ggml-backend.cpp 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend.h"
  10. #include "ggml-backend-impl.h"
  11. #include "ggml-alloc.h"
  12. #include "ggml-impl.h"
  13. #include <assert.h>
  14. #include <limits.h>
  15. #include <stdarg.h>
  16. #include <stdio.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <string>
  20. #include <vector>
  21. #ifdef __APPLE__
  22. #include <sys/types.h>
  23. #include <sys/sysctl.h>
  24. #endif
  25. // backend buffer type
  26. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  27. return buft->iface.get_name(buft);
  28. }
  29. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  30. if (size == 0) {
  31. // return a dummy buffer for zero-sized allocations
  32. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  33. }
  34. return buft->iface.alloc_buffer(buft, size);
  35. }
  36. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  37. return buft->iface.get_alignment(buft);
  38. }
  39. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  40. // get_max_size is optional, defaults to SIZE_MAX
  41. if (buft->iface.get_max_size) {
  42. return buft->iface.get_max_size(buft);
  43. }
  44. return SIZE_MAX;
  45. }
  46. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  47. // get_alloc_size is optional, defaults to ggml_nbytes
  48. if (buft->iface.get_alloc_size) {
  49. size_t size = buft->iface.get_alloc_size(buft, tensor);
  50. assert(size >= ggml_nbytes(tensor));
  51. return size;
  52. }
  53. return ggml_nbytes(tensor);
  54. }
  55. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  56. if (buft->iface.is_host) {
  57. return buft->iface.is_host(buft);
  58. }
  59. return false;
  60. }
  61. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  62. return buft->device;
  63. }
  64. // backend buffer
  65. ggml_backend_buffer_t ggml_backend_buffer_init(
  66. ggml_backend_buffer_type_t buft,
  67. struct ggml_backend_buffer_i iface,
  68. void * context,
  69. size_t size) {
  70. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  71. /* .interface = */ iface,
  72. /* .buft = */ buft,
  73. /* .context = */ context,
  74. /* .size = */ size,
  75. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  76. };
  77. return buffer;
  78. }
  79. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  80. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  81. }
  82. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  83. if (buffer == NULL) {
  84. return;
  85. }
  86. if (buffer->iface.free_buffer != NULL) {
  87. buffer->iface.free_buffer(buffer);
  88. }
  89. delete buffer;
  90. }
  91. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  92. return buffer->size;
  93. }
  94. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  95. // get_base is optional if the buffer is zero-sized
  96. if (buffer->size == 0) {
  97. return NULL;
  98. }
  99. void * base = buffer->iface.get_base(buffer);
  100. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  101. return base;
  102. }
  103. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  104. // init_tensor is optional
  105. if (buffer->iface.init_tensor) {
  106. buffer->iface.init_tensor(buffer, tensor);
  107. }
  108. }
  109. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  110. // clear is optional if the buffer is zero-sized
  111. if (buffer->size == 0) {
  112. return;
  113. }
  114. buffer->iface.clear(buffer, value);
  115. }
  116. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  117. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  118. }
  119. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  120. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  121. }
  122. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  123. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  124. }
  125. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  126. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  127. }
  128. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  129. buffer->usage = usage;
  130. // FIXME: add a generic callback to the buffer interface
  131. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  132. ggml_backend_multi_buffer_set_usage(buffer, usage);
  133. }
  134. }
  135. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  136. return buffer->usage;
  137. }
  138. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  139. return buffer->buft;
  140. }
  141. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  142. if (buffer->iface.reset) {
  143. buffer->iface.reset(buffer);
  144. }
  145. }
  146. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  147. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  148. if (dst_buf->iface.cpy_tensor) {
  149. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  150. }
  151. return false;
  152. }
  153. // backend
  154. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  155. if (backend == NULL) {
  156. return NULL;
  157. }
  158. return backend->guid;
  159. }
  160. const char * ggml_backend_name(ggml_backend_t backend) {
  161. if (backend == NULL) {
  162. return "NULL";
  163. }
  164. return backend->iface.get_name(backend);
  165. }
  166. void ggml_backend_free(ggml_backend_t backend) {
  167. if (backend == NULL) {
  168. return;
  169. }
  170. backend->iface.free(backend);
  171. }
  172. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  173. return ggml_backend_dev_buffer_type(backend->device);
  174. }
  175. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  176. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  177. }
  178. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  179. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  180. }
  181. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  182. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  183. }
  184. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  185. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  186. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  187. if (backend->iface.set_tensor_async == NULL) {
  188. ggml_backend_tensor_set(tensor, data, offset, size);
  189. } else {
  190. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  191. }
  192. }
  193. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  194. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  195. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  196. if (backend->iface.get_tensor_async == NULL) {
  197. ggml_backend_tensor_get(tensor, data, offset, size);
  198. } else {
  199. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  200. }
  201. }
  202. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  203. GGML_ASSERT(tensor);
  204. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  205. if (size == 0) {
  206. return;
  207. }
  208. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  209. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  210. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  211. buf->iface.set_tensor(buf, tensor, data, offset, size);
  212. }
  213. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  214. GGML_ASSERT(tensor);
  215. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  216. if (size == 0) {
  217. return;
  218. }
  219. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  220. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  221. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  222. buf->iface.get_tensor(buf, tensor, data, offset, size);
  223. }
  224. void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  225. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  226. if (size == 0) {
  227. return;
  228. }
  229. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  230. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  231. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  232. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  233. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  234. }
  235. void ggml_backend_synchronize(ggml_backend_t backend) {
  236. if (backend->iface.synchronize == NULL) {
  237. return;
  238. }
  239. backend->iface.synchronize(backend);
  240. }
  241. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  242. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  243. return backend->iface.graph_plan_create(backend, cgraph);
  244. }
  245. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  246. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  247. backend->iface.graph_plan_free(backend, plan);
  248. }
  249. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  250. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  251. return backend->iface.graph_plan_compute(backend, plan);
  252. }
  253. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  254. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  255. ggml_backend_synchronize(backend);
  256. return err;
  257. }
  258. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  259. return backend->iface.graph_compute(backend, cgraph);
  260. }
  261. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  262. return ggml_backend_dev_supports_op(backend->device, op);
  263. }
  264. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  265. return ggml_backend_dev_supports_buft(backend->device, buft);
  266. }
  267. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  268. return ggml_backend_dev_offload_op(backend->device, op);
  269. }
  270. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  271. return backend->device;
  272. }
  273. // backend copy
  274. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  275. if (a->type != b->type) {
  276. return false;
  277. }
  278. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  279. if (a->ne[i] != b->ne[i]) {
  280. return false;
  281. }
  282. if (a->nb[i] != b->nb[i]) {
  283. return false;
  284. }
  285. }
  286. return true;
  287. }
  288. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  289. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  290. if (src == dst) {
  291. return;
  292. }
  293. if (ggml_backend_buffer_is_host(src->buffer)) {
  294. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  295. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  296. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  297. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  298. #ifndef NDEBUG
  299. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  300. #endif
  301. size_t nbytes = ggml_nbytes(src);
  302. void * data = malloc(nbytes);
  303. ggml_backend_tensor_get(src, data, 0, nbytes);
  304. ggml_backend_tensor_set(dst, data, 0, nbytes);
  305. free(data);
  306. }
  307. }
  308. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  309. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  310. if (src == dst) {
  311. return;
  312. }
  313. if (backend_dst->iface.cpy_tensor_async != NULL) {
  314. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  315. return;
  316. }
  317. }
  318. // an async copy would normally happen after all the queued operations on both backends are completed
  319. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  320. ggml_backend_synchronize(backend_src);
  321. ggml_backend_synchronize(backend_dst);
  322. ggml_backend_tensor_copy(src, dst);
  323. }
  324. // events
  325. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  326. // null device is allowed for the transition period to the device interface
  327. if (device == NULL || device->iface.event_new == NULL) {
  328. return NULL;
  329. }
  330. return device->iface.event_new(device);
  331. }
  332. void ggml_backend_event_free(ggml_backend_event_t event) {
  333. if (event == NULL) {
  334. return;
  335. }
  336. event->device->iface.event_free(event->device, event);
  337. }
  338. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  339. GGML_ASSERT(backend->iface.event_record != NULL);
  340. backend->iface.event_record(backend, event);
  341. }
  342. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  343. GGML_ASSERT(event->device->iface.event_synchronize);
  344. event->device->iface.event_synchronize(event->device, event);
  345. }
  346. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  347. GGML_ASSERT(backend->iface.event_wait != NULL);
  348. backend->iface.event_wait(backend, event);
  349. }
  350. // Backend device
  351. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  352. return device->iface.get_name(device);
  353. }
  354. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  355. return device->iface.get_description(device);
  356. }
  357. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  358. device->iface.get_memory(device, free, total);
  359. }
  360. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  361. return device->iface.get_type(device);
  362. }
  363. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  364. memset(props, 0, sizeof(*props));
  365. device->iface.get_props(device, props);
  366. }
  367. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  368. return device->reg;
  369. }
  370. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  371. return device->iface.init_backend(device, params);
  372. }
  373. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  374. return device->iface.get_buffer_type(device);
  375. }
  376. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  377. if (device->iface.get_host_buffer_type == NULL) {
  378. return NULL;
  379. }
  380. return device->iface.get_host_buffer_type(device);
  381. }
  382. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  383. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  384. }
  385. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  386. return device->iface.supports_op(device, op);
  387. }
  388. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  389. return device->iface.supports_buft(device, buft);
  390. }
  391. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  392. if (device->iface.offload_op != NULL) {
  393. return device->iface.offload_op(device, op);
  394. }
  395. return false;
  396. }
  397. // Backend (reg)
  398. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  399. return reg->iface.get_name(reg);
  400. }
  401. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  402. return reg->iface.get_device_count(reg);
  403. }
  404. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  405. return reg->iface.get_device(reg, index);
  406. }
  407. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  408. if (!reg->iface.get_proc_address) {
  409. return NULL;
  410. }
  411. return reg->iface.get_proc_address(reg, name);
  412. }
  413. // multi-buffer buffer
  414. struct ggml_backend_multi_buffer_context {
  415. ggml_backend_buffer_t * buffers;
  416. size_t n_buffers;
  417. };
  418. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  419. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  420. for (size_t i = 0; i < ctx->n_buffers; i++) {
  421. ggml_backend_buffer_free(ctx->buffers[i]);
  422. }
  423. free(ctx->buffers);
  424. free(ctx);
  425. }
  426. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  427. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  428. for (size_t i = 0; i < ctx->n_buffers; i++) {
  429. ggml_backend_buffer_clear(ctx->buffers[i], value);
  430. }
  431. }
  432. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  433. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  434. /* .get_base = */ NULL,
  435. /* .init_tensor = */ NULL,
  436. /* .memset_tensor = */ NULL,
  437. /* .set_tensor = */ NULL,
  438. /* .get_tensor = */ NULL,
  439. /* .cpy_tensor = */ NULL,
  440. /* .clear = */ ggml_backend_multi_buffer_clear,
  441. /* .reset = */ NULL,
  442. };
  443. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  444. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  445. ctx->n_buffers = n_buffers;
  446. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  447. GGML_ASSERT(ctx->buffers != NULL);
  448. size_t total_size = 0;
  449. for (size_t i = 0; i < n_buffers; i++) {
  450. ctx->buffers[i] = buffers[i];
  451. total_size += ggml_backend_buffer_get_size(buffers[i]);
  452. }
  453. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  454. }
  455. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  456. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  457. }
  458. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  459. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  460. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  461. for (size_t i = 0; i < ctx->n_buffers; i++) {
  462. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  463. }
  464. }
  465. // creates a copy of the tensor with the same memory layout
  466. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  467. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  468. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  469. dup->nb[i] = tensor->nb[i];
  470. }
  471. return dup;
  472. }
  473. static bool ggml_is_view_op(enum ggml_op op) {
  474. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  475. }
  476. // scheduler
  477. #ifndef GGML_SCHED_MAX_BACKENDS
  478. #define GGML_SCHED_MAX_BACKENDS 16
  479. #endif
  480. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  481. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  482. #endif
  483. #ifndef GGML_SCHED_MAX_COPIES
  484. #define GGML_SCHED_MAX_COPIES 4
  485. #endif
  486. struct ggml_backend_sched_split {
  487. int backend_id;
  488. int i_start;
  489. int i_end;
  490. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  491. int n_inputs;
  492. // graph view of this split
  493. struct ggml_cgraph graph;
  494. };
  495. struct ggml_backend_sched {
  496. bool is_reset; // true if the scheduler has been reset since the last graph split
  497. bool is_alloc;
  498. int n_backends;
  499. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  500. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  501. ggml_gallocr_t galloc;
  502. // hash map of the nodes in the graph
  503. struct ggml_hash_set hash_set;
  504. int * hv_tensor_backend_ids; // [hash_set.size]
  505. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  506. int * node_backend_ids; // [graph_size]
  507. int * leaf_backend_ids; // [graph_size]
  508. int * prev_node_backend_ids; // [graph_size]
  509. int * prev_leaf_backend_ids; // [graph_size]
  510. // copy of the graph with modified inputs
  511. struct ggml_cgraph graph;
  512. // graph splits
  513. struct ggml_backend_sched_split * splits;
  514. int n_splits;
  515. int splits_capacity;
  516. // pipeline parallelism support
  517. int n_copies;
  518. int cur_copy;
  519. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  520. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  521. int n_graph_inputs;
  522. struct ggml_context * ctx;
  523. ggml_backend_sched_eval_callback callback_eval;
  524. void * callback_eval_user_data;
  525. char * context_buffer;
  526. size_t context_buffer_size;
  527. int debug;
  528. };
  529. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  530. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  531. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  532. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  533. // returns the priority of the backend, lower id is higher priority
  534. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  535. for (int i = 0; i < sched->n_backends; i++) {
  536. if (sched->backends[i] == backend) {
  537. return i;
  538. }
  539. }
  540. return -1;
  541. }
  542. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  543. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  544. if (buffer == NULL) {
  545. return -1;
  546. }
  547. // find highest prio backend that supports the buffer type and the op
  548. for (int i = 0; i < sched->n_backends; i++) {
  549. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  550. ggml_backend_supports_op(sched->backends[i], op)) {
  551. return i;
  552. }
  553. }
  554. #ifndef NDEBUG
  555. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  556. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  557. #endif
  558. return -1;
  559. }
  560. #if 0
  561. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  562. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  563. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  564. #define GET_CAUSE(node) causes[hash_id(node)]
  565. #else
  566. #define SET_CAUSE(node, ...)
  567. #define GET_CAUSE(node) ""
  568. #endif
  569. // returns the backend that should be used for the node based on the current locations
  570. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  571. // assign pre-allocated nodes to their backend
  572. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  573. if (cur_backend_id != -1) {
  574. SET_CAUSE(tensor, "1.dst");
  575. return cur_backend_id;
  576. }
  577. // view_src
  578. if (tensor->view_src != NULL) {
  579. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  580. if (cur_backend_id != -1) {
  581. SET_CAUSE(tensor, "1.vsrc");
  582. return cur_backend_id;
  583. }
  584. }
  585. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  586. // since the tensor is pre-allocated, it cannot be moved to another backend
  587. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  588. GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
  589. }
  590. // graph input
  591. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  592. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  593. SET_CAUSE(tensor, "1.inp");
  594. return cur_backend_id;
  595. }
  596. // operations with weights are preferably run on the same backend as the weights
  597. for (int i = 0; i < GGML_MAX_SRC; i++) {
  598. const struct ggml_tensor * src = tensor->src[i];
  599. if (src == NULL) {
  600. continue;
  601. }
  602. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  603. // not an ideal solution
  604. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  605. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  606. // check if a backend with higher prio wants to offload the op
  607. if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
  608. for (int b = 0; b < src_backend_id; b++) {
  609. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  610. SET_CAUSE(tensor, "1.off");
  611. return b;
  612. }
  613. }
  614. }
  615. SET_CAUSE(tensor, "1.wgt%d", i);
  616. return src_backend_id;
  617. }
  618. }
  619. return -1;
  620. }
  621. static char * fmt_size(size_t size) {
  622. static char buffer[128];
  623. if (size >= 1024*1024) {
  624. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  625. } else {
  626. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  627. }
  628. return buffer;
  629. }
  630. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  631. int cur_split = 0;
  632. for (int i = 0; i < graph->n_nodes; i++) {
  633. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  634. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  635. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs", cur_split, ggml_backend_name(split_backend),
  636. sched->splits[cur_split].n_inputs);
  637. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  638. if (j == 0) {
  639. GGML_LOG_DEBUG(": ");
  640. }
  641. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  642. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  643. }
  644. GGML_LOG_DEBUG("\n");
  645. cur_split++;
  646. }
  647. struct ggml_tensor * node = graph->nodes[i];
  648. if (ggml_is_view_op(node->op)) {
  649. continue;
  650. }
  651. if (sched->debug > 1) {
  652. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  653. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  654. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  655. for (int j = 0; j < GGML_MAX_SRC; j++) {
  656. struct ggml_tensor * src = node->src[j];
  657. if (src == NULL) {
  658. continue;
  659. }
  660. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  661. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  662. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  663. }
  664. GGML_LOG_DEBUG("\n");
  665. }
  666. }
  667. }
  668. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  669. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  670. ggml_backend_buffer_type_t buft = NULL;
  671. if (buf) {
  672. // the tensor is already allocated
  673. buft = buf->buft;
  674. } else {
  675. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  676. int tensor_backend_id = tensor_backend_id(t);
  677. if (tensor_backend_id == -1 && t->view_src) {
  678. tensor_backend_id = tensor_backend_id(t->view_src);
  679. }
  680. if (tensor_backend_id != -1) {
  681. buft = sched->bufts[tensor_backend_id];
  682. }
  683. }
  684. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  685. }
  686. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  687. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  688. *node_backend_id = cur_backend_id;
  689. SET_CAUSE(node, "2.sup");
  690. }
  691. }
  692. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  693. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  694. // reset splits
  695. sched->n_splits = 0;
  696. sched->n_graph_inputs = 0;
  697. sched->is_reset = false;
  698. struct ggml_init_params params = {
  699. /* .mem_size = */ sched->context_buffer_size,
  700. /* .mem_buffer = */ sched->context_buffer,
  701. /* .no_alloc = */ true
  702. };
  703. ggml_free(sched->ctx);
  704. sched->ctx = ggml_init(params);
  705. if (sched->ctx == NULL) {
  706. GGML_ABORT("%s: failed to initialize context\n", __func__);
  707. }
  708. // pass 1: assign backends to ops with pre-allocated inputs
  709. for (int i = 0; i < graph->n_leafs; i++) {
  710. struct ggml_tensor * leaf = graph->leafs[i];
  711. int * leaf_backend_id = &tensor_backend_id(leaf);
  712. // do not overwrite user assignments
  713. if (*leaf_backend_id == -1) {
  714. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  715. }
  716. }
  717. for (int i = 0; i < graph->n_nodes; i++) {
  718. struct ggml_tensor * node = graph->nodes[i];
  719. int * node_backend_id = &tensor_backend_id(node);
  720. // do not overwrite user assignments
  721. if (*node_backend_id == -1) {
  722. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  723. #if 0
  724. // src
  725. if (node->op == GGML_OP_NONE) {
  726. continue;
  727. }
  728. for (int j = 0; j < GGML_MAX_SRC; j++) {
  729. struct ggml_tensor * src = node->src[j];
  730. if (src == NULL) {
  731. continue;
  732. }
  733. int * src_backend_id = &tensor_backend_id(src);
  734. if (*src_backend_id == -1) {
  735. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  736. }
  737. }
  738. #endif
  739. }
  740. }
  741. // pass 2: expand current backend assignments
  742. // assign the same backend to adjacent nodes
  743. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  744. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  745. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  746. // expand gpu down
  747. {
  748. int cur_backend_id = -1;
  749. for (int i = 0; i < graph->n_nodes; i++) {
  750. struct ggml_tensor * node = graph->nodes[i];
  751. if (ggml_is_view_op(node->op)) {
  752. continue;
  753. }
  754. int * node_backend_id = &tensor_backend_id(node);
  755. if (*node_backend_id != -1) {
  756. if (*node_backend_id == sched->n_backends - 1) {
  757. // skip cpu (lowest prio backend)
  758. cur_backend_id = -1;
  759. } else {
  760. cur_backend_id = *node_backend_id;
  761. }
  762. } else if (cur_backend_id != -1) {
  763. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  764. }
  765. }
  766. }
  767. // expand gpu up
  768. {
  769. int cur_backend_id = -1;
  770. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  771. struct ggml_tensor * node = graph->nodes[i];
  772. if (ggml_is_view_op(node->op)) {
  773. continue;
  774. }
  775. int * node_backend_id = &tensor_backend_id(node);
  776. if (*node_backend_id != -1) {
  777. if (*node_backend_id == sched->n_backends - 1) {
  778. // skip cpu (lowest prio backend)
  779. cur_backend_id = -1;
  780. } else {
  781. cur_backend_id = *node_backend_id;
  782. }
  783. } else if (cur_backend_id != -1) {
  784. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  785. }
  786. }
  787. }
  788. // expand rest down
  789. {
  790. int cur_backend_id = -1;
  791. for (int i = 0; i < graph->n_nodes; i++) {
  792. struct ggml_tensor * node = graph->nodes[i];
  793. if (ggml_is_view_op(node->op)) {
  794. continue;
  795. }
  796. int * node_backend_id = &tensor_backend_id(node);
  797. if (*node_backend_id != -1) {
  798. cur_backend_id = *node_backend_id;
  799. } else if (cur_backend_id != -1) {
  800. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  801. }
  802. }
  803. }
  804. // expand rest up
  805. {
  806. int cur_backend_id = -1;
  807. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  808. struct ggml_tensor * node = graph->nodes[i];
  809. if (ggml_is_view_op(node->op)) {
  810. continue;
  811. }
  812. int * node_backend_id = &tensor_backend_id(node);
  813. if (*node_backend_id != -1) {
  814. cur_backend_id = *node_backend_id;
  815. } else if (cur_backend_id != -1) {
  816. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  817. }
  818. }
  819. }
  820. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  821. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  822. // however, we also need to verify that the sources are in compatible buffer types
  823. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  824. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  825. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  826. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  827. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  828. for (int i = 0; i < graph->n_nodes; i++) {
  829. struct ggml_tensor * node = graph->nodes[i];
  830. if (ggml_is_view_op(node->op)) {
  831. continue;
  832. }
  833. int * node_backend_id = &tensor_backend_id(node);
  834. if (*node_backend_id == -1) {
  835. // unassigned node: find the backend with the most supported inputs
  836. int n_supported_best = -1;
  837. for (int b = 0; b < sched->n_backends; b++) {
  838. if (ggml_backend_supports_op(sched->backends[b], node)) {
  839. int n_supported = 0;
  840. for (int j = 0; j < GGML_MAX_SRC; j++) {
  841. struct ggml_tensor * src = node->src[j];
  842. if (src == NULL) {
  843. continue;
  844. }
  845. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  846. n_supported++;
  847. }
  848. }
  849. if (n_supported > n_supported_best) {
  850. n_supported_best = n_supported;
  851. *node_backend_id = b;
  852. SET_CAUSE(node, "3.best");
  853. }
  854. }
  855. }
  856. } else {
  857. // assigned node: upgrade to higher prio backend if possible
  858. for (int b = 0; b < *node_backend_id; b++) {
  859. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  860. bool supported = true;
  861. for (int j = 0; j < GGML_MAX_SRC; j++) {
  862. struct ggml_tensor * src = node->src[j];
  863. if (src == NULL) {
  864. continue;
  865. }
  866. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  867. supported = false;
  868. break;
  869. }
  870. }
  871. if (supported) {
  872. *node_backend_id = b;
  873. SET_CAUSE(node, "3.upg");
  874. break;
  875. }
  876. }
  877. }
  878. }
  879. }
  880. // pass 4: assign backends to remaining src from dst and view_src
  881. for (int i = 0; i < graph->n_nodes; i++) {
  882. struct ggml_tensor * node = graph->nodes[i];
  883. int * cur_backend_id = &tensor_backend_id(node);
  884. if (node->view_src != NULL && *cur_backend_id == -1) {
  885. *cur_backend_id = tensor_backend_id(node->view_src);
  886. SET_CAUSE(node, "4.vsrc");
  887. }
  888. for (int j = 0; j < GGML_MAX_SRC; j++) {
  889. struct ggml_tensor * src = node->src[j];
  890. if (src == NULL) {
  891. continue;
  892. }
  893. int * src_backend_id = &tensor_backend_id(src);
  894. if (*src_backend_id == -1) {
  895. if (src->view_src != NULL) {
  896. // views are always on the same backend as the source
  897. *src_backend_id = tensor_backend_id(src->view_src);
  898. SET_CAUSE(src, "4.vsrc");
  899. } else {
  900. *src_backend_id = *cur_backend_id;
  901. SET_CAUSE(src, "4.cur");
  902. }
  903. }
  904. }
  905. }
  906. // pass 5: split graph, find tensors that need to be copied
  907. {
  908. int i_split = 0;
  909. struct ggml_backend_sched_split * split = &sched->splits[0];
  910. // find the backend of the first split, skipping view ops
  911. int i = 0;
  912. for (; i < graph->n_nodes; i++) {
  913. struct ggml_tensor * node = graph->nodes[i];
  914. if (!ggml_is_view_op(node->op)) {
  915. split->backend_id = tensor_backend_id(node);
  916. break;
  917. }
  918. }
  919. split->i_start = 0;
  920. split->n_inputs = 0;
  921. int cur_backend_id = split->backend_id;
  922. for (; i < graph->n_nodes; i++) {
  923. struct ggml_tensor * node = graph->nodes[i];
  924. if (ggml_is_view_op(node->op)) {
  925. continue;
  926. }
  927. const int node_backend_id = tensor_backend_id(node);
  928. assert(node_backend_id != -1); // all nodes should be assigned by now
  929. // check if we should start a new split based on the sources of the current node
  930. bool need_new_split = false;
  931. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  932. for (int j = 0; j < GGML_MAX_SRC; j++) {
  933. struct ggml_tensor * src = node->src[j];
  934. if (src == NULL) {
  935. continue;
  936. }
  937. // check if a weight is on a different and incompatible backend
  938. // by starting a new split, the memory of the previously offloaded weights can be reused
  939. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  940. int src_backend_id = tensor_backend_id(src);
  941. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  942. need_new_split = true;
  943. break;
  944. }
  945. }
  946. // check if the split has too many inputs
  947. // FIXME: count the number of inputs instead of only checking when full
  948. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  949. const size_t id = hash_id(src);
  950. int src_backend_id = sched->hv_tensor_backend_ids[id];
  951. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  952. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  953. need_new_split = true;
  954. break;
  955. }
  956. }
  957. }
  958. }
  959. if (node_backend_id != cur_backend_id || need_new_split) {
  960. split->i_end = i;
  961. i_split++;
  962. if (i_split >= sched->splits_capacity) {
  963. sched->splits_capacity *= 2;
  964. sched->splits = (ggml_backend_sched_split *)
  965. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  966. GGML_ASSERT(sched->splits != NULL);
  967. }
  968. split = &sched->splits[i_split];
  969. split->backend_id = node_backend_id;
  970. split->i_start = i;
  971. split->n_inputs = 0;
  972. cur_backend_id = node_backend_id;
  973. }
  974. // find inputs that are not on the same backend
  975. for (int j = 0; j < GGML_MAX_SRC; j++) {
  976. struct ggml_tensor * src = node->src[j];
  977. if (src == NULL) {
  978. continue;
  979. }
  980. size_t src_id = hash_id(src);
  981. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  982. assert(src_backend_id != -1); // all inputs should be assigned by now
  983. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  984. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  985. ggml_backend_t backend = sched->backends[src_backend_id];
  986. for (int c = 0; c < sched->n_copies; c++) {
  987. struct ggml_tensor * tensor_copy;
  988. if (c == sched->cur_copy) {
  989. tensor_copy = src; // use the original tensor as the current copy
  990. } else {
  991. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  992. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  993. }
  994. if (sched->n_copies > 1) {
  995. ggml_set_input(tensor_copy);
  996. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  997. }
  998. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  999. SET_CAUSE(tensor_copy, "4.cpy");
  1000. }
  1001. int n_graph_inputs = sched->n_graph_inputs++;
  1002. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1003. sched->graph_inputs[n_graph_inputs] = src;
  1004. }
  1005. }
  1006. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1007. // create a copy of the input in the split's backend
  1008. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1009. ggml_backend_t backend = sched->backends[cur_backend_id];
  1010. for (int c = 0; c < sched->n_copies; c++) {
  1011. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1012. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1013. if (sched->n_copies > 1) {
  1014. ggml_set_input(tensor_copy);
  1015. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1016. }
  1017. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1018. SET_CAUSE(tensor_copy, "4.cpy");
  1019. }
  1020. int n_inputs = split->n_inputs++;
  1021. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1022. split->inputs[n_inputs] = src;
  1023. }
  1024. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1025. }
  1026. }
  1027. }
  1028. split->i_end = graph->n_nodes;
  1029. sched->n_splits = i_split + 1;
  1030. }
  1031. if (sched->debug) {
  1032. ggml_backend_sched_print_assignments(sched, graph);
  1033. }
  1034. // swap node_backend_ids and leaf _backend_ids with prevs
  1035. {
  1036. int * tmp = sched->node_backend_ids;
  1037. sched->node_backend_ids = sched->prev_node_backend_ids;
  1038. sched->prev_node_backend_ids = tmp;
  1039. tmp = sched->leaf_backend_ids;
  1040. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1041. sched->prev_leaf_backend_ids = tmp;
  1042. }
  1043. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1044. if (sched->graph.size < graph_size) {
  1045. sched->graph.size = graph_size;
  1046. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1047. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1048. GGML_ASSERT(sched->graph.nodes != NULL);
  1049. GGML_ASSERT(sched->graph.leafs != NULL);
  1050. }
  1051. sched->graph.n_nodes = 0;
  1052. sched->graph.n_leafs = 0;
  1053. struct ggml_cgraph * graph_copy = &sched->graph;
  1054. for (int i = 0; i < sched->n_splits; i++) {
  1055. struct ggml_backend_sched_split * split = &sched->splits[i];
  1056. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1057. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1058. for (int j = 0; j < split->n_inputs; j++) {
  1059. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1060. struct ggml_tensor * input = split->inputs[j];
  1061. const size_t input_id = hash_id(input);
  1062. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1063. // add a dependency to the input source so that it is not freed before the copy is done
  1064. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1065. input_dep->src[0] = input;
  1066. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1067. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1068. // add a dependency to the input copy so that it is allocated at the start of the split
  1069. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1070. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1071. }
  1072. for (int j = split->i_start; j < split->i_end; j++) {
  1073. assert(graph_copy->size > graph_copy->n_nodes);
  1074. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1075. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1076. }
  1077. }
  1078. if (sched->n_copies > 1) {
  1079. // add input copies as leafs so that they are allocated first
  1080. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1081. struct ggml_tensor * input = sched->graph_inputs[i];
  1082. size_t id = hash_id(input);
  1083. int backend_id = tensor_backend_id(input);
  1084. for (int c = 0; c < sched->n_copies; c++) {
  1085. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1086. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1087. assert(graph_copy->size > graph_copy->n_leafs);
  1088. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1089. }
  1090. }
  1091. for (int i = 0; i < sched->n_splits; i++) {
  1092. struct ggml_backend_sched_split * split = &sched->splits[i];
  1093. int backend_id = split->backend_id;
  1094. for (int j = 0; j < split->n_inputs; j++) {
  1095. struct ggml_tensor * input = split->inputs[j];
  1096. size_t id = hash_id(input);
  1097. for (int c = 0; c < sched->n_copies; c++) {
  1098. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1099. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1100. assert(graph_copy->size > graph_copy->n_leafs);
  1101. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1102. }
  1103. }
  1104. }
  1105. }
  1106. // add leafs from the original graph
  1107. for (int i = 0; i < graph->n_leafs; i++) {
  1108. struct ggml_tensor * leaf = graph->leafs[i];
  1109. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1110. assert(graph_copy->size > graph_copy->n_leafs);
  1111. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1112. }
  1113. }
  1114. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1115. bool backend_ids_changed = false;
  1116. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1117. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1118. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1119. backend_ids_changed = true;
  1120. break;
  1121. }
  1122. }
  1123. if (!backend_ids_changed) {
  1124. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1125. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1126. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1127. backend_ids_changed = true;
  1128. break;
  1129. }
  1130. }
  1131. }
  1132. // allocate graph
  1133. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1134. // the re-allocation may cause the split inputs to be moved to a different address
  1135. ggml_backend_sched_synchronize(sched);
  1136. #ifndef NDEBUG
  1137. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1138. #endif
  1139. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1140. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1141. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1142. return false;
  1143. }
  1144. }
  1145. return true;
  1146. }
  1147. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1148. struct ggml_backend_sched_split * splits = sched->splits;
  1149. for (int i = 0; i < sched->n_splits; i++) {
  1150. struct ggml_backend_sched_split * split = &splits[i];
  1151. int split_backend_id = split->backend_id;
  1152. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1153. // copy the input tensors to the split backend
  1154. for (int j = 0; j < split->n_inputs; j++) {
  1155. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1156. struct ggml_tensor * input = split->inputs[j];
  1157. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1158. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1159. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1160. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1161. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1162. } else {
  1163. ggml_backend_synchronize(split_backend);
  1164. }
  1165. ggml_backend_tensor_copy(input, input_cpy);
  1166. } else {
  1167. // wait for the split backend to finish using the input before overwriting it
  1168. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1169. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1170. } else {
  1171. ggml_backend_synchronize(split_backend);
  1172. }
  1173. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1174. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1175. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1176. ggml_backend_synchronize(input_backend);
  1177. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1178. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1179. } else {
  1180. ggml_backend_synchronize(split_backend);
  1181. }
  1182. ggml_backend_tensor_copy(input, input_cpy);
  1183. }
  1184. }
  1185. }
  1186. if (!sched->callback_eval) {
  1187. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1188. if (ec != GGML_STATUS_SUCCESS) {
  1189. return ec;
  1190. }
  1191. } else {
  1192. // similar to ggml_backend_compare_graph_backend
  1193. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1194. struct ggml_tensor * t = split->graph.nodes[j0];
  1195. // check if the user needs data from this node
  1196. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1197. int j1 = j0;
  1198. // determine the range [j0, j1] of nodes that can be computed together
  1199. while (!need && j1 < split->graph.n_nodes - 1) {
  1200. t = split->graph.nodes[++j1];
  1201. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1202. }
  1203. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1204. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1205. if (ec != GGML_STATUS_SUCCESS) {
  1206. return ec;
  1207. }
  1208. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1209. ggml_backend_synchronize(split_backend);
  1210. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1211. break;
  1212. }
  1213. j0 = j1;
  1214. }
  1215. }
  1216. // record the event of this copy
  1217. if (split->n_inputs > 0) {
  1218. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1219. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1220. }
  1221. }
  1222. }
  1223. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1224. return GGML_STATUS_SUCCESS;
  1225. }
  1226. ggml_backend_sched_t ggml_backend_sched_new(
  1227. ggml_backend_t * backends,
  1228. ggml_backend_buffer_type_t * bufts,
  1229. int n_backends,
  1230. size_t graph_size,
  1231. bool parallel) {
  1232. GGML_ASSERT(n_backends > 0);
  1233. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1234. GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
  1235. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1236. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1237. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1238. sched->n_backends = n_backends;
  1239. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1240. // initialize hash table
  1241. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1242. sched->hash_set = ggml_hash_set_new(graph_size);
  1243. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1244. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1245. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1246. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1247. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1248. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1249. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1250. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1251. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1252. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1253. const int initial_splits_capacity = 16;
  1254. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1255. sched->splits_capacity = initial_splits_capacity;
  1256. for (int b = 0; b < n_backends; b++) {
  1257. sched->backends[b] = backends[b];
  1258. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1259. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1260. if (sched->n_copies > 1) {
  1261. for (int c = 0; c < sched->n_copies; c++) {
  1262. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1263. }
  1264. }
  1265. }
  1266. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1267. ggml_backend_sched_reset(sched);
  1268. return sched;
  1269. }
  1270. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1271. if (sched == NULL) {
  1272. return;
  1273. }
  1274. for (int b = 0; b < sched->n_backends; b++) {
  1275. for (int c = 0; c < sched->n_copies; c++) {
  1276. ggml_backend_event_free(sched->events[b][c]);
  1277. }
  1278. }
  1279. ggml_gallocr_free(sched->galloc);
  1280. ggml_free(sched->ctx);
  1281. ggml_hash_set_free(&sched->hash_set);
  1282. free(sched->splits);
  1283. free(sched->hv_tensor_backend_ids);
  1284. free(sched->hv_tensor_copies);
  1285. free(sched->node_backend_ids);
  1286. free(sched->leaf_backend_ids);
  1287. free(sched->prev_node_backend_ids);
  1288. free(sched->prev_leaf_backend_ids);
  1289. free(sched->context_buffer);
  1290. free(sched->graph.nodes);
  1291. free(sched->graph.leafs);
  1292. free(sched);
  1293. }
  1294. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1295. // reset state for the next run
  1296. if (!sched->is_reset) {
  1297. ggml_hash_set_reset(&sched->hash_set);
  1298. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1299. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1300. sched->is_reset = true;
  1301. }
  1302. sched->is_alloc = false;
  1303. }
  1304. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1305. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1306. ggml_backend_sched_split_graph(sched, measure_graph);
  1307. ggml_backend_sched_synchronize(sched);
  1308. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1309. return false;
  1310. }
  1311. ggml_backend_sched_reset(sched);
  1312. return true;
  1313. }
  1314. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1315. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1316. ggml_backend_sched_split_graph(sched, graph);
  1317. if (!ggml_backend_sched_alloc_splits(sched)) {
  1318. return false;
  1319. }
  1320. sched->is_alloc = true;
  1321. return true;
  1322. }
  1323. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1324. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1325. ggml_backend_sched_synchronize(sched);
  1326. return err;
  1327. }
  1328. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1329. if (!sched->is_reset && !sched->is_alloc) {
  1330. ggml_backend_sched_reset(sched);
  1331. }
  1332. if (!sched->is_alloc) {
  1333. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1334. return GGML_STATUS_ALLOC_FAILED;
  1335. }
  1336. }
  1337. return ggml_backend_sched_compute_splits(sched);
  1338. }
  1339. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1340. for (int i = 0; i < sched->n_backends; i++) {
  1341. ggml_backend_synchronize(sched->backends[i]);
  1342. }
  1343. }
  1344. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1345. sched->callback_eval = callback;
  1346. sched->callback_eval_user_data = user_data;
  1347. }
  1348. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1349. return sched->n_splits;
  1350. }
  1351. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1352. return sched->n_copies;
  1353. }
  1354. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1355. return sched->n_backends;
  1356. }
  1357. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1358. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1359. return sched->backends[i];
  1360. }
  1361. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1362. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1363. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1364. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1365. }
  1366. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1367. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1368. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1369. tensor_backend_id(node) = backend_index;
  1370. SET_CAUSE(node, "usr");
  1371. sched->is_reset = false;
  1372. }
  1373. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1374. int backend_index = tensor_backend_id(node);
  1375. if (backend_index == -1) {
  1376. return NULL;
  1377. }
  1378. return sched->backends[backend_index];
  1379. }
  1380. // utils
  1381. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1382. GGML_ASSERT(tensor->buffer == NULL);
  1383. GGML_ASSERT(tensor->view_src != NULL);
  1384. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1385. GGML_ASSERT(tensor->view_src->data != NULL);
  1386. tensor->buffer = tensor->view_src->buffer;
  1387. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1388. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1389. }
  1390. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1391. GGML_ASSERT(tensor->buffer == NULL);
  1392. GGML_ASSERT(tensor->data == NULL);
  1393. GGML_ASSERT(tensor->view_src == NULL);
  1394. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1395. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1396. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1397. tensor->buffer = buffer;
  1398. tensor->data = addr;
  1399. ggml_backend_buffer_init_tensor(buffer, tensor);
  1400. }
  1401. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1402. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1403. GGML_ASSERT(src != NULL);
  1404. GGML_ASSERT(src->data && "graph must be allocated");
  1405. size_t id = ggml_hash_insert(&hash_set, src);
  1406. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1407. return node_copies[ggml_hash_find(&hash_set, src)];
  1408. }
  1409. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1410. if (src->view_src != NULL) {
  1411. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1412. dst->view_offs = src->view_offs;
  1413. }
  1414. dst->op = src->op;
  1415. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1416. ggml_set_name(dst, src->name);
  1417. // copy src
  1418. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1419. struct ggml_tensor * s = src->src[i];
  1420. if (s == NULL) {
  1421. continue;
  1422. }
  1423. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1424. }
  1425. node_copies[id] = dst;
  1426. return dst;
  1427. }
  1428. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1429. size_t id = ggml_hash_find(hash_set, src);
  1430. if (node_init[id]) {
  1431. return;
  1432. }
  1433. node_init[id] = true;
  1434. struct ggml_tensor * dst = node_copies[id];
  1435. if (dst->view_src != NULL) {
  1436. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1437. ggml_backend_view_init(dst);
  1438. }
  1439. else {
  1440. ggml_backend_tensor_copy(src, dst);
  1441. }
  1442. // init src
  1443. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1444. struct ggml_tensor * s = src->src[i];
  1445. if (s == NULL) {
  1446. continue;
  1447. }
  1448. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1449. }
  1450. }
  1451. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1452. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1453. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1454. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1455. struct ggml_init_params params = {
  1456. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1457. /* .mem_buffer = */ NULL,
  1458. /* .no_alloc = */ true
  1459. };
  1460. struct ggml_context * ctx_allocated = ggml_init(params);
  1461. struct ggml_context * ctx_unallocated = ggml_init(params);
  1462. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1463. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1464. ggml_hash_set_free(&hash_set);
  1465. free(node_copies);
  1466. free(node_init);
  1467. ggml_free(ctx_allocated);
  1468. ggml_free(ctx_unallocated);
  1469. return {
  1470. /* .buffer = */ NULL,
  1471. /* .ctx_allocated = */ NULL,
  1472. /* .ctx_unallocated = */ NULL,
  1473. /* .graph = */ NULL,
  1474. };
  1475. }
  1476. // dup nodes
  1477. for (int i = 0; i < graph->n_nodes; i++) {
  1478. struct ggml_tensor * node = graph->nodes[i];
  1479. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1480. }
  1481. // allocate nodes
  1482. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1483. if (buffer == NULL) {
  1484. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1485. ggml_hash_set_free(&hash_set);
  1486. free(node_copies);
  1487. free(node_init);
  1488. ggml_free(ctx_allocated);
  1489. ggml_free(ctx_unallocated);
  1490. return {
  1491. /* .buffer = */ NULL,
  1492. /* .ctx_allocated = */ NULL,
  1493. /* .ctx_unallocated = */ NULL,
  1494. /* .graph = */ NULL,
  1495. };
  1496. }
  1497. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1498. // copy data and init views
  1499. for (int i = 0; i < graph->n_nodes; i++) {
  1500. struct ggml_tensor * node = graph->nodes[i];
  1501. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1502. }
  1503. // build graph copy
  1504. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1505. for (int i = 0; i < graph->n_nodes; i++) {
  1506. struct ggml_tensor * node = graph->nodes[i];
  1507. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1508. graph_copy->nodes[i] = node_copy;
  1509. }
  1510. graph_copy->n_nodes = graph->n_nodes;
  1511. ggml_hash_set_free(&hash_set);
  1512. free(node_copies);
  1513. free(node_init);
  1514. return {
  1515. /* .buffer = */ buffer,
  1516. /* .ctx_allocated = */ ctx_allocated,
  1517. /* .ctx_unallocated = */ ctx_unallocated,
  1518. /* .graph = */ graph_copy,
  1519. };
  1520. }
  1521. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1522. ggml_backend_buffer_free(copy.buffer);
  1523. ggml_free(copy.ctx_allocated);
  1524. ggml_free(copy.ctx_unallocated);
  1525. }
  1526. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1527. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1528. if (copy.buffer == NULL) {
  1529. return false;
  1530. }
  1531. struct ggml_cgraph * g1 = graph;
  1532. struct ggml_cgraph * g2 = copy.graph;
  1533. assert(g1->n_nodes == g2->n_nodes);
  1534. for (int i = 0; i < g1->n_nodes; i++) {
  1535. //printf("eval %d/%d\n", i, g1->n_nodes);
  1536. struct ggml_tensor * t1 = g1->nodes[i];
  1537. struct ggml_tensor * t2 = g2->nodes[i];
  1538. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1539. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1540. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1541. ggml_backend_graph_compute(backend1, &g1v);
  1542. ggml_backend_graph_compute(backend2, &g2v);
  1543. if (ggml_is_view_op(t1->op)) {
  1544. continue;
  1545. }
  1546. // compare results, calculate rms etc
  1547. if (!callback(i, t1, t2, user_data)) {
  1548. break;
  1549. }
  1550. }
  1551. ggml_backend_graph_copy_free(copy);
  1552. return true;
  1553. }
  1554. // CPU backend - buffer
  1555. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1556. uintptr_t data = (uintptr_t)buffer->context;
  1557. // align the buffer
  1558. if (data % TENSOR_ALIGNMENT != 0) {
  1559. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1560. }
  1561. return (void *)data;
  1562. }
  1563. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1564. ggml_aligned_free(buffer->context, buffer->size);
  1565. }
  1566. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1567. memset((char *)tensor->data + offset, value, size);
  1568. GGML_UNUSED(buffer);
  1569. }
  1570. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1571. memcpy((char *)tensor->data + offset, data, size);
  1572. GGML_UNUSED(buffer);
  1573. }
  1574. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1575. memcpy(data, (const char *)tensor->data + offset, size);
  1576. GGML_UNUSED(buffer);
  1577. }
  1578. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1579. if (ggml_backend_buffer_is_host(src->buffer)) {
  1580. memcpy(dst->data, src->data, ggml_nbytes(src));
  1581. return true;
  1582. }
  1583. return false;
  1584. GGML_UNUSED(buffer);
  1585. }
  1586. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1587. memset(buffer->context, value, buffer->size);
  1588. }
  1589. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1590. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1591. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1592. /* .init_tensor = */ NULL, // no initialization required
  1593. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1594. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1595. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1596. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1597. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1598. /* .reset = */ NULL,
  1599. };
  1600. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1601. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1602. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1603. /* .init_tensor = */ NULL, // no initialization required
  1604. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1605. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1606. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1607. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1608. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1609. /* .reset = */ NULL,
  1610. };
  1611. // CPU backend buffer type
  1612. // this buffer type is defined here to make it available to all backends
  1613. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1614. return "CPU";
  1615. GGML_UNUSED(buft);
  1616. }
  1617. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1618. void * data = ggml_aligned_malloc(size);
  1619. if (data == NULL) {
  1620. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1621. return NULL;
  1622. }
  1623. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1624. }
  1625. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1626. return TENSOR_ALIGNMENT;
  1627. GGML_UNUSED(buft);
  1628. }
  1629. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1630. return true;
  1631. GGML_UNUSED(buft);
  1632. }
  1633. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1634. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1635. /* .iface = */ {
  1636. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1637. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1638. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1639. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1640. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1641. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1642. },
  1643. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1644. /* .context = */ NULL,
  1645. };
  1646. return &ggml_backend_cpu_buffer_type;
  1647. }
  1648. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1649. return "CPU_Mapped";
  1650. GGML_UNUSED(buft);
  1651. }
  1652. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1653. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1654. /* .iface = */ {
  1655. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1656. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1657. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1658. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1659. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1660. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1661. },
  1662. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1663. /* .context = */ NULL,
  1664. };
  1665. return &ggml_backend_cpu_buffer_type;
  1666. }
  1667. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  1668. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  1669. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  1670. }