convert_hf_to_gguf.py 476 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. else:
  173. weight_map = {}
  174. else:
  175. weight_map = {}
  176. for part_name in part_names:
  177. logger.info(f"gguf: indexing model part '{part_name}'")
  178. ctx: ContextManager[Any]
  179. if is_safetensors:
  180. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  181. else:
  182. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  183. with ctx as model_part:
  184. assert model_part is not None
  185. for name in model_part.keys():
  186. if is_safetensors:
  187. data: gguf.utility.LocalTensor = model_part[name]
  188. if self.lazy:
  189. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  190. else:
  191. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  192. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  193. else:
  194. data_torch: Tensor = model_part[name]
  195. if self.lazy:
  196. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  197. else:
  198. data_gen = lambda data=data_torch: data # noqa: E731
  199. tensors[name] = data_gen
  200. # verify tensor name presence and identify potentially missing files
  201. if len(tensor_names_from_index) > 0:
  202. tensor_names_from_parts = set(tensors.keys())
  203. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  204. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  205. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  206. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  207. if len(extra) == 0 and len(missing_files) > 0:
  208. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  209. f"Missing tensors: {missing}")
  210. else:
  211. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  212. f"Missing tensors: {missing}\n"
  213. f"Extra tensors: {extra}")
  214. return tensors
  215. def dequant_model(self):
  216. tensors_to_remove: list[str] = []
  217. new_tensors: dict[str, Callable[[], Tensor]] = {}
  218. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  219. quant_method = quant_config.get("quant_method")
  220. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  221. weight = weight.view(torch.uint8)
  222. orig_shape = weight.shape
  223. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  224. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  225. data = data & 3
  226. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  227. # The scale is inverted
  228. return data / scale.float()
  229. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  230. scale = scale.float()
  231. if block_size is not None:
  232. for i, size in enumerate(block_size):
  233. scale = scale.repeat_interleave(size, i)
  234. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  235. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  236. return weight.float() * scale
  237. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  238. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  239. bits = quant_config["bits"]
  240. assert bits in (2, 3, 4, 8)
  241. assert qweight.dtype == qzeros.dtype
  242. maxq = (2 ** bits) - 1
  243. weight = None
  244. zeros = None
  245. pack_dtype_bits = qweight.dtype.itemsize * 8
  246. if bits in [2, 4, 8]:
  247. pack_factor = pack_dtype_bits // bits
  248. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  249. if self.lazy:
  250. wf = LazyTorchTensor.from_eager(wf)
  251. zeros = torch.bitwise_right_shift(
  252. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  253. wf.unsqueeze(0)
  254. ).to(torch.int16 if bits == 8 else torch.int8)
  255. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  256. weight = torch.bitwise_and(
  257. torch.bitwise_right_shift(
  258. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  259. wf.unsqueeze(-1)
  260. ).to(torch.int16 if bits == 8 else torch.int8),
  261. maxq
  262. )
  263. elif bits == 3:
  264. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  265. assert weight is not None
  266. assert zeros is not None
  267. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  268. # gptq_v2 doesn't need to offset zeros
  269. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  270. zeros += 1
  271. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  272. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  273. assert w.dtype == torch.int32
  274. shape = tuple(shape_tensor.tolist())
  275. assert len(shape) == 2
  276. mask = (1 << num_bits) - 1
  277. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  278. if self.lazy:
  279. shifts = LazyTorchTensor.from_eager(shifts)
  280. if zero_point is None:
  281. offset = 1 << (num_bits - 1)
  282. else:
  283. assert len(zero_point.shape) == 2
  284. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  285. offset = offset.reshape(-1, zero_point.shape[1])
  286. # trim padding, and prepare for broadcast
  287. # NOTE: the zero-point is packed along dim 0
  288. offset = offset[:shape[0], :].unsqueeze(-1)
  289. # extract values
  290. # NOTE: the weights are packed along dim 1
  291. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  292. unpacked = unpacked.reshape(shape[0], -1)
  293. # trim padding
  294. unpacked = unpacked[:, :shape[1]]
  295. # prepare for broadcast of the scale
  296. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  297. unpacked = unpacked - offset
  298. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  299. if quant_method == "bitnet":
  300. for name in self.model_tensors.keys():
  301. if name.endswith(".weight_scale"):
  302. weight_name = name.removesuffix("_scale")
  303. w = self.model_tensors[weight_name]
  304. s = self.model_tensors[name]
  305. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  306. tensors_to_remove.append(name)
  307. elif quant_method == "fp8":
  308. block_size = quant_config.get("weight_block_size")
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale_inv"):
  311. weight_name = name.removesuffix("_scale_inv")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  315. tensors_to_remove.append(name)
  316. elif quant_method == "gptq":
  317. for name in self.model_tensors.keys():
  318. if name.endswith(".qweight"):
  319. base_name = name.removesuffix(".qweight")
  320. g_idx = self.model_tensors[base_name + ".g_idx"]
  321. qweight = self.model_tensors[base_name + ".qweight"]
  322. qzeros = self.model_tensors[base_name + ".qzeros"]
  323. scales = self.model_tensors[base_name + ".scales"]
  324. new_tensors[base_name + ".weight"] = (
  325. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  326. g(), w(), z(), s()
  327. )
  328. )
  329. tensors_to_remove += [
  330. base_name + n
  331. for n in (
  332. ".g_idx",
  333. ".qzeros",
  334. ".qweight",
  335. ".scales",
  336. )
  337. ]
  338. elif quant_method == "compressed-tensors":
  339. quant_format = quant_config["format"]
  340. groups = quant_config["config_groups"]
  341. if len(groups) > 1:
  342. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  343. weight_config = tuple(groups.values())[0]["weights"]
  344. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  345. block_size = weight_config.get("block_structure", None)
  346. strategy = weight_config.get("strategy")
  347. assert strategy == "channel" or strategy == "block"
  348. assert weight_config.get("group_size") is None # didn't find a model using this yet
  349. for name in self.model_tensors.keys():
  350. if name.endswith(".weight_scale"):
  351. weight_name = name.removesuffix("_scale")
  352. w = self.model_tensors[weight_name]
  353. s = self.model_tensors[name]
  354. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  355. tensors_to_remove.append(name)
  356. elif quant_format == "pack-quantized":
  357. assert weight_config.get("strategy") == "group"
  358. assert weight_config.get("type", "int") == "int"
  359. num_bits = weight_config.get("num_bits")
  360. group_size = weight_config.get("group_size")
  361. assert isinstance(num_bits, int)
  362. assert isinstance(group_size, int)
  363. for name in self.model_tensors.keys():
  364. if name.endswith(".weight_packed"):
  365. base_name = name.removesuffix("_packed")
  366. w = self.model_tensors[name]
  367. scale = self.model_tensors[base_name + "_scale"]
  368. shape = self.model_tensors[base_name + "_shape"]
  369. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  370. new_tensors[base_name] = (
  371. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  372. w(), scale(), shape(), zero_point(), num_bits, group_size,
  373. )
  374. )
  375. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  376. if (base_name + "_zero_point") in self.model_tensors:
  377. tensors_to_remove.append(base_name + "_zero_point")
  378. else:
  379. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  380. else:
  381. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  382. for name in tensors_to_remove:
  383. if name in self.model_tensors:
  384. del self.model_tensors[name]
  385. for name, value in new_tensors.items():
  386. self.model_tensors[name] = value
  387. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  388. for name, gen in self.model_tensors.items():
  389. yield name, gen()
  390. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  391. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  392. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  393. name: str = gguf.TENSOR_NAMES[key]
  394. if "{bid}" in name:
  395. assert bid is not None
  396. name = name.format(bid=bid)
  397. return name + suffix
  398. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  399. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  400. return False
  401. key_name: str = gguf.TENSOR_NAMES[key]
  402. if "{bid}" in key_name:
  403. if bid is None:
  404. return False
  405. key_name = key_name.format(bid=bid)
  406. else:
  407. if bid is not None:
  408. return False
  409. return name == (key_name + suffix)
  410. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  411. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  412. if new_name is None:
  413. raise ValueError(f"Can not map tensor {name!r}")
  414. return new_name
  415. def set_gguf_parameters(self):
  416. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  418. del bid # unused
  419. return [(self.map_tensor_name(name), data_torch)]
  420. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  421. del name, new_name, bid, n_dims # unused
  422. return False
  423. # some models need extra generated tensors (like rope_freqs)
  424. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  425. return ()
  426. def prepare_tensors(self):
  427. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  428. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  429. # we don't need these
  430. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  431. continue
  432. old_dtype = data_torch.dtype
  433. # convert any unsupported data types to float32
  434. if data_torch.dtype not in (torch.float16, torch.float32):
  435. data_torch = data_torch.to(torch.float32)
  436. # use the first number-like part of the tensor name as the block id
  437. bid = None
  438. for part in name.split("."):
  439. if part.isdecimal():
  440. bid = int(part)
  441. break
  442. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  443. # TODO: why do we squeeze here?
  444. # data = data_torch.squeeze().numpy()
  445. data = data_torch.numpy()
  446. n_dims = len(data.shape)
  447. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  448. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  449. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  450. data_qtype = gguf.GGMLQuantizationType.F32
  451. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  452. # Some tensor types are always in float32
  453. if data_qtype is False and (
  454. any(
  455. self.match_model_tensor_name(new_name, key, bid)
  456. for key in (
  457. gguf.MODEL_TENSOR.FFN_GATE_INP,
  458. gguf.MODEL_TENSOR.POS_EMBD,
  459. gguf.MODEL_TENSOR.TOKEN_TYPES,
  460. gguf.MODEL_TENSOR.SSM_CONV1D,
  461. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  462. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  463. gguf.MODEL_TENSOR.TIME_MIX_W1,
  464. gguf.MODEL_TENSOR.TIME_MIX_W2,
  465. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  466. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  467. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  468. gguf.MODEL_TENSOR.POSNET_NORM1,
  469. gguf.MODEL_TENSOR.POSNET_NORM2,
  470. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  471. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  472. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  473. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  474. )
  475. )
  476. or not new_name.endswith(".weight")
  477. ):
  478. data_qtype = gguf.GGMLQuantizationType.F32
  479. if data_qtype is False and any(
  480. self.match_model_tensor_name(new_name, key, bid)
  481. for key in (
  482. gguf.MODEL_TENSOR.TOKEN_EMBD,
  483. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  484. gguf.MODEL_TENSOR.OUTPUT,
  485. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  486. gguf.MODEL_TENSOR.LAUREL_L,
  487. gguf.MODEL_TENSOR.LAUREL_R,
  488. )
  489. ):
  490. if self.ftype in (
  491. gguf.LlamaFileType.MOSTLY_TQ1_0,
  492. gguf.LlamaFileType.MOSTLY_TQ2_0,
  493. ):
  494. # TODO: use Q4_K and Q6_K
  495. data_qtype = gguf.GGMLQuantizationType.F16
  496. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  497. if isinstance(data_qtype, bool):
  498. if self.ftype == gguf.LlamaFileType.ALL_F32:
  499. data_qtype = gguf.GGMLQuantizationType.F32
  500. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  501. data_qtype = gguf.GGMLQuantizationType.F16
  502. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  503. data_qtype = gguf.GGMLQuantizationType.BF16
  504. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  505. data_qtype = gguf.GGMLQuantizationType.Q8_0
  506. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  507. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  508. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  509. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  510. else:
  511. raise ValueError(f"Unknown file type: {self.ftype.name}")
  512. try:
  513. data = gguf.quants.quantize(data, data_qtype)
  514. except gguf.QuantError as e:
  515. logger.warning("%s, %s", e, "falling back to F16")
  516. data_qtype = gguf.GGMLQuantizationType.F16
  517. data = gguf.quants.quantize(data, data_qtype)
  518. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  519. # reverse shape to make it similar to the internal ggml dimension order
  520. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  521. # n_dims is implicit in the shape
  522. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  523. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  524. def set_type(self):
  525. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  526. def prepare_metadata(self, vocab_only: bool):
  527. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  528. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  529. # If we are using HF model id, set the metadata name to the model id
  530. if self.remote_hf_model_id:
  531. self.metadata.name = self.remote_hf_model_id
  532. # Fallback to model directory name if metadata name is still missing
  533. if self.metadata.name is None:
  534. self.metadata.name = self.dir_model.name
  535. # Generate parameter weight class (useful for leader boards) if not yet determined
  536. if self.metadata.size_label is None and total_params > 0:
  537. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  538. self.set_type()
  539. logger.info("Set meta model")
  540. self.metadata.set_gguf_meta_model(self.gguf_writer)
  541. logger.info("Set model parameters")
  542. self.set_gguf_parameters()
  543. logger.info("Set model quantization version")
  544. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  545. def write_vocab(self):
  546. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  547. def write(self):
  548. self.prepare_tensors()
  549. self.prepare_metadata(vocab_only=False)
  550. self.gguf_writer.write_header_to_file(path=self.fname_out)
  551. self.gguf_writer.write_kv_data_to_file()
  552. self.gguf_writer.write_tensors_to_file(progress=True)
  553. self.gguf_writer.close()
  554. @staticmethod
  555. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  556. part_names: list[str] = []
  557. for filename in os.listdir(dir_model):
  558. if filename.startswith(prefix) and filename.endswith(suffix):
  559. part_names.append(filename)
  560. part_names.sort()
  561. return part_names
  562. @staticmethod
  563. def load_hparams(dir_model: Path, is_mistral_format: bool):
  564. if is_mistral_format:
  565. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  566. config = json.load(f)
  567. return config
  568. try:
  569. # for security reason, we don't allow loading remote code by default
  570. # if a model need remote code, we will fallback to config.json
  571. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  572. except Exception as e:
  573. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  574. logger.warning("Trying to load config.json instead")
  575. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  576. config = json.load(f)
  577. if "llm_config" in config:
  578. # rename for InternVL
  579. config["text_config"] = config["llm_config"]
  580. if "thinker_config" in config:
  581. # rename for Qwen2.5-Omni
  582. config["text_config"] = config["thinker_config"]["text_config"]
  583. return config
  584. @classmethod
  585. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  586. assert names
  587. def func(modelcls: AnyModel) -> AnyModel:
  588. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  589. for name in names:
  590. cls._model_classes[model_type][name] = modelcls
  591. return modelcls
  592. return func
  593. @classmethod
  594. def print_registered_models(cls):
  595. for model_type, model_classes in cls._model_classes.items():
  596. logger.error(f"{model_type.name} models:")
  597. for name in sorted(model_classes.keys()):
  598. logger.error(f" - {name}")
  599. @classmethod
  600. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  601. try:
  602. return cls._model_classes[model_type][arch]
  603. except KeyError:
  604. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  605. class TextModel(ModelBase):
  606. model_type = ModelType.TEXT
  607. hf_arch: str
  608. def __init__(self, *args, **kwargs):
  609. super().__init__(*args, **kwargs)
  610. if not self.is_mistral_format:
  611. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  612. else:
  613. self.hf_arch = ""
  614. if "text_config" in self.hparams:
  615. # move the text_config to the root level
  616. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  617. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  618. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  619. @classmethod
  620. def __init_subclass__(cls):
  621. # can't use an abstract property, because overriding it without type errors
  622. # would require using decorated functions instead of simply defining the property
  623. if "model_arch" not in cls.__dict__:
  624. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  625. def set_vocab(self):
  626. self._set_vocab_gpt2()
  627. def prepare_metadata(self, vocab_only: bool):
  628. super().prepare_metadata(vocab_only=vocab_only)
  629. total_params = self.gguf_writer.get_total_parameter_count()[0]
  630. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  631. output_type: str = self.ftype.name.partition("_")[2]
  632. # Filename Output
  633. if self.fname_out.is_dir():
  634. # Generate default filename based on model specification and available metadata
  635. if not vocab_only:
  636. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  637. else:
  638. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  639. # Use the default filename
  640. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  641. else:
  642. # Output path is a custom defined templated filename
  643. # Note: `not is_dir()` is used because `.is_file()` will not detect
  644. # file template strings as it doesn't actually exist as a file
  645. # Process templated file name with the output ftype, useful with the "auto" ftype
  646. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  647. logger.info("Set model tokenizer")
  648. self.set_vocab()
  649. def set_gguf_parameters(self):
  650. self.gguf_writer.add_block_count(self.block_count)
  651. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  652. self.gguf_writer.add_context_length(n_ctx)
  653. logger.info(f"gguf: context length = {n_ctx}")
  654. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  655. self.gguf_writer.add_embedding_length(n_embd)
  656. logger.info(f"gguf: embedding length = {n_embd}")
  657. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  658. self.gguf_writer.add_feed_forward_length(n_ff)
  659. logger.info(f"gguf: feed forward length = {n_ff}")
  660. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  661. self.gguf_writer.add_head_count(n_head)
  662. logger.info(f"gguf: head count = {n_head}")
  663. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  664. self.gguf_writer.add_head_count_kv(n_head_kv)
  665. logger.info(f"gguf: key-value head count = {n_head_kv}")
  666. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  667. self.gguf_writer.add_rope_freq_base(rope_theta)
  668. logger.info(f"gguf: rope theta = {rope_theta}")
  669. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  670. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  671. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  672. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  673. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  674. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  675. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  676. self.gguf_writer.add_expert_count(n_experts)
  677. logger.info(f"gguf: expert count = {n_experts}")
  678. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  679. self.gguf_writer.add_expert_used_count(n_experts_used)
  680. logger.info(f"gguf: experts used count = {n_experts_used}")
  681. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  682. self.gguf_writer.add_expert_group_count(n_expert_groups)
  683. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  684. if (n_group_used := self.hparams.get("topk_group")) is not None:
  685. self.gguf_writer.add_expert_group_used_count(n_group_used)
  686. logger.info(f"gguf: expert groups used count = {n_group_used}")
  687. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  688. if score_func == "sigmoid":
  689. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  690. elif score_func == "softmax":
  691. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  692. else:
  693. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  694. logger.info(f"gguf: expert score gating function = {score_func}")
  695. if (head_dim := self.hparams.get("head_dim")) is not None:
  696. self.gguf_writer.add_key_length(head_dim)
  697. self.gguf_writer.add_value_length(head_dim)
  698. self.gguf_writer.add_file_type(self.ftype)
  699. logger.info(f"gguf: file type = {self.ftype}")
  700. def write_vocab(self):
  701. if len(self.gguf_writer.tensors) != 1:
  702. raise ValueError('Splitting the vocabulary is not supported')
  703. self.prepare_metadata(vocab_only=True)
  704. self.gguf_writer.write_header_to_file(path=self.fname_out)
  705. self.gguf_writer.write_kv_data_to_file()
  706. self.gguf_writer.close()
  707. def does_token_look_special(self, token: str | bytes) -> bool:
  708. if isinstance(token, (bytes, bytearray)):
  709. token_text = token.decode(encoding="utf-8")
  710. elif isinstance(token, memoryview):
  711. token_text = token.tobytes().decode(encoding="utf-8")
  712. else:
  713. token_text = token
  714. # Some models mark some added tokens which ought to be control tokens as not special.
  715. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  716. seems_special = token_text in (
  717. "<pad>", # deepseek-coder
  718. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  719. )
  720. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  721. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  722. # TODO: should these be marked as UNUSED instead? (maybe not)
  723. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  724. return seems_special
  725. # used for GPT-2 BPE and WordPiece vocabs
  726. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  727. tokens: list[str] = []
  728. toktypes: list[int] = []
  729. from transformers import AutoTokenizer
  730. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  731. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  732. assert max(tokenizer.vocab.values()) < vocab_size
  733. tokpre = self.get_vocab_base_pre(tokenizer)
  734. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  735. added_vocab = tokenizer.get_added_vocab()
  736. added_tokens_decoder = tokenizer.added_tokens_decoder
  737. for i in range(vocab_size):
  738. if i not in reverse_vocab:
  739. tokens.append(f"[PAD{i}]")
  740. toktypes.append(gguf.TokenType.UNUSED)
  741. else:
  742. token: str = reverse_vocab[i]
  743. if token in added_vocab:
  744. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  745. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  746. if not added_tokens_decoder[i].normalized:
  747. previous_token = token
  748. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  749. if previous_token != token:
  750. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  751. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  752. toktypes.append(gguf.TokenType.CONTROL)
  753. else:
  754. # NOTE: this was added for Gemma.
  755. # Encoding and decoding the tokens above isn't sufficient for this case.
  756. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  757. toktypes.append(gguf.TokenType.USER_DEFINED)
  758. else:
  759. toktypes.append(gguf.TokenType.NORMAL)
  760. tokens.append(token)
  761. return tokens, toktypes, tokpre
  762. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  763. # do not modify it manually!
  764. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  765. # Marker: Start get_vocab_base_pre
  766. def get_vocab_base_pre(self, tokenizer) -> str:
  767. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  768. # is specific for the BPE pre-tokenizer used by the model
  769. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  770. # use in llama.cpp to implement the same pre-tokenizer
  771. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  772. chktok = tokenizer.encode(chktxt)
  773. chkhsh = sha256(str(chktok).encode()).hexdigest()
  774. logger.debug(f"chktok: {chktok}")
  775. logger.debug(f"chkhsh: {chkhsh}")
  776. res = None
  777. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  778. # or pull the latest version of the model from Huggingface
  779. # don't edit the hashes manually!
  780. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  781. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  782. res = "chatglm-bpe"
  783. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  784. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  785. res = "chatglm-bpe"
  786. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  787. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  788. res = "glm4"
  789. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  790. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  791. res = "glm4"
  792. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  793. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  794. res = "minerva-7b"
  795. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  796. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  797. res = "hunyuan"
  798. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  799. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  800. res = "hunyuan-dense"
  801. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  802. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  803. res = "falcon-h1"
  804. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  805. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  806. res = "falcon-h1"
  807. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  808. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  809. res = "falcon-h1"
  810. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  811. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  812. res = "falcon-h1"
  813. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  814. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  815. res = "kimi-k2"
  816. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  817. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  818. res = "qwen2"
  819. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  820. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  821. res = "grok-2"
  822. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  823. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  824. res = "llama-bpe"
  825. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  826. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  827. res = "deepseek-llm"
  828. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  829. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  830. res = "deepseek-coder"
  831. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  832. # ref: https://huggingface.co/tiiuae/falcon-7b
  833. res = "falcon"
  834. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  835. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  836. res = "bert-bge"
  837. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  838. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  839. res = "falcon3"
  840. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  841. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  842. res = "bert-bge-large"
  843. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  844. # ref: https://huggingface.co/mosaicml/mpt-7b
  845. res = "mpt"
  846. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  847. # ref: https://huggingface.co/bigcode/starcoder2-3b
  848. res = "starcoder"
  849. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  850. # ref: https://huggingface.co/openai-community/gpt2
  851. res = "gpt-2"
  852. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  853. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  854. res = "stablelm2"
  855. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  856. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  857. res = "refact"
  858. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  859. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  860. res = "command-r"
  861. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  862. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  863. res = "qwen2"
  864. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  865. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  866. res = "olmo"
  867. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  868. # ref: https://huggingface.co/databricks/dbrx-base
  869. res = "dbrx"
  870. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  871. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  872. res = "jina-v1-en"
  873. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  874. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  875. res = "jina-v2-en"
  876. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  877. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  878. res = "jina-v2-es"
  879. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  880. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  881. res = "jina-v2-de"
  882. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  883. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  884. res = "smaug-bpe"
  885. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  886. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  887. res = "poro-chat"
  888. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  889. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  890. res = "jina-v2-code"
  891. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  892. # ref: https://huggingface.co/LumiOpen/Viking-7B
  893. res = "viking"
  894. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  895. # ref: https://huggingface.co/core42/jais-13b
  896. res = "jais"
  897. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  898. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  899. res = "codeshell"
  900. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  901. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  902. res = "tekken"
  903. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  904. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  905. res = "smollm"
  906. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  907. # ref: https://huggingface.co/bigscience/bloom
  908. res = "bloom"
  909. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  910. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  911. res = "gpt3-finnish"
  912. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  913. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  914. res = "exaone"
  915. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  916. # ref: https://huggingface.co/microsoft/phi-2
  917. res = "phi-2"
  918. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  919. # ref: https://huggingface.co/facebook/chameleon-7b
  920. res = "chameleon"
  921. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  922. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  923. res = "roberta-bpe"
  924. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  925. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  926. res = "gigachat"
  927. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  928. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  929. res = "megrez"
  930. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  931. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  932. res = "deepseek-v3"
  933. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  934. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  935. res = "deepseek-r1-qwen"
  936. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  937. # ref: https://huggingface.co/Xenova/gpt-4o
  938. res = "gpt-4o"
  939. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  940. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  941. res = "superbpe"
  942. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  943. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  944. res = "trillion"
  945. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  946. # ref: https://huggingface.co/inclusionAI/Ling-lite
  947. res = "bailingmoe"
  948. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  949. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  950. res = "llama4"
  951. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  952. # ref: https://huggingface.co/mistral-community/pixtral-12b
  953. res = "pixtral"
  954. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  955. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  956. res = "seed-coder"
  957. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  958. # ref: https://huggingface.co/skt/A.X-4.0
  959. res = "a.x-4.0"
  960. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  961. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  962. res = "midm-2.0"
  963. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  964. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  965. res = "lfm2"
  966. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  967. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  968. res = "exaone4"
  969. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  970. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  971. res = "mellum"
  972. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  973. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  974. res = "afmoe"
  975. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  976. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  977. res = "bailingmoe2"
  978. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  979. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  980. res = "granite-docling"
  981. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  982. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  983. res = "minimax-m2"
  984. if res is None:
  985. logger.warning("\n")
  986. logger.warning("**************************************************************************************")
  987. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  988. logger.warning("** There are 2 possible reasons for this:")
  989. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  990. logger.warning("** - the pre-tokenization config has changed upstream")
  991. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  992. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  993. logger.warning("**")
  994. logger.warning(f"** chkhsh: {chkhsh}")
  995. logger.warning("**************************************************************************************")
  996. logger.warning("\n")
  997. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  998. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  999. logger.debug(f"chkhsh: {chkhsh}")
  1000. return res
  1001. # Marker: End get_vocab_base_pre
  1002. def _set_vocab_none(self) -> None:
  1003. self.gguf_writer.add_tokenizer_model("none")
  1004. def _set_vocab_gpt2(self) -> None:
  1005. tokens, toktypes, tokpre = self.get_vocab_base()
  1006. self.gguf_writer.add_tokenizer_model("gpt2")
  1007. self.gguf_writer.add_tokenizer_pre(tokpre)
  1008. self.gguf_writer.add_token_list(tokens)
  1009. self.gguf_writer.add_token_types(toktypes)
  1010. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1011. special_vocab.add_to_gguf(self.gguf_writer)
  1012. def _set_vocab_qwen(self):
  1013. dir_model = self.dir_model
  1014. hparams = self.hparams
  1015. tokens: list[str] = []
  1016. toktypes: list[int] = []
  1017. from transformers import AutoTokenizer
  1018. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1019. vocab_size = hparams["vocab_size"]
  1020. assert max(tokenizer.get_vocab().values()) < vocab_size
  1021. tokpre = self.get_vocab_base_pre(tokenizer)
  1022. merges = []
  1023. vocab = {}
  1024. mergeable_ranks = tokenizer.mergeable_ranks
  1025. for token, rank in mergeable_ranks.items():
  1026. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1027. if len(token) == 1:
  1028. continue
  1029. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1030. assert len(merged) == 2
  1031. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1032. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1033. added_vocab = tokenizer.special_tokens
  1034. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1035. for i in range(vocab_size):
  1036. if i not in reverse_vocab:
  1037. tokens.append(f"[PAD{i}]")
  1038. toktypes.append(gguf.TokenType.UNUSED)
  1039. elif reverse_vocab[i] in added_vocab:
  1040. tokens.append(reverse_vocab[i])
  1041. toktypes.append(gguf.TokenType.CONTROL)
  1042. else:
  1043. tokens.append(reverse_vocab[i])
  1044. toktypes.append(gguf.TokenType.NORMAL)
  1045. self.gguf_writer.add_tokenizer_model("gpt2")
  1046. self.gguf_writer.add_tokenizer_pre(tokpre)
  1047. self.gguf_writer.add_token_list(tokens)
  1048. self.gguf_writer.add_token_types(toktypes)
  1049. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1050. special_vocab.merges = merges
  1051. # only add special tokens when they were not already loaded from config.json
  1052. if len(special_vocab.special_token_ids) == 0:
  1053. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1054. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1055. # this one is usually not in config.json anyway
  1056. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1057. special_vocab.add_to_gguf(self.gguf_writer)
  1058. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1059. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1060. self.gguf_writer.add_tokenizer_model("llama")
  1061. self.gguf_writer.add_tokenizer_pre("default")
  1062. self.gguf_writer.add_token_list(tokens)
  1063. self.gguf_writer.add_token_scores(scores)
  1064. self.gguf_writer.add_token_types(toktypes)
  1065. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1066. special_vocab.add_to_gguf(self.gguf_writer)
  1067. def _create_vocab_sentencepiece(self):
  1068. from sentencepiece import SentencePieceProcessor
  1069. tokenizer_path = self.dir_model / 'tokenizer.model'
  1070. if not tokenizer_path.is_file():
  1071. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1072. tokenizer = SentencePieceProcessor()
  1073. tokenizer.LoadFromFile(str(tokenizer_path))
  1074. vocab_size = self.find_hparam([
  1075. "vocab_size_per_layer_input", # gemma3n
  1076. "vocab_size",
  1077. ], optional=True) or tokenizer.vocab_size()
  1078. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1079. scores: list[float] = [-10000.0] * vocab_size
  1080. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1081. for token_id in range(tokenizer.vocab_size()):
  1082. if token_id >= vocab_size:
  1083. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1084. break
  1085. piece = tokenizer.IdToPiece(token_id)
  1086. text = piece.encode("utf-8")
  1087. score = tokenizer.GetScore(token_id)
  1088. toktype = SentencePieceTokenTypes.NORMAL
  1089. if tokenizer.IsUnknown(token_id):
  1090. toktype = SentencePieceTokenTypes.UNKNOWN
  1091. elif tokenizer.IsControl(token_id):
  1092. toktype = SentencePieceTokenTypes.CONTROL
  1093. elif tokenizer.IsUnused(token_id):
  1094. toktype = SentencePieceTokenTypes.UNUSED
  1095. elif tokenizer.IsByte(token_id):
  1096. toktype = SentencePieceTokenTypes.BYTE
  1097. tokens[token_id] = text
  1098. scores[token_id] = score
  1099. toktypes[token_id] = toktype
  1100. added_tokens_file = self.dir_model / 'added_tokens.json'
  1101. if added_tokens_file.is_file():
  1102. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1103. added_tokens_json = json.load(f)
  1104. for key in added_tokens_json:
  1105. token_id = added_tokens_json[key]
  1106. if token_id >= vocab_size:
  1107. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1108. continue
  1109. tokens[token_id] = key.encode("utf-8")
  1110. scores[token_id] = -1000.0
  1111. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1112. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1113. if tokenizer_config_file.is_file():
  1114. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1115. tokenizer_config_json = json.load(f)
  1116. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1117. for token_id, token_data in added_tokens_decoder.items():
  1118. token_id = int(token_id)
  1119. token: str = token_data["content"]
  1120. if token_id >= vocab_size:
  1121. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1122. continue
  1123. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1124. if tokens[token_id] != token.encode("utf-8"):
  1125. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1126. if token_data.get("special") or self.does_token_look_special(token):
  1127. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1128. else:
  1129. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1130. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1131. scores[token_id] = -1000.0
  1132. tokens[token_id] = token.encode("utf-8")
  1133. if vocab_size > len(tokens):
  1134. pad_count = vocab_size - len(tokens)
  1135. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1136. for i in range(1, pad_count + 1):
  1137. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1138. scores.append(-1000.0)
  1139. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1140. return tokens, scores, toktypes
  1141. def _set_vocab_llama_hf(self):
  1142. vocab = gguf.LlamaHfVocab(self.dir_model)
  1143. tokens = []
  1144. scores = []
  1145. toktypes = []
  1146. for text, score, toktype in vocab.all_tokens():
  1147. tokens.append(text)
  1148. scores.append(score)
  1149. toktypes.append(toktype)
  1150. assert len(tokens) == vocab.vocab_size
  1151. self.gguf_writer.add_tokenizer_model("llama")
  1152. self.gguf_writer.add_tokenizer_pre("default")
  1153. self.gguf_writer.add_token_list(tokens)
  1154. self.gguf_writer.add_token_scores(scores)
  1155. self.gguf_writer.add_token_types(toktypes)
  1156. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1157. special_vocab.add_to_gguf(self.gguf_writer)
  1158. def _set_vocab_rwkv_world(self):
  1159. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1160. vocab_size = self.hparams.get("vocab_size", 65536)
  1161. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1162. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1163. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1164. lines = f.readlines()
  1165. for line in lines:
  1166. parts = line.split(' ')
  1167. assert len(parts) >= 3
  1168. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1169. token = token.encode("utf-8") if isinstance(token, str) else token
  1170. assert isinstance(token, bytes)
  1171. assert len(token) == token_len
  1172. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1173. tokens.append(token_text.encode("utf-8"))
  1174. toktypes.append(gguf.TokenType.NORMAL)
  1175. remainder = vocab_size - len(tokens)
  1176. assert remainder >= 0
  1177. for i in range(len(tokens), vocab_size):
  1178. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1179. toktypes.append(gguf.TokenType.UNUSED)
  1180. self.gguf_writer.add_tokenizer_model("rwkv")
  1181. self.gguf_writer.add_token_list(tokens)
  1182. self.gguf_writer.add_token_types(toktypes)
  1183. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1184. if special_vocab.chat_template is None:
  1185. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1186. if template_path.is_file():
  1187. with open(template_path, "r", encoding="utf-8") as f:
  1188. template = f.read()
  1189. else:
  1190. template = "rwkv-world"
  1191. special_vocab.chat_template = template
  1192. # hack: Add '\n\n' as the EOT token to make it chat normally
  1193. special_vocab._set_special_token("eot", 261)
  1194. # hack: Override these as they have already been set (incorrectly)
  1195. special_vocab.special_token_ids["bos"] = 0
  1196. special_vocab.special_token_ids["eos"] = 0
  1197. special_vocab.add_to_gguf(self.gguf_writer)
  1198. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1199. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1200. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1201. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1202. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1203. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1204. assert field # tokenizer model
  1205. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1206. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1207. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1208. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1209. assert field # token list
  1210. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1211. if model_name == "llama-spm":
  1212. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1213. assert field # token scores
  1214. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1215. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1216. assert field # token types
  1217. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1218. if model_name != "llama-spm":
  1219. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1220. assert field # token merges
  1221. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1222. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1223. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1224. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1225. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1226. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1227. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1228. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1229. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1230. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1231. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1232. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1233. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1234. def _try_set_pooling_type(self) -> None:
  1235. # get pooling path
  1236. pooling_path = None
  1237. module_path = self.dir_model / "modules.json"
  1238. if module_path.is_file():
  1239. with open(module_path, encoding="utf-8") as f:
  1240. modules = json.load(f)
  1241. for mod in modules:
  1242. if mod["type"] == "sentence_transformers.models.Pooling":
  1243. pooling_path = mod["path"]
  1244. break
  1245. # get pooling type
  1246. if pooling_path is not None:
  1247. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1248. pooling = json.load(f)
  1249. if pooling["pooling_mode_mean_tokens"]:
  1250. pooling_type = gguf.PoolingType.MEAN
  1251. elif pooling["pooling_mode_cls_token"]:
  1252. pooling_type = gguf.PoolingType.CLS
  1253. elif pooling["pooling_mode_lasttoken"]:
  1254. pooling_type = gguf.PoolingType.LAST
  1255. else:
  1256. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1257. self.gguf_writer.add_pooling_type(pooling_type)
  1258. def _set_vocab_interns1(self):
  1259. tokens: list[str] = []
  1260. toktypes: list[int] = []
  1261. from transformers import AutoTokenizer
  1262. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1263. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1264. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1265. assert max(vocab.values()) < vocab_size
  1266. tokpre = self.get_vocab_base_pre(tokenizer)
  1267. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1268. added_vocab = tokenizer.get_added_vocab()
  1269. added_tokens_decoder = tokenizer.added_tokens_decoder
  1270. for i in range(vocab_size):
  1271. if i not in reverse_vocab:
  1272. tokens.append(f"[PAD{i}]")
  1273. toktypes.append(gguf.TokenType.UNUSED)
  1274. else:
  1275. token: str = reverse_vocab[i]
  1276. if token in added_vocab:
  1277. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1278. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1279. if not added_tokens_decoder[i].normalized:
  1280. previous_token = token
  1281. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1282. if previous_token != token:
  1283. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1284. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1285. toktypes.append(gguf.TokenType.CONTROL)
  1286. else:
  1287. toktypes.append(gguf.TokenType.USER_DEFINED)
  1288. else:
  1289. toktypes.append(gguf.TokenType.NORMAL)
  1290. tokens.append(token)
  1291. self.gguf_writer.add_tokenizer_model("gpt2")
  1292. self.gguf_writer.add_tokenizer_pre(tokpre)
  1293. self.gguf_writer.add_token_list(tokens)
  1294. self.gguf_writer.add_token_types(toktypes)
  1295. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1296. special_vocab._set_special_token("bos", 151643)
  1297. special_vocab.add_to_gguf(self.gguf_writer)
  1298. class MmprojModel(ModelBase):
  1299. model_type = ModelType.MMPROJ
  1300. model_arch = gguf.MODEL_ARCH.MMPROJ
  1301. preprocessor_config: dict[str, Any]
  1302. global_config: dict[str, Any]
  1303. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1304. has_vision_encoder: bool = True # by default
  1305. has_audio_encoder: bool = False
  1306. # for models having multiple encoders, we need to separate their hparams
  1307. hparams_vision: dict[str, Any] | None = None
  1308. hparams_audio: dict[str, Any] | None = None
  1309. def __init__(self, *args, **kwargs):
  1310. super().__init__(*args, **kwargs)
  1311. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1312. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1313. # get n_embd of the text model
  1314. if not self.is_mistral_format:
  1315. if "text_config" not in self.hparams:
  1316. self.hparams["text_config"] = {}
  1317. if "audio_config" not in self.hparams:
  1318. self.hparams["audio_config"] = {}
  1319. text_config = {**self.hparams, **self.hparams["text_config"]}
  1320. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1321. else:
  1322. text_config = {
  1323. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1324. }
  1325. self.n_embd_text = text_config.get("hidden_dim", 0)
  1326. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1327. # move vision config to the top level, while preserving the original hparams in global_config
  1328. import copy
  1329. self.global_config = copy.deepcopy(self.hparams)
  1330. self.hparams_vision = self.get_vision_config()
  1331. self.hparams_audio = self.get_audio_config()
  1332. if self.hparams_vision is None and self.hparams_audio is None:
  1333. raise ValueError("vision_config / audio_config not found in hparams")
  1334. # for compat with vision-only models
  1335. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1336. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1337. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1338. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1339. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1340. # load preprocessor config
  1341. self.preprocessor_config = {}
  1342. if not self.is_mistral_format:
  1343. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1344. self.preprocessor_config = json.load(f)
  1345. def get_vision_config(self) -> dict[str, Any] | None:
  1346. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1347. return self.global_config.get(config_name)
  1348. def get_audio_config(self) -> dict[str, Any] | None:
  1349. return self.global_config.get("audio_config")
  1350. def set_type(self):
  1351. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1352. def prepare_metadata(self, vocab_only: bool):
  1353. super().prepare_metadata(vocab_only=vocab_only)
  1354. output_type: str = self.ftype.name.partition("_")[2]
  1355. if self.fname_out.is_dir():
  1356. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1357. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1358. else:
  1359. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1360. def set_gguf_parameters(self):
  1361. self.gguf_writer.add_file_type(self.ftype)
  1362. if self.has_vision_encoder:
  1363. self.gguf_writer.add_clip_has_vision_encoder(True)
  1364. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1365. # vision config
  1366. self.image_size = self.find_vparam(["image_size"])
  1367. self.gguf_writer.add_vision_image_size(self.image_size)
  1368. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1369. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1370. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1371. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1372. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1373. # preprocessor config
  1374. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1375. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1376. self.gguf_writer.add_vision_image_mean(image_mean)
  1377. self.gguf_writer.add_vision_image_std(image_std)
  1378. if self.has_audio_encoder:
  1379. self.gguf_writer.add_clip_has_audio_encoder(True)
  1380. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1381. # audio config
  1382. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1383. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1384. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1385. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1386. if not self.has_vision_encoder and not self.has_audio_encoder:
  1387. raise ValueError("MmprojModel must have either vision or audio encoder")
  1388. def write_vocab(self):
  1389. raise ValueError("MmprojModel does not support vocab writing")
  1390. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1391. assert self.hparams_vision is not None
  1392. return self._find_param(self.hparams_vision, keys, optional)
  1393. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1394. assert self.hparams_audio is not None
  1395. return self._find_param(self.hparams_audio, keys, optional)
  1396. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1397. key = next((k for k in keys if k in obj), None)
  1398. if key is not None:
  1399. return obj[key]
  1400. if optional:
  1401. return None
  1402. raise KeyError(f"could not find any of: {keys}")
  1403. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1404. del bid, name, n_dims # unused
  1405. if ".patch_embd.weight" in new_name:
  1406. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1407. return False
  1408. @ModelBase.register("GPTNeoXForCausalLM")
  1409. class GPTNeoXModel(TextModel):
  1410. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1411. def set_gguf_parameters(self):
  1412. block_count = self.hparams["num_hidden_layers"]
  1413. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1414. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1415. self.gguf_writer.add_block_count(block_count)
  1416. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1417. self.gguf_writer.add_rope_dimension_count(
  1418. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1419. )
  1420. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1421. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1422. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1424. del bid # unused
  1425. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1426. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1427. tensors: list[tuple[str, Tensor]] = []
  1428. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1429. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1430. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1431. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1432. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1433. data_torch = torch.cat(
  1434. (
  1435. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1436. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1437. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1438. ),
  1439. dim=0,
  1440. )
  1441. logger.info("re-format attention.linear_qkv.weight")
  1442. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1443. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1444. data_torch = torch.cat(
  1445. (
  1446. qkv_bias[:, 0, :].reshape((n_embed,)),
  1447. qkv_bias[:, 1, :].reshape((n_embed,)),
  1448. qkv_bias[:, 2, :].reshape((n_embed,)),
  1449. ),
  1450. dim=0,
  1451. )
  1452. logger.info("re-format attention.linear_qkv.bias")
  1453. tensors.append((self.map_tensor_name(name), data_torch))
  1454. return tensors
  1455. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1456. class BloomModel(TextModel):
  1457. model_arch = gguf.MODEL_ARCH.BLOOM
  1458. def set_gguf_parameters(self):
  1459. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1460. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1461. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1462. self.gguf_writer.add_embedding_length(n_embed)
  1463. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1464. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1465. self.gguf_writer.add_head_count(n_head)
  1466. self.gguf_writer.add_head_count_kv(n_head)
  1467. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1468. self.gguf_writer.add_file_type(self.ftype)
  1469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1470. del bid # unused
  1471. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1472. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1473. name = re.sub(r'transformer\.', '', name)
  1474. tensors: list[tuple[str, Tensor]] = []
  1475. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1476. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1477. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1478. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1479. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1480. data_torch = torch.cat(
  1481. (
  1482. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1483. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1484. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1485. ),
  1486. dim=0,
  1487. )
  1488. logger.info("re-format attention.linear_qkv.weight")
  1489. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1490. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1491. data_torch = torch.cat(
  1492. (
  1493. qkv_bias[:, 0, :].reshape((n_embed,)),
  1494. qkv_bias[:, 1, :].reshape((n_embed,)),
  1495. qkv_bias[:, 2, :].reshape((n_embed,)),
  1496. ),
  1497. dim=0,
  1498. )
  1499. logger.info("re-format attention.linear_qkv.bias")
  1500. tensors.append((self.map_tensor_name(name), data_torch))
  1501. return tensors
  1502. @ModelBase.register("MPTForCausalLM")
  1503. class MPTModel(TextModel):
  1504. model_arch = gguf.MODEL_ARCH.MPT
  1505. def set_vocab(self):
  1506. try:
  1507. self._set_vocab_gpt2()
  1508. except Exception:
  1509. # Fallback for SEA-LION model
  1510. self._set_vocab_sentencepiece()
  1511. self.gguf_writer.add_add_bos_token(False)
  1512. self.gguf_writer.add_pad_token_id(3)
  1513. self.gguf_writer.add_eos_token_id(1)
  1514. self.gguf_writer.add_unk_token_id(0)
  1515. def set_gguf_parameters(self):
  1516. block_count = self.hparams["n_layers"]
  1517. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1518. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1519. self.gguf_writer.add_block_count(block_count)
  1520. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1521. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1522. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1523. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1524. self.gguf_writer.add_layer_norm_eps(1e-5)
  1525. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1526. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1527. if self.hparams["attn_config"]["alibi"]:
  1528. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1529. else:
  1530. self.gguf_writer.add_max_alibi_bias(0.0)
  1531. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1532. del bid # unused
  1533. if "scales" in name:
  1534. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1535. new_name = new_name.replace("scales", "act.scales")
  1536. else:
  1537. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1538. return [(new_name, data_torch)]
  1539. @ModelBase.register("OrionForCausalLM")
  1540. class OrionModel(TextModel):
  1541. model_arch = gguf.MODEL_ARCH.ORION
  1542. def set_vocab(self):
  1543. self._set_vocab_sentencepiece()
  1544. def set_gguf_parameters(self):
  1545. block_count = self.hparams["num_hidden_layers"]
  1546. head_count = self.hparams["num_attention_heads"]
  1547. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1548. ctx_length = 0
  1549. if "max_sequence_length" in self.hparams:
  1550. ctx_length = self.hparams["max_sequence_length"]
  1551. elif "max_position_embeddings" in self.hparams:
  1552. ctx_length = self.hparams["max_position_embeddings"]
  1553. elif "model_max_length" in self.hparams:
  1554. ctx_length = self.hparams["model_max_length"]
  1555. else:
  1556. raise ValueError("gguf: can not find ctx length parameter.")
  1557. self.gguf_writer.add_file_type(self.ftype)
  1558. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1559. self.gguf_writer.add_context_length(ctx_length)
  1560. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1561. self.gguf_writer.add_block_count(block_count)
  1562. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1563. self.gguf_writer.add_head_count(head_count)
  1564. self.gguf_writer.add_head_count_kv(head_count_kv)
  1565. # note: config provides rms norm but it is actually layer norm
  1566. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1567. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1568. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1569. class BaichuanModel(TextModel):
  1570. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1571. def set_vocab(self):
  1572. self._set_vocab_sentencepiece()
  1573. def set_gguf_parameters(self):
  1574. block_count = self.hparams["num_hidden_layers"]
  1575. head_count = self.hparams["num_attention_heads"]
  1576. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1577. ctx_length = 0
  1578. if "max_sequence_length" in self.hparams:
  1579. ctx_length = self.hparams["max_sequence_length"]
  1580. elif "max_position_embeddings" in self.hparams:
  1581. ctx_length = self.hparams["max_position_embeddings"]
  1582. elif "model_max_length" in self.hparams:
  1583. ctx_length = self.hparams["model_max_length"]
  1584. else:
  1585. raise ValueError("gguf: can not find ctx length parameter.")
  1586. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1587. self.gguf_writer.add_context_length(ctx_length)
  1588. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1589. self.gguf_writer.add_block_count(block_count)
  1590. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1591. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1592. self.gguf_writer.add_head_count(head_count)
  1593. self.gguf_writer.add_head_count_kv(head_count_kv)
  1594. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1595. self.gguf_writer.add_file_type(self.ftype)
  1596. rope_scaling = self.hparams.get("rope_scaling") or {}
  1597. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1598. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1599. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1600. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1601. head_count = self.hparams["num_attention_heads"]
  1602. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1603. tensors: list[tuple[str, Tensor]] = []
  1604. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1605. logger.info(f"Unpacking and permuting layer {bid}")
  1606. tensors = [
  1607. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1608. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1609. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1610. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1611. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1612. self._reverse_hf_part(data_torch, 2)),
  1613. ]
  1614. else:
  1615. tensors = [(self.map_tensor_name(name), data_torch)]
  1616. return tensors
  1617. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1618. if n_kv_head is not None and n_head != n_kv_head:
  1619. n_head //= n_kv_head
  1620. return (
  1621. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1622. .swapaxes(1, 2)
  1623. .reshape(weights.shape)
  1624. )
  1625. def _reverse_hf_permute_part(
  1626. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1627. ) -> Tensor:
  1628. r = weights.shape[0] // 3
  1629. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1630. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1631. r = weights.shape[0] // 3
  1632. return weights[r * n_part:r * n_part + r, ...]
  1633. @ModelBase.register("XverseForCausalLM")
  1634. class XverseModel(TextModel):
  1635. model_arch = gguf.MODEL_ARCH.XVERSE
  1636. def set_vocab(self):
  1637. assert (self.dir_model / "tokenizer.json").is_file()
  1638. dir_model = self.dir_model
  1639. hparams = self.hparams
  1640. tokens: list[bytes] = []
  1641. toktypes: list[int] = []
  1642. from transformers import AutoTokenizer
  1643. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1644. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1645. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1646. # because vocab_size is the count of items, and indexes start at 0.
  1647. max_vocab_index = max(tokenizer.get_vocab().values())
  1648. if max_vocab_index >= vocab_size:
  1649. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1650. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1651. added_vocab = tokenizer.get_added_vocab()
  1652. for token_id in range(vocab_size):
  1653. token_text = reverse_vocab[token_id].encode('utf-8')
  1654. # replace "\x00" to string with length > 0
  1655. if token_text == b"\x00":
  1656. toktype = gguf.TokenType.BYTE # special
  1657. token_text = f"<{token_text}>".encode('utf-8')
  1658. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1659. toktype = gguf.TokenType.BYTE # special
  1660. elif reverse_vocab[token_id] in added_vocab:
  1661. if tokenizer.added_tokens_decoder[token_id].special:
  1662. toktype = gguf.TokenType.CONTROL
  1663. else:
  1664. toktype = gguf.TokenType.USER_DEFINED
  1665. else:
  1666. toktype = gguf.TokenType.NORMAL
  1667. tokens.append(token_text)
  1668. toktypes.append(toktype)
  1669. self.gguf_writer.add_tokenizer_model("llama")
  1670. self.gguf_writer.add_tokenizer_pre("default")
  1671. self.gguf_writer.add_token_list(tokens)
  1672. self.gguf_writer.add_token_types(toktypes)
  1673. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1674. special_vocab.add_to_gguf(self.gguf_writer)
  1675. def set_gguf_parameters(self):
  1676. block_count = self.hparams["num_hidden_layers"]
  1677. head_count = self.hparams["num_attention_heads"]
  1678. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1679. ctx_length = 0
  1680. if "max_sequence_length" in self.hparams:
  1681. ctx_length = self.hparams["max_sequence_length"]
  1682. elif "max_position_embeddings" in self.hparams:
  1683. ctx_length = self.hparams["max_position_embeddings"]
  1684. elif "model_max_length" in self.hparams:
  1685. ctx_length = self.hparams["model_max_length"]
  1686. else:
  1687. raise ValueError("gguf: can not find ctx length parameter.")
  1688. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1689. self.gguf_writer.add_context_length(ctx_length)
  1690. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1691. self.gguf_writer.add_block_count(block_count)
  1692. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1693. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1694. self.gguf_writer.add_head_count(head_count)
  1695. self.gguf_writer.add_head_count_kv(head_count_kv)
  1696. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1697. self.gguf_writer.add_file_type(self.ftype)
  1698. rope_scaling = self.hparams.get("rope_scaling") or {}
  1699. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1700. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1701. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1702. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1703. del bid # unused
  1704. head_count = self.hparams["num_attention_heads"]
  1705. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1706. # HF models permute some of the tensors, so we need to undo that
  1707. if name.endswith("q_proj.weight"):
  1708. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1709. if name.endswith("k_proj.weight"):
  1710. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1711. return [(self.map_tensor_name(name), data_torch)]
  1712. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1713. if n_kv_head is not None and n_head != n_kv_head:
  1714. n_head //= n_kv_head
  1715. return (
  1716. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1717. .swapaxes(1, 2)
  1718. .reshape(weights.shape)
  1719. )
  1720. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1721. class FalconModel(TextModel):
  1722. model_arch = gguf.MODEL_ARCH.FALCON
  1723. def set_gguf_parameters(self):
  1724. block_count = self.hparams.get("num_hidden_layers")
  1725. if block_count is None:
  1726. block_count = self.hparams["n_layer"] # old name
  1727. n_head = self.hparams.get("num_attention_heads")
  1728. if n_head is None:
  1729. n_head = self.hparams["n_head"] # old name
  1730. n_head_kv = self.hparams.get("num_kv_heads")
  1731. if n_head_kv is None:
  1732. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1733. self.gguf_writer.add_context_length(2048) # not in config.json
  1734. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1735. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1736. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1737. self.gguf_writer.add_block_count(block_count)
  1738. self.gguf_writer.add_head_count(n_head)
  1739. self.gguf_writer.add_head_count_kv(n_head_kv)
  1740. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1741. self.gguf_writer.add_file_type(self.ftype)
  1742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1743. del bid # unused
  1744. # QKV tensor transform
  1745. # The original query_key_value tensor contains n_head_kv "kv groups",
  1746. # each consisting of n_head/n_head_kv query weights followed by one key
  1747. # and one value weight (shared by all query heads in the kv group).
  1748. # This layout makes it a big pain to work with in GGML.
  1749. # So we rearrange them here,, so that we have n_head query weights
  1750. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1751. # in contiguous fashion.
  1752. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1753. if "query_key_value" in name:
  1754. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1755. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1756. head_dim = self.hparams["hidden_size"] // n_head
  1757. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1758. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1759. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1760. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1761. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1762. return [(self.map_tensor_name(name), data_torch)]
  1763. @ModelBase.register("GPTBigCodeForCausalLM")
  1764. class StarCoderModel(TextModel):
  1765. model_arch = gguf.MODEL_ARCH.STARCODER
  1766. def set_gguf_parameters(self):
  1767. block_count = self.hparams["n_layer"]
  1768. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1769. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1770. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1771. self.gguf_writer.add_block_count(block_count)
  1772. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1773. self.gguf_writer.add_head_count_kv(1)
  1774. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1775. self.gguf_writer.add_file_type(self.ftype)
  1776. @ModelBase.register("GPTRefactForCausalLM")
  1777. class RefactModel(TextModel):
  1778. model_arch = gguf.MODEL_ARCH.REFACT
  1779. def set_vocab(self):
  1780. super().set_vocab()
  1781. # TODO: how to determine special FIM tokens automatically?
  1782. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1783. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1784. special_vocab._set_special_token("prefix", 1)
  1785. special_vocab._set_special_token("suffix", 3)
  1786. special_vocab._set_special_token("middle", 2)
  1787. special_vocab.chat_template = None # do not add it twice
  1788. special_vocab.add_to_gguf(self.gguf_writer)
  1789. def set_gguf_parameters(self):
  1790. hidden_dim = self.hparams["n_embd"]
  1791. inner_dim = 4 * hidden_dim
  1792. hidden_dim = int(2 * inner_dim / 3)
  1793. multiple_of = 256
  1794. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1795. block_count = self.hparams["n_layer"]
  1796. # refact uses Alibi. So this is from config.json which might be used by training.
  1797. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1798. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1799. self.gguf_writer.add_feed_forward_length(ff_dim)
  1800. self.gguf_writer.add_block_count(block_count)
  1801. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1802. self.gguf_writer.add_head_count_kv(1)
  1803. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1804. self.gguf_writer.add_file_type(self.ftype)
  1805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1806. hidden_dim = self.hparams["n_embd"]
  1807. inner_dim = 4 * hidden_dim
  1808. hidden_dim = int(2 * inner_dim / 3)
  1809. multiple_of = 256
  1810. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1811. n_head = self.hparams["n_head"]
  1812. n_head_kv = 1
  1813. head_dim = self.hparams["n_embd"] // n_head
  1814. tensors: list[tuple[str, Tensor]] = []
  1815. if bid is not None:
  1816. if name == f"transformer.h.{bid}.attn.kv.weight":
  1817. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1818. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1819. elif name == f"transformer.h.{bid}.attn.q.weight":
  1820. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1821. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1822. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1823. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1824. if len(tensors) == 0:
  1825. tensors.append((self.map_tensor_name(name), data_torch))
  1826. return tensors
  1827. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1828. class StableLMModel(TextModel):
  1829. model_arch = gguf.MODEL_ARCH.STABLELM
  1830. def set_vocab(self):
  1831. if (self.dir_model / "tokenizer.json").is_file():
  1832. self._set_vocab_gpt2()
  1833. else:
  1834. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1835. self._set_vocab_qwen()
  1836. def set_gguf_parameters(self):
  1837. hparams = self.hparams
  1838. block_count = hparams["num_hidden_layers"]
  1839. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1840. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1841. self.gguf_writer.add_block_count(block_count)
  1842. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1843. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1844. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1845. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1846. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1847. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1848. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1849. self.gguf_writer.add_file_type(self.ftype)
  1850. _q_norms: list[dict[str, Tensor]] | None = None
  1851. _k_norms: list[dict[str, Tensor]] | None = None
  1852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1853. n_head = self.hparams["num_attention_heads"]
  1854. n_kv_head = self.hparams["num_key_value_heads"]
  1855. if name.find("q_layernorm.norms") != -1:
  1856. assert bid is not None
  1857. if self._q_norms is None:
  1858. self._q_norms = [{} for _ in range(self.block_count)]
  1859. self._q_norms[bid][name] = data_torch
  1860. if len(self._q_norms[bid]) >= n_head:
  1861. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1862. else:
  1863. return []
  1864. if name.find("k_layernorm.norms") != -1:
  1865. assert bid is not None
  1866. if self._k_norms is None:
  1867. self._k_norms = [{} for _ in range(self.block_count)]
  1868. self._k_norms[bid][name] = data_torch
  1869. if len(self._k_norms[bid]) >= n_kv_head:
  1870. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1871. else:
  1872. return []
  1873. return [(self.map_tensor_name(name), data_torch)]
  1874. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1875. datas: list[Tensor] = []
  1876. # extract the norms in order
  1877. for xid in range(n_head):
  1878. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1879. datas.append(norms[ename])
  1880. del norms[ename]
  1881. data_torch = torch.stack(datas, dim=0)
  1882. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1883. new_name = self.map_tensor_name(merged_name)
  1884. return [(new_name, data_torch)]
  1885. def prepare_tensors(self):
  1886. super().prepare_tensors()
  1887. if self._q_norms is not None or self._k_norms is not None:
  1888. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1889. norms = (
  1890. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1891. ) + (
  1892. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1893. )
  1894. if len(norms) > 0:
  1895. raise ValueError(f"Unprocessed norms: {norms}")
  1896. @ModelBase.register(
  1897. "LLaMAForCausalLM",
  1898. "LlamaForCausalLM",
  1899. "MistralForCausalLM",
  1900. "MixtralForCausalLM",
  1901. "VLlama3ForCausalLM",
  1902. "LlavaForConditionalGeneration",
  1903. "VoxtralForConditionalGeneration",
  1904. "LlamaModel")
  1905. class LlamaModel(TextModel):
  1906. model_arch = gguf.MODEL_ARCH.LLAMA
  1907. undo_permute = True
  1908. def __init__(self, *args, **kwargs):
  1909. super().__init__(*args, **kwargs)
  1910. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1911. if self.hf_arch == "VLlama3ForCausalLM":
  1912. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1913. def _set_vocab_mistral(self):
  1914. if not _mistral_common_installed:
  1915. raise ImportError(_mistral_import_error_msg)
  1916. vocab = MistralVocab(self.dir_model)
  1917. logger.info(
  1918. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1919. )
  1920. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1921. tokens = []
  1922. scores = []
  1923. toktypes = []
  1924. for text, score, toktype in vocab.all_tokens():
  1925. tokens.append(text)
  1926. scores.append(score)
  1927. toktypes.append(toktype)
  1928. assert len(tokens) == vocab.vocab_size, (
  1929. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1930. )
  1931. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1932. self.gguf_writer.add_tokenizer_pre("tekken")
  1933. self.gguf_writer.add_token_merges(
  1934. vocab.extract_vocab_merges_from_model()
  1935. )
  1936. logger.info(
  1937. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1938. )
  1939. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1940. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1941. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1942. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1943. self.gguf_writer.add_token_list(tokens)
  1944. self.gguf_writer.add_token_scores(scores)
  1945. self.gguf_writer.add_token_types(toktypes)
  1946. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1947. self.gguf_writer.add_add_bos_token(True)
  1948. self.gguf_writer.add_add_eos_token(False)
  1949. template_dir = Path(__file__).parent / "models/templates/"
  1950. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1951. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1952. if self.is_mistral_format:
  1953. logger.info(
  1954. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1955. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1956. )
  1957. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1958. self.gguf_writer.add_chat_template(template)
  1959. else:
  1960. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1961. def set_vocab(self):
  1962. if self.is_mistral_format:
  1963. return self._set_vocab_mistral()
  1964. path_tekken_json = self.dir_model / "tekken.json"
  1965. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1966. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1967. self._set_vocab_mistral()
  1968. try:
  1969. self._set_vocab_sentencepiece()
  1970. except FileNotFoundError:
  1971. try:
  1972. self._set_vocab_llama_hf()
  1973. except (FileNotFoundError, TypeError):
  1974. # Llama 3
  1975. self._set_vocab_gpt2()
  1976. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1977. if self.hparams.get("vocab_size", 32000) == 32016:
  1978. special_vocab = gguf.SpecialVocab(
  1979. self.dir_model, load_merges=False,
  1980. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1981. )
  1982. special_vocab._set_special_token("prefix", 32007)
  1983. special_vocab._set_special_token("suffix", 32008)
  1984. special_vocab._set_special_token("middle", 32009)
  1985. special_vocab._set_special_token("eot", 32010)
  1986. special_vocab.add_to_gguf(self.gguf_writer)
  1987. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1988. if tokenizer_config_file.is_file():
  1989. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1990. tokenizer_config_json = json.load(f)
  1991. if "add_prefix_space" in tokenizer_config_json:
  1992. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1993. # Apply to granite small models only
  1994. if self.hparams.get("vocab_size", 32000) == 49152:
  1995. self.gguf_writer.add_add_bos_token(False)
  1996. def set_gguf_parameters(self):
  1997. super().set_gguf_parameters()
  1998. hparams = self.hparams
  1999. if not self.is_mistral_format:
  2000. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2001. if (rope_dim := hparams.get("head_dim")) is None:
  2002. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2003. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2004. rope_scaling = self.hparams.get("rope_scaling") or {}
  2005. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2006. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2007. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2008. @staticmethod
  2009. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2010. if n_head_kv is not None and n_head != n_head_kv:
  2011. n_head = n_head_kv
  2012. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2013. .swapaxes(1, 2)
  2014. .reshape(weights.shape))
  2015. _experts: list[dict[str, Tensor]] | None = None
  2016. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2017. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2018. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2019. vision_prefixes = [
  2020. "vision_encoder.",
  2021. "vision_language_adapter.",
  2022. "patch_merger.",
  2023. "pre_mm_projector_norm",
  2024. ]
  2025. is_multimodal_tensor = "vision_tower" in name \
  2026. or "vision_model" in name \
  2027. or "audio_tower" in name \
  2028. or "model.connector" in name \
  2029. or "multi_modal_projector" in name \
  2030. or any(
  2031. name.startswith(prefix)
  2032. for prefix in vision_prefixes
  2033. )
  2034. if is_multimodal_tensor:
  2035. return [] # skip vision tensors
  2036. elif self.hf_arch == "LlamaModel":
  2037. name = "model." + name
  2038. elif name.startswith("model.text_model"):
  2039. name = name.replace("text_model.", "") # for SmolVLM
  2040. elif name.startswith("language_model."):
  2041. name = name.replace("language_model.", "") # for the rest
  2042. if self.undo_permute:
  2043. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2044. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2045. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2046. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2047. # process the experts separately
  2048. if name.find("block_sparse_moe.experts") != -1:
  2049. n_experts = self.hparams["num_local_experts"]
  2050. assert bid is not None
  2051. if self._experts is None:
  2052. self._experts = [{} for _ in range(self.block_count)]
  2053. self._experts[bid][name] = data_torch
  2054. if len(self._experts[bid]) >= n_experts * 3:
  2055. tensors: list[tuple[str, Tensor]] = []
  2056. # merge the experts into a single 3d tensor
  2057. for wid in ["w1", "w2", "w3"]:
  2058. datas: list[Tensor] = []
  2059. for xid in range(n_experts):
  2060. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2061. datas.append(self._experts[bid][ename])
  2062. del self._experts[bid][ename]
  2063. data_torch = torch.stack(datas, dim=0)
  2064. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2065. new_name = self.map_tensor_name(merged_name)
  2066. tensors.append((new_name, data_torch))
  2067. return tensors
  2068. else:
  2069. return []
  2070. return [(self.map_tensor_name(name), data_torch)]
  2071. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2072. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2073. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2074. base = self.hparams.get("rope_theta", 10000.0)
  2075. if (dim := self.hparams.get("head_dim")) is None:
  2076. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2077. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2078. factor = rope_scaling.get("factor", 8.0)
  2079. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2080. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2081. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2082. low_freq_wavelen = old_context_len / low_freq_factor
  2083. high_freq_wavelen = old_context_len / high_freq_factor
  2084. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2085. rope_factors = []
  2086. for freq in freqs:
  2087. wavelen = 2 * math.pi / freq
  2088. if wavelen < high_freq_wavelen:
  2089. rope_factors.append(1)
  2090. elif wavelen > low_freq_wavelen:
  2091. rope_factors.append(factor)
  2092. else:
  2093. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2094. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2095. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2096. def prepare_tensors(self):
  2097. super().prepare_tensors()
  2098. if self._experts is not None:
  2099. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2100. experts = [k for d in self._experts for k in d.keys()]
  2101. if len(experts) > 0:
  2102. raise ValueError(f"Unprocessed experts: {experts}")
  2103. @ModelBase.register("ArceeForCausalLM")
  2104. class ArceeModel(LlamaModel):
  2105. model_arch = gguf.MODEL_ARCH.ARCEE
  2106. def set_gguf_parameters(self):
  2107. super().set_gguf_parameters()
  2108. self._try_set_pooling_type()
  2109. rope_scaling = self.hparams.get("rope_scaling") or {}
  2110. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2111. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2112. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2113. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2114. @ModelBase.register("AfmoeForCausalLM")
  2115. class AfmoeModel(LlamaModel):
  2116. model_arch = gguf.MODEL_ARCH.AFMOE
  2117. def set_gguf_parameters(self):
  2118. super().set_gguf_parameters()
  2119. # MoE parameters
  2120. if (n_experts := self.hparams.get("num_experts")) is not None:
  2121. self.gguf_writer.add_expert_count(n_experts)
  2122. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2123. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2124. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2125. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2126. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2127. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2128. # Route normalization and scaling
  2129. if (route_norm := self.hparams.get("route_norm")) is not None:
  2130. self.gguf_writer.add_expert_weights_norm(route_norm)
  2131. if (route_scale := self.hparams.get("route_scale")) is not None:
  2132. self.gguf_writer.add_expert_weights_scale(route_scale)
  2133. # Sliding window attention
  2134. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2135. self.gguf_writer.add_sliding_window(sliding_window)
  2136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2137. # Handle expert weights - they're already merged in the HF format
  2138. # process the experts separately
  2139. if name.find("mlp.experts") != -1:
  2140. n_experts = self.hparams["num_experts"]
  2141. assert bid is not None
  2142. if self._experts is None:
  2143. self._experts = [{} for _ in range(self.block_count)]
  2144. self._experts[bid][name] = data_torch
  2145. if len(self._experts[bid]) >= n_experts * 3:
  2146. tensors: list[tuple[str, Tensor]] = []
  2147. # merge the experts into a single 3d tensor
  2148. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2149. datas: list[Tensor] = []
  2150. for xid in range(n_experts):
  2151. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2152. datas.append(self._experts[bid][ename_to_retrieve])
  2153. del self._experts[bid][ename_to_retrieve]
  2154. data_torch = torch.stack(datas, dim=0)
  2155. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2156. new_name = self.map_tensor_name(merged_name)
  2157. tensors.append((new_name, data_torch))
  2158. return tensors
  2159. else:
  2160. return []
  2161. if name.endswith(".expert_bias"):
  2162. name = name.replace(".expert_bias", ".expert_bias.bias")
  2163. return [(self.map_tensor_name(name), data_torch)]
  2164. @ModelBase.register(
  2165. "LlavaForConditionalGeneration", # pixtral
  2166. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2167. )
  2168. class LlavaVisionModel(MmprojModel):
  2169. img_break_tok_id = -1
  2170. use_break_tok = True
  2171. def __init__(self, *args, **kwargs):
  2172. super().__init__(*args, **kwargs)
  2173. if self.hparams.get("model_type") == "pixtral":
  2174. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2175. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2176. if self.use_break_tok:
  2177. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2178. elif self.is_mistral_format:
  2179. # hparams is already vision config here so norm_eps is only defined in global_config.
  2180. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2181. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2182. if self.use_break_tok:
  2183. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2184. else:
  2185. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2186. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2187. def get_token_id(self, token: str) -> int:
  2188. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2189. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2190. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2191. for id_, token_data in added_tokens_decoder.items():
  2192. if token_data["content"] == token:
  2193. return int(id_)
  2194. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2195. def set_gguf_parameters(self):
  2196. super().set_gguf_parameters()
  2197. hparams = self.hparams
  2198. if hparams.get("model_type") == "pixtral":
  2199. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2200. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2201. # hidden_act
  2202. if hparams["hidden_act"] == "silu":
  2203. self.gguf_writer.add_vision_use_silu(True)
  2204. elif hparams["hidden_act"] == "gelu":
  2205. self.gguf_writer.add_vision_use_gelu(True)
  2206. else:
  2207. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2208. # spatial_merge_size
  2209. if "spatial_merge_size" in self.global_config:
  2210. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2212. del bid # unused
  2213. n_head = (
  2214. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2215. )
  2216. n_kv_head = n_head
  2217. valid_prefixes = (
  2218. "multi_modal_projector.",
  2219. "vision_tower.",
  2220. "vision_encoder.",
  2221. "vision_language_adapter.",
  2222. "patch_merger.",
  2223. "pre_mm_projector_norm",
  2224. )
  2225. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2226. # process vision tensors
  2227. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2228. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2229. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2230. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2231. return [(self.map_tensor_name(name), data_torch)]
  2232. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2233. if self.img_break_tok_id > 0 and embed_key in name:
  2234. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2235. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2236. img_break_embd = data_torch[self.img_break_tok_id]
  2237. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2238. return [(self.map_tensor_name(name), img_break_embd)]
  2239. return [] # skip other tensors
  2240. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2241. class SmolVLMModel(MmprojModel):
  2242. def __init__(self, *args, **kwargs):
  2243. super().__init__(*args, **kwargs)
  2244. if self.hparams["model_type"] == "smolvlm_vision":
  2245. # fix for SmolVLM2, missing some keys in config.json
  2246. # default values are taken from transformers code
  2247. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2248. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2249. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2250. def set_gguf_parameters(self):
  2251. super().set_gguf_parameters()
  2252. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2253. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2254. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2255. self.gguf_writer.add_vision_use_gelu(True)
  2256. # Add the preprocessor longest edge size
  2257. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2258. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2259. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2260. if ".embeddings." in name:
  2261. return gguf.GGMLQuantizationType.F32
  2262. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2263. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2264. del bid # unused
  2265. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2266. if is_vision_tensor:
  2267. return [(self.map_tensor_name(name), data_torch)]
  2268. return [] # skip other tensors
  2269. @ModelBase.register(
  2270. "Llama4ForConditionalGeneration",
  2271. "Llama4ForCausalLM",
  2272. )
  2273. class Llama4Model(LlamaModel):
  2274. model_arch = gguf.MODEL_ARCH.LLAMA4
  2275. undo_permute = False
  2276. def __init__(self, *args, **kwargs):
  2277. super().__init__(*args, **kwargs)
  2278. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2279. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2280. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2281. def set_vocab(self):
  2282. self._set_vocab_gpt2()
  2283. def set_gguf_parameters(self):
  2284. super().set_gguf_parameters()
  2285. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2286. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2287. if "layer_types" in self.hparams:
  2288. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2289. # all layers are full attention (for MobileLLM), disable swa
  2290. self.gguf_writer.add_sliding_window(0)
  2291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2292. if name.startswith("language_model."):
  2293. name = name.replace("language_model.", "")
  2294. # split the gate_up into gate and up
  2295. if "gate_up_proj" in name:
  2296. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2297. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2298. dim_half = data_torch.shape[-1] // 2
  2299. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2300. return [
  2301. (self.map_tensor_name(name_gate), gate_proj_weight),
  2302. (self.map_tensor_name(name_up), up_proj_weight)
  2303. ]
  2304. if name.endswith("down_proj"):
  2305. name += ".weight"
  2306. data_torch = data_torch.transpose(-1, -2)
  2307. if "multi_modal_projector" in name or "vision_model" in name:
  2308. return []
  2309. return super().modify_tensors(data_torch, name, bid)
  2310. @ModelBase.register("Llama4ForConditionalGeneration")
  2311. class Llama4VisionModel(MmprojModel):
  2312. def set_gguf_parameters(self):
  2313. super().set_gguf_parameters()
  2314. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2315. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2316. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2317. assert self.hparams["hidden_act"] == "gelu"
  2318. self.gguf_writer.add_vision_use_gelu(True)
  2319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2320. del bid # unused
  2321. if "multi_modal_projector" in name or "vision_model" in name:
  2322. # process vision tensors
  2323. if "positional_embedding_vlm" in name and ".weight" not in name:
  2324. name += ".weight"
  2325. if "multi_modal_projector.linear_1" in name:
  2326. # despite the name with number postfix, this is a single fully connected layer
  2327. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2328. return [(self.map_tensor_name(name), data_torch)]
  2329. return []
  2330. @ModelBase.register("Mistral3ForConditionalGeneration")
  2331. class Mistral3Model(LlamaModel):
  2332. model_arch = gguf.MODEL_ARCH.LLAMA
  2333. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2334. name = name.replace("language_model.", "")
  2335. if "multi_modal_projector" in name or "vision_tower" in name:
  2336. return []
  2337. return super().modify_tensors(data_torch, name, bid)
  2338. @ModelBase.register("DeciLMForCausalLM")
  2339. class DeciModel(TextModel):
  2340. model_arch = gguf.MODEL_ARCH.DECI
  2341. @staticmethod
  2342. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2343. # DeciLM-specific code
  2344. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2345. return DeciModel._find_multiple(intermediate_size, 256)
  2346. @staticmethod
  2347. def _find_multiple(n: int, k: int) -> int:
  2348. # DeciLM-specific code
  2349. if n % k == 0:
  2350. return n
  2351. return n + k - (n % k)
  2352. def __init__(self, *args, **kwargs):
  2353. super().__init__(*args, **kwargs)
  2354. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2355. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2356. assert self.block_count == len(_block_configs)
  2357. self._num_kv_heads = list()
  2358. self._num_heads = list()
  2359. _ffn_multipliers = list()
  2360. # ***linear attention layer***
  2361. # if n_heads_in_group is None and replace_with_linear is True
  2362. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2363. # ***attention-free layer***
  2364. # if n_heads_in_group is None and replace_with_linear is False
  2365. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2366. # ***normal attention-layer***
  2367. # if n_heads_in_group is not None, then
  2368. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2369. # _num_heads[il] is num_attention_head
  2370. # ***dummy layer*** for nemotron 253B
  2371. # if n_heads_in_group is None and ffn_mult is None
  2372. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2373. for il in range(len(_block_configs)):
  2374. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2375. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2376. self._num_kv_heads.append(0)
  2377. self._num_heads.append(self.hparams["num_attention_heads"])
  2378. else:
  2379. self._num_kv_heads.append(0)
  2380. self._num_heads.append(0)
  2381. else:
  2382. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2383. self._num_heads.append(self.hparams["num_attention_heads"])
  2384. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2385. _ffn_multipliers.append(0.0)
  2386. else:
  2387. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2388. assert self.block_count == len(self._num_kv_heads)
  2389. assert self.block_count == len(self._num_heads)
  2390. assert self.block_count == len(_ffn_multipliers)
  2391. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2392. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2393. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2394. self._ffn_dims: list[int] = [
  2395. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2396. for multiplier in _ffn_multipliers
  2397. ]
  2398. def set_vocab(self):
  2399. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2400. # eos_token from '|eot_id|' to '|end_of_text|'
  2401. if self.hparams.get("vocab_size", 128256) == 128256:
  2402. tokens, toktypes, tokpre = self.get_vocab_base()
  2403. self.gguf_writer.add_tokenizer_model("gpt2")
  2404. self.gguf_writer.add_tokenizer_pre(tokpre)
  2405. self.gguf_writer.add_token_list(tokens)
  2406. self.gguf_writer.add_token_types(toktypes)
  2407. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2408. special_vocab.add_to_gguf(self.gguf_writer)
  2409. else:
  2410. # DeciLM-7B
  2411. self._set_vocab_llama_hf()
  2412. def set_gguf_parameters(self):
  2413. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2414. assert self.block_count == len(self._num_kv_heads)
  2415. assert self.block_count == len(self._num_heads)
  2416. assert self.block_count == len(self._ffn_dims)
  2417. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2418. self.gguf_writer.add_rope_freq_base(rope_theta)
  2419. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2420. self.gguf_writer.add_head_count(self._num_heads)
  2421. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2422. self.gguf_writer.add_block_count(self.block_count)
  2423. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2424. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2425. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2426. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2427. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2428. self.gguf_writer.add_file_type(self.ftype)
  2429. else: # DeciLM-7B
  2430. super().set_gguf_parameters()
  2431. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2432. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2433. assert self.block_count == len(self._num_kv_heads)
  2434. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2435. hparams = self.hparams
  2436. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2437. if (rope_dim := hparams.get("head_dim")) is None:
  2438. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2439. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2440. rope_scaling = self.hparams.get("rope_scaling") or {}
  2441. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2442. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2443. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2444. @staticmethod
  2445. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2446. if n_head_kv is not None and n_head != n_head_kv:
  2447. n_head = n_head_kv
  2448. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2449. .swapaxes(1, 2)
  2450. .reshape(weights.shape))
  2451. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2452. n_head = self.hparams["num_attention_heads"]
  2453. if bid is not None:
  2454. if "num_key_value_heads_per_layer" in self.hparams:
  2455. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2456. elif "block_configs" in self.hparams:
  2457. n_kv_head = self._num_kv_heads[bid]
  2458. n_head = self._num_heads[bid]
  2459. else:
  2460. n_kv_head = self.hparams.get("num_key_value_heads")
  2461. else:
  2462. n_kv_head = self.hparams.get("num_key_value_heads")
  2463. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2464. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2465. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2466. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2467. return [(self.map_tensor_name(name), data_torch)]
  2468. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2469. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2470. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2471. base = self.hparams.get("rope_theta", 10000.0)
  2472. if (dim := self.hparams.get("head_dim")) is None:
  2473. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2474. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2475. factor = rope_scaling.get("factor", 8.0)
  2476. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2477. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2478. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2479. low_freq_wavelen = old_context_len / low_freq_factor
  2480. high_freq_wavelen = old_context_len / high_freq_factor
  2481. assert low_freq_wavelen != high_freq_wavelen
  2482. rope_factors = []
  2483. for freq in freqs:
  2484. wavelen = 2 * math.pi / freq
  2485. if wavelen < high_freq_wavelen:
  2486. rope_factors.append(1)
  2487. elif wavelen > low_freq_wavelen:
  2488. rope_factors.append(factor)
  2489. else:
  2490. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2491. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2492. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2493. def prepare_tensors(self):
  2494. super().prepare_tensors()
  2495. @ModelBase.register("BitnetForCausalLM")
  2496. class BitnetModel(TextModel):
  2497. model_arch = gguf.MODEL_ARCH.BITNET
  2498. def set_vocab(self):
  2499. self._set_vocab_sentencepiece()
  2500. def set_gguf_parameters(self):
  2501. super().set_gguf_parameters()
  2502. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2503. self.gguf_writer.add_rope_scaling_factor(1.0)
  2504. def weight_quant(self, weight: Tensor) -> Tensor:
  2505. dtype = weight.dtype
  2506. weight = weight.float()
  2507. scale = weight.abs().mean().clamp(min=1e-5)
  2508. iscale = 1 / scale
  2509. # TODO: multiply by the scale directly instead of inverting it twice
  2510. # (this is also unnecessarily doubly inverted upstream)
  2511. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2512. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2513. return result.type(dtype)
  2514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2515. new_name = self.map_tensor_name(name)
  2516. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2517. gguf.MODEL_TENSOR.ATTN_Q,
  2518. gguf.MODEL_TENSOR.ATTN_K,
  2519. gguf.MODEL_TENSOR.ATTN_V,
  2520. gguf.MODEL_TENSOR.ATTN_OUT,
  2521. gguf.MODEL_TENSOR.FFN_UP,
  2522. gguf.MODEL_TENSOR.FFN_DOWN,
  2523. gguf.MODEL_TENSOR.FFN_GATE,
  2524. ]):
  2525. # transform weight into 1/0/-1 (in fp32)
  2526. data_torch = self.weight_quant(data_torch)
  2527. yield (new_name, data_torch)
  2528. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2529. class GrokModel(TextModel):
  2530. model_arch = gguf.MODEL_ARCH.GROK
  2531. def set_vocab(self):
  2532. if (self.dir_model / 'tokenizer.model').is_file():
  2533. self._set_vocab_sentencepiece()
  2534. return
  2535. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2536. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2537. sys.exit(1)
  2538. self._set_vocab_gpt2()
  2539. def __init__(self, *args, **kwargs):
  2540. super().__init__(*args, **kwargs)
  2541. def set_gguf_parameters(self):
  2542. super().set_gguf_parameters()
  2543. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2544. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2545. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2546. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2547. if (rope_dim := self.hparams.get("head_dim")) is None:
  2548. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2549. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2550. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2551. # Treat "original" as "yarn", seems to have been a mistake
  2552. if self.hparams.get("rope_type") in ("yarn", "original"):
  2553. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2554. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2555. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2556. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2557. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2558. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2559. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2560. if temp_len := self.hparams.get("attn_temperature_len"):
  2561. self.gguf_writer.add_attn_temperature_length(temp_len)
  2562. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2563. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2564. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2565. _experts: list[dict[str, list[Tensor]]] | None = None
  2566. _cur_expert = ""
  2567. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2568. tensors: list[tuple[str, Tensor]] = []
  2569. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2570. if not is_expert:
  2571. tensors.append((self.map_tensor_name(name), data_torch))
  2572. # process the experts separately
  2573. if is_expert or self._cur_expert:
  2574. n_experts = self.hparams["num_local_experts"]
  2575. assert bid is not None
  2576. if self._experts is None:
  2577. self._experts = [{} for _ in range(self.block_count)]
  2578. # concatenate split tensors
  2579. if name in self._experts[bid]:
  2580. self._cur_expert = name
  2581. self._experts[bid][name].append(data_torch)
  2582. return []
  2583. elif is_expert:
  2584. self._cur_expert = name
  2585. self._experts[bid][name] = [data_torch]
  2586. return []
  2587. else:
  2588. self._cur_expert = ""
  2589. for bid in range(self.block_count):
  2590. if len(self._experts[bid]) >= n_experts * 3:
  2591. # merge the experts into a single 3d tensor
  2592. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2593. datas: list[Tensor] = []
  2594. for xid in range(n_experts):
  2595. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2596. if ename not in self._experts[bid]:
  2597. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2598. tensor_list = self._experts[bid][ename]
  2599. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2600. del self._experts[bid][ename]
  2601. data_torch = torch.stack(datas, dim=0)
  2602. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2603. new_name = self.map_tensor_name(merged_name)
  2604. yield (new_name, data_torch)
  2605. yield from tensors
  2606. @ModelBase.register("DbrxForCausalLM")
  2607. class DbrxModel(TextModel):
  2608. model_arch = gguf.MODEL_ARCH.DBRX
  2609. def set_gguf_parameters(self):
  2610. ffn_config = self.hparams["ffn_config"]
  2611. attn_config = self.hparams["attn_config"]
  2612. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2613. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2614. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2615. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2616. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2617. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2618. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2619. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2620. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2621. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2622. self.gguf_writer.add_layer_norm_eps(1e-5)
  2623. self.gguf_writer.add_file_type(self.ftype)
  2624. logger.info(f"gguf: file type = {self.ftype}")
  2625. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2626. del bid # unused
  2627. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2628. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2629. n_embd = self.hparams["d_model"]
  2630. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2631. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2632. # But llama.cpp moe graph works differently
  2633. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2634. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2635. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2636. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2637. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2638. experts = False
  2639. for exp_tensor_name in exp_tensor_names.keys():
  2640. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2641. experts = True
  2642. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2643. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2644. data_torch = data_torch.permute(*permute_tensor)
  2645. break
  2646. # map tensor names
  2647. # In MoE models the ffn tensors are typically most of the model weights,
  2648. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2649. # Every other model has the weight names ending in .weight,
  2650. # let's assume that is the convention which is not the case for dbrx:
  2651. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2652. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2653. return [(new_name, data_torch)]
  2654. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2655. del name, new_name, bid # unused
  2656. return n_dims > 1
  2657. @ModelBase.register("MiniCPMForCausalLM")
  2658. class MiniCPMModel(TextModel):
  2659. model_arch = gguf.MODEL_ARCH.MINICPM
  2660. def set_gguf_parameters(self):
  2661. super().set_gguf_parameters()
  2662. embedding_scale = float(self.hparams["scale_emb"])
  2663. self.gguf_writer.add_embedding_scale(embedding_scale)
  2664. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2665. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2666. self.gguf_writer.add_residual_scale(residual_scale)
  2667. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2668. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2669. self.gguf_writer.add_logit_scale(logit_scale)
  2670. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2671. rope_scaling = self.hparams.get("rope_scaling") or {}
  2672. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2673. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2674. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2675. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2676. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2677. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2678. if rope_scaling is not None:
  2679. long_factors = rope_scaling.get('long_factor', None)
  2680. short_factors = rope_scaling.get('short_factor', None)
  2681. if long_factors is None or short_factors is None:
  2682. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2683. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2684. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2685. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2686. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2687. def set_vocab(self):
  2688. self._set_vocab_sentencepiece()
  2689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2690. del bid # unused
  2691. n_head = self.hparams["num_attention_heads"]
  2692. n_kv_head = self.hparams.get("num_key_value_heads")
  2693. # HF models permute some of the tensors, so we need to undo that
  2694. if name.endswith(("q_proj.weight")):
  2695. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2696. if name.endswith(("k_proj.weight")):
  2697. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2698. return [(self.map_tensor_name(name), data_torch)]
  2699. @ModelBase.register("MiniCPM3ForCausalLM")
  2700. class MiniCPM3Model(TextModel):
  2701. model_arch = gguf.MODEL_ARCH.MINICPM3
  2702. def set_gguf_parameters(self):
  2703. hparams = self.hparams
  2704. self.gguf_writer.add_file_type(self.ftype)
  2705. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2706. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2707. self.gguf_writer.add_block_count(self.block_count)
  2708. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2709. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2710. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2711. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2712. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2713. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2714. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2715. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2716. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2717. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2718. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2719. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2720. if rope_scaling is not None:
  2721. rope_dims = self.hparams["qk_rope_head_dim"]
  2722. long_factors = rope_scaling.get('long_factor', None)
  2723. short_factors = rope_scaling.get('short_factor', None)
  2724. if long_factors is None or short_factors is None:
  2725. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2726. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2727. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2728. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2729. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2730. def set_vocab(self):
  2731. self._set_vocab_sentencepiece()
  2732. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2733. if n_kv_head is not None and n_head != n_kv_head:
  2734. n_head //= n_kv_head
  2735. return (
  2736. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2737. .swapaxes(1, 2)
  2738. .reshape(weights.shape)
  2739. )
  2740. @ModelBase.register("QWenLMHeadModel")
  2741. class QwenModel(TextModel):
  2742. model_arch = gguf.MODEL_ARCH.QWEN
  2743. @staticmethod
  2744. def token_bytes_to_string(b):
  2745. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2746. byte_encoder = bytes_to_unicode()
  2747. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2748. @staticmethod
  2749. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2750. parts = [bytes([b]) for b in token]
  2751. while True:
  2752. min_idx = None
  2753. min_rank = None
  2754. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2755. rank = mergeable_ranks.get(pair[0] + pair[1])
  2756. if rank is not None and (min_rank is None or rank < min_rank):
  2757. min_idx = i
  2758. min_rank = rank
  2759. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2760. break
  2761. assert min_idx is not None
  2762. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2763. return parts
  2764. def set_vocab(self):
  2765. self._set_vocab_qwen()
  2766. def set_gguf_parameters(self):
  2767. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2768. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2769. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2770. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2771. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2772. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2773. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2774. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2775. self.gguf_writer.add_file_type(self.ftype)
  2776. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2777. class Qwen2Model(TextModel):
  2778. model_arch = gguf.MODEL_ARCH.QWEN2
  2779. def set_vocab(self):
  2780. try:
  2781. self._set_vocab_sentencepiece()
  2782. except FileNotFoundError:
  2783. self._set_vocab_gpt2()
  2784. def set_gguf_parameters(self):
  2785. super().set_gguf_parameters()
  2786. self._try_set_pooling_type()
  2787. rope_scaling = self.hparams.get("rope_scaling") or {}
  2788. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2789. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2790. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2791. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2793. if self.hf_arch == "Qwen2Model":
  2794. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2795. if "language_model." in name:
  2796. name = name.replace("language_model.", "") # for InternVL
  2797. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2798. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2799. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2800. # skip vision and audio tensors
  2801. return []
  2802. yield from super().modify_tensors(data_torch, name, bid)
  2803. @ModelBase.register("DreamModel")
  2804. class DreamModel(TextModel):
  2805. model_arch = gguf.MODEL_ARCH.DREAM
  2806. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2807. tokens: list[str] = []
  2808. toktypes: list[int] = []
  2809. from transformers import AutoTokenizer
  2810. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2811. vocab_dict = tokenizer.get_vocab()
  2812. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2813. assert max(vocab_dict.values()) < vocab_size
  2814. tokpre = self.get_vocab_base_pre(tokenizer)
  2815. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2816. added_vocab = tokenizer.get_added_vocab()
  2817. for i in range(vocab_size):
  2818. if i not in reverse_vocab:
  2819. tokens.append(f"[PAD{i}]")
  2820. toktypes.append(gguf.TokenType.UNUSED)
  2821. elif reverse_vocab[i] in added_vocab:
  2822. tokens.append(reverse_vocab[i])
  2823. # Check if it's a special token - treat special tokens as CONTROL tokens
  2824. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2825. if tokenizer.added_tokens_decoder[i].special:
  2826. toktypes.append(gguf.TokenType.CONTROL)
  2827. else:
  2828. toktypes.append(gguf.TokenType.USER_DEFINED)
  2829. else:
  2830. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2831. toktypes.append(gguf.TokenType.CONTROL)
  2832. else:
  2833. tokens.append(reverse_vocab[i])
  2834. toktypes.append(gguf.TokenType.NORMAL)
  2835. return tokens, toktypes, tokpre
  2836. def set_vocab(self):
  2837. try:
  2838. self._set_vocab_sentencepiece()
  2839. except FileNotFoundError:
  2840. self._set_vocab_gpt2()
  2841. def set_gguf_parameters(self):
  2842. super().set_gguf_parameters()
  2843. self._try_set_pooling_type()
  2844. # Dream models use non-causal attention for diffusion
  2845. self.gguf_writer.add_causal_attention(False)
  2846. # Handle RoPE scaling similar to Qwen2
  2847. rope_scaling = self.hparams.get("rope_scaling") or {}
  2848. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2849. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2850. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2851. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2852. # Add Dream-specific parameters
  2853. mask_token_id = self.hparams.get("mask_token_id")
  2854. if mask_token_id is not None:
  2855. self.gguf_writer.add_mask_token_id(mask_token_id)
  2856. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2857. # Dream model tensors should be mapped directly since it's the base model
  2858. yield from super().modify_tensors(data_torch, name, bid)
  2859. @ModelBase.register("LLaDAModelLM")
  2860. class LLaDAModel(TextModel):
  2861. model_arch = gguf.MODEL_ARCH.LLADA
  2862. undo_permute = True
  2863. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2864. tokens: list[str] = []
  2865. toktypes: list[int] = []
  2866. from transformers import AutoTokenizer
  2867. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2868. vocab_dict = tokenizer.get_vocab()
  2869. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2870. assert max(vocab_dict.values()) < vocab_size
  2871. tokpre = self.get_vocab_base_pre(tokenizer)
  2872. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2873. added_vocab = tokenizer.get_added_vocab()
  2874. for i in range(vocab_size):
  2875. if i not in reverse_vocab:
  2876. tokens.append(f"[PAD{i}]")
  2877. toktypes.append(gguf.TokenType.UNUSED)
  2878. elif reverse_vocab[i] in added_vocab:
  2879. tokens.append(reverse_vocab[i])
  2880. # Check if it's a special token - treat special tokens as CONTROL tokens
  2881. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2882. if tokenizer.added_tokens_decoder[i].special:
  2883. toktypes.append(gguf.TokenType.CONTROL)
  2884. else:
  2885. toktypes.append(gguf.TokenType.USER_DEFINED)
  2886. else:
  2887. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2888. toktypes.append(gguf.TokenType.CONTROL)
  2889. else:
  2890. tokens.append(reverse_vocab[i])
  2891. toktypes.append(gguf.TokenType.NORMAL)
  2892. return tokens, toktypes, tokpre
  2893. def set_vocab(self):
  2894. self._set_vocab_gpt2()
  2895. # LLaDA specific parameters
  2896. self.gguf_writer.add_add_bos_token(True)
  2897. def set_gguf_parameters(self):
  2898. super().set_gguf_parameters()
  2899. self._try_set_pooling_type()
  2900. # Add parameters similar to LlamaModel
  2901. hparams = self.hparams
  2902. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2903. if (rope_dim := hparams.get("head_dim")) is None:
  2904. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2905. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2906. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2907. # Set context length for LLaDA
  2908. context_length = self.hparams.get("max_sequence_length", 4096)
  2909. self.gguf_writer.add_context_length(context_length)
  2910. # Set embedding length (dimension size)
  2911. embedding_length = self.hparams.get("d_model", 4096)
  2912. self.gguf_writer.add_embedding_length(embedding_length)
  2913. # Set feed forward length (MLP hidden size)
  2914. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2915. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2916. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2917. self.gguf_writer.add_causal_attention(False)
  2918. # LLaDA models don't shift their logits
  2919. self.gguf_writer.add_diffusion_shift_logits(False)
  2920. @staticmethod
  2921. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2922. if n_head_kv is not None and n_head != n_head_kv:
  2923. n_head = n_head_kv
  2924. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2925. .swapaxes(1, 2)
  2926. .reshape(weights.shape))
  2927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2928. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2929. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2930. if self.undo_permute:
  2931. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2932. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2933. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2934. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2935. # LLaDA model tensors should be mapped directly since it's the base model
  2936. yield from super().modify_tensors(data_torch, name, bid)
  2937. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2938. class Ernie4_5Model(TextModel):
  2939. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2940. def set_vocab(self):
  2941. self._set_vocab_sentencepiece()
  2942. def set_gguf_parameters(self):
  2943. super().set_gguf_parameters()
  2944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2945. num_heads = self.hparams["num_attention_heads"]
  2946. num_kv_heads = self.hparams["num_key_value_heads"]
  2947. if (head_dim := self.hparams.get("head_dim")) is None:
  2948. head_dim = self.hparams["hidden_size"] // num_heads
  2949. if "ernie." in name:
  2950. name = name.replace("ernie.", "model.")
  2951. # split the qkv weights
  2952. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2953. if "qkv_proj" in name:
  2954. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2955. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2956. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2957. total_q_dim = num_heads * head_dim
  2958. total_k_dim = num_kv_heads * head_dim
  2959. total_v_dim = num_kv_heads * head_dim
  2960. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2961. return [
  2962. (self.map_tensor_name(name_q), q_proj_weight),
  2963. (self.map_tensor_name(name_k), k_proj_weight),
  2964. (self.map_tensor_name(name_v), v_proj_weight)
  2965. ]
  2966. # split the up_gate_proj into gate and up
  2967. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2968. if "up_gate_proj" in name:
  2969. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2970. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2971. dim_half = data_torch.shape[0] // 2
  2972. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2973. return [
  2974. (self.map_tensor_name(name_gate), gate_proj_weight),
  2975. (self.map_tensor_name(name_up), up_proj_weight)
  2976. ]
  2977. return [(self.map_tensor_name(name), data_torch)]
  2978. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2979. class Ernie4_5MoeModel(Ernie4_5Model):
  2980. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2981. _experts: list[dict[str, Tensor]] | None = None
  2982. def __init__(self, *args, **kwargs):
  2983. super().__init__(*args, **kwargs)
  2984. self._experts = [{} for _ in range(self.block_count)]
  2985. def set_gguf_parameters(self):
  2986. super().set_gguf_parameters()
  2987. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2988. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2989. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2990. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2991. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2992. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2993. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2994. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2995. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2996. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2998. # Modify correction bias name as in DeepseekV2
  2999. if name.endswith("e_score_correction_bias"):
  3000. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3001. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3002. match = re.match(r"model.mtp_block.(\d+)", name)
  3003. if match:
  3004. return []
  3005. # skip all other MTP tensors for now
  3006. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3007. if match:
  3008. return []
  3009. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3010. if match:
  3011. return []
  3012. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3013. if match:
  3014. return []
  3015. # process the experts separately
  3016. if name.find("mlp.experts") != -1:
  3017. n_experts = self.hparams["moe_num_experts"]
  3018. assert bid is not None
  3019. if self._experts is None:
  3020. self._experts = [{} for _ in range(self.block_count)]
  3021. self._experts[bid][name] = data_torch
  3022. if len(self._experts[bid]) >= n_experts * 3:
  3023. tensors: list[tuple[str, Tensor]] = []
  3024. # merge the experts into a single 3d tensor
  3025. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3026. datas: list[Tensor] = []
  3027. for xid in range(n_experts):
  3028. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3029. datas.append(self._experts[bid][ename_to_retrieve])
  3030. del self._experts[bid][ename_to_retrieve]
  3031. data_torch = torch.stack(datas, dim=0)
  3032. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3033. new_name = self.map_tensor_name(merged_name)
  3034. tensors.append((new_name, data_torch))
  3035. return tensors
  3036. else:
  3037. return []
  3038. return [(self.map_tensor_name(name), data_torch)]
  3039. def prepare_tensors(self):
  3040. super().prepare_tensors()
  3041. if self._experts is not None:
  3042. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3043. experts = [k for d in self._experts for k in d.keys()]
  3044. if len(experts) > 0:
  3045. raise ValueError(f"Unprocessed experts: {experts}")
  3046. @ModelBase.register(
  3047. "Qwen2VLModel",
  3048. "Qwen2VLForConditionalGeneration",
  3049. "Qwen2_5_VLForConditionalGeneration",
  3050. "Qwen2_5OmniModel",
  3051. )
  3052. class Qwen2VLModel(TextModel):
  3053. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3054. def set_gguf_parameters(self):
  3055. super().set_gguf_parameters()
  3056. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3057. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3058. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3059. def set_vocab(self):
  3060. try:
  3061. self._set_vocab_sentencepiece()
  3062. except FileNotFoundError:
  3063. self._set_vocab_gpt2()
  3064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3065. del bid # unused
  3066. if name.startswith("thinker."):
  3067. name = name.replace("thinker.", "")
  3068. if name.startswith("visual") or name.startswith("audio") or \
  3069. name.startswith("talker") or name.startswith("token2wav"):
  3070. # skip multimodal tensors
  3071. return []
  3072. return [(self.map_tensor_name(name), data_torch)]
  3073. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3074. class Qwen2VLVisionModel(MmprojModel):
  3075. def __init__(self, *args, **kwargs):
  3076. super().__init__(*args, **kwargs)
  3077. assert self.hparams_vision is not None
  3078. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3079. # rename config.json values
  3080. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3081. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3082. if "embed_dim" in self.hparams_vision: # qwen2vl
  3083. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3084. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3085. def set_gguf_parameters(self):
  3086. super().set_gguf_parameters()
  3087. assert self.hparams_vision is not None
  3088. hparams = self.hparams_vision
  3089. model_type = self.global_config['model_type']
  3090. if model_type == 'qwen2_vl':
  3091. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3092. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3093. if model_type == 'qwen2_5_omni':
  3094. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3095. else:
  3096. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3097. self.gguf_writer.add_vision_use_silu(True)
  3098. # find n_wa_pattern (window attention pattern)
  3099. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3100. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3101. n_wa_pattern = fullatt_block_indexes[0] + 1
  3102. # validate n_wa_pattern
  3103. for i in range(1, len(fullatt_block_indexes)):
  3104. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3105. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3106. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3107. else:
  3108. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3109. # default values below are taken from HF tranformers code
  3110. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3111. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3112. if ".position_embd." in new_name:
  3113. return gguf.GGMLQuantizationType.F32
  3114. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3115. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3116. del bid # unused
  3117. if name.startswith("visual."):
  3118. # process visual tensors
  3119. # split QKV tensors if needed
  3120. if ".qkv." in name:
  3121. if data_torch.ndim == 2: # weight
  3122. c3, _ = data_torch.shape
  3123. else: # bias
  3124. c3 = data_torch.shape[0]
  3125. assert c3 % 3 == 0
  3126. c = c3 // 3
  3127. wq = data_torch[:c]
  3128. wk = data_torch[c: c * 2]
  3129. wv = data_torch[c * 2:]
  3130. return [
  3131. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3132. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3133. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3134. ]
  3135. elif 'patch_embed.proj.weight' in name:
  3136. # split Conv3D into Conv2Ds
  3137. c1, c2, kt, kh, kw = data_torch.shape
  3138. del c1, c2, kh, kw # unused
  3139. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3140. return [
  3141. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3142. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3143. ]
  3144. else:
  3145. return [(self.map_tensor_name(name), data_torch)]
  3146. return [] # skip other tensors
  3147. @ModelBase.register("Qwen2_5OmniModel")
  3148. class Qwen25OmniModel(Qwen2VLVisionModel):
  3149. has_vision_encoder = True
  3150. has_audio_encoder = True
  3151. def __init__(self, *args, **kwargs):
  3152. super().__init__(*args, **kwargs)
  3153. assert self.hparams_audio is not None
  3154. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3155. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3156. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3157. def set_gguf_parameters(self):
  3158. super().set_gguf_parameters()
  3159. assert self.hparams_audio is not None
  3160. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3161. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3162. def get_vision_config(self) -> dict[str, Any] | None:
  3163. return self.global_config["thinker_config"].get("vision_config")
  3164. def get_audio_config(self) -> dict[str, Any] | None:
  3165. return self.global_config["thinker_config"].get("audio_config")
  3166. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3167. # SinusoidsPositionEmbedding
  3168. assert self.hparams_audio is not None
  3169. max_timescale = 10000
  3170. length = 1500
  3171. channels = self.hparams_audio["hidden_size"]
  3172. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3173. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3174. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3175. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3176. yield ("audio_tower.embed_positions.weight", pos_embd)
  3177. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3178. if ".conv" in name and ".weight" in name:
  3179. return gguf.GGMLQuantizationType.F16
  3180. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3181. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3182. if name.startswith("thinker."):
  3183. name = name.replace("thinker.", "")
  3184. if name.startswith("audio_tower"):
  3185. # process audio tensors
  3186. if "conv1.bias" in name or "conv2.bias" in name:
  3187. # transpose conv1 and conv2 bias
  3188. data_torch = data_torch.unsqueeze(-1)
  3189. if "audio_bos_eos_token" in name:
  3190. # this tensor is left unused in transformers code
  3191. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3192. return []
  3193. return [(self.map_tensor_name(name), data_torch)]
  3194. return super().modify_tensors(data_torch, name, bid)
  3195. @ModelBase.register("InternVisionModel")
  3196. class InternVisionModel(MmprojModel):
  3197. def set_gguf_parameters(self):
  3198. assert self.hparams_vision is not None
  3199. if isinstance(self.hparams_vision['image_size'], list):
  3200. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3201. if isinstance(self.hparams_vision['patch_size'], list):
  3202. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3203. super().set_gguf_parameters()
  3204. hparams = self.hparams
  3205. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3206. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3207. # hidden_act
  3208. if hparams["hidden_act"] == "silu":
  3209. self.gguf_writer.add_vision_use_silu(True)
  3210. elif hparams["hidden_act"] == "gelu":
  3211. self.gguf_writer.add_vision_use_gelu(True)
  3212. else:
  3213. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3214. # downsample_ratio
  3215. downsample_ratio = self.global_config.get("downsample_ratio")
  3216. assert downsample_ratio is not None
  3217. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3218. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3219. if ".position_embd." in new_name:
  3220. return gguf.GGMLQuantizationType.F32
  3221. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3222. def _mapping_interns1_name(self, name):
  3223. names_map = {
  3224. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3225. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3226. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3227. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3228. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3229. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3230. }
  3231. if name in names_map:
  3232. name = names_map[name]
  3233. return name
  3234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3235. del bid # unused
  3236. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3237. # deal with intern-s1 special case
  3238. name = self._mapping_interns1_name(name)
  3239. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3240. # process visual tensors
  3241. # correct name
  3242. if name.startswith("vision_model"):
  3243. name = "vision_tower." + name
  3244. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3245. name += ".weight"
  3246. # split QKV tensors if needed
  3247. if ".qkv." in name:
  3248. if data_torch.ndim == 2: # weight
  3249. c3, _ = data_torch.shape
  3250. else: # bias
  3251. c3 = data_torch.shape[0]
  3252. assert c3 % 3 == 0
  3253. c = c3 // 3
  3254. wq = data_torch[:c]
  3255. wk = data_torch[c: c * 2]
  3256. wv = data_torch[c * 2:]
  3257. return [
  3258. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3259. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3260. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3261. ]
  3262. return [(self.map_tensor_name(name), data_torch)]
  3263. return [] # skip other tensors
  3264. @ModelBase.register("WavTokenizerDec")
  3265. class WavTokenizerDecModel(TextModel):
  3266. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3268. del bid # unused
  3269. if \
  3270. name.endswith("codebook.cluster_size") or \
  3271. name.endswith("codebook.embed_avg") or \
  3272. name.endswith("codebook.inited"):
  3273. logger.debug(f"Skipping {name!r}")
  3274. return []
  3275. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3276. return [(self.map_tensor_name(name), data_torch)]
  3277. def set_vocab(self):
  3278. self._set_vocab_none()
  3279. def set_gguf_parameters(self):
  3280. super().set_gguf_parameters()
  3281. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3282. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3283. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3284. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3285. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3286. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3287. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3288. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3289. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3290. self.gguf_writer.add_causal_attention(False)
  3291. @ModelBase.register("Qwen2MoeForCausalLM")
  3292. class Qwen2MoeModel(TextModel):
  3293. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3294. def set_gguf_parameters(self):
  3295. super().set_gguf_parameters()
  3296. if (n_experts := self.hparams.get("num_experts")) is not None:
  3297. self.gguf_writer.add_expert_count(n_experts)
  3298. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3299. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3300. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3301. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3302. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3303. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3304. # YaRN is not enabled by default
  3305. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3306. rope_scaling = self.hparams.get("rope_scaling") or {}
  3307. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3308. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3309. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3310. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3311. _experts: list[dict[str, Tensor]] | None = None
  3312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3313. # process the experts separately
  3314. name = name.replace("language_model.", "") # InternVL
  3315. # handle aggregated expert tensors
  3316. # GGUF stores dimensions reversed from PyTorch, so:
  3317. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3318. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3319. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3320. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3321. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3322. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3323. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3324. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3325. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3326. permuted = data_torch.permute(0, 2, 1).contiguous()
  3327. return [(self.map_tensor_name(mapped), permuted)]
  3328. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3329. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3330. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3331. split_dim = data_torch.shape[-1] // 2
  3332. gate = data_torch[..., :split_dim].contiguous()
  3333. up = data_torch[..., split_dim:].contiguous()
  3334. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3335. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3336. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3337. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3338. base_name = name.removesuffix(".weight")
  3339. base = base_name.rsplit('.', 1)[0]
  3340. mapped_gate = f"{base}.gate_proj.weight"
  3341. mapped_up = f"{base}.up_proj.weight"
  3342. perm_gate = gate.permute(0, 2, 1).contiguous()
  3343. perm_up = up.permute(0, 2, 1).contiguous()
  3344. return [
  3345. (self.map_tensor_name(mapped_gate), perm_gate),
  3346. (self.map_tensor_name(mapped_up), perm_up),
  3347. ]
  3348. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3349. # skip visual tensors
  3350. return []
  3351. if name.find("experts") != -1:
  3352. n_experts = self.hparams["num_experts"]
  3353. assert bid is not None
  3354. if self._experts is None:
  3355. self._experts = [{} for _ in range(self.block_count)]
  3356. self._experts[bid][name] = data_torch
  3357. if len(self._experts[bid]) >= n_experts * 3:
  3358. tensors: list[tuple[str, Tensor]] = []
  3359. # merge the experts into a single 3d tensor
  3360. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3361. datas: list[Tensor] = []
  3362. for xid in range(n_experts):
  3363. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3364. datas.append(self._experts[bid][ename])
  3365. del self._experts[bid][ename]
  3366. data_torch = torch.stack(datas, dim=0)
  3367. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3368. new_name = self.map_tensor_name(merged_name)
  3369. tensors.append((new_name, data_torch))
  3370. return tensors
  3371. else:
  3372. return []
  3373. return [(self.map_tensor_name(name), data_torch)]
  3374. def prepare_tensors(self):
  3375. super().prepare_tensors()
  3376. if self._experts is not None:
  3377. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3378. experts = [k for d in self._experts for k in d.keys()]
  3379. if len(experts) > 0:
  3380. raise ValueError(f"Unprocessed experts: {experts}")
  3381. @ModelBase.register("Qwen3ForCausalLM")
  3382. class Qwen3Model(Qwen2Model):
  3383. model_arch = gguf.MODEL_ARCH.QWEN3
  3384. # extra logic for rerank models
  3385. is_rerank: bool = False
  3386. is_tied_embeddings: bool = False
  3387. token_false_id: int | None = None
  3388. token_true_id: int | None = None
  3389. def __init__(self, *args, **kwargs):
  3390. super().__init__(*args, **kwargs)
  3391. # track for intern-s1-mini
  3392. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3393. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3394. # a bit hacky, but currently the only way to detect if this is a rerank model
  3395. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3396. readme_path = self.dir_model / "README.md"
  3397. readme_text = ""
  3398. if readme_path.exists():
  3399. with readme_path.open("r", encoding="utf-8") as f:
  3400. readme_text = f.read()
  3401. if "# Qwen3-Reranker" in readme_text:
  3402. self._find_rerank_config()
  3403. def set_vocab(self):
  3404. # deal with intern-s1-mini
  3405. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3406. self._set_vocab_interns1()
  3407. return
  3408. super().set_vocab()
  3409. def _find_rerank_config(self):
  3410. from transformers import AutoTokenizer
  3411. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3412. self.is_rerank = True
  3413. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3414. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3415. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3416. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3417. assert self.token_false_id is not None and self.token_true_id is not None
  3418. def set_gguf_parameters(self):
  3419. super().set_gguf_parameters()
  3420. if self.is_rerank:
  3421. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3422. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3423. self.gguf_writer.add_chat_template([{
  3424. "name": "rerank",
  3425. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3426. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3427. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3428. }])
  3429. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3430. # extract "yes" and "no" tokens from the output lm_head tensor
  3431. false_row = data_torch[self.token_false_id]
  3432. true_row = data_torch[self.token_true_id]
  3433. return torch.stack([true_row, false_row], dim=0)
  3434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3435. if "model.vision_" in name:
  3436. # skip multimodal tensors
  3437. return []
  3438. if self.is_rerank:
  3439. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3440. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3441. if is_tied_head or is_real_head:
  3442. cls_out_head = (
  3443. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3444. self._get_cls_out_tensor(data_torch),
  3445. )
  3446. if is_tied_head:
  3447. embed = (self.map_tensor_name(name), data_torch)
  3448. return [cls_out_head, embed]
  3449. if is_real_head:
  3450. return [cls_out_head]
  3451. return super().modify_tensors(data_torch, name, bid)
  3452. @ModelBase.register("Qwen3MoeForCausalLM")
  3453. class Qwen3MoeModel(Qwen2MoeModel):
  3454. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3455. def __init__(self, *args, **kwargs):
  3456. super().__init__(*args, **kwargs)
  3457. hparams = ModelBase.load_hparams(self.dir_model, False)
  3458. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3459. def set_vocab(self):
  3460. # deal with intern-s1
  3461. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3462. self._set_vocab_interns1()
  3463. return
  3464. super().set_vocab()
  3465. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3466. class Qwen3VLVisionModel(MmprojModel):
  3467. def __init__(self, *args, **kwargs):
  3468. super().__init__(*args, **kwargs)
  3469. assert self.hparams_vision is not None
  3470. # Compute image_size if not present
  3471. if "image_size" not in self.hparams_vision:
  3472. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3473. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3474. patch_size = self.hparams_vision.get("patch_size", 16)
  3475. # num_position_embeddings = (image_size / patch_size) ** 2
  3476. # So image_size = sqrt(num_position_embeddings) * patch_size
  3477. image_size = int(num_pos**0.5 * patch_size)
  3478. self.hparams_vision["image_size"] = image_size
  3479. # Rename config values for compatibility
  3480. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3481. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3482. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3483. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3484. self.is_deepstack_layers[idx] = True
  3485. def set_gguf_parameters(self):
  3486. super().set_gguf_parameters()
  3487. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3488. self.gguf_writer.add_vision_use_gelu(True)
  3489. if self.hparams_vision is not None:
  3490. merge_size = self.hparams_vision.get("spatial_merge_size")
  3491. if merge_size is not None:
  3492. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3493. # Use text config's rms_norm_eps for vision attention layernorm eps
  3494. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3495. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3496. if self.is_deepstack_layers:
  3497. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3499. assert self.hparams_vision is not None
  3500. # Skip text model tensors - they go in the text model file
  3501. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3502. return []
  3503. if name.startswith("model.visual."):
  3504. name = name.replace("model.visual.", "visual.", 1)
  3505. if name.startswith("visual.deepstack_merger_list."):
  3506. prefix, rest = name.split(".", maxsplit=3)[2:]
  3507. # prefix is the layer index, convert to absolute clip layer index!
  3508. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3509. target = rest
  3510. tensor_type: gguf.MODEL_TENSOR
  3511. if target.startswith("norm."):
  3512. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3513. suffix = target.split(".", 1)[1]
  3514. elif target.startswith("linear_fc1."):
  3515. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3516. suffix = target.split(".", 1)[1]
  3517. elif target.startswith("linear_fc2."):
  3518. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3519. suffix = target.split(".", 1)[1]
  3520. else:
  3521. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3522. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3523. return [(new_name, data_torch)]
  3524. if name.startswith("visual.merger."):
  3525. suffix = name.split(".", 2)[2]
  3526. if suffix.startswith("linear_fc"):
  3527. fc_idx_str, tail = suffix.split(".", 1)
  3528. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3529. # Qwen3VL has linear_fc1 and linear_fc2
  3530. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3531. if fc_num == 1:
  3532. fc_idx = 0
  3533. elif fc_num == 2:
  3534. fc_idx = 2
  3535. else:
  3536. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3537. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3538. elif suffix.startswith("norm."):
  3539. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3540. else:
  3541. raise ValueError(f"Unexpected merger tensor: {name}")
  3542. return [(new_name, data_torch)]
  3543. if name == "visual.patch_embed.proj.weight":
  3544. # split Conv3D into Conv2Ds along temporal dimension
  3545. c1, c2, kt, _, _ = data_torch.shape
  3546. del c1, c2
  3547. if kt != 2:
  3548. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3549. return [
  3550. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3551. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3552. ]
  3553. if name == "visual.patch_embed.proj.bias":
  3554. # Include the bias - it's used by the C++ code
  3555. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3556. if name.startswith("visual."):
  3557. return [(self.map_tensor_name(name), data_torch)]
  3558. # Fall back to parent class for other tensors
  3559. return super().modify_tensors(data_torch, name, bid)
  3560. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3561. class Qwen3VLTextModel(Qwen3Model):
  3562. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3563. def set_gguf_parameters(self):
  3564. super().set_gguf_parameters()
  3565. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3566. text_config = self.hparams.get("text_config", {})
  3567. # rope_scaling is deprecated in V5, use rope_parameters instead
  3568. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3569. if rope_scaling.get("mrope_section"):
  3570. # mrope_section contains [time, height, width] dimensions
  3571. mrope_section = rope_scaling["mrope_section"]
  3572. # Pad to 4 dimensions [time, height, width, extra]
  3573. while len(mrope_section) < 4:
  3574. mrope_section.append(0)
  3575. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3576. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3577. vision_config = self.hparams.get("vision_config", {})
  3578. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3579. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3580. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3581. # Skip vision tensors - they go in the mmproj file
  3582. if name.startswith("model.visual."):
  3583. return []
  3584. return super().modify_tensors(data_torch, name, bid)
  3585. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3586. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3587. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3588. def set_gguf_parameters(self):
  3589. super().set_gguf_parameters()
  3590. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3591. text_config = self.hparams.get("text_config", {})
  3592. # rope_scaling is deprecated in V5, use rope_parameters instead
  3593. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3594. if rope_scaling.get("mrope_section"):
  3595. # mrope_section contains [time, height, width] dimensions
  3596. mrope_section = rope_scaling["mrope_section"]
  3597. # Pad to 4 dimensions [time, height, width, extra]
  3598. while len(mrope_section) < 4:
  3599. mrope_section.append(0)
  3600. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3601. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3602. vision_config = self.hparams.get("vision_config", {})
  3603. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3604. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3606. # Skip vision tensors - they go in the mmproj file
  3607. if name.startswith("model.visual."):
  3608. return []
  3609. return super().modify_tensors(data_torch, name, bid)
  3610. @ModelBase.register("GPT2LMHeadModel")
  3611. class GPT2Model(TextModel):
  3612. model_arch = gguf.MODEL_ARCH.GPT2
  3613. def set_gguf_parameters(self):
  3614. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3615. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3616. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3617. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3618. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3619. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3620. self.gguf_writer.add_file_type(self.ftype)
  3621. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3622. del bid # unused
  3623. tensors: list[tuple[str, Tensor]] = []
  3624. # we don't need these
  3625. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3626. return tensors
  3627. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3628. data_torch = data_torch.transpose(1, 0)
  3629. new_name = self.map_tensor_name(name)
  3630. tensors.append((new_name, data_torch))
  3631. return tensors
  3632. @ModelBase.register("PhiForCausalLM")
  3633. class Phi2Model(TextModel):
  3634. model_arch = gguf.MODEL_ARCH.PHI2
  3635. def set_gguf_parameters(self):
  3636. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3637. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3638. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3639. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3640. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3641. self.gguf_writer.add_embedding_length(n_embd)
  3642. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3643. self.gguf_writer.add_block_count(block_count)
  3644. self.gguf_writer.add_head_count(n_head)
  3645. self.gguf_writer.add_head_count_kv(n_head)
  3646. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3647. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3648. self.gguf_writer.add_file_type(self.ftype)
  3649. self.gguf_writer.add_add_bos_token(False)
  3650. @ModelBase.register("Phi3ForCausalLM")
  3651. class Phi3MiniModel(TextModel):
  3652. model_arch = gguf.MODEL_ARCH.PHI3
  3653. def set_vocab(self):
  3654. # Phi-4 model uses GPT2Tokenizer
  3655. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3656. if tokenizer_config_file.is_file():
  3657. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3658. tokenizer_config_json = json.load(f)
  3659. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3660. if tokenizer_class == 'GPT2Tokenizer':
  3661. return self._set_vocab_gpt2()
  3662. from sentencepiece import SentencePieceProcessor
  3663. tokenizer_path = self.dir_model / 'tokenizer.model'
  3664. if not tokenizer_path.is_file():
  3665. raise ValueError(f'Error: Missing {tokenizer_path}')
  3666. tokenizer = SentencePieceProcessor()
  3667. tokenizer.LoadFromFile(str(tokenizer_path))
  3668. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3669. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3670. scores: list[float] = [-10000.0] * vocab_size
  3671. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3672. for token_id in range(tokenizer.vocab_size()):
  3673. piece = tokenizer.IdToPiece(token_id)
  3674. text = piece.encode("utf-8")
  3675. score = tokenizer.GetScore(token_id)
  3676. toktype = SentencePieceTokenTypes.NORMAL
  3677. if tokenizer.IsUnknown(token_id):
  3678. toktype = SentencePieceTokenTypes.UNKNOWN
  3679. elif tokenizer.IsControl(token_id):
  3680. toktype = SentencePieceTokenTypes.CONTROL
  3681. elif tokenizer.IsUnused(token_id):
  3682. toktype = SentencePieceTokenTypes.UNUSED
  3683. elif tokenizer.IsByte(token_id):
  3684. toktype = SentencePieceTokenTypes.BYTE
  3685. tokens[token_id] = text
  3686. scores[token_id] = score
  3687. toktypes[token_id] = toktype
  3688. added_tokens_file = self.dir_model / 'added_tokens.json'
  3689. if added_tokens_file.is_file():
  3690. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3691. added_tokens_json = json.load(f)
  3692. for key in added_tokens_json:
  3693. token_id = added_tokens_json[key]
  3694. if token_id >= vocab_size:
  3695. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3696. continue
  3697. tokens[token_id] = key.encode("utf-8")
  3698. scores[token_id] = -1000.0
  3699. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3700. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3701. if tokenizer_config_file.is_file():
  3702. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3703. tokenizer_config_json = json.load(f)
  3704. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3705. for token_id, foken_data in added_tokens_decoder.items():
  3706. token_id = int(token_id)
  3707. token = foken_data["content"].encode("utf-8")
  3708. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3709. if tokens[token_id] != token:
  3710. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3711. tokens[token_id] = token
  3712. scores[token_id] = -1000.0
  3713. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3714. if foken_data.get("special"):
  3715. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3716. tokenizer_file = self.dir_model / 'tokenizer.json'
  3717. if tokenizer_file.is_file():
  3718. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3719. tokenizer_json = json.load(f)
  3720. added_tokens = tokenizer_json.get("added_tokens", [])
  3721. for foken_data in added_tokens:
  3722. token_id = int(foken_data["id"])
  3723. token = foken_data["content"].encode("utf-8")
  3724. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3725. if tokens[token_id] != token:
  3726. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3727. tokens[token_id] = token
  3728. scores[token_id] = -1000.0
  3729. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3730. if foken_data.get("special"):
  3731. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3732. self.gguf_writer.add_tokenizer_model("llama")
  3733. self.gguf_writer.add_tokenizer_pre("default")
  3734. self.gguf_writer.add_token_list(tokens)
  3735. self.gguf_writer.add_token_scores(scores)
  3736. self.gguf_writer.add_token_types(toktypes)
  3737. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3738. special_vocab.add_to_gguf(self.gguf_writer)
  3739. def set_gguf_parameters(self):
  3740. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3741. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3742. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3743. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3744. rms_eps = self.find_hparam(["rms_norm_eps"])
  3745. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3746. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3747. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3748. rope_dims = int(rot_pct * n_embd) // n_head
  3749. self.gguf_writer.add_context_length(max_pos_embds)
  3750. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3751. self.gguf_writer.add_embedding_length(n_embd)
  3752. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3753. self.gguf_writer.add_block_count(block_count)
  3754. self.gguf_writer.add_head_count(n_head)
  3755. self.gguf_writer.add_head_count_kv(n_head_kv)
  3756. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3757. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3758. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3759. self.gguf_writer.add_file_type(self.ftype)
  3760. sliding_window = self.hparams.get("sliding_window")
  3761. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3762. if sliding_window is None:
  3763. sliding_window = 0
  3764. self.gguf_writer.add_sliding_window(sliding_window)
  3765. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3766. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3767. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3768. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3769. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3770. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3771. rope_dims = int(rot_pct * n_embd) // n_head
  3772. # write rope scaling for long context (128k) model
  3773. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3774. if rope_scaling is None:
  3775. return
  3776. scale = max_pos_embds / orig_max_pos_embds
  3777. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3778. if len(rope_scaling_type) == 0:
  3779. raise KeyError('Missing the required key rope_scaling.type')
  3780. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3781. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3782. elif rope_scaling_type == 'yarn':
  3783. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3784. else:
  3785. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3786. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3787. long_factors = rope_scaling.get('long_factor', None)
  3788. short_factors = rope_scaling.get('short_factor', None)
  3789. if long_factors is None or short_factors is None:
  3790. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3791. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3792. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3793. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3794. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3795. @ModelBase.register("PhiMoEForCausalLM")
  3796. class PhiMoeModel(Phi3MiniModel):
  3797. model_arch = gguf.MODEL_ARCH.PHIMOE
  3798. _experts: list[dict[str, Tensor]] | None = None
  3799. def set_gguf_parameters(self):
  3800. super().set_gguf_parameters()
  3801. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3802. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3803. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3804. # process the experts separately
  3805. if name.find("block_sparse_moe.experts") != -1:
  3806. n_experts = self.hparams["num_local_experts"]
  3807. assert bid is not None
  3808. if self._experts is None:
  3809. self._experts = [{} for _ in range(self.block_count)]
  3810. self._experts[bid][name] = data_torch
  3811. if len(self._experts[bid]) >= n_experts * 3:
  3812. tensors: list[tuple[str, Tensor]] = []
  3813. # merge the experts into a single 3d tensor
  3814. for w_name in ["w1", "w2", "w3"]:
  3815. datas: list[Tensor] = []
  3816. for xid in range(n_experts):
  3817. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3818. datas.append(self._experts[bid][ename])
  3819. del self._experts[bid][ename]
  3820. data_torch = torch.stack(datas, dim=0)
  3821. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3822. new_name = self.map_tensor_name(merged_name)
  3823. tensors.append((new_name, data_torch))
  3824. return tensors
  3825. else:
  3826. return []
  3827. return [(self.map_tensor_name(name), data_torch)]
  3828. def prepare_tensors(self):
  3829. super().prepare_tensors()
  3830. if self._experts is not None:
  3831. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3832. experts = [k for d in self._experts for k in d.keys()]
  3833. if len(experts) > 0:
  3834. raise ValueError(f"Unprocessed experts: {experts}")
  3835. @ModelBase.register("PlamoForCausalLM")
  3836. class PlamoModel(TextModel):
  3837. model_arch = gguf.MODEL_ARCH.PLAMO
  3838. def set_vocab(self):
  3839. self._set_vocab_sentencepiece()
  3840. def set_gguf_parameters(self):
  3841. hparams = self.hparams
  3842. block_count = hparams["num_hidden_layers"]
  3843. self.gguf_writer.add_context_length(4096) # not in config.json
  3844. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3845. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3846. self.gguf_writer.add_block_count(block_count)
  3847. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3848. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3849. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3850. self.gguf_writer.add_file_type(self.ftype)
  3851. def shuffle_attn_q_weight(self, data_torch):
  3852. assert data_torch.size() == (5120, 5120)
  3853. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3854. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3855. data_torch = torch.reshape(data_torch, (5120, 5120))
  3856. return data_torch
  3857. def shuffle_attn_output_weight(self, data_torch):
  3858. assert data_torch.size() == (5120, 5120)
  3859. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3860. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3861. data_torch = torch.reshape(data_torch, (5120, 5120))
  3862. return data_torch
  3863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3864. del bid # unused
  3865. new_name = self.map_tensor_name(name)
  3866. # shuffle for broadcasting of gqa in ggml_mul_mat
  3867. if new_name.endswith("attn_q.weight"):
  3868. data_torch = self.shuffle_attn_q_weight(data_torch)
  3869. elif new_name.endswith("attn_output.weight"):
  3870. data_torch = self.shuffle_attn_output_weight(data_torch)
  3871. return [(new_name, data_torch)]
  3872. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3873. class Plamo2Model(TextModel):
  3874. model_arch = gguf.MODEL_ARCH.PLAMO2
  3875. def set_vocab(self):
  3876. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3877. # We need to handle this specially
  3878. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3879. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3880. if not tokenizer_jsonl_path.is_file():
  3881. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3882. # Load tokenizer config
  3883. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3884. tokenizer_config = json.load(f)
  3885. # Load tokens from JSONL file (actually a list format)
  3886. tokens = []
  3887. scores = []
  3888. toktypes = []
  3889. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3890. for line_num, line in enumerate(f):
  3891. if line.strip():
  3892. token_data = json.loads(line)
  3893. # Format: [token, score, type, ?, ?, ?, ?]
  3894. token = token_data[0].encode("utf-8")
  3895. score = float(token_data[1])
  3896. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3897. tokens.append(token)
  3898. scores.append(score)
  3899. # Map token type strings to GGUF token types
  3900. if token_type_str == "UNKNOWN":
  3901. toktypes.append(gguf.TokenType.UNKNOWN)
  3902. elif token_type_str == "CONTROL":
  3903. toktypes.append(gguf.TokenType.CONTROL)
  3904. elif token_type_str == "BYTE":
  3905. toktypes.append(gguf.TokenType.BYTE)
  3906. else:
  3907. # Check for PLaMo-2 special tokens
  3908. token_str = token_data[0]
  3909. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3910. toktypes.append(gguf.TokenType.CONTROL)
  3911. else:
  3912. toktypes.append(gguf.TokenType.NORMAL)
  3913. vocab_size = self.hparams["vocab_size"]
  3914. if vocab_size > len(tokens):
  3915. pad_count = vocab_size - len(tokens)
  3916. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3917. for i in range(1, pad_count + 1):
  3918. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3919. scores.append(-1000.0)
  3920. toktypes.append(gguf.TokenType.UNUSED)
  3921. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3922. self.gguf_writer.add_tokenizer_model("plamo2")
  3923. self.gguf_writer.add_tokenizer_pre("default")
  3924. self.gguf_writer.add_token_list(tokens)
  3925. self.gguf_writer.add_token_scores(scores)
  3926. self.gguf_writer.add_token_types(toktypes)
  3927. # Add special tokens from config
  3928. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3929. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3930. self.gguf_writer.add_bos_token_id(token_id)
  3931. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3932. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3933. self.gguf_writer.add_eos_token_id(token_id)
  3934. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3935. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3936. self.gguf_writer.add_pad_token_id(token_id)
  3937. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3938. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3939. self.gguf_writer.add_sep_token_id(token_id)
  3940. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3941. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3942. self.gguf_writer.add_unk_token_id(token_id)
  3943. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3944. self.gguf_writer.add_eot_token_id(4)
  3945. self.gguf_writer.add_add_space_prefix(False)
  3946. def set_gguf_parameters(self):
  3947. hparams = self.hparams
  3948. block_count = hparams["num_hidden_layers"]
  3949. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3950. # Which layers are Mamba layers
  3951. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3952. # This logic matches modeling_plamo.py's is_mamba function
  3953. mamba_step = hparams.get("mamba_step", 2)
  3954. mamba_enabled = hparams.get("mamba_enabled", True)
  3955. num_key_value_heads = []
  3956. num_attention_heads = []
  3957. if mamba_enabled:
  3958. for i in range(block_count):
  3959. if block_count <= (mamba_step // 2):
  3960. # use attention in last layer
  3961. is_mamba = (i != block_count - 1)
  3962. else:
  3963. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3964. if is_mamba:
  3965. num_key_value_heads.append(0)
  3966. num_attention_heads.append(0)
  3967. else:
  3968. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3969. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3970. if num_key_value_heads and num_attention_heads:
  3971. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3972. self.gguf_writer.add_head_count(num_attention_heads)
  3973. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3974. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3975. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3976. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3977. self.gguf_writer.add_block_count(block_count)
  3978. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3979. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3980. # Mamba parameters
  3981. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3982. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3983. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3984. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3985. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3986. self.gguf_writer.add_ssm_group_count(0)
  3987. # MLP feed forward parameters (for attention layers)
  3988. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3989. self.gguf_writer.add_file_type(self.ftype)
  3990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3991. del bid # unused
  3992. if name.endswith(".A_log"):
  3993. data_torch = -torch.exp(data_torch)
  3994. elif name.endswith(".dt_bias"):
  3995. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3996. elif name.endswith(".dt_norm_weight"):
  3997. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3998. elif name.endswith(".B_norm_weight"):
  3999. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4000. elif name.endswith(".C_norm_weight"):
  4001. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4002. elif name.endswith(".k_weight"):
  4003. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4004. elif name.endswith(".q_weight"):
  4005. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4006. elif name.endswith(".conv1d.weight"):
  4007. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4008. assert data_torch.ndim == 2
  4009. elif name.endswith(".pre_mixer_norm.weight"):
  4010. data_torch += 1.0
  4011. elif name.endswith(".post_mixer_norm.weight"):
  4012. data_torch += 1.0 / 5
  4013. elif name.endswith(".pre_mlp_norm.weight"):
  4014. data_torch += 1.0
  4015. elif name.endswith(".post_mlp_norm.weight"):
  4016. data_torch += 1.0 / (5**1.5)
  4017. elif name.endswith(".norm.weight"):
  4018. data_torch += 1.0
  4019. new_name = self.map_tensor_name(name)
  4020. return [(new_name, data_torch)]
  4021. @ModelBase.register("CodeShellForCausalLM")
  4022. class CodeShellModel(TextModel):
  4023. model_arch = gguf.MODEL_ARCH.CODESHELL
  4024. def set_gguf_parameters(self):
  4025. block_count = self.hparams["n_layer"]
  4026. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4027. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4028. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4029. self.gguf_writer.add_block_count(block_count)
  4030. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4031. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4032. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4033. self.gguf_writer.add_file_type(self.ftype)
  4034. self.gguf_writer.add_rope_freq_base(10000.0)
  4035. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4036. self.gguf_writer.add_rope_scaling_factor(1.0)
  4037. @ModelBase.register("InternLM2ForCausalLM")
  4038. class InternLM2Model(TextModel):
  4039. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4040. def set_vocab(self):
  4041. # (TODO): Is there a better way?
  4042. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4043. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4044. # recognized as an empty string in C++.
  4045. from sentencepiece import SentencePieceProcessor
  4046. from sentencepiece import sentencepiece_model_pb2 as model
  4047. tokenizer_path = self.dir_model / 'tokenizer.model'
  4048. tokens: list[bytes] = []
  4049. scores: list[float] = []
  4050. toktypes: list[int] = []
  4051. if not tokenizer_path.is_file():
  4052. logger.error(f'Error: Missing {tokenizer_path}')
  4053. sys.exit(1)
  4054. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4055. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4056. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4057. tokenizer = SentencePieceProcessor()
  4058. tokenizer.LoadFromFile(str(tokenizer_path))
  4059. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4060. for token_id in range(vocab_size):
  4061. piece = tokenizer.IdToPiece(token_id)
  4062. text = piece.encode("utf-8")
  4063. score = tokenizer.GetScore(token_id)
  4064. if text == b"\x00":
  4065. # (TODO): fixme
  4066. # Hack here and replace the \x00 characters.
  4067. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4068. text = "🐉".encode("utf-8")
  4069. toktype = SentencePieceTokenTypes.NORMAL
  4070. if tokenizer.IsUnknown(token_id):
  4071. toktype = SentencePieceTokenTypes.UNKNOWN
  4072. elif tokenizer.IsControl(token_id):
  4073. toktype = SentencePieceTokenTypes.CONTROL
  4074. elif tokenizer.IsUnused(token_id):
  4075. toktype = SentencePieceTokenTypes.UNUSED
  4076. elif tokenizer.IsByte(token_id):
  4077. toktype = SentencePieceTokenTypes.BYTE
  4078. # take care of ununsed raw token
  4079. if piece.startswith('[UNUSED'):
  4080. toktype = SentencePieceTokenTypes.UNUSED
  4081. tokens.append(text)
  4082. scores.append(score)
  4083. toktypes.append(toktype)
  4084. added_tokens_file = self.dir_model / 'added_tokens.json'
  4085. if added_tokens_file.is_file():
  4086. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4087. added_tokens_json = json.load(f)
  4088. for key in added_tokens_json:
  4089. tokens.append(key.encode("utf-8"))
  4090. scores.append(-1000.0)
  4091. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4092. chat_eos_token = '<|im_end|>'
  4093. chat_eos_token_id = None
  4094. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4095. if tokenizer_config_file.is_file():
  4096. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4097. tokenizer_config_json = json.load(f)
  4098. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4099. for token_id, foken_data in added_tokens_decoder.items():
  4100. token_id = int(token_id)
  4101. token = foken_data["content"]
  4102. if token == chat_eos_token:
  4103. chat_eos_token_id = token_id
  4104. token = token.encode("utf-8")
  4105. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4106. if tokens[token_id] != token:
  4107. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4108. tokens[token_id] = token
  4109. scores[token_id] = -1000.0
  4110. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4111. if foken_data.get("special"):
  4112. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4113. tokenizer_file = self.dir_model / 'tokenizer.json'
  4114. if tokenizer_file.is_file():
  4115. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4116. tokenizer_json = json.load(f)
  4117. added_tokens = tokenizer_json.get("added_tokens", [])
  4118. for foken_data in added_tokens:
  4119. token_id = int(foken_data["id"])
  4120. token = foken_data["content"]
  4121. if token == chat_eos_token:
  4122. chat_eos_token_id = token_id
  4123. token = token.encode("utf-8")
  4124. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4125. if tokens[token_id] != token:
  4126. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4127. tokens[token_id] = token
  4128. scores[token_id] = -1000.0
  4129. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4130. if foken_data.get("special"):
  4131. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4132. self.gguf_writer.add_tokenizer_model("llama")
  4133. self.gguf_writer.add_tokenizer_pre("default")
  4134. self.gguf_writer.add_token_list(tokens)
  4135. self.gguf_writer.add_token_scores(scores)
  4136. self.gguf_writer.add_token_types(toktypes)
  4137. self.gguf_writer.add_add_space_prefix(add_prefix)
  4138. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4139. old_eos = special_vocab.special_token_ids["eos"]
  4140. if chat_eos_token_id is not None:
  4141. # For the chat model, we replace the eos with '<|im_end|>'.
  4142. # TODO: this is a hack, should be fixed
  4143. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4144. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4145. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4146. " in chat mode so that the conversation can end normally.")
  4147. special_vocab.add_to_gguf(self.gguf_writer)
  4148. def set_gguf_parameters(self):
  4149. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4150. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  4151. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4152. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4153. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4154. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4155. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4156. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4157. self.gguf_writer.add_file_type(self.ftype)
  4158. rope_scaling = self.hparams.get("rope_scaling") or {}
  4159. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4160. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4161. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4162. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4163. num_heads = self.hparams["num_attention_heads"]
  4164. num_kv_heads = self.hparams["num_key_value_heads"]
  4165. n_embd = self.hparams["hidden_size"]
  4166. q_per_kv = num_heads // num_kv_heads
  4167. head_dim = n_embd // num_heads
  4168. num_groups = num_heads // q_per_kv
  4169. name = name.replace("language_model.", "") # InternVL
  4170. if name.startswith("mlp") or name.startswith("vision_model"):
  4171. # skip visual tensors
  4172. return []
  4173. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4174. qkv = data_torch
  4175. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4176. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4177. # The model weights of q and k equire additional reshape.
  4178. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4179. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4180. v = v.reshape((-1, v.shape[-1]))
  4181. return [
  4182. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4183. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4184. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4185. ]
  4186. else:
  4187. return [(self.map_tensor_name(name), data_torch)]
  4188. @ModelBase.register("InternLM3ForCausalLM")
  4189. class InternLM3Model(TextModel):
  4190. model_arch = gguf.MODEL_ARCH.LLAMA
  4191. def set_vocab(self):
  4192. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4193. self.gguf_writer.add_tokenizer_model("llama")
  4194. self.gguf_writer.add_tokenizer_pre("default")
  4195. self.gguf_writer.add_token_list(tokens)
  4196. self.gguf_writer.add_token_scores(scores)
  4197. self.gguf_writer.add_token_types(toktypes)
  4198. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4199. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4200. if tokenizer_config_file.is_file():
  4201. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4202. tokenizer_config_json = json.load(f)
  4203. if "add_prefix_space" in tokenizer_config_json:
  4204. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4205. if "added_tokens_decoder" in tokenizer_config_json:
  4206. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4207. if token_data.get("special"):
  4208. token_id = int(token_id)
  4209. token = token_data["content"]
  4210. special_vocab._set_special_token(token, token_id)
  4211. # update eos token
  4212. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4213. special_vocab.special_token_ids["eos"] = token_id
  4214. special_vocab.add_to_gguf(self.gguf_writer)
  4215. def set_gguf_parameters(self):
  4216. super().set_gguf_parameters()
  4217. hparams = self.hparams
  4218. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4219. if (rope_dim := hparams.get("head_dim")) is None:
  4220. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4221. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4222. rope_scaling = self.hparams.get("rope_scaling") or {}
  4223. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4224. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4225. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4227. n_head = self.hparams["num_attention_heads"]
  4228. n_kv_head = self.hparams.get("num_key_value_heads")
  4229. name = name.replace("language_model.", "") # InternVL
  4230. if name.startswith("mlp") or name.startswith("vision_model"):
  4231. # skip visual tensors
  4232. return []
  4233. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4234. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4235. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4236. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4237. return [(self.map_tensor_name(name), data_torch)]
  4238. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4239. class BertModel(TextModel):
  4240. model_arch = gguf.MODEL_ARCH.BERT
  4241. def __init__(self, *args, **kwargs):
  4242. super().__init__(*args, **kwargs)
  4243. self.vocab_size = None
  4244. if cls_out_labels := self.hparams.get("id2label"):
  4245. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4246. # Remove dummy labels added by AutoConfig
  4247. cls_out_labels = None
  4248. self.cls_out_labels = cls_out_labels
  4249. def set_gguf_parameters(self):
  4250. super().set_gguf_parameters()
  4251. self.gguf_writer.add_causal_attention(False)
  4252. self._try_set_pooling_type()
  4253. if self.cls_out_labels:
  4254. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4255. def set_vocab(self):
  4256. tokens, toktypes, tokpre = self.get_vocab_base()
  4257. self.vocab_size = len(tokens)
  4258. # we need this to validate the size of the token_type embeddings
  4259. # though currently we are passing all zeros to the token_type embeddings
  4260. # "Sequence A" or "Sequence B"
  4261. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4262. # convert to phantom space vocab
  4263. def phantom(tok):
  4264. if tok.startswith("[") and tok.endswith("]"):
  4265. return tok
  4266. if tok.startswith("##"):
  4267. return tok[2:]
  4268. return "\u2581" + tok
  4269. tokens = list(map(phantom, tokens))
  4270. # add vocab to gguf
  4271. self.gguf_writer.add_tokenizer_model("bert")
  4272. self.gguf_writer.add_tokenizer_pre(tokpre)
  4273. self.gguf_writer.add_token_list(tokens)
  4274. self.gguf_writer.add_token_types(toktypes)
  4275. # handle special tokens
  4276. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4277. special_vocab.add_to_gguf(self.gguf_writer)
  4278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4279. del bid # unused
  4280. if name.startswith("bert."):
  4281. name = name[5:]
  4282. if name.endswith(".gamma"):
  4283. name = name[:-6] + ".weight"
  4284. if name.endswith(".beta"):
  4285. name = name[:-5] + ".bias"
  4286. # we are only using BERT for embeddings so we don't need the pooling layer
  4287. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4288. return [] # we don't need these
  4289. if name.startswith("cls.predictions"):
  4290. return []
  4291. if name.startswith("cls.seq_relationship"):
  4292. return []
  4293. if self.cls_out_labels:
  4294. # For BertForSequenceClassification (direct projection layer)
  4295. if name == "classifier.weight":
  4296. name = "classifier.out_proj.weight"
  4297. if name == "classifier.bias":
  4298. name = "classifier.out_proj.bias"
  4299. return [(self.map_tensor_name(name), data_torch)]
  4300. def _xlmroberta_tokenizer_init(self) -> None:
  4301. # we need the pad_token_id to know how to chop down position_embd matrix
  4302. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4303. self._position_offset = 1 + pad_token_id
  4304. if "max_position_embeddings" in self.hparams:
  4305. self.hparams["max_position_embeddings"] -= self._position_offset
  4306. else:
  4307. self._position_offset = None
  4308. def _xlmroberta_set_vocab(self) -> None:
  4309. # to avoid TypeError: Descriptors cannot be created directly
  4310. # exception when importing sentencepiece_model_pb2
  4311. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4312. from sentencepiece import SentencePieceProcessor
  4313. from sentencepiece import sentencepiece_model_pb2 as model
  4314. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4315. tokenizer_json = {}
  4316. tokenizer_config_json = {}
  4317. if not tokenizer_path.is_file():
  4318. tokenizer_path = self.dir_model / 'tokenizer.json'
  4319. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4320. if not tokenizer_path.is_file():
  4321. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4322. from base64 import b64decode
  4323. from transformers import AutoTokenizer
  4324. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4325. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4326. tokenizer_json = json.load(fp)
  4327. if tokenizer_config_path.is_file():
  4328. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4329. tokenizer_config_json = json.load(fp)
  4330. add_prefix = tokenizer.add_prefix_space
  4331. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4332. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4333. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4334. else:
  4335. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4336. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4337. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4338. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4339. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4340. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4341. tokenizer = SentencePieceProcessor()
  4342. tokenizer.LoadFromFile(str(tokenizer_path))
  4343. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4344. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4345. scores: list[float] = [-10000.0] * vocab_size
  4346. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4347. if isinstance(tokenizer, SentencePieceProcessor):
  4348. for token_id in range(tokenizer.vocab_size()):
  4349. piece = tokenizer.IdToPiece(token_id)
  4350. text = piece.encode("utf-8")
  4351. score = tokenizer.GetScore(token_id)
  4352. toktype = SentencePieceTokenTypes.NORMAL
  4353. if tokenizer.IsUnknown(token_id):
  4354. toktype = SentencePieceTokenTypes.UNKNOWN
  4355. elif tokenizer.IsControl(token_id):
  4356. toktype = SentencePieceTokenTypes.CONTROL
  4357. elif tokenizer.IsUnused(token_id):
  4358. toktype = SentencePieceTokenTypes.UNUSED
  4359. elif tokenizer.IsByte(token_id):
  4360. toktype = SentencePieceTokenTypes.BYTE
  4361. tokens[token_id] = text
  4362. scores[token_id] = score
  4363. toktypes[token_id] = toktype
  4364. else:
  4365. added_vocab = tokenizer.get_added_vocab()
  4366. unk_token = tokenizer_config_json.get("unk_token")
  4367. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4368. for token_id in range(tokenizer.vocab_size):
  4369. piece = tokenizer._convert_id_to_token(token_id)
  4370. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4371. text = piece.encode("utf-8")
  4372. score = tokenizer_json["model"]["vocab"][token_id][1]
  4373. toktype = SentencePieceTokenTypes.NORMAL
  4374. if token_id == unk_token_id:
  4375. toktype = SentencePieceTokenTypes.UNKNOWN
  4376. elif token_id in tokenizer.all_special_ids:
  4377. toktype = SentencePieceTokenTypes.CONTROL
  4378. elif token_id in added_vocab.values():
  4379. toktype = SentencePieceTokenTypes.USER_DEFINED
  4380. # No reliable way to detect this, but jina doesn't have any
  4381. # elif tokenizer.IsByte(token_id):
  4382. # toktype = SentencePieceTokenTypes.BYTE
  4383. tokens[token_id] = text
  4384. scores[token_id] = score
  4385. toktypes[token_id] = toktype
  4386. if isinstance(tokenizer, SentencePieceProcessor):
  4387. # realign tokens (see HF tokenizer code)
  4388. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4389. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4390. toktypes = [
  4391. SentencePieceTokenTypes.CONTROL,
  4392. SentencePieceTokenTypes.CONTROL,
  4393. SentencePieceTokenTypes.CONTROL,
  4394. SentencePieceTokenTypes.UNKNOWN,
  4395. ] + toktypes[3:-1]
  4396. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4397. # Add mask token missing from sentencepiece.bpe.model
  4398. tokens[250001] = b'<mask>'
  4399. scores[250001] = 0.0
  4400. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4401. self.gguf_writer.add_tokenizer_model("t5")
  4402. self.gguf_writer.add_tokenizer_pre("default")
  4403. self.gguf_writer.add_token_list(tokens)
  4404. self.gguf_writer.add_token_scores(scores)
  4405. self.gguf_writer.add_token_types(toktypes)
  4406. self.gguf_writer.add_add_space_prefix(add_prefix)
  4407. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4408. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4409. if precompiled_charsmap:
  4410. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4411. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4412. special_vocab.add_to_gguf(self.gguf_writer)
  4413. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4414. class DistilBertModel(BertModel):
  4415. model_arch = gguf.MODEL_ARCH.BERT
  4416. def set_gguf_parameters(self):
  4417. self.gguf_writer.add_layer_norm_eps(1e-12)
  4418. logger.info("gguf: layer norm epsilon = 1e-12")
  4419. super().set_gguf_parameters()
  4420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4421. if name.startswith("distilbert."):
  4422. name = name[11:]
  4423. # These layers act as MLM head, so we don't need them
  4424. if name.startswith("vocab_"):
  4425. return []
  4426. return super().modify_tensors(data_torch, name, bid)
  4427. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4428. class RobertaModel(BertModel):
  4429. model_arch = gguf.MODEL_ARCH.BERT
  4430. def __init__(self, *args, **kwargs):
  4431. super().__init__(*args, **kwargs)
  4432. # we need the pad_token_id to know how to chop down position_embd matrix
  4433. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4434. self._position_offset = 1 + pad_token_id
  4435. if "max_position_embeddings" in self.hparams:
  4436. self.hparams["max_position_embeddings"] -= self._position_offset
  4437. else:
  4438. self._position_offset = None
  4439. def set_vocab(self):
  4440. """Support BPE tokenizers for roberta models"""
  4441. bpe_tok_path = self.dir_model / "tokenizer.json"
  4442. if bpe_tok_path.exists():
  4443. self._set_vocab_gpt2()
  4444. # we need this to validate the size of the token_type embeddings
  4445. # though currently we are passing all zeros to the token_type embeddings
  4446. # "Sequence A" or "Sequence B"
  4447. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4448. else:
  4449. return super().set_vocab()
  4450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4451. # if name starts with "roberta.", remove the prefix
  4452. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4453. if name.startswith("roberta."):
  4454. name = name[8:]
  4455. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4456. if name == "embeddings.position_embeddings.weight":
  4457. if self._position_offset is not None:
  4458. data_torch = data_torch[self._position_offset:,:]
  4459. return super().modify_tensors(data_torch, name, bid)
  4460. @ModelBase.register("NomicBertModel")
  4461. class NomicBertModel(BertModel):
  4462. model_arch = gguf.MODEL_ARCH.BERT
  4463. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4464. hparams = kwargs.pop("hparams", None)
  4465. if hparams is None:
  4466. hparams = ModelBase.load_hparams(dir_model, False)
  4467. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4468. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4469. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4470. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4471. if self._tokenizer_is_xlmroberta:
  4472. self._xlmroberta_tokenizer_init()
  4473. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4474. if npos == 8192 and mtp == 2048:
  4475. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4476. elif npos == 2048 and mtp == 2048:
  4477. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4478. else:
  4479. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4480. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4481. # this doesn't do anything in the HF version
  4482. assert self.hparams["causal"] is False
  4483. # no bias tensors unless MoE
  4484. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4485. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4486. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4487. # norm at end of layer
  4488. assert self.hparams["prenorm"] is False
  4489. # standard RoPE
  4490. assert self.hparams["rotary_emb_fraction"] == 1.0
  4491. assert self.hparams["rotary_emb_interleaved"] is False
  4492. assert self.hparams["rotary_emb_scale_base"] is None
  4493. def set_vocab(self) -> None:
  4494. if self._tokenizer_is_xlmroberta:
  4495. return self._xlmroberta_set_vocab()
  4496. return super().set_vocab()
  4497. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4498. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4499. if "mlp.experts.bias" in name:
  4500. return [] # Explicitly return an empty list.
  4501. if "mlp.experts.mlp.w1" in name:
  4502. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4503. name += ".weight"
  4504. if "mlp.experts.mlp.w2" in name:
  4505. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4506. data_torch = data_torch.transpose(1, 2)
  4507. name += ".weight"
  4508. return [(self.map_tensor_name(name), data_torch)]
  4509. def set_gguf_parameters(self):
  4510. super().set_gguf_parameters()
  4511. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4512. if self.is_moe:
  4513. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4514. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4515. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4516. def _is_tokenizer_xlmroberta(self) -> bool:
  4517. with open(self.dir_model / "tokenizer.json") as f:
  4518. tokenizer_json = json.load(f)
  4519. toktyp = tokenizer_json["model"]["type"]
  4520. if toktyp == "Unigram":
  4521. return True
  4522. if toktyp == "WordPiece":
  4523. return False
  4524. raise ValueError(f"unknown tokenizer: {toktyp}")
  4525. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4526. class NeoBert(BertModel):
  4527. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4528. def set_gguf_parameters(self):
  4529. super().set_gguf_parameters()
  4530. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4531. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4532. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4533. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4534. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4535. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4536. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4537. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4538. def modify_tensors(self, data_torch, name, bid):
  4539. if name.startswith("decoder."):
  4540. return []
  4541. if name.startswith("model."):
  4542. name = name[6:]
  4543. return super().modify_tensors(data_torch, name, bid)
  4544. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4545. class XLMRobertaModel(BertModel):
  4546. model_arch = gguf.MODEL_ARCH.BERT
  4547. _lora_files = {}
  4548. _lora_names = []
  4549. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4550. hparams = kwargs.pop("hparams", None)
  4551. if hparams is None:
  4552. hparams = ModelBase.load_hparams(dir_model, False)
  4553. if lora_names := hparams.get("lora_adaptations"):
  4554. self._lora_names = lora_names
  4555. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4556. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4557. self._xlmroberta_tokenizer_init()
  4558. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4559. if self._lora_names:
  4560. for name in self._lora_names:
  4561. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4562. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4563. return super().generate_extra_tensors()
  4564. def set_type(self):
  4565. for lora_writer in self._lora_files.values():
  4566. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4567. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4568. super().set_type()
  4569. def set_vocab(self):
  4570. self._xlmroberta_set_vocab()
  4571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4572. # if name starts with "roberta.", remove the prefix
  4573. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4574. if name.startswith("roberta."):
  4575. name = name[8:]
  4576. # jina-embeddings-v3
  4577. if ".parametrizations." in name:
  4578. name = name.replace(".parametrizations.", ".")
  4579. if name.endswith(".original"):
  4580. name = name[:-9]
  4581. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4582. if name == "embeddings.position_embeddings.weight":
  4583. if self._position_offset is not None:
  4584. data_torch = data_torch[self._position_offset:,:]
  4585. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4586. if name.startswith("pooler.dense"):
  4587. return []
  4588. num_loras = data_torch.size(0)
  4589. assert num_loras == len(self._lora_names)
  4590. # Split out each LoRA in their own GGUF
  4591. for i, lora_writer in enumerate(self._lora_files.values()):
  4592. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4593. data = data_torch[i, :, :]
  4594. # Transpose/flip token_embd/types into correct shape
  4595. if new_name == "token_embd.weight.lora_b":
  4596. data = data.T
  4597. elif new_name.startswith("token_types.weight."):
  4598. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4599. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4600. return []
  4601. return super().modify_tensors(data_torch, name, bid)
  4602. def set_gguf_parameters(self):
  4603. super().set_gguf_parameters()
  4604. # jina-embeddings-v3
  4605. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4606. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4607. lora_alpha = self.hparams.get("lora_alpha")
  4608. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4609. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4610. for lora_name, lora_writer in self._lora_files.items():
  4611. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4612. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4613. if lora_prompt_prefixes:
  4614. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4615. def write(self):
  4616. super().write()
  4617. for lora_writer in self._lora_files.values():
  4618. lora_writer.write_header_to_file()
  4619. lora_writer.write_kv_data_to_file()
  4620. lora_writer.write_tensors_to_file(progress=True)
  4621. lora_writer.close()
  4622. @ModelBase.register("GemmaForCausalLM")
  4623. class GemmaModel(TextModel):
  4624. model_arch = gguf.MODEL_ARCH.GEMMA
  4625. def set_vocab(self):
  4626. self._set_vocab_sentencepiece()
  4627. # TODO: these special tokens should be exported only for the CodeGemma family
  4628. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4629. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4630. special_vocab._set_special_token("prefix", 67)
  4631. special_vocab._set_special_token("suffix", 69)
  4632. special_vocab._set_special_token("middle", 68)
  4633. special_vocab._set_special_token("fsep", 70)
  4634. special_vocab._set_special_token("eot", 107)
  4635. special_vocab.chat_template = None # do not add it twice
  4636. special_vocab.add_to_gguf(self.gguf_writer)
  4637. self.gguf_writer.add_add_space_prefix(False)
  4638. def set_gguf_parameters(self):
  4639. hparams = self.hparams
  4640. block_count = hparams["num_hidden_layers"]
  4641. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4642. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4643. self.gguf_writer.add_block_count(block_count)
  4644. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4645. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4646. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4647. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4648. self.gguf_writer.add_key_length(hparams["head_dim"])
  4649. self.gguf_writer.add_value_length(hparams["head_dim"])
  4650. self.gguf_writer.add_file_type(self.ftype)
  4651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4652. del bid # unused
  4653. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4654. # To prevent errors, skip loading lm_head.weight.
  4655. if name == "lm_head.weight":
  4656. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4657. return []
  4658. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4659. if name.endswith("norm.weight"):
  4660. data_torch = data_torch + 1
  4661. return [(self.map_tensor_name(name), data_torch)]
  4662. @ModelBase.register("Gemma2ForCausalLM")
  4663. class Gemma2Model(TextModel):
  4664. model_arch = gguf.MODEL_ARCH.GEMMA2
  4665. def set_vocab(self):
  4666. self._set_vocab_sentencepiece()
  4667. self.gguf_writer.add_add_space_prefix(False)
  4668. def set_gguf_parameters(self):
  4669. hparams = self.hparams
  4670. block_count = hparams["num_hidden_layers"]
  4671. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4672. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4673. self.gguf_writer.add_block_count(block_count)
  4674. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4675. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4676. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4677. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4678. self.gguf_writer.add_key_length(hparams["head_dim"])
  4679. self.gguf_writer.add_value_length(hparams["head_dim"])
  4680. self.gguf_writer.add_file_type(self.ftype)
  4681. self.gguf_writer.add_attn_logit_softcapping(
  4682. self.hparams["attn_logit_softcapping"]
  4683. )
  4684. self.gguf_writer.add_final_logit_softcapping(
  4685. self.hparams["final_logit_softcapping"]
  4686. )
  4687. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4689. del bid # unused
  4690. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4691. # To prevent errors, skip loading lm_head.weight.
  4692. if name == "lm_head.weight":
  4693. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4694. return []
  4695. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4696. if name.endswith("norm.weight"):
  4697. data_torch = data_torch + 1
  4698. return [(self.map_tensor_name(name), data_torch)]
  4699. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4700. class Gemma3Model(TextModel):
  4701. model_arch = gguf.MODEL_ARCH.GEMMA3
  4702. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4703. def set_vocab(self):
  4704. self._set_vocab_sentencepiece()
  4705. self.gguf_writer.add_add_space_prefix(False)
  4706. def set_gguf_parameters(self):
  4707. hparams = self.hparams
  4708. block_count = hparams["num_hidden_layers"]
  4709. # some default values are not specified in the hparams
  4710. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4711. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4712. self.gguf_writer.add_block_count(block_count)
  4713. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4714. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4715. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4716. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4717. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4718. self.gguf_writer.add_file_type(self.ftype)
  4719. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4720. # attn_logit_softcapping is removed in Gemma3
  4721. assert hparams.get("attn_logit_softcapping") is None
  4722. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4723. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4724. if hparams.get("rope_scaling") is not None:
  4725. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4726. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4727. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4728. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4729. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4730. del bid # unused
  4731. if "language_model." in name:
  4732. name = name.replace("language_model.", "")
  4733. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4734. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4735. return [] # skip vision tensors
  4736. # remove OOV (out-of-vocabulary) rows in token_embd
  4737. if "embed_tokens.weight" in name:
  4738. vocab = self._create_vocab_sentencepiece()
  4739. tokens = vocab[0]
  4740. data_torch = data_torch[:len(tokens)]
  4741. # ref code in Gemma3RMSNorm
  4742. # output = output * (1.0 + self.weight.float())
  4743. # note: this is not the case on gemma3n
  4744. if name.endswith("norm.weight"):
  4745. data_torch = data_torch + self.norm_shift
  4746. return [(self.map_tensor_name(name), data_torch)]
  4747. @ModelBase.register("Gemma3TextModel")
  4748. class EmbeddingGemma(Gemma3Model):
  4749. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4750. module_paths = []
  4751. dense_features_dims = {}
  4752. def __init__(self, *args, **kwargs):
  4753. super().__init__(*args, **kwargs)
  4754. if self.sentence_transformers_dense_modules:
  4755. # read modules.json to determine if model has Dense layers
  4756. modules_file = self.dir_model / "modules.json"
  4757. if modules_file.is_file():
  4758. with open(modules_file, encoding="utf-8") as modules_json_file:
  4759. mods = json.load(modules_json_file)
  4760. for mod in mods:
  4761. if mod["type"] == "sentence_transformers.models.Dense":
  4762. mod_path = mod["path"]
  4763. # check if model.safetensors file for Dense layer exists
  4764. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4765. if model_tensors_file.is_file():
  4766. self.module_paths.append(mod_path)
  4767. # read config.json of the Dense layer to get in/out features
  4768. mod_conf_file = self.dir_model / mod_path / "config.json"
  4769. if mod_conf_file.is_file():
  4770. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4771. mod_conf = json.load(mod_conf_json_file)
  4772. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4773. prefix = self._get_dense_prefix(mod_path)
  4774. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4775. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4776. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4777. from safetensors.torch import load_file
  4778. module_paths = list(self.module_paths)
  4779. for i, module_path in enumerate(module_paths):
  4780. tensors_file = self.dir_model / module_path / "model.safetensors"
  4781. local_tensors = load_file(tensors_file)
  4782. tensor_name = self._get_dense_prefix(module_path)
  4783. for name, local_tensor in local_tensors.items():
  4784. if not name.endswith(".weight"):
  4785. continue
  4786. orig_name = name.replace("linear", tensor_name)
  4787. name = self.map_tensor_name(orig_name)
  4788. yield name, local_tensor.clone()
  4789. @staticmethod
  4790. def _get_dense_prefix(module_path) -> str:
  4791. """Get the tensor name prefix for the Dense layer from module path."""
  4792. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4793. return tensor_name
  4794. def set_gguf_parameters(self):
  4795. super().set_gguf_parameters()
  4796. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4797. # constructor. We want to use the value from the original model's config.json.
  4798. # ref: https://github.com/huggingface/transformers/pull/40700
  4799. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4800. config = json.load(f)
  4801. orig_sliding_window = config.get("sliding_window")
  4802. if orig_sliding_window is None:
  4803. raise ValueError("sliding_window not found in model config - this is required for the model")
  4804. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4805. f"instead of {self.hparams['sliding_window']}")
  4806. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4807. if self.sentence_transformers_dense_modules:
  4808. for dense, dims in self.dense_features_dims.items():
  4809. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4810. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4811. self._try_set_pooling_type()
  4812. @ModelBase.register("Gemma3ForConditionalGeneration")
  4813. class Gemma3VisionModel(MmprojModel):
  4814. def set_gguf_parameters(self):
  4815. super().set_gguf_parameters()
  4816. hparams = self.hparams
  4817. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4818. # default values below are taken from HF tranformers code
  4819. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4820. self.gguf_writer.add_vision_use_gelu(True)
  4821. # calculate proj_scale_factor (used by tinygemma3 test model)
  4822. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4823. n_per_side = int(image_seq_length ** 0.5)
  4824. image_size = self.hparams["image_size"]
  4825. patch_size = self.hparams["patch_size"]
  4826. proj_scale_factor = (image_size // patch_size) // n_per_side
  4827. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4828. # we only need to write this if it's not the default value
  4829. # in this case, we are converting a test model
  4830. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4831. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4832. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4833. if "input_projection" in name:
  4834. return gguf.GGMLQuantizationType.F16
  4835. if ".embeddings." in name:
  4836. return gguf.GGMLQuantizationType.F32
  4837. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4838. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4839. del bid # unused
  4840. if "vision_model.head." in name:
  4841. return [] # skip redundant tensors for tinygemma3
  4842. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4843. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4844. # process vision tensors
  4845. name = name.replace("_weight", ".weight")
  4846. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4847. # the other norm values are part of SigLIP model, and they are already correct
  4848. # ref code: Gemma3RMSNorm
  4849. if "soft_emb_norm.weight" in name:
  4850. logger.info(f"Correcting norm value for '{name}'")
  4851. data_torch = data_torch + 1
  4852. return [(self.map_tensor_name(name), data_torch)]
  4853. return [] # skip other tensors
  4854. @ModelBase.register("Gemma3nForConditionalGeneration")
  4855. class Gemma3NModel(Gemma3Model):
  4856. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4857. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4858. _altup_proj: list[Tensor] = []
  4859. _altup_unembd: list[Tensor] = []
  4860. def __init__(self, *args, **kwargs):
  4861. super().__init__(*args, **kwargs)
  4862. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4863. self._altup_proj = [
  4864. torch.Tensor(), # to be replaced
  4865. torch.Tensor(), # to be replaced
  4866. torch.Tensor(), # to be replaced
  4867. ]
  4868. self._altup_unembd = [
  4869. torch.Tensor(), # to be replaced
  4870. torch.Tensor(), # to be replaced
  4871. torch.Tensor(), # to be replaced
  4872. ]
  4873. def set_vocab(self):
  4874. super().set_vocab()
  4875. def set_gguf_parameters(self):
  4876. super().set_gguf_parameters()
  4877. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4878. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4879. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4880. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4881. activation_sparsity_scale = []
  4882. for s in self.hparams["activation_sparsity_pattern"]:
  4883. normal_dist = torch.distributions.normal.Normal(0, 1)
  4884. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4885. activation_sparsity_scale.append(std_multiplier.item())
  4886. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4887. sliding_window_pattern = []
  4888. for t in self.hparams["layer_types"]:
  4889. sliding_window_pattern.append(t == "sliding_attention")
  4890. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4891. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4892. has_all = all(m.numel() > 0 for m in matrices)
  4893. if not has_all:
  4894. return None
  4895. else:
  4896. return torch.stack(matrices, dim=0)
  4897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4898. if name.endswith("_scale"):
  4899. name = name + ".weight"
  4900. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4901. if "language_model." not in name:
  4902. return [] # skip non-language model tensors
  4903. if "altup_unembed_projections" in name:
  4904. data_torch = data_torch.to(device="cpu")
  4905. if ".0." in name:
  4906. self._altup_unembd[0] = data_torch
  4907. elif ".1." in name:
  4908. self._altup_unembd[1] = data_torch
  4909. elif ".2." in name:
  4910. self._altup_unembd[2] = data_torch
  4911. else:
  4912. raise ValueError(f"Unknown name: {name}")
  4913. out = self._stack_matrices(self._altup_unembd)
  4914. if out is not None:
  4915. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4916. else:
  4917. return []
  4918. if "altup_projections" in name:
  4919. data_torch = data_torch.to(device="cpu")
  4920. if ".0." in name:
  4921. self._altup_proj[0] = data_torch
  4922. elif ".1." in name:
  4923. self._altup_proj[1] = data_torch
  4924. elif ".2." in name:
  4925. self._altup_proj[2] = data_torch
  4926. else:
  4927. raise ValueError(f"Unknown name: {name}")
  4928. out = self._stack_matrices(self._altup_proj)
  4929. if out is not None:
  4930. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4931. else:
  4932. return []
  4933. return super().modify_tensors(data_torch, name, bid)
  4934. @ModelBase.register("Starcoder2ForCausalLM")
  4935. class StarCoder2Model(TextModel):
  4936. model_arch = gguf.MODEL_ARCH.STARCODER2
  4937. @ModelBase.register("Rwkv6ForCausalLM")
  4938. class Rwkv6Model(TextModel):
  4939. model_arch = gguf.MODEL_ARCH.RWKV6
  4940. def set_vocab(self):
  4941. self._set_vocab_rwkv_world()
  4942. def set_gguf_parameters(self):
  4943. block_count = self.hparams["num_hidden_layers"]
  4944. head_size = self.hparams["head_size"]
  4945. hidden_size = self.hparams["hidden_size"]
  4946. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4947. rescale_every_n_layers = self.hparams["rescale_every"]
  4948. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4949. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4950. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4951. # RWKV isn't context limited
  4952. self.gguf_writer.add_context_length(1048576)
  4953. self.gguf_writer.add_embedding_length(hidden_size)
  4954. self.gguf_writer.add_block_count(block_count)
  4955. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4956. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4957. self.gguf_writer.add_wkv_head_size(head_size)
  4958. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4959. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4960. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4961. self.gguf_writer.add_file_type(self.ftype)
  4962. # required by llama.cpp, unused
  4963. self.gguf_writer.add_head_count(0)
  4964. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4966. new_name = self.map_tensor_name(name)
  4967. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4968. new_name += ".weight"
  4969. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4970. data_torch = data_torch.transpose(0, 1)
  4971. if new_name.endswith("time_mix_w2.weight"):
  4972. data_torch = data_torch.permute(0, 2, 1)
  4973. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4974. data_torch = data_torch.squeeze()
  4975. try:
  4976. rescale_every_n_layers = self.hparams["rescale_every"]
  4977. if rescale_every_n_layers > 0:
  4978. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4979. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4980. except KeyError:
  4981. pass
  4982. # concat time_mix_lerp weights to reduce some cpu overhead
  4983. # also reduces the number of tensors in the model
  4984. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4985. try:
  4986. self.lerp_weights[bid][new_name] = data_torch
  4987. except KeyError:
  4988. self.lerp_weights[bid] = {new_name: data_torch}
  4989. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4990. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4991. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4992. yield (new_name, data)
  4993. return
  4994. yield (new_name, data_torch)
  4995. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4996. class RWKV6Qwen2Model(Rwkv6Model):
  4997. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4998. def set_vocab(self):
  4999. try:
  5000. self._set_vocab_sentencepiece()
  5001. except FileNotFoundError:
  5002. self._set_vocab_gpt2()
  5003. def set_gguf_parameters(self):
  5004. block_count = self.hparams["num_hidden_layers"]
  5005. num_attention_heads = self.hparams["num_attention_heads"]
  5006. num_key_value_heads = self.hparams["num_key_value_heads"]
  5007. hidden_size = self.hparams["hidden_size"]
  5008. head_size = hidden_size // num_attention_heads
  5009. rms_norm_eps = self.hparams["rms_norm_eps"]
  5010. intermediate_size = self.hparams["intermediate_size"]
  5011. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5012. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5013. # RWKV isn't context limited
  5014. self.gguf_writer.add_context_length(1048576)
  5015. self.gguf_writer.add_embedding_length(hidden_size)
  5016. self.gguf_writer.add_block_count(block_count)
  5017. self.gguf_writer.add_wkv_head_size(head_size)
  5018. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5019. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5020. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5021. self.gguf_writer.add_file_type(self.ftype)
  5022. # special parameters for time_mixing in RWKV6QWEN2
  5023. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5024. self.gguf_writer.add_token_shift_count(1)
  5025. # RWKV6QWEN2 use grouped key/value like GQA
  5026. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5027. # required by llama.cpp, unused
  5028. self.gguf_writer.add_head_count(0)
  5029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5030. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5031. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5032. data = data.view(5, -1, data.shape[-1])
  5033. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5034. # permute them here to avoid code changes
  5035. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5036. if "w2" in new_name:
  5037. data = data.view(5, -1, data.shape[-1])
  5038. yield (new_name, data)
  5039. continue
  5040. yield (new_name, data)
  5041. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5042. class Rwkv7Model(TextModel):
  5043. model_arch = gguf.MODEL_ARCH.RWKV7
  5044. def set_vocab(self):
  5045. self._set_vocab_rwkv_world()
  5046. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5047. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5048. def set_gguf_parameters(self):
  5049. block_count = self.hparams["num_hidden_layers"]
  5050. try:
  5051. head_size = self.hparams["head_size"]
  5052. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5053. except KeyError:
  5054. head_size = self.hparams["head_dim"]
  5055. layer_norm_eps = self.hparams["norm_eps"]
  5056. hidden_size = self.hparams["hidden_size"]
  5057. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5058. # ICLR: In-Context-Learning-Rate
  5059. try:
  5060. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5061. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5062. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5063. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5064. except KeyError:
  5065. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5066. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5067. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5068. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5069. # RWKV isn't context limited
  5070. self.gguf_writer.add_context_length(1048576)
  5071. self.gguf_writer.add_embedding_length(hidden_size)
  5072. self.gguf_writer.add_block_count(block_count)
  5073. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5074. self.gguf_writer.add_wkv_head_size(head_size)
  5075. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5076. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5077. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5078. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5079. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5080. self.gguf_writer.add_file_type(self.ftype)
  5081. # required by llama.cpp, unused
  5082. self.gguf_writer.add_head_count(0)
  5083. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5084. lora_needs_transpose: bool = True
  5085. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5086. # unify tensor names here to make life easier
  5087. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5088. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5089. name = name.replace("time_mixer.", "")
  5090. # lora layer names in fla-hub's impl
  5091. if "_lora.lora" in name:
  5092. self.lora_needs_transpose = False
  5093. name = name.replace("_lora.lora.0.weight", "1.weight")
  5094. name = name.replace("_lora.lora.2.weight", "2.weight")
  5095. name = name.replace("_lora.lora.2.bias", "0.weight")
  5096. name = name.replace("feed_forward_norm", "ln2")
  5097. name = name.replace("g_norm", "ln_x")
  5098. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5099. # some models have dummy v0/v1/v2 on first layer while others don't
  5100. # ignore them all since they are not used
  5101. return
  5102. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5103. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5104. if bid is not None and "attention.x_" in name:
  5105. if "attention.x_x" in name:
  5106. # already concatenated
  5107. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5108. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5109. yield (new_name, data)
  5110. else:
  5111. try:
  5112. self.lerp_weights[bid][name] = data_torch
  5113. except KeyError:
  5114. self.lerp_weights[bid] = {name: data_torch}
  5115. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5116. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5117. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5118. yield (new_name, data)
  5119. return
  5120. else:
  5121. data_torch = data_torch.squeeze()
  5122. new_name = self.map_tensor_name(name)
  5123. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5124. new_name += ".weight"
  5125. if self.lora_needs_transpose and any(
  5126. new_name.endswith(t) for t in [
  5127. "time_mix_w1.weight", "time_mix_w2.weight",
  5128. "time_mix_a1.weight", "time_mix_a2.weight",
  5129. "time_mix_v1.weight", "time_mix_v2.weight",
  5130. "time_mix_g1.weight", "time_mix_g2.weight",
  5131. ]
  5132. ):
  5133. data_torch = data_torch.transpose(0, 1)
  5134. if 'r_k' in new_name:
  5135. data_torch = data_torch.flatten()
  5136. if bid == 0 and "time_mix_a" in new_name:
  5137. # dummy v0/v1/v2 on first layer
  5138. # easist way to make llama happy
  5139. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5140. yield (new_name, data_torch)
  5141. @ModelBase.register("RwkvHybridForCausalLM")
  5142. class ARwkv7Model(Rwkv7Model):
  5143. model_arch = gguf.MODEL_ARCH.ARWKV7
  5144. def set_vocab(self):
  5145. try:
  5146. self._set_vocab_sentencepiece()
  5147. except FileNotFoundError:
  5148. self._set_vocab_gpt2()
  5149. def set_gguf_parameters(self):
  5150. block_count = self.hparams["num_hidden_layers"]
  5151. hidden_size = self.hparams["hidden_size"]
  5152. head_size = self.hparams["head_size"]
  5153. rms_norm_eps = self.hparams["rms_norm_eps"]
  5154. intermediate_size = self.hparams["intermediate_size"]
  5155. wkv_has_gate = self.hparams["wkv_has_gate"]
  5156. assert self.hparams["wkv_version"] == 7
  5157. # ICLR: In-Context-Learning-Rate
  5158. lora_rank_decay = 64
  5159. lora_rank_iclr = 64
  5160. lora_rank_value_residual_mix = 32
  5161. lora_rank_gate = 128 if wkv_has_gate else 0
  5162. # RWKV isn't context limited
  5163. self.gguf_writer.add_context_length(1048576)
  5164. self.gguf_writer.add_embedding_length(hidden_size)
  5165. self.gguf_writer.add_block_count(block_count)
  5166. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5167. self.gguf_writer.add_wkv_head_size(head_size)
  5168. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5169. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5170. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5171. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5172. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5173. self.gguf_writer.add_file_type(self.ftype)
  5174. self.gguf_writer.add_token_shift_count(1)
  5175. # required by llama.cpp, unused
  5176. self.gguf_writer.add_head_count(0)
  5177. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5178. class MambaModel(TextModel):
  5179. model_arch = gguf.MODEL_ARCH.MAMBA
  5180. def __init__(self, dir_model: Path, *args, **kwargs):
  5181. # Avoid using AutoConfig for hparams
  5182. hparams = kwargs.pop("hparams", None)
  5183. if hparams is None:
  5184. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5185. hparams = json.load(f)
  5186. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5187. def set_vocab(self):
  5188. vocab_size = self.hparams["vocab_size"]
  5189. # Round vocab size to next multiple of 8
  5190. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5191. # pad using ceiling division
  5192. # ref: https://stackoverflow.com/a/17511341/22827863
  5193. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5194. self.hparams["vocab_size"] = vocab_size
  5195. if (self.dir_model / "tokenizer.json").is_file():
  5196. self._set_vocab_gpt2()
  5197. elif (self.dir_model / "tokenizer.model").is_file():
  5198. self._set_vocab_sentencepiece()
  5199. else:
  5200. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5201. self._set_vocab_builtin("gpt-neox", vocab_size)
  5202. def set_gguf_parameters(self):
  5203. d_model = self.find_hparam(["hidden_size", "d_model"])
  5204. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5205. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5206. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5207. # ceiling division
  5208. # ref: https://stackoverflow.com/a/17511341/22827863
  5209. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5210. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5211. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5212. use_dt_b_c_norm = False
  5213. # For falconmamba we do apply RMS norm on B / DT and C layers
  5214. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5215. use_dt_b_c_norm = True
  5216. # Fail early for models which don't have a block expansion factor of 2
  5217. assert d_inner == 2 * d_model
  5218. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5219. self.gguf_writer.add_embedding_length(d_model)
  5220. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5221. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5222. self.gguf_writer.add_block_count(self.block_count)
  5223. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5224. self.gguf_writer.add_ssm_inner_size(d_inner)
  5225. self.gguf_writer.add_ssm_state_size(d_state)
  5226. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5227. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5228. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5229. self.gguf_writer.add_file_type(self.ftype)
  5230. _tok_embd = None
  5231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5232. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5233. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5234. new_name = self.map_tensor_name(name)
  5235. if name.endswith(".A_log"):
  5236. logger.debug("A_log --> A ==> " + new_name)
  5237. data_torch = -torch.exp(data_torch)
  5238. # [4 1 8192 1] -> [4 8192 1 1]
  5239. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5240. data_torch = data_torch.squeeze()
  5241. # assuming token_embd.weight is seen before output.weight
  5242. if self._tok_embd is not None and new_name == output_name:
  5243. if torch.equal(self._tok_embd, data_torch):
  5244. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5245. return []
  5246. elif new_name == tok_embd_name:
  5247. self._tok_embd = data_torch
  5248. return [(new_name, data_torch)]
  5249. @ModelBase.register("Mamba2ForCausalLM")
  5250. class Mamba2Model(TextModel):
  5251. model_arch = gguf.MODEL_ARCH.MAMBA2
  5252. def __init__(self, dir_model: Path, *args, **kwargs):
  5253. # Avoid using AutoConfig for hparams
  5254. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5255. hparams = kwargs.pop("hparams", None)
  5256. if hparams is None:
  5257. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5258. hparams = json.load(f)
  5259. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5260. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5261. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5262. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5263. def set_vocab(self):
  5264. vocab_size = self.hparams["vocab_size"]
  5265. # Round vocab size to next multiple of 16
  5266. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5267. # pad using ceiling division
  5268. # ref: https://stackoverflow.com/a/17511341/22827863
  5269. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5270. self.hparams["vocab_size"] = vocab_size
  5271. if (self.dir_model / "tokenizer.model").is_file():
  5272. self._set_vocab_sentencepiece()
  5273. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5274. # mamba-codestral
  5275. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5276. elif (self.dir_model / "tokenizer.json").is_file():
  5277. self._set_vocab_gpt2()
  5278. else:
  5279. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5280. self._set_vocab_builtin("gpt-neox", vocab_size)
  5281. def set_gguf_parameters(self):
  5282. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5283. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5284. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5285. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5286. # Fail early for models which don't have a block expansion factor of 2
  5287. # TODO: does this really matter?
  5288. # skip the assertion for FalconH1 Model
  5289. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5290. assert self.d_inner == 2 * self.d_model
  5291. assert self.d_inner % head_dim == 0
  5292. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5293. self.gguf_writer.add_embedding_length(self.d_model)
  5294. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5295. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5296. self.gguf_writer.add_block_count(self.block_count)
  5297. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5298. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5299. self.gguf_writer.add_ssm_state_size(d_state)
  5300. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5301. self.gguf_writer.add_ssm_group_count(self.n_group)
  5302. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5303. self.gguf_writer.add_file_type(self.ftype)
  5304. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5305. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5306. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5307. name = name.removeprefix("model.")
  5308. if name.endswith(".dt_bias"):
  5309. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5310. new_name = self.map_tensor_name(name)
  5311. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5312. data_torch = data_torch.squeeze()
  5313. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5314. gguf.MODEL_TENSOR.SSM_A,
  5315. gguf.MODEL_TENSOR.SSM_D,
  5316. ]):
  5317. # unsqueeze A to use similar shape semantics as Mamba-1
  5318. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5319. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5320. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5321. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5322. if name.endswith(".A_log"):
  5323. logger.debug("A_log --> A ==> " + new_name)
  5324. data_torch = -torch.exp(data_torch)
  5325. yield (new_name, data_torch)
  5326. @ModelBase.register("JambaForCausalLM")
  5327. class JambaModel(TextModel):
  5328. model_arch = gguf.MODEL_ARCH.JAMBA
  5329. def set_vocab(self):
  5330. if (self.dir_model / "tokenizer.model").is_file():
  5331. self._set_vocab_sentencepiece()
  5332. else:
  5333. self._set_vocab_llama_hf()
  5334. self.gguf_writer.add_add_space_prefix(False)
  5335. def set_gguf_parameters(self):
  5336. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5337. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5338. d_inner = self.hparams["mamba_expand"] * d_model
  5339. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5340. # ceiling division
  5341. # ref: https://stackoverflow.com/a/17511341/22827863
  5342. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5343. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5344. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5345. n_kv_head = self.hparams["num_key_value_heads"]
  5346. attn_offset = self.hparams["attn_layer_offset"]
  5347. attn_period = self.hparams["attn_layer_period"]
  5348. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5349. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5350. ]
  5351. self.gguf_writer.add_block_count(self.block_count)
  5352. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5353. self.gguf_writer.add_embedding_length(d_model)
  5354. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5355. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5356. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5357. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5358. self.gguf_writer.add_ssm_inner_size(d_inner)
  5359. self.gguf_writer.add_ssm_state_size(d_state)
  5360. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5361. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5362. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5363. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5364. self.gguf_writer.add_file_type(self.ftype)
  5365. _experts: list[dict[str, Tensor]] | None = None
  5366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5367. # Mini-Jamba
  5368. name = name.replace(".moe.", ".feed_forward.")
  5369. if bid is not None:
  5370. moe_offset = self.hparams["expert_layer_offset"]
  5371. moe_period = self.hparams["expert_layer_period"]
  5372. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5373. name = name.replace(".experts.0.", ".")
  5374. # process the experts separately
  5375. if ".feed_forward.experts." in name:
  5376. n_experts = self.hparams["num_experts"]
  5377. assert bid is not None
  5378. if self._experts is None:
  5379. self._experts = [{} for _ in range(self.block_count)]
  5380. self._experts[bid][name] = data_torch
  5381. if len(self._experts[bid]) >= n_experts * 3:
  5382. # merge the experts into a single 3d tensor
  5383. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5384. datas: list[Tensor] = []
  5385. for xid in range(n_experts):
  5386. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5387. datas.append(self._experts[bid][ename])
  5388. del self._experts[bid][ename]
  5389. data_torch = torch.stack(datas, dim=0)
  5390. # using the same merged name as qwen2moe
  5391. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5392. new_name = self.map_tensor_name(merged_name)
  5393. yield new_name, data_torch
  5394. return
  5395. new_name = self.map_tensor_name(name)
  5396. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5397. data_torch = data_torch.squeeze()
  5398. if name.endswith(".A_log"):
  5399. logger.debug("A_log --> A ==> " + new_name)
  5400. data_torch = -torch.exp(data_torch)
  5401. yield (new_name, data_torch)
  5402. def prepare_tensors(self):
  5403. super().prepare_tensors()
  5404. if self._experts is not None:
  5405. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5406. experts = [k for d in self._experts for k in d.keys()]
  5407. if len(experts) > 0:
  5408. raise ValueError(f"Unprocessed experts: {experts}")
  5409. @ModelBase.register("CohereForCausalLM")
  5410. class CommandR2Model(TextModel):
  5411. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5412. def __init__(self, *args, **kwargs):
  5413. super().__init__(*args, **kwargs)
  5414. # max_position_embeddings = 8192 in config.json but model was actually
  5415. # trained on 128k context length
  5416. # aya-23 models don't have model_max_length specified
  5417. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5418. def set_gguf_parameters(self):
  5419. super().set_gguf_parameters()
  5420. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5421. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5422. @ModelBase.register("Cohere2ForCausalLM")
  5423. class Cohere2Model(TextModel):
  5424. model_arch = gguf.MODEL_ARCH.COHERE2
  5425. def set_gguf_parameters(self):
  5426. super().set_gguf_parameters()
  5427. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5428. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5429. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5430. rotary_pct = self.hparams["rotary_pct"]
  5431. hidden_size = self.hparams["hidden_size"]
  5432. num_attention_heads = self.hparams["num_attention_heads"]
  5433. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5434. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5435. @ModelBase.register("OlmoForCausalLM")
  5436. @ModelBase.register("OLMoForCausalLM")
  5437. class OlmoModel(TextModel):
  5438. model_arch = gguf.MODEL_ARCH.OLMO
  5439. def set_gguf_parameters(self):
  5440. super().set_gguf_parameters()
  5441. self.gguf_writer.add_layer_norm_eps(1e-5)
  5442. clip_qkv = self.hparams.get("clip_qkv")
  5443. if clip_qkv is not None:
  5444. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5445. # Same as super class, but permuting q_proj, k_proj
  5446. # Copied from: LlamaModel
  5447. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5448. del bid # unused
  5449. n_head = self.hparams["num_attention_heads"]
  5450. n_kv_head = self.hparams.get("num_key_value_heads")
  5451. if name.endswith("q_proj.weight"):
  5452. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5453. if name.endswith("k_proj.weight"):
  5454. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5455. return [(self.map_tensor_name(name), data_torch)]
  5456. @ModelBase.register("SeedOssForCausalLM")
  5457. class SeedOssModel(TextModel):
  5458. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5459. @ModelBase.register("Olmo2ForCausalLM")
  5460. @ModelBase.register("Olmo3ForCausalLM")
  5461. class Olmo2Model(TextModel):
  5462. model_arch = gguf.MODEL_ARCH.OLMO2
  5463. def set_gguf_parameters(self):
  5464. super().set_gguf_parameters()
  5465. rope_scaling = self.hparams.get("rope_scaling") or {}
  5466. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5467. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5468. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5469. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5470. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5471. if "sliding_window" in self.hparams:
  5472. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5473. sliding_window_pattern = []
  5474. if "layer_types" in self.hparams:
  5475. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5476. else:
  5477. # Olmo2 does not use sliding window attention.
  5478. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5479. for i in range(self.hparams["num_hidden_layers"]):
  5480. sliding_window_pattern.append((i + 1) % 4 != 0)
  5481. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5482. @ModelBase.register("OlmoeForCausalLM")
  5483. class OlmoeModel(TextModel):
  5484. model_arch = gguf.MODEL_ARCH.OLMOE
  5485. def set_gguf_parameters(self):
  5486. super().set_gguf_parameters()
  5487. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5488. if (n_experts := self.hparams.get("num_experts")) is not None:
  5489. self.gguf_writer.add_expert_count(n_experts)
  5490. _experts: list[dict[str, Tensor]] | None = None
  5491. # Copied from: Qwen2MoeModel
  5492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5493. # process the experts separately
  5494. if name.find("experts") != -1:
  5495. n_experts = self.hparams["num_experts"]
  5496. assert bid is not None
  5497. if self._experts is None:
  5498. self._experts = [{} for _ in range(self.block_count)]
  5499. self._experts[bid][name] = data_torch
  5500. if len(self._experts[bid]) >= n_experts * 3:
  5501. tensors: list[tuple[str, Tensor]] = []
  5502. # merge the experts into a single 3d tensor
  5503. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5504. datas: list[Tensor] = []
  5505. for xid in range(n_experts):
  5506. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5507. datas.append(self._experts[bid][ename])
  5508. del self._experts[bid][ename]
  5509. data_torch = torch.stack(datas, dim=0)
  5510. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5511. new_name = self.map_tensor_name(merged_name)
  5512. tensors.append((new_name, data_torch))
  5513. return tensors
  5514. else:
  5515. return []
  5516. return [(self.map_tensor_name(name), data_torch)]
  5517. # Copied from: Qwen2MoeModel
  5518. def prepare_tensors(self):
  5519. super().prepare_tensors()
  5520. if self._experts is not None:
  5521. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5522. experts = [k for d in self._experts for k in d.keys()]
  5523. if len(experts) > 0:
  5524. raise ValueError(f"Unprocessed experts: {experts}")
  5525. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5526. class JinaBertV2Model(BertModel):
  5527. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5528. def set_vocab(self):
  5529. tokenizer_class = 'BertTokenizer'
  5530. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5531. tokenizer_class = json.load(f)['tokenizer_class']
  5532. if tokenizer_class == 'BertTokenizer':
  5533. super().set_vocab()
  5534. elif tokenizer_class == 'RobertaTokenizer':
  5535. self._set_vocab_gpt2()
  5536. self.gguf_writer.add_token_type_count(2)
  5537. else:
  5538. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5539. @ModelBase.register("OpenELMForCausalLM")
  5540. class OpenELMModel(TextModel):
  5541. model_arch = gguf.MODEL_ARCH.OPENELM
  5542. @staticmethod
  5543. def _make_divisible(v: float | int, divisor: int) -> int:
  5544. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5545. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5546. # Make sure that round down does not go down by more than 10%.
  5547. if new_v < 0.9 * v:
  5548. new_v += divisor
  5549. return new_v
  5550. def __init__(self, *args, **kwargs):
  5551. super().__init__(*args, **kwargs)
  5552. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5553. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5554. self._n_embd: int = self.hparams["model_dim"]
  5555. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5556. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5557. self._ffn_dims: list[int] = [
  5558. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5559. for multiplier in ffn_multipliers
  5560. ]
  5561. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5562. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5563. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5564. def set_vocab(self):
  5565. try:
  5566. self._set_vocab_sentencepiece()
  5567. except FileNotFoundError:
  5568. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5569. def set_gguf_parameters(self):
  5570. n_embd = self._n_embd
  5571. head_dim = self.hparams["head_dim"]
  5572. rot_pct = 1.0
  5573. assert self.block_count == len(self._num_kv_heads)
  5574. assert self.block_count == len(self._num_query_heads)
  5575. assert self.block_count == len(self._ffn_dims)
  5576. self.gguf_writer.add_block_count(self.block_count)
  5577. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5578. self.gguf_writer.add_embedding_length(n_embd)
  5579. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5580. self.gguf_writer.add_head_count(self._num_query_heads)
  5581. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5582. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5583. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5584. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5585. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5586. self.gguf_writer.add_key_length(head_dim)
  5587. self.gguf_writer.add_value_length(head_dim)
  5588. self.gguf_writer.add_file_type(self.ftype)
  5589. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5590. if "n_layers" in keys:
  5591. return self.hparams["num_transformer_layers"]
  5592. return super().find_hparam(keys, optional)
  5593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5594. # split ff
  5595. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5596. ff_dim = self._ffn_dims[bid]
  5597. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5598. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5599. return
  5600. yield (self.map_tensor_name(name), data_torch)
  5601. @ModelBase.register("ArcticForCausalLM")
  5602. class ArcticModel(TextModel):
  5603. model_arch = gguf.MODEL_ARCH.ARCTIC
  5604. def set_vocab(self):
  5605. # The reason for using a custom implementation here is that the
  5606. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5607. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5608. from sentencepiece import SentencePieceProcessor
  5609. tokenizer_path = self.dir_model / 'tokenizer.model'
  5610. if not tokenizer_path.is_file():
  5611. logger.error(f'Error: Missing {tokenizer_path}')
  5612. sys.exit(1)
  5613. # Read the whole vocabulary from the tokenizer.model file
  5614. tokenizer = SentencePieceProcessor()
  5615. tokenizer.LoadFromFile(str(tokenizer_path))
  5616. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5617. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5618. scores: list[float] = [-10000.0] * vocab_size
  5619. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5620. for token_id in range(tokenizer.vocab_size()):
  5621. piece = tokenizer.IdToPiece(token_id)
  5622. text = piece.encode("utf-8")
  5623. score = tokenizer.GetScore(token_id)
  5624. toktype = SentencePieceTokenTypes.NORMAL
  5625. if tokenizer.IsUnknown(token_id):
  5626. toktype = SentencePieceTokenTypes.UNKNOWN
  5627. elif tokenizer.IsControl(token_id):
  5628. toktype = SentencePieceTokenTypes.CONTROL
  5629. elif tokenizer.IsUnused(token_id):
  5630. toktype = SentencePieceTokenTypes.UNUSED
  5631. elif tokenizer.IsByte(token_id):
  5632. toktype = SentencePieceTokenTypes.BYTE
  5633. tokens[token_id] = text
  5634. scores[token_id] = score
  5635. toktypes[token_id] = toktype
  5636. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5637. # of information about added/redefined tokens and modify them accordingly.
  5638. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5639. if tokenizer_config_file.is_file():
  5640. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5641. tokenizer_config_json = json.load(f)
  5642. if "added_tokens_decoder" in tokenizer_config_json:
  5643. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5644. for token_id, token_json in added_tokens_decoder.items():
  5645. token_id = int(token_id)
  5646. if token_id >= vocab_size:
  5647. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5648. continue
  5649. token_content = token_json["content"]
  5650. token_type = SentencePieceTokenTypes.USER_DEFINED
  5651. token_score = -10000.0
  5652. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5653. # Set the score to 0.0 as in the original tokenizer.model
  5654. if ("special" in token_json) and token_json["special"]:
  5655. if token_content == tokenizer_config_json["unk_token"]:
  5656. token_type = SentencePieceTokenTypes.UNKNOWN
  5657. else:
  5658. token_type = SentencePieceTokenTypes.CONTROL
  5659. token_score = 0.0
  5660. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5661. tokens[token_id] = token_content.encode("utf-8")
  5662. toktypes[token_id] = token_type
  5663. scores[token_id] = token_score
  5664. self.gguf_writer.add_tokenizer_model("llama")
  5665. self.gguf_writer.add_tokenizer_pre("default")
  5666. self.gguf_writer.add_token_list(tokens)
  5667. self.gguf_writer.add_token_scores(scores)
  5668. self.gguf_writer.add_token_types(toktypes)
  5669. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5670. special_vocab.add_to_gguf(self.gguf_writer)
  5671. def set_gguf_parameters(self):
  5672. super().set_gguf_parameters()
  5673. hparams = self.hparams
  5674. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5675. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5676. _experts: list[dict[str, Tensor]] | None = None
  5677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5678. n_head = self.hparams["num_attention_heads"]
  5679. n_kv_head = self.hparams.get("num_key_value_heads")
  5680. if name.endswith("q_proj.weight"):
  5681. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5682. if name.endswith("k_proj.weight"):
  5683. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5684. # process the experts separately
  5685. if name.find("block_sparse_moe.experts") != -1:
  5686. n_experts = self.hparams["num_local_experts"]
  5687. assert bid is not None
  5688. if self._experts is None:
  5689. self._experts = [{} for _ in range(self.block_count)]
  5690. self._experts[bid][name] = data_torch
  5691. if len(self._experts[bid]) >= n_experts * 3:
  5692. tensors: list[tuple[str, Tensor]] = []
  5693. # merge the experts into a single 3d tensor
  5694. for wid in ["w1", "w2", "w3"]:
  5695. datas: list[Tensor] = []
  5696. for xid in range(n_experts):
  5697. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5698. datas.append(self._experts[bid][ename])
  5699. del self._experts[bid][ename]
  5700. data_torch = torch.stack(datas, dim=0)
  5701. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5702. new_name = self.map_tensor_name(merged_name)
  5703. tensors.append((new_name, data_torch))
  5704. return tensors
  5705. else:
  5706. return []
  5707. return [(self.map_tensor_name(name), data_torch)]
  5708. def prepare_tensors(self):
  5709. super().prepare_tensors()
  5710. if self._experts is not None:
  5711. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5712. experts = [k for d in self._experts for k in d.keys()]
  5713. if len(experts) > 0:
  5714. raise ValueError(f"Unprocessed experts: {experts}")
  5715. @ModelBase.register("DeepseekForCausalLM")
  5716. class DeepseekModel(TextModel):
  5717. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5718. def set_vocab(self):
  5719. try:
  5720. self._set_vocab_sentencepiece()
  5721. except FileNotFoundError:
  5722. self._set_vocab_gpt2()
  5723. def set_gguf_parameters(self):
  5724. super().set_gguf_parameters()
  5725. hparams = self.hparams
  5726. if (rope_dim := hparams.get("head_dim")) is None:
  5727. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5728. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5729. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5730. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5731. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5732. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5733. self.gguf_writer.add_expert_weights_scale(1.0)
  5734. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5735. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5736. _experts: list[dict[str, Tensor]] | None = None
  5737. @staticmethod
  5738. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5739. if n_head_kv is not None and n_head != n_head_kv:
  5740. n_head = n_head_kv
  5741. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5742. .swapaxes(1, 2)
  5743. .reshape(weights.shape))
  5744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5745. n_head = self.hparams["num_attention_heads"]
  5746. n_kv_head = self.hparams.get("num_key_value_heads")
  5747. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5748. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5749. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5750. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5751. # process the experts separately
  5752. if name.find("mlp.experts") != -1:
  5753. n_experts = self.hparams["n_routed_experts"]
  5754. assert bid is not None
  5755. if self._experts is None:
  5756. self._experts = [{} for _ in range(self.block_count)]
  5757. self._experts[bid][name] = data_torch
  5758. if len(self._experts[bid]) >= n_experts * 3:
  5759. tensors: list[tuple[str, Tensor]] = []
  5760. # merge the experts into a single 3d tensor
  5761. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5762. datas: list[Tensor] = []
  5763. for xid in range(n_experts):
  5764. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5765. datas.append(self._experts[bid][ename])
  5766. del self._experts[bid][ename]
  5767. data_torch = torch.stack(datas, dim=0)
  5768. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5769. new_name = self.map_tensor_name(merged_name)
  5770. tensors.append((new_name, data_torch))
  5771. return tensors
  5772. else:
  5773. return []
  5774. return [(self.map_tensor_name(name), data_torch)]
  5775. def prepare_tensors(self):
  5776. super().prepare_tensors()
  5777. if self._experts is not None:
  5778. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5779. experts = [k for d in self._experts for k in d.keys()]
  5780. if len(experts) > 0:
  5781. raise ValueError(f"Unprocessed experts: {experts}")
  5782. @ModelBase.register(
  5783. "DeepseekV2ForCausalLM",
  5784. "DeepseekV3ForCausalLM",
  5785. "KimiVLForConditionalGeneration",
  5786. )
  5787. class DeepseekV2Model(TextModel):
  5788. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5789. def set_vocab(self):
  5790. try:
  5791. self._set_vocab_gpt2()
  5792. return
  5793. except Exception:
  5794. pass
  5795. from transformers import AutoTokenizer
  5796. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5797. tokpre = self.get_vocab_base_pre(tokenizer)
  5798. if tokpre == "kimi-k2":
  5799. # Build merges list using the approach similar to HunYuanMoE
  5800. merges = []
  5801. vocab = {}
  5802. mergeable_ranks = tokenizer.model._mergeable_ranks
  5803. for token, rank in mergeable_ranks.items():
  5804. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5805. if len(token) == 1:
  5806. continue
  5807. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5808. if len(merged) == 2:
  5809. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5810. # Build token list
  5811. vocab_size = self.hparams["vocab_size"]
  5812. special_tokens = tokenizer.special_tokens
  5813. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5814. tokens: list[str] = []
  5815. toktypes: list[int] = []
  5816. for i in range(vocab_size):
  5817. if i not in reverse_vocab:
  5818. tokens.append(f"[PAD{i}]")
  5819. toktypes.append(gguf.TokenType.UNUSED)
  5820. else:
  5821. token = reverse_vocab[i]
  5822. tokens.append(token)
  5823. if i in special_tokens.values():
  5824. toktypes.append(gguf.TokenType.CONTROL)
  5825. else:
  5826. toktypes.append(gguf.TokenType.NORMAL)
  5827. self.gguf_writer.add_tokenizer_model("gpt2")
  5828. self.gguf_writer.add_tokenizer_pre(tokpre)
  5829. self.gguf_writer.add_token_list(tokens)
  5830. self.gguf_writer.add_token_types(toktypes)
  5831. self.gguf_writer.add_token_merges(merges)
  5832. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5833. special_vocab.add_to_gguf(self.gguf_writer)
  5834. else:
  5835. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5836. def set_gguf_parameters(self):
  5837. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5838. self.hparams["num_key_value_heads"] = 1
  5839. super().set_gguf_parameters()
  5840. hparams = self.hparams
  5841. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5842. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5843. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5844. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5845. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5846. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5847. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5848. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5849. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5850. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5851. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5852. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5853. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5854. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5855. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5856. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5857. rope_scaling = self.hparams.get("rope_scaling") or {}
  5858. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5859. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5860. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5861. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5862. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5863. _experts: list[dict[str, Tensor]] | None = None
  5864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5865. # skip vision tensors and remove "language_model." for Kimi-VL
  5866. if "vision_tower" in name or "multi_modal_projector" in name:
  5867. return []
  5868. if name.startswith("language_model."):
  5869. name = name.replace("language_model.", "")
  5870. # rename e_score_correction_bias tensors
  5871. if name.endswith("e_score_correction_bias"):
  5872. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5873. # skip Multi-Token Prediction (MTP) layers
  5874. block_count = self.hparams["num_hidden_layers"]
  5875. match = re.match(r"model.layers.(\d+)", name)
  5876. if match and int(match.group(1)) >= block_count:
  5877. return []
  5878. # process the experts separately
  5879. if name.find("mlp.experts") != -1:
  5880. n_experts = self.hparams["n_routed_experts"]
  5881. assert bid is not None
  5882. if self._experts is None:
  5883. self._experts = [{} for _ in range(self.block_count)]
  5884. self._experts[bid][name] = data_torch
  5885. if len(self._experts[bid]) >= n_experts * 3:
  5886. tensors: list[tuple[str, Tensor]] = []
  5887. # merge the experts into a single 3d tensor
  5888. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5889. datas: list[Tensor] = []
  5890. for xid in range(n_experts):
  5891. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5892. datas.append(self._experts[bid][ename])
  5893. del self._experts[bid][ename]
  5894. data_torch = torch.stack(datas, dim=0)
  5895. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5896. new_name = self.map_tensor_name(merged_name)
  5897. tensors.append((new_name, data_torch))
  5898. return tensors
  5899. else:
  5900. return []
  5901. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5902. if name.endswith("kv_b_proj.weight"):
  5903. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5904. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5905. n_head_kv = self.hparams["num_key_value_heads"]
  5906. v_head_dim = self.hparams["v_head_dim"]
  5907. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5908. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5909. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5910. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5911. k_b = k_b.transpose(1, 2)
  5912. return [
  5913. (self.map_tensor_name(name_kb), k_b),
  5914. (self.map_tensor_name(name_vb), v_b)
  5915. ]
  5916. return [(self.map_tensor_name(name), data_torch)]
  5917. def prepare_tensors(self):
  5918. super().prepare_tensors()
  5919. if self._experts is not None:
  5920. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5921. experts = [k for d in self._experts for k in d.keys()]
  5922. if len(experts) > 0:
  5923. raise ValueError(f"Unprocessed experts: {experts}")
  5924. @ModelBase.register("MiniMaxM2ForCausalLM")
  5925. class MiniMaxM2Model(TextModel):
  5926. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5927. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5928. def __init__(self, *args, **kwargs):
  5929. super().__init__(*args, **kwargs)
  5930. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5931. def set_gguf_parameters(self):
  5932. super().set_gguf_parameters()
  5933. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5934. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5936. if name.endswith("e_score_correction_bias"):
  5937. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5938. # merge expert weights
  5939. if 'experts' in name:
  5940. n_experts = self.hparams["num_experts"]
  5941. assert bid is not None
  5942. expert_cache = self._experts_cache.setdefault(bid, {})
  5943. expert_cache[name] = data_torch
  5944. expert_weights = ["w1", "w2", "w3"]
  5945. # not enough expert weights to merge
  5946. if len(expert_cache) < n_experts * len(expert_weights):
  5947. return []
  5948. tensors: list[tuple[str, Tensor]] = []
  5949. for w_name in expert_weights:
  5950. datas: list[Tensor] = []
  5951. for xid in range(n_experts):
  5952. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5953. datas.append(expert_cache[ename])
  5954. del expert_cache[ename]
  5955. data_torch = torch.stack(datas, dim=0)
  5956. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5957. new_name = self.map_tensor_name(merged_name)
  5958. tensors.append((new_name, data_torch))
  5959. del self._experts_cache[bid]
  5960. return tensors
  5961. return super().modify_tensors(data_torch, name, bid)
  5962. @ModelBase.register("PanguEmbeddedForCausalLM")
  5963. class PanguEmbeddedModel(TextModel):
  5964. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5965. def set_vocab(self):
  5966. self._set_vocab_sentencepiece()
  5967. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5968. if tokenizer_config_file.is_file():
  5969. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5970. tokenizer_config_json = json.load(f)
  5971. if "add_prefix_space" in tokenizer_config_json:
  5972. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5973. def set_gguf_parameters(self):
  5974. super().set_gguf_parameters()
  5975. hparams = self.hparams
  5976. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5977. # PanguEmbedded's hparam loaded from config.json without head_dim
  5978. if (rope_dim := hparams.get("head_dim")) is None:
  5979. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5980. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5981. if hparams.get("head_dim") is None:
  5982. self.gguf_writer.add_key_length(rope_dim)
  5983. self.gguf_writer.add_value_length(rope_dim)
  5984. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5985. if name == "lm_head.weight":
  5986. if self.hparams.get("tie_word_embeddings", False):
  5987. logger.info("Skipping tied output layer 'lm_head.weight'")
  5988. return []
  5989. return [(self.map_tensor_name(name), data_torch)]
  5990. @ModelBase.register("Dots1ForCausalLM")
  5991. class Dots1Model(Qwen2MoeModel):
  5992. model_arch = gguf.MODEL_ARCH.DOTS1
  5993. def __init__(self, *args, **kwargs):
  5994. super().__init__(*args, **kwargs)
  5995. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5996. def set_gguf_parameters(self):
  5997. super().set_gguf_parameters()
  5998. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5999. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6000. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6001. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6003. if name.endswith("e_score_correction_bias"):
  6004. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6005. if "shared_experts" in name:
  6006. return [(self.map_tensor_name(name), data_torch)]
  6007. return super().modify_tensors(data_torch, name, bid)
  6008. @ModelBase.register("PLMForCausalLM")
  6009. class PLMModel(TextModel):
  6010. model_arch = gguf.MODEL_ARCH.PLM
  6011. def set_vocab(self):
  6012. self._set_vocab_gpt2()
  6013. def set_gguf_parameters(self):
  6014. super().set_gguf_parameters()
  6015. hparams = self.hparams
  6016. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6017. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6018. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6019. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6020. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6021. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6022. return [(self.map_tensor_name(name), data_torch)]
  6023. def prepare_tensors(self):
  6024. super().prepare_tensors()
  6025. @ModelBase.register("T5WithLMHeadModel")
  6026. @ModelBase.register("T5ForConditionalGeneration")
  6027. @ModelBase.register("MT5ForConditionalGeneration")
  6028. @ModelBase.register("UMT5ForConditionalGeneration")
  6029. @ModelBase.register("UMT5Model")
  6030. class T5Model(TextModel):
  6031. model_arch = gguf.MODEL_ARCH.T5
  6032. def __init__(self, *args, **kwargs):
  6033. super().__init__(*args, **kwargs)
  6034. self.shared_token_embeddings_found = False
  6035. def set_vocab(self):
  6036. # to avoid TypeError: Descriptors cannot be created directly
  6037. # exception when importing sentencepiece_model_pb2
  6038. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6039. from sentencepiece import SentencePieceProcessor
  6040. from sentencepiece import sentencepiece_model_pb2 as model
  6041. tokenizer_path = self.dir_model / 'tokenizer.model'
  6042. # many older models use spiece.model tokenizer model filename
  6043. if not tokenizer_path.is_file():
  6044. tokenizer_path = self.dir_model / 'spiece.model'
  6045. if not tokenizer_path.is_file():
  6046. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6047. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6048. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6049. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6050. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6051. # assure the tokenizer model file name is correct
  6052. assert tokenizer_path.name == 'tokenizer.model'
  6053. return self._set_vocab_sentencepiece()
  6054. else:
  6055. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6056. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6057. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6058. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6059. tokenizer = SentencePieceProcessor()
  6060. tokenizer.LoadFromFile(str(tokenizer_path))
  6061. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6062. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6063. scores: list[float] = [-10000.0] * vocab_size
  6064. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6065. for token_id in range(tokenizer.vocab_size()):
  6066. piece = tokenizer.IdToPiece(token_id)
  6067. text = piece.encode("utf-8")
  6068. score = tokenizer.GetScore(token_id)
  6069. toktype = SentencePieceTokenTypes.NORMAL
  6070. if tokenizer.IsUnknown(token_id):
  6071. toktype = SentencePieceTokenTypes.UNKNOWN
  6072. elif tokenizer.IsControl(token_id):
  6073. toktype = SentencePieceTokenTypes.CONTROL
  6074. elif tokenizer.IsUnused(token_id):
  6075. toktype = SentencePieceTokenTypes.UNUSED
  6076. elif tokenizer.IsByte(token_id):
  6077. toktype = SentencePieceTokenTypes.BYTE
  6078. tokens[token_id] = text
  6079. scores[token_id] = score
  6080. toktypes[token_id] = toktype
  6081. added_tokens_file = self.dir_model / 'added_tokens.json'
  6082. if added_tokens_file.is_file():
  6083. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6084. added_tokens_json = json.load(f)
  6085. for key in added_tokens_json:
  6086. token_id = added_tokens_json[key]
  6087. if token_id >= vocab_size:
  6088. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6089. continue
  6090. tokens[token_id] = key.encode("utf-8")
  6091. scores[token_id] = -1000.0
  6092. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6093. if vocab_size > len(tokens):
  6094. pad_count = vocab_size - len(tokens)
  6095. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6096. for i in range(1, pad_count + 1):
  6097. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6098. scores.append(-1000.0)
  6099. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6100. self.gguf_writer.add_tokenizer_model("t5")
  6101. self.gguf_writer.add_tokenizer_pre("default")
  6102. self.gguf_writer.add_token_list(tokens)
  6103. self.gguf_writer.add_token_scores(scores)
  6104. self.gguf_writer.add_token_types(toktypes)
  6105. self.gguf_writer.add_add_space_prefix(add_prefix)
  6106. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6107. if precompiled_charsmap:
  6108. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6109. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6110. special_vocab.add_to_gguf(self.gguf_writer)
  6111. def set_gguf_parameters(self):
  6112. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6113. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6114. n_ctx = 512
  6115. self.gguf_writer.add_context_length(n_ctx)
  6116. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6117. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6118. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  6119. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6120. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6121. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6122. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6123. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6124. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6125. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6126. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6127. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6128. self.gguf_writer.add_file_type(self.ftype)
  6129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6130. del bid # unused
  6131. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6132. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6133. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6134. # and decoder and ignore the remaining ones.
  6135. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6136. if not self.shared_token_embeddings_found:
  6137. name = "shared.weight"
  6138. self.shared_token_embeddings_found = True
  6139. else:
  6140. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6141. return []
  6142. return [(self.map_tensor_name(name), data_torch)]
  6143. @ModelBase.register("T5EncoderModel")
  6144. class T5EncoderModel(TextModel):
  6145. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6146. def __init__(self, *args, **kwargs):
  6147. super().__init__(*args, **kwargs)
  6148. self.shared_token_embeddings_found = False
  6149. def set_vocab(self):
  6150. # to avoid TypeError: Descriptors cannot be created directly
  6151. # exception when importing sentencepiece_model_pb2
  6152. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6153. from sentencepiece import SentencePieceProcessor
  6154. from sentencepiece import sentencepiece_model_pb2 as model
  6155. tokenizer_path = self.dir_model / 'tokenizer.model'
  6156. # many older models use spiece.model tokenizer model filename
  6157. if not tokenizer_path.is_file():
  6158. tokenizer_path = self.dir_model / 'spiece.model'
  6159. if not tokenizer_path.is_file():
  6160. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6161. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6162. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6163. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6164. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6165. # assure the tokenizer model file name is correct
  6166. assert tokenizer_path.name == 'tokenizer.model'
  6167. return self._set_vocab_sentencepiece()
  6168. else:
  6169. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6170. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6171. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6172. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6173. tokenizer = SentencePieceProcessor()
  6174. tokenizer.LoadFromFile(str(tokenizer_path))
  6175. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6176. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6177. scores: list[float] = [-10000.0] * vocab_size
  6178. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6179. for token_id in range(tokenizer.vocab_size()):
  6180. piece = tokenizer.IdToPiece(token_id)
  6181. text = piece.encode("utf-8")
  6182. score = tokenizer.GetScore(token_id)
  6183. toktype = SentencePieceTokenTypes.NORMAL
  6184. if tokenizer.IsUnknown(token_id):
  6185. toktype = SentencePieceTokenTypes.UNKNOWN
  6186. elif tokenizer.IsControl(token_id):
  6187. toktype = SentencePieceTokenTypes.CONTROL
  6188. elif tokenizer.IsUnused(token_id):
  6189. toktype = SentencePieceTokenTypes.UNUSED
  6190. elif tokenizer.IsByte(token_id):
  6191. toktype = SentencePieceTokenTypes.BYTE
  6192. tokens[token_id] = text
  6193. scores[token_id] = score
  6194. toktypes[token_id] = toktype
  6195. added_tokens_file = self.dir_model / 'added_tokens.json'
  6196. if added_tokens_file.is_file():
  6197. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6198. added_tokens_json = json.load(f)
  6199. for key in added_tokens_json:
  6200. token_id = added_tokens_json[key]
  6201. if token_id >= vocab_size:
  6202. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6203. continue
  6204. tokens[token_id] = key.encode("utf-8")
  6205. scores[token_id] = -1000.0
  6206. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6207. if vocab_size > len(tokens):
  6208. pad_count = vocab_size - len(tokens)
  6209. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6210. for i in range(1, pad_count + 1):
  6211. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6212. scores.append(-1000.0)
  6213. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6214. self.gguf_writer.add_tokenizer_model("t5")
  6215. self.gguf_writer.add_tokenizer_pre("default")
  6216. self.gguf_writer.add_token_list(tokens)
  6217. self.gguf_writer.add_token_scores(scores)
  6218. self.gguf_writer.add_token_types(toktypes)
  6219. self.gguf_writer.add_add_space_prefix(add_prefix)
  6220. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6221. if precompiled_charsmap:
  6222. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6223. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6224. special_vocab.add_to_gguf(self.gguf_writer)
  6225. def set_gguf_parameters(self):
  6226. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6227. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6228. n_ctx = 512
  6229. self.gguf_writer.add_context_length(n_ctx)
  6230. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6231. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6232. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  6233. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6234. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6235. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6236. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6237. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6238. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6239. self.gguf_writer.add_file_type(self.ftype)
  6240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6241. del bid # unused
  6242. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6243. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6244. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6245. # and decoder and ignore the remaining ones.
  6246. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6247. if not self.shared_token_embeddings_found:
  6248. name = "shared.weight"
  6249. self.shared_token_embeddings_found = True
  6250. else:
  6251. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6252. return []
  6253. return [(self.map_tensor_name(name), data_torch)]
  6254. @ModelBase.register("JAISLMHeadModel")
  6255. class JaisModel(TextModel):
  6256. model_arch = gguf.MODEL_ARCH.JAIS
  6257. def __init__(self, *args, **kwargs):
  6258. super().__init__(*args, **kwargs)
  6259. # SwigLU activation
  6260. assert self.hparams["activation_function"] == "swiglu"
  6261. # ALiBi position embedding
  6262. assert self.hparams["position_embedding_type"] == "alibi"
  6263. # Embeddings scale
  6264. self.embeddings_scale = 1.0
  6265. if 'mup_embeddings_scale' in self.hparams:
  6266. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6267. elif 'embeddings_scale' in self.hparams:
  6268. self.embeddings_scale = self.hparams['embeddings_scale']
  6269. else:
  6270. assert False
  6271. self.width_scale = 1.0
  6272. if 'mup_output_alpha' in self.hparams:
  6273. assert 'mup_width_scale' in self.hparams
  6274. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6275. elif 'width_scale' in self.hparams:
  6276. self.width_scale = self.hparams['width_scale']
  6277. else:
  6278. assert False
  6279. self.max_alibi_bias = 8.0
  6280. def set_vocab(self):
  6281. self._set_vocab_gpt2()
  6282. def set_gguf_parameters(self):
  6283. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  6284. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6285. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6286. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6287. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6288. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6289. self.gguf_writer.add_file_type(self.ftype)
  6290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6291. del bid # unused
  6292. tensors: list[tuple[str, Tensor]] = []
  6293. # we don't need these
  6294. if name.endswith((".attn.bias")):
  6295. return tensors
  6296. if name.endswith(("relative_pe.slopes")):
  6297. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6298. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6299. # but Jais's PyTorch model simply precalculates the slope values and places them
  6300. # in relative_pes.slopes
  6301. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6302. first_val = float(data_torch[0].item())
  6303. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6304. return tensors
  6305. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6306. data_torch = data_torch.transpose(1, 0)
  6307. new_name = self.map_tensor_name(name)
  6308. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6309. tensors.append((new_name, data_torch * self.embeddings_scale))
  6310. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6311. tensors.append((new_name, data_torch * self.width_scale))
  6312. else:
  6313. tensors.append((new_name, data_torch))
  6314. return tensors
  6315. def prepare_tensors(self):
  6316. super().prepare_tensors()
  6317. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6318. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6319. class Glm4Model(TextModel):
  6320. model_arch = gguf.MODEL_ARCH.GLM4
  6321. def set_vocab(self):
  6322. from transformers import AutoTokenizer
  6323. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6324. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6325. tokens, toktypes, tokpre = self.get_vocab_base()
  6326. self.gguf_writer.add_tokenizer_model("gpt2")
  6327. self.gguf_writer.add_tokenizer_pre(tokpre)
  6328. self.gguf_writer.add_token_list(tokens)
  6329. self.gguf_writer.add_token_types(toktypes)
  6330. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6331. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6332. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6333. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6334. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6335. special_vocab.add_to_gguf(self.gguf_writer)
  6336. def set_gguf_parameters(self):
  6337. super().set_gguf_parameters()
  6338. if (rope_dim := self.hparams.get("head_dim")) is None:
  6339. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6340. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6341. rope_scaling = self.hparams.get("rope_scaling") or {}
  6342. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6343. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6344. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6345. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6346. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6347. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6348. return []
  6349. elif name.startswith("model.language_model."):
  6350. name = name.replace("language_model.", "") # for Glm4v
  6351. return super().modify_tensors(data_torch, name, bid)
  6352. @ModelBase.register("Glm4MoeForCausalLM")
  6353. class Glm4MoeModel(TextModel):
  6354. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6355. def __init__(self, *args, **kwargs):
  6356. super().__init__(*args, **kwargs)
  6357. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6358. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6359. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6360. def set_vocab(self):
  6361. from transformers import AutoTokenizer
  6362. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6363. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6364. tokens, toktypes, tokpre = self.get_vocab_base()
  6365. self.gguf_writer.add_tokenizer_model("gpt2")
  6366. self.gguf_writer.add_tokenizer_pre(tokpre)
  6367. self.gguf_writer.add_token_list(tokens)
  6368. self.gguf_writer.add_token_types(toktypes)
  6369. # Special tokens
  6370. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6371. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6372. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6373. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6374. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6375. # Patch broken chat template
  6376. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  6377. special_vocab.chat_template = special_vocab.chat_template.replace(
  6378. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  6379. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  6380. special_vocab.add_to_gguf(self.gguf_writer)
  6381. def set_gguf_parameters(self):
  6382. super().set_gguf_parameters()
  6383. if (rope_dim := self.hparams.get("head_dim")) is None:
  6384. rope_dim = (
  6385. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6386. )
  6387. self.gguf_writer.add_rope_dimension_count(
  6388. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6389. )
  6390. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6391. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6392. self.gguf_writer.add_expert_count(n_routed_experts)
  6393. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6394. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6395. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6396. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6397. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6398. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6399. # Expert gating function (sigmoid for GLM4_MOE)
  6400. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6401. # Routed scaling factor
  6402. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6403. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6404. # Normalise topk probabilities
  6405. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6406. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6407. # NextN/MTP prediction layers
  6408. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6409. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6410. _experts: list[dict[str, Tensor]] | None = None
  6411. def modify_tensors(
  6412. self, data_torch: Tensor, name: str, bid: int | None
  6413. ) -> Iterable[tuple[str, Tensor]]:
  6414. if name.startswith("model.visual."): # ignore visual part
  6415. return []
  6416. elif name.startswith("model.language_model."):
  6417. name = name.replace("language_model.", "") # for multimodal variants
  6418. # Handle main token embedding (but not layer-specific NextN embeddings)
  6419. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6420. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6421. # Handle routed experts
  6422. if name.find("mlp.experts") != -1:
  6423. n_experts = self.hparams["n_routed_experts"]
  6424. assert bid is not None
  6425. if self._experts is None:
  6426. self._experts = [{} for _ in range(self.block_count)]
  6427. self._experts[bid][name] = data_torch
  6428. if len(self._experts[bid]) >= n_experts * 3:
  6429. tensors: list[tuple[str, Tensor]] = []
  6430. # merge the experts into a single 3d tensor
  6431. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6432. datas: list[Tensor] = []
  6433. for xid in range(n_experts):
  6434. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6435. datas.append(self._experts[bid][ename])
  6436. del self._experts[bid][ename]
  6437. data_torch = torch.stack(datas, dim=0)
  6438. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6439. new_name = self.map_tensor_name(merged_name)
  6440. tensors.append((new_name, data_torch))
  6441. return tensors
  6442. else:
  6443. return []
  6444. if name.endswith("e_score_correction_bias"):
  6445. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6446. new_name = self.map_tensor_name(name)
  6447. return [(new_name, data_torch)]
  6448. def prepare_tensors(self):
  6449. super().prepare_tensors()
  6450. if self._experts is not None:
  6451. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6452. experts = [k for d in self._experts for k in d.keys()]
  6453. if len(experts) > 0:
  6454. raise ValueError(f"Unprocessed experts: {experts}")
  6455. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6456. class ChatGLMModel(TextModel):
  6457. model_arch = gguf.MODEL_ARCH.CHATGLM
  6458. def set_vocab_chatglm3(self):
  6459. dir_model = self.dir_model
  6460. hparams = self.hparams
  6461. tokens: list[bytes] = []
  6462. toktypes: list[int] = []
  6463. scores: list[float] = []
  6464. from transformers import AutoTokenizer
  6465. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6466. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6467. assert max(tokenizer.get_vocab().values()) < vocab_size
  6468. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6469. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6470. for token_id in range(vocab_size):
  6471. piece = tokenizer._convert_id_to_token(token_id)
  6472. if token_id == 0:
  6473. piece = "<unk>"
  6474. elif token_id == 1:
  6475. piece = "<bos>"
  6476. elif token_id == 2:
  6477. piece = "<eos>"
  6478. text = piece.encode("utf-8")
  6479. score = 0.0
  6480. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6481. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6482. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6483. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6484. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6485. if piece in special_tokens:
  6486. toktype = SentencePieceTokenTypes.CONTROL
  6487. elif len(piece) == 0:
  6488. text = f"[PAD{token_id}]".encode("utf-8")
  6489. toktype = SentencePieceTokenTypes.UNUSED
  6490. else:
  6491. toktype = SentencePieceTokenTypes.USER_DEFINED
  6492. tokens.append(text)
  6493. scores.append(score)
  6494. toktypes.append(toktype)
  6495. continue
  6496. toktype = SentencePieceTokenTypes.NORMAL
  6497. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6498. toktype = SentencePieceTokenTypes.UNKNOWN
  6499. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6500. toktype = SentencePieceTokenTypes.CONTROL
  6501. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6502. toktype = SentencePieceTokenTypes.UNUSED
  6503. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6504. toktype = SentencePieceTokenTypes.BYTE
  6505. tokens.append(text)
  6506. scores.append(score)
  6507. toktypes.append(toktype)
  6508. self.gguf_writer.add_tokenizer_model("llama")
  6509. # glm3 needs prefix and suffix formatted as:
  6510. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6511. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6512. self.gguf_writer.add_token_list(tokens)
  6513. self.gguf_writer.add_token_scores(scores)
  6514. self.gguf_writer.add_token_types(toktypes)
  6515. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6516. special_vocab.add_to_gguf(self.gguf_writer)
  6517. @staticmethod
  6518. def token_bytes_to_string(b):
  6519. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6520. byte_encoder = bytes_to_unicode()
  6521. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6522. @staticmethod
  6523. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6524. parts = [bytes([b]) for b in token]
  6525. while True:
  6526. min_idx = None
  6527. min_rank = None
  6528. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6529. rank = mergeable_ranks.get(pair[0] + pair[1])
  6530. if rank is not None and (min_rank is None or rank < min_rank):
  6531. min_idx = i
  6532. min_rank = rank
  6533. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6534. break
  6535. assert min_idx is not None
  6536. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6537. return parts
  6538. def set_vocab(self):
  6539. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6540. self.set_vocab_chatglm3()
  6541. return
  6542. dir_model = self.dir_model
  6543. hparams = self.hparams
  6544. tokens: list[str] = []
  6545. toktypes: list[int] = []
  6546. from transformers import AutoTokenizer
  6547. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6548. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6549. assert max(tokenizer.get_vocab().values()) < vocab_size
  6550. tokens, toktypes, tokpre = self.get_vocab_base()
  6551. self.gguf_writer.add_tokenizer_model("gpt2")
  6552. self.gguf_writer.add_tokenizer_pre(tokpre)
  6553. self.gguf_writer.add_token_list(tokens)
  6554. self.gguf_writer.add_token_types(toktypes)
  6555. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6556. # only add special tokens when they were not already loaded from config.json
  6557. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6558. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6559. # this one is usually not in config.json anyway
  6560. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6561. special_vocab.add_to_gguf(self.gguf_writer)
  6562. def set_gguf_parameters(self):
  6563. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6564. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6565. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6566. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6567. self.gguf_writer.add_embedding_length(n_embed)
  6568. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6569. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6570. self.gguf_writer.add_head_count(n_head)
  6571. self.gguf_writer.add_head_count_kv(n_head_kv)
  6572. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6573. self.gguf_writer.add_file_type(self.ftype)
  6574. if "attention_dim" in self.hparams:
  6575. rope_dim = self.hparams["attention_dim"]
  6576. else:
  6577. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6578. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6579. self.gguf_writer.add_add_bos_token(False)
  6580. rope_freq = 10000
  6581. if "rope_ratio" in self.hparams:
  6582. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6583. self.gguf_writer.add_rope_freq_base(rope_freq)
  6584. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6585. del bid # unused
  6586. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6587. return []
  6588. name = name.removeprefix("transformer.")
  6589. return [(self.map_tensor_name(name), data_torch)]
  6590. @ModelBase.register("NemotronForCausalLM")
  6591. class NemotronModel(TextModel):
  6592. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6593. def set_vocab(self):
  6594. self._set_vocab_sentencepiece()
  6595. self.gguf_writer.add_pad_token_id(0)
  6596. self.gguf_writer.add_unk_token_id(1)
  6597. def set_gguf_parameters(self):
  6598. super().set_gguf_parameters()
  6599. hparams = self.hparams
  6600. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6601. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6602. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6603. # * Partial RoPE
  6604. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6605. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6606. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6607. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6608. # * RopeScaling for Nemotron
  6609. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6610. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6611. else:
  6612. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6613. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6614. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6615. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6616. # model.layers.{l}.input_layernorm.weight
  6617. # model.layers.{l}.post_attention_layernorm.weight
  6618. # model.norm.weight
  6619. if name.endswith("norm.weight"):
  6620. data_torch = data_torch + 1
  6621. return [(self.map_tensor_name(name), data_torch)]
  6622. @ModelBase.register("ExaoneForCausalLM")
  6623. class ExaoneModel(TextModel):
  6624. model_arch = gguf.MODEL_ARCH.EXAONE
  6625. def set_gguf_parameters(self):
  6626. hparams = self.hparams
  6627. assert (hparams["activation_function"] == "silu")
  6628. max_position_embeddings = hparams["max_position_embeddings"]
  6629. embed_dim = hparams["hidden_size"]
  6630. num_heads = hparams["num_attention_heads"]
  6631. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6632. layer_norm_eps = hparams["layer_norm_epsilon"]
  6633. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6634. num_layers = hparams["num_layers"]
  6635. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6636. # attention_dropout_rate = hparams["attention_dropout"]
  6637. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6638. # embed_dropout_rate = hparams["embed_dropout"]
  6639. self.gguf_writer.add_embedding_length(embed_dim)
  6640. self.gguf_writer.add_head_count(num_heads)
  6641. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6642. self.gguf_writer.add_context_length(max_position_embeddings)
  6643. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6644. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6645. self.gguf_writer.add_block_count(num_layers)
  6646. self.gguf_writer.add_file_type(self.ftype)
  6647. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6648. self.gguf_writer.add_rope_freq_base(rope_theta)
  6649. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6650. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6651. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6652. rope_scaling = self.hparams.get("rope_scaling") or {}
  6653. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6654. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6655. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6656. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6657. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6658. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6659. base = self.hparams.get("rope_theta", 10000.0)
  6660. if (dim := self.hparams.get("head_dim")) is None:
  6661. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6662. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6663. factor = rope_scaling.get("factor", 8.0)
  6664. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6665. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6666. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6667. low_freq_wavelen = old_context_len / low_freq_factor
  6668. high_freq_wavelen = old_context_len / high_freq_factor
  6669. assert low_freq_wavelen != high_freq_wavelen
  6670. rope_factors = []
  6671. for freq in freqs:
  6672. wavelen = 2 * math.pi / freq
  6673. if wavelen < high_freq_wavelen:
  6674. rope_factors.append(1)
  6675. elif wavelen > low_freq_wavelen:
  6676. rope_factors.append(factor)
  6677. else:
  6678. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6679. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6680. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6681. @ModelBase.register("Exaone4ForCausalLM")
  6682. class Exaone4Model(TextModel):
  6683. model_arch = gguf.MODEL_ARCH.EXAONE4
  6684. def set_vocab(self):
  6685. tokens, toktypes, tokpre = self.get_vocab_base()
  6686. self.gguf_writer.add_tokenizer_model("gpt2")
  6687. self.gguf_writer.add_tokenizer_pre(tokpre)
  6688. self.gguf_writer.add_token_list(tokens)
  6689. self.gguf_writer.add_token_types(toktypes)
  6690. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6691. special_vocab.add_to_gguf(self.gguf_writer)
  6692. def set_gguf_parameters(self):
  6693. super().set_gguf_parameters()
  6694. hparams = self.hparams
  6695. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6696. if hparams.get("sliding_window") is not None:
  6697. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6698. if "layer_types" in hparams:
  6699. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6700. elif "sliding_window_pattern" in hparams:
  6701. sliding_window_pattern = []
  6702. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6703. for i in range(hparams["num_hidden_layers"]):
  6704. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6705. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6706. for i in range(hparams["num_hidden_layers"]):
  6707. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6708. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6709. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6710. rope_scaling = self.hparams.get("rope_scaling") or {}
  6711. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6712. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6713. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6714. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6715. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6716. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6717. base = self.hparams.get("rope_theta", 10_000.0)
  6718. if (dim := self.hparams.get("head_dim")) is None:
  6719. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6720. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6721. factor = rope_scaling.get("factor", 16.0)
  6722. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6723. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6724. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6725. low_freq_wavelen = old_context_len / low_freq_factor
  6726. high_freq_wavelen = old_context_len / high_freq_factor
  6727. rope_factors = []
  6728. for freq in freqs:
  6729. wavelen = 2 * math.pi / freq
  6730. if wavelen < high_freq_wavelen:
  6731. rope_factors.append(1)
  6732. elif wavelen > low_freq_wavelen:
  6733. rope_factors.append(factor)
  6734. else:
  6735. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6736. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6737. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6738. @ModelBase.register("GraniteForCausalLM")
  6739. class GraniteModel(LlamaModel):
  6740. """Conversion for IBM's GraniteForCausalLM"""
  6741. model_arch = gguf.MODEL_ARCH.GRANITE
  6742. def set_gguf_parameters(self):
  6743. """Granite uses standard llama parameters with the following differences:
  6744. - No head_dim support
  6745. - New multiplier params:
  6746. - attention_scale
  6747. - embedding_scale
  6748. - residual_scale
  6749. - logits_scaling
  6750. """
  6751. if head_dim := self.hparams.pop("head_dim", None):
  6752. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6753. super().set_gguf_parameters()
  6754. # NOTE: Convert _multiplier params to _scale params for naming
  6755. # consistency
  6756. if attention_scale := self.hparams.get("attention_multiplier"):
  6757. self.gguf_writer.add_attention_scale(attention_scale)
  6758. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6759. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6760. self.gguf_writer.add_embedding_scale(embedding_scale)
  6761. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6762. if residual_scale := self.hparams.get("residual_multiplier"):
  6763. self.gguf_writer.add_residual_scale(residual_scale)
  6764. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6765. if logits_scale := self.hparams.get("logits_scaling"):
  6766. self.gguf_writer.add_logit_scale(logits_scale)
  6767. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6768. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6769. class GraniteMoeModel(GraniteModel):
  6770. """Conversion for IBM's GraniteMoeForCausalLM"""
  6771. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6772. def set_gguf_parameters(self):
  6773. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6774. - shared_intermediate_size
  6775. """
  6776. super().set_gguf_parameters()
  6777. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6778. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6779. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6780. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6781. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6782. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6783. the hidden size that is then split during forward. To keep compatibility
  6784. with existing mixtral support, we pull them apart here.
  6785. """
  6786. if name.endswith("block_sparse_moe.input_linear.weight"):
  6787. ffn_dim = self.hparams["intermediate_size"]
  6788. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6789. gate, up = data_torch.split(ffn_dim, dim=-2)
  6790. return [
  6791. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6792. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6793. ]
  6794. has_experts = bool(self.hparams.get('num_local_experts'))
  6795. if name.endswith("shared_mlp.input_linear.weight"):
  6796. ffn_dim = self.hparams["shared_intermediate_size"]
  6797. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6798. gate, up = data_torch.split(ffn_dim, dim=-2)
  6799. if has_experts:
  6800. return [
  6801. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6802. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6803. ]
  6804. return [
  6805. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6806. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6807. ]
  6808. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6809. return [
  6810. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6811. ]
  6812. return super().modify_tensors(data_torch, name, bid)
  6813. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6814. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6815. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6816. layers and optionally uses MoE w/ a shared expert"""
  6817. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6818. undo_permute = True
  6819. def __init__(self, *args, **kwargs):
  6820. # Hybrid mamba models use a prefix for the mamba-specific params.
  6821. # TODO: Extend this if the prefix(es) need to be configurable
  6822. self.hparam_prefixes = ["mamba"]
  6823. super().__init__(*args, **kwargs)
  6824. # Lists of which layers use ssm vs attention
  6825. self._attn_layers = self.get_attn_layers()
  6826. self._ssm_layers = [
  6827. i for i in range(self.block_count)
  6828. if i not in self._attn_layers
  6829. ]
  6830. # There are some models in this family that are non-hybrid, but keep the
  6831. # same parent class by setting all layers to "attention." If this is the
  6832. # case, the model architecture needs to be updated to a standard
  6833. # "granite" or "granitemoe" model
  6834. if not self._ssm_layers:
  6835. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6836. new_arch = (
  6837. gguf.MODEL_ARCH.GRANITE_MOE
  6838. if has_experts else
  6839. gguf.MODEL_ARCH.GRANITE
  6840. )
  6841. self.model_arch = new_arch
  6842. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6843. self.gguf_writer.add_architecture()
  6844. # n_group and d_inner are used during reshape_tensors for mamba2
  6845. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6846. # disambiguate with top-level head_dim
  6847. # NOTE 2: If needed for future models, this can be isolated in a method
  6848. # to separate the prefix setting and teh keys used
  6849. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6850. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6851. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6852. def get_attn_layers(self):
  6853. # Explicit list of layer type names
  6854. if layer_types := self.hparams.get("layer_types"):
  6855. return [
  6856. i for i, typ in enumerate(layer_types)
  6857. if typ == "attention"
  6858. ]
  6859. # Layer types indicated by index or period
  6860. attn_layers = self.hparams.get("attn_layer_indices", [])
  6861. if not attn_layers:
  6862. attn_period = self.hparams.get("attn_layer_period")
  6863. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6864. attn_offset = self.hparams.get("attn_layer_offset")
  6865. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6866. attn_layers = [
  6867. i for i in range(self.block_count)
  6868. if i % attn_period == attn_offset
  6869. ]
  6870. return attn_layers
  6871. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6872. prefixed = []
  6873. for pfx in self.hparam_prefixes:
  6874. prefixed.extend(
  6875. "_".join([pfx, k])
  6876. for k in keys
  6877. )
  6878. keys = list(keys) + prefixed
  6879. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6880. def modify_tensors(
  6881. self, data_torch: Tensor, name: str, bid: int | None
  6882. ) -> Iterable[tuple[str, Tensor]]:
  6883. if (
  6884. name.endswith("block_sparse_moe.input_linear.weight")
  6885. or "shared_mlp" in name
  6886. ):
  6887. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6888. # Determine whether this is a mamba layer or an attention layer
  6889. if bid in self._ssm_layers:
  6890. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6891. elif bid in self._attn_layers:
  6892. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6893. return [(self.map_tensor_name(name), data_torch)]
  6894. def set_gguf_parameters(self):
  6895. """This method merges params from both parents and some that are
  6896. specific to this model. The result is some duplication of how the params
  6897. get set. The following warnings are expected during conversion:
  6898. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6899. WARNING:Duplicated key name 'granitehybrid.context_length'
  6900. """
  6901. GraniteMoeModel.set_gguf_parameters(self)
  6902. ## Mamba mixer params ##
  6903. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6904. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6905. self.gguf_writer.add_ssm_group_count(self.n_group)
  6906. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6907. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6908. # in llama.cpp
  6909. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6910. ## Attention params ##
  6911. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6912. head_count_kv_vec = [
  6913. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6914. ]
  6915. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6916. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6917. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6918. ## If Bamba or non-hybrid, use rope, otherwise don't
  6919. use_rope = (
  6920. "BambaForCausalLM" in self.hparams["architectures"]
  6921. or not self._ssm_layers
  6922. )
  6923. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6924. if not use_rope:
  6925. self.gguf_writer.add_context_length(2**20)
  6926. ## Validation ##
  6927. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6928. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6929. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6930. def set_vocab(self):
  6931. self.hparams["pad_vocab_size_multiple"] = 8
  6932. Mamba2Model.set_vocab(self)
  6933. @ModelBase.register("NemotronHForCausalLM")
  6934. class NemotronHModel(GraniteHybridModel):
  6935. """Hybrid mamba2/attention model from NVIDIA"""
  6936. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6937. def __init__(self, *args, **kwargs):
  6938. super().__init__(*args, **kwargs)
  6939. # Save the top-level head_dim for later
  6940. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6941. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6942. # Don't use expand to calculate d_inner
  6943. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6944. # Update the ssm / attn / mlp layers
  6945. # M: Mamba2, *: Attention, -: MLP
  6946. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6947. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6948. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6949. def get_attn_layers(self):
  6950. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6951. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6952. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6953. def set_gguf_parameters(self):
  6954. super().set_gguf_parameters()
  6955. self.gguf_writer.add_key_length(self.head_dim)
  6956. self.gguf_writer.add_value_length(self.head_dim)
  6957. # Set feed_forward_length
  6958. # NOTE: This will trigger an override warning. This is preferrable to
  6959. # duplicating all the parent logic
  6960. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6961. self.gguf_writer.add_feed_forward_length([
  6962. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6963. ])
  6964. def set_vocab(self):
  6965. super().set_vocab()
  6966. # The tokenizer _does_ add a BOS token (via post_processor type
  6967. # TemplateProcessing) but does not set add_bos_token to true in the
  6968. # config, so we need to explicitly override it here.
  6969. self.gguf_writer.add_add_bos_token(True)
  6970. @ModelBase.register("BailingMoeForCausalLM")
  6971. class BailingMoeModel(TextModel):
  6972. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6973. def set_vocab(self):
  6974. self._set_vocab_gpt2()
  6975. def set_gguf_parameters(self):
  6976. super().set_gguf_parameters()
  6977. hparams = self.hparams
  6978. if (rope_dim := hparams.get("head_dim")) is None:
  6979. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6980. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6981. rope_scaling = self.hparams.get("rope_scaling") or {}
  6982. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6983. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6984. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6985. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6986. else:
  6987. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6988. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6989. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6990. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6991. self.gguf_writer.add_expert_weights_scale(1.0)
  6992. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6993. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6994. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6995. _experts: list[dict[str, Tensor]] | None = None
  6996. @staticmethod
  6997. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6998. if n_head_kv is not None and n_head != n_head_kv:
  6999. n_head = n_head_kv
  7000. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7001. .swapaxes(1, 2)
  7002. .reshape(weights.shape))
  7003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7004. n_head = self.hparams["num_attention_heads"]
  7005. n_kv_head = self.hparams.get("num_key_value_heads")
  7006. n_embd = self.hparams["hidden_size"]
  7007. if (head_dim := self.hparams.get("head_dim")) is None:
  7008. head_dim = n_embd // n_head
  7009. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7010. if name.endswith("attention.dense.weight"):
  7011. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7012. elif name.endswith("query_key_value.weight"):
  7013. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7014. return [
  7015. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7016. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7017. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7018. ]
  7019. elif name.find("mlp.experts") != -1:
  7020. n_experts = self.hparams["num_experts"]
  7021. assert bid is not None
  7022. tensors: list[tuple[str, Tensor]] = []
  7023. if self._experts is None:
  7024. self._experts = [{} for _ in range(self.block_count)]
  7025. self._experts[bid][name] = data_torch
  7026. if len(self._experts[bid]) >= n_experts * 3:
  7027. # merge the experts into a single 3d tensor
  7028. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7029. datas: list[Tensor] = []
  7030. for xid in range(n_experts):
  7031. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7032. datas.append(self._experts[bid][ename])
  7033. del self._experts[bid][ename]
  7034. data_torch = torch.stack(datas, dim=0)
  7035. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7036. new_name = self.map_tensor_name(merged_name)
  7037. tensors.append((new_name, data_torch))
  7038. return tensors
  7039. new_name = self.map_tensor_name(name)
  7040. if new_name == output_name and self.hparams.get("norm_head"):
  7041. data_torch = data_torch.float()
  7042. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7043. return [(new_name, data_torch)]
  7044. def prepare_tensors(self):
  7045. super().prepare_tensors()
  7046. if self._experts is not None:
  7047. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7048. experts = [k for d in self._experts for k in d.keys()]
  7049. if len(experts) > 0:
  7050. raise ValueError(f"Unprocessed experts: {experts}")
  7051. @ModelBase.register("BailingMoeV2ForCausalLM")
  7052. class BailingMoeV2Model(TextModel):
  7053. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7054. def __init__(self, *args, **kwargs):
  7055. super().__init__(*args, **kwargs)
  7056. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7057. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7058. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7059. def set_vocab(self):
  7060. self._set_vocab_gpt2()
  7061. def set_gguf_parameters(self):
  7062. super().set_gguf_parameters()
  7063. hparams = self.hparams
  7064. if (rope_dim := hparams.get("head_dim")) is None:
  7065. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7066. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7067. rope_scaling = self.hparams.get("rope_scaling") or {}
  7068. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7069. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7070. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7071. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7072. else:
  7073. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7074. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7075. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7076. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7077. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7078. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7079. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7080. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7081. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7082. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7083. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7084. _experts: list[dict[str, Tensor]] | None = None
  7085. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7086. if "mlp.experts" in name:
  7087. n_experts = self.hparams["num_experts"]
  7088. assert bid is not None
  7089. tensors: list[tuple[str, Tensor]] = []
  7090. if self._experts is None:
  7091. self._experts = [{} for _ in range(self.block_count)]
  7092. self._experts[bid][name] = data_torch
  7093. if len(self._experts[bid]) >= n_experts * 3:
  7094. # merge the experts into a single 3d tensor
  7095. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7096. datas: list[Tensor] = []
  7097. for xid in range(n_experts):
  7098. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7099. datas.append(self._experts[bid][ename])
  7100. del self._experts[bid][ename]
  7101. data_torch = torch.stack(datas, dim=0)
  7102. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7103. new_name = self.map_tensor_name(merged_name)
  7104. tensors.append((new_name, data_torch))
  7105. return tensors
  7106. if name.endswith(".expert_bias"):
  7107. name = name.replace(".expert_bias", ".expert_bias.bias")
  7108. return [(self.map_tensor_name(name), data_torch)]
  7109. def prepare_tensors(self):
  7110. super().prepare_tensors()
  7111. if self._experts is not None:
  7112. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7113. experts = [k for d in self._experts for k in d.keys()]
  7114. if len(experts) > 0:
  7115. raise ValueError(f"Unprocessed experts: {experts}")
  7116. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7117. class GroveMoeModel(TextModel):
  7118. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7119. def set_gguf_parameters(self):
  7120. super().set_gguf_parameters()
  7121. if (n_experts := self.hparams.get("num_experts")) is not None:
  7122. self.gguf_writer.add_expert_count(n_experts)
  7123. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7124. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7125. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7126. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7127. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7128. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7129. self.gguf_writer.add_experts_per_group(2)
  7130. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7131. self.gguf_writer.add_expert_group_scale(0.05)
  7132. # YaRN is not enabled by default
  7133. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7134. rope_scaling = self.hparams.get("rope_scaling") or {}
  7135. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7137. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7138. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7139. _experts: list[dict[str, Tensor]] | None = None
  7140. _chunk_experts: list[dict[str, Tensor]] | None = None
  7141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7142. if name.endswith(".expert_bias"):
  7143. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7144. return []
  7145. # process the experts separately
  7146. if name.find("chunk_experts") != -1:
  7147. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7148. assert bid is not None
  7149. if self._chunk_experts is None:
  7150. self._chunk_experts = [{} for _ in range(self.block_count)]
  7151. self._chunk_experts[bid][name] = data_torch
  7152. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7153. tensors: list[tuple[str, Tensor]] = []
  7154. # merge the experts into a single 3d tensor
  7155. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7156. datas: list[Tensor] = []
  7157. for xid in range(n_experts):
  7158. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7159. datas.append(self._chunk_experts[bid][ename])
  7160. del self._chunk_experts[bid][ename]
  7161. data_torch = torch.stack(datas, dim=0)
  7162. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7163. new_name = self.map_tensor_name(merged_name)
  7164. tensors.append((new_name, data_torch))
  7165. return tensors
  7166. else:
  7167. return []
  7168. elif name.find("experts") != -1:
  7169. n_experts = self.hparams["num_experts"]
  7170. assert bid is not None
  7171. if self._experts is None:
  7172. self._experts = [{} for _ in range(self.block_count)]
  7173. self._experts[bid][name] = data_torch
  7174. if len(self._experts[bid]) >= n_experts * 3:
  7175. tensors: list[tuple[str, Tensor]] = []
  7176. # merge the experts into a single 3d tensor
  7177. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7178. datas: list[Tensor] = []
  7179. for xid in range(n_experts):
  7180. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7181. datas.append(self._experts[bid][ename])
  7182. del self._experts[bid][ename]
  7183. data_torch = torch.stack(datas, dim=0)
  7184. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7185. new_name = self.map_tensor_name(merged_name)
  7186. tensors.append((new_name, data_torch))
  7187. return tensors
  7188. else:
  7189. return []
  7190. return [(self.map_tensor_name(name), data_torch)]
  7191. def prepare_tensors(self):
  7192. super().prepare_tensors()
  7193. if self._chunk_experts is not None:
  7194. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7195. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7196. if len(chunk_experts) > 0:
  7197. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7198. if self._experts is not None:
  7199. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7200. experts = [k for d in self._experts for k in d.keys()]
  7201. if len(experts) > 0:
  7202. raise ValueError(f"Unprocessed experts: {experts}")
  7203. @ModelBase.register("ChameleonForConditionalGeneration")
  7204. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7205. class ChameleonModel(TextModel):
  7206. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7207. def set_gguf_parameters(self):
  7208. super().set_gguf_parameters()
  7209. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7210. def set_vocab(self):
  7211. self._set_vocab_gpt2()
  7212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7213. # ignore image tokenizer for now
  7214. # TODO: remove this once image support is implemented for Chameleon
  7215. if name.startswith("model.vqmodel"):
  7216. return []
  7217. n_head = self.hparams["num_attention_heads"]
  7218. n_kv_head = self.hparams.get("num_key_value_heads")
  7219. hidden_dim = self.hparams.get("hidden_size")
  7220. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7221. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7222. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7223. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7224. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7225. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7226. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7227. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7228. return [(self.map_tensor_name(name), data_torch)]
  7229. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7230. @staticmethod
  7231. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7232. head_dim = hidden_dim // n_heads
  7233. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7234. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7235. return data_torch
  7236. @ModelBase.register("UltravoxModel")
  7237. class UltravoxModel(TextModel):
  7238. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7239. def __init__(self, *args, **kwargs):
  7240. super().__init__(*args, **kwargs)
  7241. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7242. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7243. class WhisperEncoderModel(MmprojModel):
  7244. has_vision_encoder = False # no vision encoder
  7245. has_audio_encoder = True
  7246. def __init__(self, *args, **kwargs):
  7247. super().__init__(*args, **kwargs)
  7248. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7249. self.hparams["hidden_size"] = self.hparams["d_model"]
  7250. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7251. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7252. def set_gguf_parameters(self):
  7253. super().set_gguf_parameters()
  7254. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7255. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7256. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7257. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7258. if ".conv" in name and ".weight" in name:
  7259. return gguf.GGMLQuantizationType.F16
  7260. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7261. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7262. del bid # unused
  7263. if name.startswith("language_model."):
  7264. # skip language model tensors
  7265. return []
  7266. # prevent clash naming with vision tensors
  7267. if name.startswith("multi_modal_projector"):
  7268. name = "audio." + name
  7269. if "conv1.bias" in name or "conv2.bias" in name:
  7270. # transpose conv1 and conv2 bias
  7271. data_torch = data_torch.unsqueeze(-1)
  7272. return [(self.map_tensor_name(name), data_torch)]
  7273. @ModelBase.register("UltravoxModel")
  7274. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7275. has_vision_encoder = False # no vision encoder
  7276. has_audio_encoder = True
  7277. def set_gguf_parameters(self):
  7278. super().set_gguf_parameters()
  7279. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7280. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7281. @ModelBase.register("VoxtralForConditionalGeneration")
  7282. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7283. has_vision_encoder = False # no vision encoder
  7284. has_audio_encoder = True
  7285. def set_gguf_parameters(self):
  7286. super().set_gguf_parameters()
  7287. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7288. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7289. @ModelBase.register("FalconH1ForCausalLM")
  7290. class FalconH1Model(Mamba2Model):
  7291. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7292. def __init__(self, *args, **kwargs):
  7293. # Set the hparam prefixes for Falcon Mamba2
  7294. self.hparam_prefixes = ["mamba"]
  7295. # Initialize the base Mamba2Model
  7296. super().__init__(*args, **kwargs)
  7297. # Use Llama conversion for attention
  7298. self._transformer_model_class = LlamaModel
  7299. # n_group and d_inner are used during reshape_tensors for mamba2
  7300. self.n_group = self.find_hparam(["n_groups"])
  7301. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7302. self.d_head = self.find_hparam(["d_head"])
  7303. # Initialize any Falcon Mamba2 specific attributes
  7304. self.has_attention = True # Falcon Mamba2 has attention components
  7305. # Load Falcon-H1 multipliers from hyperparameters
  7306. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7307. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7308. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7309. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7310. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7311. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7312. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7313. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7314. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7315. prefixed = []
  7316. for pfx in self.hparam_prefixes:
  7317. prefixed.extend(
  7318. "_".join([pfx, k])
  7319. for k in keys
  7320. )
  7321. keys = list(keys) + prefixed
  7322. return super().find_hparam(keys, *args, **kwargs)
  7323. def set_vocab(self):
  7324. self._set_vocab_gpt2()
  7325. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7326. tensors = list(super().modify_tensors(data_torch, name, bid))
  7327. tensor = tensors[0][1]
  7328. if "down_proj" in name:
  7329. tensor = tensor * self.mlp_multipliers[1]
  7330. elif "gate_proj" in name:
  7331. tensor = tensor * self.mlp_multipliers[0]
  7332. elif "k_proj" in name:
  7333. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7334. elif "q_proj" in name:
  7335. tensor = tensor * self.attention_in_multiplier
  7336. elif "v_proj" in name:
  7337. tensor = tensor * self.attention_in_multiplier
  7338. elif "o_proj" in name:
  7339. tensor = tensor * self.attention_out_multiplier
  7340. elif "out_proj" in name:
  7341. tensor = tensor * self.ssm_out_multiplier
  7342. elif "in_proj" in name:
  7343. tensor = tensor * self.ssm_in_multiplier
  7344. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7345. intermediate_size = self.hparams["mamba_d_ssm"]
  7346. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7347. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7348. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7349. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7350. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7351. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7352. elif "lm_head" in name:
  7353. tensor = tensor * self.hparams["lm_head_multiplier"]
  7354. elif "embed_tokens" in name:
  7355. tensor = tensor * self.hparams["embedding_multiplier"]
  7356. elif "mamba.norm" in name:
  7357. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7358. tensors = [(tensors[0][0], tensor)]
  7359. return tensors
  7360. def set_gguf_parameters(self):
  7361. super().set_gguf_parameters()
  7362. ## General Params ##
  7363. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7364. # Override some Mamba2 defaults
  7365. self.gguf_writer.add_block_count(self.block_count)
  7366. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7367. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7368. ## Attention params ##
  7369. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7370. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7371. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7372. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7373. ## Validation ##
  7374. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7375. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7376. # Add any other Falcon Mamba2 specific configuration
  7377. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7378. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7379. class HunYuanMoEModel(TextModel):
  7380. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7381. def set_vocab(self):
  7382. from transformers import AutoTokenizer
  7383. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7384. # 1. Get the pre-tokenizer identifier hash
  7385. tokpre = self.get_vocab_base_pre(tokenizer)
  7386. # 2. Reverse-engineer the merges list from mergeable_ranks
  7387. merges = []
  7388. vocab = {}
  7389. mergeable_ranks = tokenizer.mergeable_ranks
  7390. for token, rank in mergeable_ranks.items():
  7391. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7392. if len(token) == 1:
  7393. continue
  7394. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7395. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7396. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7397. # 3. Generate the tokens and toktypes lists
  7398. vocab_size = self.hparams["vocab_size"]
  7399. assert tokenizer.vocab_size == vocab_size
  7400. special_tokens = tokenizer.special_tokens
  7401. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7402. tokens: list[str] = []
  7403. toktypes: list[int] = []
  7404. for i in range(vocab_size):
  7405. if i not in reverse_vocab:
  7406. tokens.append(f"[PAD{i}]")
  7407. toktypes.append(gguf.TokenType.UNUSED)
  7408. else:
  7409. token = reverse_vocab[i]
  7410. tokens.append(token)
  7411. if i in special_tokens.values():
  7412. toktypes.append(gguf.TokenType.CONTROL)
  7413. else:
  7414. toktypes.append(gguf.TokenType.NORMAL)
  7415. # 4. Write all vocab-related fields to the GGUF writer
  7416. self.gguf_writer.add_tokenizer_model("gpt2")
  7417. self.gguf_writer.add_tokenizer_pre(tokpre)
  7418. self.gguf_writer.add_token_list(tokens)
  7419. self.gguf_writer.add_token_types(toktypes)
  7420. self.gguf_writer.add_token_merges(merges)
  7421. # 5. Add special tokens and chat templates
  7422. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7423. special_vocab.add_to_gguf(self.gguf_writer)
  7424. # FIX for BOS token: Overwrite incorrect id read from config.json
  7425. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7426. def set_gguf_parameters(self):
  7427. super().set_gguf_parameters()
  7428. hparams = self.hparams
  7429. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7430. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7431. moe_intermediate_size = hparams["moe_intermediate_size"]
  7432. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7433. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7434. moe_topk = hparams["moe_topk"]
  7435. assert all(topk == moe_topk[0] for topk in moe_topk)
  7436. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7437. moe_shared_expert = hparams["num_shared_expert"]
  7438. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7439. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7440. # Rope
  7441. rope_scaling = hparams.get("rope_scaling", {})
  7442. if rope_scaling.get("type") == "dynamic":
  7443. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7444. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7445. alpha = rope_scaling.get("alpha", 1000)
  7446. base = hparams.get("rope_theta", 10000.0)
  7447. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7448. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7449. self.gguf_writer.add_rope_freq_base(scaled_base)
  7450. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7451. self.gguf_writer.add_rope_scaling_factor(1)
  7452. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7453. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7454. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7455. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7456. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7457. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7458. _experts: list[dict[str, Tensor]] | None = None
  7459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7460. if name == "lm_head.weight":
  7461. if self.hparams.get("tie_word_embeddings", False):
  7462. logger.info("Skipping tied output layer 'lm_head.weight'")
  7463. return []
  7464. if name.find("mlp.experts") != -1:
  7465. n_experts = self.hparams["num_experts"]
  7466. assert bid is not None
  7467. if self._experts is None:
  7468. self._experts = [{} for _ in range(self.block_count)]
  7469. self._experts[bid][name] = data_torch
  7470. if len(self._experts[bid]) >= n_experts * 3:
  7471. # merge the experts into a single 3d tensor
  7472. tensors: list[tuple[str, Tensor]] = []
  7473. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7474. datas: list[Tensor] = []
  7475. for xid in range(n_experts):
  7476. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7477. datas.append(self._experts[bid][ename])
  7478. del self._experts[bid][ename]
  7479. data_torch = torch.stack(datas, dim=0)
  7480. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7481. new_name = self.map_tensor_name(merged_name)
  7482. tensors.append((new_name, data_torch))
  7483. return tensors
  7484. else:
  7485. return []
  7486. return [(self.map_tensor_name(name), data_torch)]
  7487. def prepare_tensors(self):
  7488. super().prepare_tensors()
  7489. if self._experts is not None:
  7490. experts = [k for d in self._experts for k in d.keys()]
  7491. if len(experts) > 0:
  7492. raise ValueError(f"Unprocessed experts: {experts}")
  7493. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7494. class LLaDAMoEModel(TextModel):
  7495. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7496. def set_gguf_parameters(self):
  7497. super().set_gguf_parameters()
  7498. if (n_experts := self.hparams.get("num_experts")) is not None:
  7499. self.gguf_writer.add_expert_count(n_experts)
  7500. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7501. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7502. # number of experts used per token (top-k)
  7503. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7504. self.gguf_writer.add_expert_used_count(n_experts_used)
  7505. self.gguf_writer.add_mask_token_id(156895)
  7506. self.gguf_writer.add_causal_attention(False)
  7507. self.gguf_writer.add_diffusion_shift_logits(False)
  7508. _experts: list[dict[str, Tensor]] | None = None
  7509. # Copied from: Qwen2MoeModel
  7510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7511. # process the experts separately
  7512. if name.find("experts") != -1:
  7513. n_experts = self.hparams["num_experts"]
  7514. assert bid is not None
  7515. if self._experts is None:
  7516. self._experts = [{} for _ in range(self.block_count)]
  7517. self._experts[bid][name] = data_torch
  7518. if len(self._experts[bid]) >= n_experts * 3:
  7519. tensors: list[tuple[str, Tensor]] = []
  7520. # merge the experts into a single 3d tensor
  7521. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7522. datas: list[Tensor] = []
  7523. for xid in range(n_experts):
  7524. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7525. datas.append(self._experts[bid][ename])
  7526. del self._experts[bid][ename]
  7527. data_torch = torch.stack(datas, dim=0)
  7528. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7529. new_name = self.map_tensor_name(merged_name)
  7530. tensors.append((new_name, data_torch))
  7531. return tensors
  7532. else:
  7533. return []
  7534. return [(self.map_tensor_name(name), data_torch)]
  7535. # Copied from: Qwen2MoeModel
  7536. def prepare_tensors(self):
  7537. super().prepare_tensors()
  7538. if self._experts is not None:
  7539. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7540. experts = [k for d in self._experts for k in d.keys()]
  7541. if len(experts) > 0:
  7542. raise ValueError(f"Unprocessed experts: {experts}")
  7543. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7544. class HunYuanModel(TextModel):
  7545. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7546. def set_vocab(self):
  7547. if (self.dir_model / "tokenizer.json").is_file():
  7548. self._set_vocab_gpt2()
  7549. else:
  7550. from transformers import AutoTokenizer
  7551. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7552. # 1. Get the pre-tokenizer identifier hash
  7553. tokpre = self.get_vocab_base_pre(tokenizer)
  7554. # 2. Reverse-engineer the merges list from mergeable_ranks
  7555. merges = []
  7556. vocab = {}
  7557. mergeable_ranks = tokenizer.mergeable_ranks
  7558. for token, rank in mergeable_ranks.items():
  7559. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7560. if len(token) == 1:
  7561. continue
  7562. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7563. if len(merged) == 2:
  7564. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7565. # 3. Generate the tokens and toktypes lists
  7566. vocab_size = self.hparams["vocab_size"]
  7567. assert tokenizer.vocab_size == vocab_size
  7568. special_tokens = tokenizer.special_tokens
  7569. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7570. tokens: list[str] = []
  7571. toktypes: list[int] = []
  7572. for i in range(vocab_size):
  7573. if i not in reverse_vocab:
  7574. tokens.append(f"[PAD{i}]")
  7575. toktypes.append(gguf.TokenType.UNUSED)
  7576. else:
  7577. token = reverse_vocab[i]
  7578. tokens.append(token)
  7579. if i in special_tokens.values():
  7580. toktypes.append(gguf.TokenType.CONTROL)
  7581. else:
  7582. toktypes.append(gguf.TokenType.NORMAL)
  7583. # 4. Write all vocab-related fields to the GGUF writer
  7584. self.gguf_writer.add_tokenizer_model("gpt2")
  7585. self.gguf_writer.add_tokenizer_pre(tokpre)
  7586. self.gguf_writer.add_token_list(tokens)
  7587. self.gguf_writer.add_token_types(toktypes)
  7588. self.gguf_writer.add_token_merges(merges)
  7589. # 5. Add special tokens and chat templates
  7590. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7591. special_vocab.add_to_gguf(self.gguf_writer)
  7592. # FIX for BOS token: Overwrite incorrect id read from config.json
  7593. if self.hparams['hidden_size'] == 4096:
  7594. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7595. def set_gguf_parameters(self):
  7596. super().set_gguf_parameters()
  7597. hparams = self.hparams
  7598. # Rope
  7599. rope_scaling = hparams.get("rope_scaling", {})
  7600. if rope_scaling.get("type") == "dynamic":
  7601. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7602. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7603. alpha = rope_scaling.get("alpha", 50)
  7604. base = hparams.get("rope_theta", 10000.0)
  7605. dim = hparams["head_dim"]
  7606. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7607. self.gguf_writer.add_rope_freq_base(scaled_base)
  7608. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7609. self.gguf_writer.add_rope_scaling_factor(1)
  7610. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7611. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7612. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7613. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7614. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7615. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7616. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7617. if name == "lm_head.weight":
  7618. if self.hparams.get("tie_word_embeddings", False):
  7619. logger.info("Skipping tied output layer 'lm_head.weight'")
  7620. return []
  7621. return [(self.map_tensor_name(name), data_torch)]
  7622. @ModelBase.register("SmolLM3ForCausalLM")
  7623. class SmolLM3Model(LlamaModel):
  7624. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7625. def set_vocab(self):
  7626. super().set_vocab()
  7627. # remove unsupported array slicing in chat template
  7628. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7629. from transformers import AutoTokenizer
  7630. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7631. if tokenizer.chat_template is not None:
  7632. chat_template = tokenizer.chat_template.replace("[:]", "")
  7633. self.gguf_writer.add_chat_template(chat_template)
  7634. @ModelBase.register("GptOssForCausalLM")
  7635. class GptOssModel(TextModel):
  7636. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7637. # TODO: remove once MXFP4 is supported more generally
  7638. def dequant_model(self):
  7639. quant_config = self.hparams.get("quantization_config")
  7640. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7641. return
  7642. return super().dequant_model()
  7643. def transform_nibble_layout(self, tensor):
  7644. assert tensor.dtype == torch.uint8
  7645. assert tensor.shape[-1] == 16
  7646. # swap nibbles
  7647. t_lo = tensor & 0x0F
  7648. t_hi = tensor & 0xF0
  7649. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7650. tensor = t_swapped
  7651. # transform aaaa...bbbb... to abababab...
  7652. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7653. # get a_
  7654. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7655. blk_a1 = (blk_a << 4).view(-1, 1)
  7656. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7657. # get _b
  7658. blk_b0 = (blk_b >> 4).view(-1, 1)
  7659. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7660. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7661. # swap once more
  7662. out = blk_a | blk_b
  7663. out_h = out & 0xF0
  7664. out_l = out & 0x0F
  7665. out = (out_h >> 4) | (out_l << 4)
  7666. return out
  7667. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7668. assert blocks.dtype == torch.uint8
  7669. assert scales.dtype == torch.uint8
  7670. scales = scales.unsqueeze(-1)
  7671. assert len(blocks.shape) == 4
  7672. assert len(scales.shape) == 4
  7673. blocks = self.transform_nibble_layout(blocks)
  7674. new_data = torch.concat((scales, blocks), dim=-1)
  7675. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7676. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7677. # flatten last dim
  7678. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7679. new_data = new_data.numpy()
  7680. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7681. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7682. blocks0: Tensor = torch.zeros(1)
  7683. blocks1: Tensor = torch.zeros(1)
  7684. # we assume that tensors are loaded in the correct order
  7685. for name, data_torch in self.get_tensors():
  7686. if "mlp.experts.down_proj_blocks" in name:
  7687. blocks0 = data_torch
  7688. elif "mlp.experts.down_proj_scales" in name:
  7689. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7690. self.repack_mxfp4(new_name, blocks0, data_torch)
  7691. elif "mlp.experts.gate_up_proj_blocks" in name:
  7692. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7693. elif "mlp.experts.gate_up_proj_scales" in name:
  7694. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7695. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7696. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7697. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7698. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7699. return []
  7700. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7701. del bid # unused
  7702. if "sinks" in name:
  7703. name += ".weight"
  7704. # correct naming for down_proj
  7705. if "down_proj" in name:
  7706. if name.endswith("_bias"):
  7707. name = name.replace("down_proj_bias", "down_proj.bias")
  7708. elif "_blocks" not in name and "_scales" not in name:
  7709. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7710. name = name.replace("down_proj", "down_proj.weight")
  7711. data_torch = data_torch.transpose(-1, -2)
  7712. else:
  7713. # otherwise, it should already be repacked to ggml MXFP4 format
  7714. return []
  7715. # split the gate_up into gate and up
  7716. if "gate_up_proj" in name:
  7717. if name.endswith("_bias"):
  7718. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7719. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7720. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7721. return [
  7722. (self.map_tensor_name(name_gate), gate_proj_bias),
  7723. (self.map_tensor_name(name_up), up_proj_bias)
  7724. ]
  7725. elif "_blocks" not in name and "_scales" not in name:
  7726. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7727. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7728. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7729. data_torch = data_torch.transpose(-1, -2)
  7730. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7731. return [
  7732. (self.map_tensor_name(name_gate), gate_proj_weight),
  7733. (self.map_tensor_name(name_up), up_proj_weight)
  7734. ]
  7735. else:
  7736. # otherwise, it should already be repacked to ggml MXFP4 format
  7737. return []
  7738. return [(self.map_tensor_name(name), data_torch)]
  7739. def set_vocab(self):
  7740. self._set_vocab_gpt2()
  7741. def set_gguf_parameters(self):
  7742. super().set_gguf_parameters()
  7743. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7744. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7745. rope_scaling = self.hparams.get("rope_scaling") or {}
  7746. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7747. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7748. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7749. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7750. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7751. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7752. class LFM2Model(TextModel):
  7753. model_arch = gguf.MODEL_ARCH.LFM2
  7754. def _add_feed_forward_length(self):
  7755. ff_dim = self.hparams["block_ff_dim"]
  7756. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7757. ff_dim = self.hparams["block_ff_dim"]
  7758. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7759. multiple_of = self.hparams["block_multiple_of"]
  7760. if auto_adjust_ff_dim:
  7761. ff_dim = int(2 * ff_dim / 3)
  7762. # custom dim factor multiplier
  7763. if ffn_dim_multiplier is not None:
  7764. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7765. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7766. self.gguf_writer.add_feed_forward_length(ff_dim)
  7767. def set_gguf_parameters(self):
  7768. # set num_key_value_heads only for attention layers
  7769. self.hparams["num_key_value_heads"] = [
  7770. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7771. for layer_type in self.hparams["layer_types"]
  7772. ]
  7773. super().set_gguf_parameters()
  7774. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7775. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7776. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7777. self._add_feed_forward_length()
  7778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7779. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7780. if is_vision_tensor:
  7781. # skip vision tensors
  7782. return []
  7783. name = name.replace("language_model.", "")
  7784. # conv op requires 2d tensor
  7785. if 'conv.conv' in name:
  7786. data_torch = data_torch.squeeze(1)
  7787. return [(self.map_tensor_name(name), data_torch)]
  7788. @ModelBase.register("Lfm2MoeForCausalLM")
  7789. class LFM2MoeModel(TextModel):
  7790. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7791. def set_gguf_parameters(self):
  7792. # set num_key_value_heads only for attention layers
  7793. self.hparams["num_key_value_heads"] = [
  7794. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7795. for layer_type in self.hparams["layer_types"]
  7796. ]
  7797. super().set_gguf_parameters()
  7798. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7799. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7800. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7801. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7802. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7803. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7804. # cache for experts weights for merging
  7805. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7807. # conv op requires 2d tensor
  7808. if 'conv.conv' in name:
  7809. data_torch = data_torch.squeeze(1)
  7810. if name.endswith(".expert_bias"):
  7811. name = name.replace(".expert_bias", ".expert_bias.bias")
  7812. # merge expert weights
  7813. if 'experts' in name:
  7814. n_experts = self.hparams["num_experts"]
  7815. assert bid is not None
  7816. expert_cache = self._experts_cache.setdefault(bid, {})
  7817. expert_cache[name] = data_torch
  7818. expert_weights = ["w1", "w2", "w3"]
  7819. # not enough expert weights to merge
  7820. if len(expert_cache) < n_experts * len(expert_weights):
  7821. return []
  7822. tensors: list[tuple[str, Tensor]] = []
  7823. for w_name in expert_weights:
  7824. datas: list[Tensor] = []
  7825. for xid in range(n_experts):
  7826. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7827. datas.append(expert_cache[ename])
  7828. del expert_cache[ename]
  7829. data_torch = torch.stack(datas, dim=0)
  7830. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7831. new_name = self.map_tensor_name(merged_name)
  7832. tensors.append((new_name, data_torch))
  7833. del self._experts_cache[bid]
  7834. return tensors
  7835. return [(self.map_tensor_name(name), data_torch)]
  7836. def prepare_tensors(self):
  7837. super().prepare_tensors()
  7838. assert not self._experts_cache
  7839. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7840. class LFM2VLModel(MmprojModel):
  7841. def __init__(self, *args, **kwargs):
  7842. super().__init__(*args, **kwargs)
  7843. assert self.hparams_vision is not None
  7844. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7845. self.hparams_vision["image_size"] = 256
  7846. def set_gguf_parameters(self):
  7847. super().set_gguf_parameters()
  7848. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7849. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7850. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7851. self.gguf_writer.add_vision_use_gelu(True)
  7852. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7853. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7854. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7855. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7856. del bid # unused
  7857. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7858. if is_vision_tensor:
  7859. # remove "model." prefix
  7860. name = name.replace("model.vision_tower.", "vision_tower.")
  7861. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7862. if "patch_embedding.weight" in name:
  7863. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7864. return [(self.map_tensor_name(name), data_torch)]
  7865. return [] # skip other tensors
  7866. @ModelBase.register("SmallThinkerForCausalLM")
  7867. class SmallThinkerModel(TextModel):
  7868. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7869. def set_gguf_parameters(self):
  7870. super().set_gguf_parameters()
  7871. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7872. self.gguf_writer.add_expert_count(n_experts)
  7873. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7874. self.gguf_writer.add_expert_used_count(n_experts_used)
  7875. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7876. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7877. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7878. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7879. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7880. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7881. else:
  7882. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7883. # YaRN is not enabled by default
  7884. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7885. rope_scaling = self.hparams.get("rope_scaling") or {}
  7886. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7887. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7888. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7889. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7890. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7891. if sliding_window_layout:
  7892. for i in sliding_window_layout:
  7893. if i != 0:
  7894. sliding_window = self.hparams.get("sliding_window_size")
  7895. if sliding_window:
  7896. self.gguf_writer.add_sliding_window(sliding_window)
  7897. break
  7898. _experts: list[dict[str, Tensor]] | None = None
  7899. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7900. # process the experts separately
  7901. if name.find("experts") != -1:
  7902. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7903. assert bid is not None
  7904. if self._experts is None:
  7905. self._experts = [{} for _ in range(self.block_count)]
  7906. self._experts[bid][name] = data_torch
  7907. if len(self._experts[bid]) >= n_experts * 3:
  7908. tensors: list[tuple[str, Tensor]] = []
  7909. # merge the experts into a single 3d tensor
  7910. for w_name in ["down", "gate", "up"]:
  7911. datas: list[Tensor] = []
  7912. for xid in range(n_experts):
  7913. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7914. datas.append(self._experts[bid][ename])
  7915. del self._experts[bid][ename]
  7916. data_torch = torch.stack(datas, dim=0)
  7917. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7918. new_name = self.map_tensor_name(merged_name)
  7919. tensors.append((new_name, data_torch))
  7920. return tensors
  7921. else:
  7922. return []
  7923. return [(self.map_tensor_name(name), data_torch)]
  7924. def prepare_tensors(self):
  7925. super().prepare_tensors()
  7926. if self._experts is not None:
  7927. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7928. experts = [k for d in self._experts for k in d.keys()]
  7929. if len(experts) > 0:
  7930. raise ValueError(f"Unprocessed experts: {experts}")
  7931. @ModelBase.register("ApertusForCausalLM")
  7932. class ApertusModel(LlamaModel):
  7933. model_arch = gguf.MODEL_ARCH.APERTUS
  7934. undo_permute = False
  7935. _alpha_n = {}
  7936. _alpha_p = {}
  7937. _beta = {}
  7938. _eps = {}
  7939. def modify_tensors(self, data_torch, name, bid):
  7940. # Handle xIELU activation parameters
  7941. n_layers = self.hparams["num_hidden_layers"]
  7942. if name.endswith(".act_fn.alpha_n"):
  7943. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7944. if (len(self._alpha_n) == n_layers):
  7945. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7946. return []
  7947. if name.endswith(".act_fn.alpha_p"):
  7948. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7949. if (len(self._alpha_p) == n_layers):
  7950. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7951. return []
  7952. if name.endswith(".act_fn.beta"):
  7953. self._beta[bid] = data_torch.to("cpu").float().item()
  7954. if (len(self._beta) == n_layers):
  7955. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7956. return []
  7957. if name.endswith(".act_fn.eps"):
  7958. self._eps[bid] = data_torch.to("cpu").float().item()
  7959. if (len(self._eps) == n_layers):
  7960. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7961. return []
  7962. return super().modify_tensors(data_torch, name, bid)
  7963. class MistralModel(LlamaModel):
  7964. model_arch = gguf.MODEL_ARCH.LLAMA
  7965. model_name = "Mistral"
  7966. hf_arch = ""
  7967. is_mistral_format = True
  7968. undo_permute = False
  7969. @staticmethod
  7970. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7971. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7972. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7973. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7974. )
  7975. if vocab.tokenizer.version == TokenizerVersion.v1:
  7976. return "mistral-v1"
  7977. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7978. return "mistral-v3"
  7979. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7980. return "mistral-v3-tekken"
  7981. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7982. return "mistral-v7"
  7983. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7984. return "mistral-v7-tekken"
  7985. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7986. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7987. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7988. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7989. else:
  7990. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7991. if is_mistral_format:
  7992. err_message += (
  7993. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7994. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7995. )
  7996. raise ValueError(err_message)
  7997. template_path = templates_dir / template_file
  7998. if not template_path.exists():
  7999. raise FileNotFoundError(f"Template file not found: {template_path}")
  8000. with open(template_path, "r", encoding="utf-8") as f:
  8001. template = f.read()
  8002. return template
  8003. class PixtralModel(LlavaVisionModel):
  8004. model_name = "Pixtral"
  8005. hf_arch = ""
  8006. is_mistral_format = True
  8007. def set_gguf_parameters(self):
  8008. super().set_gguf_parameters()
  8009. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8010. self.gguf_writer.add_vision_attention_layernorm_eps(
  8011. self.find_hparam(["norm_eps"])
  8012. )
  8013. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8014. self.gguf_writer.add_vision_use_silu(True)
  8015. # spatial_merge_size
  8016. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8017. self.gguf_writer.add_vision_spatial_merge_size(
  8018. self.find_vparam(["spatial_merge_size"])
  8019. )
  8020. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8021. if name == "vision_language_adapter.w_in.weight":
  8022. return "mm.1.weight"
  8023. elif name == "vision_language_adapter.w_out.weight":
  8024. return "mm.2.weight"
  8025. return super().map_tensor_name(name, try_suffixes)
  8026. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8027. class LightOnOCRVisionModel(LlavaVisionModel):
  8028. is_mistral_format = False
  8029. use_break_tok = False
  8030. def set_gguf_parameters(self):
  8031. super().set_gguf_parameters()
  8032. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8034. name = name.replace("model.vision_encoder.", "vision_tower.")
  8035. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8036. return super().modify_tensors(data_torch, name, bid)
  8037. @ModelBase.register("KimiVLForConditionalGeneration")
  8038. class KimiVLModel(MmprojModel):
  8039. def __init__(self, *args, **kwargs):
  8040. super().__init__(*args, **kwargs)
  8041. assert self.hparams_vision is not None
  8042. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8043. def set_gguf_parameters(self):
  8044. super().set_gguf_parameters()
  8045. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8046. self.gguf_writer.add_vision_use_gelu(True)
  8047. self.gguf_writer.add_vision_projector_scale_factor(2)
  8048. # eps is the same as pytorch's default value
  8049. assert self.hparams_vision is not None
  8050. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8052. del bid # unused
  8053. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8054. if is_vision_tensor:
  8055. if "pos_emb.weight" in name:
  8056. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8057. elif "wqkv" in name:
  8058. split_dim = 0 if "weight" in name else -1
  8059. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8060. return [
  8061. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8062. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8063. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8064. ]
  8065. return [(self.map_tensor_name(name), data_torch)]
  8066. return [] # skip other tensors
  8067. @ModelBase.register("CogVLMForCausalLM")
  8068. class CogVLMVisionModel(MmprojModel):
  8069. def set_gguf_parameters(self):
  8070. super().set_gguf_parameters()
  8071. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8072. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8073. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8074. del bid # unused
  8075. if not name.startswith("model.vision."):
  8076. return []
  8077. return [(self.map_tensor_name(name), data_torch)]
  8078. @ModelBase.register("CogVLMForCausalLM")
  8079. class CogVLMModel(LlamaModel):
  8080. model_arch = gguf.MODEL_ARCH.COGVLM
  8081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8082. del bid # unused
  8083. # block vision tensors
  8084. if name.startswith("model.vision."):
  8085. return []
  8086. return [(self.map_tensor_name(name), data_torch)]
  8087. @ModelBase.register("JanusForConditionalGeneration")
  8088. class JanusProModel(LlamaModel):
  8089. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8091. # Skip vision, aligner, and generation tensors
  8092. skip_prefixes = (
  8093. 'model.vision_model.',
  8094. 'model.aligner.',
  8095. 'model.vqmodel.',
  8096. 'model.generation_embeddings.',
  8097. 'model.generation_aligner.',
  8098. 'model.generation_head.',
  8099. )
  8100. if name.startswith(skip_prefixes):
  8101. return []
  8102. if name.startswith('model.language_model.'):
  8103. name = name.replace('model.language_model.', 'model.')
  8104. elif name.startswith('language_model.'):
  8105. name = name.replace('language_model.', '')
  8106. return super().modify_tensors(data_torch, name, bid)
  8107. @ModelBase.register("JanusForConditionalGeneration")
  8108. class JanusProVisionModel(MmprojModel):
  8109. def __init__(self, *args, **kwargs):
  8110. super().__init__(*args, **kwargs)
  8111. assert self.hparams_vision is not None
  8112. if "intermediate_size" not in self.hparams_vision:
  8113. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8114. hidden_size = self.hparams_vision.get("hidden_size")
  8115. if mlp_ratio is not None and hidden_size is not None:
  8116. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8117. def set_gguf_parameters(self):
  8118. super().set_gguf_parameters()
  8119. assert self.hparams_vision is not None
  8120. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8121. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8122. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8123. if hidden_act == "gelu":
  8124. self.gguf_writer.add_vision_use_gelu(True)
  8125. elif hidden_act == "silu":
  8126. self.gguf_writer.add_vision_use_silu(True)
  8127. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8128. """Map aligner tensors to projector format"""
  8129. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8130. if name.startswith("model.aligner."):
  8131. local_name = name[len("model.aligner."):]
  8132. elif name.startswith("aligner."):
  8133. local_name = name[len("aligner."):]
  8134. else:
  8135. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8136. if local_name.startswith("fc1."):
  8137. mm_index = 0
  8138. elif local_name.startswith("hidden_layers."):
  8139. parts = local_name.split(".", 2)
  8140. if len(parts) < 3:
  8141. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8142. mm_index = int(parts[1]) + 1
  8143. else:
  8144. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8145. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8146. return [(tensor_name, data_torch)]
  8147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8148. del bid # unused
  8149. # Skip language model tensors as they will be handled by `JanusProModel`
  8150. if name.startswith(('model.language_model.', 'language_model.')):
  8151. return []
  8152. # Skip generation-related components
  8153. skip_generation_prefixes = (
  8154. 'model.vqmodel.',
  8155. 'vqmodel.',
  8156. 'model.generation_embeddings.',
  8157. 'generation_embeddings.',
  8158. 'model.generation_aligner.',
  8159. 'generation_aligner.',
  8160. 'model.generation_head.',
  8161. 'generation_head.',
  8162. )
  8163. if name.startswith(skip_generation_prefixes):
  8164. return []
  8165. # Handle aligner tensors
  8166. if name.startswith(('model.aligner.', 'aligner.')):
  8167. return list(self._map_aligner_tensor(data_torch, name))
  8168. # Handle vision tensors
  8169. if name.startswith(('model.vision_model.', 'vision_model.')):
  8170. return [(self.map_tensor_name(name), data_torch)]
  8171. return []
  8172. ###### CONVERSION LOGIC ######
  8173. # tree of lazy tensors
  8174. class LazyTorchTensor(gguf.LazyBase):
  8175. _tensor_type = torch.Tensor
  8176. # to keep the type-checker happy
  8177. dtype: torch.dtype
  8178. shape: torch.Size
  8179. # only used when converting a torch.Tensor to a np.ndarray
  8180. _dtype_map: dict[torch.dtype, type] = {
  8181. torch.float16: np.float16,
  8182. torch.float32: np.float32,
  8183. torch.uint8: np.uint8,
  8184. }
  8185. # used for safetensors slices
  8186. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8187. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8188. _dtype_str_map: dict[str, torch.dtype] = {
  8189. "F64": torch.float64,
  8190. "F32": torch.float32,
  8191. "BF16": torch.bfloat16,
  8192. "F16": torch.float16,
  8193. # "U64": torch.uint64,
  8194. "I64": torch.int64,
  8195. # "U32": torch.uint32,
  8196. "I32": torch.int32,
  8197. # "U16": torch.uint16,
  8198. "I16": torch.int16,
  8199. "U8": torch.uint8,
  8200. "I8": torch.int8,
  8201. "BOOL": torch.bool,
  8202. "F8_E4M3": torch.float8_e4m3fn,
  8203. "F8_E5M2": torch.float8_e5m2,
  8204. }
  8205. def numpy(self) -> gguf.LazyNumpyTensor:
  8206. dtype = self._dtype_map[self.dtype]
  8207. return gguf.LazyNumpyTensor(
  8208. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8209. args=(self,),
  8210. func=(lambda s: s.numpy())
  8211. )
  8212. @classmethod
  8213. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8214. return torch.empty(size=shape, dtype=dtype, device="meta")
  8215. @classmethod
  8216. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8217. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8218. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8219. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8220. return cast(torch.Tensor, lazy)
  8221. @classmethod
  8222. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8223. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8224. dtype = cls._dtype_str_map[tensor.dtype]
  8225. return torch.from_numpy(tensor.mmap_bytes()).view(dtype).reshape(tensor.shape)
  8226. dtype = cls._dtype_str_map[t.dtype]
  8227. shape = t.shape
  8228. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8229. return cast(torch.Tensor, lazy)
  8230. @classmethod
  8231. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8232. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8233. shape = remote_tensor.shape
  8234. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8235. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  8236. return cast(torch.Tensor, lazy)
  8237. @classmethod
  8238. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8239. del types # unused
  8240. if kwargs is None:
  8241. kwargs = {}
  8242. if func is torch.Tensor.numpy:
  8243. return args[0].numpy()
  8244. return cls._wrap_fn(func)(*args, **kwargs)
  8245. def parse_args() -> argparse.Namespace:
  8246. parser = argparse.ArgumentParser(
  8247. description="Convert a huggingface model to a GGML compatible file")
  8248. parser.add_argument(
  8249. "--vocab-only", action="store_true",
  8250. help="extract only the vocab",
  8251. )
  8252. parser.add_argument(
  8253. "--outfile", type=Path,
  8254. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8255. )
  8256. parser.add_argument(
  8257. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8258. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8259. )
  8260. parser.add_argument(
  8261. "--bigendian", action="store_true",
  8262. help="model is executed on big endian machine",
  8263. )
  8264. parser.add_argument(
  8265. "model", type=str,
  8266. help="directory containing model file or huggingface repository ID (if --remote)",
  8267. nargs="?",
  8268. )
  8269. parser.add_argument(
  8270. "--use-temp-file", action="store_true",
  8271. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8272. )
  8273. parser.add_argument(
  8274. "--no-lazy", action="store_true",
  8275. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8276. )
  8277. parser.add_argument(
  8278. "--model-name", type=str, default=None,
  8279. help="name of the model",
  8280. )
  8281. parser.add_argument(
  8282. "--verbose", action="store_true",
  8283. help="increase output verbosity",
  8284. )
  8285. parser.add_argument(
  8286. "--split-max-tensors", type=int, default=0,
  8287. help="max tensors in each split",
  8288. )
  8289. parser.add_argument(
  8290. "--split-max-size", type=str, default="0",
  8291. help="max size per split N(M|G)",
  8292. )
  8293. parser.add_argument(
  8294. "--dry-run", action="store_true",
  8295. help="only print out a split plan and exit, without writing any new files",
  8296. )
  8297. parser.add_argument(
  8298. "--no-tensor-first-split", action="store_true",
  8299. help="do not add tensors to the first split (disabled by default)"
  8300. )
  8301. parser.add_argument(
  8302. "--metadata", type=Path,
  8303. help="Specify the path for an authorship metadata override file"
  8304. )
  8305. parser.add_argument(
  8306. "--print-supported-models", action="store_true",
  8307. help="Print the supported models"
  8308. )
  8309. parser.add_argument(
  8310. "--remote", action="store_true",
  8311. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8312. )
  8313. parser.add_argument(
  8314. "--mmproj", action="store_true",
  8315. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8316. )
  8317. parser.add_argument(
  8318. "--mistral-format", action="store_true",
  8319. help="Whether the model is stored following the Mistral format.",
  8320. )
  8321. parser.add_argument(
  8322. "--disable-mistral-community-chat-template", action="store_true",
  8323. help=(
  8324. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8325. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8326. )
  8327. )
  8328. parser.add_argument(
  8329. "--sentence-transformers-dense-modules", action="store_true",
  8330. help=("Whether to include sentence-transformers dense modules."
  8331. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8332. "Default these modules are not included.")
  8333. )
  8334. args = parser.parse_args()
  8335. if not args.print_supported_models and args.model is None:
  8336. parser.error("the following arguments are required: model")
  8337. return args
  8338. def split_str_to_n_bytes(split_str: str) -> int:
  8339. if split_str.endswith("K"):
  8340. n = int(split_str[:-1]) * 1000
  8341. elif split_str.endswith("M"):
  8342. n = int(split_str[:-1]) * 1000 * 1000
  8343. elif split_str.endswith("G"):
  8344. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8345. elif split_str.isnumeric():
  8346. n = int(split_str)
  8347. else:
  8348. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8349. if n < 0:
  8350. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8351. return n
  8352. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8353. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8354. # maybe we should fallback to text model's arch in that case, since not many models have both
  8355. text_config = hparams.get("text_config", {})
  8356. vision_config = hparams.get("vision_config", {})
  8357. arch = None
  8358. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8359. arch = arches[0]
  8360. elif "ssm_cfg" in hparams:
  8361. # For non-hf Mamba and Mamba2 models
  8362. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8363. # if "architectures" is found in the sub-config, use that instead
  8364. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8365. arch = text_config["architectures"][0]
  8366. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8367. arch = vision_config["architectures"][0]
  8368. if arch is None:
  8369. raise ValueError("Failed to detect model architecture")
  8370. return arch
  8371. def main() -> None:
  8372. args = parse_args()
  8373. if args.print_supported_models:
  8374. logger.error("Supported models:")
  8375. ModelBase.print_registered_models()
  8376. sys.exit(0)
  8377. if args.verbose:
  8378. logging.basicConfig(level=logging.DEBUG)
  8379. else:
  8380. logging.basicConfig(level=logging.INFO)
  8381. if args.remote:
  8382. hf_repo_id = args.model
  8383. from huggingface_hub import snapshot_download
  8384. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8385. if args.sentence_transformers_dense_modules:
  8386. # include sentence-transformers dense modules safetensors files
  8387. allowed_patterns.append("*.safetensors")
  8388. local_dir = snapshot_download(
  8389. repo_id=hf_repo_id,
  8390. allow_patterns=allowed_patterns)
  8391. dir_model = Path(local_dir)
  8392. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8393. else:
  8394. hf_repo_id = None
  8395. dir_model = Path(args.model)
  8396. if not dir_model.is_dir():
  8397. logger.error(f'Error: {dir_model} is not a directory')
  8398. sys.exit(1)
  8399. ftype_map: dict[str, gguf.LlamaFileType] = {
  8400. "f32": gguf.LlamaFileType.ALL_F32,
  8401. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8402. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8403. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8404. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8405. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8406. "auto": gguf.LlamaFileType.GUESSED,
  8407. }
  8408. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8409. if args.use_temp_file and is_split:
  8410. logger.error("Error: Cannot use temp file when splitting")
  8411. sys.exit(1)
  8412. if args.outfile is not None:
  8413. fname_out = args.outfile
  8414. elif hf_repo_id:
  8415. # if remote, use the model ID as the output file name
  8416. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8417. else:
  8418. fname_out = dir_model
  8419. logger.info(f"Loading model: {dir_model.name}")
  8420. is_mistral_format = args.mistral_format
  8421. if is_mistral_format and not _mistral_common_installed:
  8422. raise ImportError(_mistral_import_error_msg)
  8423. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8424. with torch.inference_mode():
  8425. output_type = ftype_map[args.outtype]
  8426. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8427. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8428. if not is_mistral_format:
  8429. model_architecture = get_model_architecture(hparams, model_type)
  8430. logger.info(f"Model architecture: {model_architecture}")
  8431. try:
  8432. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8433. except NotImplementedError:
  8434. logger.error(f"Model {model_architecture} is not supported")
  8435. sys.exit(1)
  8436. elif args.mmproj:
  8437. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8438. model_class = PixtralModel
  8439. else:
  8440. model_class = MistralModel
  8441. model_instance = model_class(dir_model, output_type, fname_out,
  8442. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8443. eager=args.no_lazy,
  8444. metadata_override=args.metadata, model_name=args.model_name,
  8445. split_max_tensors=args.split_max_tensors,
  8446. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8447. small_first_shard=args.no_tensor_first_split,
  8448. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8449. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8450. )
  8451. if args.vocab_only:
  8452. logger.info("Exporting model vocab...")
  8453. model_instance.write_vocab()
  8454. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8455. else:
  8456. logger.info("Exporting model...")
  8457. model_instance.write()
  8458. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8459. logger.info(f"Model successfully exported to {out_path}")
  8460. if __name__ == '__main__':
  8461. main()