constants.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. from __future__ import annotations
  2. import sys
  3. from enum import Enum, IntEnum, auto
  4. from typing import Any
  5. #
  6. # constants
  7. #
  8. GGUF_MAGIC = 0x46554747 # "GGUF"
  9. GGUF_VERSION = 3
  10. GGUF_DEFAULT_ALIGNMENT = 32
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. URL = "general.url"
  22. DESCRIPTION = "general.description"
  23. LICENSE = "general.license"
  24. SOURCE_URL = "general.source.url"
  25. SOURCE_HF_REPO = "general.source.huggingface.repository"
  26. FILE_TYPE = "general.file_type"
  27. class LLM:
  28. CONTEXT_LENGTH = "{arch}.context_length"
  29. EMBEDDING_LENGTH = "{arch}.embedding_length"
  30. BLOCK_COUNT = "{arch}.block_count"
  31. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  32. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  33. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  34. class Attention:
  35. HEAD_COUNT = "{arch}.attention.head_count"
  36. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  37. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  38. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  39. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  40. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  41. class Rope:
  42. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  43. FREQ_BASE = "{arch}.rope.freq_base"
  44. SCALING_TYPE = "{arch}.rope.scaling.type"
  45. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  46. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  47. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  48. class Tokenizer:
  49. MODEL = "tokenizer.ggml.model"
  50. LIST = "tokenizer.ggml.tokens"
  51. TOKEN_TYPE = "tokenizer.ggml.token_type"
  52. SCORES = "tokenizer.ggml.scores"
  53. MERGES = "tokenizer.ggml.merges"
  54. BOS_ID = "tokenizer.ggml.bos_token_id"
  55. EOS_ID = "tokenizer.ggml.eos_token_id"
  56. UNK_ID = "tokenizer.ggml.unknown_token_id"
  57. SEP_ID = "tokenizer.ggml.seperator_token_id"
  58. PAD_ID = "tokenizer.ggml.padding_token_id"
  59. ADD_BOS = "tokenizer.ggml.add_bos_token"
  60. ADD_EOS = "tokenizer.ggml.add_eos_token"
  61. HF_JSON = "tokenizer.huggingface.json"
  62. RWKV = "tokenizer.rwkv.world"
  63. #
  64. # recommended mapping of model tensor names for storage in gguf
  65. #
  66. class MODEL_ARCH(IntEnum):
  67. LLAMA = auto()
  68. FALCON = auto()
  69. BAICHUAN = auto()
  70. GPT2 = auto()
  71. GPTJ = auto()
  72. GPTNEOX = auto()
  73. MPT = auto()
  74. STARCODER = auto()
  75. PERSIMMON = auto()
  76. REFACT = auto()
  77. BERT = auto()
  78. BLOOM = auto()
  79. STABLELM = auto()
  80. class MODEL_TENSOR(IntEnum):
  81. TOKEN_EMBD = auto()
  82. TOKEN_EMBD_NORM = auto()
  83. TOKEN_TYPES = auto()
  84. POS_EMBD = auto()
  85. OUTPUT = auto()
  86. OUTPUT_NORM = auto()
  87. ROPE_FREQS = auto()
  88. ATTN_Q = auto()
  89. ATTN_K = auto()
  90. ATTN_V = auto()
  91. ATTN_QKV = auto()
  92. ATTN_OUT = auto()
  93. ATTN_NORM = auto()
  94. ATTN_NORM_2 = auto()
  95. ATTN_ROT_EMBD = auto()
  96. FFN_GATE = auto()
  97. FFN_DOWN = auto()
  98. FFN_UP = auto()
  99. FFN_NORM = auto()
  100. ATTN_Q_NORM = auto()
  101. ATTN_K_NORM = auto()
  102. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  103. MODEL_ARCH.LLAMA: "llama",
  104. MODEL_ARCH.FALCON: "falcon",
  105. MODEL_ARCH.BAICHUAN: "baichuan",
  106. MODEL_ARCH.GPT2: "gpt2",
  107. MODEL_ARCH.GPTJ: "gptj",
  108. MODEL_ARCH.GPTNEOX: "gptneox",
  109. MODEL_ARCH.MPT: "mpt",
  110. MODEL_ARCH.STARCODER: "starcoder",
  111. MODEL_ARCH.PERSIMMON: "persimmon",
  112. MODEL_ARCH.REFACT: "refact",
  113. MODEL_ARCH.BERT: "bert",
  114. MODEL_ARCH.BLOOM: "bloom",
  115. MODEL_ARCH.STABLELM: "stablelm",
  116. }
  117. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  118. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  119. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  120. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  121. MODEL_TENSOR.POS_EMBD: "position_embd",
  122. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  123. MODEL_TENSOR.OUTPUT: "output",
  124. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  125. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  126. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  127. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  128. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  129. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  130. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  131. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  132. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  133. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  134. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  135. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  136. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  137. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  138. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  139. }
  140. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  141. MODEL_ARCH.LLAMA: [
  142. MODEL_TENSOR.TOKEN_EMBD,
  143. MODEL_TENSOR.OUTPUT_NORM,
  144. MODEL_TENSOR.OUTPUT,
  145. MODEL_TENSOR.ROPE_FREQS,
  146. MODEL_TENSOR.ATTN_NORM,
  147. MODEL_TENSOR.ATTN_Q,
  148. MODEL_TENSOR.ATTN_K,
  149. MODEL_TENSOR.ATTN_V,
  150. MODEL_TENSOR.ATTN_OUT,
  151. MODEL_TENSOR.ATTN_ROT_EMBD,
  152. MODEL_TENSOR.FFN_NORM,
  153. MODEL_TENSOR.FFN_GATE,
  154. MODEL_TENSOR.FFN_DOWN,
  155. MODEL_TENSOR.FFN_UP,
  156. ],
  157. MODEL_ARCH.GPTNEOX: [
  158. MODEL_TENSOR.TOKEN_EMBD,
  159. MODEL_TENSOR.OUTPUT_NORM,
  160. MODEL_TENSOR.OUTPUT,
  161. MODEL_TENSOR.ATTN_NORM,
  162. MODEL_TENSOR.ATTN_QKV,
  163. MODEL_TENSOR.ATTN_OUT,
  164. MODEL_TENSOR.FFN_NORM,
  165. MODEL_TENSOR.FFN_DOWN,
  166. MODEL_TENSOR.FFN_UP,
  167. ],
  168. MODEL_ARCH.FALCON: [
  169. MODEL_TENSOR.TOKEN_EMBD,
  170. MODEL_TENSOR.OUTPUT_NORM,
  171. MODEL_TENSOR.OUTPUT,
  172. MODEL_TENSOR.ATTN_NORM,
  173. MODEL_TENSOR.ATTN_NORM_2,
  174. MODEL_TENSOR.ATTN_QKV,
  175. MODEL_TENSOR.ATTN_OUT,
  176. MODEL_TENSOR.FFN_DOWN,
  177. MODEL_TENSOR.FFN_UP,
  178. ],
  179. MODEL_ARCH.BAICHUAN: [
  180. MODEL_TENSOR.TOKEN_EMBD,
  181. MODEL_TENSOR.OUTPUT_NORM,
  182. MODEL_TENSOR.OUTPUT,
  183. MODEL_TENSOR.ROPE_FREQS,
  184. MODEL_TENSOR.ATTN_NORM,
  185. MODEL_TENSOR.ATTN_Q,
  186. MODEL_TENSOR.ATTN_K,
  187. MODEL_TENSOR.ATTN_V,
  188. MODEL_TENSOR.ATTN_OUT,
  189. MODEL_TENSOR.ATTN_ROT_EMBD,
  190. MODEL_TENSOR.FFN_NORM,
  191. MODEL_TENSOR.FFN_GATE,
  192. MODEL_TENSOR.FFN_DOWN,
  193. MODEL_TENSOR.FFN_UP,
  194. ],
  195. MODEL_ARCH.STARCODER: [
  196. MODEL_TENSOR.TOKEN_EMBD,
  197. MODEL_TENSOR.POS_EMBD,
  198. MODEL_TENSOR.OUTPUT_NORM,
  199. MODEL_TENSOR.OUTPUT,
  200. MODEL_TENSOR.ATTN_NORM,
  201. MODEL_TENSOR.ATTN_QKV,
  202. MODEL_TENSOR.ATTN_OUT,
  203. MODEL_TENSOR.FFN_NORM,
  204. MODEL_TENSOR.FFN_DOWN,
  205. MODEL_TENSOR.FFN_UP,
  206. ],
  207. MODEL_ARCH.BERT: [
  208. MODEL_TENSOR.TOKEN_EMBD,
  209. MODEL_TENSOR.TOKEN_TYPES,
  210. MODEL_TENSOR.POS_EMBD,
  211. MODEL_TENSOR.OUTPUT_NORM,
  212. MODEL_TENSOR.ATTN_NORM,
  213. MODEL_TENSOR.ATTN_Q,
  214. MODEL_TENSOR.ATTN_K,
  215. MODEL_TENSOR.ATTN_V,
  216. MODEL_TENSOR.ATTN_OUT,
  217. MODEL_TENSOR.FFN_NORM,
  218. MODEL_TENSOR.FFN_DOWN,
  219. MODEL_TENSOR.FFN_UP,
  220. ],
  221. MODEL_ARCH.MPT: [
  222. MODEL_TENSOR.TOKEN_EMBD,
  223. MODEL_TENSOR.OUTPUT_NORM,
  224. MODEL_TENSOR.OUTPUT,
  225. MODEL_TENSOR.ATTN_NORM,
  226. MODEL_TENSOR.ATTN_QKV,
  227. MODEL_TENSOR.ATTN_OUT,
  228. MODEL_TENSOR.FFN_NORM,
  229. MODEL_TENSOR.FFN_DOWN,
  230. MODEL_TENSOR.FFN_UP,
  231. ],
  232. MODEL_ARCH.GPTJ: [
  233. MODEL_TENSOR.TOKEN_EMBD,
  234. MODEL_TENSOR.OUTPUT_NORM,
  235. MODEL_TENSOR.OUTPUT,
  236. MODEL_TENSOR.ATTN_NORM,
  237. MODEL_TENSOR.ATTN_Q,
  238. MODEL_TENSOR.ATTN_K,
  239. MODEL_TENSOR.ATTN_V,
  240. MODEL_TENSOR.ATTN_OUT,
  241. MODEL_TENSOR.FFN_DOWN,
  242. MODEL_TENSOR.FFN_UP,
  243. ],
  244. MODEL_ARCH.PERSIMMON: [
  245. MODEL_TENSOR.TOKEN_EMBD,
  246. MODEL_TENSOR.OUTPUT,
  247. MODEL_TENSOR.OUTPUT_NORM,
  248. MODEL_TENSOR.ATTN_NORM,
  249. MODEL_TENSOR.ATTN_QKV,
  250. MODEL_TENSOR.ATTN_OUT,
  251. MODEL_TENSOR.FFN_NORM,
  252. MODEL_TENSOR.FFN_DOWN,
  253. MODEL_TENSOR.FFN_UP,
  254. MODEL_TENSOR.ATTN_Q_NORM,
  255. MODEL_TENSOR.ATTN_K_NORM,
  256. MODEL_TENSOR.ATTN_ROT_EMBD,
  257. ],
  258. MODEL_ARCH.REFACT: [
  259. MODEL_TENSOR.TOKEN_EMBD,
  260. MODEL_TENSOR.OUTPUT_NORM,
  261. MODEL_TENSOR.OUTPUT,
  262. MODEL_TENSOR.ATTN_NORM,
  263. MODEL_TENSOR.ATTN_Q,
  264. MODEL_TENSOR.ATTN_K,
  265. MODEL_TENSOR.ATTN_V,
  266. MODEL_TENSOR.ATTN_OUT,
  267. MODEL_TENSOR.FFN_NORM,
  268. MODEL_TENSOR.FFN_GATE,
  269. MODEL_TENSOR.FFN_DOWN,
  270. MODEL_TENSOR.FFN_UP,
  271. ],
  272. MODEL_ARCH.BLOOM: [
  273. MODEL_TENSOR.TOKEN_EMBD,
  274. MODEL_TENSOR.TOKEN_EMBD_NORM,
  275. MODEL_TENSOR.OUTPUT_NORM,
  276. MODEL_TENSOR.OUTPUT,
  277. MODEL_TENSOR.ATTN_NORM,
  278. MODEL_TENSOR.ATTN_QKV,
  279. MODEL_TENSOR.ATTN_OUT,
  280. MODEL_TENSOR.FFN_NORM,
  281. MODEL_TENSOR.FFN_DOWN,
  282. MODEL_TENSOR.FFN_UP,
  283. ],
  284. MODEL_ARCH.STABLELM: [
  285. MODEL_TENSOR.TOKEN_EMBD,
  286. MODEL_TENSOR.OUTPUT_NORM,
  287. MODEL_TENSOR.OUTPUT,
  288. MODEL_TENSOR.ROPE_FREQS,
  289. MODEL_TENSOR.ATTN_NORM,
  290. MODEL_TENSOR.ATTN_Q,
  291. MODEL_TENSOR.ATTN_K,
  292. MODEL_TENSOR.ATTN_V,
  293. MODEL_TENSOR.ATTN_OUT,
  294. MODEL_TENSOR.FFN_NORM,
  295. MODEL_TENSOR.FFN_GATE,
  296. MODEL_TENSOR.FFN_DOWN,
  297. MODEL_TENSOR.FFN_UP,
  298. ],
  299. MODEL_ARCH.GPT2: [
  300. # TODO
  301. ],
  302. # TODO
  303. }
  304. # tensors that will not be serialized
  305. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  306. MODEL_ARCH.LLAMA: [
  307. MODEL_TENSOR.ROPE_FREQS,
  308. MODEL_TENSOR.ATTN_ROT_EMBD,
  309. ],
  310. MODEL_ARCH.BAICHUAN: [
  311. MODEL_TENSOR.ROPE_FREQS,
  312. MODEL_TENSOR.ATTN_ROT_EMBD,
  313. ],
  314. MODEL_ARCH.PERSIMMON: [
  315. MODEL_TENSOR.ROPE_FREQS,
  316. ],
  317. }
  318. #
  319. # types
  320. #
  321. class TokenType(IntEnum):
  322. NORMAL = 1
  323. UNKNOWN = 2
  324. CONTROL = 3
  325. USER_DEFINED = 4
  326. UNUSED = 5
  327. BYTE = 6
  328. class RopeScalingType(Enum):
  329. NONE = 'none'
  330. LINEAR = 'linear'
  331. YARN = 'yarn'
  332. class GGMLQuantizationType(IntEnum):
  333. F32 = 0
  334. F16 = 1
  335. Q4_0 = 2
  336. Q4_1 = 3
  337. Q5_0 = 6
  338. Q5_1 = 7
  339. Q8_0 = 8
  340. Q8_1 = 9
  341. Q2_K = 10
  342. Q3_K = 11
  343. Q4_K = 12
  344. Q5_K = 13
  345. Q6_K = 14
  346. Q8_K = 15
  347. class GGUFEndian(IntEnum):
  348. LITTLE = 0
  349. BIG = 1
  350. class GGUFValueType(IntEnum):
  351. UINT8 = 0
  352. INT8 = 1
  353. UINT16 = 2
  354. INT16 = 3
  355. UINT32 = 4
  356. INT32 = 5
  357. FLOAT32 = 6
  358. BOOL = 7
  359. STRING = 8
  360. ARRAY = 9
  361. UINT64 = 10
  362. INT64 = 11
  363. FLOAT64 = 12
  364. @staticmethod
  365. def get_type(val: Any) -> GGUFValueType:
  366. if isinstance(val, (str, bytes, bytearray)):
  367. return GGUFValueType.STRING
  368. elif isinstance(val, list):
  369. return GGUFValueType.ARRAY
  370. elif isinstance(val, float):
  371. return GGUFValueType.FLOAT32
  372. elif isinstance(val, bool):
  373. return GGUFValueType.BOOL
  374. elif isinstance(val, int):
  375. return GGUFValueType.INT32
  376. # TODO: need help with 64-bit types in Python
  377. else:
  378. print("Unknown type:", type(val))
  379. sys.exit()
  380. # Note: Does not support GGML_QKK_64
  381. QK_K = 256
  382. # Items here are (block size, type size)
  383. GGML_QUANT_SIZES = {
  384. GGMLQuantizationType.F32: (1, 4),
  385. GGMLQuantizationType.F16: (1, 2),
  386. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  387. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  388. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  389. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  390. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  391. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  392. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  393. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  394. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  395. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  396. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  397. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  398. }
  399. # Aliases for backward compatibility.
  400. # general
  401. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  402. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  403. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  404. KEY_GENERAL_NAME = Keys.General.NAME
  405. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  406. KEY_GENERAL_URL = Keys.General.URL
  407. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  408. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  409. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  410. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  411. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  412. # LLM
  413. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  414. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  415. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  416. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  417. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  418. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  419. # attention
  420. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  421. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  422. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  423. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  424. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  425. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  426. # RoPE
  427. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  428. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  429. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  430. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  431. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  432. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  433. # tokenization
  434. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  435. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  436. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  437. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  438. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  439. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  440. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  441. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  442. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  443. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  444. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  445. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV