| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094 |
- #!/usr/bin/env python3
- import argparse
- import csv
- import heapq
- import json
- import logging
- import os
- import sqlite3
- import sys
- from collections.abc import Iterator, Sequence
- from glob import glob
- from typing import Any, Optional, Union
- try:
- import git
- from tabulate import tabulate
- except ImportError as e:
- print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
- raise e
- logger = logging.getLogger("compare-llama-bench")
- # All llama-bench SQL fields
- LLAMA_BENCH_DB_FIELDS = [
- "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
- "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
- "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
- "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
- "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth",
- "test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
- ]
- LLAMA_BENCH_DB_TYPES = [
- "TEXT", "INTEGER", "TEXT", "TEXT", "TEXT", "TEXT",
- "TEXT", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
- "TEXT", "INTEGER", "INTEGER", "TEXT", "TEXT", "INTEGER",
- "TEXT", "INTEGER", "INTEGER", "INTEGER", "TEXT", "TEXT",
- "REAL",
- "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
- "TEXT", "INTEGER", "INTEGER", "REAL", "REAL",
- ]
- # All test-backend-ops SQL fields
- TEST_BACKEND_OPS_DB_FIELDS = [
- "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode",
- "supported", "passed", "error_message", "time_us", "flops", "bandwidth_gb_s",
- "memory_kb", "n_runs"
- ]
- TEST_BACKEND_OPS_DB_TYPES = [
- "TEXT", "TEXT", "TEXT", "TEXT", "TEXT", "TEXT",
- "INTEGER", "INTEGER", "TEXT", "REAL", "REAL", "REAL",
- "INTEGER", "INTEGER"
- ]
- assert len(LLAMA_BENCH_DB_FIELDS) == len(LLAMA_BENCH_DB_TYPES)
- assert len(TEST_BACKEND_OPS_DB_FIELDS) == len(TEST_BACKEND_OPS_DB_TYPES)
- # Properties by which to differentiate results per commit for llama-bench:
- LLAMA_BENCH_KEY_PROPERTIES = [
- "cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
- "n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
- "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
- ]
- # Properties by which to differentiate results per commit for test-backend-ops:
- TEST_BACKEND_OPS_KEY_PROPERTIES = [
- "backend_name", "op_name", "op_params", "test_mode"
- ]
- # Properties that are boolean and are converted to Yes/No for the table:
- LLAMA_BENCH_BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]
- TEST_BACKEND_OPS_BOOL_PROPERTIES = ["supported", "passed"]
- # Header names for the table (llama-bench):
- LLAMA_BENCH_PRETTY_NAMES = {
- "cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
- "tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
- "model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
- "cpu_mask": "CPU mask", "cpu_strict": "CPU strict", "poll": "Poll", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
- "use_mmap": "Use mmap", "no_kv_offload": "NKVO", "split_mode": "Split mode", "main_gpu": "Main GPU", "tensor_split": "Tensor split",
- "flash_attn": "FlashAttention",
- }
- # Header names for the table (test-backend-ops):
- TEST_BACKEND_OPS_PRETTY_NAMES = {
- "backend_name": "Backend", "op_name": "GGML op", "op_params": "Op parameters", "test_mode": "Mode",
- "supported": "Supported", "passed": "Passed", "error_message": "Error",
- "flops": "FLOPS", "bandwidth_gb_s": "Bandwidth (GB/s)", "memory_kb": "Memory (KB)", "n_runs": "Runs"
- }
- DEFAULT_SHOW_LLAMA_BENCH = ["model_type"] # Always show these properties by default.
- DEFAULT_HIDE_LLAMA_BENCH = ["model_filename"] # Always hide these properties by default.
- DEFAULT_SHOW_TEST_BACKEND_OPS = ["backend_name", "op_name"] # Always show these properties by default.
- DEFAULT_HIDE_TEST_BACKEND_OPS = ["error_message"] # Always hide these properties by default.
- GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
- MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
- DESCRIPTION = """Creates tables from llama-bench or test-backend-ops data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):
- For llama-bench:
- $ git checkout master
- $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
- $ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
- $ git checkout some_branch
- $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t llama-bench -j $(nproc)
- $ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
- $ ./scripts/compare-llama-bench.py
- For test-backend-ops:
- $ git checkout master
- $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
- $ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
- $ git checkout some_branch
- $ cmake -B ${BUILD_DIR} ${CMAKE_OPTS} && cmake --build ${BUILD_DIR} -t test-backend-ops -j $(nproc)
- $ ./test-backend-ops perf --output sql | sqlite3 test-backend-ops.sqlite
- $ ./scripts/compare-llama-bench.py --tool test-backend-ops -i test-backend-ops.sqlite
- Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
- """
- parser = argparse.ArgumentParser(
- description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
- help_b = (
- "The baseline commit to compare performance to. "
- "Accepts either a branch name, tag name, or commit hash. "
- "Defaults to latest master commit with data."
- )
- parser.add_argument("-b", "--baseline", help=help_b)
- help_c = (
- "The commit whose performance is to be compared to the baseline. "
- "Accepts either a branch name, tag name, or commit hash. "
- "Defaults to the non-master commit for which llama-bench was run most recently."
- )
- parser.add_argument("-c", "--compare", help=help_c)
- help_t = (
- "The tool whose data is being compared. "
- "Either 'llama-bench' or 'test-backend-ops'. "
- "This determines the database schema and comparison logic used. "
- "If left unspecified, try to determine from the input file."
- )
- parser.add_argument("-t", "--tool", help=help_t, default=None, choices=[None, "llama-bench", "test-backend-ops"])
- help_i = (
- "JSON/JSONL/SQLite/CSV files for comparing commits. "
- "Specify multiple times to use multiple input files (JSON/CSV only). "
- "Defaults to 'llama-bench.sqlite' in the current working directory. "
- "If no such file is found and there is exactly one .sqlite file in the current directory, "
- "that file is instead used as input."
- )
- parser.add_argument("-i", "--input", action="append", help=help_i)
- help_o = (
- "Output format for the table. "
- "Defaults to 'pipe' (GitHub compatible). "
- "Also supports e.g. 'latex' or 'mediawiki'. "
- "See tabulate documentation for full list."
- )
- parser.add_argument("-o", "--output", help=help_o, default="pipe")
- help_s = (
- "Columns to add to the table. "
- "Accepts a comma-separated list of values. "
- f"Legal values for test-backend-ops: {', '.join(TEST_BACKEND_OPS_KEY_PROPERTIES)}. "
- f"Legal values for llama-bench: {', '.join(LLAMA_BENCH_KEY_PROPERTIES[:-3])}. "
- "Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
- "plus any column where not all data points are the same. "
- "If the columns are manually specified, then the results for each unique combination of the "
- "specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
- )
- parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
- parser.add_argument("-s", "--show", help=help_s)
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
- parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
- parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")
- known_args, unknown_args = parser.parse_known_args()
- logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
- if known_args.check:
- # Check if all required Python libraries are installed. Would have failed earlier if not.
- sys.exit(0)
- if unknown_args:
- logger.error(f"Received unknown args: {unknown_args}.\n")
- parser.print_help()
- sys.exit(1)
- input_file = known_args.input
- tool = known_args.tool
- if not input_file:
- if tool == "llama-bench" and os.path.exists("./llama-bench.sqlite"):
- input_file = ["llama-bench.sqlite"]
- elif tool == "test-backend-ops" and os.path.exists("./test-backend-ops.sqlite"):
- input_file = ["test-backend-ops.sqlite"]
- if not input_file:
- sqlite_files = glob("*.sqlite")
- if len(sqlite_files) == 1:
- input_file = sqlite_files
- if not input_file:
- logger.error("Cannot find a suitable input file, please provide one.\n")
- parser.print_help()
- sys.exit(1)
- class LlamaBenchData:
- repo: Optional[git.Repo]
- build_len_min: int
- build_len_max: int
- build_len: int = 8
- builds: list[str] = []
- tool: str = "llama-bench" # Tool type: "llama-bench" or "test-backend-ops"
- def __init__(self, tool: str = "llama-bench"):
- self.tool = tool
- try:
- self.repo = git.Repo(".", search_parent_directories=True)
- except git.InvalidGitRepositoryError:
- self.repo = None
- # Set schema-specific properties based on tool
- if self.tool == "llama-bench":
- self.check_keys = set(LLAMA_BENCH_KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])
- elif self.tool == "test-backend-ops":
- self.check_keys = set(TEST_BACKEND_OPS_KEY_PROPERTIES + ["build_commit", "test_time"])
- else:
- assert False
- def _builds_init(self):
- self.build_len = self.build_len_min
- def _check_keys(self, keys: set) -> Optional[set]:
- """Private helper method that checks against required data keys and returns missing ones."""
- if not keys >= self.check_keys:
- return self.check_keys - keys
- return None
- def find_parent_in_data(self, commit: git.Commit) -> Optional[str]:
- """Helper method to find the most recent parent measured in number of commits for which there is data."""
- heap: list[tuple[int, git.Commit]] = [(0, commit)]
- seen_hexsha8 = set()
- while heap:
- depth, current_commit = heapq.heappop(heap)
- current_hexsha8 = commit.hexsha[:self.build_len]
- if current_hexsha8 in self.builds:
- return current_hexsha8
- for parent in commit.parents:
- parent_hexsha8 = parent.hexsha[:self.build_len]
- if parent_hexsha8 not in seen_hexsha8:
- seen_hexsha8.add(parent_hexsha8)
- heapq.heappush(heap, (depth + 1, parent))
- return None
- def get_all_parent_hexsha8s(self, commit: git.Commit) -> Sequence[str]:
- """Helper method to recursively get hexsha8 values for all parents of a commit."""
- unvisited = [commit]
- visited = []
- while unvisited:
- current_commit = unvisited.pop(0)
- visited.append(current_commit.hexsha[:self.build_len])
- for parent in current_commit.parents:
- if parent.hexsha[:self.build_len] not in visited:
- unvisited.append(parent)
- return visited
- def get_commit_name(self, hexsha8: str) -> str:
- """Helper method to find a human-readable name for a commit if possible."""
- if self.repo is None:
- return hexsha8
- for h in self.repo.heads:
- if h.commit.hexsha[:self.build_len] == hexsha8:
- return h.name
- for t in self.repo.tags:
- if t.commit.hexsha[:self.build_len] == hexsha8:
- return t.name
- return hexsha8
- def get_commit_hexsha8(self, name: str) -> Optional[str]:
- """Helper method to search for a commit given a human-readable name."""
- if self.repo is None:
- return None
- for h in self.repo.heads:
- if h.name == name:
- return h.commit.hexsha[:self.build_len]
- for t in self.repo.tags:
- if t.name == name:
- return t.commit.hexsha[:self.build_len]
- for c in self.repo.iter_commits("--all"):
- if c.hexsha[:self.build_len] == name[:self.build_len]:
- return c.hexsha[:self.build_len]
- return None
- def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
- """Helper method that gets rows of (build_commit, test_time) sorted by the latter."""
- return []
- def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
- """
- Helper method that gets table rows for some list of properties.
- Rows are created by combining those where all provided properties are equal.
- The resulting rows are then grouped by the provided properties and the t/s values are averaged.
- The returned rows are unique in terms of property combinations.
- """
- return []
- class LlamaBenchDataSQLite3(LlamaBenchData):
- connection: Optional[sqlite3.Connection] = None
- cursor: sqlite3.Cursor
- table_name: str
- def __init__(self, tool: str = "llama-bench"):
- super().__init__(tool)
- if self.connection is None:
- self.connection = sqlite3.connect(":memory:")
- self.cursor = self.connection.cursor()
- # Set table name and schema based on tool
- if self.tool == "llama-bench":
- self.table_name = "llama_bench"
- db_fields = LLAMA_BENCH_DB_FIELDS
- db_types = LLAMA_BENCH_DB_TYPES
- elif self.tool == "test-backend-ops":
- self.table_name = "test_backend_ops"
- db_fields = TEST_BACKEND_OPS_DB_FIELDS
- db_types = TEST_BACKEND_OPS_DB_TYPES
- else:
- assert False
- self.cursor.execute(f"CREATE TABLE {self.table_name}({', '.join(' '.join(x) for x in zip(db_fields, db_types))});")
- def _builds_init(self):
- if self.connection:
- self.build_len_min = self.cursor.execute(f"SELECT MIN(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
- self.build_len_max = self.cursor.execute(f"SELECT MAX(LENGTH(build_commit)) from {self.table_name};").fetchone()[0]
- if self.build_len_min != self.build_len_max:
- logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
- "Try purging the the database of old commits.")
- self.cursor.execute(f"UPDATE {self.table_name} SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")
- builds = self.cursor.execute(f"SELECT DISTINCT build_commit FROM {self.table_name};").fetchall()
- self.builds = list(map(lambda b: b[0], builds)) # list[tuple[str]] -> list[str]
- super()._builds_init()
- def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
- data = self.cursor.execute(
- f"SELECT build_commit, test_time FROM {self.table_name} ORDER BY test_time;").fetchall()
- return reversed(data) if reverse else data
- def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
- if self.tool == "llama-bench":
- return self._get_rows_llama_bench(properties, hexsha8_baseline, hexsha8_compare)
- elif self.tool == "test-backend-ops":
- return self._get_rows_test_backend_ops(properties, hexsha8_baseline, hexsha8_compare)
- else:
- assert False
- def _get_rows_llama_bench(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
- select_string = ", ".join(
- [f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
- equal_string = " AND ".join(
- [f"tb.{p} = tc.{p}" for p in LLAMA_BENCH_KEY_PROPERTIES] + [
- f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
- )
- group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
- query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
- f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
- return self.cursor.execute(query).fetchall()
- def _get_rows_test_backend_ops(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
- # For test-backend-ops, we compare FLOPS and bandwidth metrics (prioritizing FLOPS over bandwidth)
- select_string = ", ".join(
- [f"tb.{p}" for p in properties] + [
- "AVG(tb.flops)", "AVG(tc.flops)",
- "AVG(tb.bandwidth_gb_s)", "AVG(tc.bandwidth_gb_s)"
- ])
- equal_string = " AND ".join(
- [f"tb.{p} = tc.{p}" for p in TEST_BACKEND_OPS_KEY_PROPERTIES] + [
- f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'",
- "tb.supported = 1", "tc.supported = 1", "tb.passed = 1", "tc.passed = 1"] # Only compare successful tests
- )
- group_order_string = ", ".join([f"tb.{p}" for p in properties])
- query = (f"SELECT {select_string} FROM {self.table_name} tb JOIN {self.table_name} tc ON {equal_string} "
- f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
- return self.cursor.execute(query).fetchall()
- class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
- def __init__(self, data_file: str, tool: Any):
- self.connection = sqlite3.connect(data_file)
- self.cursor = self.connection.cursor()
- # Check which table exists in the database
- tables = self.cursor.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()
- table_names = [table[0] for table in tables]
- # Tool selection logic
- if tool is None:
- if "llama_bench" in table_names:
- self.table_name = "llama_bench"
- tool = "llama-bench"
- elif "test_backend_ops" in table_names:
- self.table_name = "test_backend_ops"
- tool = "test-backend-ops"
- else:
- raise RuntimeError(f"No suitable table found in database. Available tables: {table_names}")
- elif tool == "llama-bench":
- if "llama_bench" in table_names:
- self.table_name = "llama_bench"
- tool = "llama-bench"
- else:
- raise RuntimeError(f"Table 'test' not found for tool 'llama-bench'. Available tables: {table_names}")
- elif tool == "test-backend-ops":
- if "test_backend_ops" in table_names:
- self.table_name = "test_backend_ops"
- tool = "test-backend-ops"
- else:
- raise RuntimeError(f"Table 'test_backend_ops' not found for tool 'test-backend-ops'. Available tables: {table_names}")
- else:
- raise RuntimeError(f"Unknown tool: {tool}")
- super().__init__(tool)
- self._builds_init()
- @staticmethod
- def valid_format(data_file: str) -> bool:
- connection = sqlite3.connect(data_file)
- cursor = connection.cursor()
- try:
- if cursor.execute("PRAGMA schema_version;").fetchone()[0] == 0:
- raise sqlite3.DatabaseError("The provided input file does not exist or is empty.")
- except sqlite3.DatabaseError as e:
- logger.debug(f'"{data_file}" is not a valid SQLite3 file.', exc_info=e)
- cursor = None
- connection.close()
- return True if cursor else False
- class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
- def __init__(self, data_file: str, tool: str = "llama-bench"):
- super().__init__(tool)
- # Get the appropriate field list based on tool
- db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
- with open(data_file, "r", encoding="utf-8") as fp:
- for i, line in enumerate(fp):
- parsed = json.loads(line)
- for k in parsed.keys() - set(db_fields):
- del parsed[k]
- if (missing_keys := self._check_keys(parsed.keys())):
- raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
- self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
- self._builds_init()
- @staticmethod
- def valid_format(data_file: str) -> bool:
- try:
- with open(data_file, "r", encoding="utf-8") as fp:
- for line in fp:
- json.loads(line)
- break
- except Exception as e:
- logger.debug(f'"{data_file}" is not a valid JSONL file.', exc_info=e)
- return False
- return True
- class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
- def __init__(self, data_files: list[str], tool: str = "llama-bench"):
- super().__init__(tool)
- # Get the appropriate field list based on tool
- db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
- for data_file in data_files:
- with open(data_file, "r", encoding="utf-8") as fp:
- parsed = json.load(fp)
- for i, entry in enumerate(parsed):
- for k in entry.keys() - set(db_fields):
- del entry[k]
- if (missing_keys := self._check_keys(entry.keys())):
- raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")
- self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))
- self._builds_init()
- @staticmethod
- def valid_format(data_files: list[str]) -> bool:
- if not data_files:
- return False
- for data_file in data_files:
- try:
- with open(data_file, "r", encoding="utf-8") as fp:
- json.load(fp)
- except Exception as e:
- logger.debug(f'"{data_file}" is not a valid JSON file.', exc_info=e)
- return False
- return True
- class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
- def __init__(self, data_files: list[str], tool: str = "llama-bench"):
- super().__init__(tool)
- # Get the appropriate field list based on tool
- db_fields = LLAMA_BENCH_DB_FIELDS if tool == "llama-bench" else TEST_BACKEND_OPS_DB_FIELDS
- for data_file in data_files:
- with open(data_file, "r", encoding="utf-8") as fp:
- for i, parsed in enumerate(csv.DictReader(fp)):
- keys = set(parsed.keys())
- for k in keys - set(db_fields):
- del parsed[k]
- if (missing_keys := self._check_keys(keys)):
- raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")
- self.cursor.execute(f"INSERT INTO {self.table_name}({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))
- self._builds_init()
- @staticmethod
- def valid_format(data_files: list[str]) -> bool:
- if not data_files:
- return False
- for data_file in data_files:
- try:
- with open(data_file, "r", encoding="utf-8") as fp:
- for parsed in csv.DictReader(fp):
- break
- except Exception as e:
- logger.debug(f'"{data_file}" is not a valid CSV file.', exc_info=e)
- return False
- return True
- def format_flops(flops_value: float) -> str:
- """Format FLOPS values with appropriate units for better readability."""
- if flops_value == 0:
- return "0.00"
- # Define unit thresholds and names
- units = [
- (1e12, "T"), # TeraFLOPS
- (1e9, "G"), # GigaFLOPS
- (1e6, "M"), # MegaFLOPS
- (1e3, "k"), # kiloFLOPS
- (1, "") # FLOPS
- ]
- for threshold, unit in units:
- if abs(flops_value) >= threshold:
- formatted_value = flops_value / threshold
- if formatted_value >= 100:
- return f"{formatted_value:.1f}{unit}"
- else:
- return f"{formatted_value:.2f}{unit}"
- # Fallback for very small values
- return f"{flops_value:.2f}"
- def format_flops_for_table(flops_value: float, target_unit: str) -> str:
- """Format FLOPS values for table display without unit suffix (since unit is in header)."""
- if flops_value == 0:
- return "0.00"
- # Define unit thresholds based on target unit
- unit_divisors = {
- "TFLOPS": 1e12,
- "GFLOPS": 1e9,
- "MFLOPS": 1e6,
- "kFLOPS": 1e3,
- "FLOPS": 1
- }
- divisor = unit_divisors.get(target_unit, 1)
- formatted_value = flops_value / divisor
- if formatted_value >= 100:
- return f"{formatted_value:.1f}"
- else:
- return f"{formatted_value:.2f}"
- def get_flops_unit_name(flops_values: list) -> str:
- """Determine the best FLOPS unit name based on the magnitude of values."""
- if not flops_values or all(v == 0 for v in flops_values):
- return "FLOPS"
- # Find the maximum absolute value to determine appropriate unit
- max_flops = max(abs(v) for v in flops_values if v != 0)
- if max_flops >= 1e12:
- return "TFLOPS"
- elif max_flops >= 1e9:
- return "GFLOPS"
- elif max_flops >= 1e6:
- return "MFLOPS"
- elif max_flops >= 1e3:
- return "kFLOPS"
- else:
- return "FLOPS"
- bench_data = None
- if len(input_file) == 1:
- if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
- bench_data = LlamaBenchDataSQLite3File(input_file[0], tool)
- elif LlamaBenchDataJSON.valid_format(input_file):
- bench_data = LlamaBenchDataJSON(input_file, tool)
- elif LlamaBenchDataJSONL.valid_format(input_file[0]):
- bench_data = LlamaBenchDataJSONL(input_file[0], tool)
- elif LlamaBenchDataCSV.valid_format(input_file):
- bench_data = LlamaBenchDataCSV(input_file, tool)
- else:
- if LlamaBenchDataJSON.valid_format(input_file):
- bench_data = LlamaBenchDataJSON(input_file, tool)
- elif LlamaBenchDataCSV.valid_format(input_file):
- bench_data = LlamaBenchDataCSV(input_file, tool)
- if not bench_data:
- raise RuntimeError("No valid (or some invalid) input files found.")
- if not bench_data.builds:
- raise RuntimeError(f"{input_file} does not contain any builds.")
- tool = bench_data.tool # May have chosen a default if tool was None.
- hexsha8_baseline = name_baseline = None
- # If the user specified a baseline, try to find a commit for it:
- if known_args.baseline is not None:
- if known_args.baseline in bench_data.builds:
- hexsha8_baseline = known_args.baseline
- if hexsha8_baseline is None:
- hexsha8_baseline = bench_data.get_commit_hexsha8(known_args.baseline)
- name_baseline = known_args.baseline
- if hexsha8_baseline is None:
- logger.error(f"cannot find data for baseline={known_args.baseline}.")
- sys.exit(1)
- # Otherwise, search for the most recent parent of master for which there is data:
- elif bench_data.repo is not None:
- hexsha8_baseline = bench_data.find_parent_in_data(bench_data.repo.heads.master.commit)
- if hexsha8_baseline is None:
- logger.error("No baseline was provided and did not find data for any master branch commits.\n")
- parser.print_help()
- sys.exit(1)
- else:
- logger.error("No baseline was provided and the current working directory "
- "is not part of a git repository from which a baseline could be inferred.\n")
- parser.print_help()
- sys.exit(1)
- name_baseline = bench_data.get_commit_name(hexsha8_baseline)
- hexsha8_compare = name_compare = None
- # If the user has specified a compare value, try to find a corresponding commit:
- if known_args.compare is not None:
- if known_args.compare in bench_data.builds:
- hexsha8_compare = known_args.compare
- if hexsha8_compare is None:
- hexsha8_compare = bench_data.get_commit_hexsha8(known_args.compare)
- name_compare = known_args.compare
- if hexsha8_compare is None:
- logger.error(f"cannot find data for compare={known_args.compare}.")
- sys.exit(1)
- # Otherwise, search for the commit for llama-bench was most recently run
- # and that is not a parent of master:
- elif bench_data.repo is not None:
- hexsha8s_master = bench_data.get_all_parent_hexsha8s(bench_data.repo.heads.master.commit)
- for (hexsha8, _) in bench_data.builds_timestamp(reverse=True):
- if hexsha8 not in hexsha8s_master:
- hexsha8_compare = hexsha8
- break
- if hexsha8_compare is None:
- logger.error("No compare target was provided and did not find data for any non-master commits.\n")
- parser.print_help()
- sys.exit(1)
- else:
- logger.error("No compare target was provided and the current working directory "
- "is not part of a git repository from which a compare target could be inferred.\n")
- parser.print_help()
- sys.exit(1)
- name_compare = bench_data.get_commit_name(hexsha8_compare)
- # Get tool-specific configuration
- if tool == "llama-bench":
- key_properties = LLAMA_BENCH_KEY_PROPERTIES
- bool_properties = LLAMA_BENCH_BOOL_PROPERTIES
- pretty_names = LLAMA_BENCH_PRETTY_NAMES
- default_show = DEFAULT_SHOW_LLAMA_BENCH
- default_hide = DEFAULT_HIDE_LLAMA_BENCH
- elif tool == "test-backend-ops":
- key_properties = TEST_BACKEND_OPS_KEY_PROPERTIES
- bool_properties = TEST_BACKEND_OPS_BOOL_PROPERTIES
- pretty_names = TEST_BACKEND_OPS_PRETTY_NAMES
- default_show = DEFAULT_SHOW_TEST_BACKEND_OPS
- default_hide = DEFAULT_HIDE_TEST_BACKEND_OPS
- else:
- assert False
- # If the user provided columns to group the results by, use them:
- if known_args.show is not None:
- show = known_args.show.split(",")
- unknown_cols = []
- for prop in show:
- valid_props = key_properties if tool == "test-backend-ops" else key_properties[:-3] # Exclude n_prompt, n_gen, n_depth for llama-bench
- if prop not in valid_props:
- unknown_cols.append(prop)
- if unknown_cols:
- logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
- parser.print_usage()
- sys.exit(1)
- rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
- # Otherwise, select those columns where the values are not all the same:
- else:
- rows_full = bench_data.get_rows(key_properties, hexsha8_baseline, hexsha8_compare)
- properties_different = []
- if tool == "llama-bench":
- # For llama-bench, skip n_prompt, n_gen, n_depth from differentiation logic
- check_properties = [kp for kp in key_properties if kp not in ["n_prompt", "n_gen", "n_depth"]]
- for i, kp_i in enumerate(key_properties):
- if kp_i in default_show or kp_i in ["n_prompt", "n_gen", "n_depth"]:
- continue
- for row_full in rows_full:
- if row_full[i] != rows_full[0][i]:
- properties_different.append(kp_i)
- break
- elif tool == "test-backend-ops":
- # For test-backend-ops, check all key properties
- for i, kp_i in enumerate(key_properties):
- if kp_i in default_show:
- continue
- for row_full in rows_full:
- if row_full[i] != rows_full[0][i]:
- properties_different.append(kp_i)
- break
- else:
- assert False
- show = []
- if tool == "llama-bench":
- # Show CPU and/or GPU by default even if the hardware for all results is the same:
- if rows_full and "n_gpu_layers" not in properties_different:
- ngl = int(rows_full[0][key_properties.index("n_gpu_layers")])
- if ngl != 99 and "cpu_info" not in properties_different:
- show.append("cpu_info")
- show += properties_different
- index_default = 0
- for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
- if prop in show:
- index_default += 1
- show = show[:index_default] + default_show + show[index_default:]
- elif tool == "test-backend-ops":
- show = default_show + properties_different
- else:
- assert False
- for prop in default_hide:
- try:
- show.remove(prop)
- except ValueError:
- pass
- # Add plot_x parameter to parameters to show if it's not already present:
- if known_args.plot:
- for k, v in pretty_names.items():
- if v == known_args.plot_x and k not in show:
- show.append(k)
- break
- rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
- if not rows_show:
- logger.error(f"No comparable data was found between {name_baseline} and {name_compare}.\n")
- sys.exit(1)
- table = []
- primary_metric = "FLOPS" # Default to FLOPS for test-backend-ops
- if tool == "llama-bench":
- # For llama-bench, create test names and compare avg_ts values
- for row in rows_show:
- n_prompt = int(row[-5])
- n_gen = int(row[-4])
- n_depth = int(row[-3])
- if n_prompt != 0 and n_gen == 0:
- test_name = f"pp{n_prompt}"
- elif n_prompt == 0 and n_gen != 0:
- test_name = f"tg{n_gen}"
- else:
- test_name = f"pp{n_prompt}+tg{n_gen}"
- if n_depth != 0:
- test_name = f"{test_name}@d{n_depth}"
- # Regular columns test name avg t/s values Speedup
- # VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
- table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
- elif tool == "test-backend-ops":
- # Determine the primary metric by checking rows until we find one with valid data
- if rows_show:
- primary_metric = "FLOPS" # Default to FLOPS
- flops_values = []
- # Collect all FLOPS values to determine the best unit
- for sample_row in rows_show:
- baseline_flops = float(sample_row[-4])
- compare_flops = float(sample_row[-3])
- baseline_bandwidth = float(sample_row[-2])
- if baseline_flops > 0:
- flops_values.extend([baseline_flops, compare_flops])
- elif baseline_bandwidth > 0 and not flops_values:
- primary_metric = "Bandwidth (GB/s)"
- # If we have FLOPS data, determine the appropriate unit
- if flops_values:
- primary_metric = get_flops_unit_name(flops_values)
- # For test-backend-ops, prioritize FLOPS > bandwidth for comparison
- for row in rows_show:
- # Extract metrics: flops, bandwidth_gb_s (baseline and compare)
- baseline_flops = float(row[-4])
- compare_flops = float(row[-3])
- baseline_bandwidth = float(row[-2])
- compare_bandwidth = float(row[-1])
- # Determine which metric to use for comparison (prioritize FLOPS > bandwidth)
- if baseline_flops > 0 and compare_flops > 0:
- # Use FLOPS comparison (higher is better)
- speedup = compare_flops / baseline_flops
- baseline_str = format_flops_for_table(baseline_flops, primary_metric)
- compare_str = format_flops_for_table(compare_flops, primary_metric)
- elif baseline_bandwidth > 0 and compare_bandwidth > 0:
- # Use bandwidth comparison (higher is better)
- speedup = compare_bandwidth / baseline_bandwidth
- baseline_str = f"{baseline_bandwidth:.2f}"
- compare_str = f"{compare_bandwidth:.2f}"
- else:
- # Fallback if no valid data is available
- baseline_str = "N/A"
- compare_str = "N/A"
- from math import nan
- speedup = nan
- table.append(list(row[:-4]) + [baseline_str, compare_str, speedup])
- else:
- assert False
- # Some a-posteriori fixes to make the table contents prettier:
- for bool_property in bool_properties:
- if bool_property in show:
- ip = show.index(bool_property)
- for row_table in table:
- row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
- if tool == "llama-bench":
- if "model_type" in show:
- ip = show.index("model_type")
- for (old, new) in MODEL_SUFFIX_REPLACE.items():
- for row_table in table:
- row_table[ip] = row_table[ip].replace(old, new)
- if "model_size" in show:
- ip = show.index("model_size")
- for row_table in table:
- row_table[ip] = float(row_table[ip]) / 1024 ** 3
- if "gpu_info" in show:
- ip = show.index("gpu_info")
- for row_table in table:
- for gns in GPU_NAME_STRIP:
- row_table[ip] = row_table[ip].replace(gns, "")
- gpu_names = row_table[ip].split(", ")
- num_gpus = len(gpu_names)
- all_names_the_same = len(set(gpu_names)) == 1
- if len(gpu_names) >= 2 and all_names_the_same:
- row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
- headers = [pretty_names.get(p, p) for p in show]
- if tool == "llama-bench":
- headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
- elif tool == "test-backend-ops":
- headers += [f"{primary_metric} {name_baseline}", f"{primary_metric} {name_compare}", "Speedup"]
- else:
- assert False
- if known_args.plot:
- def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False, tool_type: str = "llama-bench", metric_name: str = "t/s"):
- try:
- import matplotlib
- import matplotlib.pyplot as plt
- matplotlib.use('Agg')
- except ImportError as e:
- logger.error("matplotlib is required for --plot.")
- raise e
- data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
- plot_x_index = None
- plot_x_label = plot_x_param
- if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
- pretty_name = LLAMA_BENCH_PRETTY_NAMES.get(plot_x_param, plot_x_param)
- if pretty_name in data_headers:
- plot_x_index = data_headers.index(pretty_name)
- plot_x_label = pretty_name
- elif plot_x_param in data_headers:
- plot_x_index = data_headers.index(plot_x_param)
- plot_x_label = plot_x_param
- else:
- logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
- return
- grouped_data = {}
- for i, row in enumerate(table_data):
- group_key_parts = []
- test_name = row[-4]
- base_test = ""
- x_value = None
- if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
- for j, val in enumerate(row[:-4]):
- header_name = data_headers[j]
- if val is not None and str(val).strip():
- group_key_parts.append(f"{header_name}={val}")
- if plot_x_param == "n_prompt" and "pp" in test_name:
- base_test = test_name.split("@")[0]
- x_value = base_test
- elif plot_x_param == "n_gen" and "tg" in test_name:
- x_value = test_name.split("@")[0]
- elif plot_x_param == "n_depth" and "@d" in test_name:
- base_test = test_name.split("@d")[0]
- x_value = int(test_name.split("@d")[1])
- else:
- base_test = test_name
- if base_test.strip():
- group_key_parts.append(f"Test={base_test}")
- else:
- for j, val in enumerate(row[:-4]):
- if j != plot_x_index:
- header_name = data_headers[j]
- if val is not None and str(val).strip():
- group_key_parts.append(f"{header_name}={val}")
- else:
- x_value = val
- group_key_parts.append(f"Test={test_name}")
- group_key = tuple(group_key_parts)
- if group_key not in grouped_data:
- grouped_data[group_key] = []
- grouped_data[group_key].append({
- 'x_value': x_value,
- 'baseline': float(row[-3]),
- 'compare': float(row[-2]),
- 'speedup': float(row[-1])
- })
- if not grouped_data:
- logger.error("No data available for plotting")
- return
- def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
- from math import ceil
- cols = 1 if num_groups == 1 else min(max_cols, num_groups)
- rows = ceil(num_groups / cols)
- # Scale figure size by grid dimensions
- w, h = base_size
- fig, ax_arr = plt.subplots(rows, cols,
- figsize=(w * cols, h * rows),
- squeeze=False)
- axes = ax_arr.flatten()[:num_groups]
- return fig, axes
- num_groups = len(grouped_data)
- fig, axes = make_axes(num_groups)
- plot_idx = 0
- for group_key, points in grouped_data.items():
- if plot_idx >= len(axes):
- break
- ax = axes[plot_idx]
- try:
- points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
- x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
- except ValueError:
- points_sorted = sorted(points, key=lambda p: group_key)
- x_values = [p['x_value'] for p in points_sorted]
- baseline_vals = [p['baseline'] for p in points_sorted]
- compare_vals = [p['compare'] for p in points_sorted]
- ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
- label=f'{baseline_name}', linewidth=2, markersize=6)
- ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
- label=f'{compare_name}', linewidth=2, markersize=6)
- if log_scale:
- ax.set_xscale('log', base=2)
- unique_x = sorted(set(x_values))
- ax.set_xticks(unique_x)
- ax.set_xticklabels([str(int(x)) for x in unique_x])
- title_parts = []
- for part in group_key:
- if '=' in part:
- key, value = part.split('=', 1)
- title_parts.append(f"{key}: {value}")
- title = ', '.join(title_parts) if title_parts else "Performance comparison"
- # Determine y-axis label based on tool type
- if tool_type == "llama-bench":
- y_label = "Tokens per second (t/s)"
- elif tool_type == "test-backend-ops":
- y_label = metric_name
- else:
- assert False
- ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
- ax.set_ylabel(y_label, fontsize=12, fontweight='bold')
- ax.set_title(title, fontsize=12, fontweight='bold')
- ax.legend(loc='best', fontsize=10)
- ax.grid(True, alpha=0.3)
- plot_idx += 1
- for i in range(plot_idx, len(axes)):
- axes[i].set_visible(False)
- fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
- fontsize=14, fontweight='bold')
- fig.subplots_adjust(top=1)
- plt.tight_layout()
- plt.savefig(output_file, dpi=300, bbox_inches='tight')
- plt.close()
- create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale, tool, primary_metric)
- print(tabulate( # noqa: NP100
- table,
- headers=headers,
- floatfmt=".2f",
- tablefmt=known_args.output
- ))
|