tensor_mapping.py 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. "model.norm", # cogvlm
  100. ),
  101. # Rope frequencies
  102. MODEL_TENSOR.ROPE_FREQS: (
  103. "rope.freqs", # llama-pth
  104. "rotary_pos_emb.inv_freq", # chatglm
  105. ),
  106. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  107. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  108. MODEL_TENSOR.CONV1D: (
  109. "backbone.embed", # roberta
  110. ),
  111. }
  112. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  113. # Attention norm
  114. MODEL_TENSOR.ATTN_NORM: (
  115. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  116. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  117. "transformer.blocks.{bid}.norm_1", # mpt
  118. "transformer.h.{bid}.input_layernorm", # falcon7b
  119. "h.{bid}.input_layernorm", # bloom
  120. "transformer.h.{bid}.ln_mlp", # falcon40b
  121. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  122. "layers.{bid}.attention_norm", # llama-pth
  123. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  124. "model.layers.{bid}.ln1", # yi
  125. "h.{bid}.ln_1", # gpt2
  126. "transformer.h.{bid}.ln", # phi2
  127. "model.layers.layers.{bid}.norm", # plamo
  128. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  129. "model.layers.{bid}.attention_norm", # internlm2
  130. "model.layers.{bid}.norm", # mamba-qbert
  131. "backbone.layers.{bid}.norm", # mamba
  132. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  133. "model.layers.{bid}.pre_attn_norm", # grok-2
  134. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  135. "encoder.layers.{bid}.input_layernorm", # chatglm
  136. "transformer.layers.{bid}.attn_norm", # openelm
  137. "rwkv.blocks.{bid}.ln1", # rwkv6
  138. "model.layers.{bid}.ln1", # rwkv7
  139. "model.layers.{bid}.input_layernorm", # llama4
  140. "layers.{bid}.input_layernorm", # embeddinggemma
  141. "transformer_encoder.{bid}.attention_norm", # neobert
  142. "model.layers.{bid}.operator_norm", # lfm2
  143. "model.transformer.blocks.{bid}.attn_norm", # llada
  144. "layers.{bid}.input_layernorm", # qwen3-embedding
  145. "model.layers.{bid}.attention_layernorm", # apertus
  146. "model.layers.{bid}.pre_attention_layernorm", # kormo
  147. ),
  148. # Attention norm 2
  149. MODEL_TENSOR.ATTN_NORM_2: (
  150. "transformer.h.{bid}.ln_attn", # falcon40b
  151. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  152. "rwkv.blocks.{bid}.ln2", # rwkv6
  153. "model.layers.{bid}.ln2", # rwkv7
  154. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  155. ),
  156. # Attention query-key-value
  157. MODEL_TENSOR.ATTN_QKV: (
  158. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  159. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  160. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  161. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  162. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  163. "h.{bid}.self_attention.query_key_value", # bloom
  164. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  165. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  166. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  167. "h.{bid}.attn.c_attn", # gpt2
  168. "transformer.h.{bid}.mixer.Wqkv", # phi2
  169. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  170. "encoder.layers.{bid}.mixer.Wqkv", # jina
  171. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  172. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  173. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  174. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  175. "transformer_encoder.{bid}.qkv", # neobert
  176. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  177. ),
  178. # Attention query
  179. MODEL_TENSOR.ATTN_Q: (
  180. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  181. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  182. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  183. "layers.{bid}.attention.wq", # llama-pth
  184. "encoder.layer.{bid}.attention.self.query", # bert
  185. "transformer.layer.{bid}.attention.q_lin", # distillbert
  186. "transformer.h.{bid}.attn.q_proj", # gpt-j
  187. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  188. "model.layers.{bid}.attention.wq", # internlm2
  189. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  190. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  191. "model.layers.{bid}.self_attn.q_proj", # llama4
  192. "model.transformer.blocks.{bid}.q_proj", # llada
  193. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  194. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  195. ),
  196. # Attention key
  197. MODEL_TENSOR.ATTN_K: (
  198. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  199. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  200. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  201. "layers.{bid}.attention.wk", # llama-pth
  202. "encoder.layer.{bid}.attention.self.key", # bert
  203. "transformer.layer.{bid}.attention.k_lin", # distillbert
  204. "transformer.h.{bid}.attn.k_proj", # gpt-j
  205. "transformer.h.{bid}.attn.k", # refact
  206. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  207. "model.layers.{bid}.attention.wk", # internlm2
  208. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  209. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  210. "model.layers.{bid}.self_attn.k_proj", # llama4
  211. "model.transformer.blocks.{bid}.k_proj", # llada
  212. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  213. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  214. ),
  215. # Attention value
  216. MODEL_TENSOR.ATTN_V: (
  217. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  218. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  219. "layers.{bid}.attention.wv", # llama-pth
  220. "encoder.layer.{bid}.attention.self.value", # bert
  221. "transformer.layer.{bid}.attention.v_lin", # distillbert
  222. "transformer.h.{bid}.attn.v_proj", # gpt-j
  223. "transformer.h.{bid}.attn.v", # refact
  224. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  225. "model.layers.{bid}.attention.wv", # internlm2
  226. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  227. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  228. "model.layers.{bid}.self_attn.v_proj", # llama4
  229. "model.transformer.blocks.{bid}.v_proj", # llada
  230. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  231. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  232. ),
  233. # Attention output
  234. MODEL_TENSOR.ATTN_OUT: (
  235. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  236. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  237. "transformer.blocks.{bid}.attn.out_proj", # mpt
  238. "transformer.h.{bid}.self_attention.dense", # falcon
  239. "h.{bid}.self_attention.dense", # bloom
  240. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  241. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  242. "model.layers.{bid}.self_attn.out_proj", # lfm2
  243. "model.layers.{bid}.self_attn.linear_attn", # deci
  244. "layers.{bid}.attention.wo", # llama-pth
  245. "encoder.layer.{bid}.attention.output.dense", # bert
  246. "transformer.layer.{bid}.attention.out_lin", # distillbert
  247. "transformer.h.{bid}.attn.out_proj", # gpt-j
  248. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  249. "model.layers.{bid}.self_attn.dense", # persimmon
  250. "model.layers.{bid}.attention.dense", # bailingmoe2
  251. "h.{bid}.attn.c_proj", # gpt2
  252. "transformer.h.{bid}.mixer.out_proj", # phi2
  253. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  254. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  255. "model.layers.{bid}.attention.wo", # internlm2
  256. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  257. "encoder.layers.{bid}.mixer.out_proj", # jina
  258. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  259. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  260. "encoder.layers.{bid}.self_attention.dense", # chatglm
  261. "transformer.layers.{bid}.attn.out_proj", # openelm
  262. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  263. "model.layers.{bid}.self_attn.o_proj", # llama4
  264. "transformer_encoder.{bid}.wo", # neobert
  265. "model.transformer.blocks.{bid}.attn_out", # llada
  266. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  267. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  268. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  269. ),
  270. # Attention output norm
  271. MODEL_TENSOR.ATTN_OUT_NORM: (
  272. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  273. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  274. "encoder.layers.{bid}.norm1", # nomic-bert
  275. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  276. "model.layers.{bid}.post_attn_norm", # grok-2
  277. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  278. ),
  279. MODEL_TENSOR.ATTN_POST_NORM: (
  280. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  281. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  282. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  283. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  284. ),
  285. # Rotary embeddings
  286. MODEL_TENSOR.ATTN_ROT_EMBD: (
  287. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  288. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  289. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  290. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  291. ),
  292. MODEL_TENSOR.ATTN_SINKS: (
  293. "model.layers.{bid}.self_attn.sinks", # openai-moe
  294. ),
  295. MODEL_TENSOR.ATTN_GATE: (
  296. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  297. ),
  298. # Feed-forward norm
  299. MODEL_TENSOR.FFN_NORM: (
  300. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  301. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  302. "h.{bid}.post_attention_layernorm", # bloom
  303. "transformer.blocks.{bid}.norm_2", # mpt
  304. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  305. "layers.{bid}.ffn_norm", # llama-pth
  306. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  307. "model.layers.{bid}.ln2", # yi
  308. "h.{bid}.ln_2", # gpt2
  309. "model.layers.{bid}.ffn_norm", # internlm2
  310. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  311. "model.layers.{bid}.pre_moe_norm", # grok-2
  312. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  313. "transformer.layers.{bid}.ffn_norm", # openelm
  314. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  315. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  316. "model.layers.{bid}.post_attention_layernorm", # llama4
  317. "transformer_encoder.{bid}.ffn_norm", # neobert
  318. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  319. "model.transformer.blocks.{bid}.ff_norm", # llada
  320. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  321. "model.layers.{bid}.feedforward_layernorm", # apertus
  322. "model.layers.{bid}.pre_mlp_layernorm", # kormo
  323. ),
  324. # Pre feed-forward norm
  325. MODEL_TENSOR.FFN_PRE_NORM: (
  326. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  327. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  328. "model.layers.{bid}.pre_ff_layernorm.weight",
  329. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  330. ),
  331. # Post feed-forward norm
  332. MODEL_TENSOR.FFN_POST_NORM: (
  333. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  334. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  335. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  336. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  337. "model.layers.{bid}.feed_forward.up_proj",
  338. "model.layers.{bid}.post_moe_norm", # grok-2
  339. ),
  340. MODEL_TENSOR.FFN_GATE_INP: (
  341. "layers.{bid}.feed_forward.gate", # mixtral
  342. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  343. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  344. "transformer.decoder_layer.{bid}.router", # Grok
  345. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  346. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  347. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  348. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  349. "model.layers.{bid}.mlp.router", # openai-moe
  350. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  351. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  352. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  353. "model.layers.{bid}.mlp.router.gate", # afmoe
  354. "layers.{bid}.gate", # mistral-large
  355. ),
  356. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  357. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  358. ),
  359. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  360. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  361. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  362. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  363. "model.layers.{bid}.mlp.expert_bias", # afmoe
  364. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  365. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  366. ),
  367. # Feed-forward up
  368. MODEL_TENSOR.FFN_UP: (
  369. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  370. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  371. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  372. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  373. "h.{bid}.mlp.dense_h_to_4h", # bloom
  374. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  375. "layers.{bid}.mlp.up_proj", # embeddinggemma
  376. "layers.{bid}.feed_forward.w3", # llama-pth
  377. "encoder.layer.{bid}.intermediate.dense", # bert
  378. "transformer.layer.{bid}.ffn.lin1", # distillbert
  379. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  380. "transformer.h.{bid}.mlp.linear_3", # refact
  381. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  382. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  383. "transformer.h.{bid}.mlp.w1", # qwen
  384. "h.{bid}.mlp.c_fc", # gpt2
  385. "transformer.h.{bid}.mlp.fc1", # phi2
  386. "model.layers.{bid}.mlp.fc1", # phi2
  387. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  388. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  389. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  390. "model.layers.{bid}.feed_forward.w3", # internlm2
  391. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  392. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  393. "model.layers.{bid}.mlp.c_fc", # starcoder2
  394. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  395. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  396. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  397. "model.layers.{bid}.residual_mlp.w3", # arctic
  398. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  399. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  400. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  401. "transformer_encoder.{bid}.ffn.w12", # neobert
  402. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  403. "model.transformer.blocks.{bid}.up_proj", # llada
  404. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  405. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  406. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  407. ),
  408. MODEL_TENSOR.FFN_UP_EXP: (
  409. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  410. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  411. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  412. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  413. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  414. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  415. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  416. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  417. ),
  418. MODEL_TENSOR.FFN_UP_SHEXP: (
  419. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  420. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  421. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  422. "model.layers.{bid}.feed_forward.down_proj",
  423. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  424. "layers.{bid}.shared_experts.w3", # mistral-large
  425. ),
  426. MODEL_TENSOR.FFN_UP_CHEXP: (
  427. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  428. ),
  429. # AWQ-activation gate
  430. MODEL_TENSOR.FFN_ACT: (
  431. "transformer.blocks.{bid}.ffn.act", # mpt
  432. ),
  433. # Feed-forward gate
  434. MODEL_TENSOR.FFN_GATE: (
  435. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  436. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  437. "layers.{bid}.feed_forward.w1", # llama-pth
  438. "transformer.h.{bid}.mlp.w2", # qwen
  439. "transformer.h.{bid}.mlp.c_fc2", # jais
  440. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  441. "model.layers.{bid}.feed_forward.w1", # internlm2
  442. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  443. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  444. "transformer.h.{bid}.mlp.linear_1", # refact
  445. "model.layers.{bid}.residual_mlp.w1", # arctic
  446. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  447. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  448. "model.transformer.blocks.{bid}.ff_proj", # llada
  449. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  450. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  451. ),
  452. MODEL_TENSOR.FFN_GATE_EXP: (
  453. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  454. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  455. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  456. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  457. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  458. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  459. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  460. ),
  461. MODEL_TENSOR.FFN_GATE_SHEXP: (
  462. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  463. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  464. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  465. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  466. "layers.{bid}.shared_experts.w1", # mistral-large
  467. ),
  468. MODEL_TENSOR.FFN_GATE_CHEXP: (
  469. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  470. ),
  471. # Feed-forward down
  472. MODEL_TENSOR.FFN_DOWN: (
  473. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  474. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  475. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  476. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  477. "h.{bid}.mlp.dense_4h_to_h", # bloom
  478. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  479. "layers.{bid}.mlp.down_proj", # embeddinggemma
  480. "layers.{bid}.feed_forward.w2", # llama-pth
  481. "encoder.layer.{bid}.output.dense", # bert
  482. "transformer.layer.{bid}.ffn.lin2", # distillbert
  483. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  484. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  485. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  486. "h.{bid}.mlp.c_proj", # gpt2
  487. "transformer.h.{bid}.mlp.fc2", # phi2
  488. "model.layers.{bid}.mlp.fc2", # phi2
  489. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  490. "model.layers.{bid}.feed_forward.w2", # internlm2
  491. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  492. "model.layers.{bid}.mlp.c_proj", # starcoder2
  493. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  494. "transformer.layers.{bid}.ffn.proj_2", # openelm
  495. "model.layers.{bid}.residual_mlp.w2", # arctic
  496. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  497. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  498. "model.layers.h.{bid}.mlp.c_proj", # exaone
  499. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  500. "transformer_encoder.{bid}.ffn.w3", # neobert
  501. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  502. "model.transformer.blocks.{bid}.ff_out", # llada
  503. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  504. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  505. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  506. ),
  507. MODEL_TENSOR.FFN_DOWN_EXP: (
  508. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  509. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  510. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  511. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  512. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  513. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  514. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  515. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  516. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  517. ),
  518. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  519. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  520. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  521. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  522. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  523. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  524. "layers.{bid}.shared_experts.w2", # mistral-large
  525. ),
  526. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  527. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  528. ),
  529. MODEL_TENSOR.ATTN_Q_NORM: (
  530. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  531. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  532. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  533. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  534. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  535. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  536. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  537. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  538. "transformer.layers.{bid}.attn.q_norm", # openelm
  539. "model.layers.layers.{bid}.mixer.q", # plamo2
  540. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  541. "model.layers.{bid}.attention.query_layernorm", # apertus
  542. ),
  543. MODEL_TENSOR.ATTN_K_NORM: (
  544. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  545. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  546. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  547. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  548. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  549. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  550. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  551. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  552. "transformer.layers.{bid}.attn.k_norm", # openelm
  553. "model.layers.layers.{bid}.mixer.k", # plamo2
  554. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  555. "model.layers.{bid}.attention.key_layernorm", # apertus
  556. ),
  557. MODEL_TENSOR.ROPE_FREQS: (
  558. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  559. ),
  560. MODEL_TENSOR.LAYER_OUT_NORM: (
  561. "encoder.layer.{bid}.output.LayerNorm", # bert
  562. "transformer.layer.{bid}.output_layer_norm", # distillbert
  563. "encoder.layers.{bid}.norm2", # nomic-bert
  564. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  565. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  566. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  567. "model.layers.{bid}.final_layernorm", # bailingmoe2
  568. ),
  569. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  570. "model.embed_tokens_per_layer", # gemma3n
  571. ),
  572. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  573. "model.per_layer_model_projection", # gemma3n
  574. ),
  575. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  576. "model.per_layer_projection_norm", # gemma3n
  577. ),
  578. MODEL_TENSOR.ALTUP_PROJ: (
  579. "model.altup_projections", # gemma3n
  580. ),
  581. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  582. "model.altup_unembed_projections", # gemma3n
  583. ),
  584. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  585. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  586. ),
  587. MODEL_TENSOR.PER_LAYER_PROJ: (
  588. "model.layers.{bid}.per_layer_projection", # gemma3n
  589. ),
  590. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  591. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  592. ),
  593. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  594. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  595. ),
  596. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  597. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  598. ),
  599. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  600. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  601. ),
  602. MODEL_TENSOR.ALTUP_ROUTER: (
  603. "model.layers.{bid}.altup.modality_router", # gemma3n
  604. ),
  605. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  606. "model.layers.{bid}.altup.router_norm", # gemma3n
  607. ),
  608. MODEL_TENSOR.LAUREL_L: (
  609. "model.layers.{bid}.laurel.linear_left", # gemma3n
  610. ),
  611. MODEL_TENSOR.LAUREL_R: (
  612. "model.layers.{bid}.laurel.linear_right", # gemma3n
  613. ),
  614. MODEL_TENSOR.LAUREL_POST_NORM: (
  615. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  616. ),
  617. MODEL_TENSOR.SSM_IN: (
  618. "model.layers.{bid}.in_proj", # mamba-hf
  619. "backbone.layers.{bid}.mixer.in_proj", # mamba
  620. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  621. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  622. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  623. ),
  624. MODEL_TENSOR.SSM_CONV1D: (
  625. "model.layers.{bid}.conv1d", # mamba-hf
  626. "backbone.layers.{bid}.mixer.conv1d", # mamba
  627. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  628. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  629. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  630. ),
  631. MODEL_TENSOR.SSM_X: (
  632. "model.layers.{bid}.x_proj", # mamba-hf
  633. "backbone.layers.{bid}.mixer.x_proj", # mamba
  634. "model.layers.{bid}.mamba.x_proj", # jamba
  635. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  636. ),
  637. MODEL_TENSOR.SSM_DT: (
  638. "model.layers.{bid}.dt_proj", # mamba-hf
  639. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  640. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  641. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  642. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  643. ),
  644. MODEL_TENSOR.SSM_DT_NORM: (
  645. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  646. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  647. ),
  648. MODEL_TENSOR.SSM_A: (
  649. "model.layers.{bid}.A_log", # mamba-hf
  650. "backbone.layers.{bid}.mixer.A_log", # mamba
  651. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  652. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  653. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  654. ),
  655. MODEL_TENSOR.SSM_B_NORM: (
  656. "model.layers.{bid}.mamba.b_layernorm", # jamba
  657. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  658. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  659. ),
  660. MODEL_TENSOR.SSM_C_NORM: (
  661. "model.layers.{bid}.mamba.c_layernorm", # jamba
  662. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  663. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  664. ),
  665. MODEL_TENSOR.SSM_D: (
  666. "model.layers.{bid}.D", # mamba-hf
  667. "backbone.layers.{bid}.mixer.D", # mamba
  668. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  669. "model.layers.layers.{bid}.mixer.D", # plamo2
  670. ),
  671. MODEL_TENSOR.SSM_NORM: (
  672. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  673. "model.layers.{bid}.linear_attn.norm", # qwen3next
  674. "backbone.layers.{bid}.mixer.norm", # mamba2
  675. ),
  676. MODEL_TENSOR.SSM_OUT: (
  677. "model.layers.{bid}.out_proj", # mamba-hf
  678. "backbone.layers.{bid}.mixer.out_proj", # mamba
  679. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  680. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  681. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  682. ),
  683. MODEL_TENSOR.SSM_BETA_ALPHA: (
  684. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  685. ),
  686. MODEL_TENSOR.TIME_MIX_W0: (
  687. "model.layers.{bid}.attention.w0", # rwkv7
  688. ),
  689. MODEL_TENSOR.TIME_MIX_W1: (
  690. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  691. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  692. "model.layers.{bid}.attention.w1", # rwkv7
  693. ),
  694. MODEL_TENSOR.TIME_MIX_W2: (
  695. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  696. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  697. "model.layers.{bid}.attention.w2", # rwkv7
  698. ),
  699. MODEL_TENSOR.TIME_MIX_A0: (
  700. "model.layers.{bid}.attention.a0", # rwkv7
  701. ),
  702. MODEL_TENSOR.TIME_MIX_A1: (
  703. "model.layers.{bid}.attention.a1", # rwkv7
  704. ),
  705. MODEL_TENSOR.TIME_MIX_A2: (
  706. "model.layers.{bid}.attention.a2", # rwkv7
  707. ),
  708. MODEL_TENSOR.TIME_MIX_V0: (
  709. "model.layers.{bid}.attention.v0", # rwkv7
  710. ),
  711. MODEL_TENSOR.TIME_MIX_V1: (
  712. "model.layers.{bid}.attention.v1", # rwkv7
  713. ),
  714. MODEL_TENSOR.TIME_MIX_V2: (
  715. "model.layers.{bid}.attention.v2", # rwkv7
  716. ),
  717. MODEL_TENSOR.TIME_MIX_G1: (
  718. "model.layers.{bid}.attention.g1", # rwkv7
  719. ),
  720. MODEL_TENSOR.TIME_MIX_G2: (
  721. "model.layers.{bid}.attention.g2", # rwkv7
  722. ),
  723. MODEL_TENSOR.TIME_MIX_K_K: (
  724. "model.layers.{bid}.attention.k_k", # rwkv7
  725. ),
  726. MODEL_TENSOR.TIME_MIX_K_A: (
  727. "model.layers.{bid}.attention.k_a", # rwkv7
  728. ),
  729. MODEL_TENSOR.TIME_MIX_R_K: (
  730. "model.layers.{bid}.attention.r_k", # rwkv7
  731. ),
  732. MODEL_TENSOR.TIME_MIX_LERP_X: (
  733. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  734. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  735. ),
  736. MODEL_TENSOR.TIME_MIX_LERP_K: (
  737. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  738. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  739. ),
  740. MODEL_TENSOR.TIME_MIX_LERP_V: (
  741. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  742. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  743. ),
  744. MODEL_TENSOR.TIME_MIX_LERP_R: (
  745. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  746. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  747. ),
  748. MODEL_TENSOR.TIME_MIX_LERP_G: (
  749. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  750. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  751. ),
  752. MODEL_TENSOR.TIME_MIX_LERP_W: (
  753. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  754. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  755. ),
  756. MODEL_TENSOR.TIME_MIX_FIRST: (
  757. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  758. ),
  759. MODEL_TENSOR.TIME_MIX_DECAY: (
  760. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  761. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  762. ),
  763. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  764. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  765. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  766. ),
  767. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  768. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  769. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  770. ),
  771. MODEL_TENSOR.TIME_MIX_KEY: (
  772. "rwkv.blocks.{bid}.attention.key", # rwkv6
  773. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  774. "model.layers.{bid}.attention.key", # rwkv7
  775. "model.layers.{bid}.attention.k_proj", # rwkv7
  776. ),
  777. MODEL_TENSOR.TIME_MIX_VALUE: (
  778. "rwkv.blocks.{bid}.attention.value", # rwkv6
  779. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  780. "model.layers.{bid}.attention.value", # rwkv7
  781. "model.layers.{bid}.attention.v_proj", # rwkv7
  782. ),
  783. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  784. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  785. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  786. "model.layers.{bid}.attention.receptance", # rwkv7
  787. "model.layers.{bid}.attention.r_proj", # rwkv7
  788. ),
  789. MODEL_TENSOR.TIME_MIX_GATE: (
  790. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  791. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  792. ),
  793. MODEL_TENSOR.TIME_MIX_LN: (
  794. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  795. "model.layers.{bid}.attention.ln_x" # rwkv7
  796. ),
  797. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  798. "rwkv.blocks.{bid}.attention.output", # rwkv6
  799. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  800. "model.layers.{bid}.attention.output", # rwkv7
  801. "model.layers.{bid}.attention.o_proj", # rwkv7
  802. ),
  803. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  804. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  805. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  806. ),
  807. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  808. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  809. ),
  810. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  811. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  812. "model.layers.{bid}.feed_forward.key", # rwkv7
  813. ),
  814. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  815. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  816. ),
  817. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  818. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  819. "model.layers.{bid}.feed_forward.value", # rwkv7
  820. ),
  821. MODEL_TENSOR.ATTN_Q_A: (
  822. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  823. "layers.{bid}.attention.wq_a", # mistral-large
  824. ),
  825. MODEL_TENSOR.ATTN_Q_B: (
  826. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  827. "layers.{bid}.attention.wq_b", # mistral-large
  828. ),
  829. MODEL_TENSOR.ATTN_KV_A_MQA: (
  830. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  831. "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
  832. ),
  833. MODEL_TENSOR.ATTN_KV_B: (
  834. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  835. ),
  836. MODEL_TENSOR.ATTN_K_B: (
  837. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  838. "layers.{bid}.attention.k_b_proj", # mistral-large
  839. ),
  840. MODEL_TENSOR.ATTN_V_B: (
  841. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  842. "layers.{bid}.attention.v_b_proj", # mistral-large
  843. ),
  844. MODEL_TENSOR.ATTN_Q_A_NORM: (
  845. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  846. "layers.{bid}.attention.q_a_norm", # mistral-large
  847. ),
  848. MODEL_TENSOR.ATTN_KV_A_NORM: (
  849. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  850. "layers.{bid}.attention.kv_a_norm", # mistral-large
  851. ),
  852. MODEL_TENSOR.ATTN_SUB_NORM: (
  853. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  854. ),
  855. MODEL_TENSOR.FFN_SUB_NORM: (
  856. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  857. ),
  858. MODEL_TENSOR.DEC_ATTN_NORM: (
  859. "decoder.block.{bid}.layer.0.layer_norm", # t5
  860. ),
  861. MODEL_TENSOR.DEC_ATTN_Q: (
  862. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  863. ),
  864. MODEL_TENSOR.DEC_ATTN_K: (
  865. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  866. ),
  867. MODEL_TENSOR.DEC_ATTN_V: (
  868. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  869. ),
  870. MODEL_TENSOR.DEC_ATTN_OUT: (
  871. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  872. ),
  873. MODEL_TENSOR.DEC_ATTN_REL_B: (
  874. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  875. ),
  876. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  877. "decoder.block.{bid}.layer.1.layer_norm", # t5
  878. ),
  879. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  880. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  881. ),
  882. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  883. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  884. ),
  885. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  886. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  887. ),
  888. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  889. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  890. ),
  891. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  892. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  893. ),
  894. MODEL_TENSOR.DEC_FFN_NORM: (
  895. "decoder.block.{bid}.layer.2.layer_norm", # t5
  896. ),
  897. MODEL_TENSOR.DEC_FFN_GATE: (
  898. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  899. ),
  900. MODEL_TENSOR.DEC_FFN_UP: (
  901. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  902. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  903. ),
  904. MODEL_TENSOR.DEC_FFN_DOWN: (
  905. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  906. ),
  907. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  908. "decoder.final_layer_norm", # t5
  909. ),
  910. MODEL_TENSOR.ENC_ATTN_NORM: (
  911. "encoder.block.{bid}.layer.0.layer_norm", # t5
  912. ),
  913. MODEL_TENSOR.ENC_ATTN_Q: (
  914. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  915. ),
  916. MODEL_TENSOR.ENC_ATTN_K: (
  917. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  918. ),
  919. MODEL_TENSOR.ENC_ATTN_V: (
  920. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  921. ),
  922. MODEL_TENSOR.ENC_ATTN_OUT: (
  923. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  924. ),
  925. MODEL_TENSOR.ENC_ATTN_REL_B: (
  926. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  927. ),
  928. MODEL_TENSOR.ENC_FFN_NORM: (
  929. "encoder.block.{bid}.layer.1.layer_norm", # t5
  930. ),
  931. MODEL_TENSOR.ENC_FFN_GATE: (
  932. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  933. ),
  934. MODEL_TENSOR.ENC_FFN_UP: (
  935. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  936. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  937. ),
  938. MODEL_TENSOR.ENC_FFN_DOWN: (
  939. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  940. ),
  941. MODEL_TENSOR.VISEXP_UP: (
  942. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  943. ),
  944. MODEL_TENSOR.VISEXP_GATE: (
  945. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  946. ),
  947. MODEL_TENSOR.VISEXP_DOWN: (
  948. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  949. ),
  950. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  951. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  952. ),
  953. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  954. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  955. ),
  956. ############################################################################
  957. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  958. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  959. "encoder.final_layer_norm", # t5
  960. "layer_norm", # neobert
  961. ),
  962. MODEL_TENSOR.CLS: (
  963. "classifier", # jina
  964. "classifier.dense", # roberta
  965. "pre_classifier", # distillbert
  966. "dense", # neobert
  967. ),
  968. MODEL_TENSOR.CLS_OUT: (
  969. "classifier.out_proj", # roberta
  970. ),
  971. #############################################################################
  972. MODEL_TENSOR.CONVNEXT_DW: (
  973. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  974. ),
  975. MODEL_TENSOR.CONVNEXT_NORM: (
  976. "backbone.convnext.{bid}.norm", # wavtokenizer
  977. ),
  978. MODEL_TENSOR.CONVNEXT_PW1: (
  979. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  980. ),
  981. MODEL_TENSOR.CONVNEXT_PW2: (
  982. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  983. ),
  984. MODEL_TENSOR.CONVNEXT_GAMMA: (
  985. "backbone.convnext.{bid}.gamma", # wavtokenizer
  986. ),
  987. MODEL_TENSOR.POSNET_CONV1: (
  988. "backbone.posnet.{bid}.conv1", # wavtokenizer
  989. ),
  990. MODEL_TENSOR.POSNET_CONV2: (
  991. "backbone.posnet.{bid}.conv2", # wavtokenizer
  992. ),
  993. MODEL_TENSOR.POSNET_NORM: (
  994. "backbone.posnet.{bid}.norm", # wavtokenizer
  995. ),
  996. MODEL_TENSOR.POSNET_NORM1: (
  997. "backbone.posnet.{bid}.norm1", # wavtokenizer
  998. ),
  999. MODEL_TENSOR.POSNET_NORM2: (
  1000. "backbone.posnet.{bid}.norm2", # wavtokenizer
  1001. ),
  1002. MODEL_TENSOR.POSNET_ATTN_NORM: (
  1003. "backbone.posnet.{bid}.norm", # wavtokenizer
  1004. ),
  1005. MODEL_TENSOR.POSNET_ATTN_Q: (
  1006. "backbone.posnet.{bid}.q", # wavtokenizer
  1007. ),
  1008. MODEL_TENSOR.POSNET_ATTN_K: (
  1009. "backbone.posnet.{bid}.k", # wavtokenizer
  1010. ),
  1011. MODEL_TENSOR.POSNET_ATTN_V: (
  1012. "backbone.posnet.{bid}.v", # wavtokenizer
  1013. ),
  1014. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1015. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1016. ),
  1017. MODEL_TENSOR.SHORTCONV_CONV: (
  1018. "model.layers.{bid}.conv.conv",
  1019. ),
  1020. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1021. "model.layers.{bid}.conv.in_proj",
  1022. ),
  1023. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1024. "model.layers.{bid}.conv.out_proj",
  1025. ),
  1026. #############################################################################
  1027. ## Vision encoder
  1028. MODEL_TENSOR.V_MMPROJ: (
  1029. "multi_modal_projector.linear_{bid}",
  1030. "visual.merger.mlp.{bid}", # qwen2vl
  1031. ),
  1032. MODEL_TENSOR.V_MMPROJ_FC: (
  1033. "model.connector.modality_projection.proj", # SmolVLM
  1034. "model.vision.linear_proj.linear_proj", # cogvlm
  1035. ),
  1036. MODEL_TENSOR.V_MMPROJ_MLP: (
  1037. "model.mm_projector.mlp.mlp.{bid}",
  1038. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1039. "mlp1.{bid}", # InternVL
  1040. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1041. ),
  1042. MODEL_TENSOR.V_MMPROJ_PEG: (
  1043. "model.mm_projector.peg.peg.{bid}",
  1044. ),
  1045. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1046. "vision_tower.vision_model.embeddings.class_embedding",
  1047. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1048. "vision_model.class_embedding", # llama 4
  1049. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1050. ),
  1051. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1052. "vision_tower.vision_model.embeddings.patch_embedding",
  1053. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1054. "vpm.embeddings.patch_embedding",
  1055. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1056. "vision_tower.patch_conv", # pixtral-hf
  1057. "vision_encoder.patch_conv", # pixtral
  1058. "vision_model.patch_embedding.linear", # llama 4
  1059. "visual.patch_embed.proj", # qwen2vl
  1060. "vision_tower.patch_embed.proj", # kimi-vl
  1061. "model.vision.patch_embedding.proj", # cogvlm
  1062. ),
  1063. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1064. "vision_tower.vision_model.embeddings.position_embedding",
  1065. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1066. "vpm.embeddings.position_embedding",
  1067. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1068. "vision_model.positional_embedding_vlm", # llama 4
  1069. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1070. "visual.pos_embed", # qwen3vl
  1071. "model.vision.patch_embedding.position_embedding", # cogvlm
  1072. ),
  1073. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1074. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1075. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1076. ),
  1077. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1078. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1079. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1080. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1081. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1082. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1083. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1084. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1085. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1086. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1087. ),
  1088. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1089. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1090. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1091. ),
  1092. MODEL_TENSOR.V_ENC_ATTN_K: (
  1093. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1094. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1095. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1096. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1097. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1098. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1099. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1100. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1101. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1102. ),
  1103. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1104. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1105. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1106. ),
  1107. MODEL_TENSOR.V_ENC_ATTN_V: (
  1108. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1109. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1110. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1111. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1112. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1113. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1114. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1115. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1116. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1117. ),
  1118. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1119. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1120. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1121. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1122. "vpm.encoder.layers.{bid}.layer_norm1",
  1123. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1124. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1125. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1126. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1127. "visual.blocks.{bid}.norm1", # qwen2vl
  1128. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1129. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1130. ),
  1131. MODEL_TENSOR.V_ENC_ATTN_O: (
  1132. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1133. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1134. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1135. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1136. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1137. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1138. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1139. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1140. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1141. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1142. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1143. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1144. ),
  1145. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1146. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1147. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1148. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1149. "vpm.encoder.layers.{bid}.layer_norm2",
  1150. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1151. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1152. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1153. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1154. "visual.blocks.{bid}.norm2", # qwen2vl
  1155. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1156. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1157. ),
  1158. MODEL_TENSOR.V_ENC_FFN_UP: (
  1159. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1160. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1161. "vpm.encoder.layers.{bid}.mlp.fc1",
  1162. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1163. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1164. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1165. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1166. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1167. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1168. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1169. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1170. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1171. ),
  1172. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1173. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1174. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1175. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1176. ),
  1177. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1178. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1179. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1180. "vpm.encoder.layers.{bid}.mlp.fc2",
  1181. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1182. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1183. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1184. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1185. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1186. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1187. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1188. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1189. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1190. ),
  1191. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1192. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1193. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1194. ),
  1195. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1196. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1197. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1198. ),
  1199. MODEL_TENSOR.V_PRE_NORM: (
  1200. "vision_tower.vision_model.pre_layrnorm",
  1201. "vision_tower.ln_pre", # pixtral-hf
  1202. "vision_encoder.ln_pre", # pixtral
  1203. "vision_model.layernorm_pre", # llama4
  1204. ),
  1205. MODEL_TENSOR.V_POST_NORM: (
  1206. "vision_tower.vision_model.post_layernorm",
  1207. "model.vision_model.post_layernorm", # SmolVLM
  1208. "vision_model.layernorm_post", # llama4
  1209. "visual.merger.ln_q", # qwen2vl
  1210. "vision_tower.encoder.final_layernorm", # kimi-vl
  1211. ),
  1212. MODEL_TENSOR.V_MM_INP_PROJ: (
  1213. "multi_modal_projector.mm_input_projection",
  1214. ),
  1215. MODEL_TENSOR.V_MM_INP_NORM: (
  1216. "multi_modal_projector.norm",
  1217. "multi_modal_projector.layer_norm",
  1218. "multi_modal_projector.pre_norm",
  1219. "pre_mm_projector_norm",
  1220. "model.vision.linear_proj.norm1", # cogvlm
  1221. ),
  1222. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1223. "multi_modal_projector.mm_soft_emb_norm",
  1224. ),
  1225. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1226. "resampler.pos_embed_k",
  1227. ),
  1228. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1229. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1230. ),
  1231. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1232. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1233. ),
  1234. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1235. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1236. ),
  1237. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1238. "resampler.attn.out_proj",
  1239. ),
  1240. MODEL_TENSOR.V_RESMPL_KV: (
  1241. "resampler.kv_proj",
  1242. ),
  1243. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1244. "resampler.ln_post",
  1245. ),
  1246. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1247. "resampler.ln_kv",
  1248. ),
  1249. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1250. "resampler.ln_q",
  1251. ),
  1252. MODEL_TENSOR.V_RESMPL_PROJ: (
  1253. "resampler.proj",
  1254. ),
  1255. MODEL_TENSOR.V_RESMPL_QUERY: (
  1256. "resampler.query",
  1257. ),
  1258. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1259. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1260. ),
  1261. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1262. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1263. "patch_merger.merging_layer", # mistral
  1264. ),
  1265. MODEL_TENSOR.V_DS_NORM: (
  1266. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1267. ),
  1268. MODEL_TENSOR.V_DS_FC1: (
  1269. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1270. ),
  1271. MODEL_TENSOR.V_DS_FC2: (
  1272. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1273. ),
  1274. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1275. "model.vision.linear_proj.norm1", # cogvlm
  1276. ),
  1277. MODEL_TENSOR.V_MM_UP: (
  1278. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1279. ),
  1280. MODEL_TENSOR.V_MM_DOWN: (
  1281. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1282. ),
  1283. MODEL_TENSOR.V_MM_GATE: (
  1284. "model.vision.linear_proj.gate_proj", # cogvlm
  1285. ),
  1286. MODEL_TENSOR.V_TOK_BOI: (
  1287. "model.vision.boi", # cogvlm
  1288. ),
  1289. MODEL_TENSOR.V_TOK_EOI: (
  1290. "model.vision.eoi", # cogvlm
  1291. ),
  1292. # audio (mtmd)
  1293. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1294. "audio_tower.embed_positions", # ultravox
  1295. ),
  1296. MODEL_TENSOR.A_ENC_CONV1D: (
  1297. "audio_tower.conv{bid}", # ultravox
  1298. ),
  1299. MODEL_TENSOR.A_PRE_NORM: (),
  1300. MODEL_TENSOR.A_POST_NORM: (
  1301. "audio_tower.layer_norm", # ultravox
  1302. "audio_tower.ln_post", # qwen2omni
  1303. ),
  1304. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1305. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1306. ),
  1307. MODEL_TENSOR.A_ENC_ATTN_K: (
  1308. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1309. ),
  1310. MODEL_TENSOR.A_ENC_ATTN_V: (
  1311. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1312. ),
  1313. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1314. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1315. ),
  1316. MODEL_TENSOR.A_ENC_OUTPUT: (
  1317. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1318. ),
  1319. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1320. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1321. ),
  1322. MODEL_TENSOR.A_ENC_FFN_UP: (
  1323. "audio_tower.layers.{bid}.fc1", # ultravox
  1324. ),
  1325. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1326. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1327. "audio_tower.layers.{bid}.fc2", # ultravox
  1328. ),
  1329. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1330. # this prefix is added in the conversion code in modify_tensors()
  1331. MODEL_TENSOR.A_MMPROJ: (
  1332. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1333. ),
  1334. MODEL_TENSOR.A_MMPROJ_FC: (
  1335. "audio.multi_modal_projector.linear", # qwen2audio
  1336. "audio_tower.proj", # qwen2omni
  1337. ),
  1338. MODEL_TENSOR.A_MM_NORM_PRE: (
  1339. "audio.multi_modal_projector.ln_pre", # ultravox
  1340. ),
  1341. MODEL_TENSOR.A_MM_NORM_MID: (
  1342. "audio.multi_modal_projector.ln_mid", # ultravox
  1343. ),
  1344. # NextN/MTP tensors for GLM4_MOE
  1345. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1346. "model.layers.{bid}.eh_proj",
  1347. ),
  1348. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1349. "model.layers.{bid}.embed_tokens",
  1350. ),
  1351. MODEL_TENSOR.NEXTN_ENORM: (
  1352. "model.layers.{bid}.enorm",
  1353. ),
  1354. MODEL_TENSOR.NEXTN_HNORM: (
  1355. "model.layers.{bid}.hnorm",
  1356. ),
  1357. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1358. "model.layers.{bid}.shared_head.head",
  1359. ),
  1360. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1361. "model.layers.{bid}.shared_head.norm",
  1362. ),
  1363. }
  1364. # architecture-specific block mappings
  1365. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1366. MODEL_ARCH.ARCTIC: {
  1367. MODEL_TENSOR.FFN_NORM: (
  1368. "model.layers.{bid}.residual_layernorm",
  1369. ),
  1370. MODEL_TENSOR.FFN_NORM_EXP: (
  1371. "model.layers.{bid}.post_attention_layernorm",
  1372. ),
  1373. },
  1374. }
  1375. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1376. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1377. self.mapping = {}
  1378. for tensor, keys in self.mappings_cfg.items():
  1379. if tensor not in MODEL_TENSORS[arch]:
  1380. continue
  1381. tensor_name = TENSOR_NAMES[tensor]
  1382. self.mapping[tensor_name] = (tensor, tensor_name)
  1383. for key in keys:
  1384. self.mapping[key] = (tensor, tensor_name)
  1385. if arch in self.arch_block_mappings_cfg:
  1386. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1387. for bid in range(n_blocks):
  1388. for tensor, keys in self.block_mappings_cfg.items():
  1389. if tensor not in MODEL_TENSORS[arch]:
  1390. continue
  1391. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1392. self.mapping[tensor_name] = (tensor, tensor_name)
  1393. for key in keys:
  1394. key = key.format(bid = bid)
  1395. self.mapping[key] = (tensor, tensor_name)
  1396. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1397. result = self.mapping.get(key)
  1398. if result is not None:
  1399. return result
  1400. for suffix in try_suffixes:
  1401. if key.endswith(suffix):
  1402. result = self.mapping.get(key[:-len(suffix)])
  1403. if result is not None:
  1404. return result[0], result[1] + suffix
  1405. return None
  1406. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1407. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1408. if result is None:
  1409. return None
  1410. return result[1]
  1411. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1412. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1413. if result is None:
  1414. return None
  1415. return result[0]
  1416. def __getitem__(self, key: str) -> str:
  1417. try:
  1418. return self.mapping[key][1]
  1419. except KeyError:
  1420. raise KeyError(key)
  1421. def __contains__(self, key: str) -> bool:
  1422. return key in self.mapping
  1423. def __repr__(self) -> str:
  1424. return repr(self.mapping)
  1425. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1426. return TensorNameMap(arch, n_blocks)