| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401 |
- #include "ggml.h"
- #include "llama.h"
- #include <unordered_map>
- #include <vector>
- #include <cassert>
- #include <climits>
- #include <cstring>
- #include <cstdarg>
- #include <ctime>
- #include <random>
- #include <stdexcept>
- #include <algorithm>
- #include <string>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- struct random_normal_distribution {
- std::mt19937 gen;
- std::normal_distribution<float> rd;
- float min;
- float max;
- };
- struct random_uniform_distribution {
- std::mt19937 gen;
- std::uniform_real_distribution<float> rd;
- };
- void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
- rnd->gen = std::mt19937(seed);
- rnd->rd = std::normal_distribution<float>{mean, std};
- rnd->min = min;
- rnd->max = max;
- }
- void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) {
- rnd->gen = std::mt19937(seed);
- rnd->rd = std::uniform_real_distribution<float>{min, max};
- }
- int clamp(const int v, const int min, const int max) {
- return ((v < min) ? (min) : (v > max) ? (max) : v);
- }
- float fclamp(const float v, const float min, const float max) {
- return ((v < min) ? (min) : (v > max) ? (max) : v);
- }
- float frand() {
- return (float)rand()/(float)RAND_MAX;
- }
- float frand_normal(struct random_normal_distribution * rnd) {
- return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max);
- }
- float frand_uniform(struct random_uniform_distribution * rnd) {
- return rnd->rd(rnd->gen);
- }
- struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
- float scale = 1.0f; // xavier
- switch (tensor->n_dims) {
- case 1:
- scale /= sqrtf(tensor->ne[0]);
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
- *dst = scale * frand_normal(rnd);
- }
- break;
- case 2:
- scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *dst = scale * frand_normal(rnd);
- }
- }
- break;
- case 3:
- scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *dst = scale * frand_normal(rnd);
- }
- }
- }
- break;
- case 4:
- scale /= sqrtf(tensor->ne[0]+tensor->ne[1]);
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
- *dst = scale * frand_normal(rnd);
- }
- }
- }
- }
- break;
- default:
- assert(false);
- };
- return tensor;
- }
- struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
- switch (tensor->n_dims) {
- case 1:
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
- *dst = frand_uniform(rnd);
- }
- break;
- case 2:
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *dst = frand_uniform(rnd);
- }
- }
- break;
- case 3:
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *dst = frand_uniform(rnd);
- }
- }
- }
- break;
- case 4:
- for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
- for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
- for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
- for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
- float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]);
- *dst = frand_uniform(rnd);
- }
- }
- }
- }
- break;
- default:
- assert(false);
- };
- return tensor;
- }
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- struct token_score {
- token tok;
- float score;
- };
- std::unordered_map<token, id> token_to_id;
- std::vector<token_score> id_to_token;
- };
- struct my_llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512; // this is provided as user input?
- uint32_t n_embd = 4096;
- uint32_t n_mult = 4;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- bool operator!=(const my_llama_hparams& other) const {
- return memcmp(this, &other, sizeof(my_llama_hparams));
- }
- };
- struct my_llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct my_llama_kv_cache {
- struct ggml_context * ctx = NULL;
- struct ggml_tensor * k;
- struct ggml_tensor * v;
- // llama_ctx_buffer buf;
- int n; // number of tokens currently in the cache
- };
- struct my_llama_model {
- struct ggml_context * ctx = NULL;
- my_llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<my_llama_layer> layers;
- uint32_t train_its = 0;
- uint32_t train_samples = 0;
- uint32_t train_tokens = 0;
- };
- uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
- const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
- return n_ff;
- }
- void print_params(struct my_llama_hparams * params) {
- printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
- printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
- printf("%s: n_embd: %d\n", __func__, params->n_embd);
- printf("%s: n_mult: %d\n", __func__, params->n_mult);
- printf("%s: n_head: %d\n", __func__, params->n_head);
- printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
- printf("%s: n_layer: %d\n", __func__, params->n_layer);
- printf("%s: n_rot: %d\n", __func__, params->n_rot);
- }
- void init_model(struct my_llama_model * model) {
- const auto & hparams = model->hparams;
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- const uint32_t n_ff = get_n_ff(&hparams);
- struct ggml_context * ctx = model->ctx;
- model->train_its = 0;
- model->train_samples = 0;
- model->train_tokens = 0;
- model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
- ggml_set_name(model->norm, "norm.weight");
- ggml_set_name(model->output, "output.weight");
- model->layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- std::string layers_i = "layers." + std::to_string(i);
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
- ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
- ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
- ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
- ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
- ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
- // 'layers.10.feed_forward.w1.weight' has length of 32.
- // ggml_tensor->name only has 32 characters, but we need one more for the '\0' terminator.
- // ggml_set_name will set the last character to '\0', so we can only store 'layers.10.feed_forward.w1.weigh'.
- // when saving llama compatible model the tensors names will miss a character.
- // ggml_set_name(layer.w1, (layers_i + ".feed_forward.w1.weight").c_str());
- // ggml_set_name(layer.w2, (layers_i + ".feed_forward.w2.weight").c_str());
- // ggml_set_name(layer.w3, (layers_i + ".feed_forward.w3.weight").c_str());
- strncpy(layer.w1->name, (layers_i + ".feed_forward.w1.weight").c_str(), sizeof(layer.w1->name));
- strncpy(layer.w2->name, (layers_i + ".feed_forward.w2.weight").c_str(), sizeof(layer.w2->name));
- strncpy(layer.w3->name, (layers_i + ".feed_forward.w3.weight").c_str(), sizeof(layer.w3->name));
- layer.w1->padding[0] = 0;
- layer.w2->padding[0] = 0;
- layer.w3->padding[0] = 0;
- }
- }
- void set_param_model(struct my_llama_model * model) {
- const auto& hparams = model->hparams;
- const uint32_t n_layer = hparams.n_layer;
- struct ggml_context* ctx = model->ctx;
- ggml_set_param(ctx, model->tok_embeddings);
- ggml_set_param(ctx, model->norm);
- ggml_set_param(ctx, model->output);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- ggml_set_param(ctx, layer.attention_norm);
- ggml_set_param(ctx, layer.wq);
- ggml_set_param(ctx, layer.wk);
- ggml_set_param(ctx, layer.wv);
- ggml_set_param(ctx, layer.wo);
- ggml_set_param(ctx, layer.ffn_norm);
- ggml_set_param(ctx, layer.w1);
- ggml_set_param(ctx, layer.w2);
- ggml_set_param(ctx, layer.w3);
- }
- }
- void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
- const auto & hparams = model->hparams;
- const uint32_t n_layer = hparams.n_layer;
- struct random_normal_distribution rnd;
- init_random_normal_distribution(&rnd, seed, mean, std, min, max);
- randomize_tensor_normal(model->tok_embeddings, &rnd);
- randomize_tensor_normal(model->norm, &rnd);
- randomize_tensor_normal(model->output, &rnd);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- randomize_tensor_normal(layer.attention_norm, &rnd);
- randomize_tensor_normal(layer.wq, &rnd);
- randomize_tensor_normal(layer.wk, &rnd);
- randomize_tensor_normal(layer.wv, &rnd);
- randomize_tensor_normal(layer.wo, &rnd);
- randomize_tensor_normal(layer.ffn_norm, &rnd);
- randomize_tensor_normal(layer.w1, &rnd);
- randomize_tensor_normal(layer.w2, &rnd);
- randomize_tensor_normal(layer.w3, &rnd);
- }
- }
- bool init_kv_cache(struct my_llama_kv_cache* cache, struct my_llama_model * model, int n_batch) {
- const auto & hparams = model->hparams;
- const uint32_t n_ctx = hparams.n_ctx;
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const int64_t n_mem = n_layer*n_ctx*n_batch;
- const int64_t n_elements = n_embd*n_mem;
- // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
- // struct ggml_init_params params;
- // params.mem_size = cache.buf.size;
- // params.mem_buffer = cache.buf.addr;
- // params.no_alloc = false;
- if (!cache->ctx) {
- struct ggml_init_params params;
- params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
- params.mem_buffer = NULL;
- params.no_alloc = false;
- cache->ctx = ggml_init(params);
- if (!cache->ctx) {
- fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- }
- cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
- cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
- return true;
- }
- struct ggml_tensor * forward(
- struct my_llama_model * model,
- struct my_llama_kv_cache * cache,
- struct ggml_context * ctx0,
- struct ggml_cgraph * gf,
- struct ggml_tensor * tokens_input,
- const int n_tokens,
- const int n_past) {
- const int N = n_tokens;
- struct my_llama_kv_cache& kv_self = *cache;
- const auto & hparams = model->hparams;
- const int n_ctx = hparams.n_ctx;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
- struct ggml_tensor * kc = kv_self.k;
- struct ggml_tensor * vc = kv_self.v;
- // inpL shape [n_embd,N,1,1]
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- // lctx.use_buf(ctx0, 0);
- // norm
- {
- // cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
- cur);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- // wq shape [n_embd, n_embd, 1, 1]
- // wk shape [n_embd, n_embd, 1, 1]
- // Qcur shape [n_embd/n_head, n_head, N, 1]
- // Kcur shape [n_embd/n_head, n_head, N, 1]
- struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
- struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
- // store key and value to memory
- {
- // compute the transposed [N, n_embd] V matrix
- // wv shape [n_embd, n_embd, 1, 1]
- // Vcur shape [n_embd, N, 1, 1]
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N)));
- // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
- // kv_self.v shape [n_embd * n_ctx * n_layer, 1]
- // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0]
- // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
- /* {
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
- } //*/
- kc = ggml_set_1d_inplace(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- vc = ggml_set_2d_inplace(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
- }
- // Qcur shape [n_embd/n_head, n_head, N, 1]
- // Q shape [n_embd/n_head, N, n_head, 1]
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
- // K shape [n_embd/n_head, n_past + N, n_head, 1]
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- // K * Q
- // KQ shape [n_past + N, N, n_head, 1]
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- // KQ_scaled shape [n_past + N, N, n_head, 1]
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
- // KQ_masked = mask_past(KQ_scaled)
- // KQ_masked shape [n_past + N, N, n_head, 1]
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
- // KQ = soft_max(KQ_masked)
- // KQ_soft_max shape [n_past + N, N, n_head, 1]
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // split cached V into n_head heads
- //// V shape [n_past + N, n_embd/n_head, n_head, 1]
- // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, vc,
- n_past + N, n_embd/n_head, n_head,
- n_ctx*ggml_element_size(vc),
- n_ctx*ggml_element_size(vc)*n_embd/n_head,
- il*n_ctx*ggml_element_size(vc)*n_embd);
- // KQV shape [n_embd/n_head, N, n_head, 1]
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- // KQV_merged shape [n_embd/n_head, n_head, N, 1]
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // KQV_merged shape
- // cur = KQV_merged.contiguous().view(n_embd, N)
- // cur shape [n_embd,N,1,1]
- cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
- // cur = ggml_cpy(ctx0,
- // KQV_merged,
- // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection (no bias)
- // cur shape [n_embd,N,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].wo,
- cur);
- }
- // lctx.use_buf(ctx0, 1);
- // inpFF shape [n_embd,N,1,1]
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- // feed-forward network
- {
- // norm
- {
- // cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
- // cur = ffn_norm*cur
- // cur shape [n_embd,N,1,1]
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
- cur);
- }
- // tmp shape [n_ff,N,1,1]
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model->layers[il].w3,
- cur);
- // cur shape [n_ff,N,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w1,
- cur);
- // SILU activation
- // cur shape [n_ff,N,1,1]
- cur = ggml_silu(ctx0, cur);
- // cur shape [n_ff,N,1,1]
- cur = ggml_mul(ctx0, cur, tmp);
- // cur shape [n_embd,N,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w2,
- cur);
- }
- // cur shape [n_embd,N,1,1]
- cur = ggml_add(ctx0, cur, inpFF);
- // input for next layer
- // inpL shape [n_embd,N,1,1]
- inpL = cur;
- }
- // norm
- {
- // inpL shape [n_embd,N,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
- // inpL = norm*inpL
- // inpL shape [n_embd,N,1,1]
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->norm, inpL),
- inpL);
- //embeddings = inpL;
- }
- // lm_head
- // inpL shape [n_vocab,N,1,1]
- inpL = ggml_mul_mat(ctx0, model->output, inpL);
- // run the computation
- ggml_build_forward_expand(gf, inpL);
- return inpL;
- }
- void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
- GGML_ASSERT(tensor->n_dims == 1);
- GGML_ASSERT(tensor->ne[0] == ne0);
- }
- void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
- GGML_ASSERT(tensor->n_dims == 2);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- }
- void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
- GGML_ASSERT(tensor->n_dims == 3);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- GGML_ASSERT(tensor->ne[2] == ne2);
- }
- void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- GGML_ASSERT(tensor->n_dims == 4);
- GGML_ASSERT(tensor->ne[0] == ne0);
- GGML_ASSERT(tensor->ne[1] == ne1);
- GGML_ASSERT(tensor->ne[2] == ne2);
- GGML_ASSERT(tensor->ne[3] == ne3);
- }
- struct ggml_tensor * forward_batch(
- struct my_llama_model * model,
- struct my_llama_kv_cache * cache,
- struct ggml_context * ctx0,
- struct ggml_cgraph * gf,
- struct ggml_tensor * tokens_input,
- const int n_tokens,
- const int n_past,
- const int n_batch) {
- const int N = n_tokens;
- struct my_llama_kv_cache& kv_self = *cache;
- const auto & hparams = model->hparams;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- const int n_ff = get_n_ff(&hparams);
- struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch);
- memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch);
- struct ggml_tensor * kc = kv_self.k;
- struct ggml_tensor * vc = kv_self.v;
- // inpL shape [n_embd,N*n_batch,1]
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- // lctx.use_buf(ctx0, 0);
- // norm
- {
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- // wq shape [n_embd, n_embd, 1, 1]
- // wk shape [n_embd, n_embd, 1, 1]
- // Qcur shape [n_embd/n_head, n_head, N, n_batch]
- // Kcur shape [n_embd/n_head, n_head, N, n_batch]
- struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
- struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
- assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
- assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
- // store key and value to memory
- {
- // compute the transposed [N, n_embd] V matrix
- // wv shape [n_embd, n_embd, 1, 1]
- // Vcur shape [N, n_embd, n_batch, 1]
- struct ggml_tensor * Vcur = ggml_cont(ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_mul_mat(ctx0,
- model->layers[il].wv,
- cur),
- n_embd, N, n_batch),
- 1, 0, 2, 3));
- assert_shape_3d(Vcur, N, n_embd, n_batch);
- // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
- // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
- // k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il]
- // v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il]
- /* {
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
- } //*/
- kc = ggml_set_2d_inplace(ctx0, kc,
- ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch),
- ggml_element_size(kc)*n_embd*n_ctx,
- (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past));
- vc = ggml_set_2d_inplace(ctx0, vc,
- ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch),
- ggml_element_size(vc)*n_ctx*n_embd,
- ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx));
- assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer);
- assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer);
- }
- // Qcur shape [n_embd/n_head, n_head, N, n_batch]
- // Q shape [n_embd/n_head, N, n_head, n_batch]
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch);
- // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
- // K shape [n_embd/n_head, n_past + N, n_head, n_batch]
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_4d(ctx0,
- ggml_view_3d(ctx0,
- kc,
- n_embd,
- (n_past + N),
- n_batch,
- n_embd*ggml_element_size(kc),
- n_ctx*n_embd*ggml_element_size(kc),
- il*n_batch*n_ctx*n_embd*ggml_element_size(kc)),
- n_embd/n_head, n_head, n_past + N, n_batch),
- 0, 2, 1, 3);
- assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch);
- // K * Q
- // KQ shape [n_past + N, N, n_head, n_batch]
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- assert_shape_4d(KQ, n_past + N, N, n_head, n_batch);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- // KQ_scaled shape [n_past + N, N, n_head, n_batch]
- struct ggml_tensor * KQ_scaled =
- ggml_scale_inplace(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
- assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
- // KQ_masked = mask_past(KQ_scaled)
- // KQ_masked shape [n_past + N, N, n_head, n_batch]
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch);
- // KQ = soft_max(KQ_masked)
- // KQ_soft_max shape [n_past + N, N, n_head, n_batch]
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch);
- // split cached V into n_head heads
- // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
- // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il]
- struct ggml_tensor * V =
- ggml_view_4d(ctx0, vc,
- n_past + N, n_embd/n_head, n_head, n_batch,
- ggml_element_size(vc)*n_ctx,
- ggml_element_size(vc)*n_ctx*n_embd/n_head,
- ggml_element_size(vc)*n_ctx*n_embd,
- il*n_batch*n_ctx*n_embd*ggml_element_size(vc));
- assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch);
- // KQV shape [n_embd/n_head, N, n_head, n_batch]
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- // KQV_merged shape [n_embd/n_head, n_head, N, n_batch]
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch);
- // KQV_merged shape
- // cur = KQV_merged.contiguous().view(n_embd, N)
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = ggml_cpy(ctx0,
- // KQV_merged,
- // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection (no bias)
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].wo,
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // lctx.use_buf(ctx0, 1);
- // inpFF shape [n_embd,N*n_batch,1,1]
- struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA);
- assert_shape_2d(inpFF, n_embd, N*n_batch);
- // feed-forward network
- {
- // norm
- {
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = ffn_norm*cur
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // tmp shape [n_ff,N*n_batch,1,1]
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model->layers[il].w3,
- cur);
- assert_shape_2d(tmp, n_ff, N*n_batch);
- // cur shape [n_ff,N*n_batch,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w1,
- cur);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // SILU activation
- // cur shape [n_ff,N*n_batch,1,1]
- cur = ggml_silu(ctx0, cur);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // cur shape [n_ff,N*n_batch,1,1]
- cur = ggml_mul(ctx0, cur, tmp);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w2,
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_add_inplace(ctx0, cur, inpFF);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // input for next layer
- // inpL shape [n_embd,N*n_batch,1,1]
- inpL = cur;
- assert_shape_2d(inpL, n_embd, N*n_batch);
- }
- // norm
- {
- // inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- // inpL = norm*inpL
- // inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->norm, inpL),
- inpL);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- //embeddings = inpL;
- }
- // lm_head
- // inpL shape [n_vocab,N*n_batch,1,1]
- inpL = ggml_mul_mat(ctx0, model->output, inpL);
- assert_shape_2d(inpL, n_vocab, N*n_batch);
- {
- // inpL shape [n_vocab,N,n_batch,1]
- inpL = ggml_reshape_3d(ctx0,
- inpL,
- n_vocab, N, n_batch);
- assert_shape_3d(inpL, n_vocab, N, n_batch);
- }
- // run the computation
- ggml_build_forward_expand(gf, inpL);
- return inpL;
- }
- struct ggml_tensor * forward_batch_wo_cache(
- struct my_llama_model * model,
- struct ggml_context * ctx0,
- struct ggml_cgraph * gf,
- struct ggml_tensor * tokens_input,
- const int n_tokens,
- const int n_batch) {
- const int n_past = 0;
- const int N = n_tokens;
- const auto & hparams = model->hparams;
- //const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- const int n_ff = get_n_ff(&hparams);
- struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch);
- memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch);
- // inpL shape [n_embd,N*n_batch,1]
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- // lctx.use_buf(ctx0, 0);
- // norm
- {
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- // wq shape [n_embd, n_embd, 1, 1]
- // wk shape [n_embd, n_embd, 1, 1]
- // Qcur shape [n_embd/n_head, n_head, N, n_batch]
- // Kcur shape [n_embd/n_head, n_head, N, n_batch]
- struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
- struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
- assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
- assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
- // Vcur shape [N, n_batch, n_embd/n_head, n_head]
- struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head);
- assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head);
- // Qcur shape [n_embd/n_head, n_head, N, n_batch]
- // Q shape [n_embd/n_head, N, n_head, n_batch]
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch);
- // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
- // K shape [n_embd/n_head, N, n_head, n_batch]
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- Kcur,
- 0, 2, 1, 3);
- assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch);
- // K * Q
- // KQ shape [N, N, n_head, n_batch]
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- assert_shape_4d(KQ, N, N, n_head, n_batch);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- // KQ_scaled shape [N, N, n_head, n_batch]
- struct ggml_tensor * KQ_scaled =
- ggml_scale_inplace(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
- assert_shape_4d(KQ_scaled, N, N, n_head, n_batch);
- // KQ_masked = mask_past(KQ_scaled)
- // KQ_masked shape [N, N, n_head, n_batch]
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- assert_shape_4d(KQ_masked, N, N, n_head, n_batch);
- // KQ = soft_max(KQ_masked)
- // KQ_soft_max shape [N, N, n_head, n_batch]
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- assert_shape_4d(KQ_soft_max, N, N, n_head, n_batch);
- // Vcur shape [N, n_batch, n_embd/n_head, n_head]
- // V shape [N, n_embd/n_head, n_head, n_batch]
- struct ggml_tensor * V =
- ggml_permute(ctx0,
- Vcur,
- 0, 3, 1, 2);
- assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch);
- // KQV shape [n_embd/n_head, N, n_head, n_batch]
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- // KQV_merged shape [n_embd/n_head, n_head, N, n_batch]
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch);
- // KQV_merged shape
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // projection (no bias)
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].wo,
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // lctx.use_buf(ctx0, 1);
- // inpFF shape [n_embd,N*n_batch,1,1]
- struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA);
- assert_shape_2d(inpFF, n_embd, N*n_batch);
- // feed-forward network
- {
- // norm
- {
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = ffn_norm*cur
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // tmp shape [n_ff,N*n_batch,1,1]
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model->layers[il].w3,
- cur);
- assert_shape_2d(tmp, n_ff, N*n_batch);
- // cur shape [n_ff,N*n_batch,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w1,
- cur);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // SILU activation
- // cur shape [n_ff,N*n_batch,1,1]
- cur = ggml_silu(ctx0, cur);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // cur shape [n_ff,N*n_batch,1,1]
- cur = ggml_mul(ctx0, cur, tmp);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w2,
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_add_inplace(ctx0, cur, inpFF);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // input for next layer
- // inpL shape [n_embd,N*n_batch,1,1]
- inpL = cur;
- assert_shape_2d(inpL, n_embd, N*n_batch);
- }
- // norm
- {
- // inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- // inpL = norm*inpL
- // inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->norm, inpL),
- inpL);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- //embeddings = inpL;
- }
- // lm_head
- // inpL shape [n_vocab,N*n_batch,1,1]
- inpL = ggml_mul_mat(ctx0, model->output, inpL);
- assert_shape_2d(inpL, n_vocab, N*n_batch);
- {
- // inpL shape [n_vocab,N,n_batch,1]
- inpL = ggml_reshape_3d(ctx0,
- inpL,
- n_vocab, N, n_batch);
- assert_shape_3d(inpL, n_vocab, N, n_batch);
- }
- // run the computation
- ggml_build_forward_expand(gf, inpL);
- return inpL;
- }
- struct ggml_tensor * forward_batch_wo_cache_flash_attn(
- struct my_llama_model * model,
- struct ggml_context * ctx0,
- struct ggml_cgraph * gf,
- struct ggml_tensor * tokens_input,
- const int n_tokens,
- const int n_batch) {
- const int n_past = 0;
- const int N = n_tokens;
- const auto & hparams = model->hparams;
- //const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- const int n_ff = get_n_ff(&hparams);
- struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch);
- memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch);
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- // wq shape [n_embd, n_embd, 1, 1]
- // wk shape [n_embd, n_embd, 1, 1]
- struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
- struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
- assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
- assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * Vcur = ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, cur, model->layers[il].wv), N, n_batch, n_embd/n_head, n_head);
- assert_shape_4d(Vcur, N, n_batch, n_embd/n_head, n_head);
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- Kcur,
- 0, 2, 1, 3);
- assert_shape_4d(K, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * V =
- ggml_permute(ctx0,
- Vcur,
- 0, 3, 1, 2);
- assert_shape_4d(V, N, n_embd/n_head, n_head, n_batch);
- bool masked = true;
- struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, masked);
- assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch);
- cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model->layers[il].wo,
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- struct ggml_tensor * inpFF = ggml_add_inplace(ctx0, cur, inpSA);
- assert_shape_2d(inpFF, n_embd, N*n_batch);
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model->layers[il].w3,
- cur);
- assert_shape_2d(tmp, n_ff, N*n_batch);
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w1,
- cur);
- assert_shape_2d(cur, n_ff, N*n_batch);
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- assert_shape_2d(cur, n_ff, N*n_batch);
- cur = ggml_mul(ctx0, cur, tmp);
- assert_shape_2d(cur, n_ff, N*n_batch);
- cur = ggml_mul_mat(ctx0,
- model->layers[il].w2,
- cur);
- assert_shape_2d(cur, n_embd, N*n_batch);
- }
- cur = ggml_add_inplace(ctx0, cur, inpFF);
- assert_shape_2d(cur, n_embd, N*n_batch);
- // input for next layer
- inpL = cur;
- assert_shape_2d(inpL, n_embd, N*n_batch);
- }
- // norm
- {
- inpL = ggml_rms_norm(ctx0, inpL);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model->norm, inpL),
- inpL);
- assert_shape_2d(inpL, n_embd, N*n_batch);
- }
- // lm_head
- inpL = ggml_mul_mat(ctx0, model->output, inpL);
- assert_shape_2d(inpL, n_vocab, N*n_batch);
- {
- inpL = ggml_reshape_3d(ctx0,
- inpL,
- n_vocab, N, n_batch);
- assert_shape_3d(inpL, n_vocab, N, n_batch);
- }
- // run the computation
- ggml_build_forward_expand(gf, inpL);
- return inpL;
- }
- // expand the graph nodes without creating leafs.
- struct ggml_tensor * expand(struct ggml_cgraph * g, struct ggml_tensor * t) {
- // check if already visited
- for (int i = 0; i < g->n_nodes; i++) {
- if (g->nodes[i] == t) {
- return t;
- }
- }
- for (int i = 0; i < g->n_leafs; i++) {
- if (g->leafs[i] == t) {
- return t;
- }
- }
- if (t->src0) {
- expand(g, t->src0);
- }
- if (t->src1) {
- expand(g, t->src1);
- }
- for (int i = 0; i < GGML_MAX_OPT; ++i) {
- if (t->opt[i]) {
- expand(g, t->opt[i]);
- }
- }
- GGML_ASSERT(g->n_nodes < GGML_MAX_NODES);
- if (strlen(t->name) == 0) {
- snprintf(t->name, sizeof(t->name), "node_%d", g->n_nodes);
- }
- g->nodes[g->n_nodes] = t;
- g->grads[g->n_nodes] = t->grad;
- g->n_nodes++;
- return t;
- }
- void graph_set_leafs_grads(struct ggml_cgraph * g) {
- // moves leaf nodes to g->leafs.
- // i.e. g->n_nodes might change.
- int n_nodes = 0;
- for (int i = 0; i < g->n_nodes; ++i) {
- struct ggml_tensor * node = g->nodes[i];
- const bool is_leaf = node->op == GGML_OP_NONE && node->grad == NULL;
- if (is_leaf) {
- GGML_ASSERT(g->n_leafs < GGML_MAX_NODES);
- if (strlen(node->name) == 0) {
- snprintf(node->name, sizeof(node->name), "leaf_%d", g->n_leafs);
- }
- g->leafs[g->n_leafs] = node;
- g->n_leafs++;
- } else {
- GGML_ASSERT(n_nodes < GGML_MAX_NODES);
- if (strlen(node->name) == 0) {
- snprintf(node->name, sizeof(node->name), "node_%d", n_nodes);
- }
- g->nodes[n_nodes] = node;
- g->grads[n_nodes] = node->grad;
- n_nodes++;
- }
- }
- for (int i=n_nodes; i < g->n_nodes; ++i) {
- g->nodes[n_nodes] = NULL;
- g->grads[n_nodes] = NULL;
- }
- g->n_nodes = n_nodes;
- }
- struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
- struct my_llama_model * model,
- struct ggml_context * ctx0,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_tensor * * logits,
- struct ggml_tensor * tokens_input,
- struct ggml_tensor * targets,
- void * compute_buf_0,
- void * compute_buf_1,
- size_t size_buf_0,
- size_t size_buf_1,
- const int n_tokens,
- const int n_batch) {
- ggml_set_scratch(ctx0, { 0, 0, nullptr, });
- const int n_past = 0;
- const int N = n_tokens;
- gf->n_nodes = 0;
- gf->n_leafs = 0;
- gf->work_size = 0;
- gf->perf_runs = 0;
- gf->perf_cycles = 0;
- gf->perf_time_us = 0;
- gf->work = NULL;
- const auto & hparams = model->hparams;
- //const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- const int n_ff = get_n_ff(&hparams);
- const int rope_mode = 0;
- int last_buf = -1;
- size_t buf_offs[2] = { 0, 0 };
- size_t buf_size[2] = { size_buf_0,
- size_buf_1 };
- void * buf_data[2] = { compute_buf_0,
- compute_buf_1 };
- auto use_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data] (int buf) {
- size_t last_offs = 0;
- last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, });
- if (last_buf >= 0) {
- buf_offs[last_buf] = last_offs;
- }
- if (buf >= 0) {
- size_t offs = buf_offs[buf];
- size_t size = buf_size[buf];
- void * data = buf_data[buf];
- ggml_set_scratch(ctx0, { offs, size, data, });
- }
- last_buf = buf;
- };
- bool track_max_mem = false;
- size_t buf_maxs[2] = { 0, 0 };
- auto clr_buf = [ctx0, &last_buf, &buf_offs, &buf_size, &buf_data, &buf_maxs, track_max_mem] (int buf) {
- if (buf < 0) return;
- if (track_max_mem) {
- size_t last_offs = 0;
- last_offs = ggml_set_scratch(ctx0, { 0, 0, nullptr, });
- if (last_buf >= 0) {
- buf_offs[last_buf] = last_offs;
- buf_maxs[last_buf] = std::max(buf_maxs[last_buf], buf_offs[last_buf]);
- }
- }
- buf_offs[buf] = 0;
- if (track_max_mem && last_buf >= 0) {
- size_t offs = buf_offs[last_buf];
- size_t size = buf_size[last_buf];
- void * data = buf_data[last_buf];
- ggml_set_scratch(ctx0, { offs, size, data, });
- }
- };
- auto view__q = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * {
- int64_t ne0 = n_embd/n_head;
- int64_t ne1 = N;
- int64_t ne2 = n_head;
- int64_t ne3 = n_batch;
- size_t nb0 = ggml_element_size(t);
- size_t nb1 = nb0*ne0;
- size_t nb2 = nb1*ne1;
- size_t nb3 = nb2*ne2;
- size_t offset = 0;
- return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset);
- };
- auto view__k = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * {
- int64_t ne0 = n_embd/n_head;
- int64_t ne1 = N;
- int64_t ne2 = n_head;
- int64_t ne3 = n_batch;
- size_t nb0 = ggml_element_size(t);
- size_t nb1 = nb0*ne0;
- size_t nb2 = nb1*ne1;
- size_t nb3 = nb2*ne2;
- size_t offset = nb3*ne3;
- return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset);
- };
- auto view__v = [ctx0, n_embd, n_head, N, n_batch] (struct ggml_tensor * t) -> struct ggml_tensor * {
- int64_t ne0 = N;
- int64_t ne1 = n_embd/n_head;
- int64_t ne2 = n_head;
- int64_t ne3 = n_batch;
- size_t nb0 = ggml_element_size(t);
- size_t nb1 = nb0*ne0;
- size_t nb2 = nb1*ne1;
- size_t nb3 = nb2*ne2;
- size_t offset = 2*nb3*ne3;
- return ggml_view_4d(ctx0, t, ne0, ne1, ne2, ne3, nb1, nb2, nb3, offset);
- };
- auto add_or_set = [ctx0] (struct ggml_tensor * a, struct ggml_tensor * b) -> struct ggml_tensor * {
- if (a == NULL) {
- return b;
- } else {
- return ggml_add_inplace(ctx0, a, b);
- }
- };
- use_buf(-1);
- model->tok_embeddings->grad = NULL;
- model->norm->grad = NULL;
- model->output->grad = NULL;
- for (int il = 0; il < n_layer; ++il) {
- struct my_llama_layer & layer = model->layers[il];
- layer.attention_norm->grad = NULL;
- layer.wq->grad = NULL;
- layer.wk->grad = NULL;
- layer.wv->grad = NULL;
- layer.wo->grad = NULL;
- layer.ffn_norm->grad = NULL;
- layer.w1->grad = NULL;
- layer.w2->grad = NULL;
- layer.w3->grad = NULL;
- }
- clr_buf(0);
- clr_buf(1);
- use_buf(-1);
- struct ggml_tensor * t00 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); assert_shape_1d(t00, N*n_batch);
- memcpy(t00->data, tokens_input->data, ggml_element_size(t00)*N*n_batch);
- use_buf(-1);
- struct ggml_tensor * t01 = expand(gf, ggml_get_rows(ctx0, model->tok_embeddings, t00)); assert_shape_2d(t01, n_embd, N*n_batch);
- // need to remember these for the backward pass
- std::vector<struct ggml_tensor *> t02L; t02L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t03L; t03L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t04L; t04L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t05L; t05L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t06L; t06L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t07L; t07L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t08L; t08L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t09L; t09L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t10L; t10L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t11L; t11L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t12L; t12L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t13L; t13L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t14L; t14L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t15L; t15L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t16L; t16L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t17L; t17L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t18L; t18L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t19L; t19L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t20L; t20L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t21L; t21L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t22L; t22L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t23L; t23L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t24L; t24L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t25L; t25L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t26L; t26L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t27L; t27L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t28L; t28L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t29L; t29L.resize(n_layer, NULL);
- std::vector<struct ggml_tensor *> t30L; t30L.resize(n_layer, NULL);
- struct ggml_tensor * cur = t01;
- for (int il = 0; il < n_layer; ++il) {
- clr_buf(0);
- struct my_llama_layer & layer = model->layers[il];
- // tensors with values necessary for backward pass are in persistent buf(-1)
- // other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed.
- use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t02, n_embd, N*n_batch);
- use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t06 = expand(gf, ggml_reshape_4d (ctx0, t05, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
- use_buf(-1); struct ggml_tensor * t07 = expand(gf, ggml_rope_inplace (ctx0, t06, n_past, n_rot, rope_mode)); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
- use_buf(-1); struct ggml_tensor * t08 = expand(gf, ggml_mul_mat (ctx0, layer.wk, t04)); assert_shape_2d(t08, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t09 = expand(gf, ggml_reshape_4d (ctx0, t08, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
- use_buf(-1); struct ggml_tensor * t10 = expand(gf, ggml_rope_inplace (ctx0, t09, n_past, n_rot, rope_mode)); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
- use_buf(-1); struct ggml_tensor * t11 = expand(gf, ggml_mul_mat (ctx0, t04, layer.wv)); assert_shape_2d(t11, N*n_batch, n_embd);
- use_buf(-1); struct ggml_tensor * t12 = expand(gf, ggml_reshape_4d (ctx0, t11, N, n_batch, n_embd/n_head, n_head)); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
- use_buf(-1); struct ggml_tensor * t13 = expand(gf, ggml_permute (ctx0, t07, 0, 2, 1, 3)); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
- use_buf(-1); struct ggml_tensor * t14 = expand(gf, ggml_permute (ctx0, t10, 0, 2, 1, 3)); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
- use_buf(-1); struct ggml_tensor * t15 = expand(gf, ggml_permute (ctx0, t12, 0, 3, 1, 2)); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
- use_buf(-1); struct ggml_tensor * t16 = expand(gf, ggml_flash_attn (ctx0, t13, t14, t15, true)); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
- use_buf( 0); struct ggml_tensor * t17 = expand(gf, ggml_permute (ctx0, t16, 0, 2, 1, 3)); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
- use_buf(-1); struct ggml_tensor * t18 = expand(gf, ggml_cont (ctx0, t17)); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
- use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch);
- use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21)); assert_shape_2d(t22, n_embd, N*n_batch);
- use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch);
- use_buf(-1); struct ggml_tensor * t26 = expand(gf, ggml_mul_mat (ctx0, layer.w1, t24)); assert_shape_2d(t26, n_ff, N*n_batch);
- use_buf(-1); struct ggml_tensor * t27 = expand(gf, ggml_silu (ctx0, t26)); assert_shape_2d(t27, n_ff, N*n_batch);
- use_buf(-1); struct ggml_tensor * t28 = expand(gf, ggml_mul (ctx0, t27, t25)); assert_shape_2d(t28, n_ff, N*n_batch);
- use_buf( 0); struct ggml_tensor * t29 = expand(gf, ggml_mul_mat (ctx0, layer.w2, t28)); assert_shape_2d(t29, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t30 = expand(gf, ggml_add (ctx0, t21, t29)); assert_shape_2d(t30, n_embd, N*n_batch);
- t02L[il] = t02;
- t03L[il] = t03;
- t04L[il] = t04;
- t05L[il] = t05;
- t06L[il] = t06;
- t07L[il] = t07;
- t08L[il] = t08;
- t09L[il] = t09;
- t10L[il] = t10;
- t11L[il] = t11;
- t12L[il] = t12;
- t13L[il] = t13;
- t14L[il] = t14;
- t15L[il] = t15;
- t16L[il] = t16;
- t17L[il] = t17;
- t18L[il] = t18;
- t19L[il] = t19;
- t20L[il] = t20;
- t21L[il] = t21;
- t22L[il] = t22;
- t23L[il] = t23;
- t24L[il] = t24;
- t25L[il] = t25;
- t26L[il] = t26;
- t27L[il] = t27;
- t28L[il] = t28;
- t29L[il] = t29;
- t30L[il] = t30;
- cur = t30;
- }
- clr_buf(0);
- use_buf(0);
- struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t31, n_embd, N*n_batch);
- struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch);
- struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch);
- use_buf(-1);
- struct ggml_tensor * t34 = expand(gf, ggml_mul_mat (ctx0, model->output, t33)); assert_shape_2d(t34, n_vocab, N*n_batch);
- struct ggml_tensor * t35 = expand(gf, ggml_reshape_3d(ctx0, t34, n_vocab, N, n_batch)); assert_shape_3d(t35, n_vocab, N, n_batch);
- struct ggml_tensor * t36 = expand(gf, ggml_cross_entropy_loss(ctx0, t35, targets)); assert_shape_1d(t36, 1);
- {
- /*
- tok_embeddings | grad_tok_embeddings = ggml_get_rows_back(grad_t01, t00)
- L0_att_norm | grad_L0_att_norm = ggml_repeat_back(grad_t03L0, L0_att_norm.shape)
- L0_wq | grad_L0_wq = ggml_out_prod(t04L0, grad_t05L0)
- L0_wk | grad_L0_wk = ggml_out_prod(t04L0, grad_t08L0)
- L0_wv | grad_L0_wv = ggml_out_prod(t04L0, ggml_transpose(grad_t11L0))
- L0_wo | grad_L0_wo = ggml_out_prod(t19L0, grad_t20L0)
- L0_ffn_norm | grad_L0_ffn_norm = ggml_repeat_back(grad_t23L0, L0_ffn_norm.shape)
- L0_w1 | grad_L0_w1 = ggml_out_prod(t24L0, grad_t26L0)
- L0_w2 | grad_L0_w2 = ggml_out_prod(t28L0, grad_t29L0)
- L0_w3 | grad_L0_w3 = ggml_out_prod(t24L0, grad_t25L0)
- L1_att_norm | grad_L1_att_norm = ggml_repeat_back(grad_t03L1, L1_att_norm.shape)
- L1_wq | grad_L1_wq = ggml_out_prod(t04L1, grad_t05L1)
- L1_wk | grad_L1_wk = ggml_out_prod(t04L1, grad_t08L1)
- L1_wv | grad_L1_wv = ggml_out_prod(t04L1, ggml_transpose(grad_t11L1))
- L1_wo | grad_L1_wo = ggml_out_prod(t19L1, grad_t20L1)
- L1_ffn_norm | grad_L1_ffn_norm = ggml_repeat_back(grad_t23L1, L1_ffn_norm.shape)
- L1_w1 | grad_L1_w1 = ggml_out_prod(t24L1, grad_t26L1)
- L1_w2 | grad_L1_w2 = ggml_out_prod(t28L1, grad_t29L1)
- L1_w3 | grad_L1_w3 = ggml_out_prod(t24L1, grad_t25L1)
- norm | grad_norm = ggml_repeat_back(grad_t32, norm.shape)
- output | grad_output = ggml_out_prod(t33, grad_t34)
- |
- t01 = ggml_get_rows(tok_embeddings, t00) | grad_t01 = grad_t21L0 + ggml_rms_norm_back(t01, grad_t02L0)
- for layer: |
- t02L0*= ggml_rms_norm (t01) | grad_t02L0 = ggml_mul(grad_t04L0, t03L0)
- t03L0 = ggml_repeat (L0_att_norm, t02L0_shape) | grad_t03L0 = ggml_mul(grad_t04L0, t02L0)
- t04L0*= ggml_mul (t02L0, t03L0) | grad_t04L0 = ggml_out_prod(L0_wv, grad_t11L0) + ggml_out_prod(L0_wk, ggml_transpose(grad_t08L0)) + ggml_out_prod(L0_wq, ggml_transpose(grad_t05L0))
- t05L0 = ggml_mul_mat (L0_wq, t04L0) | grad_t05L0 = ggml_reshape(grad_t06L0, t05L0_shape)
- t06L0 = ggml_reshape_4d (t05L0, n_embd/n_head, n_head, N, n_batch) | grad_t06L0 = ggml_rope_back(grad_t07L0)
- t07L0 = ggml_rope_inplace (t06L0) | grad_t07L0 = ggml_permute_back(grad_t13L0, 0, 2, 1, 3) = ggml_permute(grad_t13L0, 0, 2, 1, 3)
- t08L0 = ggml_mul_mat (L0_wk, t04L0) | grad_t08L0 = ggml_reshape(grad_t09L0, t08L0_shape)
- t09L0 = ggml_reshape_4d (t08L0, n_embd/n_head, n_head, N, n_batch) | grad_t09L0 = ggml_rope_back(grad_t10L0)
- t10L0 = ggml_rope_inplace (t09L0) | grad_t10L0 = ggml_permute_back(grad_t14L0, 0, 2, 1, 3) = ggml_permute(grad_t14L0, 0, 2, 1, 3)
- t11L0 = ggml_mul_mat (t04L0, L0_wv) | grad_t11L0 = ggml_reshape(grad_t12L0, t11L0_shape)
- t12L0 = ggml_reshape_4d (t11L0, N, n_batch, n_embd/n_head, n_head) | grad_t12L0 = ggml_permute_back(grad_t15L0, 0, 3, 1, 2) = ggml_permute(grad_t15L0, 0, 2, 3, 1)
- t13L0*= ggml_permute (t07L0, 0, 2, 1, 3) | grad_t13L0 = view__q(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0))
- t14L0*= ggml_permute (t10L0, 0, 2, 1, 3) | grad_t14L0 = view__k(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0))
- t15L0*= ggml_permute (t12L0, 0, 3, 1, 2) | grad_t15L0 = view__v(ggml_flash_attn_back(t13L0, t14L0, t15L0, grad_t16L0))
- t16L0 = ggml_flash_attn (t13L0, t14L0, t15L0) | grad_t16L0 = ggml_permute_back(grad_t17L0, 0, 2, 1, 3) = ggml_permute(grad_t17L0, 0, 2, 1, 3)
- t17L0 = ggml_permute (t16L0, 0, 2, 1, 3) | grad_t17L0 = grad_t18L0
- t18L0 = ggml_cont (t17L0) | grad_t18L0 = ggml_reshape(grad_t19L0, t18L0_shape)
- t19L0*= ggml_reshape_2d (t18L0, n_embd, N*n_batch) | grad_t19L0 = ggml_out_prod(L0_wo, ggml_transpose(grad_t20L0))
- t20L0 = ggml_mul_mat (L0_wo, t19L0) | grad_t20L0 = grad_t21L0
- t21L0*= ggml_add (t20L0, t01) | grad_t21L0 = grad_t30L0 + ggml_rms_norm_back(t21L0, grad_t22L0)
- t22L0*= ggml_rms_norm (t21L0) | grad_t22L0 = ggml_mul(grad_t24L0, t23L0)
- t23L0 = ggml_repeat (L0_ffn_norm, t22L0_shape) | grad_t23L0 = ggml_mul(grad_t24L0, t22L0)
- t24L0*= ggml_mul (t23L0, t22L0) | grad_t24L0 = ggml_out_prod(L0_w1, ggml_transpose(grad_t26L0)) + ggml_out_prod(L0_w3, ggml_transpose(grad_t25L0))
- t25L0*= ggml_mul_mat (L0_w3, t24L0) | grad_t25L0 = ggml_mul(grad_t28L0, t27L0)
- t26L0*= ggml_mul_mat (L0_w1, t24L0) | grad_t26L0 = ggml_silu_back(t26L0, grad_t27L0)
- t27L0*= ggml_silu (t26L0) | grad_t27L0 = ggml_mul(grad_t28L0, t25L0)
- t28L0*= ggml_mul (t27L0, t25L0) | grad_t28L0 = ggml_out_prod(L0_w2, ggml_transpose(grad_t29L0))
- t29L0 = ggml_mul_mat (L0_w2, t28L0) | grad_t29L0 = grad_t30L0
- t30L0*= ggml_add (t21L0, t29L0) | grad_t30L0 = ggml_rms_norm_back(t30L0, grad_t02L1) + grad_t21L1
- ^
- t02L1*= ggml_rms_norm (t30L0) | grad_t02L1 = ggml_mul(grad_t04L1, t03L1)
- t03L1 = ggml_repeat (L1_att_norm, t02L1_shape) | grad_t03L1 = ggml_mul(grad_t04L1, t02L1)
- t04L1*= ggml_mul (t02L1, t03L1) | grad_t04L1 = ggml_out_prod(L1_wv, grad_t11L1) + ggml_out_prod(L1_wk, ggml_transpose(grad_t08L1)) + ggml_out_prod(L1_wq, ggml_transpose(grad_t05L1))
- t05L1 = ggml_mul_mat (L1_wq, t04L1) | grad_t05L1 = ggml_reshape(grad_t06L1, t05L1_shape)
- t06L1 = ggml_reshape_4d (t05L1, n_embd/n_head, n_head, N, n_batch) | grad_t06L1 = ggml_rope_back(grad_t07L1)
- t07L1 = ggml_rope_inplace (t06L1) | grad_t07L1 = ggml_permute_back(grad_t13L1, 0, 2, 1, 3) = ggml_permute(grad_t13L1, 0, 2, 1, 3)
- t08L1 = ggml_mul_mat (L1_wk, t04L1) | grad_t08L1 = ggml_reshape(grad_t09L1, t08L1_shape)
- t09L1 = ggml_reshape_4d (t08L1, n_embd/n_head, n_head, N, n_batch) | grad_t09L1 = ggml_rope_back(grad_t10L1)
- t10L1 = ggml_rope_inplace (t09L1) | grad_t10L1 = ggml_permute_back(grad_t14L1, 0, 2, 1, 3) = ggml_permute(grad_t14L1, 0, 2, 1, 3)
- t11L1 = ggml_mul_mat (t04L1, L1_wv) | grad_t11L1 = ggml_reshape(grad_t12L1, t11L1_shape)
- t12L1 = ggml_reshape_4d (t11L1, N, n_batch, n_embd/n_head, n_head) | grad_t12L1 = ggml_permute_back(grad_t15L1, 0, 3, 1, 2) = ggml_permute(grad_t15L1, 0, 2, 3, 1)
- t13L1*= ggml_permute (t07L1, 0, 2, 1, 3) | grad_t13L1 = view__q(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1))
- t14L1*= ggml_permute (t10L1, 0, 2, 1, 3) | grad_t14L1 = view__k(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1))
- t15L1*= ggml_permute (t12L1, 0, 3, 1, 2) | grad_t15L1 = view__v(ggml_flash_attn_back(t13L1, t14L1, t15L1, grad_t16L1))
- t16L1 = ggml_flash_attn (t13L1, t14L1, t15L1) | grad_t16L1 = ggml_permute_back(grad_t17L1, 0, 2, 1, 3) = ggml_permute(grad_t17L1, 0, 2, 1, 3)
- t17L1 = ggml_permute (t16L1, 0, 2, 1, 3) | grad_t17L1 = grad_t18L1
- t18L1 = ggml_cont (t17L1) | grad_t18L1 = ggml_reshape(grad_t19L1, t18L1_shape)
- t19L1*= ggml_reshape_2d (t18L1, n_embd, N*n_batch) | grad_t19L1 = ggml_out_prod(L1_wo, ggml_transpose(grad_t20L1))
- t20L1 = ggml_mul_mat (L1_wo, t19L1) | grad_t20L1 = grad_t21L1
- t21L1*= ggml_add (t20L1, t30L0) | grad_t21L1 = grad_t30L1 + ggml_rms_norm_back(t21L1, grad_t22L1)
- t22L1*= ggml_rms_norm (t21L1) | grad_t22L1 = ggml_mul(grad_t24L1, t23L1)
- t23L1 = ggml_repeat (L1_ffn_norm, t22L1_shape) | grad_t23L1 = ggml_mul(grad_t24L1, t22L1)
- t24L1*= ggml_mul (t23L1, t22L1) | grad_t24L1 = ggml_out_prod(L1_w1, ggml_transpose(grad_t26L1)) + ggml_out_prod(L1_w3, ggml_transpose(grad_t25L1))
- t25L1*= ggml_mul_mat (L1_w3, t24L1) | grad_t25L1 = ggml_mul(grad_t28L1, t27L1)
- t26L1*= ggml_mul_mat (L1_w1, t24L1) | grad_t26L1 = ggml_silu_back(t26L1, grad_t27L1)
- t27L1*= ggml_silu (t26L1) | grad_t27L1 = ggml_mul(grad_t28L1, t25L1)
- t28L1*= ggml_mul (t27L1, t25L1) | grad_t28L1 = ggml_out_prod(L1_w2, ggml_transpose(grad_t29L1))
- t29L1 = ggml_mul_mat (L1_w2, t28L1) | grad_t29L1 = grad_t30L1
- t30L1*= ggml_add (t21L1, t29L1) | grad_t30L1 = ggml_rms_norm_back(t30L1, grad_t31)
- ^
- t31 = ggml_rms_norm (t30L1) | grad_t31 = ggml_mul(grad_t33, t32)
- t32 = ggml_repeat (norm, t31.shape) | grad_t32 = ggml_mul(grad_t33, t31)
- t33 = ggml_mul (t32, t31) | grad_t33 = ggml_out_prod(output, ggml_transpose(grad_t34))
- t34 = ggml_mul_mat (output, t33) | grad_t34 = ggml_reshape(grad_t35, t34.shape)
- t35 = ggml_reshape_3d (t34, n_vocab, N, n_batch) | grad_t35 = ggml_cross_entropy_loss_back(t35, targets, grad_t36)
- t36 = ggml_cross_entropy_loss(t35, targets) | grad_t36 = 1 (optimizer)
- tensors marked with * need to be stored until grad computation
- tensors during grad computation are all temporary
- */
- }
- *gb = *gf;
- // t36->grad gets set to one by optimizer, so we need the tensor.
- // initialize it with 1.0f to make sure.
- use_buf(-1);
- t36->grad = expand(gb, ggml_new_f32(ctx0, 1.0f));
- use_buf(0);
- t35->grad = expand(gb, ggml_cross_entropy_loss_back(ctx0, t35, targets, t36->grad)); assert_shape_3d(t35->grad, n_vocab, N, n_batch);
- t34->grad = expand(gb, ggml_reshape_2d (ctx0, t35->grad, n_vocab, N*n_batch)); assert_shape_2d(t34->grad, n_vocab, N*n_batch);
- t33->grad = expand(gb, ggml_out_prod (ctx0, model->output, ggml_transpose(ctx0, t34->grad))); assert_shape_2d(t33->grad, n_embd, N*n_batch);
- t32->grad = expand(gb, ggml_mul (ctx0, t33->grad, t31)); assert_shape_2d(t32->grad, n_embd, N*n_batch);
- use_buf(-1);
- model->norm->grad = expand(gb, add_or_set(model->norm->grad, ggml_repeat_back(ctx0, t32->grad, model->norm))); assert_shape_1d(model->norm->grad, n_embd);
- model->output->grad = expand(gb, add_or_set(model->output->grad, ggml_out_prod(ctx0, t33, t34->grad))); assert_shape_2d(model->output->grad, n_embd, n_vocab);
- clr_buf(1);
- use_buf(1);
- t31->grad = expand(gb, ggml_mul(ctx0, t33->grad, t32)); assert_shape_2d(t31->grad, n_embd, N*n_batch);
- struct ggml_tensor * back_layer_inp = t31;
- struct ggml_tensor * grad_layer_inp = NULL;
- for (int k = 0; k < n_layer; ++k) {
- int il = n_layer-1-k;
- struct my_llama_layer & layer = model->layers[il];
- struct ggml_tensor * t02 = t02L[il];
- struct ggml_tensor * t03 = t03L[il];
- struct ggml_tensor * t04 = t04L[il];
- struct ggml_tensor * t05 = t05L[il];
- struct ggml_tensor * t06 = t06L[il];
- struct ggml_tensor * t07 = t07L[il];
- struct ggml_tensor * t08 = t08L[il];
- struct ggml_tensor * t09 = t09L[il];
- struct ggml_tensor * t10 = t10L[il];
- struct ggml_tensor * t11 = t11L[il];
- struct ggml_tensor * t12 = t12L[il];
- struct ggml_tensor * t13 = t13L[il];
- struct ggml_tensor * t14 = t14L[il];
- struct ggml_tensor * t15 = t15L[il];
- struct ggml_tensor * t16 = t16L[il];
- struct ggml_tensor * t17 = t17L[il];
- struct ggml_tensor * t18 = t18L[il];
- struct ggml_tensor * t19 = t19L[il];
- struct ggml_tensor * t20 = t20L[il];
- struct ggml_tensor * t21 = t21L[il];
- struct ggml_tensor * t22 = t22L[il];
- struct ggml_tensor * t23 = t23L[il];
- struct ggml_tensor * t24 = t24L[il];
- struct ggml_tensor * t25 = t25L[il];
- struct ggml_tensor * t26 = t26L[il];
- struct ggml_tensor * t27 = t27L[il];
- struct ggml_tensor * t28 = t28L[il];
- struct ggml_tensor * t29 = t29L[il];
- struct ggml_tensor * t30 = t30L[il];
- clr_buf(0);
- use_buf(0);
- t30->grad = expand(gb, ggml_rms_norm_back(ctx0, t30, back_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch);
- if (grad_layer_inp) {
- t30->grad = expand(gb, ggml_add(ctx0, t30->grad, grad_layer_inp->grad)); assert_shape_2d(t30->grad, n_embd, N*n_batch);
- }
- clr_buf(1);
- t29->grad = t30->grad; assert_shape_2d(t29->grad, n_embd, N*n_batch);
- t28->grad = expand(gb, ggml_out_prod(ctx0, layer.w2, ggml_transpose(ctx0, t29->grad))); assert_shape_2d(t28->grad, n_ff, N*n_batch);
- t27->grad = expand(gb, ggml_mul(ctx0, t28->grad, t25)); assert_shape_2d(t27->grad, n_ff, N*n_batch);
- t26->grad = expand(gb, ggml_silu_back(ctx0, t26, t27->grad)); assert_shape_2d(t26->grad, n_ff, N*n_batch);
- t25->grad = expand(gb, ggml_mul(ctx0, t28->grad, t27)); assert_shape_2d(t25->grad, n_ff, N*n_batch);
- t24->grad = expand(gb, ggml_add_inplace(ctx0,
- ggml_out_prod(ctx0, layer.w1, ggml_transpose(ctx0, t26->grad)),
- ggml_out_prod(ctx0, layer.w3, ggml_transpose(ctx0, t25->grad)))); assert_shape_2d(t24->grad, n_embd, N*n_batch);
- t23->grad = expand(gb, ggml_mul(ctx0, t24->grad, t22)); assert_shape_2d(t23->grad, n_embd, N*n_batch);
- t22->grad = expand(gb, ggml_mul(ctx0, t24->grad, ggml_repeat(ctx0, layer.ffn_norm, t24->grad))); assert_shape_2d(t22->grad, n_embd, N*n_batch);
- use_buf(1);
- t21->grad = expand(gb, ggml_add(ctx0, t30->grad, ggml_rms_norm_back(ctx0, t21, t22->grad))); assert_shape_2d(t21->grad, n_embd, N*n_batch);
- grad_layer_inp = t21;
- use_buf(0);
- t20->grad = t21->grad; assert_shape_2d(t20->grad, n_embd, N*n_batch);
- t19->grad = expand(gb, ggml_out_prod(ctx0, layer.wo, ggml_transpose(ctx0, t20->grad))); assert_shape_2d(t19->grad, n_embd, N*n_batch);
- t18->grad = expand(gb, ggml_reshape_4d(ctx0, t19->grad, n_embd/n_head, n_head, N, n_batch)); assert_shape_4d(t18->grad, n_embd/n_head, n_head, N, n_batch);
- t17->grad = t18->grad; assert_shape_4d(t17->grad, n_embd/n_head, n_head, N, n_batch);
- t16->grad = expand(gb, ggml_permute(ctx0, t17->grad, 0, 2, 1, 3)); assert_shape_4d(t16->grad, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * flash_attn = expand(gb, ggml_flash_attn_back(ctx0, t13, t14, t15, t16->grad, true)); assert_shape_4d(flash_attn, n_embd/n_head, N*3, n_head, n_batch);
- t15->grad = expand(gb, view__v(flash_attn)); assert_shape_4d(t15->grad, N, n_embd/n_head, n_head, n_batch);
- t14->grad = expand(gb, view__k(flash_attn)); assert_shape_4d(t14->grad, n_embd/n_head, N, n_head, n_batch);
- t13->grad = expand(gb, view__q(flash_attn)); assert_shape_4d(t13->grad, n_embd/n_head, N, n_head, n_batch);
- t12->grad = expand(gb, ggml_permute(ctx0, t15->grad, 0, 2, 3, 1)); assert_shape_4d(t12->grad, N, n_batch, n_embd/n_head, n_head);
- t11->grad = expand(gb, ggml_reshape_2d(ctx0, ggml_cont(ctx0, t12->grad), N*n_batch, n_embd)); assert_shape_2d(t11->grad, N*n_batch, n_embd);
- t10->grad = expand(gb, ggml_permute(ctx0, t14->grad, 0, 2, 1, 3)); assert_shape_4d(t10->grad, n_embd/n_head, n_head, N, n_batch);
- t09->grad = expand(gb, ggml_rope_back(ctx0, t10->grad, n_past, n_rot, rope_mode)); assert_shape_4d(t09->grad, n_embd/n_head, n_head, N, n_batch);
- t08->grad = expand(gb, ggml_reshape_2d(ctx0, t09->grad, n_embd, N*n_batch)); assert_shape_2d(t08->grad, n_embd, N*n_batch);
- t07->grad = expand(gb, ggml_permute(ctx0, t13->grad, 0, 2, 1, 3)); assert_shape_4d(t07->grad, n_embd/n_head, n_head, N, n_batch);
- t06->grad = expand(gb, ggml_rope_back(ctx0, t07->grad, n_past, n_rot, rope_mode)); assert_shape_4d(t06->grad, n_embd/n_head, n_head, N, n_batch);
- t05->grad = expand(gb, ggml_reshape_2d(ctx0, t06->grad, n_embd, N*n_batch)); assert_shape_2d(t05->grad, n_embd, N*n_batch);
- t04->grad = expand(gb, ggml_add_inplace(ctx0,
- ggml_add_inplace(ctx0,
- ggml_out_prod(ctx0, layer.wv, t11->grad),
- ggml_out_prod(ctx0, layer.wk, ggml_transpose(ctx0, t08->grad))),
- ggml_out_prod(ctx0, layer.wq, ggml_transpose(ctx0, t05->grad)))); assert_shape_2d(t04->grad, n_embd, N*n_batch);
- t03->grad = expand(gb, ggml_mul(ctx0, t04->grad, t02)); assert_shape_2d(t04->grad, n_embd, N*n_batch);
- use_buf(1);
- t02->grad = expand(gb, ggml_mul(ctx0, t04->grad, ggml_repeat(ctx0, layer.attention_norm, t02))); assert_shape_2d(t02->grad, n_embd, N*n_batch);
- back_layer_inp = t02;
- // use_buf(0);
- use_buf(-1);
- layer.attention_norm->grad = expand(gb, add_or_set(layer.attention_norm->grad, ggml_repeat_back(ctx0, t03->grad, layer.attention_norm))); assert_shape_1d(layer.attention_norm->grad, n_embd);
- layer.wq->grad = expand(gb, add_or_set(layer.wq->grad, ggml_out_prod(ctx0, t04, t05->grad))); assert_shape_2d(layer.wq->grad, n_embd, n_embd);
- layer.wk->grad = expand(gb, add_or_set(layer.wk->grad, ggml_out_prod(ctx0, t04, t08->grad))); assert_shape_2d(layer.wk->grad, n_embd, n_embd);
- layer.wv->grad = expand(gb, add_or_set(layer.wv->grad, ggml_out_prod(ctx0, t04, ggml_transpose(ctx0, t11->grad)))); assert_shape_2d(layer.wv->grad, n_embd, n_embd);
- layer.wo->grad = expand(gb, add_or_set(layer.wo->grad, ggml_out_prod(ctx0, t19, t20->grad))); assert_shape_2d(layer.wo->grad, n_embd, n_embd);
- layer.ffn_norm->grad = expand(gb, add_or_set(layer.ffn_norm->grad, ggml_repeat_back(ctx0, t23->grad, layer.ffn_norm))); assert_shape_1d(layer.ffn_norm->grad, n_embd);
- layer.w1->grad = expand(gb, add_or_set(layer.w1->grad, ggml_out_prod(ctx0, t24, t26->grad))); assert_shape_2d(layer.w1->grad, n_embd, n_ff);
- layer.w2->grad = expand(gb, add_or_set(layer.w2->grad, ggml_out_prod(ctx0, t28, t29->grad))); assert_shape_2d(layer.w2->grad, n_ff, n_embd);
- layer.w3->grad = expand(gb, add_or_set(layer.w3->grad, ggml_out_prod(ctx0, t24, t25->grad))); assert_shape_2d(layer.w3->grad, n_embd, n_ff);
- // use_buf(0);
- }
- clr_buf(0);
- use_buf(0);
- t01->grad = expand(gb, ggml_add_inplace(ctx0, grad_layer_inp->grad, ggml_rms_norm_back(ctx0, t01, back_layer_inp->grad))); assert_shape_2d(t01->grad, n_embd, N*n_batch);
- use_buf(-1);
- model->tok_embeddings->grad = expand(gb, ggml_get_rows_back(ctx0, t01->grad, t00, model->tok_embeddings)); assert_shape_2d(model->tok_embeddings->grad, n_embd, n_vocab);
- // clr_buf(1);
- // clr_buf(0);
- *logits = t35;
- if (track_max_mem) {
- printf("%s: max size compute buf0: %zu\n", __func__, buf_maxs[0]);
- printf("%s: max size compute buf1: %zu\n", __func__, buf_maxs[1]);
- }
- // now that all grads are created, set the graph leafs and grads
- graph_set_leafs_grads(gf);
- graph_set_leafs_grads(gb);
- return t36;
- }
- void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]);
- *ptr = value;
- }
- void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *ptr = value;
- }
- void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) {
- int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- *ptr = value;
- }
- float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- return *ptr;
- }
- int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
- int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- return *ptr;
- }
- void print_row(struct ggml_tensor * probs, int i) {
- for (int k = 0; k < probs->ne[0]; ++k) {
- float p = get_f32_2d(probs, k, i);
- printf(" %.2f", p);
- }
- printf("\n");
- }
- void print_matrix(struct ggml_tensor * probs) {
- assert(probs->n_dims == 2);
- for (int i = 0; i < probs->ne[1]; ++i) {
- for (int k = 0; k < probs->ne[0]; ++k) {
- float p = get_f32_2d(probs, k, i);
- printf(" %.2f", p);
- }
- printf("\n");
- }
- }
- void print_token(struct llama_context * ctx, llama_token token) {
- printf("%s", llama_token_to_str(ctx, token));
- }
- void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) {
- for (int i=0; i<tokens->ne[0]; ++i) {
- int token = ggml_get_i32_1d(tokens, i);
- print_token(ctx, token);
- }
- }
- void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens) {
- for (int i1=0; i1<tokens->ne[1]; ++i1) {
- //int num_newline = 0;
- for (int i0=0; i0<tokens->ne[0]; ++i0) {
- int token = get_i32_2d(tokens, i0, i1);
- print_token(ctx, token);
- // bool isnl = (token == llama_token_nl());
- // if (isnl) {
- // ++num_newline;
- // }
- // if (isnl) {
- // if (num_newline < 2) {
- // print_token(ctx, token);
- // } else {
- // printf("\\n");
- // }
- // } else {
- // print_token(ctx, token);
- // }
- }
- printf("\n--\n");
- }
- }
- void get_example_targets(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
- int n_tokens = tokens_input->ne[0];
- int n_vocab = target_logits->ne[0];
- size_t sample = train_samples[example_id % n_train_samples];
- GGML_ASSERT(sample+n_tokens-1 < n_train_data);
- ggml_set_f32(target_logits, -1.0f/n_vocab);
- ggml_set_f32(target_probs, 0.0f);
- ggml_set_i32_1d(tokens_input, 0, llama_token_bos());
- for (int i=1; i<n_tokens+1; ++i) {
- int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
- set_f32_2d(target_logits, token, i-1, +1.0f);
- set_f32_2d(target_probs, token, i-1, +1.0f);
- if (i<n_tokens) {
- ggml_set_i32_1d(tokens_input, i, token);
- }
- }
- }
- void get_example_targets_batch(struct llama_context * /*lctx*/, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
- GGML_ASSERT(tokens_input->n_dims == 2);
- GGML_ASSERT(target_logits->n_dims == 3);
- GGML_ASSERT(target_probs->n_dims == 3);
- int n_vocab = target_logits->ne[0];
- int n_tokens = tokens_input->ne[0];
- int n_batch = tokens_input->ne[1];
- GGML_ASSERT(n_tokens == target_logits->ne[1]);
- GGML_ASSERT(n_batch == target_logits->ne[2]);
- GGML_ASSERT(n_vocab == target_probs->ne[0]);
- GGML_ASSERT(n_tokens == target_probs->ne[1]);
- GGML_ASSERT(n_batch == target_probs->ne[2]);
- ggml_set_f32(target_logits, -1.0f/n_vocab);
- ggml_set_f32(target_probs, 0.0f);
- for (int k=0; k<n_batch; ++k) {
- // printf("%s: batch %d\n", __func__, k);
- size_t sample = train_samples[(example_id*n_batch + k) % n_train_samples];
- GGML_ASSERT(sample+n_tokens-1 < n_train_data);
- set_i32_2d(tokens_input, 0, k, llama_token_bos());
- for (int i=1; i<n_tokens+1; ++i) {
- int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
- // print_token(lctx, token);
- set_f32_3d(target_logits, token, i-1, k, +1.0f);
- set_f32_3d(target_probs, token, i-1, k, +1.0f);
- if (i<n_tokens) {
- set_i32_2d(tokens_input, i, k, token);
- }
- }
- // printf("\n=\n");
- // for (int i=0; i<n_tokens; ++i) {
- // int token = get_i32_2d(tokens_input, i, k);
- // print_token(lctx, token);
- // }
- // printf("\n-\n");
- }
- }
- void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs, int n_shift) {
- int n_tokens = tokens_input->ne[0];
- int n_vocab = target_logits->ne[0];
- for (int i=0; i<n_tokens-n_shift; ++i) {
- ggml_set_i32_1d(tokens_input, i, ggml_get_i32_1d(tokens_input, i + n_shift));
- for (int k=0; k<n_vocab; ++k) {
- ggml_set_f32_1d(target_logits, i*n_vocab + k, ggml_get_f32_1d(target_logits, (i + n_shift)*n_vocab + k));
- ggml_set_f32_1d(target_probs, i*n_vocab + k, ggml_get_f32_1d(target_probs, (i + n_shift)*n_vocab + k));
- }
- }
- }
- struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * target) {
- return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, target, a)));
- }
- struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * probs) {
- return ggml_cross_entropy_loss(ctx, a, probs);
- }
- #ifdef __GNUC__
- #ifdef __MINGW32__
- __attribute__((format(gnu_printf, 1, 2)))
- #else
- __attribute__((format(printf, 1, 2)))
- #endif
- #endif
- static std::string format(const char * fmt, ...) {
- va_list ap, ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX);
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- size = 0;
- } else {
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, size, 1, fp);
- if (ferror(fp)) {
- throw std::runtime_error(format("read error: %s", strerror(errno)));
- }
- if (ret != 1) {
- throw std::runtime_error(std::string("unexpectedly reached end of file"));
- }
- }
- std::uint32_t read_u32() {
- std::uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- std::string read_string(std::uint32_t len) {
- std::vector<char> chars(len);
- read_raw(chars.data(), len);
- return std::string(chars.data(), len);
- }
- void write_raw(const void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, size, 1, fp);
- if (ret != 1) {
- throw std::runtime_error(format("write error: %s", strerror(errno)));
- }
- }
- void write_u32(std::uint32_t val) {
- write_raw(&val, sizeof(val));
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) {
- struct llama_file f(filename, "rb");
- std::vector<char> buf;
- buf.resize(f.size+1);
- f.read_raw(buf.data(), f.size);
- buf[f.size] = '\0';
- out.resize(buf.size());
- int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false);
- if (n_tokens >= 0) {
- out.resize(n_tokens);
- }
- bool verify = false;
- if (verify) {
- const char * in = buf.data();
- const char * end = buf.data() + buf.size();
- for (int i = 0; i < (int) out.size(); ++i) {
- const char * s = llama_token_to_str(lctx, out[i]);
- int len = strlen(s);
- if (in >= end) {
- printf("%s: unexpected end of original text.\n", __func__);
- break;
- }
- const bool matches = (strncmp(in, s, len) == 0);
- if (matches) {
- in += len;
- } else {
- printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s);
- }
- }
- }
- return n_tokens;
- }
- void shuffle_ints(int * begin, int * end) {
- if (end <= begin) return;
- int max=begin[0];
- for (int i=1; i<end-begin; ++i) {
- if (begin[i] > max) {
- max = begin[i];
- }
- }
- std::vector<float> vals;
- vals.resize(max+1);
- for (int i=0; i<max+1; ++i) {
- vals[i] = frand();
- }
- std::sort(begin, end, [&vals](int a, int b){
- return vals.at(a) < vals.at(b);
- });
- }
- struct my_llama_sampler_params {
- float temp = 0.0f; // <= 0.0 disabled
- int top_k = 20; // <= 0 to use vocab size
- float top_p = 0.95f; // 1.0 = disabled
- float tfs_z = 1.00f; // 1.0 = disabled
- float typical_p = 1.00f; // 1.0 = disabled
- int repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float repeat_penalty = 1.0f; // 1.0 = disabled
- float alpha_presence = 0.0f; // 0.0 = disabled
- float alpha_frequency = 0.0f; // 0.0 = disabled
- int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
- float mirostat_tau = 5.00f; // target entropy
- float mirostat_eta = 0.10f; // learning rate
- bool penalize_nl = true; // consider newlines as a repeatable token
- };
- struct my_llama_sampler {
- struct llama_context * ctx = NULL;
- my_llama_sampler_params params;
- int n_vocab = 0;
- int n_ctx = 0;
- float mirostat_mu;
- std::vector<llama_token_data> candidates;
- llama_token_data_array candidates_p;
- };
- void init_sampler(struct my_llama_sampler * sampler, struct llama_context * ctx) {
- sampler->ctx = ctx;
- sampler->n_vocab = llama_n_vocab(sampler->ctx);
- sampler->n_ctx = llama_n_ctx(sampler->ctx);
- sampler->mirostat_mu = 2.0f * sampler->params.mirostat_tau;
- }
- llama_token sample(struct my_llama_sampler * sampler, float * logits, const llama_token * last_tokens, int n_last_tokens) {
- GGML_ASSERT(sampler->ctx != NULL);
- struct llama_context * ctx = sampler->ctx;
- sampler->candidates.resize(sampler->n_vocab);
- for (llama_token token_id = 0; token_id < sampler->n_vocab; ++token_id) {
- sampler->candidates[token_id].id = token_id;
- sampler->candidates[token_id].logit = logits[token_id];
- sampler->candidates[token_id].p = 0.0;
- }
- llama_token_data_array * candidates_p = & sampler->candidates_p;
- candidates_p->data = sampler->candidates.data();
- candidates_p->size = sampler->candidates.size();
- candidates_p->sorted = false;
- const auto params = sampler->params;
- // Apply penalties
- const float nl_logit = logits[llama_token_nl()];
- const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx);
- llama_sample_repetition_penalty(
- ctx,
- candidates_p,
- last_tokens + n_last_tokens - n_last,
- n_last,
- params.repeat_penalty);
- llama_sample_frequency_and_presence_penalties(
- ctx,
- candidates_p,
- last_tokens + n_last_tokens - n_last,
- n_last,
- params.alpha_frequency,
- params.alpha_presence);
- if (!params.penalize_nl) {
- logits[llama_token_nl()] = nl_logit;
- }
- llama_token token = 0;
- if (params.temp <= 0) {
- // Greedy sampling
- token = llama_sample_token_greedy(ctx, candidates_p);
- } else {
- if (params.mirostat == 1) {
- int mirostat_m = 100;
- llama_sample_temperature(ctx, candidates_p, params.temp);
- token = llama_sample_token_mirostat(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, mirostat_m, &sampler->mirostat_mu);
- } else if (params.mirostat == 2) {
- llama_sample_temperature(ctx, candidates_p, params.temp);
- token = llama_sample_token_mirostat_v2(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, &sampler->mirostat_mu);
- } else {
- // Temperature sampling
- llama_sample_top_k (ctx, candidates_p, params.top_k, 1);
- llama_sample_tail_free (ctx, candidates_p, params.tfs_z, 1);
- llama_sample_typical (ctx, candidates_p, params.typical_p, 1);
- llama_sample_top_p (ctx, candidates_p, params.top_p, 1);
- llama_sample_temperature (ctx, candidates_p, params.temp);
- token = llama_sample_token(ctx, candidates_p);
- }
- }
- return token;
- }
- void set_logits_masked(struct ggml_tensor * logits, std::vector<bool>& mask, float value) {
- GGML_ASSERT(logits->ne[0] == (int64_t) mask.size());
- for (int i2 = 0; i2 < logits->ne[2]; ++i2) {
- for (int i1 = 0; i1 < logits->ne[1]; ++i1) {
- for (int i0 = 0; i0 < logits->ne[0]; ++i0) {
- if (!mask[i0]) continue;
- float * ptr = (float *) ((char *) logits->data + i2*logits->nb[2] + i1*logits->nb[1] + i0*logits->nb[0]);
- *ptr = value;
- }
- }
- }
- }
- void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
- if (tensor == NULL) {
- file->write_u32(0);
- file->write_u32(0);
- file->write_u32(GGML_TYPE_F32);
- file->seek(0-file->tell() & 31, SEEK_CUR);
- return;
- }
- const char * name = ggml_get_name(tensor);
- uint32_t name_len = strlen(name);
- uint32_t nd = tensor->n_dims;
- uint32_t ne[4] = { (uint32_t)tensor->ne[0],
- (uint32_t)tensor->ne[1],
- (uint32_t)tensor->ne[2],
- (uint32_t)tensor->ne[3] };
- file->write_u32(nd);
- file->write_u32(name_len);
- file->write_u32(tensor->type);
- file->write_raw(ne, sizeof(ne[0]) * nd);
- file->write_raw(name, name_len);
- file->seek(0-file->tell() & 31, SEEK_CUR);
- file->write_raw(tensor->data, ggml_nbytes(tensor));
- }
- void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
- int32_t nd = file->read_u32();
- GGML_ASSERT(nd == tensor->n_dims);
- uint32_t name_len = file->read_u32();
- enum ggml_type type = (enum ggml_type) file->read_u32();
- GGML_ASSERT(type == tensor->type);
- uint32_t ne[4];
- file->read_raw(ne, sizeof(ne[0]) * nd);
- for (int i=0; i<nd; ++i) {
- GGML_ASSERT(ne[i] == tensor->ne[i]);
- }
- std::string name = file->read_string(name_len);
- GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0);
- file->seek(0-file->tell() & 31, SEEK_CUR);
- file->read_raw(tensor->data, ggml_nbytes(tensor));
- }
- void write_opt_context(struct llama_file * file, struct ggml_opt_context * opt) {
- const uint32_t version = 0;
- GGML_ASSERT(opt->nx >= 0);
- GGML_ASSERT(opt->iter >= 0);
- file->write_u32(version);
- file->write_raw(&opt->params, sizeof(opt->params));
- file->write_raw(&opt->nx, sizeof(opt->nx));
- file->write_raw(&opt->iter, sizeof(opt->iter));
- file->write_u32((uint32_t) opt->just_initialized);
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- GGML_ASSERT(opt->adam.x != NULL);
- write_tensor(file, opt->adam.x);
- write_tensor(file, opt->adam.g1);
- write_tensor(file, opt->adam.g2);
- write_tensor(file, opt->adam.m);
- write_tensor(file, opt->adam.v);
- write_tensor(file, opt->adam.mh);
- write_tensor(file, opt->adam.vh);
- write_tensor(file, opt->adam.pf);
- file->write_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best));
- file->write_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev));
- file->write_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement));
- } break;
- case GGML_OPT_LBFGS:
- {
- GGML_ASSERT(opt->adam.x != NULL);
- write_tensor(file, opt->lbfgs.x);
- write_tensor(file, opt->lbfgs.xp);
- write_tensor(file, opt->lbfgs.g);
- write_tensor(file, opt->lbfgs.gp);
- write_tensor(file, opt->lbfgs.d);
- write_tensor(file, opt->lbfgs.pf);
- write_tensor(file, opt->lbfgs.lmal);
- write_tensor(file, opt->lbfgs.lmys);
- write_tensor(file, opt->lbfgs.lms);
- write_tensor(file, opt->lbfgs.lmy);
- file->write_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best));
- file->write_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step));
- file->write_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j));
- file->write_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k));
- file->write_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end));
- file->write_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement));
- } break;
- }
- }
- void read_opt_context(struct llama_file * file, struct ggml_context * ctx, struct ggml_opt_context * opt) {
- uint32_t version = file->read_u32();
- GGML_ASSERT(version == 0);
- file->read_raw(&opt->params, sizeof(opt->params));
- file->read_raw(&opt->nx, sizeof(opt->nx));
- ggml_opt_init(ctx, opt, opt->params, opt->nx);
- file->read_raw(&opt->iter, sizeof(opt->iter));
- opt->just_initialized = (bool) file->read_u32();
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- read_tensor(file, opt->adam.x);
- read_tensor(file, opt->adam.g1);
- read_tensor(file, opt->adam.g2);
- read_tensor(file, opt->adam.m);
- read_tensor(file, opt->adam.v);
- read_tensor(file, opt->adam.mh);
- read_tensor(file, opt->adam.vh);
- if (opt->adam.pf) { read_tensor(file, opt->adam.pf); }
- file->read_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best));
- file->read_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev));
- file->read_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement));
- } break;
- case GGML_OPT_LBFGS:
- {
- GGML_ASSERT(opt->adam.x != NULL);
- read_tensor(file, opt->lbfgs.x);
- read_tensor(file, opt->lbfgs.xp);
- read_tensor(file, opt->lbfgs.g);
- read_tensor(file, opt->lbfgs.gp);
- read_tensor(file, opt->lbfgs.d);
- if (opt->lbfgs.pf) { read_tensor(file, opt->lbfgs.pf); }
- read_tensor(file, opt->lbfgs.lmal);
- read_tensor(file, opt->lbfgs.lmys);
- read_tensor(file, opt->lbfgs.lms);
- read_tensor(file, opt->lbfgs.lmy);
- file->read_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best));
- file->read_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step));
- file->read_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j));
- file->read_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k));
- file->read_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end));
- file->read_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement));
- } break;
- }
- }
- void save_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename) {
- struct llama_file file(filename, "wb");
- if (file.fp == NULL) {
- return;
- }
- const uint32_t magic = 'ggcp';
- const uint32_t version = 0;
- file.write_u32(magic);
- file.write_u32(version);
- file.write_u32(model->train_its);
- file.write_u32(model->train_samples);
- file.write_u32(model->train_tokens);
- file.write_u32(model->hparams.n_vocab);
- file.write_u32(model->hparams.n_embd);
- file.write_u32(model->hparams.n_mult);
- file.write_u32(model->hparams.n_head);
- file.write_u32(model->hparams.n_layer);
- file.write_u32(model->hparams.n_rot);
- write_tensor(&file, model->tok_embeddings);
- write_tensor(&file, model->norm);
- write_tensor(&file, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
- write_tensor(&file, layer.attention_norm);
- write_tensor(&file, layer.wq);
- write_tensor(&file, layer.wk);
- write_tensor(&file, layer.wv);
- write_tensor(&file, layer.wo);
- write_tensor(&file, layer.ffn_norm);
- write_tensor(&file, layer.w1);
- write_tensor(&file, layer.w2);
- write_tensor(&file, layer.w3);
- }
- write_opt_context(&file, opt);
- }
- bool load_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename, bool init) {
- struct llama_file file(filename, "rb");
- uint32_t magic;
- uint32_t version;
- uint32_t train_its = 0;
- uint32_t train_samples = 0;
- uint32_t train_tokens = 0;
- if (file.fp) {
- printf("%s: Loading model from '%s'.\n", __func__, filename);
- magic = file.read_u32();
- GGML_ASSERT(magic == 'ggcp');
- version = file.read_u32();
- GGML_ASSERT(version == 0);
- train_its = file.read_u32();
- train_samples = file.read_u32();
- train_tokens = file.read_u32();
- model->hparams.n_vocab = file.read_u32();
- model->hparams.n_embd = file.read_u32();
- model->hparams.n_mult = file.read_u32();
- model->hparams.n_head = file.read_u32();
- model->hparams.n_layer = file.read_u32();
- model->hparams.n_rot = file.read_u32();
- print_params(&model->hparams);
- }
- if (init) {
- init_model(model);
- }
- if (file.fp) {
- model->train_its = train_its;
- model->train_samples = train_samples;
- model->train_tokens = train_tokens;
- }
- printf("%s: Training iterations: %u.\n", __func__, model->train_its);
- printf("%s: Training samples: %u.\n", __func__, model->train_samples);
- printf("%s: Training tokens: %u.\n", __func__, model->train_tokens);
- if (file.fp) {
- read_tensor(&file, model->tok_embeddings);
- read_tensor(&file, model->norm);
- read_tensor(&file, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
- read_tensor(&file, layer.attention_norm);
- read_tensor(&file, layer.wq);
- read_tensor(&file, layer.wk);
- read_tensor(&file, layer.wv);
- read_tensor(&file, layer.wo);
- read_tensor(&file, layer.ffn_norm);
- read_tensor(&file, layer.w1);
- read_tensor(&file, layer.w2);
- read_tensor(&file, layer.w3);
- }
- read_opt_context(&file, model->ctx, opt);
- }
- return (file.fp != NULL);
- }
- void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, const char * filename) {
- struct llama_file file(filename, "wb");
- if (file.fp == NULL) {
- return;
- }
- // write_magic
- file.write_u32(LLAMA_FILE_MAGIC); // magic
- file.write_u32(LLAMA_FILE_VERSION); // version
- // write_hparams
- file.write_u32(model->hparams.n_vocab);
- file.write_u32(model->hparams.n_embd);
- file.write_u32(model->hparams.n_mult);
- file.write_u32(model->hparams.n_head);
- file.write_u32(model->hparams.n_layer);
- file.write_u32(model->hparams.n_rot);
- file.write_u32(LLAMA_FTYPE_ALL_F32);
- // write_vocab
- uint32_t n_vocab = model->hparams.n_vocab;
- for (uint32_t i = 0; i < n_vocab; i++) {
- const auto & token_score = vocab->id_to_token.at(i);
- file.write_u32((uint32_t) token_score.tok.size());
- file.write_raw(token_score.tok.data(), token_score.tok.size());
- file.write_raw(&token_score.score, sizeof(token_score.score));
- }
- // write tensors
- write_tensor(&file, model->tok_embeddings);
- write_tensor(&file, model->norm);
- write_tensor(&file, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
- write_tensor(&file, layer.attention_norm);
- write_tensor(&file, layer.wq);
- write_tensor(&file, layer.wk);
- write_tensor(&file, layer.wv);
- write_tensor(&file, layer.wo);
- write_tensor(&file, layer.ffn_norm);
- write_tensor(&file, layer.w1);
- write_tensor(&file, layer.w2);
- write_tensor(&file, layer.w3);
- }
- }
- float cosine_decay(const int decay_steps, const float alpha, int step) {
- if (step > decay_steps) {
- step = decay_steps;
- }
- const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps));
- const float decay = (1 - alpha)*cosine_decay + alpha;
- return decay;
- }
- float cosine_decay_restart(int decay_steps, const float alpha, int step, float restart_step_mult) {
- while (step > decay_steps) {
- step -= decay_steps;
- decay_steps = (int) restart_step_mult * decay_steps;
- }
- return cosine_decay(decay_steps, alpha, step);
- }
- struct train_params {
- const char * fn_vocab_model;
- const char * fn_train_data;
- const char * fn_checkpoint_in;
- const char * fn_checkpoint_out;
- const char * fn_model_out;
- int seed;
- int n_ctx;
- int n_embd;
- int n_mult;
- int n_head;
- int n_layer;
- int n_rotmax;
- int n_threads;
- int n_batch;
- int n_examples;
- int n_predict;
- int print_info_interval;
- int print_details_interval;
- bool samples_start_after_nl;
- bool use_adam;
- bool use_flash;
- bool use_scratch;
- // only adam
- int warmup;
- int cos_decay_steps;
- float cos_decay_restart;
- float cos_decay_alpha;
- int lbfgs_n_iter;
- int adam_n_iter;
- float adam_alpha;
- float adam_decay;
- int mem_model_gb;
- int mem_compute_gb;
- int mem_compute0_gb;
- int mem_compute1_gb;
- };
- struct train_params get_default_train_params() {
- struct train_params params;
- params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
- params.fn_train_data = "shakespeare.txt";
- params.fn_checkpoint_in = "checkpoint.bin";
- params.fn_checkpoint_out = "checkpoint.bin";
- params.fn_model_out = "ggml-checkpoint-f32.bin";
- params.seed = -1;
- params.n_ctx = 128;
- params.n_embd = 256;
- params.n_mult = 256;
- params.n_head = 8;
- params.n_layer = 16;
- params.n_rotmax = 64;
- params.n_threads = 6;
- params.n_batch = 8;
- params.n_examples = 8;
- params.n_predict = 1024;
- params.print_info_interval = 1;
- params.print_details_interval = 2;
- params.samples_start_after_nl = false;
- params.use_adam = true;
- params.use_flash = true;
- params.use_scratch = true;
- // only adam
- params.warmup = 100;
- params.cos_decay_steps = 1000;
- params.cos_decay_restart = 1.1f;
- params.cos_decay_alpha = 0.0f;
- params.lbfgs_n_iter = 16;
- params.adam_n_iter = 16;
- params.adam_alpha = 1e-3f;
- params.adam_decay = 1e-3f;
- params.mem_model_gb = 2;
- params.mem_compute_gb = 24;
- params.mem_compute0_gb = 8;
- params.mem_compute1_gb = 2;
- return params;
- }
- void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
- fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data);
- fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in);
- fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out);
- fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
- fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx);
- fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
- fprintf(stderr, " --mult N Mult size used for new models, influences feedforward size. (default %d)\n", params->n_mult);
- fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
- fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer);
- fprintf(stderr, " --rotmax N Maximal number Rope dimensions for new models (default %d)\n", params->n_rotmax);
- fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads);
- fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch);
- fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples);
- fprintf(stderr, " --predict N Number of tokens to generate after training (default %d)\n", params->n_predict);
- fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval);
- fprintf(stderr, " --print-details-interval N Print details during training each N examples (default %d)\n", params->print_details_interval);
- fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off");
- fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n");
- fprintf(stderr, " --use-adam Use Adam optimizer (default)\n");
- fprintf(stderr, " --no-flash Don't use flash attention.\n");
- fprintf(stderr, " --use-flash Use flash attention (default)\n");
- fprintf(stderr, " --no-scratch Don't use scratch buffers\n");
- fprintf(stderr, " --use-scratch Use scratch buffers (default)\n");
- fprintf(stderr, " --warmup N Number of warmup steps (default %d)\n", params->warmup);
- fprintf(stderr, " --cos-decay-steps N Number of cosine decay steps (default %d)\n", params->cos_decay_steps);
- fprintf(stderr, " --cos-decay-restart N Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart);
- fprintf(stderr, " --cos-decay-alpha N Cosine decay alpha (default %f)\n", params->cos_decay_alpha);
- fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter);
- fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter);
- fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha);
- fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay);
- fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb);
- fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb);
- fprintf(stderr, " --mem-compute0 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute0_gb);
- fprintf(stderr, " --mem-compute1 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute1_gb);
- fprintf(stderr, "\n");
- }
- bool train_params_parse(int argc, char ** argv, struct train_params * params) {
- bool invalid_param = false;
- std::string arg;
- struct train_params default_params = get_default_train_params();
- const std::string arg_prefix = "--";
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg == "--vocab-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_vocab_model = argv[i];
- } else if (arg == "--train-data") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_train_data = argv[i];
- } else if (arg == "--checkpoint-in") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_checkpoint_in = argv[i];
- } else if (arg == "--checkpoint-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_checkpoint_out = argv[i];
- } else if (arg == "--model-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_model_out = argv[i];
- } else if (arg == "-s" || arg == "--seed") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->seed = std::stoi(argv[i]);
- } else if (arg == "-c" || arg == "--ctx") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_ctx = std::stoi(argv[i]);
- } else if (arg == "--embd") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_embd = std::stoi(argv[i]);
- } else if (arg == "--mult") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_mult = std::stoi(argv[i]);
- } else if (arg == "--head") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_head = std::stoi(argv[i]);
- } else if (arg == "--layer") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_layer = std::stoi(argv[i]);
- } else if (arg == "--rotmax") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rotmax = std::stoi(argv[i]);
- } else if (arg == "-t" || arg == "--threads") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_threads = std::stoi(argv[i]);
- } else if (arg == "-b" || arg == "--batch") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_batch = std::stoi(argv[i]);
- } else if (arg == "-n" || arg == "--examples") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_examples = std::stoi(argv[i]);
- } else if (arg == "--predict") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_predict = std::stoi(argv[i]);
- } else if (arg == "--print-info-interval") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->print_info_interval = std::stoi(argv[i]);
- } else if (arg == "--print-details-interval") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->print_details_interval = std::stoi(argv[i]);
- } else if (arg == "--samples-after-nl") {
- params->samples_start_after_nl = true;
- } else if (arg == "--use-lbfgs") {
- params->use_adam = false;
- } else if (arg == "--use-adam") {
- params->use_adam = true;
- } else if (arg == "--no-flash") {
- params->use_flash = false;
- } else if (arg == "--use-flash") {
- params->use_flash = true;
- } else if (arg == "--no-scratch") {
- params->use_scratch = false;
- } else if (arg == "--use-scratch") {
- params->use_scratch = true;
- } else if (arg == "--warmup") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->warmup = std::stoi(argv[i]);
- } else if (arg == "--cos-decay-steps") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->cos_decay_steps = std::stof(argv[i]);
- } else if (arg == "--cos-decay-restart") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->cos_decay_restart = std::stof(argv[i]);
- } else if (arg == "--cos-decay-alpha") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->cos_decay_alpha = std::stof(argv[i]);
- } else if (arg == "--lbfgs-iter") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->lbfgs_n_iter = std::stoi(argv[i]);
- } else if (arg == "--adam-iter") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_n_iter = std::stoi(argv[i]);
- } else if (arg == "--adam-alpha") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_alpha = std::stof(argv[i]);
- } else if (arg == "--adam-decay") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->adam_decay = std::stof(argv[i]);
- } else if (arg == "--mem-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_model_gb = std::stoi(argv[i]);
- } else if (arg == "--mem-compute") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_compute_gb = std::stoi(argv[i]);
- } else if (arg == "--mem-compute0") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_compute0_gb = std::stoi(argv[i]);
- } else if (arg == "--mem-compute1") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->mem_compute1_gb = std::stoi(argv[i]);
- } else if (arg == "-h" || arg == "--help") {
- train_print_usage(argc, argv, &default_params);
- exit(0);
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- return true;
- }
- int main(int argc, char ** argv) {
- struct train_params params = get_default_train_params();
- if (!train_params_parse(argc, argv, ¶ms)) {
- return 1;
- }
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- printf("%s: seed: %d\n", __func__, params.seed);
- srand(params.seed);
- struct llama_context_params llama_params = llama_context_default_params();
- llama_params.vocab_only = true;
- struct llama_context * lctx = llama_init_from_file(params.fn_vocab_model, llama_params);
- struct llama_vocab vocab;
- {
- std::vector<const char *> strings;
- std::vector<float> scores;
- int n_vocab = llama_n_vocab(lctx);
- strings.resize(n_vocab, NULL);
- scores.resize(n_vocab, 0);
- n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
- GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
- vocab.id_to_token.resize(n_vocab);
- for (int i=0; i<n_vocab; ++i) {
- std::string tok = std::string(strings[i]);
- float score = scores[i];
- vocab.id_to_token[i].tok = tok;
- vocab.id_to_token[i].score = score;
- vocab.token_to_id.emplace(tok, i);
- }
- }
- printf("%s: tokenize training data\n", __func__);
- std::vector<llama_token> train_tokens;
- if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) {
- fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data);
- }
- printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size());
- struct my_llama_model model;
- model.hparams.n_vocab = llama_n_vocab(lctx);
- model.hparams.n_ctx = params.n_ctx;
- model.hparams.n_embd = params.n_embd;
- model.hparams.n_mult = params.n_mult;
- model.hparams.n_head = params.n_head;
- model.hparams.n_layer = params.n_layer;
- model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
- print_params(&model.hparams);
- std::vector<size_t> token_noccurs;
- std::vector<bool> token_notavail;
- token_noccurs.resize(model.hparams.n_vocab, 0);
- token_notavail.resize(model.hparams.n_vocab, true);
- for (int i = 0; i < (int) train_tokens.size(); ++i) {
- ++token_noccurs[train_tokens[i]];
- token_notavail[train_tokens[i]] = false;
- }
- std::vector<float> token_freq;
- token_freq.resize(model.hparams.n_vocab, 0);
- int n_unique_tokens = 0;
- for (int i = 0; i < (int) token_noccurs.size(); ++i) {
- token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size();
- n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0;
- }
- printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
- struct my_llama_kv_cache kv_self;
- struct ggml_init_params lcparams;
- lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
- lcparams.mem_buffer = NULL;
- lcparams.no_alloc = false;
- model.ctx = ggml_init(lcparams);
- kv_self.ctx = model.ctx;
- my_llama_sampler sampler;
- int n_tokens = model.hparams.n_ctx;
- int n_vocab = model.hparams.n_vocab;
- int n_batch = params.n_batch;
- struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
- memset(opt, 0, sizeof(struct ggml_opt_context));
- struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
- struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
- opt_params_adam.print_forward_graph = false;
- opt_params_adam.print_backward_graph = false;
- opt_params_adam.n_threads = params.n_threads;
- opt_params_adam.adam.n_iter = params.adam_n_iter;
- opt_params_adam.adam.sched = 1.0f;
- opt_params_adam.adam.alpha = params.adam_alpha;
- opt_params_adam.adam.decay = params.adam_decay;
- opt_params_lbfgs.print_forward_graph = false;
- opt_params_lbfgs.print_backward_graph = false;
- opt_params_lbfgs.n_threads = params.n_threads;
- opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter;
- opt->ctx = model.ctx;
- opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;
- printf("%s: init model\n", __func__);
- bool existed = load_checkpoint(&model, opt, params.fn_checkpoint_in, true);
- set_param_model(&model);
- opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs;
- opt->iter = model.train_its;
- printf("%s: opt iter %d\n", __func__, opt->iter);
- bool from_scratch = !existed;
- if (from_scratch) {
- randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f);
- }
- init_kv_cache(&kv_self, &model, 1);
- // init_kv_cache(&kv_self, &model, n_batch);
- init_sampler(&sampler, lctx);
- printf("used_mem model+cache: %zu bytes\n", ggml_used_mem(model.ctx));
- // ggml_print_tensor_objects(model.ctx);
- size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb);
- uint8_t * compute_addr = new uint8_t[compute_size];
- size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb);
- size_t size_buf_1 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute1_gb);
- uint8_t * compute_buf_0 = new uint8_t[size_buf_0];
- uint8_t * compute_buf_1 = new uint8_t[size_buf_1];
- GGML_ASSERT(n_tokens < (int) train_tokens.size());
- std::vector<int> train_samples;
- train_samples.push_back(0);
- for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
- if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl())) {
- train_samples.push_back(i);
- }
- }
- shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
- for (int i = 0; i < (int) train_samples.size(); ++i) {
- GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
- }
- printf("%s: begin training\n", __func__);
- for (int ex = 0; ex < params.n_examples; ++ex) {
- if (ex*n_batch >= (int) train_samples.size()) {
- shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size());
- for (int i = 0; i < (int) train_samples.size(); ++i) {
- GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
- }
- }
- struct ggml_init_params cparams = {
- /*.mem_size =*/ compute_size,
- /*.mem_buffer =*/ compute_addr,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(cparams);
- struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
- //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
- struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
- struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
- struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
- int n_past = 0;
- struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
- struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32) + (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
- memset(gfbuf->data, 0, ggml_nbytes(gfbuf));
- memset(gbbuf->data, 0, ggml_nbytes(gbbuf));
- struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
- struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
- // ggml_cgraph gf = {};
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
- get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs);
- GGML_ASSERT(n_past == 0);
- struct ggml_tensor * loss = NULL;
- struct ggml_tensor * logits = NULL;
- if (params.use_scratch) {
- loss = forward_batch_wo_cache_flash_attn_train(
- &model, ctx0,
- gf, gb,
- &logits, tokens_input, target_probs,
- compute_buf_0, compute_buf_1,
- size_buf_0, size_buf_1,
- n_tokens, n_batch);
- } else if (params.use_flash) {
- logits = forward_batch_wo_cache_flash_attn(&model, ctx0, gf, tokens_input, n_tokens, n_batch);
- loss = cross_entropy_loss(ctx0, logits, target_probs);
- ggml_build_forward_expand(gf, loss);
- *gb = ggml_build_backward(ctx0, gf, true);
- } else {
- logits = forward_batch_wo_cache(&model, ctx0, gf, tokens_input, n_tokens, n_batch);
- loss = cross_entropy_loss(ctx0, logits, target_probs);
- ggml_build_forward_expand(gf, loss);
- *gb = ggml_build_backward(ctx0, gf, true);
- }
- ggml_graph_compute(ctx0, gf);
- size_t used_mem_before_opt = ggml_used_mem(ctx0);
- float error_before_opt = ggml_get_f32_1d(loss, 0);
- opt->params.adam.sched = (opt->iter < params.warmup)
- ? (float) opt->iter / (float) params.warmup
- : cosine_decay_restart(
- params.cos_decay_steps,
- params.cos_decay_alpha,
- opt->iter - params.warmup,
- params.cos_decay_restart);
- printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched);
- ggml_opt_resume_g(ctx0, opt, loss, gf, gb);
- size_t used_mem_after_opt = ggml_used_mem(ctx0);
- model.train_its = opt->iter;
- model.train_samples += n_batch;
- model.train_tokens += n_batch * n_tokens;
- ggml_graph_compute(ctx0, gf);
- float error_after_opt = ggml_get_f32_1d(loss, 0);
- if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) {
- printf("Example %d, opt iter %d\n", ex, opt->iter);
- printf("error_before_opt: %.6f\n", error_before_opt);
- printf("error_after_opt: %.6f\n", error_after_opt);
- printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt);
- printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt);
- }
- if (params.print_details_interval > 0 && ex % params.print_details_interval == 0) {
- // set_logits_masked(logits, token_notavail, -1e9);
- for (int i=0; i<n_batch; ++i) {
- init_sampler(&sampler, lctx);
- for (int k=0; k<n_tokens; ++k) {
- int32_t token = sample(&sampler,
- (float *) ((char *) logits->data + i*logits->nb[2] + k*logits->nb[1]),
- (llama_token *) ((char *) tokens_input->data + i*tokens_input->nb[1]),
- k);
- * ((int32_t *) ((char *) after_opt_best_samples->data + i*after_opt_best_samples->nb[1] + k*after_opt_best_samples->nb[0])) = token;
- }
- }
- // printf("probabilities after optimization:\n");
- // print_matrix(after_opt_probs);
- printf("Example:\n---\n");
- print_tokens_batch(lctx, tokens_input);
- printf("\n---\n");
- // printf("best samples after optimization:\n---\n");
- printf("samples after optimization:\n---\n");
- print_tokens_batch(lctx, after_opt_best_samples);
- printf("\n---\n");
- }
- ggml_free(ctx0);
- }
- if (params.n_examples > 0) {
- save_checkpoint(&model, opt, params.fn_checkpoint_out);
- }
- if (strlen(params.fn_model_out) > 0) {
- save_as_llama_model(&vocab, &model, params.fn_model_out);
- }
- {
- int n_gen = params.n_predict;
- int sample_ctx = n_tokens - n_tokens/8;
- sampler.params.temp = 0.2f;
- sampler.params.repeat_penalty = 1.1f;
- sampler.params.mirostat = 2;
- init_sampler(&sampler, lctx);
- printf("Generating %d tokens.\n", n_gen);
- struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens);
- struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
- struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
- get_example_targets(train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs);
- for (int i=sample_ctx; i<n_tokens; ++i) {
- ggml_set_i32_1d(tokens_input, i, n_vocab/2);
- }
- for (int i=0; i<sample_ctx-1; ++i) {
- print_token(lctx, ggml_get_i32_1d(tokens_input, i));
- }
- printf("---\n");
- for (int i=0; i<n_gen; ++i) {
- struct ggml_init_params cparams = {
- /*.mem_size =*/ compute_size,
- /*.mem_buffer =*/ compute_addr,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(cparams);
- ggml_cgraph gf = {};
- gf.n_threads = params.n_threads;
- int n_past = 0;
- struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
- ggml_build_forward_expand(&gf, logits);
- ggml_graph_compute(ctx0, &gf);
- //struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
- //struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
- // set_logits_masked(logits, token_notavail, -1e9);
- int token = sample(&sampler,
- (float *) ((char *) logits->data + (sample_ctx-1)*logits->nb[1]),
- (llama_token *) tokens_input->data,
- sample_ctx-1);
- //int token = ggml_get_i32_1d(best_samples, sample_ctx-1);
- // print_row(probs, sample_at);
- print_token(lctx, token);
- lshift_examples(tokens_input, target_logits, target_probs, 1);
- ggml_set_i32_1d(tokens_input, 0, 0);
- ggml_set_i32_1d(tokens_input, sample_ctx-1, token);
- ggml_free(ctx0);
- }
- }
- delete[] compute_addr;
- delete[] compute_buf_0;
- delete[] compute_buf_1;
- ggml_free(model.ctx);
- return 0;
- }
|