ggml-opencl.cpp 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195
  1. #include "ggml-opencl.h"
  2. #include <array>
  3. #include <atomic>
  4. #include <sstream>
  5. #include <vector>
  6. #include <limits>
  7. #define CL_TARGET_OPENCL_VERSION 110
  8. #include <clblast.h>
  9. #include <stdlib.h>
  10. #include <stdio.h>
  11. #include <string.h>
  12. #include "ggml.h"
  13. #define CL_DMMV_BLOCK_SIZE 32;
  14. #define MULTILINE_QUOTE(...) #__VA_ARGS__
  15. static std::string program_source = MULTILINE_QUOTE(
  16. typedef char int8_t;
  17. typedef uchar uint8_t;
  18. typedef int int32_t;
  19. typedef uint uint32_t;
  20. struct __attribute__ ((packed)) block_q4_0
  21. {
  22. half d;
  23. uint8_t qs[QK4_0 / 2];
  24. };
  25. struct __attribute__ ((packed)) block_q4_1
  26. {
  27. half d;
  28. half m;
  29. uint8_t qs[QK4_1 / 2];
  30. };
  31. struct __attribute__ ((packed)) block_q5_0
  32. {
  33. half d;
  34. uint32_t qh;
  35. uint8_t qs[QK5_0 / 2];
  36. };
  37. struct __attribute__ ((packed)) block_q5_1
  38. {
  39. half d;
  40. half m;
  41. uint32_t qh;
  42. uint8_t qs[QK5_1 / 2];
  43. };
  44. struct __attribute__ ((packed)) block_q8_0
  45. {
  46. half d;
  47. int8_t qs[QK8_0];
  48. };
  49. __kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
  50. const uint i = get_global_id(0);
  51. y[i] = vload_half(0, &x[i]);
  52. }
  53. void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
  54. const float d = vload_half(0, &x[ib].d);
  55. const uint8_t vui = x[ib].qs[iqs];
  56. const int8_t vi0 = vui & 0xF;
  57. const int8_t vi1 = vui >> 4;
  58. *v0 = (vi0 - 8)*d;
  59. *v1 = (vi1 - 8)*d;
  60. }
  61. void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
  62. const float d = vload_half(0, &x[ib].d);
  63. const float m = vload_half(0, &x[ib].m);
  64. const uint8_t vui = x[ib].qs[iqs];
  65. const int8_t vi0 = vui & 0xF;
  66. const int8_t vi1 = vui >> 4;
  67. *v0 = vi0*d + m;
  68. *v1 = vi1*d + m;
  69. }
  70. void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
  71. const float d = vload_half(0, &x[ib].d);
  72. uint32_t qh = x[ib].qh;
  73. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  74. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  75. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
  76. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
  77. *v0 = x0*d;
  78. *v1 = x1*d;
  79. }
  80. void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
  81. const float d = vload_half(0, &x[ib].d);
  82. const float m = vload_half(0, &x[ib].m);
  83. uint32_t qh = x[ib].qh;
  84. const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
  85. const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
  86. const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
  87. const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
  88. *v0 = x0*d + m;
  89. *v1 = x1*d + m;
  90. }
  91. void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
  92. const float d = vload_half(0, &x[ib].d);
  93. const int8_t vi0 = x[ib].qs[iqs + 0];
  94. const int8_t vi1 = x[ib].qs[iqs + 1];
  95. *v0 = vi0*d;
  96. *v1 = vi1*d;
  97. }
  98. void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
  99. *v0 = vload_half(0, &x[ib + 0]);
  100. *v1 = vload_half(0, &x[ib + 1]);
  101. }
  102. );
  103. std::string dequant_template = MULTILINE_QUOTE(
  104. __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
  105. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
  106. if (i >= get_global_size(0)) {
  107. return;
  108. }
  109. const uint qk = QUANT_K;
  110. const uint qr = QUANT_R;
  111. const int ib = i/qk; // block index
  112. const int iqs = (i%qk)/qr; // quant index
  113. const int iybs = i - i%qk; // y block start index
  114. const int y_offset = qr == 1 ? 1 : qk/2;
  115. // dequantize
  116. float v0, v1;
  117. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  118. y[iybs + iqs + 0] = v0;
  119. y[iybs + iqs + y_offset] = v1;
  120. }
  121. );
  122. std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
  123. __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
  124. const int block_size = get_local_size(0);
  125. const int row = get_global_id(0) / block_size;
  126. const int tid = get_local_id(0);
  127. const uint qk = QUANT_K;
  128. const uint qr = QUANT_R;
  129. const int y_offset = qr == 1 ? 1 : qk/2;
  130. tmp[tid] = 0;
  131. for (int i = 0; i < ncols/block_size; i += 2) {
  132. const int col = i*block_size + 2*tid;
  133. const int ib = (row*ncols + col)/qk; // block index
  134. const int iqs = (col%qk)/qr; // quant index
  135. const int iybs = col - col%qk; // y block start index
  136. // dequantize
  137. float v0, v1;
  138. DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
  139. // matrix multiplication
  140. tmp[tid] += v0 * y[iybs + iqs + 0];
  141. tmp[tid] += v1 * y[iybs + iqs + y_offset];
  142. }
  143. // sum up partial sums and write back result
  144. barrier(CLK_LOCAL_MEM_FENCE);
  145. for (int s=block_size/2; s>0; s>>=1) {
  146. if (tid < s) {
  147. tmp[tid] += tmp[tid + s];
  148. }
  149. barrier(CLK_LOCAL_MEM_FENCE);
  150. }
  151. if (tid == 0) {
  152. dst[row] = tmp[0];
  153. }
  154. }
  155. );
  156. std::string mul_template = MULTILINE_QUOTE(
  157. __kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
  158. const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
  159. if (i >= get_global_size(0)) {
  160. return;
  161. }
  162. dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
  163. }
  164. );
  165. #define CL_CHECK(err) \
  166. do { \
  167. cl_int err_ = (err); \
  168. if (err_ != CL_SUCCESS) { \
  169. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  170. #err, err_, __FILE__, __LINE__); \
  171. exit(1); \
  172. } \
  173. } while (0)
  174. #define CLBLAST_CHECK(err) \
  175. do { \
  176. CLBlastStatusCode err_ = (err); \
  177. if (err_ != CLBlastSuccess) { \
  178. fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
  179. #err, err_, __FILE__, __LINE__); \
  180. exit(1); \
  181. } \
  182. } while (0)
  183. std::array<std::string, 5> dequant_str_keys = {
  184. "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
  185. };
  186. std::array<std::string, 30> dequant_str_values = {
  187. "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  188. "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  189. "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  190. "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  191. "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  192. "convert_row_f16", "half", "1", "1", "convert_f16"
  193. };
  194. std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
  195. "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
  196. "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
  197. "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
  198. "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
  199. "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
  200. "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
  201. };
  202. std::array<std::string, 2> mul_str_keys = {
  203. "KERNEL_NAME", "TYPE"
  204. };
  205. std::array<std::string, 2> mul_str_values = {
  206. "mul_f32", "float"
  207. };
  208. std::string& replace(std::string& s, const std::string& from, const std::string& to) {
  209. size_t pos = 0;
  210. while ((pos = s.find(from, pos)) != std::string::npos) {
  211. s.replace(pos, from.length(), to);
  212. pos += to.length();
  213. }
  214. return s;
  215. }
  216. std::string generate_kernels() {
  217. std::stringstream src;
  218. src << program_source << '\n';
  219. for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
  220. std::string dequant_kernel = dequant_template;
  221. std::string dmmv_kernel = dequant_mul_mat_vec_template;
  222. for (size_t j = 0; j < dequant_str_keys.size(); j++) {
  223. replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
  224. replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
  225. }
  226. src << dequant_kernel << '\n';
  227. src << dmmv_kernel << '\n';
  228. }
  229. for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
  230. std::string mul_kernel = mul_template;
  231. for (size_t j = 0; j < mul_str_keys.size(); j++) {
  232. replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
  233. }
  234. src << mul_kernel << '\n';
  235. }
  236. return src.str();
  237. }
  238. static cl_platform_id platform;
  239. static cl_device_id device;
  240. static cl_context context;
  241. static cl_command_queue queue;
  242. static cl_program program;
  243. static cl_kernel convert_row_f16_cl;
  244. static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
  245. static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
  246. static cl_kernel mul_f32_cl;
  247. static bool fp16_support;
  248. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
  249. cl_program p;
  250. char *program_log;
  251. size_t program_size;
  252. size_t log_size;
  253. int err;
  254. program_size = strlen(program_buffer);
  255. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  256. if(err < 0) {
  257. fprintf(stderr, "OpenCL error creating program");
  258. exit(1);
  259. }
  260. const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
  261. "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
  262. err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
  263. if(err < 0) {
  264. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  265. program_log = (char*) malloc(log_size + 1);
  266. program_log[log_size] = '\0';
  267. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  268. fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  269. free(program_log);
  270. exit(1);
  271. }
  272. return p;
  273. }
  274. void ggml_cl_init(void) {
  275. cl_int err;
  276. struct cl_device;
  277. struct cl_platform {
  278. cl_platform_id id;
  279. unsigned number;
  280. char name[128];
  281. char vendor[128];
  282. struct cl_device * devices;
  283. unsigned n_devices;
  284. struct cl_device * default_device;
  285. };
  286. struct cl_device {
  287. struct cl_platform * platform;
  288. cl_device_id id;
  289. unsigned number;
  290. cl_device_type type;
  291. char name[128];
  292. };
  293. enum { NPLAT = 16, NDEV = 16 };
  294. struct cl_platform platforms[NPLAT];
  295. unsigned n_platforms = 0;
  296. struct cl_device devices[NDEV];
  297. unsigned n_devices = 0;
  298. struct cl_device * default_device = NULL;
  299. platform = NULL;
  300. device = NULL;
  301. cl_platform_id platform_ids[NPLAT];
  302. CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
  303. for (unsigned i = 0; i < n_platforms; i++) {
  304. struct cl_platform * p = &platforms[i];
  305. p->number = i;
  306. p->id = platform_ids[i];
  307. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  308. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  309. cl_device_id device_ids[NDEV];
  310. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  311. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  312. p->n_devices = 0;
  313. } else {
  314. CL_CHECK(clGetDeviceIDsError);
  315. }
  316. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  317. p->default_device = NULL;
  318. for (unsigned j = 0; j < p->n_devices; j++) {
  319. struct cl_device * d = &devices[n_devices];
  320. d->number = n_devices++;
  321. d->id = device_ids[j];
  322. d->platform = p;
  323. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  324. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  325. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  326. p->default_device = d;
  327. }
  328. }
  329. if (default_device == NULL && p->default_device != NULL) {
  330. default_device = p->default_device;
  331. }
  332. }
  333. if (n_devices == 0) {
  334. fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
  335. exit(1);
  336. }
  337. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  338. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  339. int user_platform_number = -1;
  340. int user_device_number = -1;
  341. unsigned n;
  342. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  343. user_platform_number = (int)n;
  344. }
  345. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  346. user_device_number = (int)n;
  347. }
  348. if (user_platform_number != -1 && user_device_number != -1) {
  349. cl_platform* platform = &platforms[user_platform_number];
  350. if ((unsigned)user_device_number >= platform->n_devices) {
  351. fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
  352. exit(1);
  353. }
  354. default_device = &platform->devices[user_device_number];
  355. } else {
  356. struct cl_device * selected_devices = devices;
  357. unsigned n_selected_devices = n_devices;
  358. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  359. for (unsigned i = 0; i < n_platforms; i++) {
  360. struct cl_platform * p = &platforms[i];
  361. if (strstr(p->name, user_platform_string) != NULL ||
  362. strstr(p->vendor, user_platform_string) != NULL) {
  363. user_platform_number = (int)i;
  364. break;
  365. }
  366. }
  367. if (user_platform_number == -1) {
  368. fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  369. exit(1);
  370. }
  371. }
  372. if (user_platform_number != -1) {
  373. struct cl_platform * p = &platforms[user_platform_number];
  374. selected_devices = p->devices;
  375. n_selected_devices = p->n_devices;
  376. default_device = p->default_device;
  377. if (n_selected_devices == 0) {
  378. fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  379. exit(1);
  380. }
  381. }
  382. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  383. for (unsigned i = 0; i < n_selected_devices; i++) {
  384. struct cl_device * d = &selected_devices[i];
  385. if (strstr(d->name, user_device_string) != NULL) {
  386. user_device_number = d->number;
  387. break;
  388. }
  389. }
  390. if (user_device_number == -1) {
  391. fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  392. exit(1);
  393. }
  394. }
  395. if (user_device_number != -1) {
  396. selected_devices = &devices[user_device_number];
  397. n_selected_devices = 1;
  398. default_device = &selected_devices[0];
  399. }
  400. GGML_ASSERT(n_selected_devices > 0);
  401. if (default_device == NULL) {
  402. default_device = &selected_devices[0];
  403. }
  404. }
  405. fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  406. fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
  407. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  408. fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  409. }
  410. platform = default_device->platform->id;
  411. device = default_device->id;
  412. size_t ext_str_size;
  413. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  414. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  415. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  416. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  417. // Check if ext_buffer contains cl_khr_fp16
  418. fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  419. fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
  420. cl_context_properties properties[] = {
  421. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
  422. };
  423. CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  424. CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  425. (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  426. (queue = clCreateCommandQueue(context, device, 0, &err), err)
  427. )));
  428. const std::string kernel_src = generate_kernels();
  429. program = build_program_from_source(context, device, kernel_src.c_str());
  430. // FP16 to FP32 kernel
  431. CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
  432. // Dequantize kernels
  433. CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
  434. CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
  435. CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
  436. CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
  437. CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
  438. // dequant mul mat kernel
  439. CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
  440. CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
  441. CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
  442. CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
  443. CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
  444. CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
  445. // mul kernel
  446. CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
  447. }
  448. static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
  449. switch (type) {
  450. case GGML_TYPE_Q4_0:
  451. return &dequantize_row_q4_0_cl;
  452. case GGML_TYPE_Q4_1:
  453. return &dequantize_row_q4_1_cl;
  454. case GGML_TYPE_Q5_0:
  455. return &dequantize_row_q5_0_cl;
  456. case GGML_TYPE_Q5_1:
  457. return &dequantize_row_q5_1_cl;
  458. case GGML_TYPE_Q8_0:
  459. return &dequantize_row_q8_0_cl;
  460. case GGML_TYPE_F16:
  461. return &convert_row_f16_cl;
  462. default:
  463. return nullptr;
  464. }
  465. }
  466. static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
  467. switch (type) {
  468. case GGML_TYPE_Q4_0:
  469. return &dequantize_mul_mat_vec_q4_0_cl;
  470. case GGML_TYPE_Q4_1:
  471. return &dequantize_mul_mat_vec_q4_1_cl;
  472. case GGML_TYPE_Q5_0:
  473. return &dequantize_mul_mat_vec_q5_0_cl;
  474. case GGML_TYPE_Q5_1:
  475. return &dequantize_mul_mat_vec_q5_1_cl;
  476. case GGML_TYPE_Q8_0:
  477. return &dequantize_mul_mat_vec_q8_0_cl;
  478. case GGML_TYPE_F16:
  479. return &convert_mul_mat_vec_f16_cl;
  480. default:
  481. return nullptr;
  482. }
  483. }
  484. // buffer pool for cl
  485. #define MAX_CL_BUFFERS 256
  486. struct scoped_spin_lock {
  487. std::atomic_flag& lock;
  488. scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
  489. while (lock.test_and_set(std::memory_order_acquire)) {
  490. ; // spin
  491. }
  492. }
  493. ~scoped_spin_lock() {
  494. lock.clear(std::memory_order_release);
  495. }
  496. scoped_spin_lock(const scoped_spin_lock&) = delete;
  497. scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
  498. };
  499. struct cl_buffer {
  500. cl_mem mem;
  501. size_t size = 0;
  502. };
  503. static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
  504. static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
  505. static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
  506. scoped_spin_lock lock(g_cl_pool_lock);
  507. cl_int err;
  508. int best_i = -1;
  509. size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
  510. int worst_i = -1;
  511. size_t worst_size = 0; //largest unused buffer seen so far
  512. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  513. cl_buffer &b = g_cl_buffer_pool[i];
  514. if (b.size > 0 && b.size >= size && b.size < best_size)
  515. {
  516. best_i = i;
  517. best_size = b.size;
  518. }
  519. if (b.size > 0 && b.size > worst_size)
  520. {
  521. worst_i = i;
  522. worst_size = b.size;
  523. }
  524. }
  525. if(best_i!=-1) //found the smallest buffer that fits our needs
  526. {
  527. cl_buffer& b = g_cl_buffer_pool[best_i];
  528. cl_mem mem = b.mem;
  529. *actual_size = b.size;
  530. b.size = 0;
  531. return mem;
  532. }
  533. if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
  534. {
  535. cl_buffer& b = g_cl_buffer_pool[worst_i];
  536. cl_mem mem = b.mem;
  537. b.size = 0;
  538. clReleaseMemObject(mem);
  539. }
  540. cl_mem mem;
  541. CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
  542. *actual_size = size;
  543. return mem;
  544. }
  545. static void ggml_cl_pool_free(cl_mem mem, size_t size) {
  546. scoped_spin_lock lock(g_cl_pool_lock);
  547. for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
  548. cl_buffer& b = g_cl_buffer_pool[i];
  549. if (b.size == 0) {
  550. b.mem = mem;
  551. b.size = size;
  552. return;
  553. }
  554. }
  555. fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
  556. clReleaseMemObject(mem);
  557. }
  558. void ggml_cl_free_data(const struct ggml_tensor* tensor) {
  559. if (tensor->backend != GGML_BACKEND_GPU) {
  560. return;
  561. }
  562. cl_mem mem = (cl_mem)tensor->data;
  563. clReleaseMemObject(mem);
  564. }
  565. static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
  566. cl_int err;
  567. const uint64_t ne0 = src->ne[0];
  568. const uint64_t ne1 = src->ne[1];
  569. const uint64_t nb0 = src->nb[0];
  570. const uint64_t nb1 = src->nb[1];
  571. const uint64_t nb2 = src->nb[2];
  572. const uint64_t nb3 = src->nb[3];
  573. const enum ggml_type type = src->type;
  574. const size_t ts = ggml_type_size(type);
  575. const size_t bs = ggml_blck_size(type);
  576. const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
  577. if (nb0 == ts && nb1 == ts*ne0/bs) {
  578. err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
  579. return err;
  580. }
  581. if (nb0 == ts) {
  582. const size_t buffer_origin[3] = { offset, 0, 0 };
  583. const size_t host_origin[3] = { 0, 0, 0 };
  584. const size_t region[3] = { ts*ne0/bs, ne1, 1 };
  585. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
  586. return err;
  587. }
  588. for (uint64_t i1 = 0; i1 < ne1; i1++) {
  589. // pretend the row is a matrix with cols=1
  590. const size_t buffer_origin[3] = { offset, i1, 0 };
  591. const size_t host_origin[3] = { 0, 0, 0 };
  592. const size_t region[3] = { ts/bs, ne0, 1 };
  593. err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
  594. if (err != CL_SUCCESS) {
  595. break;
  596. }
  597. }
  598. return err;
  599. }
  600. static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  601. GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
  602. const int64_t ne00 = src0->ne[0];
  603. const int64_t ne01 = src0->ne[1];
  604. const int64_t ne02 = src0->ne[2];
  605. const int64_t ne03 = src0->ne[2];
  606. const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
  607. const int64_t ne10 = src1->ne[0];
  608. const int64_t ne11 = src1->ne[1];
  609. const int64_t ne12 = src1->ne[2];
  610. const int64_t ne13 = src1->ne[3];
  611. const int64_t nb10 = src1->nb[0];
  612. const int nb2 = dst->nb[2];
  613. const int nb3 = dst->nb[3];
  614. size_t x_size;
  615. size_t d_size;
  616. cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
  617. cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
  618. cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
  619. for (int64_t i03 = 0; i03 < ne03; i03++) {
  620. for (int64_t i02 = 0; i02 < ne02; i02++) {
  621. const int i0 = i03*ne02 + i02;
  622. cl_event ev;
  623. // copy src0 to device
  624. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
  625. if (nb10 == sizeof(float)) {
  626. // Contiguous, avoid overhead from queueing many kernel runs
  627. const int64_t i13 = i03%ne13;
  628. const int64_t i12 = i02%ne12;
  629. const int i1 = i13*ne12*ne11 + i12*ne11;
  630. cl_int x_offset = 0;
  631. cl_int y_offset = i1*ne10;
  632. cl_int d_offset = 0;
  633. size_t global = ne00 * ne01;
  634. cl_int ky = ne10;
  635. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  636. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  637. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  638. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  639. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  640. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  641. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  642. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  643. } else {
  644. for (int64_t i01 = 0; i01 < ne01; i01++) {
  645. const int64_t i13 = i03%ne13;
  646. const int64_t i12 = i02%ne12;
  647. const int64_t i11 = i01%ne11;
  648. const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
  649. cl_int x_offset = i01*ne00;
  650. cl_int y_offset = i1*ne10;
  651. cl_int d_offset = i01*ne00;
  652. // compute
  653. size_t global = ne00;
  654. cl_int ky = ne10;
  655. CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
  656. CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
  657. CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
  658. CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
  659. CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
  660. CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
  661. CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
  662. CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
  663. }
  664. }
  665. CL_CHECK(clReleaseEvent(ev));
  666. CL_CHECK(clFinish(queue));
  667. // copy dst to host
  668. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  669. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
  670. }
  671. }
  672. ggml_cl_pool_free(d_X, x_size);
  673. ggml_cl_pool_free(d_D, d_size);
  674. }
  675. void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  676. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
  677. ggml_cl_mul_f32(src0, src1, dst);
  678. }
  679. static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  680. const int64_t ne00 = src0->ne[0];
  681. const int64_t ne01 = src0->ne[1];
  682. const int64_t ne02 = src0->ne[2];
  683. const int64_t ne03 = src0->ne[3];
  684. const int64_t ne10 = src1->ne[0];
  685. const int64_t ne11 = src1->ne[1];
  686. const int nb2 = dst->nb[2];
  687. const int nb3 = dst->nb[3];
  688. const float alpha = 1.0f;
  689. const float beta = 0.0f;
  690. const int x_ne = ne01 * ne00;
  691. const int y_ne = ne11 * ne10;
  692. const int d_ne = ne11 * ne01;
  693. size_t x_size;
  694. size_t y_size;
  695. size_t d_size;
  696. cl_mem d_X;
  697. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  698. d_X = (cl_mem) src0->data;
  699. } else {
  700. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  701. }
  702. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  703. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  704. for (int64_t i03 = 0; i03 < ne03; i03++) {
  705. for (int64_t i02 = 0; i02 < ne02; i02++) {
  706. // copy data to device
  707. if (src0->backend != GGML_BACKEND_GPU) {
  708. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  709. }
  710. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  711. CL_CHECK(clFinish(queue));
  712. // compute
  713. cl_event ev_sgemm;
  714. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  715. clblast::Transpose::kYes, clblast::Transpose::kNo,
  716. ne01, ne11, ne10,
  717. alpha,
  718. d_X, 0, ne00,
  719. d_Y, 0, ne10,
  720. beta,
  721. d_D, 0, ne01,
  722. &queue, &ev_sgemm);
  723. if (status != clblast::StatusCode::kSuccess) {
  724. GGML_ASSERT(false);
  725. }
  726. // copy dst to host
  727. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  728. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
  729. }
  730. }
  731. if (src0->backend != GGML_BACKEND_GPU) {
  732. ggml_cl_pool_free(d_X, x_size);
  733. }
  734. ggml_cl_pool_free(d_Y, y_size);
  735. ggml_cl_pool_free(d_D, d_size);
  736. }
  737. static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
  738. GGML_ASSERT(fp16_support);
  739. const int64_t ne00 = src0->ne[0];
  740. const int64_t ne01 = src0->ne[1];
  741. const int64_t ne02 = src0->ne[2];
  742. const int64_t ne03 = src0->ne[3];
  743. const int64_t ne10 = src1->ne[0];
  744. const int64_t ne11 = src1->ne[1];
  745. const int nb10 = src1->nb[0];
  746. const int nb11 = src1->nb[1];
  747. const int nb12 = src1->nb[2];
  748. const int nb13 = src1->nb[3];
  749. const int nb2 = dst->nb[2];
  750. const int nb3 = dst->nb[3];
  751. const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
  752. const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
  753. const int x_ne = ne01 * ne00;
  754. const int y_ne = ne11 * ne10;
  755. const int d_ne = ne11 * ne01;
  756. size_t x_size;
  757. size_t y_size;
  758. size_t d_size;
  759. cl_mem d_X;
  760. if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
  761. d_X = (cl_mem) src0->data;
  762. } else {
  763. d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
  764. }
  765. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
  766. cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
  767. bool src1_cont_rows = nb10 == sizeof(float);
  768. bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
  769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  771. // copy src0 to device
  772. if (src0->backend != GGML_BACKEND_GPU) {
  773. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
  774. }
  775. // convert src1 to fp16
  776. // TODO: use multiple threads
  777. ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  778. char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
  779. if (src1_cont_rows) {
  780. if (src1_cont_cols) {
  781. ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
  782. }
  783. else {
  784. for (int64_t i01 = 0; i01 < ne11; i01++) {
  785. ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
  786. }
  787. }
  788. }
  789. else {
  790. for (int64_t i01 = 0; i01 < ne11; i01++) {
  791. for (int64_t i00 = 0; i00 < ne10; i00++) {
  792. // very slow due to no inlining
  793. tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
  794. }
  795. }
  796. }
  797. // copy src1 to device
  798. CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
  799. CL_CHECK(clFinish(queue));
  800. // compute
  801. cl_event ev_sgemm;
  802. clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
  803. clblast::Transpose::kYes, clblast::Transpose::kNo,
  804. ne01, ne11, ne10,
  805. alpha,
  806. d_X, 0, ne00,
  807. d_Y, 0, ne10,
  808. beta,
  809. d_D, 0, ne01,
  810. &queue, &ev_sgemm);
  811. if (status != clblast::StatusCode::kSuccess) {
  812. GGML_ASSERT(false);
  813. }
  814. // copy dst to host, then convert to float
  815. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
  816. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  817. ggml_fp16_to_fp32_row(tmp, d, d_ne);
  818. }
  819. }
  820. if (src0->backend != GGML_BACKEND_GPU) {
  821. ggml_cl_pool_free(d_X, x_size);
  822. }
  823. ggml_cl_pool_free(d_Y, y_size);
  824. ggml_cl_pool_free(d_D, d_size);
  825. }
  826. static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  827. const int64_t ne00 = src0->ne[0];
  828. const int64_t ne01 = src0->ne[1];
  829. const int64_t ne02 = src0->ne[2];
  830. const int64_t ne03 = src0->ne[3];
  831. const int64_t ne10 = src1->ne[0];
  832. const int64_t ne11 = src1->ne[1];
  833. const int nb2 = dst->nb[2];
  834. const int nb3 = dst->nb[3];
  835. const ggml_type type = src0->type;
  836. const bool mul_mat_vec = ne11 == 1;
  837. const float alpha = 1.0f;
  838. const float beta = 0.0f;
  839. const int x_ne = ne01 * ne00;
  840. const int y_ne = ne11 * ne10;
  841. const int d_ne = ne11 * ne01;
  842. const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
  843. size_t x_size;
  844. size_t y_size;
  845. size_t d_size;
  846. size_t q_size;
  847. cl_mem d_X;
  848. if (!mul_mat_vec) {
  849. d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
  850. }
  851. cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
  852. cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
  853. cl_mem d_Q;
  854. if (src0->backend == GGML_BACKEND_CPU) {
  855. d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
  856. }
  857. cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
  858. cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
  859. GGML_ASSERT(to_fp32_cl != nullptr);
  860. size_t ev_idx = 0;
  861. std::vector<cl_event> events;
  862. for (int64_t i03 = 0; i03 < ne03; i03++) {
  863. for (int64_t i02 = 0; i02 < ne02; i02++) {
  864. // copy src0 to device if necessary
  865. if (src0->backend == GGML_BACKEND_CPU) {
  866. events.emplace_back();
  867. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
  868. } else if (src0->backend == GGML_BACKEND_GPU) {
  869. d_Q = (cl_mem) src0->data;
  870. } else {
  871. GGML_ASSERT(false);
  872. }
  873. if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
  874. // copy src1 to device
  875. events.emplace_back();
  876. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
  877. // compute
  878. const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
  879. const size_t local = CL_DMMV_BLOCK_SIZE;
  880. const cl_int ncols = ne00;
  881. events.emplace_back();
  882. CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
  883. CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
  884. CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
  885. CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
  886. CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
  887. CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
  888. } else { // general dequantization kernel + CLBlast matrix matrix multiplication
  889. // convert src0 to fp32 on device
  890. const size_t global = x_ne;
  891. CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
  892. CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
  893. CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
  894. // copy src1 to device
  895. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
  896. events.emplace_back();
  897. // wait for conversion
  898. CL_CHECK(clFinish(queue));
  899. // compute
  900. clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
  901. clblast::Transpose::kYes, clblast::Transpose::kNo,
  902. ne01, ne11, ne10,
  903. alpha,
  904. d_X, 0, ne00,
  905. d_Y, 0, ne10,
  906. beta,
  907. d_D, 0, ne01,
  908. &queue, events.data() + ev_idx++);
  909. if (status != clblast::StatusCode::kSuccess) {
  910. GGML_ASSERT(false);
  911. }
  912. }
  913. // copy dst to host
  914. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  915. CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
  916. for (auto *event : events) {
  917. clReleaseEvent(event);
  918. }
  919. ev_idx = 0;
  920. events.clear();
  921. }
  922. }
  923. if (!mul_mat_vec) {
  924. ggml_cl_pool_free(d_X, x_size);
  925. }
  926. ggml_cl_pool_free(d_Y, y_size);
  927. ggml_cl_pool_free(d_D, d_size);
  928. if (src0->backend == GGML_BACKEND_CPU) {
  929. ggml_cl_pool_free(d_Q, q_size);
  930. }
  931. }
  932. bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  933. const int64_t ne10 = src1->ne[0];
  934. const int64_t ne0 = dst->ne[0];
  935. const int64_t ne1 = dst->ne[1];
  936. // TODO: find the optimal values for these
  937. if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  938. src1->type == GGML_TYPE_F32 &&
  939. dst->type == GGML_TYPE_F32 &&
  940. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
  941. return true;
  942. }
  943. return false;
  944. }
  945. bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
  946. // If device doesn't support FP16
  947. if (!fp16_support) {
  948. return false;
  949. }
  950. size_t src0_sz = ggml_nbytes(src0);
  951. size_t src1_sz = ggml_nbytes(src1);
  952. // mul_mat_q: src0 is converted to fp32 on device
  953. size_t mul_mat_q_transfer = src0_sz + src1_sz;
  954. // mul_mat_f16: src1 is converted to fp16 on cpu
  955. size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
  956. // choose the smaller one to transfer to the device
  957. // TODO: this is not always the best choice due to the overhead of converting to fp16
  958. return mul_mat_f16_transfer < mul_mat_q_transfer;
  959. }
  960. void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
  961. GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
  962. if (src0->type == GGML_TYPE_F32) {
  963. ggml_cl_mul_mat_f32(src0, src1, dst);
  964. }
  965. else if (src0->type == GGML_TYPE_F16) {
  966. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  967. ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
  968. }
  969. else {
  970. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  971. }
  972. }
  973. else if (ggml_is_quantized(src0->type)) {
  974. ggml_cl_mul_mat_q_f32(src0, src1, dst);
  975. }
  976. else {
  977. GGML_ASSERT(false);
  978. }
  979. }
  980. size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  981. if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
  982. return ggml_nelements(src1) * sizeof(ggml_fp16_t);
  983. }
  984. return 0;
  985. }
  986. void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
  987. const int64_t ne0 = tensor->ne[0];
  988. const int64_t ne1 = tensor->ne[1];
  989. const int64_t ne2 = tensor->ne[2];
  990. const int64_t ne3 = tensor->ne[3];
  991. const ggml_type type = tensor->type;
  992. const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
  993. size_t q_size;
  994. cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
  995. tensor->data = data;
  996. // copy tensor to device
  997. for (int64_t i3 = 0; i3 < ne3; i3++) {
  998. for (int64_t i2 = 0; i2 < ne2; i2++) {
  999. int i = i3*ne2 + i2;
  1000. CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
  1001. }
  1002. }
  1003. CL_CHECK(clFinish(queue));
  1004. tensor->data = dst;
  1005. GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
  1006. }