ggml.c 325 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  44. if (handle == NULL)
  45. {
  46. return EAGAIN;
  47. }
  48. *out = handle;
  49. return 0;
  50. }
  51. static int pthread_join(pthread_t thread, void* unused) {
  52. return (int) WaitForSingleObject(thread, INFINITE);
  53. }
  54. static int sched_yield (void) {
  55. Sleep (0);
  56. return 0;
  57. }
  58. #else
  59. #include <pthread.h>
  60. #include <stdatomic.h>
  61. typedef void* thread_ret_t;
  62. #endif
  63. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  64. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  65. #ifndef __FMA__
  66. #define __FMA__
  67. #endif
  68. #ifndef __F16C__
  69. #define __F16C__
  70. #endif
  71. #ifndef __SSE3__
  72. #define __SSE3__
  73. #endif
  74. #endif
  75. #ifdef __HAIKU__
  76. #define static_assert(cond, msg) _Static_assert(cond, msg)
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) ((float) (x))
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #ifdef _MSC_VER
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  143. #else
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  146. #endif
  147. #elif defined(__POWER9_VECTOR__)
  148. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  149. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  150. /* the inline asm below is about 12% faster than the lookup method */
  151. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  152. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  153. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  154. register float f;
  155. register double d;
  156. __asm__(
  157. "mtfprd %0,%2\n"
  158. "xscvhpdp %0,%0\n"
  159. "frsp %1,%0\n" :
  160. /* temp */ "=d"(d),
  161. /* out */ "=f"(f):
  162. /* in */ "r"(h));
  163. return f;
  164. }
  165. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  166. register double d;
  167. register ggml_fp16_t r;
  168. __asm__( /* xscvdphp can work on double or single precision */
  169. "xscvdphp %0,%2\n"
  170. "mffprd %1,%0\n" :
  171. /* temp */ "=d"(d),
  172. /* out */ "=r"(r):
  173. /* in */ "f"(f));
  174. return r;
  175. }
  176. #else
  177. // FP16 <-> FP32
  178. // ref: https://github.com/Maratyszcza/FP16
  179. static inline float fp32_from_bits(uint32_t w) {
  180. union {
  181. uint32_t as_bits;
  182. float as_value;
  183. } fp32;
  184. fp32.as_bits = w;
  185. return fp32.as_value;
  186. }
  187. static inline uint32_t fp32_to_bits(float f) {
  188. union {
  189. float as_value;
  190. uint32_t as_bits;
  191. } fp32;
  192. fp32.as_value = f;
  193. return fp32.as_bits;
  194. }
  195. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  196. const uint32_t w = (uint32_t) h << 16;
  197. const uint32_t sign = w & UINT32_C(0x80000000);
  198. const uint32_t two_w = w + w;
  199. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  200. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  201. const float exp_scale = 0x1.0p-112f;
  202. #else
  203. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  204. #endif
  205. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  206. const uint32_t magic_mask = UINT32_C(126) << 23;
  207. const float magic_bias = 0.5f;
  208. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  209. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  210. const uint32_t result = sign |
  211. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  212. return fp32_from_bits(result);
  213. }
  214. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  215. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  216. const float scale_to_inf = 0x1.0p+112f;
  217. const float scale_to_zero = 0x1.0p-110f;
  218. #else
  219. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  220. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  221. #endif
  222. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  223. const uint32_t w = fp32_to_bits(f);
  224. const uint32_t shl1_w = w + w;
  225. const uint32_t sign = w & UINT32_C(0x80000000);
  226. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  227. if (bias < UINT32_C(0x71000000)) {
  228. bias = UINT32_C(0x71000000);
  229. }
  230. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  231. const uint32_t bits = fp32_to_bits(base);
  232. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  233. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  234. const uint32_t nonsign = exp_bits + mantissa_bits;
  235. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  236. }
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  239. #endif // __F16C__
  240. #endif // __ARM_NEON
  241. //
  242. // global data
  243. //
  244. // precomputed gelu table for f16 (128 KB)
  245. static ggml_fp16_t table_gelu_f16[1 << 16];
  246. // precomputed silu table for f16 (128 KB)
  247. static ggml_fp16_t table_silu_f16[1 << 16];
  248. // precomputed exp table for f16 (128 KB)
  249. static ggml_fp16_t table_exp_f16[1 << 16];
  250. // precomputed f32 table for f16 (256 KB)
  251. static float table_f32_f16[1 << 16];
  252. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  253. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  254. // This is also true for POWER9.
  255. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  256. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  257. uint16_t s;
  258. memcpy(&s, &f, sizeof(uint16_t));
  259. return table_f32_f16[s];
  260. }
  261. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  262. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  263. #endif
  264. // note: do not use these inside ggml.c
  265. // these are meant to be used via the ggml.h API
  266. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  267. return (float) GGML_FP16_TO_FP32(x);
  268. }
  269. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  270. return GGML_FP32_TO_FP16(x);
  271. }
  272. //
  273. // timing
  274. //
  275. #if defined(_MSC_VER) || defined(__MINGW32__)
  276. static int64_t timer_freq;
  277. void ggml_time_init(void) {
  278. LARGE_INTEGER frequency;
  279. QueryPerformanceFrequency(&frequency);
  280. timer_freq = frequency.QuadPart;
  281. }
  282. int64_t ggml_time_ms(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000) / timer_freq;
  286. }
  287. int64_t ggml_time_us(void) {
  288. LARGE_INTEGER t;
  289. QueryPerformanceCounter(&t);
  290. return (t.QuadPart * 1000000) / timer_freq;
  291. }
  292. #else
  293. void ggml_time_init(void) {}
  294. int64_t ggml_time_ms(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  298. }
  299. int64_t ggml_time_us(void) {
  300. struct timespec ts;
  301. clock_gettime(CLOCK_MONOTONIC, &ts);
  302. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  303. }
  304. #endif
  305. int64_t ggml_cycles(void) {
  306. return clock();
  307. }
  308. int64_t ggml_cycles_per_ms(void) {
  309. return CLOCKS_PER_SEC/1000;
  310. }
  311. #ifdef GGML_PERF
  312. #define ggml_perf_time_ms() ggml_time_ms()
  313. #define ggml_perf_time_us() ggml_time_us()
  314. #define ggml_perf_cycles() ggml_cycles()
  315. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  316. #else
  317. #define ggml_perf_time_ms() 0
  318. #define ggml_perf_time_us() 0
  319. #define ggml_perf_cycles() 0
  320. #define ggml_perf_cycles_per_ms() 0
  321. #endif
  322. //
  323. // cache line
  324. //
  325. #if defined(__cpp_lib_hardware_interference_size)
  326. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  327. #else
  328. #if defined(__POWER9_VECTOR__)
  329. #define CACHE_LINE_SIZE 128
  330. #else
  331. #define CACHE_LINE_SIZE 64
  332. #endif
  333. #endif
  334. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  335. //
  336. // quantization
  337. //
  338. #define QK 32
  339. // AVX routines provided by GH user Const-me
  340. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  341. #if __AVX2__ || __AVX512F__
  342. // Unpack 32 4-bit fields into 32 bytes
  343. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  344. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  345. {
  346. // Load 16 bytes from memory
  347. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  348. // Expand bytes into uint16_t values
  349. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  350. // Unpack values into individual bytes
  351. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  352. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  353. __m256i low = _mm256_and_si256( lowMask, bytes );
  354. high = _mm256_slli_epi16( high, 4 );
  355. bytes = _mm256_or_si256( low, high );
  356. return bytes;
  357. }
  358. static inline __m128i packNibbles( __m256i bytes )
  359. {
  360. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  361. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  362. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  363. __m256i low = _mm256_and_si256( lowByte, bytes );
  364. high = _mm256_srli_epi16( high, 4 );
  365. bytes = _mm256_or_si256( low, high );
  366. // Compress uint16_t lanes into bytes
  367. __m128i r0 = _mm256_castsi256_si128( bytes );
  368. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  369. return _mm_packus_epi16( r0, r1 );
  370. }
  371. #elif __AVX__
  372. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  373. {
  374. // Load 8 bytes from memory
  375. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  376. // Expand bytes into uint16_t values
  377. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  378. // Unpack values into individual bytes
  379. const __m128i lowMask = _mm_set1_epi8( 0xF );
  380. __m128i high = _mm_andnot_si128( lowMask, bytes );
  381. __m128i low = _mm_and_si128( lowMask, bytes );
  382. high = _mm_slli_epi16( high, 4 );
  383. bytes = _mm_or_si128( low, high );
  384. return bytes;
  385. }
  386. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  387. {
  388. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  389. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  390. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  391. __m128i low = _mm_and_si128( lowByte, bytes1 );
  392. high = _mm_srli_epi16( high, 4 );
  393. bytes1 = _mm_or_si128( low, high );
  394. high = _mm_andnot_si128( lowByte, bytes2 );
  395. low = _mm_and_si128( lowByte, bytes2 );
  396. high = _mm_srli_epi16( high, 4 );
  397. bytes2 = _mm_or_si128( low, high );
  398. return _mm_packus_epi16( bytes1, bytes2);
  399. }
  400. #endif
  401. // method 5
  402. // blocks of QK elements
  403. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  404. typedef struct {
  405. float d; // delta
  406. uint8_t qs[QK / 2]; // nibbles / quants
  407. } block_q4_0;
  408. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  409. // method 4
  410. // blocks of QK elements
  411. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  412. typedef struct {
  413. float d;
  414. float m;
  415. uint8_t qs[QK / 2]; // nibbles / quants
  416. } block_q4_1;
  417. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  418. // reference implementation for deterministic creation of model files
  419. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  420. assert(k % QK == 0);
  421. const int nb = k / QK;
  422. uint8_t pp[QK/2];
  423. for (int i = 0; i < nb; i++) {
  424. float amax = 0.0f; // absolute max
  425. for (int l = 0; l < QK; l++) {
  426. const float v = x[i*QK + l];
  427. amax = MAX(amax, fabsf(v));
  428. }
  429. const float d = amax / ((1 << 3) - 1);
  430. const float id = d ? 1.0f/d : 0.0f;
  431. y[i].d = d;
  432. for (int l = 0; l < QK; l += 2) {
  433. const float v0 = x[i*QK + l + 0]*id;
  434. const float v1 = x[i*QK + l + 1]*id;
  435. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  436. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  437. assert(vi0 < 16);
  438. assert(vi1 < 16);
  439. pp[l/2] = vi0 | (vi1 << 4);
  440. }
  441. memcpy(y[i].qs, pp, sizeof(pp));
  442. }
  443. }
  444. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  445. assert(k % QK == 0);
  446. const int nb = k / QK;
  447. block_q4_0 * restrict y = vy;
  448. #if defined(__POWER9_VECTOR__)
  449. const vector float v85 = vec_splats(8.5f);
  450. for (int i = 0; i < nb; i++) {
  451. float amax = 0.0f; // absolute max
  452. vector float srcv [8];
  453. vector float asrcv[8];
  454. vector float amaxv[8];
  455. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  456. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  457. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  458. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  459. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  460. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  461. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  462. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  463. amax = MAX(
  464. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  465. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  466. const float d = amax / ((1 << 3) - 1);
  467. const float id = d ? 1.0/d : 0.0;
  468. y[i].d = d;
  469. const vector float vid = vec_splats(id);
  470. uint8_t * restrict pb = y[i].qs;
  471. for (int l = 0; l < 8; l++) {
  472. const vector float vf = vec_madd(srcv[l], vid, v85);
  473. const vector signed int vi = vec_signed(vf);
  474. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  475. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  476. }
  477. }
  478. #elif __ARM_NEON
  479. for (int i = 0; i < nb; i++) {
  480. float32x4_t srcv [8];
  481. float32x4_t asrcv[8];
  482. float32x4_t amaxv[8];
  483. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  484. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  485. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  486. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  487. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  488. const float amax = vmaxvq_f32(amaxv[0]);
  489. const float d = amax / ((1 << 3) - 1);
  490. const float id = d ? 1.0f/d : 0.0f;
  491. y[i].d = d;
  492. for (int l = 0; l < 8; l++) {
  493. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  494. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  495. const int32x4_t vi = vcvtq_s32_f32(vf);
  496. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  497. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  498. }
  499. }
  500. #elif defined(__AVX2__)
  501. for (int i = 0; i < nb; i++) {
  502. // Load elements into 4 AVX vectors
  503. __m256 v0 = _mm256_loadu_ps( x );
  504. __m256 v1 = _mm256_loadu_ps( x + 8 );
  505. __m256 v2 = _mm256_loadu_ps( x + 16 );
  506. __m256 v3 = _mm256_loadu_ps( x + 24 );
  507. x += 32;
  508. // Compute max(abs(e)) for the block
  509. const __m256 signBit = _mm256_set1_ps( -0.0f );
  510. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  511. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  512. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  513. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  514. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  515. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  516. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  517. const float maxScalar = _mm_cvtss_f32( max4 );
  518. // Quantize these floats
  519. const float d = maxScalar / 7.0f;
  520. y[i].d = d;
  521. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  522. const __m256 mul = _mm256_set1_ps( id );
  523. // Apply the multiplier
  524. v0 = _mm256_mul_ps( v0, mul );
  525. v1 = _mm256_mul_ps( v1, mul );
  526. v2 = _mm256_mul_ps( v2, mul );
  527. v3 = _mm256_mul_ps( v3, mul );
  528. // Round to nearest integer
  529. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  530. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  531. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  532. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  533. // Convert floats to integers
  534. __m256i i0 = _mm256_cvtps_epi32( v0 );
  535. __m256i i1 = _mm256_cvtps_epi32( v1 );
  536. __m256i i2 = _mm256_cvtps_epi32( v2 );
  537. __m256i i3 = _mm256_cvtps_epi32( v3 );
  538. // Convert int32 to int16
  539. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  540. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  541. // Convert int16 to int8
  542. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  543. // We got our precious signed bytes, but the order is now wrong
  544. // These AVX2 pack instructions process 16-byte pieces independently
  545. // The following instruction is fixing the order
  546. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  547. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  548. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  549. const __m256i off = _mm256_set1_epi8( 8 );
  550. i0 = _mm256_add_epi8( i0, off );
  551. // Compress the vector into 4 bit/value, and store
  552. __m128i res = packNibbles( i0 );
  553. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  554. }
  555. #elif defined(__AVX__)
  556. for (int i = 0; i < nb; i++) {
  557. // Load elements into 4 AVX vectors
  558. __m256 v0 = _mm256_loadu_ps( x );
  559. __m256 v1 = _mm256_loadu_ps( x + 8 );
  560. __m256 v2 = _mm256_loadu_ps( x + 16 );
  561. __m256 v3 = _mm256_loadu_ps( x + 24 );
  562. x += 32;
  563. // Compute max(abs(e)) for the block
  564. const __m256 signBit = _mm256_set1_ps( -0.0f );
  565. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  566. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  567. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  568. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  569. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  570. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  571. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  572. const float maxScalar = _mm_cvtss_f32( max4 );
  573. // Quantize these floats
  574. const float d = maxScalar / 7.0f;
  575. y[i].d = d;
  576. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  577. const __m256 mul = _mm256_set1_ps( id );
  578. // Apply the multiplier
  579. v0 = _mm256_mul_ps( v0, mul );
  580. v1 = _mm256_mul_ps( v1, mul );
  581. v2 = _mm256_mul_ps( v2, mul );
  582. v3 = _mm256_mul_ps( v3, mul );
  583. // Round to nearest integer
  584. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  585. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  586. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  587. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  588. // Convert floats to integers
  589. __m256i i0 = _mm256_cvtps_epi32( v0 );
  590. __m256i i1 = _mm256_cvtps_epi32( v1 );
  591. __m256i i2 = _mm256_cvtps_epi32( v2 );
  592. __m256i i3 = _mm256_cvtps_epi32( v3 );
  593. // Since we don't have in AVX some necessary functions,
  594. // we split the registers in half and call AVX2 analogs from SSE
  595. __m128i ni0 = _mm256_castsi256_si128( i0 );
  596. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  597. __m128i ni2 = _mm256_castsi256_si128( i1 );
  598. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  599. __m128i ni4 = _mm256_castsi256_si128( i2 );
  600. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  601. __m128i ni6 = _mm256_castsi256_si128( i3 );
  602. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  603. // Convert int32 to int16
  604. ni0 = _mm_packs_epi32( ni0, ni1 );
  605. ni2 = _mm_packs_epi32( ni2, ni3 );
  606. ni4 = _mm_packs_epi32( ni4, ni5 );
  607. ni6 = _mm_packs_epi32( ni6, ni7 );
  608. // Convert int16 to int8
  609. ni0 = _mm_packs_epi16( ni0, ni2 );
  610. ni4 = _mm_packs_epi16( ni4, ni6 );
  611. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  612. const __m128i off = _mm_set1_epi8( 8);
  613. ni0 = _mm_add_epi8( ni0, off );
  614. ni4 = _mm_add_epi8( ni4, off );
  615. // Compress the vector into 4 bit/value, and store
  616. __m128i res = packNibbles( ni0, ni4 );
  617. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  618. }
  619. #elif defined(__wasm_simd128__)
  620. for (int i = 0; i < nb; i++) {
  621. float amax = 0.0f; // absolute max
  622. v128_t srcv [8];
  623. v128_t asrcv[8];
  624. v128_t amaxv[8];
  625. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  626. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  627. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  628. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  629. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  630. amax = MAX(
  631. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  632. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  633. const float d = amax / ((1 << 3) - 1);
  634. const float id = d ? 1.0/d : 0.0;
  635. y[i].d = d;
  636. for (int l = 0; l < 8; l++) {
  637. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  638. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  639. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  640. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  641. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  642. }
  643. }
  644. #else
  645. // scalar
  646. quantize_row_q4_0_reference(x, y, k);
  647. #endif
  648. }
  649. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  650. assert(k % QK == 0);
  651. const int nb = k / QK;
  652. block_q4_1 * restrict y = vy;
  653. uint8_t pp[QK/2];
  654. for (int i = 0; i < nb; i++) {
  655. float min = FLT_MAX;
  656. float max = -FLT_MAX;
  657. for (int l = 0; l < QK; l++) {
  658. const float v = x[i*QK + l];
  659. if (v < min) min = v;
  660. if (v > max) max = v;
  661. }
  662. const float d = (max - min) / ((1 << 4) - 1);
  663. const float id = d ? 1.0f/d : 0.0f;
  664. y[i].d = d;
  665. y[i].m = min;
  666. for (int l = 0; l < QK; l += 2) {
  667. const float v0 = (x[i*QK + l + 0] - min)*id;
  668. const float v1 = (x[i*QK + l + 1] - min)*id;
  669. const uint8_t vi0 = roundf(v0);
  670. const uint8_t vi1 = roundf(v1);
  671. assert(vi0 < 16);
  672. assert(vi1 < 16);
  673. pp[l/2] = vi0 | (vi1 << 4);
  674. }
  675. memcpy(y[i].qs, pp, sizeof(pp));
  676. }
  677. }
  678. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  679. assert(k % QK == 0);
  680. const int nb = k / QK;
  681. block_q4_1 * restrict y = vy;
  682. #if defined(__AVX2__)
  683. for (int i = 0; i < nb; i++) {
  684. // Load elements into 4 AVX vectors
  685. __m256 v0 = _mm256_loadu_ps( x );
  686. __m256 v1 = _mm256_loadu_ps( x + 8 );
  687. __m256 v2 = _mm256_loadu_ps( x + 16 );
  688. __m256 v3 = _mm256_loadu_ps( x + 24 );
  689. x += 32;
  690. // Compute max for the block
  691. __m256 vmax;
  692. vmax = _mm256_max_ps( v0, v1 );
  693. vmax = _mm256_max_ps( vmax, v2 );
  694. vmax = _mm256_max_ps( vmax, v3 );
  695. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  696. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  697. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  698. const float maxScalar = _mm_cvtss_f32( max4 );
  699. // Compute min for the block
  700. __m256 vmin;
  701. vmin = _mm256_min_ps( v0, v1 );
  702. vmin = _mm256_min_ps( vmin, v2 );
  703. vmin = _mm256_min_ps( vmin, v3 );
  704. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  705. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  706. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  707. const float minScalar = _mm_cvtss_f32( min4 );
  708. // Quantize these floats
  709. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  710. const float id = d ? 1.0f/d : 0.0f;
  711. y[i].m = minScalar;
  712. y[i].d = d;
  713. // x = (x-min)*id
  714. const __m256 mul = _mm256_set1_ps( id );
  715. const __m256 off = _mm256_set1_ps( minScalar );
  716. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  717. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  718. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  719. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  720. // Round to nearest integer
  721. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  722. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  723. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  724. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  725. // Convert floats to integers
  726. __m256i i0 = _mm256_cvtps_epi32( v0 );
  727. __m256i i1 = _mm256_cvtps_epi32( v1 );
  728. __m256i i2 = _mm256_cvtps_epi32( v2 );
  729. __m256i i3 = _mm256_cvtps_epi32( v3 );
  730. // Convert int32 to int16
  731. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  732. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  733. // Convert int16 to int8
  734. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  735. // We got our precious signed bytes, but the order is now wrong
  736. // These AVX2 pack instructions process 16-byte pieces independently
  737. // The following instruction is fixing the order
  738. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  739. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  740. // Compress the vector into 4 bit/value, and store
  741. __m128i res = packNibbles( i0 );
  742. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  743. }
  744. #elif __ARM_NEON
  745. for (int i = 0; i < nb; i++) {
  746. float32x4_t srcv[8];
  747. float32x4_t minv[8];
  748. float32x4_t maxv[8];
  749. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  750. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  751. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  752. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  753. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  754. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  755. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  756. const float min = vminvq_f32(minv[0]);
  757. const float max = vmaxvq_f32(maxv[0]);
  758. const float d = (max - min) / ((1 << 4) - 1);
  759. const float id = d ? 1.0f/d : 0.0f;
  760. y[i].d = d;
  761. y[i].m = min;
  762. const float32x4_t minv0 = vdupq_n_f32(min);
  763. for (int l = 0; l < 8; l++) {
  764. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  765. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  766. const int32x4_t vi = vcvtq_s32_f32(vf);
  767. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  768. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  769. }
  770. }
  771. #else
  772. // scalar
  773. quantize_row_q4_1_reference(x, vy, k);
  774. #endif
  775. }
  776. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  777. assert(k % QK == 0);
  778. const int nb = k / QK;
  779. const block_q4_0 * restrict x = vx;
  780. #if defined(__AVX2__)
  781. for (int i = 0; i < nb; i++) {
  782. // scale factor
  783. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  784. const uint8_t * restrict pp = x[i].qs;
  785. for (int l = 0; l < QK; l += 32) {
  786. // Load 32x4-bit integers into 32x8-bit integers
  787. __m256i vx8 = bytesFromNibbles(pp+l/2);
  788. // Subtract 8 from the integers
  789. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  790. // Convert to 16-bit int
  791. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  792. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  793. // Convert to 32-bit int -> float 32
  794. const __m256 vf[4] = {
  795. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  796. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  797. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  798. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  799. };
  800. // Scale and store
  801. for (int j = 0; j < 4; j++) {
  802. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  803. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  804. }
  805. }
  806. }
  807. #elif defined(__ARM_NEON)
  808. for (int i = 0; i < nb; i++) {
  809. const float32x4_t vd = vdupq_n_f32(x[i].d);
  810. const uint8_t * restrict pp = x[i].qs;
  811. for (int l = 0; l < QK; l += 16) {
  812. // Load 16x4-bit integers into 8x8-bit integers
  813. const uint8x8_t v8 = vld1_u8(pp + l/2);
  814. // Expand 4-bit qs to 8-bit bytes
  815. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  816. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  817. // Convert to signed 8-bit integers
  818. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  819. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  820. // Subtract 8 from each byte
  821. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  822. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  823. // Interleave and combine
  824. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  825. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  826. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  827. // convert to 2x int16x8_t
  828. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  829. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  830. // convert to 4x float32x4_t
  831. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  832. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  833. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  834. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  835. // Multiply by d
  836. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  837. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  838. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  839. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  840. // Store
  841. vst1q_f32(y + i*QK + l + 0, r0);
  842. vst1q_f32(y + i*QK + l + 4, r1);
  843. vst1q_f32(y + i*QK + l + 8, r2);
  844. vst1q_f32(y + i*QK + l + 12, r3);
  845. }
  846. }
  847. #else
  848. // scalar
  849. for (int i = 0; i < nb; i++) {
  850. const float d = x[i].d;
  851. const uint8_t * restrict pp = x[i].qs;
  852. for (int l = 0; l < QK; l += 2) {
  853. const uint8_t vi = pp[l/2];
  854. const int8_t vi0 = vi & 0xf;
  855. const int8_t vi1 = vi >> 4;
  856. const float v0 = (vi0 - 8)*d;
  857. const float v1 = (vi1 - 8)*d;
  858. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  859. y[i*QK + l + 0] = v0;
  860. y[i*QK + l + 1] = v1;
  861. assert(!isnan(y[i*QK + l + 0]));
  862. assert(!isnan(y[i*QK + l + 1]));
  863. }
  864. }
  865. #endif
  866. }
  867. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  868. assert(k % QK == 0);
  869. const int nb = k / QK;
  870. const block_q4_1 * restrict x = vx;
  871. #if defined(__AVX2__)
  872. for (int i = 0; i < nb; i++) {
  873. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  874. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  875. const uint8_t * restrict pp = x[i].qs;
  876. for (int l = 0; l < QK; l += 32) {
  877. // Load 32x4-bit integers into 32x8-bit integers
  878. __m256i vx8 = bytesFromNibbles(pp+l/2);
  879. // Convert to 16-bit int
  880. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  881. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  882. // Convert to 32-bit int -> float 32
  883. const __m256 vf[4] = {
  884. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  885. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  886. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  887. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  888. };
  889. // Scale, add m and store
  890. for (int j = 0; j < 4; j++) {
  891. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  892. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  893. }
  894. }
  895. }
  896. #elif defined(__ARM_NEON)
  897. for (int i = 0; i < nb; i++) {
  898. const float32x4_t vd = vdupq_n_f32(x[i].d);
  899. const float32x4_t vm = vdupq_n_f32(x[i].m);
  900. const uint8_t * restrict pp = x[i].qs;
  901. for (int l = 0; l < QK; l += 16) {
  902. // Load 16x4-bit integers into 8x8-bit integers
  903. const uint8x8_t v8 = vld1_u8(pp + l/2);
  904. // Expand 4-bit qs to 8-bit bytes
  905. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  906. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  907. // Interleave and combine
  908. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  909. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  910. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  911. // convert to 2x uint16x8_t
  912. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  913. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  914. // convert to 4x float32x4_t
  915. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  916. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  917. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  918. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  919. // multiply by d and add m
  920. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  921. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  922. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  923. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  924. // Store
  925. vst1q_f32(y + i*QK + l + 0, r0);
  926. vst1q_f32(y + i*QK + l + 4, r1);
  927. vst1q_f32(y + i*QK + l + 8, r2);
  928. vst1q_f32(y + i*QK + l + 12, r3);
  929. }
  930. }
  931. #else
  932. for (int i = 0; i < nb; i++) {
  933. const float d = x[i].d;
  934. const float m = x[i].m;
  935. const uint8_t * restrict pp = x[i].qs;
  936. for (int l = 0; l < QK; l += 2) {
  937. const uint8_t vi = pp[l/2];
  938. const int8_t vi0 = vi & 0xf;
  939. const int8_t vi1 = vi >> 4;
  940. const float v0 = vi0*d + m;
  941. const float v1 = vi1*d + m;
  942. y[i*QK + l + 0] = v0;
  943. y[i*QK + l + 1] = v1;
  944. assert(!isnan(y[i*QK + l + 0]));
  945. assert(!isnan(y[i*QK + l + 1]));
  946. }
  947. }
  948. #endif
  949. }
  950. //
  951. // simd mappings
  952. //
  953. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  954. // we then implement the fundamental computation operations below using only these macros
  955. // adding support for new architectures requires to define the corresponding SIMD macros
  956. //
  957. // GGML_F32_STEP / GGML_F16_STEP
  958. // number of elements to process in a single step
  959. //
  960. // GGML_F32_EPR / GGML_F16_EPR
  961. // number of elements to fit in a single register
  962. //
  963. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  964. #define GGML_SIMD
  965. // F32 NEON
  966. #define GGML_F32_STEP 16
  967. #define GGML_F32_EPR 4
  968. #define GGML_F32x4 float32x4_t
  969. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  970. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  971. #define GGML_F32x4_LOAD vld1q_f32
  972. #define GGML_F32x4_STORE vst1q_f32
  973. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  974. #define GGML_F32x4_ADD vaddq_f32
  975. #define GGML_F32x4_MUL vmulq_f32
  976. #if defined(__ARM_FEATURE_QRDMX)
  977. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  978. #else
  979. #define GGML_F32x4_REDUCE_ONE(x) \
  980. (vgetq_lane_f32(x, 0) + \
  981. vgetq_lane_f32(x, 1) + \
  982. vgetq_lane_f32(x, 2) + \
  983. vgetq_lane_f32(x, 3))
  984. #endif
  985. #define GGML_F32x4_REDUCE(res, x) \
  986. { \
  987. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  988. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  989. } \
  990. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  991. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  992. } \
  993. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  994. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  995. } \
  996. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  997. }
  998. #define GGML_F32_VEC GGML_F32x4
  999. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1000. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1001. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1002. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1003. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1004. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1005. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1006. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1007. // F16 NEON
  1008. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1009. #define GGML_F16_STEP 32
  1010. #define GGML_F16_EPR 8
  1011. #define GGML_F16x8 float16x8_t
  1012. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1013. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1014. #define GGML_F16x8_LOAD vld1q_f16
  1015. #define GGML_F16x8_STORE vst1q_f16
  1016. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1017. #define GGML_F16x8_ADD vaddq_f16
  1018. #define GGML_F16x8_MUL vmulq_f16
  1019. #define GGML_F16x8_REDUCE(res, x) \
  1020. { \
  1021. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1022. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1023. } \
  1024. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1025. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1026. } \
  1027. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1028. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1029. } \
  1030. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1031. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1032. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1033. }
  1034. #define GGML_F16_VEC GGML_F16x8
  1035. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1036. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1037. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1038. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1039. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1040. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1041. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1042. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1043. #else
  1044. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1045. // and take advantage of the vcvt_ functions to convert to/from FP16
  1046. #define GGML_F16_STEP 16
  1047. #define GGML_F16_EPR 4
  1048. #define GGML_F32Cx4 float32x4_t
  1049. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1050. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1051. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1052. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1053. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1054. #define GGML_F32Cx4_ADD vaddq_f32
  1055. #define GGML_F32Cx4_MUL vmulq_f32
  1056. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1057. #define GGML_F16_VEC GGML_F32Cx4
  1058. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1059. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1060. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1061. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1062. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1063. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1064. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1065. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1066. #endif
  1067. #elif defined(__AVX__)
  1068. #define GGML_SIMD
  1069. // F32 AVX
  1070. #define GGML_F32_STEP 32
  1071. #define GGML_F32_EPR 8
  1072. #define GGML_F32x8 __m256
  1073. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1074. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1075. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1076. #define GGML_F32x8_STORE _mm256_storeu_ps
  1077. #if defined(__FMA__)
  1078. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1079. #else
  1080. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1081. #endif
  1082. #define GGML_F32x8_ADD _mm256_add_ps
  1083. #define GGML_F32x8_MUL _mm256_mul_ps
  1084. #define GGML_F32x8_REDUCE(res, x) \
  1085. { \
  1086. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1087. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1088. } \
  1089. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1090. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1091. } \
  1092. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1093. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1094. } \
  1095. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1096. _mm256_extractf128_ps(x[0], 1)); \
  1097. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1098. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1099. }
  1100. // TODO: is this optimal ?
  1101. #define GGML_F32_VEC GGML_F32x8
  1102. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1103. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1104. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1105. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1106. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1107. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1108. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1109. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1110. // F16 AVX
  1111. #define GGML_F16_STEP 32
  1112. #define GGML_F16_EPR 8
  1113. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1114. #define GGML_F32Cx8 __m256
  1115. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1116. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1117. #if defined(__F16C__)
  1118. // the _mm256_cvt intrinsics require F16C
  1119. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1120. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1121. #else
  1122. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1123. float tmp[8];
  1124. for (int i = 0; i < 8; i++)
  1125. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1126. return _mm256_loadu_ps(tmp);
  1127. }
  1128. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1129. float arr[8];
  1130. _mm256_storeu_ps(arr, y);
  1131. for (int i = 0; i < 8; i++)
  1132. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1133. }
  1134. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1135. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1136. #endif
  1137. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1138. #define GGML_F32Cx8_ADD _mm256_add_ps
  1139. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1140. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1141. #define GGML_F16_VEC GGML_F32Cx8
  1142. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1143. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1144. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1145. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1146. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1147. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1148. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1149. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1150. #elif defined(__POWER9_VECTOR__)
  1151. #define GGML_SIMD
  1152. // F32 POWER9
  1153. #define GGML_F32_STEP 32
  1154. #define GGML_F32_EPR 4
  1155. #define GGML_F32x4 vector float
  1156. #define GGML_F32x4_ZERO 0.0f
  1157. #define GGML_F32x4_SET1 vec_splats
  1158. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1159. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1160. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1161. #define GGML_F32x4_ADD vec_add
  1162. #define GGML_F32x4_MUL vec_mul
  1163. #define GGML_F32x4_REDUCE(res, x) \
  1164. { \
  1165. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1166. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1167. } \
  1168. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1169. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1170. } \
  1171. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1172. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1173. } \
  1174. res = vec_extract(x[0], 0) + \
  1175. vec_extract(x[0], 1) + \
  1176. vec_extract(x[0], 2) + \
  1177. vec_extract(x[0], 3); \
  1178. }
  1179. #define GGML_F32_VEC GGML_F32x4
  1180. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1181. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1182. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1183. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1184. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1185. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1186. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1187. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1188. // F16 POWER9
  1189. #define GGML_F16_STEP GGML_F32_STEP
  1190. #define GGML_F16_EPR GGML_F32_EPR
  1191. #define GGML_F16_VEC GGML_F32x4
  1192. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1193. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1194. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1195. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1196. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1197. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1198. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1199. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1200. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1201. #define GGML_F16_VEC_STORE(p, r, i) \
  1202. if (i & 0x1) \
  1203. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1204. r[i - GGML_ENDIAN_BYTE(0)]), \
  1205. 0, p - GGML_F16_EPR)
  1206. #elif defined(__wasm_simd128__)
  1207. #define GGML_SIMD
  1208. // F32 WASM
  1209. #define GGML_F32_STEP 16
  1210. #define GGML_F32_EPR 4
  1211. #define GGML_F32x4 v128_t
  1212. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1213. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1214. #define GGML_F32x4_LOAD wasm_v128_load
  1215. #define GGML_F32x4_STORE wasm_v128_store
  1216. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1217. #define GGML_F32x4_ADD wasm_f32x4_add
  1218. #define GGML_F32x4_MUL wasm_f32x4_mul
  1219. #define GGML_F32x4_REDUCE(res, x) \
  1220. { \
  1221. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1222. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1223. } \
  1224. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1225. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1226. } \
  1227. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1228. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1229. } \
  1230. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1231. wasm_f32x4_extract_lane(x[0], 1) + \
  1232. wasm_f32x4_extract_lane(x[0], 2) + \
  1233. wasm_f32x4_extract_lane(x[0], 3); \
  1234. }
  1235. #define GGML_F32_VEC GGML_F32x4
  1236. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1237. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1238. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1239. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1240. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1241. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1242. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1243. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1244. // F16 WASM
  1245. #define GGML_F16_STEP 16
  1246. #define GGML_F16_EPR 4
  1247. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1248. float tmp[4];
  1249. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1250. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1251. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1252. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1253. return wasm_v128_load(tmp);
  1254. }
  1255. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1256. float tmp[4];
  1257. wasm_v128_store(tmp, x);
  1258. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1259. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1260. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1261. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1262. }
  1263. #define GGML_F16x4 v128_t
  1264. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1265. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1266. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1267. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1268. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1269. #define GGML_F16x4_ADD wasm_f32x4_add
  1270. #define GGML_F16x4_MUL wasm_f32x4_mul
  1271. #define GGML_F16x4_REDUCE(res, x) \
  1272. { \
  1273. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1274. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1275. } \
  1276. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1277. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1278. } \
  1279. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1280. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1281. } \
  1282. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1283. wasm_f32x4_extract_lane(x[0], 1) + \
  1284. wasm_f32x4_extract_lane(x[0], 2) + \
  1285. wasm_f32x4_extract_lane(x[0], 3); \
  1286. }
  1287. #define GGML_F16_VEC GGML_F16x4
  1288. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1296. #elif defined(__SSE3__)
  1297. #define GGML_SIMD
  1298. // F32 SSE
  1299. #define GGML_F32_STEP 32
  1300. #define GGML_F32_EPR 4
  1301. #define GGML_F32x4 __m128
  1302. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1303. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1304. #define GGML_F32x4_LOAD _mm_loadu_ps
  1305. #define GGML_F32x4_STORE _mm_storeu_ps
  1306. #if defined(__FMA__)
  1307. // TODO: Does this work?
  1308. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1309. #else
  1310. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1311. #endif
  1312. #define GGML_F32x4_ADD _mm_add_ps
  1313. #define GGML_F32x4_MUL _mm_mul_ps
  1314. #define GGML_F32x4_REDUCE(res, x) \
  1315. { \
  1316. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1317. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1318. } \
  1319. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1320. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1321. } \
  1322. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1323. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1324. } \
  1325. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1326. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1327. }
  1328. // TODO: is this optimal ?
  1329. #define GGML_F32_VEC GGML_F32x4
  1330. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1331. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1332. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1333. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1334. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1335. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1336. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1337. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1338. // F16 SSE
  1339. #define GGML_F16_STEP 32
  1340. #define GGML_F16_EPR 4
  1341. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1342. float tmp[4];
  1343. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1344. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1345. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1346. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1347. return _mm_loadu_ps(tmp);
  1348. }
  1349. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1350. float arr[4];
  1351. _mm_storeu_ps(arr, y);
  1352. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1353. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1354. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1355. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1356. }
  1357. #define GGML_F32Cx4 __m128
  1358. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1359. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1360. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1361. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1362. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1363. #define GGML_F32Cx4_ADD _mm_add_ps
  1364. #define GGML_F32Cx4_MUL _mm_mul_ps
  1365. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1366. #define GGML_F16_VEC GGML_F32Cx4
  1367. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1368. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1369. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1370. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1371. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1372. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1373. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1374. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1375. #endif
  1376. // GGML_F32_ARR / GGML_F16_ARR
  1377. // number of registers to use per step
  1378. #ifdef GGML_SIMD
  1379. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1380. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1381. #endif
  1382. //
  1383. // fundamental operations
  1384. //
  1385. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1386. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1387. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1388. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1389. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1390. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1391. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1392. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1393. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1394. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1395. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1396. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1397. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1398. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1399. #ifdef GGML_SIMD
  1400. float sumf = 0.0f;
  1401. const int np = (n & ~(GGML_F32_STEP - 1));
  1402. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1403. GGML_F32_VEC ax[GGML_F32_ARR];
  1404. GGML_F32_VEC ay[GGML_F32_ARR];
  1405. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1406. for (int j = 0; j < GGML_F32_ARR; j++) {
  1407. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1408. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1409. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. // reduce sum0..sum3 to sum0
  1413. GGML_F32_VEC_REDUCE(sumf, sum);
  1414. // leftovers
  1415. for (int i = np; i < n; ++i) {
  1416. sumf += x[i]*y[i];
  1417. }
  1418. #else
  1419. // scalar
  1420. ggml_float sumf = 0.0;
  1421. for (int i = 0; i < n; ++i) {
  1422. sumf += (ggml_float)(x[i]*y[i]);
  1423. }
  1424. #endif
  1425. *s = sumf;
  1426. }
  1427. #if __AVX512F__ && QK == 32
  1428. static inline __m512 dot_q4_0_oneblock_avx512(
  1429. __m512 acc,
  1430. const block_q4_0 * restrict x,
  1431. const block_q4_0 * restrict y,
  1432. int i
  1433. ) {
  1434. // Compute combined scale for the block
  1435. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1436. __m256i bx = bytesFromNibbles( x[i].qs );
  1437. __m256i by = bytesFromNibbles( y[i].qs );
  1438. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1439. const __m256i off = _mm256_set1_epi8( 8 );
  1440. bx = _mm256_sub_epi8( bx, off );
  1441. by = _mm256_sub_epi8( by, off );
  1442. // Sign-extend 16 signed bytes into int16_t
  1443. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1444. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1445. // Compute products of int16_t integers, add pairwise
  1446. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1447. // Convert int32_t to float
  1448. __m512 p = _mm512_cvtepi32_ps( i64 );
  1449. // Apply the scale, and accumulate
  1450. return _mm512_fmadd_ps( d, p, acc );
  1451. }
  1452. #endif
  1453. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1454. ggml_float sumf = 0.0;
  1455. #if defined(GGML_SIMD)
  1456. const int np = (n & ~(GGML_F16_STEP - 1));
  1457. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1458. GGML_F16_VEC ax[GGML_F16_ARR];
  1459. GGML_F16_VEC ay[GGML_F16_ARR];
  1460. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1461. for (int j = 0; j < GGML_F16_ARR; j++) {
  1462. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1463. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1464. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1465. }
  1466. }
  1467. // reduce sum0..sum3 to sum0
  1468. GGML_F16_VEC_REDUCE(sumf, sum);
  1469. // leftovers
  1470. for (int i = np; i < n; ++i) {
  1471. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1472. }
  1473. #else
  1474. for (int i = 0; i < n; ++i) {
  1475. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1476. }
  1477. #endif
  1478. *s = sumf;
  1479. }
  1480. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1481. const int nb = n / QK;
  1482. assert(n % QK == 0);
  1483. assert(nb % 2 == 0);
  1484. const block_q4_0 * restrict x = vx;
  1485. const block_q4_0 * restrict y = vy;
  1486. float sumf = 0.0;
  1487. #if defined(__ARM_NEON)
  1488. float sum0 = 0.0f;
  1489. float sum1 = 0.0f;
  1490. for (int i = 0; i < nb; i += 2) {
  1491. const block_q4_0 * restrict x0 = &x[i + 0];
  1492. const block_q4_0 * restrict y0 = &y[i + 0];
  1493. const block_q4_0 * restrict x1 = &x[i + 1];
  1494. const block_q4_0 * restrict y1 = &y[i + 1];
  1495. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1496. const int8x16_t s8b = vdupq_n_s8(0x8);
  1497. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1498. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1499. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1500. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1501. // 4-bit -> 8-bit
  1502. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1503. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1504. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1505. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1506. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1507. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1508. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1509. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1510. // sub 8
  1511. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1512. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1513. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1514. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1515. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1516. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1517. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1518. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1519. #if defined(__ARM_FEATURE_DOTPROD)
  1520. // dot product into int16x8_t
  1521. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1522. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1523. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1524. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1525. // scalar
  1526. #if defined(__ARM_FEATURE_QRDMX)
  1527. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1528. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1529. #else
  1530. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1531. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1532. #endif
  1533. #else
  1534. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1535. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1536. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1537. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1538. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1539. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1540. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1541. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1542. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1543. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1544. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1545. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1546. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1547. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1548. // scalar
  1549. #if defined(__ARM_FEATURE_QRDMX)
  1550. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1551. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1552. #else
  1553. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1554. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1555. #endif
  1556. #endif
  1557. }
  1558. sumf = sum0 + sum1;
  1559. #elif defined(__AVX512F__)
  1560. // Initialize accumulator with zeros
  1561. __m512 acc0 = _mm512_setzero_ps();
  1562. __m512 acc1 = _mm512_setzero_ps();
  1563. const int superblock_size = 8;
  1564. const int superblock_count = nb / superblock_size;
  1565. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1566. int i = superblock_ix * superblock_size;
  1567. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1568. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1569. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1570. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1571. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1572. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1573. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1574. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1575. }
  1576. // Remainders
  1577. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1578. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1579. }
  1580. // Horizontal sum of all lanes of the accumulator
  1581. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1582. #elif defined(__AVX2__)
  1583. // Initialize accumulator with zeros
  1584. __m256 acc = _mm256_setzero_ps();
  1585. /* Prepare the constants we will need during execution */
  1586. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1587. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1588. #define UNROLL_COUNT 8
  1589. // make sure we only unroll multiples of the block count
  1590. assert(nb % UNROLL_COUNT == 0);
  1591. // Main loop
  1592. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1593. // This loop will be unrolled by the compiler
  1594. for (int u=0;u<UNROLL_COUNT;u++) {
  1595. /* Compute combined scale for the block */
  1596. const __m256 scale = _mm256_mul_ps(
  1597. _mm256_broadcast_ss( &x[i+u].d ),
  1598. _mm256_broadcast_ss( &y[i+u].d ) );
  1599. /* get input from x
  1600. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1601. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1602. /* Load 16 bytes from memory */
  1603. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1604. /* Expand bytes into uint16_t values */
  1605. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1606. /* Unpack values into individual bytes */
  1607. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1608. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1609. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1610. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1611. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1612. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1613. /* get input from y
  1614. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1615. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1616. /* Load 16 bytes from memory */
  1617. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1618. /* Expand bytes into uint16_t values */
  1619. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1620. /* Unpack values into individual bytes */
  1621. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1622. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1623. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1624. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1625. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1626. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1627. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1628. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1629. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1630. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1631. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1632. /* Convert to vectore of 8 int32_t to 8 floats */
  1633. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1634. /* Multiply q with scale and accumulate */
  1635. acc = _mm256_fmadd_ps( scale, q, acc );
  1636. }
  1637. }
  1638. // Return horizontal sum of the acc vector
  1639. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1640. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1641. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1642. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1643. sumf = _mm_cvtss_f32( res );
  1644. #elif defined(__AVX__)
  1645. // Initialize accumulator with zeros
  1646. __m256 acc = _mm256_setzero_ps();
  1647. // Main loop
  1648. for (int i = 0; i < nb; ++i) {
  1649. // Compute combined scale for the block
  1650. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1651. __m128i i32[2];
  1652. for (int j = 0; j < 2; ++j) {
  1653. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1654. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1655. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1656. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1657. const __m128i off = _mm_set1_epi8( 8 );
  1658. bx = _mm_sub_epi8( bx, off );
  1659. by = _mm_sub_epi8( by, off );
  1660. // Get absolute values of x vectors
  1661. const __m128i ax = _mm_sign_epi8(bx, bx);
  1662. // Sign the values of the y vectors
  1663. const __m128i sy = _mm_sign_epi8(by, bx);
  1664. // Perform multiplication and create 16-bit values
  1665. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1666. const __m128i ones = _mm_set1_epi16(1);
  1667. i32[j] = _mm_madd_epi16(ones, dot);
  1668. }
  1669. // Convert int32_t to float
  1670. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1671. // Apply the scale, and accumulate
  1672. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1673. }
  1674. // Return horizontal sum of the acc vector
  1675. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1676. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1677. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1678. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1679. sumf = _mm_cvtss_f32( res );
  1680. #elif defined(__wasm_simd128__)
  1681. // wasm simd
  1682. float sum0 = 0.0f;
  1683. float sum1 = 0.0f;
  1684. for (int i = 0; i < nb; i += 2) {
  1685. const block_q4_0 * restrict x0 = &px[i + 0];
  1686. const block_q4_0 * restrict y0 = &py[i + 0];
  1687. const block_q4_0 * restrict x1 = &px[i + 1];
  1688. const block_q4_0 * restrict y1 = &py[i + 1];
  1689. const v128_t m4b = wasm_u8x16_splat(0xf);
  1690. const v128_t s8b = wasm_i8x16_splat(0x8);
  1691. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1692. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1693. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1694. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1695. // 4-bit -> 8-bit
  1696. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1697. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1698. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1699. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1700. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1701. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1702. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1703. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1704. // sub 8
  1705. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1706. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1707. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1708. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1709. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1710. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1711. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1712. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1713. // dot product into int16x8_t
  1714. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1715. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1716. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1717. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1718. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1719. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1720. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1721. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1722. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1723. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1724. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1725. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1726. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1727. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1728. sum0 += x0->d * y0->d * (
  1729. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1730. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1731. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1732. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1733. sum1 += x1->d * y1->d * (
  1734. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1735. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1736. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1737. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1738. }
  1739. sumf = sum0 + sum1;
  1740. #else
  1741. // scalar
  1742. for (int i = 0; i < nb; i++) {
  1743. const float d0 = x[i].d;
  1744. const float d1 = y[i].d;
  1745. const uint8_t * restrict p0 = x[i].qs;
  1746. const uint8_t * restrict p1 = y[i].qs;
  1747. for (int j = 0; j < QK/2; j++) {
  1748. const uint8_t v0 = p0[j];
  1749. const uint8_t v1 = p1[j];
  1750. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1751. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1752. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1753. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1754. sumf += f0*f2 + f1*f3;
  1755. }
  1756. }
  1757. #endif
  1758. *s = sumf;
  1759. }
  1760. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1761. const int nb = n / QK;
  1762. const block_q4_1 * restrict x = vx;
  1763. const block_q4_1 * restrict y = vy;
  1764. float sumf = 0.0;
  1765. #if defined(__AVX2__)
  1766. // Initialize accumulator with zeros
  1767. __m256 acc = _mm256_setzero_ps();
  1768. // Accumulator for constant offsets
  1769. float acc_offset = 0.0f;
  1770. // Main loop
  1771. for (int i = 0; i < nb; ++i) {
  1772. const float * d0 = &x[i].d;
  1773. const float * d1 = &y[i].d;
  1774. const float * m0 = &x[i].m;
  1775. const float * m1 = &y[i].m;
  1776. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1777. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1778. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1779. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1780. // Compute combined scale for the block
  1781. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1782. // Compute cross scales for the block
  1783. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1784. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1785. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1786. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1787. __m256i bx = bytesFromNibbles( x[i].qs );
  1788. __m256i by = bytesFromNibbles( y[i].qs );
  1789. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1790. // Sign-extend first 16 signed bytes into int16_t
  1791. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1792. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1793. // Compute products of int16_t integers, add pairwise
  1794. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1795. // Sign-extend last 16 signed bytes into int16_t vectors
  1796. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1797. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1798. // Accumulate products of int16_t integers
  1799. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1800. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1801. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1802. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1803. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1804. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1805. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1806. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1807. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1808. // Convert int32_t to float
  1809. __m256 p = _mm256_cvtepi32_ps( i32 );
  1810. // Apply the scale, and accumulate
  1811. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1812. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1813. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1814. // acc_offset += m0*m1 (for each entry in the block)
  1815. acc_offset += (*m0)*(*m1);
  1816. }
  1817. // Return horizontal sum of the acc vector
  1818. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1819. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1820. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1821. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1822. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1823. #elif defined(__ARM_NEON)
  1824. float sum00 = 0.0f;
  1825. float sum01 = 0.0f;
  1826. float sum10 = 0.0f;
  1827. float sum11 = 0.0f;
  1828. for (int i = 0; i < nb; ++i) {
  1829. const block_q4_1 * restrict x0 = &x[i + 0];
  1830. const block_q4_1 * restrict y0 = &y[i + 0];
  1831. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1832. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1833. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1834. // and with 0xf
  1835. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1836. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1837. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1838. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1839. // dot product into uint16x8_t
  1840. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1841. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1842. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1843. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1844. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1845. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1846. sum00 += x0->m*y0->m;
  1847. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1848. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1849. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1850. }
  1851. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1852. #else
  1853. // scalar
  1854. for (int i = 0; i < nb; i++) {
  1855. const float d0 = x[i].d;
  1856. const float d1 = y[i].d;
  1857. const float m0 = x[i].m;
  1858. const float m1 = y[i].m;
  1859. const uint8_t * restrict p0 = x[i].qs;
  1860. const uint8_t * restrict p1 = y[i].qs;
  1861. for (int j = 0; j < QK/2; j++) {
  1862. const uint8_t v0 = p0[j];
  1863. const uint8_t v1 = p1[j];
  1864. const float f0 = d0*(v0 & 0xf) + m0;
  1865. const float f1 = d0*(v0 >> 4) + m0;
  1866. const float f2 = d1*(v1 & 0xf) + m1;
  1867. const float f3 = d1*(v1 >> 4) + m1;
  1868. sumf += f0*f2 + f1*f3;
  1869. }
  1870. }
  1871. #endif
  1872. *s = sumf;
  1873. }
  1874. // compute GGML_VEC_DOT_UNROLL dot products at once
  1875. // xs - x row stride in bytes
  1876. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1877. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1878. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1879. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1880. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1881. }
  1882. #if defined(GGML_SIMD)
  1883. const int np = (n & ~(GGML_F16_STEP - 1));
  1884. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1885. GGML_F16_VEC ax[GGML_F16_ARR];
  1886. GGML_F16_VEC ay[GGML_F16_ARR];
  1887. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1888. for (int j = 0; j < GGML_F16_ARR; j++) {
  1889. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1890. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1891. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1892. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1893. }
  1894. }
  1895. }
  1896. // reduce sum0..sum3 to sum0
  1897. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1898. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1899. }
  1900. // leftovers
  1901. for (int i = np; i < n; ++i) {
  1902. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1903. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1904. }
  1905. }
  1906. #else
  1907. for (int i = 0; i < n; ++i) {
  1908. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1909. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1910. }
  1911. }
  1912. #endif
  1913. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1914. s[i] = sumf[i];
  1915. }
  1916. }
  1917. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1918. #if defined(GGML_SIMD)
  1919. const int np = (n & ~(GGML_F32_STEP - 1));
  1920. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1921. GGML_F32_VEC ax[GGML_F32_ARR];
  1922. GGML_F32_VEC ay[GGML_F32_ARR];
  1923. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1924. for (int j = 0; j < GGML_F32_ARR; j++) {
  1925. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1926. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1927. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1928. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1929. }
  1930. }
  1931. // leftovers
  1932. for (int i = np; i < n; ++i) {
  1933. y[i] += x[i]*v;
  1934. }
  1935. #else
  1936. // scalar
  1937. for (int i = 0; i < n; ++i) {
  1938. y[i] += x[i]*v;
  1939. }
  1940. #endif
  1941. }
  1942. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1943. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1944. #if defined(GGML_SIMD)
  1945. const int np = (n & ~(GGML_F32_STEP - 1));
  1946. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1947. GGML_F32_VEC ay[GGML_F32_ARR];
  1948. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1949. for (int j = 0; j < GGML_F32_ARR; j++) {
  1950. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1951. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1952. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1953. }
  1954. }
  1955. // leftovers
  1956. for (int i = np; i < n; ++i) {
  1957. y[i] *= v;
  1958. }
  1959. #else
  1960. // scalar
  1961. for (int i = 0; i < n; ++i) {
  1962. y[i] *= v;
  1963. }
  1964. #endif
  1965. }
  1966. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1967. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1968. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1969. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1970. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1971. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1972. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1973. static const float GELU_COEF_A = 0.044715f;
  1974. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1975. inline static float ggml_gelu_f32(float x) {
  1976. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1977. }
  1978. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1979. const uint16_t * i16 = (const uint16_t *) x;
  1980. for (int i = 0; i < n; ++i) {
  1981. y[i] = table_gelu_f16[i16[i]];
  1982. }
  1983. }
  1984. #ifdef GGML_GELU_FP16
  1985. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1986. uint16_t t;
  1987. for (int i = 0; i < n; ++i) {
  1988. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1989. memcpy(&t, &fp16, sizeof(uint16_t));
  1990. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1991. }
  1992. }
  1993. #else
  1994. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1995. for (int i = 0; i < n; ++i) {
  1996. y[i] = ggml_gelu_f32(x[i]);
  1997. }
  1998. }
  1999. #endif
  2000. // Sigmoid Linear Unit (SiLU) function
  2001. inline static float ggml_silu_f32(float x) {
  2002. return x/(1.0f + expf(-x));
  2003. }
  2004. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2005. const uint16_t * i16 = (const uint16_t *) x;
  2006. for (int i = 0; i < n; ++i) {
  2007. y[i] = table_silu_f16[i16[i]];
  2008. }
  2009. }
  2010. #ifdef GGML_SILU_FP16
  2011. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2012. uint16_t t;
  2013. for (int i = 0; i < n; ++i) {
  2014. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2015. memcpy(&t, &fp16, sizeof(uint16_t));
  2016. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2017. }
  2018. }
  2019. #else
  2020. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2021. for (int i = 0; i < n; ++i) {
  2022. y[i] = ggml_silu_f32(x[i]);
  2023. }
  2024. }
  2025. #endif
  2026. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2027. #ifndef GGML_USE_ACCELERATE
  2028. ggml_float sum = 0.0;
  2029. for (int i = 0; i < n; ++i) {
  2030. sum += (ggml_float)x[i];
  2031. }
  2032. *s = sum;
  2033. #else
  2034. vDSP_sve(x, 1, s, n);
  2035. #endif
  2036. }
  2037. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2038. #ifndef GGML_USE_ACCELERATE
  2039. float max = -INFINITY;
  2040. for (int i = 0; i < n; ++i) {
  2041. max = MAX(max, x[i]);
  2042. }
  2043. *s = max;
  2044. #else
  2045. vDSP_maxv(x, 1, s, n);
  2046. #endif
  2047. }
  2048. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2049. ggml_vec_norm_f32(n, s, x);
  2050. *s = 1.f/(*s);
  2051. }
  2052. //
  2053. // logging
  2054. //
  2055. #if (GGML_DEBUG >= 1)
  2056. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2057. #else
  2058. #define GGML_PRINT_DEBUG(...)
  2059. #endif
  2060. #if (GGML_DEBUG >= 5)
  2061. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2062. #else
  2063. #define GGML_PRINT_DEBUG_5(...)
  2064. #endif
  2065. #if (GGML_DEBUG >= 10)
  2066. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2067. #else
  2068. #define GGML_PRINT_DEBUG_10(...)
  2069. #endif
  2070. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2071. //
  2072. // data types
  2073. //
  2074. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2075. QK,
  2076. QK,
  2077. 1,
  2078. 1,
  2079. 1,
  2080. 1,
  2081. 1,
  2082. };
  2083. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2084. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2085. sizeof(block_q4_0),
  2086. sizeof(block_q4_1),
  2087. sizeof(int8_t ),
  2088. sizeof(int16_t),
  2089. sizeof(int32_t),
  2090. sizeof(ggml_fp16_t),
  2091. sizeof(float ),
  2092. };
  2093. // don't forget to update the array above when adding new types
  2094. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2095. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2096. "NONE",
  2097. "DUP",
  2098. "ADD",
  2099. "SUB",
  2100. "MUL",
  2101. "DIV",
  2102. "SQR",
  2103. "SQRT",
  2104. "SUM",
  2105. "MEAN",
  2106. "REPEAT",
  2107. "ABS",
  2108. "SGN",
  2109. "NEG",
  2110. "STEP",
  2111. "RELU",
  2112. "GELU",
  2113. "SILU",
  2114. "NORM",
  2115. "RMS_NORM",
  2116. "MUL_MAT",
  2117. "SCALE",
  2118. "CPY",
  2119. "RESHAPE",
  2120. "VIEW",
  2121. "PERMUTE",
  2122. "TRANSPOSE",
  2123. "GET_ROWS",
  2124. "DIAG_MASK_INF",
  2125. "SOFT_MAX",
  2126. "ROPE",
  2127. "CONV_1D_1S",
  2128. "CONV_1D_2S",
  2129. "FLASH_ATTN",
  2130. "FLASH_FF",
  2131. };
  2132. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2133. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2134. "none",
  2135. "x",
  2136. "x+y",
  2137. "x-y",
  2138. "x*y",
  2139. "x/y",
  2140. "x^2",
  2141. "√x",
  2142. "Σx",
  2143. "Σx/n",
  2144. "repeat(x)",
  2145. "abs(x)",
  2146. "sgn(x)",
  2147. "-x",
  2148. "step(x)",
  2149. "relu(x)",
  2150. "gelu(x)",
  2151. "silu(x)",
  2152. "norm(x)",
  2153. "rms_norm(x)",
  2154. "X*Y",
  2155. "x*v",
  2156. "x-\\>y",
  2157. "reshape(x)",
  2158. "view(x)",
  2159. "permute(x)",
  2160. "transpose(x)",
  2161. "get_rows(x)",
  2162. "diag_mask_inf(x)",
  2163. "soft_max(x)",
  2164. "rope(x)",
  2165. "conv_1d_1s(x)",
  2166. "conv_1d_2s(x)",
  2167. "flash_attn(x)",
  2168. "flash_ff(x)",
  2169. };
  2170. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2171. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2172. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2173. //
  2174. // ggml context
  2175. //
  2176. struct ggml_context {
  2177. size_t mem_size;
  2178. void * mem_buffer;
  2179. bool mem_buffer_owned;
  2180. bool no_alloc;
  2181. int n_objects;
  2182. struct ggml_object * objects_begin;
  2183. struct ggml_object * objects_end;
  2184. struct ggml_scratch scratch;
  2185. struct ggml_scratch scratch_save;
  2186. };
  2187. struct ggml_context_container {
  2188. bool used;
  2189. struct ggml_context context;
  2190. };
  2191. //
  2192. // compute types
  2193. //
  2194. enum ggml_task_type {
  2195. GGML_TASK_INIT = 0,
  2196. GGML_TASK_COMPUTE,
  2197. GGML_TASK_FINALIZE,
  2198. };
  2199. struct ggml_compute_params {
  2200. enum ggml_task_type type;
  2201. int ith, nth;
  2202. // work buffer for all threads
  2203. size_t wsize;
  2204. void * wdata;
  2205. };
  2206. //
  2207. // ggml state
  2208. //
  2209. struct ggml_state {
  2210. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2211. };
  2212. // global state
  2213. static struct ggml_state g_state;
  2214. static atomic_int g_state_barrier = 0;
  2215. // barrier via spin lock
  2216. inline static void ggml_critical_section_start(void) {
  2217. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2218. while (processing > 0) {
  2219. // wait for other threads to finish
  2220. atomic_fetch_sub(&g_state_barrier, 1);
  2221. sched_yield(); // TODO: reconsider this
  2222. processing = atomic_fetch_add(&g_state_barrier, 1);
  2223. }
  2224. }
  2225. // TODO: make this somehow automatically executed
  2226. // some sort of "sentry" mechanism
  2227. inline static void ggml_critical_section_end(void) {
  2228. atomic_fetch_sub(&g_state_barrier, 1);
  2229. }
  2230. ////////////////////////////////////////////////////////////////////////////////
  2231. void ggml_print_object(const struct ggml_object * obj) {
  2232. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2233. obj->offs, obj->size, (const void *) obj->next);
  2234. }
  2235. void ggml_print_objects(const struct ggml_context * ctx) {
  2236. struct ggml_object * obj = ctx->objects_begin;
  2237. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2238. while (obj != NULL) {
  2239. ggml_print_object(obj);
  2240. obj = obj->next;
  2241. }
  2242. GGML_PRINT("%s: --- end ---\n", __func__);
  2243. }
  2244. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2245. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2246. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2247. }
  2248. int ggml_nrows(const struct ggml_tensor * tensor) {
  2249. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2250. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2251. }
  2252. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2253. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2254. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2255. }
  2256. int ggml_blck_size(enum ggml_type type) {
  2257. return GGML_BLCK_SIZE[type];
  2258. }
  2259. size_t ggml_type_size(enum ggml_type type) {
  2260. return GGML_TYPE_SIZE[type];
  2261. }
  2262. float ggml_type_sizef(enum ggml_type type) {
  2263. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2264. }
  2265. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2266. return GGML_TYPE_SIZE[tensor->type];
  2267. }
  2268. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2269. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2270. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2271. }
  2272. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2273. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2274. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2275. }
  2276. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2277. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2278. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2279. }
  2280. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2281. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2282. return
  2283. (t0->ne[0] == t1->ne[0]) &&
  2284. (t0->ne[2] == t1->ne[2]) &&
  2285. (t0->ne[3] == t1->ne[3]);
  2286. }
  2287. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2288. return tensor->nb[0] > tensor->nb[1];
  2289. }
  2290. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2291. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2292. return
  2293. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2294. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2295. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2296. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2297. }
  2298. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2299. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2300. return
  2301. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2302. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2303. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2304. }
  2305. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2306. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2307. return
  2308. (t0->ne[0] == t1->ne[0] ) &&
  2309. (t0->ne[1] == t1->ne[1] ) &&
  2310. (t0->ne[2] == t1->ne[2] ) &&
  2311. (t0->ne[3] == t1->ne[3] );
  2312. }
  2313. // check if t1 can be represented as a repeatition of t0
  2314. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2315. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2316. return
  2317. (t1->ne[0]%t0->ne[0] == 0) &&
  2318. (t1->ne[1]%t0->ne[1] == 0) &&
  2319. (t1->ne[2]%t0->ne[2] == 0) &&
  2320. (t1->ne[3]%t0->ne[3] == 0);
  2321. }
  2322. static inline int ggml_up32(int n) {
  2323. return (n + 31) & ~31;
  2324. }
  2325. static inline int ggml_up64(int n) {
  2326. return (n + 63) & ~63;
  2327. }
  2328. static inline int ggml_up(int n, int m) {
  2329. // assert m is a power of 2
  2330. GGML_ASSERT((m & (m - 1)) == 0);
  2331. return (n + m - 1) & ~(m - 1);
  2332. }
  2333. // assert that pointer is aligned to GGML_MEM_ALIGN
  2334. #define ggml_assert_aligned(ptr) \
  2335. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2336. ////////////////////////////////////////////////////////////////////////////////
  2337. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2338. // make this function thread safe
  2339. ggml_critical_section_start();
  2340. static bool is_first_call = true;
  2341. if (is_first_call) {
  2342. // initialize time system (required on Windows)
  2343. ggml_time_init();
  2344. // initialize GELU, SILU and EXP F32 tables
  2345. {
  2346. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2347. ggml_fp16_t ii;
  2348. for (int i = 0; i < (1 << 16); ++i) {
  2349. uint16_t ui = i;
  2350. memcpy(&ii, &ui, sizeof(ii));
  2351. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2352. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2353. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2354. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2355. }
  2356. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2357. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2358. }
  2359. // initialize g_state
  2360. {
  2361. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2362. g_state = (struct ggml_state) {
  2363. /*.contexts =*/ { { 0 } },
  2364. };
  2365. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2366. g_state.contexts[i].used = false;
  2367. }
  2368. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2369. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2370. }
  2371. is_first_call = false;
  2372. }
  2373. // find non-used context in g_state
  2374. struct ggml_context * ctx = NULL;
  2375. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2376. if (!g_state.contexts[i].used) {
  2377. g_state.contexts[i].used = true;
  2378. ctx = &g_state.contexts[i].context;
  2379. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2380. break;
  2381. }
  2382. }
  2383. if (ctx == NULL) {
  2384. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2385. ggml_critical_section_end();
  2386. return NULL;
  2387. }
  2388. *ctx = (struct ggml_context) {
  2389. /*.mem_size =*/ params.mem_size,
  2390. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2391. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2392. /*.no_alloc =*/ params.no_alloc,
  2393. /*.n_objects =*/ 0,
  2394. /*.objects_begin =*/ NULL,
  2395. /*.objects_end =*/ NULL,
  2396. /*.scratch =*/ { 0, 0, NULL, },
  2397. /*.scratch_save =*/ { 0, 0, NULL, },
  2398. };
  2399. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2400. ggml_assert_aligned(ctx->mem_buffer);
  2401. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2402. ggml_critical_section_end();
  2403. return ctx;
  2404. }
  2405. void ggml_free(struct ggml_context * ctx) {
  2406. // make this function thread safe
  2407. ggml_critical_section_start();
  2408. bool found = false;
  2409. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2410. if (&g_state.contexts[i].context == ctx) {
  2411. g_state.contexts[i].used = false;
  2412. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2413. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2414. if (ctx->mem_buffer_owned) {
  2415. free(ctx->mem_buffer);
  2416. }
  2417. found = true;
  2418. break;
  2419. }
  2420. }
  2421. if (!found) {
  2422. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2423. }
  2424. ggml_critical_section_end();
  2425. }
  2426. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2427. return ctx->objects_end->offs + ctx->objects_end->size;
  2428. }
  2429. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2430. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2431. ctx->scratch = scratch;
  2432. return result;
  2433. }
  2434. ////////////////////////////////////////////////////////////////////////////////
  2435. struct ggml_tensor * ggml_new_tensor_impl(
  2436. struct ggml_context * ctx,
  2437. enum ggml_type type,
  2438. int n_dims,
  2439. const int64_t* ne,
  2440. void* data) {
  2441. // always insert objects at the end of the context's memory pool
  2442. struct ggml_object * obj_cur = ctx->objects_end;
  2443. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2444. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2445. const size_t cur_end = cur_offs + cur_size;
  2446. size_t size_needed = 0;
  2447. if (data == NULL && !ctx->no_alloc) {
  2448. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2449. for (int i = 1; i < n_dims; i++) {
  2450. size_needed *= ne[i];
  2451. }
  2452. // align to GGML_MEM_ALIGN
  2453. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2454. }
  2455. char * const mem_buffer = ctx->mem_buffer;
  2456. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2457. if (ctx->scratch.data == NULL || data != NULL) {
  2458. size_needed += sizeof(struct ggml_tensor);
  2459. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2460. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2461. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2462. assert(false);
  2463. return NULL;
  2464. }
  2465. *obj_new = (struct ggml_object) {
  2466. .offs = cur_end + GGML_OBJECT_SIZE,
  2467. .size = size_needed,
  2468. .next = NULL,
  2469. };
  2470. } else {
  2471. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2472. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2473. assert(false);
  2474. return NULL;
  2475. }
  2476. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2477. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2478. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2479. assert(false);
  2480. return NULL;
  2481. }
  2482. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2483. *obj_new = (struct ggml_object) {
  2484. .offs = cur_end + GGML_OBJECT_SIZE,
  2485. .size = sizeof(struct ggml_tensor),
  2486. .next = NULL,
  2487. };
  2488. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2489. ctx->scratch.offs += size_needed;
  2490. }
  2491. if (obj_cur != NULL) {
  2492. obj_cur->next = obj_new;
  2493. } else {
  2494. // this is the first object in this context
  2495. ctx->objects_begin = obj_new;
  2496. }
  2497. ctx->objects_end = obj_new;
  2498. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2499. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2500. ggml_assert_aligned(result);
  2501. *result = (struct ggml_tensor) {
  2502. /*.type =*/ type,
  2503. /*.n_dims =*/ n_dims,
  2504. /*.ne =*/ { 1, 1, 1, 1 },
  2505. /*.nb =*/ { 0, 0, 0, 0 },
  2506. /*.op =*/ GGML_OP_NONE,
  2507. /*.is_param =*/ false,
  2508. /*.grad =*/ NULL,
  2509. /*.src0 =*/ NULL,
  2510. /*.src1 =*/ NULL,
  2511. /*.opt =*/ { NULL },
  2512. /*.n_tasks =*/ 0,
  2513. /*.perf_runs =*/ 0,
  2514. /*.perf_cycles =*/ 0,
  2515. /*.perf_time_us =*/ 0,
  2516. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2517. /*.pad =*/ { 0 },
  2518. };
  2519. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2520. //ggml_assert_aligned(result->data);
  2521. for (int i = 0; i < n_dims; i++) {
  2522. result->ne[i] = ne[i];
  2523. }
  2524. result->nb[0] = GGML_TYPE_SIZE[type];
  2525. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2526. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2527. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2528. }
  2529. ctx->n_objects++;
  2530. return result;
  2531. }
  2532. struct ggml_tensor * ggml_new_tensor(
  2533. struct ggml_context * ctx,
  2534. enum ggml_type type,
  2535. int n_dims,
  2536. const int64_t * ne) {
  2537. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2538. }
  2539. struct ggml_tensor * ggml_new_tensor_1d(
  2540. struct ggml_context * ctx,
  2541. enum ggml_type type,
  2542. int64_t ne0) {
  2543. return ggml_new_tensor(ctx, type, 1, &ne0);
  2544. }
  2545. struct ggml_tensor * ggml_new_tensor_2d(
  2546. struct ggml_context * ctx,
  2547. enum ggml_type type,
  2548. int64_t ne0,
  2549. int64_t ne1) {
  2550. const int64_t ne[2] = { ne0, ne1 };
  2551. return ggml_new_tensor(ctx, type, 2, ne);
  2552. }
  2553. struct ggml_tensor * ggml_new_tensor_3d(
  2554. struct ggml_context * ctx,
  2555. enum ggml_type type,
  2556. int64_t ne0,
  2557. int64_t ne1,
  2558. int64_t ne2) {
  2559. const int64_t ne[3] = { ne0, ne1, ne2 };
  2560. return ggml_new_tensor(ctx, type, 3, ne);
  2561. }
  2562. struct ggml_tensor * ggml_new_tensor_4d(
  2563. struct ggml_context * ctx,
  2564. enum ggml_type type,
  2565. int64_t ne0,
  2566. int64_t ne1,
  2567. int64_t ne2,
  2568. int64_t ne3) {
  2569. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2570. return ggml_new_tensor(ctx, type, 4, ne);
  2571. }
  2572. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2573. ctx->scratch_save = ctx->scratch;
  2574. ctx->scratch.data = NULL;
  2575. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2576. ctx->scratch = ctx->scratch_save;
  2577. ggml_set_i32(result, value);
  2578. return result;
  2579. }
  2580. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2581. ctx->scratch_save = ctx->scratch;
  2582. ctx->scratch.data = NULL;
  2583. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2584. ctx->scratch = ctx->scratch_save;
  2585. ggml_set_f32(result, value);
  2586. return result;
  2587. }
  2588. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2589. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2590. }
  2591. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2592. memset(tensor->data, 0, ggml_nbytes(tensor));
  2593. return tensor;
  2594. }
  2595. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2596. const int n = ggml_nrows(tensor);
  2597. const int nc = tensor->ne[0];
  2598. const size_t n1 = tensor->nb[1];
  2599. char * const data = tensor->data;
  2600. switch (tensor->type) {
  2601. case GGML_TYPE_Q4_0:
  2602. {
  2603. GGML_ASSERT(false);
  2604. } break;
  2605. case GGML_TYPE_Q4_1:
  2606. {
  2607. GGML_ASSERT(false);
  2608. } break;
  2609. case GGML_TYPE_I8:
  2610. {
  2611. assert(tensor->nb[0] == sizeof(int8_t));
  2612. for (int i = 0; i < n; i++) {
  2613. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2614. }
  2615. } break;
  2616. case GGML_TYPE_I16:
  2617. {
  2618. assert(tensor->nb[0] == sizeof(int16_t));
  2619. for (int i = 0; i < n; i++) {
  2620. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2621. }
  2622. } break;
  2623. case GGML_TYPE_I32:
  2624. {
  2625. assert(tensor->nb[0] == sizeof(int32_t));
  2626. for (int i = 0; i < n; i++) {
  2627. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2628. }
  2629. } break;
  2630. case GGML_TYPE_F16:
  2631. {
  2632. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2633. for (int i = 0; i < n; i++) {
  2634. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2635. }
  2636. } break;
  2637. case GGML_TYPE_F32:
  2638. {
  2639. assert(tensor->nb[0] == sizeof(float));
  2640. for (int i = 0; i < n; i++) {
  2641. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2642. }
  2643. } break;
  2644. case GGML_TYPE_COUNT:
  2645. {
  2646. GGML_ASSERT(false);
  2647. } break;
  2648. }
  2649. return tensor;
  2650. }
  2651. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2652. const int n = ggml_nrows(tensor);
  2653. const int nc = tensor->ne[0];
  2654. const size_t n1 = tensor->nb[1];
  2655. char * const data = tensor->data;
  2656. switch (tensor->type) {
  2657. case GGML_TYPE_Q4_0:
  2658. {
  2659. GGML_ASSERT(false);
  2660. } break;
  2661. case GGML_TYPE_Q4_1:
  2662. {
  2663. GGML_ASSERT(false);
  2664. } break;
  2665. case GGML_TYPE_I8:
  2666. {
  2667. assert(tensor->nb[0] == sizeof(int8_t));
  2668. for (int i = 0; i < n; i++) {
  2669. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2670. }
  2671. } break;
  2672. case GGML_TYPE_I16:
  2673. {
  2674. assert(tensor->nb[0] == sizeof(int16_t));
  2675. for (int i = 0; i < n; i++) {
  2676. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2677. }
  2678. } break;
  2679. case GGML_TYPE_I32:
  2680. {
  2681. assert(tensor->nb[0] == sizeof(int32_t));
  2682. for (int i = 0; i < n; i++) {
  2683. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2684. }
  2685. } break;
  2686. case GGML_TYPE_F16:
  2687. {
  2688. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2689. for (int i = 0; i < n; i++) {
  2690. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2691. }
  2692. } break;
  2693. case GGML_TYPE_F32:
  2694. {
  2695. assert(tensor->nb[0] == sizeof(float));
  2696. for (int i = 0; i < n; i++) {
  2697. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2698. }
  2699. } break;
  2700. case GGML_TYPE_COUNT:
  2701. {
  2702. GGML_ASSERT(false);
  2703. } break;
  2704. }
  2705. return tensor;
  2706. }
  2707. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2708. switch (tensor->type) {
  2709. case GGML_TYPE_Q4_0:
  2710. {
  2711. GGML_ASSERT(false);
  2712. } break;
  2713. case GGML_TYPE_Q4_1:
  2714. {
  2715. GGML_ASSERT(false);
  2716. } break;
  2717. case GGML_TYPE_I8:
  2718. {
  2719. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2720. return ((int8_t *)(tensor->data))[i];
  2721. } break;
  2722. case GGML_TYPE_I16:
  2723. {
  2724. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2725. return ((int16_t *)(tensor->data))[i];
  2726. } break;
  2727. case GGML_TYPE_I32:
  2728. {
  2729. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2730. return ((int32_t *)(tensor->data))[i];
  2731. } break;
  2732. case GGML_TYPE_F16:
  2733. {
  2734. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2735. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2736. } break;
  2737. case GGML_TYPE_F32:
  2738. {
  2739. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2740. return ((float *)(tensor->data))[i];
  2741. } break;
  2742. case GGML_TYPE_COUNT:
  2743. {
  2744. GGML_ASSERT(false);
  2745. } break;
  2746. }
  2747. return 0.0f;
  2748. }
  2749. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2750. switch (tensor->type) {
  2751. case GGML_TYPE_Q4_0:
  2752. {
  2753. GGML_ASSERT(false);
  2754. } break;
  2755. case GGML_TYPE_Q4_1:
  2756. {
  2757. GGML_ASSERT(false);
  2758. } break;
  2759. case GGML_TYPE_I8:
  2760. {
  2761. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2762. ((int8_t *)(tensor->data))[i] = value;
  2763. } break;
  2764. case GGML_TYPE_I16:
  2765. {
  2766. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2767. ((int16_t *)(tensor->data))[i] = value;
  2768. } break;
  2769. case GGML_TYPE_I32:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2772. ((int32_t *)(tensor->data))[i] = value;
  2773. } break;
  2774. case GGML_TYPE_F16:
  2775. {
  2776. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2777. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2778. } break;
  2779. case GGML_TYPE_F32:
  2780. {
  2781. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2782. ((float *)(tensor->data))[i] = value;
  2783. } break;
  2784. case GGML_TYPE_COUNT:
  2785. {
  2786. GGML_ASSERT(false);
  2787. } break;
  2788. }
  2789. }
  2790. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2791. switch (tensor->type) {
  2792. case GGML_TYPE_Q4_0:
  2793. {
  2794. GGML_ASSERT(false);
  2795. } break;
  2796. case GGML_TYPE_Q4_1:
  2797. {
  2798. GGML_ASSERT(false);
  2799. } break;
  2800. case GGML_TYPE_I8:
  2801. {
  2802. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2803. return ((int8_t *)(tensor->data))[i];
  2804. } break;
  2805. case GGML_TYPE_I16:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2808. return ((int16_t *)(tensor->data))[i];
  2809. } break;
  2810. case GGML_TYPE_I32:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2813. return ((int32_t *)(tensor->data))[i];
  2814. } break;
  2815. case GGML_TYPE_F16:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2818. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2819. } break;
  2820. case GGML_TYPE_F32:
  2821. {
  2822. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2823. return ((float *)(tensor->data))[i];
  2824. } break;
  2825. case GGML_TYPE_COUNT:
  2826. {
  2827. GGML_ASSERT(false);
  2828. } break;
  2829. }
  2830. return 0.0f;
  2831. }
  2832. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2833. switch (tensor->type) {
  2834. case GGML_TYPE_Q4_0:
  2835. {
  2836. GGML_ASSERT(false);
  2837. } break;
  2838. case GGML_TYPE_Q4_1:
  2839. {
  2840. GGML_ASSERT(false);
  2841. } break;
  2842. case GGML_TYPE_I8:
  2843. {
  2844. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2845. ((int8_t *)(tensor->data))[i] = value;
  2846. } break;
  2847. case GGML_TYPE_I16:
  2848. {
  2849. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2850. ((int16_t *)(tensor->data))[i] = value;
  2851. } break;
  2852. case GGML_TYPE_I32:
  2853. {
  2854. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2855. ((int32_t *)(tensor->data))[i] = value;
  2856. } break;
  2857. case GGML_TYPE_F16:
  2858. {
  2859. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2860. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2861. } break;
  2862. case GGML_TYPE_F32:
  2863. {
  2864. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2865. ((float *)(tensor->data))[i] = value;
  2866. } break;
  2867. case GGML_TYPE_COUNT:
  2868. {
  2869. GGML_ASSERT(false);
  2870. } break;
  2871. }
  2872. }
  2873. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2874. return tensor->data;
  2875. }
  2876. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2877. assert(tensor->type == GGML_TYPE_F32);
  2878. return (float *)(tensor->data);
  2879. }
  2880. struct ggml_tensor * ggml_view_tensor(
  2881. struct ggml_context * ctx,
  2882. const struct ggml_tensor * src) {
  2883. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2884. result->nb[0] = src->nb[0];
  2885. result->nb[1] = src->nb[1];
  2886. result->nb[2] = src->nb[2];
  2887. result->nb[3] = src->nb[3];
  2888. return result;
  2889. }
  2890. ////////////////////////////////////////////////////////////////////////////////
  2891. // ggml_dup
  2892. struct ggml_tensor * ggml_dup_impl(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. bool inplace) {
  2896. bool is_node = false;
  2897. if (!inplace && (a->grad)) {
  2898. is_node = true;
  2899. }
  2900. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2901. result->op = GGML_OP_DUP;
  2902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2903. result->src0 = a;
  2904. result->src1 = NULL;
  2905. return result;
  2906. }
  2907. struct ggml_tensor * ggml_dup(
  2908. struct ggml_context * ctx,
  2909. struct ggml_tensor * a) {
  2910. return ggml_dup_impl(ctx, a, false);
  2911. }
  2912. struct ggml_tensor * ggml_dup_inplace(
  2913. struct ggml_context * ctx,
  2914. struct ggml_tensor * a) {
  2915. return ggml_dup_impl(ctx, a, true);
  2916. }
  2917. // ggml_add
  2918. struct ggml_tensor * ggml_add_impl(
  2919. struct ggml_context * ctx,
  2920. struct ggml_tensor * a,
  2921. struct ggml_tensor * b,
  2922. bool inplace) {
  2923. GGML_ASSERT(ggml_are_same_shape(a, b));
  2924. bool is_node = false;
  2925. if (!inplace && (a->grad || b->grad)) {
  2926. is_node = true;
  2927. }
  2928. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2929. result->op = GGML_OP_ADD;
  2930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2931. result->src0 = a;
  2932. result->src1 = b;
  2933. return result;
  2934. }
  2935. struct ggml_tensor * ggml_add(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a,
  2938. struct ggml_tensor * b) {
  2939. return ggml_add_impl(ctx, a, b, false);
  2940. }
  2941. struct ggml_tensor * ggml_add_inplace(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a,
  2944. struct ggml_tensor * b) {
  2945. return ggml_add_impl(ctx, a, b, true);
  2946. }
  2947. // ggml_sub
  2948. struct ggml_tensor * ggml_sub_impl(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a,
  2951. struct ggml_tensor * b,
  2952. bool inplace) {
  2953. GGML_ASSERT(ggml_are_same_shape(a, b));
  2954. bool is_node = false;
  2955. if (!inplace && (a->grad || b->grad)) {
  2956. is_node = true;
  2957. }
  2958. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2959. result->op = GGML_OP_SUB;
  2960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2961. result->src0 = a;
  2962. result->src1 = b;
  2963. return result;
  2964. }
  2965. struct ggml_tensor * ggml_sub(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a,
  2968. struct ggml_tensor * b) {
  2969. return ggml_sub_impl(ctx, a, b, false);
  2970. }
  2971. struct ggml_tensor * ggml_sub_inplace(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. struct ggml_tensor * b) {
  2975. return ggml_sub_impl(ctx, a, b, true);
  2976. }
  2977. // ggml_mul
  2978. struct ggml_tensor * ggml_mul_impl(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a,
  2981. struct ggml_tensor * b,
  2982. bool inplace) {
  2983. GGML_ASSERT(ggml_are_same_shape(a, b));
  2984. bool is_node = false;
  2985. if (!inplace && (a->grad || b->grad)) {
  2986. is_node = true;
  2987. }
  2988. if (inplace) {
  2989. GGML_ASSERT(is_node == false);
  2990. }
  2991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2992. result->op = GGML_OP_MUL;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src0 = a;
  2995. result->src1 = b;
  2996. return result;
  2997. }
  2998. struct ggml_tensor * ggml_mul(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a,
  3001. struct ggml_tensor * b) {
  3002. return ggml_mul_impl(ctx, a, b, false);
  3003. }
  3004. struct ggml_tensor * ggml_mul_inplace(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a,
  3007. struct ggml_tensor * b) {
  3008. return ggml_mul_impl(ctx, a, b, true);
  3009. }
  3010. // ggml_div
  3011. struct ggml_tensor * ggml_div_impl(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a,
  3014. struct ggml_tensor * b,
  3015. bool inplace) {
  3016. GGML_ASSERT(ggml_are_same_shape(a, b));
  3017. bool is_node = false;
  3018. if (!inplace && (a->grad || b->grad)) {
  3019. is_node = true;
  3020. }
  3021. if (inplace) {
  3022. GGML_ASSERT(is_node == false);
  3023. }
  3024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3025. result->op = GGML_OP_DIV;
  3026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3027. result->src0 = a;
  3028. result->src1 = b;
  3029. return result;
  3030. }
  3031. struct ggml_tensor * ggml_div(
  3032. struct ggml_context * ctx,
  3033. struct ggml_tensor * a,
  3034. struct ggml_tensor * b) {
  3035. return ggml_div_impl(ctx, a, b, false);
  3036. }
  3037. struct ggml_tensor * ggml_div_inplace(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b) {
  3041. return ggml_div_impl(ctx, a, b, true);
  3042. }
  3043. // ggml_sqr
  3044. struct ggml_tensor * ggml_sqr_impl(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. bool inplace) {
  3048. bool is_node = false;
  3049. if (!inplace && (a->grad)) {
  3050. is_node = true;
  3051. }
  3052. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3053. result->op = GGML_OP_SQR;
  3054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3055. result->src0 = a;
  3056. result->src1 = NULL;
  3057. return result;
  3058. }
  3059. struct ggml_tensor * ggml_sqr(
  3060. struct ggml_context * ctx,
  3061. struct ggml_tensor * a) {
  3062. return ggml_sqr_impl(ctx, a, false);
  3063. }
  3064. struct ggml_tensor * ggml_sqr_inplace(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a) {
  3067. return ggml_sqr_impl(ctx, a, true);
  3068. }
  3069. // ggml_sqrt
  3070. struct ggml_tensor * ggml_sqrt_impl(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a,
  3073. bool inplace) {
  3074. bool is_node = false;
  3075. if (!inplace && (a->grad)) {
  3076. is_node = true;
  3077. }
  3078. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3079. result->op = GGML_OP_SQRT;
  3080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3081. result->src0 = a;
  3082. result->src1 = NULL;
  3083. return result;
  3084. }
  3085. struct ggml_tensor * ggml_sqrt(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a) {
  3088. return ggml_sqrt_impl(ctx, a, false);
  3089. }
  3090. struct ggml_tensor * ggml_sqrt_inplace(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_sqrt_impl(ctx, a, true);
  3094. }
  3095. // ggml_sum
  3096. struct ggml_tensor * ggml_sum(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a) {
  3099. bool is_node = false;
  3100. if (a->grad) {
  3101. is_node = true;
  3102. }
  3103. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3104. result->op = GGML_OP_SUM;
  3105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3106. result->src0 = a;
  3107. result->src1 = NULL;
  3108. return result;
  3109. }
  3110. // ggml_mean
  3111. struct ggml_tensor * ggml_mean(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a) {
  3114. bool is_node = false;
  3115. if (a->grad) {
  3116. GGML_ASSERT(false); // TODO: implement
  3117. is_node = true;
  3118. }
  3119. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3120. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3121. result->op = GGML_OP_MEAN;
  3122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3123. result->src0 = a;
  3124. result->src1 = NULL;
  3125. return result;
  3126. }
  3127. // ggml_repeat
  3128. struct ggml_tensor * ggml_repeat(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a,
  3131. struct ggml_tensor * b) {
  3132. GGML_ASSERT(ggml_can_repeat(a, b));
  3133. bool is_node = false;
  3134. if (a->grad) {
  3135. is_node = true;
  3136. }
  3137. if (ggml_are_same_shape(a, b) && !is_node) {
  3138. return a;
  3139. }
  3140. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3141. result->op = GGML_OP_REPEAT;
  3142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3143. result->src0 = a;
  3144. result->src1 = b;
  3145. return result;
  3146. }
  3147. // ggml_abs
  3148. struct ggml_tensor * ggml_abs_impl(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a,
  3151. bool inplace) {
  3152. bool is_node = false;
  3153. if (!inplace && (a->grad)) {
  3154. is_node = true;
  3155. }
  3156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3157. result->op = GGML_OP_ABS;
  3158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3159. result->src0 = a;
  3160. result->src1 = NULL;
  3161. return result;
  3162. }
  3163. struct ggml_tensor * ggml_abs(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a) {
  3166. return ggml_abs_impl(ctx, a, false);
  3167. }
  3168. struct ggml_tensor * ggml_abs_inplace(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_abs_impl(ctx, a, true);
  3172. }
  3173. // ggml_sgn
  3174. struct ggml_tensor * ggml_sgn_impl(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a,
  3177. bool inplace) {
  3178. bool is_node = false;
  3179. if (!inplace && (a->grad)) {
  3180. is_node = true;
  3181. }
  3182. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3183. result->op = GGML_OP_SGN;
  3184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3185. result->src0 = a;
  3186. result->src1 = NULL;
  3187. return result;
  3188. }
  3189. struct ggml_tensor * ggml_sgn(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. return ggml_sgn_impl(ctx, a, false);
  3193. }
  3194. struct ggml_tensor * ggml_sgn_inplace(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_sgn_impl(ctx, a, true);
  3198. }
  3199. // ggml_neg
  3200. struct ggml_tensor * ggml_neg_impl(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. bool inplace) {
  3204. bool is_node = false;
  3205. if (!inplace && (a->grad)) {
  3206. is_node = true;
  3207. }
  3208. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3209. result->op = GGML_OP_NEG;
  3210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3211. result->src0 = a;
  3212. result->src1 = NULL;
  3213. return result;
  3214. }
  3215. struct ggml_tensor * ggml_neg(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a) {
  3218. return ggml_neg_impl(ctx, a, false);
  3219. }
  3220. struct ggml_tensor * ggml_neg_inplace(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_neg_impl(ctx, a, true);
  3224. }
  3225. // ggml_step
  3226. struct ggml_tensor * ggml_step_impl(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a,
  3229. bool inplace) {
  3230. bool is_node = false;
  3231. if (!inplace && (a->grad)) {
  3232. is_node = true;
  3233. }
  3234. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3235. result->op = GGML_OP_STEP;
  3236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3237. result->src0 = a;
  3238. result->src1 = NULL;
  3239. return result;
  3240. }
  3241. struct ggml_tensor * ggml_step(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. return ggml_step_impl(ctx, a, false);
  3245. }
  3246. struct ggml_tensor * ggml_step_inplace(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_step_impl(ctx, a, true);
  3250. }
  3251. // ggml_relu
  3252. struct ggml_tensor * ggml_relu_impl(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. bool inplace) {
  3256. bool is_node = false;
  3257. if (!inplace && (a->grad)) {
  3258. is_node = true;
  3259. }
  3260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3261. result->op = GGML_OP_RELU;
  3262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3263. result->src0 = a;
  3264. result->src1 = NULL;
  3265. return result;
  3266. }
  3267. struct ggml_tensor * ggml_relu(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a) {
  3270. return ggml_relu_impl(ctx, a, false);
  3271. }
  3272. struct ggml_tensor * ggml_relu_inplace(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a) {
  3275. return ggml_relu_impl(ctx, a, true);
  3276. }
  3277. // ggml_gelu
  3278. struct ggml_tensor * ggml_gelu_impl(
  3279. struct ggml_context * ctx,
  3280. struct ggml_tensor * a,
  3281. bool inplace) {
  3282. bool is_node = false;
  3283. if (!inplace && (a->grad)) {
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3287. result->op = GGML_OP_GELU;
  3288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3289. result->src0 = a;
  3290. result->src1 = NULL;
  3291. return result;
  3292. }
  3293. struct ggml_tensor * ggml_gelu(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a) {
  3296. return ggml_gelu_impl(ctx, a, false);
  3297. }
  3298. struct ggml_tensor * ggml_gelu_inplace(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a) {
  3301. return ggml_gelu_impl(ctx, a, true);
  3302. }
  3303. // ggml_silu
  3304. struct ggml_tensor * ggml_silu_impl(
  3305. struct ggml_context * ctx,
  3306. struct ggml_tensor * a,
  3307. bool inplace) {
  3308. bool is_node = false;
  3309. if (!inplace && (a->grad)) {
  3310. is_node = true;
  3311. }
  3312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3313. result->op = GGML_OP_SILU;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src0 = a;
  3316. result->src1 = NULL;
  3317. return result;
  3318. }
  3319. struct ggml_tensor * ggml_silu(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a) {
  3322. return ggml_silu_impl(ctx, a, false);
  3323. }
  3324. struct ggml_tensor * ggml_silu_inplace(
  3325. struct ggml_context * ctx,
  3326. struct ggml_tensor * a) {
  3327. return ggml_silu_impl(ctx, a, true);
  3328. }
  3329. // ggml_norm
  3330. struct ggml_tensor * ggml_norm_impl(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. bool inplace) {
  3334. bool is_node = false;
  3335. if (!inplace && (a->grad)) {
  3336. GGML_ASSERT(false); // TODO: implement backward
  3337. is_node = true;
  3338. }
  3339. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3340. result->op = GGML_OP_NORM;
  3341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3342. result->src0 = a;
  3343. result->src1 = NULL; // TODO: maybe store epsilon here?
  3344. return result;
  3345. }
  3346. struct ggml_tensor * ggml_norm(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a) {
  3349. return ggml_norm_impl(ctx, a, false);
  3350. }
  3351. struct ggml_tensor * ggml_norm_inplace(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a) {
  3354. return ggml_norm_impl(ctx, a, true);
  3355. }
  3356. struct ggml_tensor * ggml_rms_norm_impl(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. bool inplace) {
  3360. bool is_node = false;
  3361. if (!inplace && (a->grad)) {
  3362. GGML_ASSERT(false); // TODO: implement backward
  3363. is_node = true;
  3364. }
  3365. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3366. result->op = GGML_OP_RMS_NORM;
  3367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3368. result->src0 = a;
  3369. result->src1 = NULL; // TODO: maybe store epsilon here?
  3370. return result;
  3371. }
  3372. struct ggml_tensor * ggml_rms_norm(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a) {
  3375. return ggml_rms_norm_impl(ctx, a, false);
  3376. }
  3377. struct ggml_tensor * ggml_rms_norm_inplace(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_rms_norm_impl(ctx, a, true);
  3381. }
  3382. // ggml_mul_mat
  3383. struct ggml_tensor * ggml_mul_mat(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. struct ggml_tensor * b) {
  3387. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3388. GGML_ASSERT(!ggml_is_transposed(a));
  3389. bool is_node = false;
  3390. if (a->grad || b->grad) {
  3391. is_node = true;
  3392. }
  3393. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3394. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3395. result->op = GGML_OP_MUL_MAT;
  3396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3397. result->src0 = a;
  3398. result->src1 = b;
  3399. return result;
  3400. }
  3401. // ggml_scale
  3402. struct ggml_tensor * ggml_scale_impl(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a,
  3405. struct ggml_tensor * b,
  3406. bool inplace) {
  3407. GGML_ASSERT(ggml_is_scalar(b));
  3408. GGML_ASSERT(ggml_is_padded_1d(a));
  3409. bool is_node = false;
  3410. if (!inplace && (a->grad || b->grad)) {
  3411. GGML_ASSERT(false); // TODO: implement backward
  3412. is_node = true;
  3413. }
  3414. // TODO: when implement backward, fix this:
  3415. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3416. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3417. result->op = GGML_OP_SCALE;
  3418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3419. result->src0 = a;
  3420. result->src1 = b;
  3421. return result;
  3422. }
  3423. struct ggml_tensor * ggml_scale(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. struct ggml_tensor * b) {
  3427. return ggml_scale_impl(ctx, a, b, false);
  3428. }
  3429. struct ggml_tensor * ggml_scale_inplace(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. struct ggml_tensor * b) {
  3433. return ggml_scale_impl(ctx, a, b, true);
  3434. }
  3435. // ggml_cpy
  3436. struct ggml_tensor * ggml_cpy_impl(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. struct ggml_tensor * b,
  3440. bool inplace) {
  3441. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3442. bool is_node = false;
  3443. if (!inplace && (a->grad || b->grad)) {
  3444. GGML_ASSERT(false); // TODO: implement backward
  3445. is_node = true;
  3446. }
  3447. // make a view of the destination
  3448. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3449. result->op = GGML_OP_CPY;
  3450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3451. result->src0 = a;
  3452. result->src1 = b;
  3453. return result;
  3454. }
  3455. struct ggml_tensor * ggml_cpy(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a,
  3458. struct ggml_tensor * b) {
  3459. return ggml_cpy_impl(ctx, a, b, false);
  3460. }
  3461. struct ggml_tensor * ggml_cpy_inplace(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. return ggml_cpy_impl(ctx, a, b, true);
  3466. }
  3467. // ggml_reshape
  3468. struct ggml_tensor * ggml_reshape(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a,
  3471. struct ggml_tensor * b) {
  3472. GGML_ASSERT(ggml_is_contiguous(a));
  3473. GGML_ASSERT(ggml_is_contiguous(b));
  3474. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3475. bool is_node = false;
  3476. if (a->grad || b->grad) {
  3477. GGML_ASSERT(false); // TODO: implement backward
  3478. is_node = true;
  3479. }
  3480. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3481. result->op = GGML_OP_RESHAPE;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src0 = a;
  3484. result->src1 = NULL;
  3485. return result;
  3486. }
  3487. struct ggml_tensor * ggml_reshape_2d(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. int64_t ne0,
  3491. int64_t ne1) {
  3492. GGML_ASSERT(ggml_is_contiguous(a));
  3493. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. GGML_ASSERT(false); // TODO: implement backward
  3497. is_node = true;
  3498. }
  3499. const int64_t ne[2] = { ne0, ne1 };
  3500. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3501. result->op = GGML_OP_RESHAPE;
  3502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3503. result->src0 = a;
  3504. result->src1 = NULL;
  3505. return result;
  3506. }
  3507. struct ggml_tensor * ggml_reshape_3d(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. int64_t ne0,
  3511. int64_t ne1,
  3512. int64_t ne2) {
  3513. GGML_ASSERT(ggml_is_contiguous(a));
  3514. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3515. bool is_node = false;
  3516. if (a->grad) {
  3517. GGML_ASSERT(false); // TODO: implement backward
  3518. is_node = true;
  3519. }
  3520. const int64_t ne[3] = { ne0, ne1, ne2 };
  3521. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3522. result->op = GGML_OP_RESHAPE;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src0 = a;
  3525. result->src1 = NULL;
  3526. return result;
  3527. }
  3528. // ggml_view_1d
  3529. struct ggml_tensor * ggml_view_1d(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a,
  3532. int64_t ne0,
  3533. size_t offset) {
  3534. if (a->grad) {
  3535. GGML_ASSERT(false); // gradient propagation is not supported
  3536. }
  3537. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3538. result->op = GGML_OP_VIEW;
  3539. result->grad = NULL;
  3540. result->src0 = a;
  3541. result->src1 = NULL; // TODO: maybe store the offset here?
  3542. return result;
  3543. }
  3544. // ggml_view_2d
  3545. struct ggml_tensor * ggml_view_2d(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. int64_t ne0,
  3549. int64_t ne1,
  3550. size_t nb1,
  3551. size_t offset) {
  3552. if (a->grad) {
  3553. GGML_ASSERT(false); // gradient propagation is not supported
  3554. }
  3555. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3556. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3557. result->nb[1] = nb1;
  3558. result->nb[2] = result->nb[1]*ne1;
  3559. result->nb[3] = result->nb[2];
  3560. result->op = GGML_OP_VIEW;
  3561. result->grad = NULL;
  3562. result->src0 = a;
  3563. result->src1 = NULL; // TODO: maybe store the offset here?
  3564. return result;
  3565. }
  3566. // ggml_view_3d
  3567. struct ggml_tensor * ggml_view_3d(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a,
  3570. int64_t ne0,
  3571. int64_t ne1,
  3572. int64_t ne2,
  3573. size_t nb1,
  3574. size_t nb2,
  3575. size_t offset) {
  3576. if (a->grad) {
  3577. GGML_ASSERT(false); // gradient propagation is not supported
  3578. }
  3579. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3580. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3581. result->nb[1] = nb1;
  3582. result->nb[2] = nb2;
  3583. result->nb[3] = result->nb[2]*ne2;
  3584. result->op = GGML_OP_VIEW;
  3585. result->grad = NULL;
  3586. result->src0 = a;
  3587. result->src1 = NULL; // TODO: maybe store the offset here?
  3588. return result;
  3589. }
  3590. // ggml_permute
  3591. struct ggml_tensor * ggml_permute(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. int axis0,
  3595. int axis1,
  3596. int axis2,
  3597. int axis3) {
  3598. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3599. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3600. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3601. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3602. GGML_ASSERT(axis0 != axis1);
  3603. GGML_ASSERT(axis0 != axis2);
  3604. GGML_ASSERT(axis0 != axis3);
  3605. GGML_ASSERT(axis1 != axis2);
  3606. GGML_ASSERT(axis1 != axis3);
  3607. GGML_ASSERT(axis2 != axis3);
  3608. bool is_node = false;
  3609. if (a->grad) {
  3610. GGML_ASSERT(false); // TODO: implement backward
  3611. is_node = true;
  3612. }
  3613. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3614. int ne[GGML_MAX_DIMS];
  3615. int nb[GGML_MAX_DIMS];
  3616. ne[axis0] = a->ne[0];
  3617. ne[axis1] = a->ne[1];
  3618. ne[axis2] = a->ne[2];
  3619. ne[axis3] = a->ne[3];
  3620. nb[axis0] = a->nb[0];
  3621. nb[axis1] = a->nb[1];
  3622. nb[axis2] = a->nb[2];
  3623. nb[axis3] = a->nb[3];
  3624. result->ne[0] = ne[0];
  3625. result->ne[1] = ne[1];
  3626. result->ne[2] = ne[2];
  3627. result->ne[3] = ne[3];
  3628. result->nb[0] = nb[0];
  3629. result->nb[1] = nb[1];
  3630. result->nb[2] = nb[2];
  3631. result->nb[3] = nb[3];
  3632. result->op = GGML_OP_PERMUTE;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src0 = a;
  3635. result->src1 = NULL; // TODO: maybe store the permutation here?
  3636. return result;
  3637. }
  3638. // ggml_transpose
  3639. struct ggml_tensor * ggml_transpose(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. bool is_node = false;
  3643. if (a->grad) {
  3644. GGML_ASSERT(false); // TODO: implement backward
  3645. is_node = true;
  3646. }
  3647. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3648. result->ne[0] = a->ne[1];
  3649. result->ne[1] = a->ne[0];
  3650. result->nb[0] = a->nb[1];
  3651. result->nb[1] = a->nb[0];
  3652. result->op = GGML_OP_TRANSPOSE;
  3653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3654. result->src0 = a;
  3655. result->src1 = NULL;
  3656. return result;
  3657. }
  3658. // ggml_get_rows
  3659. struct ggml_tensor * ggml_get_rows(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * a,
  3662. struct ggml_tensor * b) {
  3663. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3664. bool is_node = false;
  3665. if (a->grad || b->grad) {
  3666. GGML_ASSERT(false); // TODO: implement backward
  3667. is_node = true;
  3668. }
  3669. // TODO: implement non F32 return
  3670. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3671. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3672. result->op = GGML_OP_GET_ROWS;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src0 = a;
  3675. result->src1 = b;
  3676. return result;
  3677. }
  3678. // ggml_diag_mask_inf
  3679. struct ggml_tensor * ggml_diag_mask_inf(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. int n_past) {
  3683. bool is_node = false;
  3684. if (a->grad) {
  3685. GGML_ASSERT(false); // TODO: implement backward
  3686. is_node = true;
  3687. }
  3688. // TODO: when implement backward, fix this:
  3689. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3690. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3691. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3692. result->op = GGML_OP_DIAG_MASK_INF;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src0 = a;
  3695. result->src1 = b;
  3696. return result;
  3697. }
  3698. // ggml_soft_max
  3699. struct ggml_tensor * ggml_soft_max(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a) {
  3702. bool is_node = false;
  3703. if (a->grad) {
  3704. GGML_ASSERT(false); // TODO: implement backward
  3705. is_node = true;
  3706. }
  3707. // TODO: when implement backward, fix this:
  3708. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3710. result->op = GGML_OP_SOFT_MAX;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src0 = a;
  3713. result->src1 = NULL;
  3714. return result;
  3715. }
  3716. // ggml_rope
  3717. struct ggml_tensor * ggml_rope(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a,
  3720. int n_past,
  3721. int n_dims,
  3722. int mode) {
  3723. GGML_ASSERT(n_past >= 0);
  3724. bool is_node = false;
  3725. if (a->grad) {
  3726. GGML_ASSERT(false); // TODO: implement backward
  3727. is_node = true;
  3728. }
  3729. // TODO: when implement backward, fix this:
  3730. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3731. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3732. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3733. ((int32_t *) b->data)[0] = n_past;
  3734. ((int32_t *) b->data)[1] = n_dims;
  3735. ((int32_t *) b->data)[2] = mode;
  3736. result->op = GGML_OP_ROPE;
  3737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3738. result->src0 = a;
  3739. result->src1 = b;
  3740. return result;
  3741. }
  3742. // ggml_conv_1d_1s
  3743. struct ggml_tensor * ggml_conv_1d_1s(
  3744. struct ggml_context * ctx,
  3745. struct ggml_tensor * a,
  3746. struct ggml_tensor * b) {
  3747. GGML_ASSERT(ggml_is_matrix(b));
  3748. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3749. GGML_ASSERT(a->ne[3] == 1);
  3750. bool is_node = false;
  3751. if (a->grad || b->grad) {
  3752. GGML_ASSERT(false); // TODO: implement backward
  3753. is_node = true;
  3754. }
  3755. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3756. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3757. result->op = GGML_OP_CONV_1D_1S;
  3758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3759. result->src0 = a;
  3760. result->src1 = b;
  3761. return result;
  3762. }
  3763. // ggml_conv_1d_2s
  3764. struct ggml_tensor * ggml_conv_1d_2s(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a,
  3767. struct ggml_tensor * b) {
  3768. GGML_ASSERT(ggml_is_matrix(b));
  3769. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3770. GGML_ASSERT(a->ne[3] == 1);
  3771. bool is_node = false;
  3772. if (a->grad || b->grad) {
  3773. GGML_ASSERT(false); // TODO: implement backward
  3774. is_node = true;
  3775. }
  3776. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3777. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3778. result->op = GGML_OP_CONV_1D_2S;
  3779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3780. result->src0 = a;
  3781. result->src1 = b;
  3782. return result;
  3783. }
  3784. // ggml_flash_attn
  3785. struct ggml_tensor * ggml_flash_attn(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * q,
  3788. struct ggml_tensor * k,
  3789. struct ggml_tensor * v,
  3790. bool masked) {
  3791. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3792. // TODO: check if vT can be multiplied by (k*qT)
  3793. bool is_node = false;
  3794. if (q->grad || k->grad || v->grad) {
  3795. GGML_ASSERT(false); // TODO: implement backward
  3796. is_node = true;
  3797. }
  3798. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3799. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3800. result->op = GGML_OP_FLASH_ATTN;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src0 = q;
  3803. result->src1 = k;
  3804. result->opt[0] = v;
  3805. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3806. return result;
  3807. }
  3808. // ggml_flash_ff
  3809. struct ggml_tensor * ggml_flash_ff(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. struct ggml_tensor * b0,
  3813. struct ggml_tensor * b1,
  3814. struct ggml_tensor * c0,
  3815. struct ggml_tensor * c1) {
  3816. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3817. // TODO: more checks
  3818. bool is_node = false;
  3819. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3820. GGML_ASSERT(false); // TODO: implement backward
  3821. is_node = true;
  3822. }
  3823. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3824. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3825. result->op = GGML_OP_FLASH_FF;
  3826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3827. result->src0 = a;
  3828. result->src1 = b0;
  3829. result->opt[0] = b1;
  3830. result->opt[1] = c0;
  3831. result->opt[2] = c1;
  3832. return result;
  3833. }
  3834. ////////////////////////////////////////////////////////////////////////////////
  3835. void ggml_set_param(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * tensor) {
  3838. tensor->is_param = true;
  3839. GGML_ASSERT(tensor->grad == NULL);
  3840. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3841. }
  3842. // ggml_compute_forward_dup
  3843. static void ggml_compute_forward_dup_f16(
  3844. const struct ggml_compute_params * params,
  3845. const struct ggml_tensor * src0,
  3846. struct ggml_tensor * dst) {
  3847. GGML_ASSERT(params->ith == 0);
  3848. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3849. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3850. return;
  3851. }
  3852. const int64_t ne00 = src0->ne[0];
  3853. const int64_t ne01 = src0->ne[1];
  3854. const int64_t ne02 = src0->ne[2];
  3855. const int64_t ne03 = src0->ne[3];
  3856. const size_t nb00 = src0->nb[0];
  3857. const size_t nb01 = src0->nb[1];
  3858. const size_t nb02 = src0->nb[2];
  3859. const size_t nb03 = src0->nb[3];
  3860. const size_t nb0 = dst->nb[0];
  3861. const size_t nb1 = dst->nb[1];
  3862. const size_t nb2 = dst->nb[2];
  3863. const size_t nb3 = dst->nb[3];
  3864. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3865. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3866. return;
  3867. }
  3868. if (src0->type == dst->type &&
  3869. src0->ne[0] == dst->ne[0] &&
  3870. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3871. // copy by rows
  3872. const size_t rs = ne00*nb00;
  3873. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3874. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3875. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3876. memcpy(
  3877. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3878. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3879. rs);
  3880. }
  3881. }
  3882. }
  3883. return;
  3884. }
  3885. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3886. // dst counters
  3887. int64_t i10 = 0;
  3888. int64_t i11 = 0;
  3889. int64_t i12 = 0;
  3890. int64_t i13 = 0;
  3891. if (dst->type == GGML_TYPE_F16) {
  3892. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3893. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3894. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3895. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3896. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3897. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3898. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  3899. if (++i10 == ne00) {
  3900. i10 = 0;
  3901. if (++i11 == ne01) {
  3902. i11 = 0;
  3903. if (++i12 == ne02) {
  3904. i12 = 0;
  3905. if (++i13 == ne03) {
  3906. i13 = 0;
  3907. }
  3908. }
  3909. }
  3910. }
  3911. }
  3912. }
  3913. }
  3914. }
  3915. } else if (dst->type == GGML_TYPE_F32) {
  3916. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3917. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3918. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3919. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3920. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3921. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3922. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  3923. if (++i10 == ne00) {
  3924. i10 = 0;
  3925. if (++i11 == ne01) {
  3926. i11 = 0;
  3927. if (++i12 == ne02) {
  3928. i12 = 0;
  3929. if (++i13 == ne03) {
  3930. i13 = 0;
  3931. }
  3932. }
  3933. }
  3934. }
  3935. }
  3936. }
  3937. }
  3938. }
  3939. } else {
  3940. GGML_ASSERT(false); // TODO: implement
  3941. }
  3942. }
  3943. static void ggml_compute_forward_dup_f32(
  3944. const struct ggml_compute_params * params,
  3945. const struct ggml_tensor * src0,
  3946. struct ggml_tensor * dst) {
  3947. GGML_ASSERT(params->ith == 0);
  3948. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3950. return;
  3951. }
  3952. const int64_t ne00 = src0->ne[0];
  3953. const int64_t ne01 = src0->ne[1];
  3954. const int64_t ne02 = src0->ne[2];
  3955. const int64_t ne03 = src0->ne[3];
  3956. const size_t nb00 = src0->nb[0];
  3957. const size_t nb01 = src0->nb[1];
  3958. const size_t nb02 = src0->nb[2];
  3959. const size_t nb03 = src0->nb[3];
  3960. const size_t nb0 = dst->nb[0];
  3961. const size_t nb1 = dst->nb[1];
  3962. const size_t nb2 = dst->nb[2];
  3963. const size_t nb3 = dst->nb[3];
  3964. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3965. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3966. return;
  3967. }
  3968. // dst counters
  3969. int64_t i10 = 0;
  3970. int64_t i11 = 0;
  3971. int64_t i12 = 0;
  3972. int64_t i13 = 0;
  3973. if (dst->type == GGML_TYPE_F32) {
  3974. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3975. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3976. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3978. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3979. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3980. memcpy(dst_ptr, src0_ptr, sizeof(float));
  3981. if (++i10 == dst->ne[0]) {
  3982. i10 = 0;
  3983. if (++i11 == dst->ne[1]) {
  3984. i11 = 0;
  3985. if (++i12 == dst->ne[2]) {
  3986. i12 = 0;
  3987. if (++i13 == dst->ne[3]) {
  3988. i13 = 0;
  3989. }
  3990. }
  3991. }
  3992. }
  3993. }
  3994. }
  3995. }
  3996. }
  3997. } else if (dst->type == GGML_TYPE_F16) {
  3998. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3999. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4000. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4001. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4002. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4003. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4004. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4005. if (++i10 == dst->ne[0]) {
  4006. i10 = 0;
  4007. if (++i11 == dst->ne[1]) {
  4008. i11 = 0;
  4009. if (++i12 == dst->ne[2]) {
  4010. i12 = 0;
  4011. if (++i13 == dst->ne[3]) {
  4012. i13 = 0;
  4013. }
  4014. }
  4015. }
  4016. }
  4017. }
  4018. }
  4019. }
  4020. }
  4021. } else {
  4022. GGML_ASSERT(false); // TODO: implement
  4023. }
  4024. }
  4025. static void ggml_compute_forward_dup(
  4026. const struct ggml_compute_params * params,
  4027. const struct ggml_tensor * src0,
  4028. struct ggml_tensor * dst) {
  4029. switch (src0->type) {
  4030. case GGML_TYPE_F16:
  4031. {
  4032. ggml_compute_forward_dup_f16(params, src0, dst);
  4033. } break;
  4034. case GGML_TYPE_F32:
  4035. {
  4036. ggml_compute_forward_dup_f32(params, src0, dst);
  4037. } break;
  4038. case GGML_TYPE_Q4_0:
  4039. case GGML_TYPE_Q4_1:
  4040. case GGML_TYPE_I8:
  4041. case GGML_TYPE_I16:
  4042. case GGML_TYPE_I32:
  4043. case GGML_TYPE_COUNT:
  4044. {
  4045. GGML_ASSERT(false);
  4046. } break;
  4047. }
  4048. }
  4049. // ggml_compute_forward_add
  4050. static void ggml_compute_forward_add_f32(
  4051. const struct ggml_compute_params * params,
  4052. const struct ggml_tensor * src0,
  4053. const struct ggml_tensor * src1,
  4054. struct ggml_tensor * dst) {
  4055. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4057. return;
  4058. }
  4059. const int ith = params->ith;
  4060. const int nth = params->nth;
  4061. const int n = ggml_nrows(src0);
  4062. const int nc = src0->ne[0];
  4063. const size_t nb00 = src0->nb[0];
  4064. const size_t nb01 = src0->nb[1];
  4065. const size_t nb10 = src1->nb[0];
  4066. const size_t nb11 = src1->nb[1];
  4067. const size_t nb0 = dst->nb[0];
  4068. const size_t nb1 = dst->nb[1];
  4069. GGML_ASSERT( nb0 == sizeof(float));
  4070. GGML_ASSERT(nb00 == sizeof(float));
  4071. if (nb10 == sizeof(float)) {
  4072. const int j0 = (n/nth)*ith;
  4073. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4074. for (int j = j0; j < j1; j++) {
  4075. ggml_vec_add_f32(nc,
  4076. (float *) ((char *) dst->data + j*nb1),
  4077. (float *) ((char *) src0->data + j*nb01),
  4078. (float *) ((char *) src1->data + j*nb11));
  4079. }
  4080. } else {
  4081. // src1 is not contiguous
  4082. for (int j = ith; j < n; j += nth) {
  4083. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4084. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4085. for (int i = 0; i < nc; i++) {
  4086. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4087. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4088. }
  4089. }
  4090. }
  4091. }
  4092. static void ggml_compute_forward_add(
  4093. const struct ggml_compute_params * params,
  4094. const struct ggml_tensor * src0,
  4095. const struct ggml_tensor * src1,
  4096. struct ggml_tensor * dst) {
  4097. switch (src0->type) {
  4098. case GGML_TYPE_F32:
  4099. {
  4100. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4101. } break;
  4102. case GGML_TYPE_Q4_0:
  4103. case GGML_TYPE_Q4_1:
  4104. case GGML_TYPE_I8:
  4105. case GGML_TYPE_I16:
  4106. case GGML_TYPE_I32:
  4107. case GGML_TYPE_F16:
  4108. case GGML_TYPE_COUNT:
  4109. {
  4110. GGML_ASSERT(false);
  4111. } break;
  4112. }
  4113. }
  4114. // ggml_compute_forward_sub
  4115. static void ggml_compute_forward_sub_f32(
  4116. const struct ggml_compute_params * params,
  4117. const struct ggml_tensor * src0,
  4118. const struct ggml_tensor * src1,
  4119. struct ggml_tensor * dst) {
  4120. assert(params->ith == 0);
  4121. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4123. return;
  4124. }
  4125. const int n = ggml_nrows(src0);
  4126. const int nc = src0->ne[0];
  4127. assert( dst->nb[0] == sizeof(float));
  4128. assert(src0->nb[0] == sizeof(float));
  4129. assert(src1->nb[0] == sizeof(float));
  4130. for (int i = 0; i < n; i++) {
  4131. ggml_vec_sub_f32(nc,
  4132. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4133. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4134. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4135. }
  4136. }
  4137. static void ggml_compute_forward_sub(
  4138. const struct ggml_compute_params * params,
  4139. const struct ggml_tensor * src0,
  4140. const struct ggml_tensor * src1,
  4141. struct ggml_tensor * dst) {
  4142. switch (src0->type) {
  4143. case GGML_TYPE_F32:
  4144. {
  4145. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4146. } break;
  4147. case GGML_TYPE_Q4_0:
  4148. case GGML_TYPE_Q4_1:
  4149. case GGML_TYPE_I8:
  4150. case GGML_TYPE_I16:
  4151. case GGML_TYPE_I32:
  4152. case GGML_TYPE_F16:
  4153. case GGML_TYPE_COUNT:
  4154. {
  4155. GGML_ASSERT(false);
  4156. } break;
  4157. }
  4158. }
  4159. // ggml_compute_forward_mul
  4160. static void ggml_compute_forward_mul_f32(
  4161. const struct ggml_compute_params * params,
  4162. const struct ggml_tensor * src0,
  4163. const struct ggml_tensor * src1,
  4164. struct ggml_tensor * dst) {
  4165. assert(params->ith == 0);
  4166. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4167. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4168. return;
  4169. }
  4170. const int n = ggml_nrows(src0);
  4171. const int nc = src0->ne[0];
  4172. assert( dst->nb[0] == sizeof(float));
  4173. assert(src0->nb[0] == sizeof(float));
  4174. assert(src1->nb[0] == sizeof(float));
  4175. for (int i = 0; i < n; i++) {
  4176. ggml_vec_mul_f32(nc,
  4177. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4178. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4179. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4180. }
  4181. }
  4182. static void ggml_compute_forward_mul(
  4183. const struct ggml_compute_params * params,
  4184. const struct ggml_tensor * src0,
  4185. const struct ggml_tensor * src1,
  4186. struct ggml_tensor * dst) {
  4187. switch (src0->type) {
  4188. case GGML_TYPE_F32:
  4189. {
  4190. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4191. } break;
  4192. case GGML_TYPE_Q4_0:
  4193. case GGML_TYPE_Q4_1:
  4194. case GGML_TYPE_I8:
  4195. case GGML_TYPE_I16:
  4196. case GGML_TYPE_I32:
  4197. case GGML_TYPE_F16:
  4198. case GGML_TYPE_COUNT:
  4199. {
  4200. GGML_ASSERT(false);
  4201. } break;
  4202. }
  4203. }
  4204. // ggml_compute_forward_div
  4205. static void ggml_compute_forward_div_f32(
  4206. const struct ggml_compute_params * params,
  4207. const struct ggml_tensor * src0,
  4208. const struct ggml_tensor * src1,
  4209. struct ggml_tensor * dst) {
  4210. assert(params->ith == 0);
  4211. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4212. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4213. return;
  4214. }
  4215. const int n = ggml_nrows(src0);
  4216. const int nc = src0->ne[0];
  4217. assert( dst->nb[0] == sizeof(float));
  4218. assert(src0->nb[0] == sizeof(float));
  4219. assert(src1->nb[0] == sizeof(float));
  4220. for (int i = 0; i < n; i++) {
  4221. ggml_vec_div_f32(nc,
  4222. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4223. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4224. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4225. }
  4226. }
  4227. static void ggml_compute_forward_div(
  4228. const struct ggml_compute_params * params,
  4229. const struct ggml_tensor * src0,
  4230. const struct ggml_tensor * src1,
  4231. struct ggml_tensor * dst) {
  4232. switch (src0->type) {
  4233. case GGML_TYPE_F32:
  4234. {
  4235. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4236. } break;
  4237. case GGML_TYPE_Q4_0:
  4238. case GGML_TYPE_Q4_1:
  4239. case GGML_TYPE_I8:
  4240. case GGML_TYPE_I16:
  4241. case GGML_TYPE_I32:
  4242. case GGML_TYPE_F16:
  4243. case GGML_TYPE_COUNT:
  4244. {
  4245. GGML_ASSERT(false);
  4246. } break;
  4247. }
  4248. }
  4249. // ggml_compute_forward_sqr
  4250. static void ggml_compute_forward_sqr_f32(
  4251. const struct ggml_compute_params * params,
  4252. const struct ggml_tensor * src0,
  4253. struct ggml_tensor * dst) {
  4254. assert(params->ith == 0);
  4255. assert(ggml_are_same_shape(src0, dst));
  4256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4257. return;
  4258. }
  4259. const int n = ggml_nrows(src0);
  4260. const int nc = src0->ne[0];
  4261. assert( dst->nb[0] == sizeof(float));
  4262. assert(src0->nb[0] == sizeof(float));
  4263. for (int i = 0; i < n; i++) {
  4264. ggml_vec_sqr_f32(nc,
  4265. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4266. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4267. }
  4268. }
  4269. static void ggml_compute_forward_sqr(
  4270. const struct ggml_compute_params * params,
  4271. const struct ggml_tensor * src0,
  4272. struct ggml_tensor * dst) {
  4273. switch (src0->type) {
  4274. case GGML_TYPE_F32:
  4275. {
  4276. ggml_compute_forward_sqr_f32(params, src0, dst);
  4277. } break;
  4278. case GGML_TYPE_Q4_0:
  4279. case GGML_TYPE_Q4_1:
  4280. case GGML_TYPE_I8:
  4281. case GGML_TYPE_I16:
  4282. case GGML_TYPE_I32:
  4283. case GGML_TYPE_F16:
  4284. case GGML_TYPE_COUNT:
  4285. {
  4286. GGML_ASSERT(false);
  4287. } break;
  4288. }
  4289. }
  4290. // ggml_compute_forward_sqrt
  4291. static void ggml_compute_forward_sqrt_f32(
  4292. const struct ggml_compute_params * params,
  4293. const struct ggml_tensor * src0,
  4294. struct ggml_tensor * dst) {
  4295. assert(params->ith == 0);
  4296. assert(ggml_are_same_shape(src0, dst));
  4297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4298. return;
  4299. }
  4300. const int n = ggml_nrows(src0);
  4301. const int nc = src0->ne[0];
  4302. assert( dst->nb[0] == sizeof(float));
  4303. assert(src0->nb[0] == sizeof(float));
  4304. for (int i = 0; i < n; i++) {
  4305. ggml_vec_sqrt_f32(nc,
  4306. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4307. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4308. }
  4309. }
  4310. static void ggml_compute_forward_sqrt(
  4311. const struct ggml_compute_params * params,
  4312. const struct ggml_tensor * src0,
  4313. struct ggml_tensor * dst) {
  4314. switch (src0->type) {
  4315. case GGML_TYPE_F32:
  4316. {
  4317. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4318. } break;
  4319. case GGML_TYPE_Q4_0:
  4320. case GGML_TYPE_Q4_1:
  4321. case GGML_TYPE_I8:
  4322. case GGML_TYPE_I16:
  4323. case GGML_TYPE_I32:
  4324. case GGML_TYPE_F16:
  4325. case GGML_TYPE_COUNT:
  4326. {
  4327. GGML_ASSERT(false);
  4328. } break;
  4329. }
  4330. }
  4331. // ggml_compute_forward_sum
  4332. static void ggml_compute_forward_sum_f32(
  4333. const struct ggml_compute_params * params,
  4334. const struct ggml_tensor * src0,
  4335. struct ggml_tensor * dst) {
  4336. assert(params->ith == 0);
  4337. assert(ggml_is_scalar(dst));
  4338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4339. return;
  4340. }
  4341. assert(ggml_is_scalar(dst));
  4342. assert(src0->nb[0] == sizeof(float));
  4343. const int64_t ne00 = src0->ne[0];
  4344. const int64_t ne01 = src0->ne[1];
  4345. const int64_t ne02 = src0->ne[2];
  4346. const int64_t ne03 = src0->ne[3];
  4347. const size_t nb01 = src0->nb[1];
  4348. const size_t nb02 = src0->nb[2];
  4349. const size_t nb03 = src0->nb[3];
  4350. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4351. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4352. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4353. ggml_vec_sum_f32(ne00,
  4354. (float *) (dst->data),
  4355. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4356. }
  4357. }
  4358. }
  4359. }
  4360. static void ggml_compute_forward_sum(
  4361. const struct ggml_compute_params * params,
  4362. const struct ggml_tensor * src0,
  4363. struct ggml_tensor * dst) {
  4364. switch (src0->type) {
  4365. case GGML_TYPE_F32:
  4366. {
  4367. ggml_compute_forward_sum_f32(params, src0, dst);
  4368. } break;
  4369. case GGML_TYPE_Q4_0:
  4370. case GGML_TYPE_Q4_1:
  4371. case GGML_TYPE_I8:
  4372. case GGML_TYPE_I16:
  4373. case GGML_TYPE_I32:
  4374. case GGML_TYPE_F16:
  4375. case GGML_TYPE_COUNT:
  4376. {
  4377. GGML_ASSERT(false);
  4378. } break;
  4379. }
  4380. }
  4381. // ggml_compute_forward_mean
  4382. static void ggml_compute_forward_mean_f32(
  4383. const struct ggml_compute_params * params,
  4384. const struct ggml_tensor * src0,
  4385. struct ggml_tensor * dst) {
  4386. assert(params->ith == 0);
  4387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4388. return;
  4389. }
  4390. assert(src0->nb[0] == sizeof(float));
  4391. const int64_t ne00 = src0->ne[0];
  4392. const int64_t ne01 = src0->ne[1];
  4393. const int64_t ne02 = src0->ne[2];
  4394. const int64_t ne03 = src0->ne[3];
  4395. const size_t nb01 = src0->nb[1];
  4396. const size_t nb02 = src0->nb[2];
  4397. const size_t nb03 = src0->nb[3];
  4398. const int64_t ne0 = dst->ne[0];
  4399. const int64_t ne1 = dst->ne[1];
  4400. const int64_t ne2 = dst->ne[2];
  4401. const int64_t ne3 = dst->ne[3];
  4402. assert(ne0 == 1);
  4403. assert(ne1 == ne01);
  4404. assert(ne2 == ne02);
  4405. assert(ne3 == ne03);
  4406. UNUSED(ne0);
  4407. UNUSED(ne1);
  4408. UNUSED(ne2);
  4409. UNUSED(ne3);
  4410. const size_t nb1 = dst->nb[1];
  4411. const size_t nb2 = dst->nb[2];
  4412. const size_t nb3 = dst->nb[3];
  4413. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4414. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4415. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4416. ggml_vec_sum_f32(ne00,
  4417. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4418. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4419. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4420. }
  4421. }
  4422. }
  4423. }
  4424. static void ggml_compute_forward_mean(
  4425. const struct ggml_compute_params * params,
  4426. const struct ggml_tensor * src0,
  4427. struct ggml_tensor * dst) {
  4428. switch (src0->type) {
  4429. case GGML_TYPE_F32:
  4430. {
  4431. ggml_compute_forward_mean_f32(params, src0, dst);
  4432. } break;
  4433. case GGML_TYPE_Q4_0:
  4434. case GGML_TYPE_Q4_1:
  4435. case GGML_TYPE_I8:
  4436. case GGML_TYPE_I16:
  4437. case GGML_TYPE_I32:
  4438. case GGML_TYPE_F16:
  4439. case GGML_TYPE_COUNT:
  4440. {
  4441. GGML_ASSERT(false);
  4442. } break;
  4443. }
  4444. }
  4445. // ggml_compute_forward_repeat
  4446. static void ggml_compute_forward_repeat_f32(
  4447. const struct ggml_compute_params * params,
  4448. const struct ggml_tensor * src0,
  4449. struct ggml_tensor * dst) {
  4450. assert(params->ith == 0);
  4451. assert(ggml_can_repeat(src0, dst));
  4452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4453. return;
  4454. }
  4455. // TODO: implement support for rank > 2 tensors
  4456. assert(src0->ne[2] == 1);
  4457. assert(src0->ne[3] == 1);
  4458. assert( dst->ne[2] == 1);
  4459. assert( dst->ne[3] == 1);
  4460. const int nc = dst->ne[0];
  4461. const int nr = dst->ne[1];
  4462. const int nc0 = src0->ne[0];
  4463. const int nr0 = src0->ne[1];
  4464. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4465. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4466. // TODO: support for transposed / permuted tensors
  4467. assert( dst->nb[0] == sizeof(float));
  4468. assert(src0->nb[0] == sizeof(float));
  4469. // TODO: maybe this is not optimal?
  4470. for (int i = 0; i < nrr; i++) {
  4471. for (int j = 0; j < ncr; j++) {
  4472. for (int k = 0; k < nr0; k++) {
  4473. ggml_vec_cpy_f32(nc0,
  4474. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4475. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4476. }
  4477. }
  4478. }
  4479. }
  4480. static void ggml_compute_forward_repeat(
  4481. const struct ggml_compute_params * params,
  4482. const struct ggml_tensor * src0,
  4483. struct ggml_tensor * dst) {
  4484. switch (src0->type) {
  4485. case GGML_TYPE_F32:
  4486. {
  4487. ggml_compute_forward_repeat_f32(params, src0, dst);
  4488. } break;
  4489. case GGML_TYPE_Q4_0:
  4490. case GGML_TYPE_Q4_1:
  4491. case GGML_TYPE_I8:
  4492. case GGML_TYPE_I16:
  4493. case GGML_TYPE_I32:
  4494. case GGML_TYPE_F16:
  4495. case GGML_TYPE_COUNT:
  4496. {
  4497. GGML_ASSERT(false);
  4498. } break;
  4499. }
  4500. }
  4501. // ggml_compute_forward_abs
  4502. static void ggml_compute_forward_abs_f32(
  4503. const struct ggml_compute_params * params,
  4504. const struct ggml_tensor * src0,
  4505. struct ggml_tensor * dst) {
  4506. assert(params->ith == 0);
  4507. assert(ggml_are_same_shape(src0, dst));
  4508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4509. return;
  4510. }
  4511. const int n = ggml_nrows(src0);
  4512. const int nc = src0->ne[0];
  4513. assert(dst->nb[0] == sizeof(float));
  4514. assert(src0->nb[0] == sizeof(float));
  4515. for (int i = 0; i < n; i++) {
  4516. ggml_vec_abs_f32(nc,
  4517. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4518. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4519. }
  4520. }
  4521. static void ggml_compute_forward_abs(
  4522. const struct ggml_compute_params * params,
  4523. const struct ggml_tensor * src0,
  4524. struct ggml_tensor * dst) {
  4525. switch (src0->type) {
  4526. case GGML_TYPE_F32:
  4527. {
  4528. ggml_compute_forward_abs_f32(params, src0, dst);
  4529. } break;
  4530. case GGML_TYPE_Q4_0:
  4531. case GGML_TYPE_Q4_1:
  4532. case GGML_TYPE_I8:
  4533. case GGML_TYPE_I16:
  4534. case GGML_TYPE_I32:
  4535. case GGML_TYPE_F16:
  4536. case GGML_TYPE_COUNT:
  4537. {
  4538. GGML_ASSERT(false);
  4539. } break;
  4540. }
  4541. }
  4542. // ggml_compute_forward_sgn
  4543. static void ggml_compute_forward_sgn_f32(
  4544. const struct ggml_compute_params * params,
  4545. const struct ggml_tensor * src0,
  4546. struct ggml_tensor * dst) {
  4547. assert(params->ith == 0);
  4548. assert(ggml_are_same_shape(src0, dst));
  4549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4550. return;
  4551. }
  4552. const int n = ggml_nrows(src0);
  4553. const int nc = src0->ne[0];
  4554. assert(dst->nb[0] == sizeof(float));
  4555. assert(src0->nb[0] == sizeof(float));
  4556. for (int i = 0; i < n; i++) {
  4557. ggml_vec_sgn_f32(nc,
  4558. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4559. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4560. }
  4561. }
  4562. static void ggml_compute_forward_sgn(
  4563. const struct ggml_compute_params * params,
  4564. const struct ggml_tensor * src0,
  4565. struct ggml_tensor * dst) {
  4566. switch (src0->type) {
  4567. case GGML_TYPE_F32:
  4568. {
  4569. ggml_compute_forward_sgn_f32(params, src0, dst);
  4570. } break;
  4571. case GGML_TYPE_Q4_0:
  4572. case GGML_TYPE_Q4_1:
  4573. case GGML_TYPE_I8:
  4574. case GGML_TYPE_I16:
  4575. case GGML_TYPE_I32:
  4576. case GGML_TYPE_F16:
  4577. case GGML_TYPE_COUNT:
  4578. {
  4579. GGML_ASSERT(false);
  4580. } break;
  4581. }
  4582. }
  4583. // ggml_compute_forward_neg
  4584. static void ggml_compute_forward_neg_f32(
  4585. const struct ggml_compute_params * params,
  4586. const struct ggml_tensor * src0,
  4587. struct ggml_tensor * dst) {
  4588. assert(params->ith == 0);
  4589. assert(ggml_are_same_shape(src0, dst));
  4590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4591. return;
  4592. }
  4593. const int n = ggml_nrows(src0);
  4594. const int nc = src0->ne[0];
  4595. assert(dst->nb[0] == sizeof(float));
  4596. assert(src0->nb[0] == sizeof(float));
  4597. for (int i = 0; i < n; i++) {
  4598. ggml_vec_neg_f32(nc,
  4599. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4600. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4601. }
  4602. }
  4603. static void ggml_compute_forward_neg(
  4604. const struct ggml_compute_params * params,
  4605. const struct ggml_tensor * src0,
  4606. struct ggml_tensor * dst) {
  4607. switch (src0->type) {
  4608. case GGML_TYPE_F32:
  4609. {
  4610. ggml_compute_forward_neg_f32(params, src0, dst);
  4611. } break;
  4612. case GGML_TYPE_Q4_0:
  4613. case GGML_TYPE_Q4_1:
  4614. case GGML_TYPE_I8:
  4615. case GGML_TYPE_I16:
  4616. case GGML_TYPE_I32:
  4617. case GGML_TYPE_F16:
  4618. case GGML_TYPE_COUNT:
  4619. {
  4620. GGML_ASSERT(false);
  4621. } break;
  4622. }
  4623. }
  4624. // ggml_compute_forward_step
  4625. static void ggml_compute_forward_step_f32(
  4626. const struct ggml_compute_params * params,
  4627. const struct ggml_tensor * src0,
  4628. struct ggml_tensor * dst) {
  4629. assert(params->ith == 0);
  4630. assert(ggml_are_same_shape(src0, dst));
  4631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4632. return;
  4633. }
  4634. const int n = ggml_nrows(src0);
  4635. const int nc = src0->ne[0];
  4636. assert(dst->nb[0] == sizeof(float));
  4637. assert(src0->nb[0] == sizeof(float));
  4638. for (int i = 0; i < n; i++) {
  4639. ggml_vec_step_f32(nc,
  4640. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4641. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4642. }
  4643. }
  4644. static void ggml_compute_forward_step(
  4645. const struct ggml_compute_params * params,
  4646. const struct ggml_tensor * src0,
  4647. struct ggml_tensor * dst) {
  4648. switch (src0->type) {
  4649. case GGML_TYPE_F32:
  4650. {
  4651. ggml_compute_forward_step_f32(params, src0, dst);
  4652. } break;
  4653. case GGML_TYPE_Q4_0:
  4654. case GGML_TYPE_Q4_1:
  4655. case GGML_TYPE_I8:
  4656. case GGML_TYPE_I16:
  4657. case GGML_TYPE_I32:
  4658. case GGML_TYPE_F16:
  4659. case GGML_TYPE_COUNT:
  4660. {
  4661. GGML_ASSERT(false);
  4662. } break;
  4663. }
  4664. }
  4665. // ggml_compute_forward_relu
  4666. static void ggml_compute_forward_relu_f32(
  4667. const struct ggml_compute_params * params,
  4668. const struct ggml_tensor * src0,
  4669. struct ggml_tensor * dst) {
  4670. assert(params->ith == 0);
  4671. assert(ggml_are_same_shape(src0, dst));
  4672. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4673. return;
  4674. }
  4675. const int n = ggml_nrows(src0);
  4676. const int nc = src0->ne[0];
  4677. assert(dst->nb[0] == sizeof(float));
  4678. assert(src0->nb[0] == sizeof(float));
  4679. for (int i = 0; i < n; i++) {
  4680. ggml_vec_relu_f32(nc,
  4681. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4682. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4683. }
  4684. }
  4685. static void ggml_compute_forward_relu(
  4686. const struct ggml_compute_params * params,
  4687. const struct ggml_tensor * src0,
  4688. struct ggml_tensor * dst) {
  4689. switch (src0->type) {
  4690. case GGML_TYPE_F32:
  4691. {
  4692. ggml_compute_forward_relu_f32(params, src0, dst);
  4693. } break;
  4694. case GGML_TYPE_Q4_0:
  4695. case GGML_TYPE_Q4_1:
  4696. case GGML_TYPE_I8:
  4697. case GGML_TYPE_I16:
  4698. case GGML_TYPE_I32:
  4699. case GGML_TYPE_F16:
  4700. case GGML_TYPE_COUNT:
  4701. {
  4702. GGML_ASSERT(false);
  4703. } break;
  4704. }
  4705. }
  4706. // ggml_compute_forward_gelu
  4707. static void ggml_compute_forward_gelu_f32(
  4708. const struct ggml_compute_params * params,
  4709. const struct ggml_tensor * src0,
  4710. struct ggml_tensor * dst) {
  4711. GGML_ASSERT(ggml_is_contiguous(src0));
  4712. GGML_ASSERT(ggml_is_contiguous(dst));
  4713. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4714. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4715. return;
  4716. }
  4717. const int ith = params->ith;
  4718. const int nth = params->nth;
  4719. const int nc = src0->ne[0];
  4720. const int nr = ggml_nrows(src0);
  4721. // rows per thread
  4722. const int dr = (nr + nth - 1)/nth;
  4723. // row range for this thread
  4724. const int ir0 = dr*ith;
  4725. const int ir1 = MIN(ir0 + dr, nr);
  4726. for (int i1 = ir0; i1 < ir1; i1++) {
  4727. ggml_vec_gelu_f32(nc,
  4728. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4729. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4730. #ifndef NDEBUG
  4731. for (int k = 0; k < nc; k++) {
  4732. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4733. UNUSED(x);
  4734. assert(!isnan(x));
  4735. assert(!isinf(x));
  4736. }
  4737. #endif
  4738. }
  4739. }
  4740. static void ggml_compute_forward_gelu(
  4741. const struct ggml_compute_params * params,
  4742. const struct ggml_tensor * src0,
  4743. struct ggml_tensor * dst) {
  4744. switch (src0->type) {
  4745. case GGML_TYPE_F32:
  4746. {
  4747. ggml_compute_forward_gelu_f32(params, src0, dst);
  4748. } break;
  4749. case GGML_TYPE_Q4_0:
  4750. case GGML_TYPE_Q4_1:
  4751. case GGML_TYPE_I8:
  4752. case GGML_TYPE_I16:
  4753. case GGML_TYPE_I32:
  4754. case GGML_TYPE_F16:
  4755. case GGML_TYPE_COUNT:
  4756. {
  4757. GGML_ASSERT(false);
  4758. } break;
  4759. }
  4760. //printf("XXXXXXXX gelu\n");
  4761. }
  4762. // ggml_compute_forward_silu
  4763. static void ggml_compute_forward_silu_f32(
  4764. const struct ggml_compute_params * params,
  4765. const struct ggml_tensor * src0,
  4766. struct ggml_tensor * dst) {
  4767. GGML_ASSERT(ggml_is_contiguous(src0));
  4768. GGML_ASSERT(ggml_is_contiguous(dst));
  4769. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4771. return;
  4772. }
  4773. const int ith = params->ith;
  4774. const int nth = params->nth;
  4775. const int nc = src0->ne[0];
  4776. const int nr = ggml_nrows(src0);
  4777. // rows per thread
  4778. const int dr = (nr + nth - 1)/nth;
  4779. // row range for this thread
  4780. const int ir0 = dr*ith;
  4781. const int ir1 = MIN(ir0 + dr, nr);
  4782. for (int i1 = ir0; i1 < ir1; i1++) {
  4783. ggml_vec_silu_f32(nc,
  4784. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4785. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4786. #ifndef NDEBUG
  4787. for (int k = 0; k < nc; k++) {
  4788. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4789. UNUSED(x);
  4790. assert(!isnan(x));
  4791. assert(!isinf(x));
  4792. }
  4793. #endif
  4794. }
  4795. }
  4796. static void ggml_compute_forward_silu(
  4797. const struct ggml_compute_params * params,
  4798. const struct ggml_tensor * src0,
  4799. struct ggml_tensor * dst) {
  4800. switch (src0->type) {
  4801. case GGML_TYPE_F32:
  4802. {
  4803. ggml_compute_forward_silu_f32(params, src0, dst);
  4804. } break;
  4805. case GGML_TYPE_Q4_0:
  4806. case GGML_TYPE_Q4_1:
  4807. case GGML_TYPE_I8:
  4808. case GGML_TYPE_I16:
  4809. case GGML_TYPE_I32:
  4810. case GGML_TYPE_F16:
  4811. case GGML_TYPE_COUNT:
  4812. {
  4813. GGML_ASSERT(false);
  4814. } break;
  4815. }
  4816. }
  4817. // ggml_compute_forward_norm
  4818. static void ggml_compute_forward_norm_f32(
  4819. const struct ggml_compute_params * params,
  4820. const struct ggml_tensor * src0,
  4821. struct ggml_tensor * dst) {
  4822. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4824. return;
  4825. }
  4826. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4827. const int ith = params->ith;
  4828. const int nth = params->nth;
  4829. const int64_t ne00 = src0->ne[0];
  4830. const int64_t ne01 = src0->ne[1];
  4831. const int64_t ne02 = src0->ne[2];
  4832. const int64_t ne03 = src0->ne[3];
  4833. const size_t nb01 = src0->nb[1];
  4834. const size_t nb02 = src0->nb[2];
  4835. const size_t nb03 = src0->nb[3];
  4836. const size_t nb1 = dst->nb[1];
  4837. const size_t nb2 = dst->nb[2];
  4838. const size_t nb3 = dst->nb[3];
  4839. const float eps = 1e-5f; // TODO: make this a parameter
  4840. // TODO: optimize
  4841. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4842. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4843. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4844. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4845. ggml_float sum = 0.0;
  4846. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4847. sum += (ggml_float)x[i00];
  4848. }
  4849. float mean = sum/ne00;
  4850. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4851. ggml_float sum2 = 0.0;
  4852. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4853. float v = x[i00] - mean;
  4854. y[i00] = v;
  4855. sum2 += (ggml_float)(v*v);
  4856. }
  4857. float variance = sum2/ne00;
  4858. const float scale = 1.0f/sqrtf(variance + eps);
  4859. ggml_vec_scale_f32(ne00, y, scale);
  4860. }
  4861. }
  4862. }
  4863. }
  4864. static void ggml_compute_forward_norm(
  4865. const struct ggml_compute_params * params,
  4866. const struct ggml_tensor * src0,
  4867. struct ggml_tensor * dst) {
  4868. switch (src0->type) {
  4869. case GGML_TYPE_F32:
  4870. {
  4871. ggml_compute_forward_norm_f32(params, src0, dst);
  4872. } break;
  4873. case GGML_TYPE_Q4_0:
  4874. case GGML_TYPE_Q4_1:
  4875. case GGML_TYPE_I8:
  4876. case GGML_TYPE_I16:
  4877. case GGML_TYPE_I32:
  4878. case GGML_TYPE_F16:
  4879. case GGML_TYPE_COUNT:
  4880. {
  4881. GGML_ASSERT(false);
  4882. } break;
  4883. }
  4884. }
  4885. static void ggml_compute_forward_rms_norm_f32(
  4886. const struct ggml_compute_params * params,
  4887. const struct ggml_tensor * src0,
  4888. struct ggml_tensor * dst) {
  4889. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4891. return;
  4892. }
  4893. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4894. const int ith = params->ith;
  4895. const int nth = params->nth;
  4896. const int64_t ne00 = src0->ne[0];
  4897. const int64_t ne01 = src0->ne[1];
  4898. const int64_t ne02 = src0->ne[2];
  4899. const int64_t ne03 = src0->ne[3];
  4900. const size_t nb01 = src0->nb[1];
  4901. const size_t nb02 = src0->nb[2];
  4902. const size_t nb03 = src0->nb[3];
  4903. const size_t nb1 = dst->nb[1];
  4904. const size_t nb2 = dst->nb[2];
  4905. const size_t nb3 = dst->nb[3];
  4906. const float eps = 1e-6f; // TODO: make this a parameter
  4907. // TODO: optimize
  4908. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4909. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4910. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4911. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4912. ggml_float sum = 0.0;
  4913. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4914. sum += (ggml_float)(x[i00] * x[i00]);
  4915. }
  4916. float mean = sum/ne00;
  4917. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4918. memcpy(y, x, ne00 * sizeof(float));
  4919. // for (int i00 = 0; i00 < ne00; i00++) {
  4920. // y[i00] = x[i00];
  4921. // }
  4922. const float scale = 1.0f/sqrtf(mean + eps);
  4923. ggml_vec_scale_f32(ne00, y, scale);
  4924. }
  4925. }
  4926. }
  4927. }
  4928. static void ggml_compute_forward_rms_norm(
  4929. const struct ggml_compute_params * params,
  4930. const struct ggml_tensor * src0,
  4931. struct ggml_tensor * dst) {
  4932. switch (src0->type) {
  4933. case GGML_TYPE_F32:
  4934. {
  4935. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4936. } break;
  4937. case GGML_TYPE_Q4_0:
  4938. case GGML_TYPE_Q4_1:
  4939. case GGML_TYPE_I8:
  4940. case GGML_TYPE_I16:
  4941. case GGML_TYPE_I32:
  4942. case GGML_TYPE_F16:
  4943. case GGML_TYPE_COUNT:
  4944. {
  4945. GGML_ASSERT(false);
  4946. } break;
  4947. }
  4948. }
  4949. // ggml_compute_forward_mul_mat
  4950. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4951. // helper function to determine if it is better to use BLAS or not
  4952. // for large matrices, BLAS is faster
  4953. static bool ggml_compute_forward_mul_mat_use_blas(
  4954. const struct ggml_tensor * src0,
  4955. const struct ggml_tensor * src1,
  4956. struct ggml_tensor * dst) {
  4957. //const int64_t ne00 = src0->ne[0];
  4958. //const int64_t ne01 = src0->ne[1];
  4959. const int64_t ne10 = src1->ne[0];
  4960. const int64_t ne0 = dst->ne[0];
  4961. const int64_t ne1 = dst->ne[1];
  4962. // TODO: find the optimal values for these
  4963. if (ggml_is_contiguous(src0) &&
  4964. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4965. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4966. return true;
  4967. }
  4968. return false;
  4969. }
  4970. #endif
  4971. static void ggml_compute_forward_mul_mat_f32(
  4972. const struct ggml_compute_params * params,
  4973. const struct ggml_tensor * src0,
  4974. const struct ggml_tensor * src1,
  4975. struct ggml_tensor * dst) {
  4976. int64_t t0 = ggml_perf_time_us();
  4977. UNUSED(t0);
  4978. const int64_t ne00 = src0->ne[0];
  4979. const int64_t ne01 = src0->ne[1];
  4980. const int64_t ne02 = src0->ne[2];
  4981. const int64_t ne03 = src0->ne[3];
  4982. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4983. const int64_t ne10 = src1->ne[0];
  4984. #endif
  4985. const int64_t ne11 = src1->ne[1];
  4986. #ifndef NDEBUG
  4987. const int64_t ne12 = src1->ne[2];
  4988. const int64_t ne13 = src1->ne[3];
  4989. const int64_t ne0 = dst->ne[0];
  4990. const int64_t ne1 = dst->ne[1];
  4991. const int64_t ne2 = dst->ne[2];
  4992. const int64_t ne3 = dst->ne[3];
  4993. const int nb00 = src0->nb[0];
  4994. #endif
  4995. const int nb01 = src0->nb[1];
  4996. const int nb02 = src0->nb[2];
  4997. const int nb03 = src0->nb[3];
  4998. #ifndef NDEBUG
  4999. const int nb10 = src1->nb[0];
  5000. #endif
  5001. const int nb11 = src1->nb[1];
  5002. const int nb12 = src1->nb[2];
  5003. const int nb13 = src1->nb[3];
  5004. const int nb0 = dst->nb[0];
  5005. const int nb1 = dst->nb[1];
  5006. const int nb2 = dst->nb[2];
  5007. const int nb3 = dst->nb[3];
  5008. const int ith = params->ith;
  5009. const int nth = params->nth;
  5010. assert(ne02 == ne12);
  5011. assert(ne03 == ne13);
  5012. assert(ne2 == ne12);
  5013. assert(ne3 == ne13);
  5014. // we don't support permuted src0 or src1
  5015. assert(nb00 == sizeof(float));
  5016. assert(nb10 == sizeof(float));
  5017. // dst cannot be transposed or permuted
  5018. assert(nb0 == sizeof(float));
  5019. assert(nb0 <= nb1);
  5020. assert(nb1 <= nb2);
  5021. assert(nb2 <= nb3);
  5022. assert(ne0 == ne01);
  5023. assert(ne1 == ne11);
  5024. assert(ne2 == ne02);
  5025. assert(ne3 == ne03);
  5026. // nb01 >= nb00 - src0 is not transposed
  5027. // compute by src0 rows
  5028. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5029. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5030. if (params->ith != 0) {
  5031. return;
  5032. }
  5033. if (params->type == GGML_TASK_INIT) {
  5034. return;
  5035. }
  5036. if (params->type == GGML_TASK_FINALIZE) {
  5037. return;
  5038. }
  5039. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5040. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5041. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5042. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5043. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5044. // zT = y * xT
  5045. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5046. ne11, ne01, ne10,
  5047. 1.0f, y, ne10,
  5048. x, ne10,
  5049. 0.0f, d, ne01);
  5050. }
  5051. }
  5052. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5053. return;
  5054. }
  5055. #endif
  5056. if (params->type == GGML_TASK_INIT) {
  5057. return;
  5058. }
  5059. if (params->type == GGML_TASK_FINALIZE) {
  5060. return;
  5061. }
  5062. // parallelize by src0 rows using ggml_vec_dot_f32
  5063. // total rows in src0
  5064. const int nr = ne01*ne02*ne03;
  5065. // rows per thread
  5066. const int dr = (nr + nth - 1)/nth;
  5067. // row range for this thread
  5068. const int ir0 = dr*ith;
  5069. const int ir1 = MIN(ir0 + dr, nr);
  5070. for (int ir = ir0; ir < ir1; ++ir) {
  5071. // src0 indices
  5072. const int i03 = ir/(ne02*ne01);
  5073. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5074. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5075. for (int64_t ic = 0; ic < ne11; ++ic) {
  5076. // src1 indices
  5077. const int i13 = i03;
  5078. const int i12 = i02;
  5079. const int i11 = ic;
  5080. // dst indices
  5081. const int i0 = i01;
  5082. const int i1 = i11;
  5083. const int i2 = i02;
  5084. const int i3 = i03;
  5085. ggml_vec_dot_f32(ne00,
  5086. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5087. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5088. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5089. }
  5090. }
  5091. //int64_t t1 = ggml_perf_time_us();
  5092. //static int64_t acc = 0;
  5093. //acc += t1 - t0;
  5094. //if (t1 - t0 > 10) {
  5095. // printf("\n");
  5096. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5097. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5098. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5099. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5100. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5101. //}
  5102. }
  5103. static void ggml_compute_forward_mul_mat_f16_f32(
  5104. const struct ggml_compute_params * params,
  5105. const struct ggml_tensor * src0,
  5106. const struct ggml_tensor * src1,
  5107. struct ggml_tensor * dst) {
  5108. int64_t t0 = ggml_perf_time_us();
  5109. UNUSED(t0);
  5110. const int64_t ne00 = src0->ne[0];
  5111. const int64_t ne01 = src0->ne[1];
  5112. const int64_t ne02 = src0->ne[2];
  5113. const int64_t ne03 = src0->ne[3];
  5114. const int64_t ne10 = src1->ne[0];
  5115. const int64_t ne11 = src1->ne[1];
  5116. const int64_t ne12 = src1->ne[2];
  5117. const int64_t ne13 = src1->ne[3];
  5118. const int64_t ne0 = dst->ne[0];
  5119. const int64_t ne1 = dst->ne[1];
  5120. const int64_t ne2 = dst->ne[2];
  5121. const int64_t ne3 = dst->ne[3];
  5122. //const int64_t ne = ne0*ne1*ne2*ne3;
  5123. const int nb00 = src0->nb[0];
  5124. const int nb01 = src0->nb[1];
  5125. const int nb02 = src0->nb[2];
  5126. const int nb03 = src0->nb[3];
  5127. const int nb10 = src1->nb[0];
  5128. const int nb11 = src1->nb[1];
  5129. const int nb12 = src1->nb[2];
  5130. const int nb13 = src1->nb[3];
  5131. const int nb0 = dst->nb[0];
  5132. const int nb1 = dst->nb[1];
  5133. const int nb2 = dst->nb[2];
  5134. const int nb3 = dst->nb[3];
  5135. const int ith = params->ith;
  5136. const int nth = params->nth;
  5137. GGML_ASSERT(ne02 == ne12);
  5138. GGML_ASSERT(ne03 == ne13);
  5139. GGML_ASSERT(ne2 == ne12);
  5140. GGML_ASSERT(ne3 == ne13);
  5141. // TODO: we don't support permuted src0
  5142. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5143. // dst cannot be transposed or permuted
  5144. GGML_ASSERT(nb0 == sizeof(float));
  5145. GGML_ASSERT(nb0 <= nb1);
  5146. GGML_ASSERT(nb1 <= nb2);
  5147. GGML_ASSERT(nb2 <= nb3);
  5148. GGML_ASSERT(ne0 == ne01);
  5149. GGML_ASSERT(ne1 == ne11);
  5150. GGML_ASSERT(ne2 == ne02);
  5151. GGML_ASSERT(ne3 == ne03);
  5152. // nb01 >= nb00 - src0 is not transposed
  5153. // compute by src0 rows
  5154. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5155. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5156. GGML_ASSERT(nb10 == sizeof(float));
  5157. if (params->ith != 0) {
  5158. return;
  5159. }
  5160. if (params->type == GGML_TASK_INIT) {
  5161. return;
  5162. }
  5163. if (params->type == GGML_TASK_FINALIZE) {
  5164. return;
  5165. }
  5166. float * const wdata = params->wdata;
  5167. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5168. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5169. {
  5170. size_t id = 0;
  5171. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5172. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5173. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5174. }
  5175. }
  5176. }
  5177. const float * x = wdata;
  5178. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5179. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5180. // zT = y * xT
  5181. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5182. ne11, ne01, ne10,
  5183. 1.0f, y, ne10,
  5184. x, ne10,
  5185. 0.0f, d, ne01);
  5186. }
  5187. }
  5188. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5189. return;
  5190. }
  5191. #endif
  5192. if (params->type == GGML_TASK_INIT) {
  5193. ggml_fp16_t * const wdata = params->wdata;
  5194. size_t id = 0;
  5195. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5196. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5197. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5198. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5199. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5200. }
  5201. }
  5202. }
  5203. }
  5204. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5205. return;
  5206. }
  5207. if (params->type == GGML_TASK_FINALIZE) {
  5208. return;
  5209. }
  5210. // fp16 -> half the size, so divide by 2
  5211. // TODO: do not support transposed src1
  5212. assert(nb10/2 == sizeof(ggml_fp16_t));
  5213. // parallelize by src0 rows using ggml_vec_dot_f16
  5214. // total rows in src0
  5215. const int nr = ne01*ne02*ne03;
  5216. // rows per thread
  5217. const int dr = (nr + nth - 1)/nth;
  5218. // row range for this thread
  5219. const int ir0 = dr*ith;
  5220. const int ir1 = MIN(ir0 + dr, nr);
  5221. ggml_fp16_t * wdata = params->wdata;
  5222. for (int ir = ir0; ir < ir1; ++ir) {
  5223. // src0 indices
  5224. const int i03 = ir/(ne02*ne01);
  5225. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5226. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5227. const int i13 = i03;
  5228. const int i12 = i02;
  5229. const int i0 = i01;
  5230. const int i2 = i02;
  5231. const int i3 = i03;
  5232. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5233. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5234. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5235. for (int64_t ic = 0; ic < ne11; ++ic) {
  5236. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5237. }
  5238. }
  5239. //int64_t t1 = ggml_time_us();
  5240. //static int64_t acc = 0;
  5241. //acc += t1 - t0;
  5242. //if (t1 - t0 > 10) {
  5243. // printf("\n");
  5244. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5245. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5246. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5247. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5248. //}
  5249. }
  5250. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5251. [GGML_TYPE_Q4_0] = {
  5252. .dequantize_row_q = dequantize_row_q4_0,
  5253. .quantize_row_q = quantize_row_q4_0,
  5254. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5255. .vec_dot_q = ggml_vec_dot_q4_0,
  5256. },
  5257. [GGML_TYPE_Q4_1] = {
  5258. .dequantize_row_q = dequantize_row_q4_1,
  5259. .quantize_row_q = quantize_row_q4_1,
  5260. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5261. .vec_dot_q = ggml_vec_dot_q4_1,
  5262. },
  5263. };
  5264. // For internal test use
  5265. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5266. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5267. return quantize_fns[i];
  5268. }
  5269. static void ggml_compute_forward_mul_mat_q_f32(
  5270. const struct ggml_compute_params * params,
  5271. const struct ggml_tensor * src0,
  5272. const struct ggml_tensor * src1,
  5273. struct ggml_tensor * dst) {
  5274. int64_t t0 = ggml_perf_time_us();
  5275. UNUSED(t0);
  5276. const int64_t ne00 = src0->ne[0];
  5277. const int64_t ne01 = src0->ne[1];
  5278. const int64_t ne02 = src0->ne[2];
  5279. const int64_t ne03 = src0->ne[3];
  5280. const int64_t ne10 = src1->ne[0];
  5281. const int64_t ne11 = src1->ne[1];
  5282. const int64_t ne12 = src1->ne[2];
  5283. const int64_t ne13 = src1->ne[3];
  5284. const int64_t ne0 = dst->ne[0];
  5285. const int64_t ne1 = dst->ne[1];
  5286. const int64_t ne2 = dst->ne[2];
  5287. const int64_t ne3 = dst->ne[3];
  5288. const int nb00 = src0->nb[0];
  5289. const int nb01 = src0->nb[1];
  5290. const int nb02 = src0->nb[2];
  5291. const int nb03 = src0->nb[3];
  5292. const int nb10 = src1->nb[0];
  5293. const int nb11 = src1->nb[1];
  5294. const int nb12 = src1->nb[2];
  5295. const int nb13 = src1->nb[3];
  5296. const int nb0 = dst->nb[0];
  5297. const int nb1 = dst->nb[1];
  5298. const int nb2 = dst->nb[2];
  5299. const int nb3 = dst->nb[3];
  5300. const int ith = params->ith;
  5301. const int nth = params->nth;
  5302. GGML_ASSERT(ne02 == ne12);
  5303. GGML_ASSERT(ne03 == ne13);
  5304. GGML_ASSERT(ne2 == ne12);
  5305. GGML_ASSERT(ne3 == ne13);
  5306. const enum ggml_type type = src0->type;
  5307. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5308. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5309. // we don't support permuted src0 or src1
  5310. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5311. GGML_ASSERT(nb10 == sizeof(float));
  5312. // dst cannot be transposed or permuted
  5313. GGML_ASSERT(nb0 == sizeof(float));
  5314. GGML_ASSERT(nb0 <= nb1);
  5315. GGML_ASSERT(nb1 <= nb2);
  5316. GGML_ASSERT(nb2 <= nb3);
  5317. GGML_ASSERT(ne0 == ne01);
  5318. GGML_ASSERT(ne1 == ne11);
  5319. GGML_ASSERT(ne2 == ne02);
  5320. GGML_ASSERT(ne3 == ne03);
  5321. // nb01 >= nb00 - src0 is not transposed
  5322. // compute by src0 rows
  5323. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5324. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5325. if (params->ith != 0) {
  5326. return;
  5327. }
  5328. if (params->type == GGML_TASK_INIT) {
  5329. return;
  5330. }
  5331. if (params->type == GGML_TASK_FINALIZE) {
  5332. return;
  5333. }
  5334. float * const wdata = params->wdata;
  5335. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5336. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5337. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5338. {
  5339. size_t id = 0;
  5340. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5341. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5342. id += ne00;
  5343. }
  5344. }
  5345. const float * x = wdata;
  5346. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5347. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5348. // zT = y * xT
  5349. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5350. ne11, ne01, ne10,
  5351. 1.0f, y, ne10,
  5352. x, ne10,
  5353. 0.0f, d, ne01);
  5354. }
  5355. }
  5356. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5357. return;
  5358. }
  5359. #endif
  5360. if (params->type == GGML_TASK_INIT) {
  5361. char * wdata = params->wdata;
  5362. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5363. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5364. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5365. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5366. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5367. wdata += row_size;
  5368. }
  5369. }
  5370. }
  5371. return;
  5372. }
  5373. if (params->type == GGML_TASK_FINALIZE) {
  5374. return;
  5375. }
  5376. // parallelize by src0 rows using ggml_vec_dot_q
  5377. // total rows in src0
  5378. const int nr = ne01*ne02*ne03;
  5379. // rows per thread
  5380. const int dr = (nr + nth - 1)/nth;
  5381. // row range for this thread
  5382. const int ir0 = dr*ith;
  5383. const int ir1 = MIN(ir0 + dr, nr);
  5384. void * wdata = params->wdata;
  5385. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5386. for (int ir = ir0; ir < ir1; ++ir) {
  5387. // src0 indices
  5388. const int i03 = ir/(ne02*ne01);
  5389. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5390. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5391. const int i13 = i03;
  5392. const int i12 = i02;
  5393. const int i0 = i01;
  5394. const int i2 = i02;
  5395. const int i3 = i03;
  5396. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5397. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5398. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5399. assert(ne00 % 32 == 0);
  5400. for (int64_t ic = 0; ic < ne11; ++ic) {
  5401. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5402. }
  5403. }
  5404. //int64_t t1 = ggml_time_us();
  5405. //static int64_t acc = 0;
  5406. //acc += t1 - t0;
  5407. //if (t1 - t0 > 10) {
  5408. // printf("\n");
  5409. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5410. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5411. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5412. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5413. //}
  5414. }
  5415. static void ggml_compute_forward_mul_mat(
  5416. const struct ggml_compute_params * params,
  5417. const struct ggml_tensor * src0,
  5418. const struct ggml_tensor * src1,
  5419. struct ggml_tensor * dst) {
  5420. switch (src0->type) {
  5421. case GGML_TYPE_Q4_0:
  5422. case GGML_TYPE_Q4_1:
  5423. {
  5424. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5425. } break;
  5426. case GGML_TYPE_F16:
  5427. {
  5428. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5429. } break;
  5430. case GGML_TYPE_F32:
  5431. {
  5432. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5433. } break;
  5434. case GGML_TYPE_I8:
  5435. case GGML_TYPE_I16:
  5436. case GGML_TYPE_I32:
  5437. case GGML_TYPE_COUNT:
  5438. {
  5439. GGML_ASSERT(false);
  5440. } break;
  5441. }
  5442. #if 0
  5443. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5444. static int first = 8;
  5445. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5446. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5447. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5448. if (first) {
  5449. --first;
  5450. } else {
  5451. for (int k = 0; k < dst->ne[1]; ++k) {
  5452. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5453. for (int i = 0; i < 16; ++i) {
  5454. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5455. }
  5456. printf("\n");
  5457. }
  5458. printf("\n");
  5459. }
  5460. printf("\n");
  5461. exit(0);
  5462. }
  5463. } else {
  5464. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5465. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5466. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5467. }
  5468. #endif
  5469. }
  5470. // ggml_compute_forward_scale
  5471. static void ggml_compute_forward_scale_f32(
  5472. const struct ggml_compute_params * params,
  5473. const struct ggml_tensor * src0,
  5474. const struct ggml_tensor * src1,
  5475. struct ggml_tensor * dst) {
  5476. GGML_ASSERT(ggml_is_contiguous(src0));
  5477. GGML_ASSERT(ggml_is_contiguous(dst));
  5478. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5479. GGML_ASSERT(ggml_is_scalar(src1));
  5480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5481. return;
  5482. }
  5483. // scale factor
  5484. const float v = *(float *) src1->data;
  5485. const int ith = params->ith;
  5486. const int nth = params->nth;
  5487. const int nc = src0->ne[0];
  5488. const int nr = ggml_nrows(src0);
  5489. // rows per thread
  5490. const int dr = (nr + nth - 1)/nth;
  5491. // row range for this thread
  5492. const int ir0 = dr*ith;
  5493. const int ir1 = MIN(ir0 + dr, nr);
  5494. for (int i1 = ir0; i1 < ir1; i1++) {
  5495. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5496. }
  5497. }
  5498. static void ggml_compute_forward_scale(
  5499. const struct ggml_compute_params * params,
  5500. const struct ggml_tensor * src0,
  5501. const struct ggml_tensor * src1,
  5502. struct ggml_tensor * dst) {
  5503. switch (src0->type) {
  5504. case GGML_TYPE_F32:
  5505. {
  5506. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5507. } break;
  5508. case GGML_TYPE_Q4_0:
  5509. case GGML_TYPE_Q4_1:
  5510. case GGML_TYPE_I8:
  5511. case GGML_TYPE_I16:
  5512. case GGML_TYPE_I32:
  5513. case GGML_TYPE_F16:
  5514. case GGML_TYPE_COUNT:
  5515. {
  5516. GGML_ASSERT(false);
  5517. } break;
  5518. }
  5519. }
  5520. // ggml_compute_forward_cpy
  5521. static void ggml_compute_forward_cpy(
  5522. const struct ggml_compute_params * params,
  5523. const struct ggml_tensor * src0,
  5524. struct ggml_tensor * dst) {
  5525. ggml_compute_forward_dup(params, src0, dst);
  5526. }
  5527. // ggml_compute_forward_reshape
  5528. static void ggml_compute_forward_reshape(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. struct ggml_tensor * dst) {
  5532. // NOP
  5533. UNUSED(params);
  5534. UNUSED(src0);
  5535. UNUSED(dst);
  5536. }
  5537. // ggml_compute_forward_view
  5538. static void ggml_compute_forward_view(
  5539. const struct ggml_compute_params * params,
  5540. const struct ggml_tensor * src0) {
  5541. // NOP
  5542. UNUSED(params);
  5543. UNUSED(src0);
  5544. }
  5545. // ggml_compute_forward_permute
  5546. static void ggml_compute_forward_permute(
  5547. const struct ggml_compute_params * params,
  5548. const struct ggml_tensor * src0) {
  5549. // NOP
  5550. UNUSED(params);
  5551. UNUSED(src0);
  5552. }
  5553. // ggml_compute_forward_transpose
  5554. static void ggml_compute_forward_transpose(
  5555. const struct ggml_compute_params * params,
  5556. const struct ggml_tensor * src0) {
  5557. // NOP
  5558. UNUSED(params);
  5559. UNUSED(src0);
  5560. }
  5561. // ggml_compute_forward_get_rows
  5562. static void ggml_compute_forward_get_rows_q(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. const struct ggml_tensor * src1,
  5566. struct ggml_tensor * dst) {
  5567. assert(params->ith == 0);
  5568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5569. return;
  5570. }
  5571. const int nc = src0->ne[0];
  5572. const int nr = ggml_nelements(src1);
  5573. const enum ggml_type type = src0->type;
  5574. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5575. assert( dst->ne[0] == nc);
  5576. assert( dst->ne[1] == nr);
  5577. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5578. for (int i = 0; i < nr; ++i) {
  5579. const int r = ((int32_t *) src1->data)[i];
  5580. dequantize_row_q(
  5581. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5582. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5583. }
  5584. }
  5585. static void ggml_compute_forward_get_rows_f16(
  5586. const struct ggml_compute_params * params,
  5587. const struct ggml_tensor * src0,
  5588. const struct ggml_tensor * src1,
  5589. struct ggml_tensor * dst) {
  5590. assert(params->ith == 0);
  5591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5592. return;
  5593. }
  5594. const int nc = src0->ne[0];
  5595. const int nr = ggml_nelements(src1);
  5596. assert( dst->ne[0] == nc);
  5597. assert( dst->ne[1] == nr);
  5598. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5599. for (int i = 0; i < nr; ++i) {
  5600. const int r = ((int32_t *) src1->data)[i];
  5601. for (int j = 0; j < nc; ++j) {
  5602. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5603. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5604. }
  5605. }
  5606. }
  5607. static void ggml_compute_forward_get_rows_f32(
  5608. const struct ggml_compute_params * params,
  5609. const struct ggml_tensor * src0,
  5610. const struct ggml_tensor * src1,
  5611. struct ggml_tensor * dst) {
  5612. assert(params->ith == 0);
  5613. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5614. return;
  5615. }
  5616. const int nc = src0->ne[0];
  5617. const int nr = ggml_nelements(src1);
  5618. assert( dst->ne[0] == nc);
  5619. assert( dst->ne[1] == nr);
  5620. assert(src0->nb[0] == sizeof(float));
  5621. for (int i = 0; i < nr; ++i) {
  5622. const int r = ((int32_t *) src1->data)[i];
  5623. ggml_vec_cpy_f32(nc,
  5624. (float *) ((char *) dst->data + i*dst->nb[1]),
  5625. (float *) ((char *) src0->data + r*src0->nb[1]));
  5626. }
  5627. }
  5628. static void ggml_compute_forward_get_rows(
  5629. const struct ggml_compute_params * params,
  5630. const struct ggml_tensor * src0,
  5631. const struct ggml_tensor * src1,
  5632. struct ggml_tensor * dst) {
  5633. switch (src0->type) {
  5634. case GGML_TYPE_Q4_0:
  5635. case GGML_TYPE_Q4_1:
  5636. {
  5637. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5638. } break;
  5639. case GGML_TYPE_F16:
  5640. {
  5641. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5642. } break;
  5643. case GGML_TYPE_F32:
  5644. {
  5645. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5646. } break;
  5647. case GGML_TYPE_I8:
  5648. case GGML_TYPE_I16:
  5649. case GGML_TYPE_I32:
  5650. case GGML_TYPE_COUNT:
  5651. {
  5652. GGML_ASSERT(false);
  5653. } break;
  5654. }
  5655. //static bool first = true;
  5656. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5657. //if (first) {
  5658. // first = false;
  5659. //} else {
  5660. // for (int k = 0; k < dst->ne[1]; ++k) {
  5661. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5662. // for (int i = 0; i < 16; ++i) {
  5663. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5664. // }
  5665. // printf("\n");
  5666. // }
  5667. // printf("\n");
  5668. // }
  5669. // printf("\n");
  5670. // exit(0);
  5671. //}
  5672. }
  5673. // ggml_compute_forward_diag_mask_inf
  5674. static void ggml_compute_forward_diag_mask_inf_f32(
  5675. const struct ggml_compute_params * params,
  5676. const struct ggml_tensor * src0,
  5677. const struct ggml_tensor * src1,
  5678. struct ggml_tensor * dst) {
  5679. assert(params->ith == 0);
  5680. assert(src1->type == GGML_TYPE_I32);
  5681. assert(ggml_nelements(src1) == 1);
  5682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5683. return;
  5684. }
  5685. const int n_past = ((int32_t *) src1->data)[0];
  5686. // TODO: handle transposed/permuted matrices
  5687. const int n = ggml_nrows(src0);
  5688. const int nc = src0->ne[0];
  5689. const int nr = src0->ne[1];
  5690. const int nz = n/nr;
  5691. assert( dst->nb[0] == sizeof(float));
  5692. assert(src0->nb[0] == sizeof(float));
  5693. for (int k = 0; k < nz; k++) {
  5694. for (int j = 0; j < nr; j++) {
  5695. for (int i = n_past; i < nc; i++) {
  5696. if (i > n_past + j) {
  5697. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5698. }
  5699. }
  5700. }
  5701. }
  5702. }
  5703. static void ggml_compute_forward_diag_mask_inf(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. switch (src0->type) {
  5709. case GGML_TYPE_F32:
  5710. {
  5711. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5712. } break;
  5713. case GGML_TYPE_Q4_0:
  5714. case GGML_TYPE_Q4_1:
  5715. case GGML_TYPE_I8:
  5716. case GGML_TYPE_I16:
  5717. case GGML_TYPE_I32:
  5718. case GGML_TYPE_F16:
  5719. case GGML_TYPE_COUNT:
  5720. {
  5721. GGML_ASSERT(false);
  5722. } break;
  5723. }
  5724. }
  5725. // ggml_compute_forward_soft_max
  5726. static void ggml_compute_forward_soft_max_f32(
  5727. const struct ggml_compute_params * params,
  5728. const struct ggml_tensor * src0,
  5729. struct ggml_tensor * dst) {
  5730. GGML_ASSERT(ggml_is_contiguous(src0));
  5731. GGML_ASSERT(ggml_is_contiguous(dst));
  5732. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5733. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5734. return;
  5735. }
  5736. // TODO: handle transposed/permuted matrices
  5737. const int ith = params->ith;
  5738. const int nth = params->nth;
  5739. const int nc = src0->ne[0];
  5740. const int nr = ggml_nrows(src0);
  5741. // rows per thread
  5742. const int dr = (nr + nth - 1)/nth;
  5743. // row range for this thread
  5744. const int ir0 = dr*ith;
  5745. const int ir1 = MIN(ir0 + dr, nr);
  5746. for (int i1 = ir0; i1 < ir1; i1++) {
  5747. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5748. #ifndef NDEBUG
  5749. for (int i = 0; i < nc; ++i) {
  5750. //printf("p[%d] = %f\n", i, p[i]);
  5751. assert(!isnan(p[i]));
  5752. }
  5753. #endif
  5754. float max = -INFINITY;
  5755. ggml_vec_max_f32(nc, &max, p);
  5756. ggml_float sum = 0.0;
  5757. uint16_t scvt;
  5758. for (int i = 0; i < nc; i++) {
  5759. if (p[i] == -INFINITY) {
  5760. p[i] = 0.0f;
  5761. } else {
  5762. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5763. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5764. memcpy(&scvt, &s, sizeof(scvt));
  5765. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5766. sum += (ggml_float)val;
  5767. p[i] = val;
  5768. }
  5769. }
  5770. assert(sum > 0.0);
  5771. sum = 1.0/sum;
  5772. ggml_vec_scale_f32(nc, p, sum);
  5773. #ifndef NDEBUG
  5774. for (int i = 0; i < nc; ++i) {
  5775. assert(!isnan(p[i]));
  5776. assert(!isinf(p[i]));
  5777. }
  5778. #endif
  5779. }
  5780. }
  5781. static void ggml_compute_forward_soft_max(
  5782. const struct ggml_compute_params * params,
  5783. const struct ggml_tensor * src0,
  5784. struct ggml_tensor * dst) {
  5785. switch (src0->type) {
  5786. case GGML_TYPE_F32:
  5787. {
  5788. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5789. } break;
  5790. case GGML_TYPE_Q4_0:
  5791. case GGML_TYPE_Q4_1:
  5792. case GGML_TYPE_I8:
  5793. case GGML_TYPE_I16:
  5794. case GGML_TYPE_I32:
  5795. case GGML_TYPE_F16:
  5796. case GGML_TYPE_COUNT:
  5797. {
  5798. GGML_ASSERT(false);
  5799. } break;
  5800. }
  5801. }
  5802. // ggml_compute_forward_rope
  5803. static void ggml_compute_forward_rope_f32(
  5804. const struct ggml_compute_params * params,
  5805. const struct ggml_tensor * src0,
  5806. const struct ggml_tensor * src1,
  5807. struct ggml_tensor * dst) {
  5808. assert(src1->type == GGML_TYPE_I32);
  5809. assert(ggml_nelements(src1) == 3);
  5810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5811. return;
  5812. }
  5813. const int n_past = ((int32_t *) src1->data)[0];
  5814. const int n_dims = ((int32_t *) src1->data)[1];
  5815. const int mode = ((int32_t *) src1->data)[2];
  5816. //const int64_t ne0 = src0->ne[0];
  5817. const int64_t ne1 = src0->ne[1];
  5818. const int64_t ne2 = src0->ne[2];
  5819. const int64_t ne3 = src0->ne[3];
  5820. const int nb0 = src0->nb[0];
  5821. const int nb1 = src0->nb[1];
  5822. const int nb2 = src0->nb[2];
  5823. const int nb3 = src0->nb[3];
  5824. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5825. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5826. assert(nb0 == sizeof(float));
  5827. const int ith = params->ith;
  5828. const int nth = params->nth;
  5829. const int nr = ggml_nrows(src0);
  5830. // rows per thread
  5831. const int dr = (nr + nth - 1)/nth;
  5832. // row range for this thread
  5833. const int ir0 = dr*ith;
  5834. const int ir1 = MIN(ir0 + dr, nr);
  5835. // row index used to determine which thread to use
  5836. int ir = 0;
  5837. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5838. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5839. const int p = (mode == 0 ? n_past + i2 : i2);
  5840. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5841. if (ir++ < ir0) continue;
  5842. if (ir > ir1) break;
  5843. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5844. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5845. const float cos_theta = cosf(p*theta);
  5846. const float sin_theta = sinf(p*theta);
  5847. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5848. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5849. const float x0 = src[0];
  5850. const float x1 = src[1];
  5851. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5852. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5853. }
  5854. }
  5855. }
  5856. }
  5857. }
  5858. static void ggml_compute_forward_rope_f16(
  5859. const struct ggml_compute_params * params,
  5860. const struct ggml_tensor * src0,
  5861. const struct ggml_tensor * src1,
  5862. struct ggml_tensor * dst) {
  5863. assert(src1->type == GGML_TYPE_I32);
  5864. assert(ggml_nelements(src1) == 3);
  5865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5866. return;
  5867. }
  5868. const int n_past = ((int32_t *) src1->data)[0];
  5869. const int n_dims = ((int32_t *) src1->data)[1];
  5870. const int mode = ((int32_t *) src1->data)[2];
  5871. //const int64_t ne0 = src0->ne[0];
  5872. const int64_t ne1 = src0->ne[1];
  5873. const int64_t ne2 = src0->ne[2];
  5874. const int64_t ne3 = src0->ne[3];
  5875. const int nb0 = src0->nb[0];
  5876. const int nb1 = src0->nb[1];
  5877. const int nb2 = src0->nb[2];
  5878. const int nb3 = src0->nb[3];
  5879. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5880. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5881. assert(nb0 == sizeof(ggml_fp16_t));
  5882. const int ith = params->ith;
  5883. const int nth = params->nth;
  5884. const int nr = ggml_nrows(src0);
  5885. // rows per thread
  5886. const int dr = (nr + nth - 1)/nth;
  5887. // row range for this thread
  5888. const int ir0 = dr*ith;
  5889. const int ir1 = MIN(ir0 + dr, nr);
  5890. // row index used to determine which thread to use
  5891. int ir = 0;
  5892. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5893. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5894. const int p = (mode == 0 ? n_past + i2 : i2);
  5895. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5896. if (ir++ < ir0) continue;
  5897. if (ir > ir1) break;
  5898. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5899. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5900. const float cos_theta = cosf(p*theta);
  5901. const float sin_theta = sinf(p*theta);
  5902. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5903. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5904. const float x0 = ggml_fp16_to_fp32(src[0]);
  5905. const float x1 = ggml_fp16_to_fp32(src[1]);
  5906. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5907. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5908. }
  5909. }
  5910. }
  5911. }
  5912. }
  5913. static void ggml_compute_forward_rope(
  5914. const struct ggml_compute_params * params,
  5915. const struct ggml_tensor * src0,
  5916. const struct ggml_tensor * src1,
  5917. struct ggml_tensor * dst) {
  5918. switch (src0->type) {
  5919. case GGML_TYPE_F16:
  5920. {
  5921. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5922. } break;
  5923. case GGML_TYPE_F32:
  5924. {
  5925. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5926. } break;
  5927. case GGML_TYPE_Q4_0:
  5928. case GGML_TYPE_Q4_1:
  5929. case GGML_TYPE_I8:
  5930. case GGML_TYPE_I16:
  5931. case GGML_TYPE_I32:
  5932. case GGML_TYPE_COUNT:
  5933. {
  5934. GGML_ASSERT(false);
  5935. } break;
  5936. }
  5937. }
  5938. // ggml_compute_forward_conv_1d_1s
  5939. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5940. const struct ggml_compute_params * params,
  5941. const struct ggml_tensor * src0,
  5942. const struct ggml_tensor * src1,
  5943. struct ggml_tensor * dst) {
  5944. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5945. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5946. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5947. int64_t t0 = ggml_perf_time_us();
  5948. UNUSED(t0);
  5949. const int64_t ne00 = src0->ne[0];
  5950. const int64_t ne01 = src0->ne[1];
  5951. const int64_t ne02 = src0->ne[2];
  5952. //const int64_t ne03 = src0->ne[3];
  5953. const int64_t ne10 = src1->ne[0];
  5954. const int64_t ne11 = src1->ne[1];
  5955. //const int64_t ne12 = src1->ne[2];
  5956. //const int64_t ne13 = src1->ne[3];
  5957. //const int64_t ne0 = dst->ne[0];
  5958. //const int64_t ne1 = dst->ne[1];
  5959. //const int64_t ne2 = dst->ne[2];
  5960. //const int64_t ne3 = dst->ne[3];
  5961. //const int64_t ne = ne0*ne1*ne2*ne3;
  5962. const int nb00 = src0->nb[0];
  5963. const int nb01 = src0->nb[1];
  5964. const int nb02 = src0->nb[2];
  5965. //const int nb03 = src0->nb[3];
  5966. const int nb10 = src1->nb[0];
  5967. const int nb11 = src1->nb[1];
  5968. //const int nb12 = src1->nb[2];
  5969. //const int nb13 = src1->nb[3];
  5970. //const int nb0 = dst->nb[0];
  5971. const int nb1 = dst->nb[1];
  5972. //const int nb2 = dst->nb[2];
  5973. //const int nb3 = dst->nb[3];
  5974. const int ith = params->ith;
  5975. const int nth = params->nth;
  5976. const int nk = ne00;
  5977. const int nh = nk/2;
  5978. const int ew0 = ggml_up32(ne01);
  5979. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5980. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5981. GGML_ASSERT(nb10 == sizeof(float));
  5982. if (params->type == GGML_TASK_INIT) {
  5983. // TODO: fix this memset (wsize is overestimated)
  5984. memset(params->wdata, 0, params->wsize);
  5985. // prepare kernel data (src0)
  5986. {
  5987. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5988. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5989. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5990. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5991. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5992. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5993. dst_data[i00*ew0 + i01] = src[i00];
  5994. }
  5995. }
  5996. }
  5997. }
  5998. // prepare source data (src1)
  5999. {
  6000. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6001. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6002. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6003. ggml_fp16_t * dst_data = wdata;
  6004. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6005. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6006. }
  6007. }
  6008. }
  6009. return;
  6010. }
  6011. if (params->type == GGML_TASK_FINALIZE) {
  6012. return;
  6013. }
  6014. // total rows in dst
  6015. const int nr = ne02;
  6016. // rows per thread
  6017. const int dr = (nr + nth - 1)/nth;
  6018. // row range for this thread
  6019. const int ir0 = dr*ith;
  6020. const int ir1 = MIN(ir0 + dr, nr);
  6021. for (int i1 = ir0; i1 < ir1; i1++) {
  6022. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6023. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6024. dst_data[i0] = 0;
  6025. for (int k = -nh; k <= nh; k++) {
  6026. float v = 0.0f;
  6027. ggml_vec_dot_f16(ew0, &v,
  6028. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6029. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6030. dst_data[i0] += v;
  6031. }
  6032. }
  6033. }
  6034. }
  6035. static void ggml_compute_forward_conv_1d_1s_f32(
  6036. const struct ggml_compute_params * params,
  6037. const struct ggml_tensor * src0,
  6038. const struct ggml_tensor * src1,
  6039. struct ggml_tensor * dst) {
  6040. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6041. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6042. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6043. int64_t t0 = ggml_perf_time_us();
  6044. UNUSED(t0);
  6045. const int64_t ne00 = src0->ne[0];
  6046. const int64_t ne01 = src0->ne[1];
  6047. const int64_t ne02 = src0->ne[2];
  6048. //const int64_t ne03 = src0->ne[3];
  6049. const int64_t ne10 = src1->ne[0];
  6050. const int64_t ne11 = src1->ne[1];
  6051. //const int64_t ne12 = src1->ne[2];
  6052. //const int64_t ne13 = src1->ne[3];
  6053. //const int64_t ne0 = dst->ne[0];
  6054. //const int64_t ne1 = dst->ne[1];
  6055. //const int64_t ne2 = dst->ne[2];
  6056. //const int64_t ne3 = dst->ne[3];
  6057. //const int64_t ne = ne0*ne1*ne2*ne3;
  6058. const int nb00 = src0->nb[0];
  6059. const int nb01 = src0->nb[1];
  6060. const int nb02 = src0->nb[2];
  6061. //const int nb03 = src0->nb[3];
  6062. const int nb10 = src1->nb[0];
  6063. const int nb11 = src1->nb[1];
  6064. //const int nb12 = src1->nb[2];
  6065. //const int nb13 = src1->nb[3];
  6066. //const int nb0 = dst->nb[0];
  6067. const int nb1 = dst->nb[1];
  6068. //const int nb2 = dst->nb[2];
  6069. //const int nb3 = dst->nb[3];
  6070. const int ith = params->ith;
  6071. const int nth = params->nth;
  6072. const int nk = ne00;
  6073. const int nh = nk/2;
  6074. const int ew0 = ggml_up32(ne01);
  6075. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6076. GGML_ASSERT(nb00 == sizeof(float));
  6077. GGML_ASSERT(nb10 == sizeof(float));
  6078. if (params->type == GGML_TASK_INIT) {
  6079. // TODO: fix this memset (wsize is overestimated)
  6080. memset(params->wdata, 0, params->wsize);
  6081. // prepare kernel data (src0)
  6082. {
  6083. float * const wdata = (float *) params->wdata + 0;
  6084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6085. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6086. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6087. float * dst_data = wdata + i02*ew0*ne00;
  6088. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6089. dst_data[i00*ew0 + i01] = src[i00];
  6090. }
  6091. }
  6092. }
  6093. }
  6094. // prepare source data (src1)
  6095. {
  6096. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6097. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6098. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6099. float * dst_data = wdata;
  6100. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6101. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6102. }
  6103. }
  6104. }
  6105. return;
  6106. }
  6107. if (params->type == GGML_TASK_FINALIZE) {
  6108. return;
  6109. }
  6110. // total rows in dst
  6111. const int nr = ne02;
  6112. // rows per thread
  6113. const int dr = (nr + nth - 1)/nth;
  6114. // row range for this thread
  6115. const int ir0 = dr*ith;
  6116. const int ir1 = MIN(ir0 + dr, nr);
  6117. for (int i1 = ir0; i1 < ir1; i1++) {
  6118. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6119. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6120. dst_data[i0] = 0;
  6121. for (int k = -nh; k <= nh; k++) {
  6122. float v = 0.0f;
  6123. ggml_vec_dot_f32(ew0, &v,
  6124. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6125. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6126. dst_data[i0] += v;
  6127. }
  6128. }
  6129. }
  6130. }
  6131. static void ggml_compute_forward_conv_1d_1s(
  6132. const struct ggml_compute_params * params,
  6133. const struct ggml_tensor * src0,
  6134. const struct ggml_tensor * src1,
  6135. struct ggml_tensor * dst) {
  6136. switch (src0->type) {
  6137. case GGML_TYPE_F16:
  6138. {
  6139. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6140. } break;
  6141. case GGML_TYPE_F32:
  6142. {
  6143. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6144. } break;
  6145. case GGML_TYPE_Q4_0:
  6146. case GGML_TYPE_Q4_1:
  6147. case GGML_TYPE_I8:
  6148. case GGML_TYPE_I16:
  6149. case GGML_TYPE_I32:
  6150. case GGML_TYPE_COUNT:
  6151. {
  6152. GGML_ASSERT(false);
  6153. } break;
  6154. }
  6155. }
  6156. // ggml_compute_forward_conv_1d_2s
  6157. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6158. const struct ggml_compute_params * params,
  6159. const struct ggml_tensor * src0,
  6160. const struct ggml_tensor * src1,
  6161. struct ggml_tensor * dst) {
  6162. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6163. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6164. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6165. int64_t t0 = ggml_perf_time_us();
  6166. UNUSED(t0);
  6167. const int64_t ne00 = src0->ne[0];
  6168. const int64_t ne01 = src0->ne[1];
  6169. const int64_t ne02 = src0->ne[2];
  6170. //const int64_t ne03 = src0->ne[3];
  6171. const int64_t ne10 = src1->ne[0];
  6172. const int64_t ne11 = src1->ne[1];
  6173. //const int64_t ne12 = src1->ne[2];
  6174. //const int64_t ne13 = src1->ne[3];
  6175. //const int64_t ne0 = dst->ne[0];
  6176. //const int64_t ne1 = dst->ne[1];
  6177. //const int64_t ne2 = dst->ne[2];
  6178. //const int64_t ne3 = dst->ne[3];
  6179. //const int64_t ne = ne0*ne1*ne2*ne3;
  6180. const int nb00 = src0->nb[0];
  6181. const int nb01 = src0->nb[1];
  6182. const int nb02 = src0->nb[2];
  6183. //const int nb03 = src0->nb[3];
  6184. const int nb10 = src1->nb[0];
  6185. const int nb11 = src1->nb[1];
  6186. //const int nb12 = src1->nb[2];
  6187. //const int nb13 = src1->nb[3];
  6188. //const int nb0 = dst->nb[0];
  6189. const int nb1 = dst->nb[1];
  6190. //const int nb2 = dst->nb[2];
  6191. //const int nb3 = dst->nb[3];
  6192. const int ith = params->ith;
  6193. const int nth = params->nth;
  6194. const int nk = ne00;
  6195. const int nh = nk/2;
  6196. const int ew0 = ggml_up32(ne01);
  6197. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6198. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6199. GGML_ASSERT(nb10 == sizeof(float));
  6200. if (params->type == GGML_TASK_INIT) {
  6201. // TODO: fix this memset (wsize is overestimated)
  6202. memset(params->wdata, 0, params->wsize);
  6203. // prepare kernel data (src0)
  6204. {
  6205. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6207. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6208. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6209. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6211. dst_data[i00*ew0 + i01] = src[i00];
  6212. }
  6213. }
  6214. }
  6215. }
  6216. // prepare source data (src1)
  6217. {
  6218. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6219. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6220. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6221. ggml_fp16_t * dst_data = wdata;
  6222. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6223. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6224. }
  6225. }
  6226. }
  6227. return;
  6228. }
  6229. if (params->type == GGML_TASK_FINALIZE) {
  6230. return;
  6231. }
  6232. // total rows in dst
  6233. const int nr = ne02;
  6234. // rows per thread
  6235. const int dr = (nr + nth - 1)/nth;
  6236. // row range for this thread
  6237. const int ir0 = dr*ith;
  6238. const int ir1 = MIN(ir0 + dr, nr);
  6239. for (int i1 = ir0; i1 < ir1; i1++) {
  6240. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6241. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6242. dst_data[i0/2] = 0;
  6243. for (int k = -nh; k <= nh; k++) {
  6244. float v = 0.0f;
  6245. ggml_vec_dot_f16(ew0, &v,
  6246. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6247. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6248. dst_data[i0/2] += v;
  6249. }
  6250. }
  6251. }
  6252. }
  6253. static void ggml_compute_forward_conv_1d_2s_f32(
  6254. const struct ggml_compute_params * params,
  6255. const struct ggml_tensor * src0,
  6256. const struct ggml_tensor * src1,
  6257. struct ggml_tensor * dst) {
  6258. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6259. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6260. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6261. int64_t t0 = ggml_perf_time_us();
  6262. UNUSED(t0);
  6263. const int64_t ne00 = src0->ne[0];
  6264. const int64_t ne01 = src0->ne[1];
  6265. const int64_t ne02 = src0->ne[2];
  6266. //const int64_t ne03 = src0->ne[3];
  6267. const int64_t ne10 = src1->ne[0];
  6268. const int64_t ne11 = src1->ne[1];
  6269. //const int64_t ne12 = src1->ne[2];
  6270. //const int64_t ne13 = src1->ne[3];
  6271. //const int64_t ne0 = dst->ne[0];
  6272. //const int64_t ne1 = dst->ne[1];
  6273. //const int64_t ne2 = dst->ne[2];
  6274. //const int64_t ne3 = dst->ne[3];
  6275. //const int64_t ne = ne0*ne1*ne2*ne3;
  6276. const int nb00 = src0->nb[0];
  6277. const int nb01 = src0->nb[1];
  6278. const int nb02 = src0->nb[2];
  6279. //const int nb03 = src0->nb[3];
  6280. const int nb10 = src1->nb[0];
  6281. const int nb11 = src1->nb[1];
  6282. //const int nb12 = src1->nb[2];
  6283. //const int nb13 = src1->nb[3];
  6284. //const int nb0 = dst->nb[0];
  6285. const int nb1 = dst->nb[1];
  6286. //const int nb2 = dst->nb[2];
  6287. //const int nb3 = dst->nb[3];
  6288. const int ith = params->ith;
  6289. const int nth = params->nth;
  6290. const int nk = ne00;
  6291. const int nh = nk/2;
  6292. const int ew0 = ggml_up32(ne01);
  6293. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6294. GGML_ASSERT(nb00 == sizeof(float));
  6295. GGML_ASSERT(nb10 == sizeof(float));
  6296. if (params->type == GGML_TASK_INIT) {
  6297. // TODO: fix this memset (wsize is overestimated)
  6298. memset(params->wdata, 0, params->wsize);
  6299. // prepare kernel data (src0)
  6300. {
  6301. float * const wdata = (float *) params->wdata + 0;
  6302. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6303. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6304. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6305. float * dst_data = wdata + i02*ew0*ne00;
  6306. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6307. dst_data[i00*ew0 + i01] = src[i00];
  6308. }
  6309. }
  6310. }
  6311. }
  6312. // prepare source data (src1)
  6313. {
  6314. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6315. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6316. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6317. float * dst_data = wdata;
  6318. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6319. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6320. }
  6321. }
  6322. }
  6323. return;
  6324. }
  6325. if (params->type == GGML_TASK_FINALIZE) {
  6326. return;
  6327. }
  6328. // total rows in dst
  6329. const int nr = ne02;
  6330. // rows per thread
  6331. const int dr = (nr + nth - 1)/nth;
  6332. // row range for this thread
  6333. const int ir0 = dr*ith;
  6334. const int ir1 = MIN(ir0 + dr, nr);
  6335. for (int i1 = ir0; i1 < ir1; i1++) {
  6336. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6337. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6338. dst_data[i0/2] = 0;
  6339. for (int k = -nh; k <= nh; k++) {
  6340. float v = 0.0f;
  6341. ggml_vec_dot_f32(ew0, &v,
  6342. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6343. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6344. dst_data[i0/2] += v;
  6345. }
  6346. }
  6347. }
  6348. }
  6349. static void ggml_compute_forward_conv_1d_2s(
  6350. const struct ggml_compute_params * params,
  6351. const struct ggml_tensor * src0,
  6352. const struct ggml_tensor * src1,
  6353. struct ggml_tensor * dst) {
  6354. switch (src0->type) {
  6355. case GGML_TYPE_F16:
  6356. {
  6357. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6358. } break;
  6359. case GGML_TYPE_F32:
  6360. {
  6361. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6362. } break;
  6363. case GGML_TYPE_Q4_0:
  6364. case GGML_TYPE_Q4_1:
  6365. case GGML_TYPE_I8:
  6366. case GGML_TYPE_I16:
  6367. case GGML_TYPE_I32:
  6368. case GGML_TYPE_COUNT:
  6369. {
  6370. GGML_ASSERT(false);
  6371. } break;
  6372. }
  6373. }
  6374. // ggml_compute_forward_flash_attn
  6375. static void ggml_compute_forward_flash_attn_f32(
  6376. const struct ggml_compute_params * params,
  6377. const struct ggml_tensor * q,
  6378. const struct ggml_tensor * k,
  6379. const struct ggml_tensor * v,
  6380. const bool masked,
  6381. struct ggml_tensor * dst) {
  6382. int64_t t0 = ggml_perf_time_us();
  6383. UNUSED(t0);
  6384. const int64_t neq0 = q->ne[0];
  6385. const int64_t neq1 = q->ne[1];
  6386. const int64_t neq2 = q->ne[2];
  6387. const int64_t neq3 = q->ne[3];
  6388. const int64_t nek0 = k->ne[0];
  6389. const int64_t nek1 = k->ne[1];
  6390. //const int64_t nek2 = k->ne[2];
  6391. //const int64_t nek3 = k->ne[3];
  6392. //const int64_t nev0 = v->ne[0];
  6393. const int64_t nev1 = v->ne[1];
  6394. //const int64_t nev2 = v->ne[2];
  6395. //const int64_t nev3 = v->ne[3];
  6396. const int64_t ne0 = dst->ne[0];
  6397. const int64_t ne1 = dst->ne[1];
  6398. //const int64_t ne2 = dst->ne[2];
  6399. //const int64_t ne3 = dst->ne[3];
  6400. const int nbk0 = k->nb[0];
  6401. const int nbk1 = k->nb[1];
  6402. const int nbk2 = k->nb[2];
  6403. const int nbk3 = k->nb[3];
  6404. const int nbq0 = q->nb[0];
  6405. const int nbq1 = q->nb[1];
  6406. const int nbq2 = q->nb[2];
  6407. const int nbq3 = q->nb[3];
  6408. const int nbv0 = v->nb[0];
  6409. const int nbv1 = v->nb[1];
  6410. const int nbv2 = v->nb[2];
  6411. const int nbv3 = v->nb[3];
  6412. const int nb0 = dst->nb[0];
  6413. const int nb1 = dst->nb[1];
  6414. const int nb2 = dst->nb[2];
  6415. const int nb3 = dst->nb[3];
  6416. const int ith = params->ith;
  6417. const int nth = params->nth;
  6418. const int64_t D = neq0;
  6419. const int64_t N = neq1;
  6420. const int64_t P = nek1 - N;
  6421. const int64_t M = P + N;
  6422. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6423. GGML_ASSERT(ne0 == D);
  6424. GGML_ASSERT(ne1 == N);
  6425. GGML_ASSERT(P >= 0);
  6426. GGML_ASSERT(nbq0 == sizeof(float));
  6427. GGML_ASSERT(nbk0 == sizeof(float));
  6428. GGML_ASSERT(nbv0 == sizeof(float));
  6429. GGML_ASSERT(neq0 == D);
  6430. GGML_ASSERT(nek0 == D);
  6431. GGML_ASSERT(nev1 == D);
  6432. GGML_ASSERT(neq1 == N);
  6433. GGML_ASSERT(nek1 == N + P);
  6434. GGML_ASSERT(nev1 == D);
  6435. // dst cannot be transposed or permuted
  6436. GGML_ASSERT(nb0 == sizeof(float));
  6437. GGML_ASSERT(nb0 <= nb1);
  6438. GGML_ASSERT(nb1 <= nb2);
  6439. GGML_ASSERT(nb2 <= nb3);
  6440. if (params->type == GGML_TASK_INIT) {
  6441. return;
  6442. }
  6443. if (params->type == GGML_TASK_FINALIZE) {
  6444. return;
  6445. }
  6446. // parallelize by q rows using ggml_vec_dot_f32
  6447. // total rows in q
  6448. const int nr = neq1*neq2*neq3;
  6449. // rows per thread
  6450. const int dr = (nr + nth - 1)/nth;
  6451. // row range for this thread
  6452. const int ir0 = dr*ith;
  6453. const int ir1 = MIN(ir0 + dr, nr);
  6454. const float scale = 1.0f/sqrtf(D);
  6455. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6456. for (int ir = ir0; ir < ir1; ++ir) {
  6457. // q indices
  6458. const int iq3 = ir/(neq2*neq1);
  6459. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6460. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6461. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6462. for (int i = M; i < Mup; ++i) {
  6463. S[i] = -INFINITY;
  6464. }
  6465. for (int64_t ic = 0; ic < nek1; ++ic) {
  6466. // k indices
  6467. const int ik3 = iq3;
  6468. const int ik2 = iq2;
  6469. const int ik1 = ic;
  6470. // S indices
  6471. const int i1 = ik1;
  6472. ggml_vec_dot_f32(neq0,
  6473. S + i1,
  6474. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6475. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6476. }
  6477. // scale
  6478. ggml_vec_scale_f32(nek1, S, scale);
  6479. if (masked) {
  6480. for (int64_t i = P; i < M; i++) {
  6481. if (i > P + iq1) {
  6482. S[i] = -INFINITY;
  6483. }
  6484. }
  6485. }
  6486. // softmax
  6487. {
  6488. float max = -INFINITY;
  6489. ggml_vec_max_f32(M, &max, S);
  6490. ggml_float sum = 0.0;
  6491. {
  6492. #ifdef GGML_SOFT_MAX_ACCELERATE
  6493. max = -max;
  6494. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6495. vvexpf(S, S, &Mup);
  6496. ggml_vec_sum_f32(Mup, &sum, S);
  6497. #else
  6498. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6499. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6500. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6501. float * SS = S + i;
  6502. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6503. if (SS[j] == -INFINITY) {
  6504. SS[j] = 0.0f;
  6505. } else {
  6506. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6507. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6508. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6509. sump[j] += (ggml_float)val;
  6510. SS[j] = val;
  6511. }
  6512. }
  6513. }
  6514. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6515. sum += sump[i];
  6516. }
  6517. #endif
  6518. }
  6519. assert(sum > 0.0);
  6520. sum = 1.0/sum;
  6521. ggml_vec_scale_f32(M, S, sum);
  6522. #ifndef NDEBUG
  6523. for (int i = 0; i < M; ++i) {
  6524. assert(!isnan(S[i]));
  6525. assert(!isinf(S[i]));
  6526. }
  6527. #endif
  6528. }
  6529. for (int64_t ic = 0; ic < nev1; ++ic) {
  6530. // dst indices
  6531. const int i1 = iq1;
  6532. const int i2 = iq2;
  6533. const int i3 = iq3;
  6534. ggml_vec_dot_f32(nek1,
  6535. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6536. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6537. S);
  6538. }
  6539. }
  6540. }
  6541. static void ggml_compute_forward_flash_attn_f16(
  6542. const struct ggml_compute_params * params,
  6543. const struct ggml_tensor * q,
  6544. const struct ggml_tensor * k,
  6545. const struct ggml_tensor * v,
  6546. const bool masked,
  6547. struct ggml_tensor * dst) {
  6548. int64_t t0 = ggml_perf_time_us();
  6549. UNUSED(t0);
  6550. const int64_t neq0 = q->ne[0];
  6551. const int64_t neq1 = q->ne[1];
  6552. const int64_t neq2 = q->ne[2];
  6553. const int64_t neq3 = q->ne[3];
  6554. const int64_t nek0 = k->ne[0];
  6555. const int64_t nek1 = k->ne[1];
  6556. //const int64_t nek2 = k->ne[2];
  6557. //const int64_t nek3 = k->ne[3];
  6558. //const int64_t nev0 = v->ne[0];
  6559. const int64_t nev1 = v->ne[1];
  6560. //const int64_t nev2 = v->ne[2];
  6561. //const int64_t nev3 = v->ne[3];
  6562. const int64_t ne0 = dst->ne[0];
  6563. const int64_t ne1 = dst->ne[1];
  6564. //const int64_t ne2 = dst->ne[2];
  6565. //const int64_t ne3 = dst->ne[3];
  6566. const int nbk0 = k->nb[0];
  6567. const int nbk1 = k->nb[1];
  6568. const int nbk2 = k->nb[2];
  6569. const int nbk3 = k->nb[3];
  6570. const int nbq0 = q->nb[0];
  6571. const int nbq1 = q->nb[1];
  6572. const int nbq2 = q->nb[2];
  6573. const int nbq3 = q->nb[3];
  6574. const int nbv0 = v->nb[0];
  6575. const int nbv1 = v->nb[1];
  6576. const int nbv2 = v->nb[2];
  6577. const int nbv3 = v->nb[3];
  6578. const int nb0 = dst->nb[0];
  6579. const int nb1 = dst->nb[1];
  6580. const int nb2 = dst->nb[2];
  6581. const int nb3 = dst->nb[3];
  6582. const int ith = params->ith;
  6583. const int nth = params->nth;
  6584. const int64_t D = neq0;
  6585. const int64_t N = neq1;
  6586. const int64_t P = nek1 - N;
  6587. const int64_t M = P + N;
  6588. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6589. GGML_ASSERT(ne0 == D);
  6590. GGML_ASSERT(ne1 == N);
  6591. GGML_ASSERT(P >= 0);
  6592. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6593. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6594. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6595. GGML_ASSERT(neq0 == D);
  6596. GGML_ASSERT(nek0 == D);
  6597. GGML_ASSERT(nev1 == D);
  6598. GGML_ASSERT(neq1 == N);
  6599. GGML_ASSERT(nek1 == N + P);
  6600. GGML_ASSERT(nev1 == D);
  6601. // dst cannot be transposed or permuted
  6602. GGML_ASSERT(nb0 == sizeof(float));
  6603. GGML_ASSERT(nb0 <= nb1);
  6604. GGML_ASSERT(nb1 <= nb2);
  6605. GGML_ASSERT(nb2 <= nb3);
  6606. if (params->type == GGML_TASK_INIT) {
  6607. return;
  6608. }
  6609. if (params->type == GGML_TASK_FINALIZE) {
  6610. return;
  6611. }
  6612. // parallelize by q rows using ggml_vec_dot_f32
  6613. // total rows in q
  6614. const int nr = neq1*neq2*neq3;
  6615. // rows per thread
  6616. const int dr = (nr + nth - 1)/nth;
  6617. // row range for this thread
  6618. const int ir0 = dr*ith;
  6619. const int ir1 = MIN(ir0 + dr, nr);
  6620. const float scale = 1.0f/sqrtf(D);
  6621. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6622. for (int ir = ir0; ir < ir1; ++ir) {
  6623. // q indices
  6624. const int iq3 = ir/(neq2*neq1);
  6625. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6626. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6627. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6628. for (int i = M; i < Mup; ++i) {
  6629. S[i] = -INFINITY;
  6630. }
  6631. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6632. for (int64_t ic = 0; ic < nek1; ++ic) {
  6633. // k indices
  6634. const int ik3 = iq3;
  6635. const int ik2 = iq2;
  6636. const int ik1 = ic;
  6637. // S indices
  6638. const int i1 = ik1;
  6639. ggml_vec_dot_f16(neq0,
  6640. S + i1,
  6641. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6642. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6643. }
  6644. } else {
  6645. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6646. // k indices
  6647. const int ik3 = iq3;
  6648. const int ik2 = iq2;
  6649. const int ik1 = ic;
  6650. // S indices
  6651. const int i1 = ik1;
  6652. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6653. S + i1,
  6654. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6655. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6656. }
  6657. }
  6658. // scale
  6659. ggml_vec_scale_f32(nek1, S, scale);
  6660. if (masked) {
  6661. for (int64_t i = P; i < M; i++) {
  6662. if (i > P + iq1) {
  6663. S[i] = -INFINITY;
  6664. }
  6665. }
  6666. }
  6667. // softmax
  6668. {
  6669. float max = -INFINITY;
  6670. ggml_vec_max_f32(M, &max, S);
  6671. ggml_float sum = 0.0;
  6672. {
  6673. #ifdef GGML_SOFT_MAX_ACCELERATE
  6674. max = -max;
  6675. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6676. vvexpf(S, S, &Mup);
  6677. ggml_vec_sum_f32(Mup, &sum, S);
  6678. #else
  6679. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6680. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6681. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6682. float * SS = S + i;
  6683. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6684. if (SS[j] == -INFINITY) {
  6685. SS[j] = 0.0f;
  6686. } else {
  6687. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6688. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6689. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6690. sump[j] += (ggml_float)val;
  6691. SS[j] = val;
  6692. }
  6693. }
  6694. }
  6695. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6696. sum += sump[i];
  6697. }
  6698. #endif
  6699. }
  6700. assert(sum > 0.0);
  6701. sum = 1.0/sum;
  6702. ggml_vec_scale_f32(M, S, sum);
  6703. #ifndef NDEBUG
  6704. for (int i = 0; i < M; ++i) {
  6705. assert(!isnan(S[i]));
  6706. assert(!isinf(S[i]));
  6707. }
  6708. #endif
  6709. }
  6710. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6711. for (int64_t i = 0; i < M; i++) {
  6712. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6713. }
  6714. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6715. for (int64_t ic = 0; ic < nev1; ++ic) {
  6716. // dst indices
  6717. const int i1 = iq1;
  6718. const int i2 = iq2;
  6719. const int i3 = iq3;
  6720. ggml_vec_dot_f16(nek1,
  6721. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6722. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6723. S16);
  6724. }
  6725. } else {
  6726. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6727. // dst indices
  6728. const int i1 = iq1;
  6729. const int i2 = iq2;
  6730. const int i3 = iq3;
  6731. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6732. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6733. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6734. S16);
  6735. }
  6736. }
  6737. }
  6738. }
  6739. static void ggml_compute_forward_flash_attn(
  6740. const struct ggml_compute_params * params,
  6741. const struct ggml_tensor * q,
  6742. const struct ggml_tensor * k,
  6743. const struct ggml_tensor * v,
  6744. const bool masked,
  6745. struct ggml_tensor * dst) {
  6746. switch (q->type) {
  6747. case GGML_TYPE_F16:
  6748. {
  6749. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6750. } break;
  6751. case GGML_TYPE_F32:
  6752. {
  6753. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6754. } break;
  6755. case GGML_TYPE_Q4_0:
  6756. case GGML_TYPE_Q4_1:
  6757. case GGML_TYPE_I8:
  6758. case GGML_TYPE_I16:
  6759. case GGML_TYPE_I32:
  6760. case GGML_TYPE_COUNT:
  6761. {
  6762. GGML_ASSERT(false);
  6763. } break;
  6764. }
  6765. }
  6766. // ggml_compute_forward_flash_ff
  6767. static void ggml_compute_forward_flash_ff_f16(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * a, // F16
  6770. const struct ggml_tensor * b0, // F16 fc_w
  6771. const struct ggml_tensor * b1, // F32 fc_b
  6772. const struct ggml_tensor * c0, // F16 proj_w
  6773. const struct ggml_tensor * c1, // F32 proj_b
  6774. struct ggml_tensor * dst) {
  6775. int64_t t0 = ggml_perf_time_us();
  6776. UNUSED(t0);
  6777. const int64_t nea0 = a->ne[0];
  6778. const int64_t nea1 = a->ne[1];
  6779. const int64_t nea2 = a->ne[2];
  6780. const int64_t nea3 = a->ne[3];
  6781. const int64_t neb00 = b0->ne[0];
  6782. const int64_t neb01 = b0->ne[1];
  6783. //const int64_t neb02 = b0->ne[2];
  6784. //const int64_t neb03 = b0->ne[3];
  6785. const int64_t neb10 = b1->ne[0];
  6786. const int64_t neb11 = b1->ne[1];
  6787. //const int64_t neb12 = b1->ne[2];
  6788. //const int64_t neb13 = b1->ne[3];
  6789. const int64_t nec00 = c0->ne[0];
  6790. const int64_t nec01 = c0->ne[1];
  6791. //const int64_t nec02 = c0->ne[2];
  6792. //const int64_t nec03 = c0->ne[3];
  6793. const int64_t nec10 = c1->ne[0];
  6794. const int64_t nec11 = c1->ne[1];
  6795. //const int64_t nec12 = c1->ne[2];
  6796. //const int64_t nec13 = c1->ne[3];
  6797. const int64_t ne0 = dst->ne[0];
  6798. const int64_t ne1 = dst->ne[1];
  6799. const int64_t ne2 = dst->ne[2];
  6800. //const int64_t ne3 = dst->ne[3];
  6801. const int nba0 = a->nb[0];
  6802. const int nba1 = a->nb[1];
  6803. const int nba2 = a->nb[2];
  6804. const int nba3 = a->nb[3];
  6805. const int nbb00 = b0->nb[0];
  6806. const int nbb01 = b0->nb[1];
  6807. const int nbb02 = b0->nb[2];
  6808. const int nbb03 = b0->nb[3];
  6809. const int nbb10 = b1->nb[0];
  6810. //const int nbb11 = b1->nb[1];
  6811. //const int nbb12 = b1->nb[2];
  6812. //const int nbb13 = b1->nb[3];
  6813. const int nbc00 = c0->nb[0];
  6814. const int nbc01 = c0->nb[1];
  6815. const int nbc02 = c0->nb[2];
  6816. const int nbc03 = c0->nb[3];
  6817. const int nbc10 = c1->nb[0];
  6818. //const int nbc11 = c1->nb[1];
  6819. //const int nbc12 = c1->nb[2];
  6820. //const int nbc13 = c1->nb[3];
  6821. const int nb0 = dst->nb[0];
  6822. const int nb1 = dst->nb[1];
  6823. const int nb2 = dst->nb[2];
  6824. const int nb3 = dst->nb[3];
  6825. const int ith = params->ith;
  6826. const int nth = params->nth;
  6827. const int64_t D = nea0;
  6828. //const int64_t N = nea1;
  6829. const int64_t M = neb01;
  6830. GGML_ASSERT(ne0 == nea0);
  6831. GGML_ASSERT(ne1 == nea1);
  6832. GGML_ASSERT(ne2 == nea2);
  6833. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6834. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6835. GGML_ASSERT(nbb10 == sizeof(float));
  6836. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6837. GGML_ASSERT(nbc10 == sizeof(float));
  6838. GGML_ASSERT(neb00 == D);
  6839. GGML_ASSERT(neb01 == M);
  6840. GGML_ASSERT(neb10 == M);
  6841. GGML_ASSERT(neb11 == 1);
  6842. GGML_ASSERT(nec00 == M);
  6843. GGML_ASSERT(nec01 == D);
  6844. GGML_ASSERT(nec10 == D);
  6845. GGML_ASSERT(nec11 == 1);
  6846. // dst cannot be transposed or permuted
  6847. GGML_ASSERT(nb0 == sizeof(float));
  6848. GGML_ASSERT(nb0 <= nb1);
  6849. GGML_ASSERT(nb1 <= nb2);
  6850. GGML_ASSERT(nb2 <= nb3);
  6851. if (params->type == GGML_TASK_INIT) {
  6852. return;
  6853. }
  6854. if (params->type == GGML_TASK_FINALIZE) {
  6855. return;
  6856. }
  6857. // parallelize by a rows using ggml_vec_dot_f32
  6858. // total rows in a
  6859. const int nr = nea1*nea2*nea3;
  6860. // rows per thread
  6861. const int dr = (nr + nth - 1)/nth;
  6862. // row range for this thread
  6863. const int ir0 = dr*ith;
  6864. const int ir1 = MIN(ir0 + dr, nr);
  6865. for (int ir = ir0; ir < ir1; ++ir) {
  6866. // a indices
  6867. const int ia3 = ir/(nea2*nea1);
  6868. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6869. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6870. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6871. for (int64_t ic = 0; ic < neb01; ++ic) {
  6872. // b0 indices
  6873. const int ib03 = ia3;
  6874. const int ib02 = ia2;
  6875. const int ib01 = ic;
  6876. // S indices
  6877. const int i1 = ib01;
  6878. ggml_vec_dot_f16(nea0,
  6879. S + i1,
  6880. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6881. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6882. }
  6883. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6884. //ggml_vec_gelu_f32(neb01, S, S);
  6885. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6886. for (int64_t i = 0; i < M; i++) {
  6887. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6888. }
  6889. ggml_vec_gelu_f16(neb01, S16, S16);
  6890. {
  6891. // dst indices
  6892. const int i1 = ia1;
  6893. const int i2 = ia2;
  6894. const int i3 = ia3;
  6895. for (int64_t ic = 0; ic < nec01; ++ic) {
  6896. ggml_vec_dot_f16(neb01,
  6897. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6898. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6899. S16);
  6900. }
  6901. ggml_vec_add_f32(nec01,
  6902. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6903. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6904. (float *) c1->data);
  6905. }
  6906. }
  6907. }
  6908. static void ggml_compute_forward_flash_ff(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * a,
  6911. const struct ggml_tensor * b0,
  6912. const struct ggml_tensor * b1,
  6913. const struct ggml_tensor * c0,
  6914. const struct ggml_tensor * c1,
  6915. struct ggml_tensor * dst) {
  6916. switch (b0->type) {
  6917. case GGML_TYPE_F16:
  6918. {
  6919. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6920. } break;
  6921. case GGML_TYPE_F32:
  6922. {
  6923. GGML_ASSERT(false); // TODO
  6924. } break;
  6925. case GGML_TYPE_Q4_0:
  6926. case GGML_TYPE_Q4_1:
  6927. case GGML_TYPE_I8:
  6928. case GGML_TYPE_I16:
  6929. case GGML_TYPE_I32:
  6930. case GGML_TYPE_COUNT:
  6931. {
  6932. GGML_ASSERT(false);
  6933. } break;
  6934. }
  6935. }
  6936. /////////////////////////////////
  6937. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6938. GGML_ASSERT(params);
  6939. switch (tensor->op) {
  6940. case GGML_OP_DUP:
  6941. {
  6942. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6943. } break;
  6944. case GGML_OP_ADD:
  6945. {
  6946. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6947. } break;
  6948. case GGML_OP_SUB:
  6949. {
  6950. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6951. } break;
  6952. case GGML_OP_MUL:
  6953. {
  6954. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6955. } break;
  6956. case GGML_OP_DIV:
  6957. {
  6958. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6959. } break;
  6960. case GGML_OP_SQR:
  6961. {
  6962. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6963. } break;
  6964. case GGML_OP_SQRT:
  6965. {
  6966. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6967. } break;
  6968. case GGML_OP_SUM:
  6969. {
  6970. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6971. } break;
  6972. case GGML_OP_MEAN:
  6973. {
  6974. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6975. } break;
  6976. case GGML_OP_REPEAT:
  6977. {
  6978. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6979. } break;
  6980. case GGML_OP_ABS:
  6981. {
  6982. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6983. } break;
  6984. case GGML_OP_SGN:
  6985. {
  6986. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6987. } break;
  6988. case GGML_OP_NEG:
  6989. {
  6990. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6991. } break;
  6992. case GGML_OP_STEP:
  6993. {
  6994. ggml_compute_forward_step(params, tensor->src0, tensor);
  6995. } break;
  6996. case GGML_OP_RELU:
  6997. {
  6998. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6999. } break;
  7000. case GGML_OP_GELU:
  7001. {
  7002. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7003. } break;
  7004. case GGML_OP_SILU:
  7005. {
  7006. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7007. } break;
  7008. case GGML_OP_NORM:
  7009. {
  7010. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7011. } break;
  7012. case GGML_OP_RMS_NORM:
  7013. {
  7014. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7015. } break;
  7016. case GGML_OP_MUL_MAT:
  7017. {
  7018. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7019. } break;
  7020. case GGML_OP_SCALE:
  7021. {
  7022. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7023. } break;
  7024. case GGML_OP_CPY:
  7025. {
  7026. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7027. } break;
  7028. case GGML_OP_RESHAPE:
  7029. {
  7030. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7031. } break;
  7032. case GGML_OP_VIEW:
  7033. {
  7034. ggml_compute_forward_view(params, tensor->src0);
  7035. } break;
  7036. case GGML_OP_PERMUTE:
  7037. {
  7038. ggml_compute_forward_permute(params, tensor->src0);
  7039. } break;
  7040. case GGML_OP_TRANSPOSE:
  7041. {
  7042. ggml_compute_forward_transpose(params, tensor->src0);
  7043. } break;
  7044. case GGML_OP_GET_ROWS:
  7045. {
  7046. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7047. } break;
  7048. case GGML_OP_DIAG_MASK_INF:
  7049. {
  7050. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7051. } break;
  7052. case GGML_OP_SOFT_MAX:
  7053. {
  7054. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7055. } break;
  7056. case GGML_OP_ROPE:
  7057. {
  7058. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7059. } break;
  7060. case GGML_OP_CONV_1D_1S:
  7061. {
  7062. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7063. } break;
  7064. case GGML_OP_CONV_1D_2S:
  7065. {
  7066. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7067. } break;
  7068. case GGML_OP_FLASH_ATTN:
  7069. {
  7070. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7071. GGML_ASSERT(t == 0 || t == 1);
  7072. bool masked = t != 0;
  7073. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7074. } break;
  7075. case GGML_OP_FLASH_FF:
  7076. {
  7077. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7078. } break;
  7079. case GGML_OP_NONE:
  7080. {
  7081. // nop
  7082. } break;
  7083. case GGML_OP_COUNT:
  7084. {
  7085. GGML_ASSERT(false);
  7086. } break;
  7087. }
  7088. }
  7089. ////////////////////////////////////////////////////////////////////////////////
  7090. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7091. struct ggml_tensor * src0 = tensor->src0;
  7092. struct ggml_tensor * src1 = tensor->src1;
  7093. switch (tensor->op) {
  7094. case GGML_OP_DUP:
  7095. {
  7096. if (src0->grad) {
  7097. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7098. }
  7099. } break;
  7100. case GGML_OP_ADD:
  7101. {
  7102. if (src0->grad) {
  7103. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7104. }
  7105. if (src1->grad) {
  7106. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7107. }
  7108. } break;
  7109. case GGML_OP_SUB:
  7110. {
  7111. if (src0->grad) {
  7112. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7113. }
  7114. if (src1->grad) {
  7115. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7116. }
  7117. } break;
  7118. case GGML_OP_MUL:
  7119. {
  7120. if (src0->grad) {
  7121. src0->grad =
  7122. ggml_add_impl(ctx,
  7123. src0->grad,
  7124. ggml_mul(ctx, src1, tensor->grad),
  7125. inplace);
  7126. }
  7127. if (src1->grad) {
  7128. src1->grad =
  7129. ggml_add_impl(ctx,
  7130. src1->grad,
  7131. ggml_mul(ctx, src0, tensor->grad),
  7132. inplace);
  7133. }
  7134. } break;
  7135. case GGML_OP_DIV:
  7136. {
  7137. if (src0->grad) {
  7138. src0->grad =
  7139. ggml_add_impl(ctx,
  7140. src0->grad,
  7141. ggml_div(ctx, tensor->grad, src1),
  7142. inplace);
  7143. }
  7144. if (src1->grad) {
  7145. src1->grad =
  7146. ggml_sub_impl(ctx,
  7147. src1->grad,
  7148. ggml_mul(ctx,
  7149. tensor->grad,
  7150. ggml_div(ctx, tensor, src1)),
  7151. inplace);
  7152. }
  7153. } break;
  7154. case GGML_OP_SQR:
  7155. {
  7156. if (src0->grad) {
  7157. src0->grad =
  7158. ggml_add_impl(ctx,
  7159. src0->grad,
  7160. ggml_mul(ctx,
  7161. ggml_mul(ctx, src0, tensor->grad),
  7162. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7163. inplace);
  7164. }
  7165. } break;
  7166. case GGML_OP_SQRT:
  7167. {
  7168. if (src0->grad) {
  7169. src0->grad =
  7170. ggml_add_impl(ctx,
  7171. src0->grad,
  7172. ggml_div(ctx,
  7173. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7174. tensor),
  7175. inplace);
  7176. }
  7177. } break;
  7178. case GGML_OP_SUM:
  7179. {
  7180. if (src0->grad) {
  7181. src0->grad =
  7182. ggml_add_impl(ctx,
  7183. src0->grad,
  7184. ggml_repeat(ctx, tensor->grad, src0->grad),
  7185. inplace);
  7186. }
  7187. } break;
  7188. case GGML_OP_MEAN:
  7189. {
  7190. GGML_ASSERT(false); // TODO: implement
  7191. } break;
  7192. case GGML_OP_REPEAT:
  7193. {
  7194. if (src0->grad) {
  7195. src0->grad =
  7196. ggml_add_impl(ctx,
  7197. src0->grad,
  7198. ggml_sum(ctx, tensor->grad),
  7199. inplace);
  7200. }
  7201. } break;
  7202. case GGML_OP_ABS:
  7203. {
  7204. if (src0->grad) {
  7205. src0->grad =
  7206. ggml_add_impl(ctx,
  7207. src0->grad,
  7208. ggml_mul(ctx,
  7209. ggml_sgn(ctx, src0),
  7210. tensor->grad),
  7211. inplace);
  7212. }
  7213. } break;
  7214. case GGML_OP_SGN:
  7215. {
  7216. if (src0->grad) {
  7217. // noop
  7218. }
  7219. } break;
  7220. case GGML_OP_NEG:
  7221. {
  7222. if (src0->grad) {
  7223. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7224. }
  7225. } break;
  7226. case GGML_OP_STEP:
  7227. {
  7228. if (src0->grad) {
  7229. // noop
  7230. }
  7231. } break;
  7232. case GGML_OP_RELU:
  7233. {
  7234. if (src0->grad) {
  7235. src0->grad = ggml_sub_impl(ctx,
  7236. src0->grad,
  7237. ggml_mul(ctx,
  7238. ggml_step(ctx, src0),
  7239. tensor->grad),
  7240. inplace);
  7241. }
  7242. } break;
  7243. case GGML_OP_GELU:
  7244. {
  7245. GGML_ASSERT(false); // TODO: not implemented
  7246. } break;
  7247. case GGML_OP_SILU:
  7248. {
  7249. GGML_ASSERT(false); // TODO: not implemented
  7250. } break;
  7251. case GGML_OP_NORM:
  7252. {
  7253. GGML_ASSERT(false); // TODO: not implemented
  7254. } break;
  7255. case GGML_OP_RMS_NORM:
  7256. {
  7257. GGML_ASSERT(false); // TODO: not implemented
  7258. } break;
  7259. case GGML_OP_MUL_MAT:
  7260. {
  7261. if (src0->grad) {
  7262. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7263. GGML_ASSERT(false);
  7264. }
  7265. if (src1->grad) {
  7266. src1->grad =
  7267. ggml_add_impl(ctx,
  7268. src1->grad,
  7269. // TODO: fix transpose, the node will break the graph connections
  7270. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7271. inplace);
  7272. }
  7273. } break;
  7274. case GGML_OP_SCALE:
  7275. {
  7276. GGML_ASSERT(false); // TODO: not implemented
  7277. } break;
  7278. case GGML_OP_CPY:
  7279. {
  7280. GGML_ASSERT(false); // TODO: not implemented
  7281. } break;
  7282. case GGML_OP_RESHAPE:
  7283. {
  7284. GGML_ASSERT(false); // TODO: not implemented
  7285. } break;
  7286. case GGML_OP_VIEW:
  7287. {
  7288. GGML_ASSERT(false); // not supported
  7289. } break;
  7290. case GGML_OP_PERMUTE:
  7291. {
  7292. GGML_ASSERT(false); // TODO: not implemented
  7293. } break;
  7294. case GGML_OP_TRANSPOSE:
  7295. {
  7296. GGML_ASSERT(false); // TODO: not implemented
  7297. } break;
  7298. case GGML_OP_GET_ROWS:
  7299. {
  7300. GGML_ASSERT(false); // TODO: not implemented
  7301. } break;
  7302. case GGML_OP_DIAG_MASK_INF:
  7303. {
  7304. GGML_ASSERT(false); // TODO: not implemented
  7305. } break;
  7306. case GGML_OP_SOFT_MAX:
  7307. {
  7308. GGML_ASSERT(false); // TODO: not implemented
  7309. } break;
  7310. case GGML_OP_ROPE:
  7311. {
  7312. GGML_ASSERT(false); // TODO: not implemented
  7313. } break;
  7314. case GGML_OP_CONV_1D_1S:
  7315. {
  7316. GGML_ASSERT(false); // TODO: not implemented
  7317. } break;
  7318. case GGML_OP_CONV_1D_2S:
  7319. {
  7320. GGML_ASSERT(false); // TODO: not implemented
  7321. } break;
  7322. case GGML_OP_FLASH_ATTN:
  7323. {
  7324. GGML_ASSERT(false); // not supported
  7325. } break;
  7326. case GGML_OP_FLASH_FF:
  7327. {
  7328. GGML_ASSERT(false); // not supported
  7329. } break;
  7330. case GGML_OP_NONE:
  7331. {
  7332. // nop
  7333. } break;
  7334. case GGML_OP_COUNT:
  7335. {
  7336. GGML_ASSERT(false);
  7337. } break;
  7338. }
  7339. }
  7340. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7341. if (node->grad == NULL) {
  7342. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7343. // it can also happen during forward pass, if the user performs computations with constants
  7344. if (node->op != GGML_OP_NONE) {
  7345. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7346. }
  7347. }
  7348. // check if already visited
  7349. for (int i = 0; i < cgraph->n_nodes; i++) {
  7350. if (cgraph->nodes[i] == node) {
  7351. return;
  7352. }
  7353. }
  7354. for (int i = 0; i < cgraph->n_leafs; i++) {
  7355. if (cgraph->leafs[i] == node) {
  7356. return;
  7357. }
  7358. }
  7359. if (node->src0) {
  7360. ggml_visit_parents(cgraph, node->src0);
  7361. }
  7362. if (node->src1) {
  7363. ggml_visit_parents(cgraph, node->src1);
  7364. }
  7365. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7366. if (node->opt[i]) {
  7367. ggml_visit_parents(cgraph, node->opt[i]);
  7368. }
  7369. }
  7370. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7371. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7372. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7373. cgraph->leafs[cgraph->n_leafs] = node;
  7374. cgraph->n_leafs++;
  7375. } else {
  7376. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7377. cgraph->nodes[cgraph->n_nodes] = node;
  7378. cgraph->grads[cgraph->n_nodes] = node->grad;
  7379. cgraph->n_nodes++;
  7380. }
  7381. }
  7382. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7383. if (!expand) {
  7384. cgraph->n_nodes = 0;
  7385. cgraph->n_leafs = 0;
  7386. }
  7387. const int n0 = cgraph->n_nodes;
  7388. UNUSED(n0);
  7389. ggml_visit_parents(cgraph, tensor);
  7390. const int n_new = cgraph->n_nodes - n0;
  7391. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7392. if (n_new > 0) {
  7393. // the last added node should always be starting point
  7394. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7395. }
  7396. }
  7397. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7398. ggml_build_forward_impl(cgraph, tensor, true);
  7399. }
  7400. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7401. struct ggml_cgraph result = {
  7402. /*.n_nodes =*/ 0,
  7403. /*.n_leafs =*/ 0,
  7404. /*.n_threads =*/ 0,
  7405. /*.work_size =*/ 0,
  7406. /*.work =*/ NULL,
  7407. /*.nodes =*/ { NULL },
  7408. /*.grads =*/ { NULL },
  7409. /*.leafs =*/ { NULL },
  7410. /*.perf_runs =*/ 0,
  7411. /*.perf_cycles =*/ 0,
  7412. /*.perf_time_us =*/ 0,
  7413. };
  7414. ggml_build_forward_impl(&result, tensor, false);
  7415. return result;
  7416. }
  7417. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7418. struct ggml_cgraph result = *gf;
  7419. GGML_ASSERT(gf->n_nodes > 0);
  7420. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7421. if (keep) {
  7422. for (int i = 0; i < gf->n_nodes; i++) {
  7423. struct ggml_tensor * node = gf->nodes[i];
  7424. if (node->grad) {
  7425. node->grad = ggml_dup_tensor(ctx, node);
  7426. gf->grads[i] = node->grad;
  7427. }
  7428. }
  7429. }
  7430. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7431. struct ggml_tensor * node = gf->nodes[i];
  7432. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7433. if (node->grad) {
  7434. ggml_compute_backward(ctx, node, keep);
  7435. }
  7436. }
  7437. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7438. struct ggml_tensor * node = gf->nodes[i];
  7439. if (node->is_param) {
  7440. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7441. ggml_build_forward_impl(&result, node->grad, true);
  7442. }
  7443. }
  7444. return result;
  7445. }
  7446. //
  7447. // thread data
  7448. //
  7449. // synchronization is done via busy loops
  7450. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7451. //
  7452. #ifdef __APPLE__
  7453. //#include <os/lock.h>
  7454. //
  7455. //typedef os_unfair_lock ggml_lock_t;
  7456. //
  7457. //#define ggml_lock_init(x) UNUSED(x)
  7458. //#define ggml_lock_destroy(x) UNUSED(x)
  7459. //#define ggml_lock_lock os_unfair_lock_lock
  7460. //#define ggml_lock_unlock os_unfair_lock_unlock
  7461. //
  7462. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7463. typedef int ggml_lock_t;
  7464. #define ggml_lock_init(x) UNUSED(x)
  7465. #define ggml_lock_destroy(x) UNUSED(x)
  7466. #define ggml_lock_lock(x) UNUSED(x)
  7467. #define ggml_lock_unlock(x) UNUSED(x)
  7468. #define GGML_LOCK_INITIALIZER 0
  7469. typedef pthread_t ggml_thread_t;
  7470. #define ggml_thread_create pthread_create
  7471. #define ggml_thread_join pthread_join
  7472. #else
  7473. //typedef pthread_spinlock_t ggml_lock_t;
  7474. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7475. //#define ggml_lock_destroy pthread_spin_destroy
  7476. //#define ggml_lock_lock pthread_spin_lock
  7477. //#define ggml_lock_unlock pthread_spin_unlock
  7478. typedef int ggml_lock_t;
  7479. #define ggml_lock_init(x) UNUSED(x)
  7480. #define ggml_lock_destroy(x) UNUSED(x)
  7481. #define ggml_lock_lock(x) UNUSED(x)
  7482. #define ggml_lock_unlock(x) UNUSED(x)
  7483. #define GGML_LOCK_INITIALIZER 0
  7484. typedef pthread_t ggml_thread_t;
  7485. #define ggml_thread_create pthread_create
  7486. #define ggml_thread_join pthread_join
  7487. #endif
  7488. struct ggml_compute_state_shared {
  7489. ggml_lock_t spin;
  7490. int n_threads;
  7491. // synchronization primitives
  7492. atomic_int n_ready;
  7493. atomic_bool has_work;
  7494. atomic_bool stop; // stop all threads
  7495. };
  7496. struct ggml_compute_state {
  7497. ggml_thread_t thrd;
  7498. struct ggml_compute_params params;
  7499. struct ggml_tensor * node;
  7500. struct ggml_compute_state_shared * shared;
  7501. };
  7502. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7503. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7504. const int n_threads = state->shared->n_threads;
  7505. while (true) {
  7506. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7507. atomic_store(&state->shared->has_work, false);
  7508. } else {
  7509. while (atomic_load(&state->shared->has_work)) {
  7510. if (atomic_load(&state->shared->stop)) {
  7511. return 0;
  7512. }
  7513. ggml_lock_lock (&state->shared->spin);
  7514. ggml_lock_unlock(&state->shared->spin);
  7515. }
  7516. }
  7517. atomic_fetch_sub(&state->shared->n_ready, 1);
  7518. // wait for work
  7519. while (!atomic_load(&state->shared->has_work)) {
  7520. if (atomic_load(&state->shared->stop)) {
  7521. return 0;
  7522. }
  7523. ggml_lock_lock (&state->shared->spin);
  7524. ggml_lock_unlock(&state->shared->spin);
  7525. }
  7526. // check if we should stop
  7527. if (atomic_load(&state->shared->stop)) {
  7528. break;
  7529. }
  7530. if (state->node) {
  7531. if (state->params.ith < state->params.nth) {
  7532. ggml_compute_forward(&state->params, state->node);
  7533. }
  7534. state->node = NULL;
  7535. } else {
  7536. break;
  7537. }
  7538. }
  7539. return 0;
  7540. }
  7541. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7542. const int n_threads = cgraph->n_threads;
  7543. struct ggml_compute_state_shared state_shared = {
  7544. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7545. /*.n_threads =*/ n_threads,
  7546. /*.n_ready =*/ 0,
  7547. /*.has_work =*/ false,
  7548. /*.stop =*/ false,
  7549. };
  7550. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7551. // create thread pool
  7552. if (n_threads > 1) {
  7553. ggml_lock_init(&state_shared.spin);
  7554. atomic_store(&state_shared.has_work, true);
  7555. for (int j = 0; j < n_threads - 1; j++) {
  7556. workers[j] = (struct ggml_compute_state) {
  7557. .thrd = 0,
  7558. .params = {
  7559. .type = GGML_TASK_COMPUTE,
  7560. .ith = j + 1,
  7561. .nth = n_threads,
  7562. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7563. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7564. },
  7565. .node = NULL,
  7566. .shared = &state_shared,
  7567. };
  7568. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7569. GGML_ASSERT(rc == 0);
  7570. UNUSED(rc);
  7571. }
  7572. }
  7573. // initialize tasks + work buffer
  7574. {
  7575. size_t work_size = 0;
  7576. // thread scheduling for the different operations
  7577. for (int i = 0; i < cgraph->n_nodes; i++) {
  7578. struct ggml_tensor * node = cgraph->nodes[i];
  7579. switch (node->op) {
  7580. case GGML_OP_DUP:
  7581. {
  7582. node->n_tasks = 1;
  7583. } break;
  7584. case GGML_OP_ADD:
  7585. {
  7586. node->n_tasks = n_threads;
  7587. } break;
  7588. case GGML_OP_SUB:
  7589. case GGML_OP_MUL:
  7590. case GGML_OP_DIV:
  7591. case GGML_OP_SQR:
  7592. case GGML_OP_SQRT:
  7593. case GGML_OP_SUM:
  7594. case GGML_OP_MEAN:
  7595. case GGML_OP_REPEAT:
  7596. case GGML_OP_ABS:
  7597. case GGML_OP_SGN:
  7598. case GGML_OP_NEG:
  7599. case GGML_OP_STEP:
  7600. case GGML_OP_RELU:
  7601. {
  7602. node->n_tasks = 1;
  7603. } break;
  7604. case GGML_OP_GELU:
  7605. {
  7606. node->n_tasks = n_threads;
  7607. } break;
  7608. case GGML_OP_SILU:
  7609. {
  7610. node->n_tasks = n_threads;
  7611. } break;
  7612. case GGML_OP_NORM:
  7613. case GGML_OP_RMS_NORM:
  7614. {
  7615. node->n_tasks = n_threads;
  7616. } break;
  7617. case GGML_OP_MUL_MAT:
  7618. {
  7619. node->n_tasks = n_threads;
  7620. // TODO: use different scheduling for different matrix sizes
  7621. //const int nr0 = ggml_nrows(node->src0);
  7622. //const int nr1 = ggml_nrows(node->src1);
  7623. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7624. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7625. size_t cur = 0;
  7626. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7627. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7628. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7629. node->n_tasks = 1; // TODO: this actually is doing nothing
  7630. // the threads are still spinning
  7631. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7632. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7633. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7634. //printf("cur = %zu\n", cur);
  7635. } else {
  7636. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7637. }
  7638. #else
  7639. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7640. #endif
  7641. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7642. cur = 0;
  7643. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7644. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7645. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7646. node->n_tasks = 1;
  7647. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7648. } else
  7649. #endif
  7650. {
  7651. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7652. }
  7653. } else {
  7654. GGML_ASSERT(false);
  7655. }
  7656. work_size = MAX(work_size, cur);
  7657. } break;
  7658. case GGML_OP_SCALE:
  7659. {
  7660. node->n_tasks = n_threads;
  7661. } break;
  7662. case GGML_OP_CPY:
  7663. case GGML_OP_RESHAPE:
  7664. case GGML_OP_VIEW:
  7665. case GGML_OP_PERMUTE:
  7666. case GGML_OP_TRANSPOSE:
  7667. case GGML_OP_GET_ROWS:
  7668. case GGML_OP_DIAG_MASK_INF:
  7669. {
  7670. node->n_tasks = 1;
  7671. } break;
  7672. case GGML_OP_SOFT_MAX:
  7673. {
  7674. node->n_tasks = n_threads;
  7675. } break;
  7676. case GGML_OP_ROPE:
  7677. {
  7678. node->n_tasks = n_threads;
  7679. } break;
  7680. case GGML_OP_CONV_1D_1S:
  7681. case GGML_OP_CONV_1D_2S:
  7682. {
  7683. node->n_tasks = n_threads;
  7684. GGML_ASSERT(node->src0->ne[3] == 1);
  7685. GGML_ASSERT(node->src1->ne[2] == 1);
  7686. GGML_ASSERT(node->src1->ne[3] == 1);
  7687. size_t cur = 0;
  7688. const int nk = node->src0->ne[0];
  7689. if (node->src0->type == GGML_TYPE_F16 &&
  7690. node->src1->type == GGML_TYPE_F32) {
  7691. cur = sizeof(ggml_fp16_t)*(
  7692. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7693. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7694. );
  7695. } else if (node->src0->type == GGML_TYPE_F32 &&
  7696. node->src1->type == GGML_TYPE_F32) {
  7697. cur = sizeof(float)*(
  7698. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7699. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7700. );
  7701. } else {
  7702. GGML_ASSERT(false);
  7703. }
  7704. work_size = MAX(work_size, cur);
  7705. } break;
  7706. case GGML_OP_FLASH_ATTN:
  7707. {
  7708. node->n_tasks = n_threads;
  7709. size_t cur = 0;
  7710. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7711. if (node->src1->type == GGML_TYPE_F32) {
  7712. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7713. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7714. }
  7715. if (node->src1->type == GGML_TYPE_F16) {
  7716. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7717. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7718. }
  7719. work_size = MAX(work_size, cur);
  7720. } break;
  7721. case GGML_OP_FLASH_FF:
  7722. {
  7723. node->n_tasks = n_threads;
  7724. size_t cur = 0;
  7725. if (node->src1->type == GGML_TYPE_F32) {
  7726. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7727. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7728. }
  7729. if (node->src1->type == GGML_TYPE_F16) {
  7730. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7731. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7732. }
  7733. work_size = MAX(work_size, cur);
  7734. } break;
  7735. case GGML_OP_NONE:
  7736. {
  7737. node->n_tasks = 1;
  7738. } break;
  7739. case GGML_OP_COUNT:
  7740. {
  7741. GGML_ASSERT(false);
  7742. } break;
  7743. }
  7744. }
  7745. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7746. GGML_ASSERT(false); // TODO: better handling
  7747. }
  7748. if (work_size > 0 && cgraph->work == NULL) {
  7749. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7750. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7751. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7752. }
  7753. }
  7754. const int64_t perf_start_cycles = ggml_perf_cycles();
  7755. const int64_t perf_start_time_us = ggml_perf_time_us();
  7756. for (int i = 0; i < cgraph->n_nodes; i++) {
  7757. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7758. struct ggml_tensor * node = cgraph->nodes[i];
  7759. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7760. //if (node->grad == NULL && node->perf_runs > 0) {
  7761. // continue;
  7762. //}
  7763. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7764. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7765. // INIT
  7766. struct ggml_compute_params params = {
  7767. /*.type =*/ GGML_TASK_INIT,
  7768. /*.ith =*/ 0,
  7769. /*.nth =*/ node->n_tasks,
  7770. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7771. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7772. };
  7773. ggml_compute_forward(&params, node);
  7774. // COMPUTE
  7775. if (node->n_tasks > 1) {
  7776. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7777. atomic_store(&state_shared.has_work, false);
  7778. }
  7779. while (atomic_load(&state_shared.has_work)) {
  7780. ggml_lock_lock (&state_shared.spin);
  7781. ggml_lock_unlock(&state_shared.spin);
  7782. }
  7783. // launch thread pool
  7784. for (int j = 0; j < n_threads - 1; j++) {
  7785. workers[j].params = (struct ggml_compute_params) {
  7786. .type = GGML_TASK_COMPUTE,
  7787. .ith = j + 1,
  7788. .nth = node->n_tasks,
  7789. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7790. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7791. };
  7792. workers[j].node = node;
  7793. }
  7794. atomic_fetch_sub(&state_shared.n_ready, 1);
  7795. while (atomic_load(&state_shared.n_ready) > 0) {
  7796. ggml_lock_lock (&state_shared.spin);
  7797. ggml_lock_unlock(&state_shared.spin);
  7798. }
  7799. atomic_store(&state_shared.has_work, true);
  7800. }
  7801. params.type = GGML_TASK_COMPUTE;
  7802. ggml_compute_forward(&params, node);
  7803. // wait for thread pool
  7804. if (node->n_tasks > 1) {
  7805. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7806. atomic_store(&state_shared.has_work, false);
  7807. }
  7808. while (atomic_load(&state_shared.has_work)) {
  7809. ggml_lock_lock (&state_shared.spin);
  7810. ggml_lock_unlock(&state_shared.spin);
  7811. }
  7812. atomic_fetch_sub(&state_shared.n_ready, 1);
  7813. while (atomic_load(&state_shared.n_ready) != 0) {
  7814. ggml_lock_lock (&state_shared.spin);
  7815. ggml_lock_unlock(&state_shared.spin);
  7816. }
  7817. }
  7818. // FINALIZE
  7819. if (node->n_tasks > 1) {
  7820. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7821. atomic_store(&state_shared.has_work, false);
  7822. }
  7823. while (atomic_load(&state_shared.has_work)) {
  7824. ggml_lock_lock (&state_shared.spin);
  7825. ggml_lock_unlock(&state_shared.spin);
  7826. }
  7827. // launch thread pool
  7828. for (int j = 0; j < n_threads - 1; j++) {
  7829. workers[j].params = (struct ggml_compute_params) {
  7830. .type = GGML_TASK_FINALIZE,
  7831. .ith = j + 1,
  7832. .nth = node->n_tasks,
  7833. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7834. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7835. };
  7836. workers[j].node = node;
  7837. }
  7838. atomic_fetch_sub(&state_shared.n_ready, 1);
  7839. while (atomic_load(&state_shared.n_ready) > 0) {
  7840. ggml_lock_lock (&state_shared.spin);
  7841. ggml_lock_unlock(&state_shared.spin);
  7842. }
  7843. atomic_store(&state_shared.has_work, true);
  7844. }
  7845. params.type = GGML_TASK_FINALIZE;
  7846. ggml_compute_forward(&params, node);
  7847. // wait for thread pool
  7848. if (node->n_tasks > 1) {
  7849. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7850. atomic_store(&state_shared.has_work, false);
  7851. }
  7852. while (atomic_load(&state_shared.has_work)) {
  7853. ggml_lock_lock (&state_shared.spin);
  7854. ggml_lock_unlock(&state_shared.spin);
  7855. }
  7856. atomic_fetch_sub(&state_shared.n_ready, 1);
  7857. while (atomic_load(&state_shared.n_ready) != 0) {
  7858. ggml_lock_lock (&state_shared.spin);
  7859. ggml_lock_unlock(&state_shared.spin);
  7860. }
  7861. }
  7862. // performance stats (node)
  7863. {
  7864. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7865. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7866. node->perf_runs++;
  7867. node->perf_cycles += perf_cycles_cur;
  7868. node->perf_time_us += perf_time_us_cur;
  7869. }
  7870. }
  7871. // join thread pool
  7872. if (n_threads > 1) {
  7873. atomic_store(&state_shared.stop, true);
  7874. atomic_store(&state_shared.has_work, true);
  7875. for (int j = 0; j < n_threads - 1; j++) {
  7876. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7877. GGML_ASSERT(rc == 0);
  7878. UNUSED(rc);
  7879. }
  7880. ggml_lock_destroy(&state_shared.spin);
  7881. }
  7882. // performance stats (graph)
  7883. {
  7884. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7885. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7886. cgraph->perf_runs++;
  7887. cgraph->perf_cycles += perf_cycles_cur;
  7888. cgraph->perf_time_us += perf_time_us_cur;
  7889. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7890. __func__, cgraph->perf_runs,
  7891. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7892. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7893. (double) perf_time_us_cur / 1000.0,
  7894. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7895. }
  7896. }
  7897. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7898. for (int i = 0; i < cgraph->n_nodes; i++) {
  7899. struct ggml_tensor * grad = cgraph->grads[i];
  7900. if (grad) {
  7901. ggml_set_zero(grad);
  7902. }
  7903. }
  7904. }
  7905. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7906. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7907. GGML_PRINT("=== GRAPH ===\n");
  7908. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7909. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7910. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7911. for (int i = 0; i < cgraph->n_nodes; i++) {
  7912. struct ggml_tensor * node = cgraph->nodes[i];
  7913. perf_total_per_op_us[node->op] += node->perf_time_us;
  7914. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7915. i,
  7916. node->ne[0], node->ne[1], node->ne[2],
  7917. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7918. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7919. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7920. (double) node->perf_time_us / 1000.0,
  7921. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7922. }
  7923. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7924. for (int i = 0; i < cgraph->n_leafs; i++) {
  7925. struct ggml_tensor * node = cgraph->leafs[i];
  7926. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  7927. i,
  7928. node->ne[0], node->ne[1],
  7929. GGML_OP_LABEL[node->op]);
  7930. }
  7931. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7932. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7933. }
  7934. GGML_PRINT("========================================\n");
  7935. }
  7936. // check if node is part of the graph
  7937. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7938. if (cgraph == NULL) {
  7939. return true;
  7940. }
  7941. for (int i = 0; i < cgraph->n_nodes; i++) {
  7942. if (cgraph->nodes[i] == node) {
  7943. return true;
  7944. }
  7945. }
  7946. return false;
  7947. }
  7948. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7949. for (int i = 0; i < cgraph->n_nodes; i++) {
  7950. struct ggml_tensor * parent = cgraph->nodes[i];
  7951. if (parent->grad == node) {
  7952. return parent;
  7953. }
  7954. }
  7955. return NULL;
  7956. }
  7957. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7958. char color[16];
  7959. FILE * fp = fopen(filename, "w");
  7960. GGML_ASSERT(fp);
  7961. fprintf(fp, "digraph G {\n");
  7962. fprintf(fp, " newrank = true;\n");
  7963. fprintf(fp, " rankdir = LR;\n");
  7964. for (int i = 0; i < gb->n_nodes; i++) {
  7965. struct ggml_tensor * node = gb->nodes[i];
  7966. if (ggml_graph_get_parent(gb, node) != NULL) {
  7967. continue;
  7968. }
  7969. if (node->is_param) {
  7970. snprintf(color, sizeof(color), "yellow");
  7971. } else if (node->grad) {
  7972. if (ggml_graph_find(gf, node)) {
  7973. snprintf(color, sizeof(color), "green");
  7974. } else {
  7975. snprintf(color, sizeof(color), "lightblue");
  7976. }
  7977. } else {
  7978. snprintf(color, sizeof(color), "white");
  7979. }
  7980. fprintf(fp, " \"%p\" [ \
  7981. style = filled; fillcolor = %s; shape = record; \
  7982. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  7983. (void *) node, color,
  7984. i, node->ne[0], node->ne[1],
  7985. GGML_OP_SYMBOL[node->op]);
  7986. if (node->grad) {
  7987. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7988. } else {
  7989. fprintf(fp, "\"; ]\n");
  7990. }
  7991. }
  7992. for (int i = 0; i < gb->n_leafs; i++) {
  7993. struct ggml_tensor * node = gb->leafs[i];
  7994. snprintf(color, sizeof(color), "pink");
  7995. if (ggml_nelements(node) == 1) {
  7996. fprintf(fp, " \"%p\" [ \
  7997. style = filled; fillcolor = %s; shape = record; \
  7998. label=\"<x>%.1e\"; ]\n",
  7999. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8000. } else {
  8001. fprintf(fp, " \"%p\" [ \
  8002. style = filled; fillcolor = %s; shape = record; \
  8003. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8004. (void *) node, color,
  8005. i, node->ne[0], node->ne[1]);
  8006. }
  8007. }
  8008. for (int i = 0; i < gb->n_nodes; i++) {
  8009. struct ggml_tensor * node = gb->nodes[i];
  8010. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8011. if (node->src0) {
  8012. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8013. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8014. parent0 ? (void *) parent0 : (void *) node->src0,
  8015. parent0 ? "g" : "x",
  8016. parent ? (void *) parent : (void *) node,
  8017. parent ? "g" : "x",
  8018. parent ? "empty" : "vee",
  8019. parent ? "dashed" : "solid");
  8020. }
  8021. if (node->src1) {
  8022. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8023. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8024. parent1 ? (void *) parent1 : (void *) node->src1,
  8025. parent1 ? "g" : "x",
  8026. parent ? (void *) parent : (void *) node,
  8027. parent ? "g" : "x",
  8028. parent ? "empty" : "vee",
  8029. parent ? "dashed" : "solid");
  8030. }
  8031. }
  8032. for (int i = 0; i < gb->n_leafs; i++) {
  8033. struct ggml_tensor * node = gb->leafs[i];
  8034. if (node->src0) {
  8035. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8036. (void *) node->src0, "x",
  8037. (void *) node, "x");
  8038. }
  8039. if (node->src1) {
  8040. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8041. (void *) node->src1, "x",
  8042. (void *) node, "x");
  8043. }
  8044. }
  8045. fprintf(fp, "}\n");
  8046. fclose(fp);
  8047. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8048. }
  8049. ////////////////////////////////////////////////////////////////////////////////
  8050. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8051. int i = 0;
  8052. for (int p = 0; p < np; ++p) {
  8053. const int64_t ne = ggml_nelements(ps[p]) ;
  8054. // TODO: add function to set tensor from array
  8055. for (int64_t j = 0; j < ne; ++j) {
  8056. ggml_set_f32_1d(ps[p], j, x[i++]);
  8057. }
  8058. }
  8059. }
  8060. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8061. int i = 0;
  8062. for (int p = 0; p < np; ++p) {
  8063. const int64_t ne = ggml_nelements(ps[p]) ;
  8064. // TODO: add function to get all elements at once
  8065. for (int64_t j = 0; j < ne; ++j) {
  8066. x[i++] = ggml_get_f32_1d(ps[p], j);
  8067. }
  8068. }
  8069. }
  8070. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8071. int i = 0;
  8072. for (int p = 0; p < np; ++p) {
  8073. const int64_t ne = ggml_nelements(ps[p]) ;
  8074. // TODO: add function to get all elements at once
  8075. for (int64_t j = 0; j < ne; ++j) {
  8076. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8077. }
  8078. }
  8079. }
  8080. //
  8081. // ADAM
  8082. //
  8083. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8084. //
  8085. static enum ggml_opt_result ggml_opt_adam(
  8086. struct ggml_context * ctx,
  8087. struct ggml_opt_params params,
  8088. struct ggml_tensor * f,
  8089. struct ggml_cgraph * gf,
  8090. struct ggml_cgraph * gb) {
  8091. GGML_ASSERT(ggml_is_scalar(f));
  8092. gf->n_threads = params.n_threads;
  8093. gb->n_threads = params.n_threads;
  8094. // these will store the parameters we want to optimize
  8095. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8096. int np = 0;
  8097. int nx = 0;
  8098. for (int i = 0; i < gf->n_nodes; ++i) {
  8099. if (gf->nodes[i]->is_param) {
  8100. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8101. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8102. ps[np++] = gf->nodes[i];
  8103. nx += ggml_nelements(gf->nodes[i]);
  8104. }
  8105. }
  8106. // constants
  8107. const float alpha = params.adam.alpha;
  8108. const float beta1 = params.adam.beta1;
  8109. const float beta2 = params.adam.beta2;
  8110. const float eps = params.adam.eps;
  8111. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8112. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8113. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8114. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8115. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8116. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8117. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8118. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8119. // initialize
  8120. ggml_vec_set_f32(nx, m, 0.0f);
  8121. ggml_vec_set_f32(nx, v, 0.0f);
  8122. // update view
  8123. ggml_opt_get_params(np, ps, x);
  8124. // compute the function value
  8125. ggml_graph_reset (gf);
  8126. ggml_set_f32 (f->grad, 1.0f);
  8127. ggml_graph_compute(ctx, gb);
  8128. float fx_prev = ggml_get_f32_1d(f, 0);
  8129. if (pf) {
  8130. pf[0] = fx_prev;
  8131. }
  8132. int n_no_improvement = 0;
  8133. float fx_best = fx_prev;
  8134. // run the optimizer
  8135. for (int t = 0; t < params.adam.n_iter; ++t) {
  8136. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8137. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8138. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8139. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8140. for (int i = 0; i < np; ++i) {
  8141. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8142. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8143. }
  8144. const int64_t t_start_wall = ggml_time_us();
  8145. const int64_t t_start_cpu = ggml_cycles();
  8146. UNUSED(t_start_wall);
  8147. UNUSED(t_start_cpu);
  8148. {
  8149. // update the gradient
  8150. ggml_opt_get_grad(np, ps, g1);
  8151. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8152. ggml_vec_scale_f32(nx, m, beta1);
  8153. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8154. // g2 = g1^2
  8155. ggml_vec_sqr_f32 (nx, g2, g1);
  8156. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8157. ggml_vec_scale_f32(nx, v, beta2);
  8158. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8159. // m^hat = m_t / (1 - beta1^t)
  8160. // v^hat = v_t / (1 - beta2^t)
  8161. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8162. ggml_vec_cpy_f32 (nx, mh, m);
  8163. ggml_vec_cpy_f32 (nx, vh, v);
  8164. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8165. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8166. ggml_vec_sqrt_f32 (nx, vh, vh);
  8167. ggml_vec_acc1_f32 (nx, vh, eps);
  8168. ggml_vec_div_f32 (nx, mh, mh, vh);
  8169. ggml_vec_sub_f32 (nx, x, x, mh);
  8170. // update the parameters
  8171. ggml_opt_set_params(np, ps, x);
  8172. }
  8173. ggml_graph_reset (gf);
  8174. ggml_set_f32 (f->grad, 1.0f);
  8175. ggml_graph_compute(ctx, gb);
  8176. const float fx = ggml_get_f32_1d(f, 0);
  8177. // check convergence
  8178. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8179. GGML_PRINT_DEBUG("converged\n");
  8180. return GGML_OPT_OK;
  8181. }
  8182. // delta-based convergence test
  8183. if (pf != NULL) {
  8184. // need at least params.past iterations to start checking for convergence
  8185. if (params.past <= t) {
  8186. const float rate = (pf[t%params.past] - fx)/fx;
  8187. if (fabsf(rate) < params.delta) {
  8188. return GGML_OPT_OK;
  8189. }
  8190. }
  8191. pf[t%params.past] = fx;
  8192. }
  8193. // check for improvement
  8194. if (params.max_no_improvement > 0) {
  8195. if (fx_best > fx) {
  8196. fx_best = fx;
  8197. n_no_improvement = 0;
  8198. } else {
  8199. ++n_no_improvement;
  8200. if (n_no_improvement >= params.max_no_improvement) {
  8201. return GGML_OPT_OK;
  8202. }
  8203. }
  8204. }
  8205. fx_prev = fx;
  8206. {
  8207. const int64_t t_end_cpu = ggml_cycles();
  8208. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8209. UNUSED(t_end_cpu);
  8210. const int64_t t_end_wall = ggml_time_us();
  8211. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8212. UNUSED(t_end_wall);
  8213. }
  8214. }
  8215. return GGML_OPT_DID_NOT_CONVERGE;
  8216. }
  8217. //
  8218. // L-BFGS
  8219. //
  8220. // the L-BFGS implementation below is based on the following implementation:
  8221. //
  8222. // https://github.com/chokkan/liblbfgs
  8223. //
  8224. struct ggml_lbfgs_iteration_data {
  8225. float alpha;
  8226. float ys;
  8227. float * s;
  8228. float * y;
  8229. };
  8230. static enum ggml_opt_result linesearch_backtracking(
  8231. struct ggml_context * ctx,
  8232. const struct ggml_opt_params * params,
  8233. int nx,
  8234. float * x,
  8235. float * fx,
  8236. float * g,
  8237. float * d,
  8238. float * step,
  8239. const float * xp,
  8240. struct ggml_tensor * f,
  8241. struct ggml_cgraph * gf,
  8242. struct ggml_cgraph * gb,
  8243. const int np,
  8244. struct ggml_tensor * ps[]) {
  8245. int count = 0;
  8246. float width = 0.0f;
  8247. float dg = 0.0f;
  8248. float finit = 0.0f;
  8249. float dginit = 0.0f;
  8250. float dgtest = 0.0f;
  8251. const float dec = 0.5f;
  8252. const float inc = 2.1f;
  8253. if (*step <= 0.f) {
  8254. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8255. }
  8256. // compute the initial gradient in the search direction
  8257. ggml_vec_dot_f32(nx, &dginit, g, d);
  8258. // make sure that d points to a descent direction
  8259. if (0 < dginit) {
  8260. return GGML_LINESEARCH_FAIL;
  8261. }
  8262. // initialize local variables
  8263. finit = *fx;
  8264. dgtest = params->lbfgs.ftol*dginit;
  8265. while (true) {
  8266. ggml_vec_cpy_f32(nx, x, xp);
  8267. ggml_vec_mad_f32(nx, x, d, *step);
  8268. // evaluate the function and gradient values
  8269. {
  8270. ggml_opt_set_params(np, ps, x);
  8271. ggml_graph_reset (gf);
  8272. ggml_set_f32 (f->grad, 1.0f);
  8273. ggml_graph_compute(ctx, gb);
  8274. ggml_opt_get_grad(np, ps, g);
  8275. *fx = ggml_get_f32_1d(f, 0);
  8276. }
  8277. ++count;
  8278. if (*fx > finit + (*step)*dgtest) {
  8279. width = dec;
  8280. } else {
  8281. // Armijo condition is satisfied
  8282. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8283. return count;
  8284. }
  8285. ggml_vec_dot_f32(nx, &dg, g, d);
  8286. // check the Wolfe condition
  8287. if (dg < params->lbfgs.wolfe * dginit) {
  8288. width = inc;
  8289. } else {
  8290. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8291. // regular Wolfe conditions
  8292. return count;
  8293. }
  8294. if(dg > -params->lbfgs.wolfe*dginit) {
  8295. width = dec;
  8296. } else {
  8297. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8298. return count;
  8299. }
  8300. return count;
  8301. }
  8302. }
  8303. if (*step < params->lbfgs.min_step) {
  8304. return GGML_LINESEARCH_MINIMUM_STEP;
  8305. }
  8306. if (*step > params->lbfgs.max_step) {
  8307. return GGML_LINESEARCH_MAXIMUM_STEP;
  8308. }
  8309. if (params->lbfgs.max_linesearch <= count) {
  8310. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8311. }
  8312. (*step) *= width;
  8313. }
  8314. return GGML_LINESEARCH_FAIL;
  8315. }
  8316. static enum ggml_opt_result ggml_opt_lbfgs(
  8317. struct ggml_context * ctx,
  8318. struct ggml_opt_params params,
  8319. struct ggml_tensor * f,
  8320. struct ggml_cgraph * gf,
  8321. struct ggml_cgraph * gb) {
  8322. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8323. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8324. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8325. return GGML_OPT_INVALID_WOLFE;
  8326. }
  8327. }
  8328. gf->n_threads = params.n_threads;
  8329. gb->n_threads = params.n_threads;
  8330. const int m = params.lbfgs.m;
  8331. // these will store the parameters we want to optimize
  8332. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8333. int np = 0;
  8334. int nx = 0;
  8335. for (int i = 0; i < gf->n_nodes; ++i) {
  8336. if (gf->nodes[i]->is_param) {
  8337. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8338. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8339. ps[np++] = gf->nodes[i];
  8340. nx += ggml_nelements(gf->nodes[i]);
  8341. }
  8342. }
  8343. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8344. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8345. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8346. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8347. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8348. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8349. float fx = 0.0f; // cost function value
  8350. float xnorm = 0.0f; // ||x||
  8351. float gnorm = 0.0f; // ||g||
  8352. float step = 0.0f;
  8353. // initialize x from the graph nodes
  8354. ggml_opt_get_params(np, ps, x);
  8355. // the L-BFGS memory
  8356. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8357. for (int i = 0; i < m; ++i) {
  8358. lm[i].alpha = 0.0f;
  8359. lm[i].ys = 0.0f;
  8360. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8361. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8362. }
  8363. // evaluate the function value and its gradient
  8364. {
  8365. ggml_opt_set_params(np, ps, x);
  8366. ggml_graph_reset (gf);
  8367. ggml_set_f32 (f->grad, 1.0f);
  8368. ggml_graph_compute(ctx, gb);
  8369. ggml_opt_get_grad(np, ps, g);
  8370. fx = ggml_get_f32_1d(f, 0);
  8371. }
  8372. if (pf) {
  8373. pf[0] = fx;
  8374. }
  8375. float fx_best = fx;
  8376. // search direction = -gradient
  8377. ggml_vec_neg_f32(nx, d, g);
  8378. // ||x||, ||g||
  8379. ggml_vec_norm_f32(nx, &xnorm, x);
  8380. ggml_vec_norm_f32(nx, &gnorm, g);
  8381. if (xnorm < 1.0f) {
  8382. xnorm = 1.0f;
  8383. }
  8384. // already optimized
  8385. if (gnorm/xnorm <= params.lbfgs.eps) {
  8386. return GGML_OPT_OK;
  8387. }
  8388. // initial step
  8389. ggml_vec_norm_inv_f32(nx, &step, d);
  8390. int j = 0;
  8391. int k = 1;
  8392. int ls = 0;
  8393. int end = 0;
  8394. int bound = 0;
  8395. int n_no_improvement = 0;
  8396. float ys = 0.0f;
  8397. float yy = 0.0f;
  8398. float beta = 0.0f;
  8399. while (true) {
  8400. // store the current position and gradient vectors
  8401. ggml_vec_cpy_f32(nx, xp, x);
  8402. ggml_vec_cpy_f32(nx, gp, g);
  8403. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8404. if (ls < 0) {
  8405. // linesearch failed - go back to the previous point and return
  8406. ggml_vec_cpy_f32(nx, x, xp);
  8407. ggml_vec_cpy_f32(nx, g, gp);
  8408. return ls;
  8409. }
  8410. ggml_vec_norm_f32(nx, &xnorm, x);
  8411. ggml_vec_norm_f32(nx, &gnorm, g);
  8412. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8413. if (xnorm < 1.0f) {
  8414. xnorm = 1.0f;
  8415. }
  8416. if (gnorm/xnorm <= params.lbfgs.eps) {
  8417. // converged
  8418. return GGML_OPT_OK;
  8419. }
  8420. // delta-based convergence test
  8421. if (pf != NULL) {
  8422. // need at least params.past iterations to start checking for convergence
  8423. if (params.past <= k) {
  8424. const float rate = (pf[k%params.past] - fx)/fx;
  8425. if (fabsf(rate) < params.delta) {
  8426. return GGML_OPT_OK;
  8427. }
  8428. }
  8429. pf[k%params.past] = fx;
  8430. }
  8431. // check for improvement
  8432. if (params.max_no_improvement > 0) {
  8433. if (fx < fx_best) {
  8434. fx_best = fx;
  8435. n_no_improvement = 0;
  8436. } else {
  8437. n_no_improvement++;
  8438. if (n_no_improvement >= params.max_no_improvement) {
  8439. return GGML_OPT_OK;
  8440. }
  8441. }
  8442. }
  8443. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8444. // reached the maximum number of iterations
  8445. return GGML_OPT_DID_NOT_CONVERGE;
  8446. }
  8447. // update vectors s and y:
  8448. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8449. // y_{k+1} = g_{k+1} - g_{k}.
  8450. //
  8451. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8452. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8453. // compute scalars ys and yy:
  8454. // ys = y^t \cdot s -> 1 / \rho.
  8455. // yy = y^t \cdot y.
  8456. //
  8457. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8458. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8459. lm[end].ys = ys;
  8460. // find new search direction
  8461. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8462. bound = (m <= k) ? m : k;
  8463. k++;
  8464. end = (end + 1)%m;
  8465. // initialize search direction with -g
  8466. ggml_vec_neg_f32(nx, d, g);
  8467. j = end;
  8468. for (int i = 0; i < bound; ++i) {
  8469. j = (j + m - 1) % m;
  8470. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8471. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8472. lm[j].alpha /= lm[j].ys;
  8473. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8474. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8475. }
  8476. ggml_vec_scale_f32(nx, d, ys/yy);
  8477. for (int i = 0; i < bound; ++i) {
  8478. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8479. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8480. beta /= lm[j].ys;
  8481. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8482. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8483. j = (j + 1)%m;
  8484. }
  8485. step = 1.0;
  8486. }
  8487. return GGML_OPT_DID_NOT_CONVERGE;
  8488. }
  8489. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8490. struct ggml_opt_params result;
  8491. switch (type) {
  8492. case GGML_OPT_ADAM:
  8493. {
  8494. result = (struct ggml_opt_params) {
  8495. .type = GGML_OPT_ADAM,
  8496. .n_threads = 1,
  8497. .past = 0,
  8498. .delta = 1e-5f,
  8499. .max_no_improvement = 100,
  8500. .print_forward_graph = true,
  8501. .print_backward_graph = true,
  8502. .adam = {
  8503. .n_iter = 10000,
  8504. .alpha = 0.001f,
  8505. .beta1 = 0.9f,
  8506. .beta2 = 0.999f,
  8507. .eps = 1e-8f,
  8508. .eps_f = 1e-5f,
  8509. .eps_g = 1e-3f,
  8510. },
  8511. };
  8512. } break;
  8513. case GGML_OPT_LBFGS:
  8514. {
  8515. result = (struct ggml_opt_params) {
  8516. .type = GGML_OPT_LBFGS,
  8517. .n_threads = 1,
  8518. .past = 0,
  8519. .delta = 1e-5f,
  8520. .max_no_improvement = 0,
  8521. .print_forward_graph = true,
  8522. .print_backward_graph = true,
  8523. .lbfgs = {
  8524. .m = 6,
  8525. .n_iter = 100,
  8526. .max_linesearch = 20,
  8527. .eps = 1e-5f,
  8528. .ftol = 1e-4f,
  8529. .wolfe = 0.9f,
  8530. .min_step = 1e-20f,
  8531. .max_step = 1e+20f,
  8532. .linesearch = GGML_LINESEARCH_DEFAULT,
  8533. },
  8534. };
  8535. } break;
  8536. }
  8537. return result;
  8538. }
  8539. enum ggml_opt_result ggml_opt(
  8540. struct ggml_context * ctx,
  8541. struct ggml_opt_params params,
  8542. struct ggml_tensor * f) {
  8543. bool free_ctx = false;
  8544. if (ctx == NULL) {
  8545. struct ggml_init_params params_ctx = {
  8546. .mem_size = 16*1024*1024,
  8547. .mem_buffer = NULL,
  8548. .no_alloc = false,
  8549. };
  8550. ctx = ggml_init(params_ctx);
  8551. if (ctx == NULL) {
  8552. return GGML_OPT_NO_CONTEXT;
  8553. }
  8554. free_ctx = true;
  8555. }
  8556. enum ggml_opt_result result = GGML_OPT_OK;
  8557. // build forward + backward compute graphs
  8558. struct ggml_cgraph gf = ggml_build_forward (f);
  8559. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8560. switch (params.type) {
  8561. case GGML_OPT_ADAM:
  8562. {
  8563. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8564. } break;
  8565. case GGML_OPT_LBFGS:
  8566. {
  8567. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8568. } break;
  8569. }
  8570. if (params.print_forward_graph) {
  8571. ggml_graph_print (&gf);
  8572. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8573. }
  8574. if (params.print_backward_graph) {
  8575. ggml_graph_print (&gb);
  8576. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8577. }
  8578. if (free_ctx) {
  8579. ggml_free(ctx);
  8580. }
  8581. return result;
  8582. }
  8583. ////////////////////////////////////////////////////////////////////////////////
  8584. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8585. assert(k % QK == 0);
  8586. const int nb = k / QK;
  8587. for (int j = 0; j < n; j += k) {
  8588. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8589. quantize_row_q4_0_reference(src + j, y, k);
  8590. for (int i = 0; i < nb; i++) {
  8591. for (int l = 0; l < QK; l += 2) {
  8592. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8593. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8594. hist[vi0]++;
  8595. hist[vi1]++;
  8596. }
  8597. }
  8598. }
  8599. return (n/QK*sizeof(block_q4_0));
  8600. }
  8601. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8602. assert(k % QK == 0);
  8603. const int nb = k / QK;
  8604. for (int j = 0; j < n; j += k) {
  8605. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8606. quantize_row_q4_1_reference(src + j, y, k);
  8607. for (int i = 0; i < nb; i++) {
  8608. for (int l = 0; l < QK; l += 2) {
  8609. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8610. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8611. hist[vi0]++;
  8612. hist[vi1]++;
  8613. }
  8614. }
  8615. }
  8616. return (n/QK*sizeof(block_q4_1));
  8617. }
  8618. ////////////////////////////////////////////////////////////////////////////////
  8619. int ggml_cpu_has_avx(void) {
  8620. #if defined(__AVX__)
  8621. return 1;
  8622. #else
  8623. return 0;
  8624. #endif
  8625. }
  8626. int ggml_cpu_has_avx2(void) {
  8627. #if defined(__AVX2__)
  8628. return 1;
  8629. #else
  8630. return 0;
  8631. #endif
  8632. }
  8633. int ggml_cpu_has_avx512(void) {
  8634. #if defined(__AVX512F__)
  8635. return 1;
  8636. #else
  8637. return 0;
  8638. #endif
  8639. }
  8640. int ggml_cpu_has_fma(void) {
  8641. #if defined(__FMA__)
  8642. return 1;
  8643. #else
  8644. return 0;
  8645. #endif
  8646. }
  8647. int ggml_cpu_has_neon(void) {
  8648. #if defined(__ARM_NEON)
  8649. return 1;
  8650. #else
  8651. return 0;
  8652. #endif
  8653. }
  8654. int ggml_cpu_has_arm_fma(void) {
  8655. #if defined(__ARM_FEATURE_FMA)
  8656. return 1;
  8657. #else
  8658. return 0;
  8659. #endif
  8660. }
  8661. int ggml_cpu_has_f16c(void) {
  8662. #if defined(__F16C__)
  8663. return 1;
  8664. #else
  8665. return 0;
  8666. #endif
  8667. }
  8668. int ggml_cpu_has_fp16_va(void) {
  8669. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8670. return 1;
  8671. #else
  8672. return 0;
  8673. #endif
  8674. }
  8675. int ggml_cpu_has_wasm_simd(void) {
  8676. #if defined(__wasm_simd128__)
  8677. return 1;
  8678. #else
  8679. return 0;
  8680. #endif
  8681. }
  8682. int ggml_cpu_has_blas(void) {
  8683. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8684. return 1;
  8685. #else
  8686. return 0;
  8687. #endif
  8688. }
  8689. int ggml_cpu_has_sse3(void) {
  8690. #if defined(__SSE3__)
  8691. return 1;
  8692. #else
  8693. return 0;
  8694. #endif
  8695. }
  8696. int ggml_cpu_has_vsx(void) {
  8697. #if defined(__POWER9_VECTOR__)
  8698. return 1;
  8699. #else
  8700. return 0;
  8701. #endif
  8702. }
  8703. ////////////////////////////////////////////////////////////////////////////////