++j) {
  7905. ggml_set_f32_1d(ps[p], j, x[i++]);
  7906. }
  7907. }
  7908. }
  7909. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7910. int i = 0;
  7911. for (int p = 0; p < np; ++p) {
  7912. const int ne = ggml_nelements(ps[p]) ;
  7913. // TODO: add function to get all elements at once
  7914. for (int j = 0; j < ne; ++j) {
  7915. x[i++] = ggml_get_f32_1d(ps[p], j);
  7916. }
  7917. }
  7918. }
  7919. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7920. int i = 0;
  7921. for (int p = 0; p < np; ++p) {
  7922. const int ne = ggml_nelements(ps[p]) ;
  7923. // TODO: add function to get all elements at once
  7924. for (int j = 0; j < ne; ++j) {
  7925. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7926. }
  7927. }
  7928. }
  7929. //
  7930. // ADAM
  7931. //
  7932. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7933. //
  7934. static enum ggml_opt_result ggml_opt_adam(
  7935. struct ggml_context * ctx,
  7936. struct ggml_opt_params params,
  7937. struct ggml_tensor * f,
  7938. struct ggml_cgraph * gf,
  7939. struct ggml_cgraph * gb) {
  7940. GGML_ASSERT(ggml_is_scalar(f));
  7941. gf->n_threads = params.n_threads;
  7942. gb->n_threads = params.n_threads;
  7943. // these will store the parameters we want to optimize
  7944. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7945. int np = 0;
  7946. int nx = 0;
  7947. for (int i = 0; i < gf->n_nodes; ++i) {
  7948. if (gf->nodes[i]->is_param) {
  7949. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7950. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7951. ps[np++] = gf->nodes[i];
  7952. nx += ggml_nelements(gf->nodes[i]);
  7953. }
  7954. }
  7955. // constants
  7956. const float alpha = params.adam.alpha;
  7957. const float beta1 = params.adam.beta1;
  7958. const float beta2 = params.adam.beta2;
  7959. const float eps = params.adam.eps;
  7960. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7961. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7962. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7963. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7964. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7965. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7966. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7967. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7968. // initialize
  7969. ggml_vec_set_f32(nx, m, 0.0f);
  7970. ggml_vec_set_f32(nx, v, 0.0f);
  7971. // update view
  7972. ggml_opt_get_params(np, ps, x);
  7973. // compute the function value
  7974. ggml_graph_reset (gf);
  7975. ggml_set_f32 (f->grad, 1.0f);
  7976. ggml_graph_compute(ctx, gb);
  7977. float fx_prev = ggml_get_f32_1d(f, 0);
  7978. if (pf) {
  7979. pf[0] = fx_prev;
  7980. }
  7981. int n_no_improvement = 0;
  7982. float fx_best = fx_prev;
  7983. // run the optimizer
  7984. for (int t = 0; t < params.adam.n_iter; ++t) {
  7985. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7986. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7987. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7988. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7989. for (int i = 0; i < np; ++i) {
  7990. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7991. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7992. }
  7993. const int64_t t_start_wall = ggml_time_us();
  7994. const int64_t t_start_cpu = ggml_cycles();
  7995. UNUSED(t_start_wall);
  7996. UNUSED(t_start_cpu);
  7997. {
  7998. // update the gradient
  7999. ggml_opt_get_grad(np, ps, g1);
  8000. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8001. ggml_vec_scale_f32(nx, m, beta1);
  8002. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8003. // g2 = g1^2
  8004. ggml_vec_sqr_f32 (nx, g2, g1);
  8005. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8006. ggml_vec_scale_f32(nx, v, beta2);
  8007. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8008. // m^hat = m_t / (1 - beta1^t)
  8009. // v^hat = v_t / (1 - beta2^t)
  8010. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8011. ggml_vec_cpy_f32 (nx, mh, m);
  8012. ggml_vec_cpy_f32 (nx, vh, v);
  8013. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8014. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8015. ggml_vec_sqrt_f32 (nx, vh, vh);
  8016. ggml_vec_acc1_f32 (nx, vh, eps);
  8017. ggml_vec_div_f32 (nx, mh, mh, vh);
  8018. ggml_vec_sub_f32 (nx, x, x, mh);
  8019. // update the parameters
  8020. ggml_opt_set_params(np, ps, x);
  8021. }
  8022. ggml_graph_reset (gf);
  8023. ggml_set_f32 (f->grad, 1.0f);
  8024. ggml_graph_compute(ctx, gb);
  8025. const float fx = ggml_get_f32_1d(f, 0);
  8026. // check convergence
  8027. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8028. GGML_PRINT_DEBUG("converged\n");
  8029. return GGML_OPT_OK;
  8030. }
  8031. // delta-based convergence test
  8032. if (pf != NULL) {
  8033. // need at least params.past iterations to start checking for convergence
  8034. if (params.past <= t) {
  8035. const float rate = (pf[t%params.past] - fx)/fx;
  8036. if (fabsf(rate) < params.delta) {
  8037. return GGML_OPT_OK;
  8038. }
  8039. }
  8040. pf[t%params.past] = fx;
  8041. }
  8042. // check for improvement
  8043. if (params.max_no_improvement > 0) {
  8044. if (fx_best > fx) {
  8045. fx_best = fx;
  8046. n_no_improvement = 0;
  8047. } else {
  8048. ++n_no_improvement;
  8049. if (n_no_improvement >= params.max_no_improvement) {
  8050. return GGML_OPT_OK;
  8051. }
  8052. }
  8053. }
  8054. fx_prev = fx;
  8055. {
  8056. const int64_t t_end_cpu = ggml_cycles();
  8057. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8058. UNUSED(t_end_cpu);
  8059. const int64_t t_end_wall = ggml_time_us();
  8060. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8061. UNUSED(t_end_wall);
  8062. }
  8063. }
  8064. return GGML_OPT_DID_NOT_CONVERGE;
  8065. }
  8066. //
  8067. // L-BFGS
  8068. //
  8069. // the L-BFGS implementation below is based on the following implementation:
  8070. //
  8071. // https://github.com/chokkan/liblbfgs
  8072. //
  8073. struct ggml_lbfgs_iteration_data {
  8074. float alpha;
  8075. float ys;
  8076. float * s;
  8077. float * y;
  8078. };
  8079. static enum ggml_opt_result linesearch_backtracking(
  8080. struct ggml_context * ctx,
  8081. const struct ggml_opt_params * params,
  8082. int nx,
  8083. float * x,
  8084. float * fx,
  8085. float * g,
  8086. float * d,
  8087. float * step,
  8088. const float * xp,
  8089. struct ggml_tensor * f,
  8090. struct ggml_cgraph * gf,
  8091. struct ggml_cgraph * gb,
  8092. const int np,
  8093. struct ggml_tensor * ps[]) {
  8094. int count = 0;
  8095. float width = 0.0f;
  8096. float dg = 0.0f;
  8097. float finit = 0.0f;
  8098. float dginit = 0.0f;
  8099. float dgtest = 0.0f;
  8100. const float dec = 0.5f;
  8101. const float inc = 2.1f;
  8102. if (*step <= 0.f) {
  8103. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8104. }
  8105. // compute the initial gradient in the search direction
  8106. ggml_vec_dot_f32(nx, &dginit, g, d);
  8107. // make sure that d points to a descent direction
  8108. if (0 < dginit) {
  8109. return GGML_LINESEARCH_FAIL;
  8110. }
  8111. // initialize local variables
  8112. finit = *fx;
  8113. dgtest = params->lbfgs.ftol*dginit;
  8114. while (true) {
  8115. ggml_vec_cpy_f32(nx, x, xp);
  8116. ggml_vec_mad_f32(nx, x, d, *step);
  8117. // evaluate the function and gradient values
  8118. {
  8119. ggml_opt_set_params(np, ps, x);
  8120. ggml_graph_reset (gf);
  8121. ggml_set_f32 (f->grad, 1.0f);
  8122. ggml_graph_compute(ctx, gb);
  8123. ggml_opt_get_grad(np, ps, g);
  8124. *fx = ggml_get_f32_1d(f, 0);
  8125. }
  8126. ++count;
  8127. if (*fx > finit + (*step)*dgtest) {
  8128. width = dec;
  8129. } else {
  8130. // Armijo condition is satisfied
  8131. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8132. return count;
  8133. }
  8134. ggml_vec_dot_f32(nx, &dg, g, d);
  8135. // check the Wolfe condition
  8136. if (dg < params->lbfgs.wolfe * dginit) {
  8137. width = inc;
  8138. } else {
  8139. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8140. // regular Wolfe conditions
  8141. return count;
  8142. }
  8143. if(dg > -params->lbfgs.wolfe*dginit) {
  8144. width = dec;
  8145. } else {
  8146. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8147. return count;
  8148. }
  8149. return count;
  8150. }
  8151. }
  8152. if (*step < params->lbfgs.min_step) {
  8153. return GGML_LINESEARCH_MINIMUM_STEP;
  8154. }
  8155. if (*step > params->lbfgs.max_step) {
  8156. return GGML_LINESEARCH_MAXIMUM_STEP;
  8157. }
  8158. if (params->lbfgs.max_linesearch <= count) {
  8159. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8160. }
  8161. (*step) *= width;
  8162. }
  8163. return GGML_LINESEARCH_FAIL;
  8164. }
  8165. static enum ggml_opt_result ggml_opt_lbfgs(
  8166. struct ggml_context * ctx,
  8167. struct ggml_opt_params params,
  8168. struct ggml_tensor * f,
  8169. struct ggml_cgraph * gf,
  8170. struct ggml_cgraph * gb) {
  8171. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8172. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8173. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8174. return GGML_OPT_INVALID_WOLFE;
  8175. }
  8176. }
  8177. gf->n_threads = params.n_threads;
  8178. gb->n_threads = params.n_threads;
  8179. const int m = params.lbfgs.m;
  8180. // these will store the parameters we want to optimize
  8181. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8182. int np = 0;
  8183. int nx = 0;
  8184. for (int i = 0; i < gf->n_nodes; ++i) {
  8185. if (gf->nodes[i]->is_param) {
  8186. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8187. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8188. ps[np++] = gf->nodes[i];
  8189. nx += ggml_nelements(gf->nodes[i]);
  8190. }
  8191. }
  8192. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8193. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8194. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8195. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8196. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8197. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8198. float fx = 0.0f; // cost function value
  8199. float xnorm = 0.0f; // ||x||
  8200. float gnorm = 0.0f; // ||g||
  8201. float step = 0.0f;
  8202. // initialize x from the graph nodes
  8203. ggml_opt_get_params(np, ps, x);
  8204. // the L-BFGS memory
  8205. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8206. for (int i = 0; i < m; ++i) {
  8207. lm[i].alpha = 0.0f;
  8208. lm[i].ys = 0.0f;
  8209. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8210. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8211. }
  8212. // evaluate the function value and its gradient
  8213. {
  8214. ggml_opt_set_params(np, ps, x);
  8215. ggml_graph_reset (gf);
  8216. ggml_set_f32 (f->grad, 1.0f);
  8217. ggml_graph_compute(ctx, gb);
  8218. ggml_opt_get_grad(np, ps, g);
  8219. fx = ggml_get_f32_1d(f, 0);
  8220. }
  8221. if (pf) {
  8222. pf[0] = fx;
  8223. }
  8224. float fx_best = fx;
  8225. // search direction = -gradient
  8226. ggml_vec_neg_f32(nx, d, g);
  8227. // ||x||, ||g||
  8228. ggml_vec_norm_f32(nx, &xnorm, x);
  8229. ggml_vec_norm_f32(nx, &gnorm, g);
  8230. if (xnorm < 1.0f) {
  8231. xnorm = 1.0f;
  8232. }
  8233. // already optimized
  8234. if (gnorm/xnorm <= params.lbfgs.eps) {
  8235. return GGML_OPT_OK;
  8236. }
  8237. // initial step
  8238. ggml_vec_norm_inv_f32(nx, &step, d);
  8239. int j = 0;
  8240. int k = 1;
  8241. int ls = 0;
  8242. int end = 0;
  8243. int bound = 0;
  8244. int n_no_improvement = 0;
  8245. float ys = 0.0f;
  8246. float yy = 0.0f;
  8247. float beta = 0.0f;
  8248. while (true) {
  8249. // store the current position and gradient vectors
  8250. ggml_vec_cpy_f32(nx, xp, x);
  8251. ggml_vec_cpy_f32(nx, gp, g);
  8252. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8253. if (ls < 0) {
  8254. // linesearch failed - go back to the previous point and return
  8255. ggml_vec_cpy_f32(nx, x, xp);
  8256. ggml_vec_cpy_f32(nx, g, gp);
  8257. return ls;
  8258. }
  8259. ggml_vec_norm_f32(nx, &xnorm, x);
  8260. ggml_vec_norm_f32(nx, &gnorm, g);
  8261. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8262. if (xnorm < 1.0f) {
  8263. xnorm = 1.0f;
  8264. }
  8265. if (gnorm/xnorm <= params.lbfgs.eps) {
  8266. // converged
  8267. return GGML_OPT_OK;
  8268. }
  8269. // delta-based convergence test
  8270. if (pf != NULL) {
  8271. // need at least params.past iterations to start checking for convergence
  8272. if (params.past <= k) {
  8273. const float rate = (pf[k%params.past] - fx)/fx;
  8274. if (fabsf(rate) < params.delta) {
  8275. return GGML_OPT_OK;
  8276. }
  8277. }
  8278. pf[k%params.past] = fx;
  8279. }
  8280. // check for improvement
  8281. if (params.max_no_improvement > 0) {
  8282. if (fx < fx_best) {
  8283. fx_best = fx;
  8284. n_no_improvement = 0;
  8285. } else {
  8286. n_no_improvement++;
  8287. if (n_no_improvement >= params.max_no_improvement) {
  8288. return GGML_OPT_OK;
  8289. }
  8290. }
  8291. }
  8292. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8293. // reached the maximum number of iterations
  8294. return GGML_OPT_DID_NOT_CONVERGE;
  8295. }
  8296. // update vectors s and y:
  8297. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8298. // y_{k+1} = g_{k+1} - g_{k}.
  8299. //
  8300. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8301. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8302. // compute scalars ys and yy:
  8303. // ys = y^t \cdot s -> 1 / \rho.
  8304. // yy = y^t \cdot y.
  8305. //
  8306. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8307. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8308. lm[end].ys = ys;
  8309. // find new search direction
  8310. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8311. bound = (m <= k) ? m : k;
  8312. k++;
  8313. end = (end + 1)%m;
  8314. // initialize search direction with -g
  8315. ggml_vec_neg_f32(nx, d, g);
  8316. j = end;
  8317. for (int i = 0; i < bound; ++i) {
  8318. j = (j + m - 1) % m;
  8319. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8320. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8321. lm[j].alpha /= lm[j].ys;
  8322. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8323. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8324. }
  8325. ggml_vec_scale_f32(nx, d, ys/yy);
  8326. for (int i = 0; i < bound; ++i) {
  8327. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8328. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8329. beta /= lm[j].ys;
  8330. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8331. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8332. j = (j + 1)%m;
  8333. }
  8334. step = 1.0;
  8335. }
  8336. return GGML_OPT_DID_NOT_CONVERGE;
  8337. }
  8338. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8339. struct ggml_opt_params result;
  8340. switch (type) {
  8341. case GGML_OPT_ADAM:
  8342. {
  8343. result = (struct ggml_opt_params) {
  8344. .type = GGML_OPT_ADAM,
  8345. .n_threads = 1,
  8346. .past = 0,
  8347. .delta = 1e-5f,
  8348. .max_no_improvement = 100,
  8349. .print_forward_graph = true,
  8350. .print_backward_graph = true,
  8351. .adam = {
  8352. .n_iter = 10000,
  8353. .alpha = 0.001f,
  8354. .beta1 = 0.9f,
  8355. .beta2 = 0.999f,
  8356. .eps = 1e-8f,
  8357. .eps_f = 1e-5f,
  8358. .eps_g = 1e-3f,
  8359. },
  8360. };
  8361. } break;
  8362. case GGML_OPT_LBFGS:
  8363. {
  8364. result = (struct ggml_opt_params) {
  8365. .type = GGML_OPT_LBFGS,
  8366. .n_threads = 1,
  8367. .past = 0,
  8368. .delta = 1e-5f,
  8369. .max_no_improvement = 0,
  8370. .print_forward_graph = true,
  8371. .print_backward_graph = true,
  8372. .lbfgs = {
  8373. .m = 6,
  8374. .n_iter = 100,
  8375. .max_linesearch = 20,
  8376. .eps = 1e-5f,
  8377. .ftol = 1e-4f,
  8378. .wolfe = 0.9f,
  8379. .min_step = 1e-20f,
  8380. .max_step = 1e+20f,
  8381. .linesearch = GGML_LINESEARCH_DEFAULT,
  8382. },
  8383. };
  8384. } break;
  8385. }
  8386. return result;
  8387. }
  8388. enum ggml_opt_result ggml_opt(
  8389. struct ggml_context * ctx,
  8390. struct ggml_opt_params params,
  8391. struct ggml_tensor * f) {
  8392. bool free_ctx = false;
  8393. if (ctx == NULL) {
  8394. struct ggml_init_params params_ctx = {
  8395. .mem_size = 16*1024*1024,
  8396. .mem_buffer = NULL,
  8397. };
  8398. ctx = ggml_init(params_ctx);
  8399. if (ctx == NULL) {
  8400. return GGML_OPT_NO_CONTEXT;
  8401. }
  8402. free_ctx = true;
  8403. }
  8404. enum ggml_opt_result result = GGML_OPT_OK;
  8405. // build forward + backward compute graphs
  8406. struct ggml_cgraph gf = ggml_build_forward (f);
  8407. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8408. switch (params.type) {
  8409. case GGML_OPT_ADAM:
  8410. {
  8411. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8412. } break;
  8413. case GGML_OPT_LBFGS:
  8414. {
  8415. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8416. } break;
  8417. }
  8418. if (params.print_forward_graph) {
  8419. ggml_graph_print (&gf);
  8420. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8421. }
  8422. if (params.print_backward_graph) {
  8423. ggml_graph_print (&gb);
  8424. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8425. }
  8426. if (free_ctx) {
  8427. ggml_free(ctx);
  8428. }
  8429. return result;
  8430. }
  8431. ////////////////////////////////////////////////////////////////////////////////
  8432. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8433. assert(k % QK == 0);
  8434. const int nb = k / QK;
  8435. for (int j = 0; j < n; j += k) {
  8436. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8437. quantize_row_q4_0_reference(src + j, y, k);
  8438. for (int i = 0; i < nb; i++) {
  8439. for (int l = 0; l < QK; l += 2) {
  8440. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8441. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8442. hist[vi0]++;
  8443. hist[vi1]++;
  8444. }
  8445. }
  8446. }
  8447. return (n/QK*sizeof(block_q4_0));
  8448. }
  8449. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8450. assert(k % QK == 0);
  8451. const int nb = k / QK;
  8452. for (int j = 0; j < n; j += k) {
  8453. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8454. quantize_row_q4_1_reference(src + j, y, k);
  8455. for (int i = 0; i < nb; i++) {
  8456. for (int l = 0; l < QK; l += 2) {
  8457. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8458. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8459. hist[vi0]++;
  8460. hist[vi1]++;
  8461. }
  8462. }
  8463. }
  8464. return (n/QK*sizeof(block_q4_1));
  8465. }
  8466. ////////////////////////////////////////////////////////////////////////////////
  8467. int ggml_cpu_has_avx(void) {
  8468. #if defined(__AVX__)
  8469. return 1;
  8470. #else
  8471. return 0;
  8472. #endif
  8473. }
  8474. int ggml_cpu_has_avx2(void) {
  8475. #if defined(__AVX2__)
  8476. return 1;
  8477. #else
  8478. return 0;
  8479. #endif
  8480. }
  8481. int ggml_cpu_has_avx512(void) {
  8482. #if defined(__AVX512F__)
  8483. return 1;
  8484. #else
  8485. return 0;
  8486. #endif
  8487. }
  8488. int ggml_cpu_has_fma(void) {
  8489. #if defined(__FMA__)
  8490. return 1;
  8491. #else
  8492. return 0;
  8493. #endif
  8494. }
  8495. int ggml_cpu_has_neon(void) {
  8496. #if defined(__ARM_NEON)
  8497. return 1;
  8498. #else
  8499. return 0;
  8500. #endif
  8501. }
  8502. int ggml_cpu_has_arm_fma(void) {
  8503. #if defined(__ARM_FEATURE_FMA)
  8504. return 1;
  8505. #else
  8506. return 0;
  8507. #endif
  8508. }
  8509. int ggml_cpu_has_f16c(void) {
  8510. #if defined(__F16C__)
  8511. return 1;
  8512. #else
  8513. return 0;
  8514. #endif
  8515. }
  8516. int ggml_cpu_has_fp16_va(void) {
  8517. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8518. return 1;
  8519. #else
  8520. return 0;
  8521. #endif
  8522. }
  8523. int ggml_cpu_has_wasm_simd(void) {
  8524. #if defined(__wasm_simd128__)
  8525. return 1;
  8526. #else
  8527. return 0;
  8528. #endif
  8529. }
  8530. int ggml_cpu_has_blas(void) {
  8531. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8532. return 1;
  8533. #else
  8534. return 0;
  8535. #endif
  8536. }
  8537. int ggml_cpu_has_sse3(void) {
  8538. #if defined(__SSE3__)
  8539. return 1;
  8540. #else
  8541. return 0;
  8542. #endif
  8543. }
  8544. int ggml_cpu_has_vsx(void) {
  8545. #if defined(__POWER9_VECTOR__)
  8546. return 1;
  8547. #else
  8548. return 0;
  8549. #endif
  8550. }
  8551. ////////////////////////////////////////////////////////////////////////////////