| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667 |
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include <chrono>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <thread>
- #include <mutex>
- #include <vector>
- #include <fstream>
- #include <unordered_map>
- #include <algorithm>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static void print_usage(int, char ** argv) {
- LOG("\nexample usage:\n");
- LOG("\n %s \\\n"
- " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] \\\n"
- " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
- " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
- LOG("\n");
- }
- struct Stats {
- std::vector<float> values;
- std::vector<int> counts;
- int ncall = 0;
- };
- class IMatrixCollector {
- public:
- IMatrixCollector() = default;
- void set_params(common_params params) { m_params = std::move(params); }
- bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
- void save_imatrix(int ncall = -1) const;
- bool load_imatrix(const char * fname);
- private:
- std::unordered_map<std::string, Stats> m_stats;
- common_params m_params;
- std::mutex m_mutex;
- int m_last_call = 0;
- std::vector<char> m_src1_data;
- std::vector<char> m_ids; // the expert ids from ggml_mul_mat_id
- };
- // remove any prefix and suffixes from the name
- // CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
- static std::string filter_tensor_name(const char * name) {
- std::string wname;
- const char * p = strchr(name, '#');
- if (p != NULL) {
- p = p + 1;
- const char * q = strchr(p, '#');
- if (q != NULL) {
- wname = std::string(p, q - p);
- } else {
- wname = p;
- }
- } else {
- wname = name;
- }
- return wname;
- }
- bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
- GGML_UNUSED(user_data);
- const struct ggml_tensor * src0 = t->src[0];
- const struct ggml_tensor * src1 = t->src[1];
- std::string wname = filter_tensor_name(src0->name);
- // when ask is true, the scheduler wants to know if we are interested in data from this tensor
- // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
- if (ask) {
- if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
- if (t->op != GGML_OP_MUL_MAT) return false;
- // why are small batches ignored (<16 tokens)?
- if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
- if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
- return true;
- }
- std::lock_guard<std::mutex> lock(m_mutex);
- // copy the data from the GPU memory if needed
- const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
- if (!is_host) {
- const size_t src1_nbytes = ggml_nbytes(src1);
- m_src1_data.resize(src1_nbytes);
- ggml_backend_tensor_get(src1, m_src1_data.data(), 0, src1_nbytes);
- }
- const char * data = is_host ? (const char *) src1->data : m_src1_data.data();
- GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
- // this has been adapted to the new format of storing merged experts in a single 3d tensor
- // ref: https://github.com/ggml-org/llama.cpp/pull/6387
- if (t->op == GGML_OP_MUL_MAT_ID) {
- // ids -> [n_experts_used, n_tokens]
- // src1 -> [cols, n_expert_used, n_tokens]
- const ggml_tensor * ids = t->src[2];
- const int n_as = src0->ne[2];
- const int n_ids = ids->ne[0];
- // the top-k selected expert ids are stored in the ids tensor
- // for simplicity, always copy ids to host, because it is small
- // take into account that ids is not contiguous!
- GGML_ASSERT(ids->ne[1] == src1->ne[2]);
- m_ids.resize(ggml_nbytes(ids));
- ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
- auto & e = m_stats[wname];
- ++e.ncall;
- if (e.values.empty()) {
- e.values.resize(src1->ne[0]*n_as, 0);
- e.counts.resize(src1->ne[0]*n_as, 0);
- }
- else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
- LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
- exit(1); //GGML_ABORT("fatal error");
- }
- LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
- // loop over all possible experts, regardless if they are used or not in the batch
- for (int ex = 0; ex < n_as; ++ex) {
- size_t e_start = ex*src1->ne[0];
- for (int idx = 0; idx < n_ids; ++idx) {
- for (int row = 0; row < (int)src1->ne[2]; ++row) {
- const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);
- GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
- if (excur != ex) continue;
- const int64_t i11 = idx % src1->ne[1];
- const int64_t i12 = row;
- const float * x = (const float *)(data + i11*src1->nb[1] + i12*src1->nb[2]);
- for (int j = 0; j < (int)src1->ne[0]; ++j) {
- e.values[e_start + j] += x[j]*x[j];
- e.counts[e_start + j]++;
- if (!std::isfinite(e.values[e_start + j])) {
- LOG("\n");
- LOG_ERR("%f detected in %s\n", e.values[e_start + j], wname.c_str());
- exit(1);
- }
- }
- }
- }
- if (e.ncall > m_last_call) {
- m_last_call = e.ncall;
- if (m_last_call % m_params.n_out_freq == 0) {
- save_imatrix();
- }
- if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
- save_imatrix(m_last_call);
- }
- }
- }
- } else {
- auto & e = m_stats[wname];
- if (e.values.empty()) {
- e.values.resize(src1->ne[0], 0);
- e.counts.resize(src1->ne[0], 0);
- }
- else if (e.values.size() != (size_t)src1->ne[0]) {
- LOG_ERR("%s: inconsistent size for %s (%d vs %d)\n", __func__, wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
- exit(1); //GGML_ABORT("fatal error");
- }
- ++e.ncall;
- LOG_DBGV(2, "%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
- for (int row = 0; row < (int)src1->ne[1]; ++row) {
- const float * x = (const float *) (data + row * src1->nb[1]);
- for (int j = 0; j < (int)src1->ne[0]; ++j) {
- e.values[j] += x[j]*x[j];
- e.counts[j]++;
- if (!std::isfinite(e.values[j])) {
- LOG_ERR("%f detected in %s\n", e.values[j], wname.c_str());
- exit(1);
- }
- }
- }
- if (e.ncall > m_last_call) {
- m_last_call = e.ncall;
- if (m_last_call % m_params.n_out_freq == 0) {
- save_imatrix();
- }
- if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
- save_imatrix(m_last_call);
- }
- }
- }
- return true;
- }
- void IMatrixCollector::save_imatrix(int ncall) const {
- auto fname = m_params.out_file;
- if (ncall > 0) {
- fname += ".at_";
- fname += std::to_string(ncall);
- }
- // avoid writing imatrix entries that do not have full data
- // this can happen with MoE models where some of the experts end up not being exercised by the provided training data
- int n_entries = 0;
- std::vector<std::string> to_store;
- bool is_first = true; // for printing
- for (const auto & kv : m_stats) {
- const int n_all = kv.second.counts.size();
- if (n_all == 0) {
- continue;
- }
- int n_zeros = 0;
- for (const int c : kv.second.counts) {
- if (c == 0) {
- n_zeros++;
- }
- }
- if (n_zeros != 0 && is_first) {
- LOG_INF("\n");
- is_first = false;
- }
- if (n_zeros == n_all) {
- LOG_WRN("%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
- continue;
- }
- if (n_zeros > 0) {
- LOG_WRN("%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
- continue;
- }
- n_entries++;
- to_store.push_back(kv.first);
- }
- if (to_store.size() < m_stats.size()) {
- LOG_WRN("%s: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
- }
- std::ofstream out(fname, std::ios::binary);
- out.write((const char *) &n_entries, sizeof(n_entries));
- for (const auto & name : to_store) {
- const auto & stat = m_stats.at(name);
- int len = name.size();
- out.write((const char *) &len, sizeof(len));
- out.write(name.c_str(), len);
- out.write((const char *) &stat.ncall, sizeof(stat.ncall));
- int nval = stat.values.size();
- out.write((const char *) &nval, sizeof(nval));
- if (nval > 0) {
- std::vector<float> tmp(nval);
- for (int i = 0; i < nval; i++) {
- tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
- }
- out.write((const char*)tmp.data(), nval*sizeof(float));
- }
- }
- // Write the number of call the matrix was computed with
- out.write((const char *) &m_last_call, sizeof(m_last_call));
- // Write the input filename at the end of the file to later on specify it in quantize
- {
- int len = m_params.prompt_file.size();
- out.write((const char *) &len, sizeof(len));
- out.write(m_params.prompt_file.c_str(), len);
- }
- LOGV(1, "\n");
- LOG_DBGV(1, "%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
- }
- bool IMatrixCollector::load_imatrix(const char * fname) {
- std::ifstream in(fname, std::ios::binary);
- if (!in) {
- LOG_ERR("%s: failed to open %s\n",__func__, fname);
- return false;
- }
- int n_entries;
- in.read((char*)&n_entries, sizeof(n_entries));
- if (in.fail() || n_entries < 1) {
- LOG_ERR("%s: no data in file %s\n", __func__, fname);
- return false;
- }
- for (int i = 0; i < n_entries; ++i) {
- int len; in.read((char *)&len, sizeof(len));
- std::vector<char> name_as_vec(len+1);
- in.read((char *)name_as_vec.data(), len);
- if (in.fail()) {
- LOG_ERR("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
- return false;
- }
- name_as_vec[len] = 0;
- std::string name{name_as_vec.data()};
- auto & e = m_stats[std::move(name)];
- int ncall;
- in.read((char*)&ncall, sizeof(ncall));
- int nval;
- in.read((char *)&nval, sizeof(nval));
- if (in.fail() || nval < 1) {
- LOG_ERR("%s: failed reading number of values for entry %d\n",__func__,i);
- m_stats = {};
- return false;
- }
- if (e.values.empty()) {
- e.values.resize(nval, 0);
- e.counts.resize(nval, 0);
- }
- std::vector<float> tmp(nval);
- in.read((char*)tmp.data(), nval*sizeof(float));
- if (in.fail()) {
- LOG_ERR("%s: failed reading data for entry %d\n",__func__,i);
- m_stats = {};
- return false;
- }
- // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
- for (int i = 0; i < nval; i++) {
- e.values[i] += tmp[i];
- e.counts[i] += ncall;
- }
- e.ncall += ncall;
- }
- return true;
- }
- static IMatrixCollector g_collector;
- static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
- return g_collector.collect_imatrix(t, ask, user_data);
- }
- struct results_log_softmax {
- double log_softmax;
- float logit;
- float prob;
- };
- static std::vector<float> softmax(const std::vector<float> & logits) {
- std::vector<float> probs(logits.size());
- float max_logit = logits[0];
- for (float v : logits) {
- max_logit = std::max(max_logit, v);
- }
- double sum_exp = 0.0;
- for (size_t i = 0; i < logits.size(); i++) {
- // Subtract the maximum logit value from the current logit value for numerical stability
- const float logit = logits[i] - max_logit;
- const float exp_logit = expf(logit);
- sum_exp += exp_logit;
- probs[i] = exp_logit;
- }
- for (size_t i = 0; i < probs.size(); i++) {
- probs[i] /= sum_exp;
- }
- return probs;
- }
- static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
- float max_logit = logits[0];
- for (int i = 1; i < n_vocab; ++i) {
- max_logit = std::max(max_logit, logits[i]);
- }
- double sum_exp = 0.0;
- for (int i = 0; i < n_vocab; ++i) {
- sum_exp += expf(logits[i] - max_logit);
- }
- return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
- }
- static void process_logits(
- int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
- double & nll, double & nll2, float * logit_history, float * prob_history) {
- std::mutex mutex;
- int counter = 0;
- auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
- double local_nll = 0;
- double local_nll2 = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int i = counter++;
- if (i >= n_token) {
- nll += local_nll; nll2 += local_nll2;
- break;
- }
- lock.unlock();
- const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
- const double v = -results.log_softmax;
- local_nll += v;
- local_nll2 += v*v;
- logit_history[i] = results.logit;
- prob_history[i] = results.prob;
- }
- };
- for (auto & w : workers) {
- w = std::thread(compute);
- }
- compute();
- for (auto & w : workers) {
- w.join();
- }
- }
- static bool compute_imatrix(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- const int n_ctx = llama_n_ctx(ctx);
- GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
- auto tim1 = std::chrono::high_resolution_clock::now();
- LOG_INF("%s: tokenizing the input ..\n", __func__);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
- auto tim2 = std::chrono::high_resolution_clock::now();
- LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
- if (params.i_chunk > 0) {
- if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
- LOG_ERR("%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
- return false;
- }
- LOG_INF("%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
- tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
- }
- if (int(tokens.size()) < 2*n_ctx) {
- LOG_ERR("%s: you need at least %d tokens for a context of %d tokens\n", __func__, 2*n_ctx, n_ctx);
- LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n", __func__, tokens.size());
- return false;
- }
- std::vector<float> logit_history;
- std::vector<float> prob_history;
- if (params.compute_ppl) {
- logit_history.resize(tokens.size());
- prob_history.resize(tokens.size());
- }
- const int n_chunk_max = tokens.size() / n_ctx;
- const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
- const int n_vocab = llama_vocab_n_tokens(vocab);
- const int n_batch = params.n_batch;
- int count = 0;
- double nll = 0.0;
- double nll2 = 0.0;
- LOG_INF("%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
- std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
- const int num_batches = (n_ctx + n_batch - 1) / n_batch;
- std::vector<float> logits;
- if (params.compute_ppl && num_batches > 1) {
- logits.reserve((size_t)n_ctx * n_vocab);
- }
- for (int i = 0; i < n_chunk; ++i) {
- const int start = i * n_ctx;
- const int end = start + n_ctx;
- std::vector<float> logits;
- const auto t_start = std::chrono::high_resolution_clock::now();
- // clear the KV cache
- llama_kv_self_clear(ctx);
- llama_batch batch = llama_batch_init(n_batch, 0, 1);
- for (int j = 0; j < num_batches; ++j) {
- const int batch_start = start + j * n_batch;
- const int batch_size = std::min(end - batch_start, n_batch);
- // save original token and restore it after eval
- const auto token_org = tokens[batch_start];
- // add BOS token for the first batch of each chunk
- if (add_bos && j == 0) {
- tokens[batch_start] = llama_vocab_bos(vocab);
- }
- common_batch_clear(batch);
- for (int i = 0; i < batch_size; i++) {
- common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
- }
- if (llama_decode(ctx, batch)) {
- LOG_ERR("%s : failed to eval\n", __func__);
- llama_batch_free(batch);
- return false;
- }
- // restore the original token in case it was set to BOS
- tokens[batch_start] = token_org;
- if (params.compute_ppl && num_batches > 1) {
- const auto * batch_logits = llama_get_logits(ctx);
- logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
- }
- }
- llama_batch_free(batch);
- const auto t_end = std::chrono::high_resolution_clock::now();
- if (i == 0) {
- const float t_total = std::chrono::duration<float>(t_end - t_start).count();
- LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
- int total_seconds = (int)(t_total * n_chunk);
- if (total_seconds >= 60*60) {
- LOG("%d hours ", total_seconds / (60*60));
- total_seconds = total_seconds % (60*60);
- }
- LOG("%.2f minutes\n", total_seconds / 60.0);
- }
- if (params.compute_ppl) {
- const int first = n_ctx/2;
- const auto * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
- process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
- workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
- count += n_ctx - first - 1;
- LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
- fflush(stdout);
- logits.clear();
- }
- }
- LOG("\n");
- if (params.compute_ppl) {
- nll2 /= count;
- nll /= count;
- const double ppl = exp(nll);
- nll2 -= nll * nll;
- if (nll2 > 0) {
- nll2 = sqrt(nll2/(count-1));
- LOG("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
- } else {
- LOG("Unexpected negative standard deviation of log(prob)\n");
- }
- }
- return true;
- }
- int main(int argc, char ** argv) {
- common_params params;
- params.out_file = "imatrix.dat" ;
- params.n_ctx = 512;
- params.logits_all = true;
- params.escape = false;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
- return 1;
- }
- common_init();
- params.n_batch = std::min(params.n_batch, params.n_ctx);
- g_collector.set_params(params);
- for (const auto & in_file : params.in_files) {
- LOG_INF("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
- if (!g_collector.load_imatrix(in_file.c_str())) {
- LOG_ERR("%s : failed to load %s\n", __func__, in_file.c_str());
- return 1;
- }
- }
- if (params.in_files.size() > 1) {
- LOG_INF("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
- g_collector.save_imatrix();
- }
- llama_backend_init();
- llama_numa_init(params.numa);
- // pass the callback to the backend scheduler
- // it will be executed for each node during the graph computation
- params.cb_eval = ik_collect_imatrix;
- params.cb_eval_user_data = NULL;
- params.warmup = false;
- // init
- common_init_result llama_init = common_init_from_params(params);
- llama_model * model = llama_init.model.get();
- llama_context * ctx = llama_init.context.get();
- if (model == nullptr || ctx == nullptr) {
- LOG_ERR("%s : failed to init\n", __func__);
- return 1;
- }
- const int n_ctx_train = llama_model_n_ctx_train(model);
- if (params.n_ctx > n_ctx_train) {
- LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
- __func__, n_ctx_train, params.n_ctx);
- }
- // print system information
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- }
- if (params.prompt.empty()) {
- if (params.in_files.empty()) {
- LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
- return 1;
- }
- LOG_INF("No prompt provided; combining precomputed matrices only.\n");
- } else {
- if (!compute_imatrix(ctx, params)) {
- return 1;
- }
- }
- g_collector.save_imatrix();
- LOG("\n");
- llama_perf_context_print(ctx);
- llama_backend_free();
- return 0;
- }
|