ggml-quants.c 442 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963
  1. #include "ggml-quants.h"
  2. #include "ggml-impl.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #include <float.h>
  7. #include <stdlib.h> // for qsort
  8. #include <stdio.h> // for GGML_ASSERT
  9. #ifdef __ARM_NEON
  10. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  11. //
  12. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  13. //
  14. #include <arm_neon.h>
  15. #else
  16. #ifdef __wasm_simd128__
  17. #include <wasm_simd128.h>
  18. #else
  19. #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
  20. #include <altivec.h>
  21. #undef bool
  22. #define bool _Bool
  23. #else
  24. #if defined(_MSC_VER) || defined(__MINGW32__)
  25. #include <intrin.h>
  26. #else
  27. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  28. #if !defined(__riscv)
  29. #include <immintrin.h>
  30. #endif
  31. #endif
  32. #endif
  33. #endif
  34. #endif
  35. #endif
  36. #ifdef __riscv_v_intrinsic
  37. #include <riscv_vector.h>
  38. #endif
  39. #undef MIN
  40. #undef MAX
  41. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  42. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  43. #define UNUSED GGML_UNUSED
  44. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  45. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  46. // multiply int8_t, add results pairwise twice
  47. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  48. // Get absolute values of x vectors
  49. const __m128i ax = _mm_sign_epi8(x, x);
  50. // Sign the values of the y vectors
  51. const __m128i sy = _mm_sign_epi8(y, x);
  52. // Perform multiplication and create 16-bit values
  53. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  54. const __m128i ones = _mm_set1_epi16(1);
  55. return _mm_madd_epi16(ones, dot);
  56. }
  57. #if __AVX__ || __AVX2__ || __AVX512F__
  58. // horizontally add 8 floats
  59. static inline float hsum_float_8(const __m256 x) {
  60. __m128 res = _mm256_extractf128_ps(x, 1);
  61. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  62. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  63. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  64. return _mm_cvtss_f32(res);
  65. }
  66. // horizontally add 8 int32_t
  67. static inline int hsum_i32_8(const __m256i a) {
  68. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  69. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  70. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  71. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  72. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  73. }
  74. // horizontally add 4 int32_t
  75. static inline int hsum_i32_4(const __m128i a) {
  76. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  77. const __m128i sum64 = _mm_add_epi32(hi64, a);
  78. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  79. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  80. }
  81. #if defined(__AVX2__) || defined(__AVX512F__)
  82. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  83. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  84. uint32_t x32;
  85. memcpy(&x32, x, sizeof(uint32_t));
  86. const __m256i shuf_mask = _mm256_set_epi64x(
  87. 0x0303030303030303, 0x0202020202020202,
  88. 0x0101010101010101, 0x0000000000000000);
  89. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  90. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  91. bytes = _mm256_or_si256(bytes, bit_mask);
  92. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  93. }
  94. // Unpack 32 4-bit fields into 32 bytes
  95. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  96. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  97. {
  98. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  99. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  100. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  101. return _mm256_and_si256(lowMask, bytes);
  102. }
  103. // add int16_t pairwise and return as float vector
  104. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  105. const __m256i ones = _mm256_set1_epi16(1);
  106. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  107. return _mm256_cvtepi32_ps(summed_pairs);
  108. }
  109. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  110. #if __AVXVNNI__
  111. const __m256i zero = _mm256_setzero_si256();
  112. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  113. return _mm256_cvtepi32_ps(summed_pairs);
  114. #else
  115. // Perform multiplication and create 16-bit values
  116. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  117. return sum_i16_pairs_float(dot);
  118. #endif
  119. }
  120. // multiply int8_t, add results pairwise twice and return as float vector
  121. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  122. #if __AVXVNNIINT8__
  123. const __m256i zero = _mm256_setzero_si256();
  124. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  125. return _mm256_cvtepi32_ps(summed_pairs);
  126. #else
  127. // Get absolute values of x vectors
  128. const __m256i ax = _mm256_sign_epi8(x, x);
  129. // Sign the values of the y vectors
  130. const __m256i sy = _mm256_sign_epi8(y, x);
  131. return mul_sum_us8_pairs_float(ax, sy);
  132. #endif
  133. }
  134. static inline __m128i packNibbles( __m256i bytes )
  135. {
  136. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  137. #if __AVX512F__
  138. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  139. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  140. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  141. #else
  142. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  143. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  144. __m256i low = _mm256_and_si256( lowByte, bytes );
  145. high = _mm256_srli_epi16( high, 4 );
  146. bytes = _mm256_or_si256( low, high );
  147. // Compress uint16_t lanes into bytes
  148. __m128i r0 = _mm256_castsi256_si128( bytes );
  149. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  150. return _mm_packus_epi16( r0, r1 );
  151. #endif
  152. }
  153. #elif defined(__AVX__)
  154. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  155. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  156. uint32_t x32;
  157. memcpy(&x32, x, sizeof(uint32_t));
  158. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  159. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  160. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  161. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  162. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  163. bytesl = _mm_or_si128(bytesl, bit_mask);
  164. bytesh = _mm_or_si128(bytesh, bit_mask);
  165. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  166. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  167. return MM256_SET_M128I(bytesh, bytesl);
  168. }
  169. // Unpack 32 4-bit fields into 32 bytes
  170. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  171. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  172. {
  173. // Load 16 bytes from memory
  174. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  175. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  176. const __m128i lowMask = _mm_set1_epi8(0xF);
  177. tmpl = _mm_and_si128(lowMask, tmpl);
  178. tmph = _mm_and_si128(lowMask, tmph);
  179. return MM256_SET_M128I(tmph, tmpl);
  180. }
  181. // add int16_t pairwise and return as float vector
  182. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  183. const __m128i ones = _mm_set1_epi16(1);
  184. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  185. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  186. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  187. return _mm256_cvtepi32_ps(summed_pairs);
  188. }
  189. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  190. const __m128i axl = _mm256_castsi256_si128(ax);
  191. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  192. const __m128i syl = _mm256_castsi256_si128(sy);
  193. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  194. // Perform multiplication and create 16-bit values
  195. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  196. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  197. return sum_i16_pairs_float(doth, dotl);
  198. }
  199. // multiply int8_t, add results pairwise twice and return as float vector
  200. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  201. const __m128i xl = _mm256_castsi256_si128(x);
  202. const __m128i xh = _mm256_extractf128_si256(x, 1);
  203. const __m128i yl = _mm256_castsi256_si128(y);
  204. const __m128i yh = _mm256_extractf128_si256(y, 1);
  205. // Get absolute values of x vectors
  206. const __m128i axl = _mm_sign_epi8(xl, xl);
  207. const __m128i axh = _mm_sign_epi8(xh, xh);
  208. // Sign the values of the y vectors
  209. const __m128i syl = _mm_sign_epi8(yl, xl);
  210. const __m128i syh = _mm_sign_epi8(yh, xh);
  211. // Perform multiplication and create 16-bit values
  212. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  213. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  214. return sum_i16_pairs_float(doth, dotl);
  215. }
  216. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  217. {
  218. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  219. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  220. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  221. __m128i low = _mm_and_si128( lowByte, bytes1 );
  222. high = _mm_srli_epi16( high, 4 );
  223. bytes1 = _mm_or_si128( low, high );
  224. high = _mm_andnot_si128( lowByte, bytes2 );
  225. low = _mm_and_si128( lowByte, bytes2 );
  226. high = _mm_srli_epi16( high, 4 );
  227. bytes2 = _mm_or_si128( low, high );
  228. return _mm_packus_epi16( bytes1, bytes2);
  229. }
  230. #endif
  231. #elif defined(__SSSE3__)
  232. // horizontally add 4x4 floats
  233. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  234. __m128 res_0 =_mm_hadd_ps(a, b);
  235. __m128 res_1 =_mm_hadd_ps(c, d);
  236. __m128 res =_mm_hadd_ps(res_0, res_1);
  237. res =_mm_hadd_ps(res, res);
  238. res =_mm_hadd_ps(res, res);
  239. return _mm_cvtss_f32(res);
  240. }
  241. #endif // __AVX__ || __AVX2__ || __AVX512F__
  242. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  243. #if defined(__ARM_NEON)
  244. #ifdef _MSC_VER
  245. #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
  246. #else
  247. #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
  248. #endif
  249. #if !defined(__aarch64__)
  250. // 64-bit compatibility
  251. // vaddvq_s16
  252. // vpaddq_s16
  253. // vpaddq_s32
  254. // vaddvq_s32
  255. // vaddvq_f32
  256. // vmaxvq_f32
  257. // vcvtnq_s32_f32
  258. // vzip1_u8
  259. // vzip2_u8
  260. inline static int32_t vaddvq_s16(int16x8_t v) {
  261. return
  262. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  263. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  264. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  265. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  266. }
  267. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  268. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  269. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  270. return vcombine_s16(a0, b0);
  271. }
  272. inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  273. int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  274. int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  275. return vcombine_s32(a0, b0);
  276. }
  277. inline static int32_t vaddvq_s32(int32x4_t v) {
  278. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  279. }
  280. inline static float vaddvq_f32(float32x4_t v) {
  281. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  282. }
  283. inline static float vmaxvq_f32(float32x4_t v) {
  284. return
  285. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  286. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  287. }
  288. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  289. int32x4_t res;
  290. res[0] = roundf(vgetq_lane_f32(v, 0));
  291. res[1] = roundf(vgetq_lane_f32(v, 1));
  292. res[2] = roundf(vgetq_lane_f32(v, 2));
  293. res[3] = roundf(vgetq_lane_f32(v, 3));
  294. return res;
  295. }
  296. inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  297. uint8x8_t res;
  298. res[0] = a[0]; res[1] = b[0];
  299. res[2] = a[1]; res[3] = b[1];
  300. res[4] = a[2]; res[5] = b[2];
  301. res[6] = a[3]; res[7] = b[3];
  302. return res;
  303. }
  304. inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  305. uint8x8_t res;
  306. res[0] = a[4]; res[1] = b[4];
  307. res[2] = a[5]; res[3] = b[5];
  308. res[4] = a[6]; res[5] = b[6];
  309. res[6] = a[7]; res[7] = b[7];
  310. return res;
  311. }
  312. // vld1q_s16_x2
  313. // vld1q_u8_x2
  314. // vld1q_u8_x4
  315. // vld1q_s8_x2
  316. // vld1q_s8_x4
  317. // TODO: double-check these work correctly
  318. typedef struct ggml_int16x8x2_t {
  319. int16x8_t val[2];
  320. } ggml_int16x8x2_t;
  321. inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
  322. ggml_int16x8x2_t res;
  323. res.val[0] = vld1q_s16(ptr + 0);
  324. res.val[1] = vld1q_s16(ptr + 8);
  325. return res;
  326. }
  327. typedef struct ggml_uint8x16x2_t {
  328. uint8x16_t val[2];
  329. } ggml_uint8x16x2_t;
  330. inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
  331. ggml_uint8x16x2_t res;
  332. res.val[0] = vld1q_u8(ptr + 0);
  333. res.val[1] = vld1q_u8(ptr + 16);
  334. return res;
  335. }
  336. typedef struct ggml_uint8x16x4_t {
  337. uint8x16_t val[4];
  338. } ggml_uint8x16x4_t;
  339. inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
  340. ggml_uint8x16x4_t res;
  341. res.val[0] = vld1q_u8(ptr + 0);
  342. res.val[1] = vld1q_u8(ptr + 16);
  343. res.val[2] = vld1q_u8(ptr + 32);
  344. res.val[3] = vld1q_u8(ptr + 48);
  345. return res;
  346. }
  347. typedef struct ggml_int8x16x2_t {
  348. int8x16_t val[2];
  349. } ggml_int8x16x2_t;
  350. inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
  351. ggml_int8x16x2_t res;
  352. res.val[0] = vld1q_s8(ptr + 0);
  353. res.val[1] = vld1q_s8(ptr + 16);
  354. return res;
  355. }
  356. typedef struct ggml_int8x16x4_t {
  357. int8x16_t val[4];
  358. } ggml_int8x16x4_t;
  359. inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
  360. ggml_int8x16x4_t res;
  361. res.val[0] = vld1q_s8(ptr + 0);
  362. res.val[1] = vld1q_s8(ptr + 16);
  363. res.val[2] = vld1q_s8(ptr + 32);
  364. res.val[3] = vld1q_s8(ptr + 48);
  365. return res;
  366. }
  367. #else
  368. #define ggml_int16x8x2_t int16x8x2_t
  369. #define ggml_uint8x16x2_t uint8x16x2_t
  370. #define ggml_uint8x16x4_t uint8x16x4_t
  371. #define ggml_int8x16x2_t int8x16x2_t
  372. #define ggml_int8x16x4_t int8x16x4_t
  373. #define ggml_vld1q_s16_x2 vld1q_s16_x2
  374. #define ggml_vld1q_u8_x2 vld1q_u8_x2
  375. #define ggml_vld1q_u8_x4 vld1q_u8_x4
  376. #define ggml_vld1q_s8_x2 vld1q_s8_x2
  377. #define ggml_vld1q_s8_x4 vld1q_s8_x4
  378. #endif
  379. #if !defined(__ARM_FEATURE_DOTPROD)
  380. inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
  381. const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
  382. const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
  383. return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
  384. }
  385. #else
  386. #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
  387. #endif
  388. #endif
  389. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  390. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  391. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  392. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  393. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  394. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  395. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  396. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  397. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  398. // precomputed tables for expanding 8bits to 8 bytes:
  399. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  400. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  401. #endif
  402. // reference implementation for deterministic creation of model files
  403. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  404. static const int qk = QK4_0;
  405. assert(k % qk == 0);
  406. const int nb = k / qk;
  407. for (int i = 0; i < nb; i++) {
  408. float amax = 0.0f; // absolute max
  409. float max = 0.0f;
  410. for (int j = 0; j < qk; j++) {
  411. const float v = x[i*qk + j];
  412. if (amax < fabsf(v)) {
  413. amax = fabsf(v);
  414. max = v;
  415. }
  416. }
  417. const float d = max / -8;
  418. const float id = d ? 1.0f/d : 0.0f;
  419. y[i].d = GGML_FP32_TO_FP16(d);
  420. for (int j = 0; j < qk/2; ++j) {
  421. const float x0 = x[i*qk + 0 + j]*id;
  422. const float x1 = x[i*qk + qk/2 + j]*id;
  423. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  424. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  425. y[i].qs[j] = xi0;
  426. y[i].qs[j] |= xi1 << 4;
  427. }
  428. }
  429. }
  430. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  431. quantize_row_q4_0_reference(x, y, k);
  432. }
  433. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  434. const int qk = QK4_1;
  435. assert(k % qk == 0);
  436. const int nb = k / qk;
  437. for (int i = 0; i < nb; i++) {
  438. float min = FLT_MAX;
  439. float max = -FLT_MAX;
  440. for (int j = 0; j < qk; j++) {
  441. const float v = x[i*qk + j];
  442. if (v < min) min = v;
  443. if (v > max) max = v;
  444. }
  445. const float d = (max - min) / ((1 << 4) - 1);
  446. const float id = d ? 1.0f/d : 0.0f;
  447. y[i].d = GGML_FP32_TO_FP16(d);
  448. y[i].m = GGML_FP32_TO_FP16(min);
  449. for (int j = 0; j < qk/2; ++j) {
  450. const float x0 = (x[i*qk + 0 + j] - min)*id;
  451. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  452. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  453. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  454. y[i].qs[j] = xi0;
  455. y[i].qs[j] |= xi1 << 4;
  456. }
  457. }
  458. }
  459. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  460. quantize_row_q4_1_reference(x, y, k);
  461. }
  462. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  463. static const int qk = QK5_0;
  464. assert(k % qk == 0);
  465. const int nb = k / qk;
  466. for (int i = 0; i < nb; i++) {
  467. float amax = 0.0f; // absolute max
  468. float max = 0.0f;
  469. for (int j = 0; j < qk; j++) {
  470. const float v = x[i*qk + j];
  471. if (amax < fabsf(v)) {
  472. amax = fabsf(v);
  473. max = v;
  474. }
  475. }
  476. const float d = max / -16;
  477. const float id = d ? 1.0f/d : 0.0f;
  478. y[i].d = GGML_FP32_TO_FP16(d);
  479. uint32_t qh = 0;
  480. for (int j = 0; j < qk/2; ++j) {
  481. const float x0 = x[i*qk + 0 + j]*id;
  482. const float x1 = x[i*qk + qk/2 + j]*id;
  483. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  484. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  485. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  486. // get the 5-th bit and store it in qh at the right position
  487. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  488. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  489. }
  490. memcpy(&y[i].qh, &qh, sizeof(qh));
  491. }
  492. }
  493. void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  494. quantize_row_q5_0_reference(x, y, k);
  495. }
  496. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  497. const int qk = QK5_1;
  498. assert(k % qk == 0);
  499. const int nb = k / qk;
  500. for (int i = 0; i < nb; i++) {
  501. float min = FLT_MAX;
  502. float max = -FLT_MAX;
  503. for (int j = 0; j < qk; j++) {
  504. const float v = x[i*qk + j];
  505. if (v < min) min = v;
  506. if (v > max) max = v;
  507. }
  508. const float d = (max - min) / ((1 << 5) - 1);
  509. const float id = d ? 1.0f/d : 0.0f;
  510. y[i].d = GGML_FP32_TO_FP16(d);
  511. y[i].m = GGML_FP32_TO_FP16(min);
  512. uint32_t qh = 0;
  513. for (int j = 0; j < qk/2; ++j) {
  514. const float x0 = (x[i*qk + 0 + j] - min)*id;
  515. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  516. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  517. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  518. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  519. // get the 5-th bit and store it in qh at the right position
  520. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  521. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  522. }
  523. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  524. }
  525. }
  526. void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  527. quantize_row_q5_1_reference(x, y, k);
  528. }
  529. // reference implementation for deterministic creation of model files
  530. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  531. assert(k % QK8_0 == 0);
  532. const int nb = k / QK8_0;
  533. for (int i = 0; i < nb; i++) {
  534. float amax = 0.0f; // absolute max
  535. for (int j = 0; j < QK8_0; j++) {
  536. const float v = x[i*QK8_0 + j];
  537. amax = MAX(amax, fabsf(v));
  538. }
  539. const float d = amax / ((1 << 7) - 1);
  540. const float id = d ? 1.0f/d : 0.0f;
  541. y[i].d = GGML_FP32_TO_FP16(d);
  542. for (int j = 0; j < QK8_0; ++j) {
  543. const float x0 = x[i*QK8_0 + j]*id;
  544. y[i].qs[j] = roundf(x0);
  545. }
  546. }
  547. }
  548. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  549. assert(QK8_0 == 32);
  550. assert(k % QK8_0 == 0);
  551. const int nb = k / QK8_0;
  552. block_q8_0 * restrict y = vy;
  553. #if defined(__ARM_NEON)
  554. for (int i = 0; i < nb; i++) {
  555. float32x4_t srcv [8];
  556. float32x4_t asrcv[8];
  557. float32x4_t amaxv[8];
  558. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  559. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  560. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  561. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  562. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  563. const float amax = vmaxvq_f32(amaxv[0]);
  564. const float d = amax / ((1 << 7) - 1);
  565. const float id = d ? 1.0f/d : 0.0f;
  566. y[i].d = GGML_FP32_TO_FP16(d);
  567. for (int j = 0; j < 8; j++) {
  568. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  569. const int32x4_t vi = vcvtnq_s32_f32(v);
  570. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  571. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  572. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  573. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  574. }
  575. }
  576. #elif defined(__wasm_simd128__)
  577. for (int i = 0; i < nb; i++) {
  578. v128_t srcv [8];
  579. v128_t asrcv[8];
  580. v128_t amaxv[8];
  581. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  582. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  583. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  584. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  585. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  586. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  587. wasm_f32x4_extract_lane(amaxv[0], 1)),
  588. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  589. wasm_f32x4_extract_lane(amaxv[0], 3)));
  590. const float d = amax / ((1 << 7) - 1);
  591. const float id = d ? 1.0f/d : 0.0f;
  592. y[i].d = GGML_FP32_TO_FP16(d);
  593. for (int j = 0; j < 8; j++) {
  594. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  595. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  596. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  597. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  598. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  599. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  600. }
  601. }
  602. #elif defined(__AVX2__) || defined(__AVX__)
  603. for (int i = 0; i < nb; i++) {
  604. // Load elements into 4 AVX vectors
  605. __m256 v0 = _mm256_loadu_ps( x );
  606. __m256 v1 = _mm256_loadu_ps( x + 8 );
  607. __m256 v2 = _mm256_loadu_ps( x + 16 );
  608. __m256 v3 = _mm256_loadu_ps( x + 24 );
  609. x += 32;
  610. // Compute max(abs(e)) for the block
  611. const __m256 signBit = _mm256_set1_ps( -0.0f );
  612. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  613. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  614. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  615. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  616. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  617. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  618. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  619. const float maxScalar = _mm_cvtss_f32( max4 );
  620. // Quantize these floats
  621. const float d = maxScalar / 127.f;
  622. y[i].d = GGML_FP32_TO_FP16(d);
  623. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  624. const __m256 mul = _mm256_set1_ps( id );
  625. // Apply the multiplier
  626. v0 = _mm256_mul_ps( v0, mul );
  627. v1 = _mm256_mul_ps( v1, mul );
  628. v2 = _mm256_mul_ps( v2, mul );
  629. v3 = _mm256_mul_ps( v3, mul );
  630. // Round to nearest integer
  631. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  632. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  633. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  634. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  635. // Convert floats to integers
  636. __m256i i0 = _mm256_cvtps_epi32( v0 );
  637. __m256i i1 = _mm256_cvtps_epi32( v1 );
  638. __m256i i2 = _mm256_cvtps_epi32( v2 );
  639. __m256i i3 = _mm256_cvtps_epi32( v3 );
  640. #if defined(__AVX2__)
  641. // Convert int32 to int16
  642. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  643. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  644. // Convert int16 to int8
  645. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  646. // We got our precious signed bytes, but the order is now wrong
  647. // These AVX2 pack instructions process 16-byte pieces independently
  648. // The following instruction is fixing the order
  649. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  650. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  651. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  652. #else
  653. // Since we don't have in AVX some necessary functions,
  654. // we split the registers in half and call AVX2 analogs from SSE
  655. __m128i ni0 = _mm256_castsi256_si128( i0 );
  656. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  657. __m128i ni2 = _mm256_castsi256_si128( i1 );
  658. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  659. __m128i ni4 = _mm256_castsi256_si128( i2 );
  660. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  661. __m128i ni6 = _mm256_castsi256_si128( i3 );
  662. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  663. // Convert int32 to int16
  664. ni0 = _mm_packs_epi32( ni0, ni1 );
  665. ni2 = _mm_packs_epi32( ni2, ni3 );
  666. ni4 = _mm_packs_epi32( ni4, ni5 );
  667. ni6 = _mm_packs_epi32( ni6, ni7 );
  668. // Convert int16 to int8
  669. ni0 = _mm_packs_epi16( ni0, ni2 );
  670. ni4 = _mm_packs_epi16( ni4, ni6 );
  671. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  672. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  673. #endif
  674. }
  675. #elif defined(__riscv_v_intrinsic)
  676. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  677. for (int i = 0; i < nb; i++) {
  678. // load elements
  679. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  680. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  681. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  682. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  683. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  684. const float d = amax / ((1 << 7) - 1);
  685. const float id = d ? 1.0f/d : 0.0f;
  686. y[i].d = GGML_FP32_TO_FP16(d);
  687. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  688. // convert to integer
  689. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  690. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  691. // store result
  692. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  693. }
  694. #else
  695. GGML_UNUSED(nb);
  696. // scalar
  697. quantize_row_q8_0_reference(x, y, k);
  698. #endif
  699. }
  700. // reference implementation for deterministic creation of model files
  701. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  702. assert(QK8_1 == 32);
  703. assert(k % QK8_1 == 0);
  704. const int nb = k / QK8_1;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. for (int j = 0; j < QK8_1; j++) {
  708. const float v = x[i*QK8_1 + j];
  709. amax = MAX(amax, fabsf(v));
  710. }
  711. const float d = amax / ((1 << 7) - 1);
  712. const float id = d ? 1.0f/d : 0.0f;
  713. y[i].d = d;
  714. int sum = 0;
  715. for (int j = 0; j < QK8_1/2; ++j) {
  716. const float v0 = x[i*QK8_1 + j]*id;
  717. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  718. y[i].qs[ j] = roundf(v0);
  719. y[i].qs[QK8_1/2 + j] = roundf(v1);
  720. sum += y[i].qs[ j];
  721. sum += y[i].qs[QK8_1/2 + j];
  722. }
  723. y[i].s = sum*d;
  724. }
  725. }
  726. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  727. assert(k % QK8_1 == 0);
  728. const int nb = k / QK8_1;
  729. block_q8_1 * restrict y = vy;
  730. #if defined(__ARM_NEON)
  731. for (int i = 0; i < nb; i++) {
  732. float32x4_t srcv [8];
  733. float32x4_t asrcv[8];
  734. float32x4_t amaxv[8];
  735. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  736. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  737. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  738. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  739. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  740. const float amax = vmaxvq_f32(amaxv[0]);
  741. const float d = amax / ((1 << 7) - 1);
  742. const float id = d ? 1.0f/d : 0.0f;
  743. y[i].d = d;
  744. int32x4_t accv = vdupq_n_s32(0);
  745. for (int j = 0; j < 8; j++) {
  746. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  747. const int32x4_t vi = vcvtnq_s32_f32(v);
  748. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  749. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  750. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  751. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  752. accv = vaddq_s32(accv, vi);
  753. }
  754. y[i].s = d * vaddvq_s32(accv);
  755. }
  756. #elif defined(__wasm_simd128__)
  757. for (int i = 0; i < nb; i++) {
  758. v128_t srcv [8];
  759. v128_t asrcv[8];
  760. v128_t amaxv[8];
  761. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  762. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  763. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  764. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  765. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  766. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  767. wasm_f32x4_extract_lane(amaxv[0], 1)),
  768. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  769. wasm_f32x4_extract_lane(amaxv[0], 3)));
  770. const float d = amax / ((1 << 7) - 1);
  771. const float id = d ? 1.0f/d : 0.0f;
  772. y[i].d = d;
  773. v128_t accv = wasm_i32x4_splat(0);
  774. for (int j = 0; j < 8; j++) {
  775. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  776. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  777. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  778. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  779. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  780. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  781. accv = wasm_i32x4_add(accv, vi);
  782. }
  783. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  784. wasm_i32x4_extract_lane(accv, 1) +
  785. wasm_i32x4_extract_lane(accv, 2) +
  786. wasm_i32x4_extract_lane(accv, 3));
  787. }
  788. #elif defined(__AVX2__) || defined(__AVX__)
  789. for (int i = 0; i < nb; i++) {
  790. // Load elements into 4 AVX vectors
  791. __m256 v0 = _mm256_loadu_ps( x );
  792. __m256 v1 = _mm256_loadu_ps( x + 8 );
  793. __m256 v2 = _mm256_loadu_ps( x + 16 );
  794. __m256 v3 = _mm256_loadu_ps( x + 24 );
  795. x += 32;
  796. // Compute max(abs(e)) for the block
  797. const __m256 signBit = _mm256_set1_ps( -0.0f );
  798. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  799. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  800. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  801. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  802. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  803. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  804. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  805. const float maxScalar = _mm_cvtss_f32( max4 );
  806. // Quantize these floats
  807. const float d = maxScalar / 127.f;
  808. y[i].d = d;
  809. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  810. const __m256 mul = _mm256_set1_ps( id );
  811. // Apply the multiplier
  812. v0 = _mm256_mul_ps( v0, mul );
  813. v1 = _mm256_mul_ps( v1, mul );
  814. v2 = _mm256_mul_ps( v2, mul );
  815. v3 = _mm256_mul_ps( v3, mul );
  816. // Round to nearest integer
  817. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  818. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  819. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  820. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  821. // Convert floats to integers
  822. __m256i i0 = _mm256_cvtps_epi32( v0 );
  823. __m256i i1 = _mm256_cvtps_epi32( v1 );
  824. __m256i i2 = _mm256_cvtps_epi32( v2 );
  825. __m256i i3 = _mm256_cvtps_epi32( v3 );
  826. #if defined(__AVX2__)
  827. // Compute the sum of the quants and set y[i].s
  828. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  829. // Convert int32 to int16
  830. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  831. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  832. // Convert int16 to int8
  833. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  834. // We got our precious signed bytes, but the order is now wrong
  835. // These AVX2 pack instructions process 16-byte pieces independently
  836. // The following instruction is fixing the order
  837. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  838. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  839. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  840. #else
  841. // Since we don't have in AVX some necessary functions,
  842. // we split the registers in half and call AVX2 analogs from SSE
  843. __m128i ni0 = _mm256_castsi256_si128( i0 );
  844. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  845. __m128i ni2 = _mm256_castsi256_si128( i1 );
  846. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  847. __m128i ni4 = _mm256_castsi256_si128( i2 );
  848. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  849. __m128i ni6 = _mm256_castsi256_si128( i3 );
  850. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  851. // Compute the sum of the quants and set y[i].s
  852. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  853. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  854. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  855. // Convert int32 to int16
  856. ni0 = _mm_packs_epi32( ni0, ni1 );
  857. ni2 = _mm_packs_epi32( ni2, ni3 );
  858. ni4 = _mm_packs_epi32( ni4, ni5 );
  859. ni6 = _mm_packs_epi32( ni6, ni7 );
  860. // Convert int16 to int8
  861. ni0 = _mm_packs_epi16( ni0, ni2 );
  862. ni4 = _mm_packs_epi16( ni4, ni6 );
  863. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  864. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  865. #endif
  866. }
  867. #elif defined(__riscv_v_intrinsic)
  868. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  869. for (int i = 0; i < nb; i++) {
  870. // load elements
  871. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  872. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  873. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  874. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  875. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  876. const float d = amax / ((1 << 7) - 1);
  877. const float id = d ? 1.0f/d : 0.0f;
  878. y[i].d = d;
  879. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  880. // convert to integer
  881. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  882. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  883. // store result
  884. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  885. // compute sum for y[i].s
  886. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  887. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  888. // set y[i].s
  889. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  890. y[i].s = sum*d;
  891. }
  892. #else
  893. GGML_UNUSED(nb);
  894. // scalar
  895. quantize_row_q8_1_reference(x, y, k);
  896. #endif
  897. }
  898. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  899. static const int qk = QK4_0;
  900. assert(k % qk == 0);
  901. const int nb = k / qk;
  902. for (int i = 0; i < nb; i++) {
  903. const float d = GGML_FP16_TO_FP32(x[i].d);
  904. for (int j = 0; j < qk/2; ++j) {
  905. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  906. const int x1 = (x[i].qs[j] >> 4) - 8;
  907. y[i*qk + j + 0 ] = x0*d;
  908. y[i*qk + j + qk/2] = x1*d;
  909. }
  910. }
  911. }
  912. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  913. static const int qk = QK4_1;
  914. assert(k % qk == 0);
  915. const int nb = k / qk;
  916. for (int i = 0; i < nb; i++) {
  917. const float d = GGML_FP16_TO_FP32(x[i].d);
  918. const float m = GGML_FP16_TO_FP32(x[i].m);
  919. for (int j = 0; j < qk/2; ++j) {
  920. const int x0 = (x[i].qs[j] & 0x0F);
  921. const int x1 = (x[i].qs[j] >> 4);
  922. y[i*qk + j + 0 ] = x0*d + m;
  923. y[i*qk + j + qk/2] = x1*d + m;
  924. }
  925. }
  926. }
  927. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  928. static const int qk = QK5_0;
  929. assert(k % qk == 0);
  930. const int nb = k / qk;
  931. for (int i = 0; i < nb; i++) {
  932. const float d = GGML_FP16_TO_FP32(x[i].d);
  933. uint32_t qh;
  934. memcpy(&qh, x[i].qh, sizeof(qh));
  935. for (int j = 0; j < qk/2; ++j) {
  936. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  937. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  938. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  939. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  940. y[i*qk + j + 0 ] = x0*d;
  941. y[i*qk + j + qk/2] = x1*d;
  942. }
  943. }
  944. }
  945. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  946. static const int qk = QK5_1;
  947. assert(k % qk == 0);
  948. const int nb = k / qk;
  949. for (int i = 0; i < nb; i++) {
  950. const float d = GGML_FP16_TO_FP32(x[i].d);
  951. const float m = GGML_FP16_TO_FP32(x[i].m);
  952. uint32_t qh;
  953. memcpy(&qh, x[i].qh, sizeof(qh));
  954. for (int j = 0; j < qk/2; ++j) {
  955. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  956. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  957. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  958. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  959. y[i*qk + j + 0 ] = x0*d + m;
  960. y[i*qk + j + qk/2] = x1*d + m;
  961. }
  962. }
  963. }
  964. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
  965. static const int qk = QK8_0;
  966. assert(k % qk == 0);
  967. const int nb = k / qk;
  968. for (int i = 0; i < nb; i++) {
  969. const float d = GGML_FP16_TO_FP32(x[i].d);
  970. for (int j = 0; j < qk; ++j) {
  971. y[i*qk + j] = x[i].qs[j]*d;
  972. }
  973. }
  974. }
  975. //
  976. // 2-6 bit quantization in super-blocks
  977. //
  978. //
  979. // ===================== Helper functions
  980. //
  981. static inline int nearest_int(float fval) {
  982. assert(fval <= 4194303.f);
  983. float val = fval + 12582912.f;
  984. int i; memcpy(&i, &val, sizeof(int));
  985. return (i & 0x007fffff) - 0x00400000;
  986. }
  987. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  988. const float * restrict qw) {
  989. float max = 0;
  990. float amax = 0;
  991. for (int i = 0; i < n; ++i) {
  992. float ax = fabsf(x[i]);
  993. if (ax > amax) { amax = ax; max = x[i]; }
  994. }
  995. if (amax < 1e-30f) { // all zero
  996. for (int i = 0; i < n; ++i) {
  997. L[i] = 0;
  998. }
  999. return 0.f;
  1000. }
  1001. float iscale = -nmax / max;
  1002. if (rmse_type == 0) {
  1003. for (int i = 0; i < n; ++i) {
  1004. int l = nearest_int(iscale * x[i]);
  1005. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1006. }
  1007. return 1/iscale;
  1008. }
  1009. bool return_early = false;
  1010. if (rmse_type < 0) {
  1011. rmse_type = -rmse_type;
  1012. return_early = true;
  1013. }
  1014. float sumlx = 0;
  1015. float suml2 = 0;
  1016. #ifdef HAVE_BUGGY_APPLE_LINKER
  1017. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1018. for (volatile int i = 0; i < n; ++i) {
  1019. #else
  1020. for (int i = 0; i < n; ++i) {
  1021. #endif
  1022. int l = nearest_int(iscale * x[i]);
  1023. l = MAX(-nmax, MIN(nmax-1, l));
  1024. L[i] = l + nmax;
  1025. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1026. sumlx += w*x[i]*l;
  1027. suml2 += w*l*l;
  1028. }
  1029. float scale = sumlx/suml2;
  1030. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1031. float best = scale * sumlx;
  1032. for (int is = -9; is <= 9; ++is) {
  1033. if (is == 0) {
  1034. continue;
  1035. }
  1036. iscale = -(nmax + 0.1f*is) / max;
  1037. sumlx = suml2 = 0;
  1038. for (int i = 0; i < n; ++i) {
  1039. int l = nearest_int(iscale * x[i]);
  1040. l = MAX(-nmax, MIN(nmax-1, l));
  1041. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1042. sumlx += w*x[i]*l;
  1043. suml2 += w*l*l;
  1044. }
  1045. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1046. for (int i = 0; i < n; ++i) {
  1047. int l = nearest_int(iscale * x[i]);
  1048. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1049. }
  1050. scale = sumlx/suml2; best = scale*sumlx;
  1051. }
  1052. }
  1053. return scale;
  1054. }
  1055. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1056. float max = 0;
  1057. float amax = 0;
  1058. for (int i = 0; i < n; ++i) {
  1059. float ax = fabsf(x[i]);
  1060. if (ax > amax) { amax = ax; max = x[i]; }
  1061. }
  1062. if (!amax) { // all zero
  1063. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1064. return 0.f;
  1065. }
  1066. float iscale = -nmax / max;
  1067. if (do_rmse) {
  1068. float sumlx = 0;
  1069. float suml2 = 0;
  1070. for (int i = 0; i < n; ++i) {
  1071. int l = nearest_int(iscale * x[i]);
  1072. l = MAX(-nmax, MIN(nmax-1, l));
  1073. L[i] = l;
  1074. float w = x[i]*x[i];
  1075. sumlx += w*x[i]*l;
  1076. suml2 += w*l*l;
  1077. }
  1078. for (int itry = 0; itry < 5; ++itry) {
  1079. int n_changed = 0;
  1080. for (int i = 0; i < n; ++i) {
  1081. float w = x[i]*x[i];
  1082. float slx = sumlx - w*x[i]*L[i];
  1083. if (slx > 0) {
  1084. float sl2 = suml2 - w*L[i]*L[i];
  1085. int new_l = nearest_int(x[i] * sl2 / slx);
  1086. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1087. if (new_l != L[i]) {
  1088. slx += w*x[i]*new_l;
  1089. sl2 += w*new_l*new_l;
  1090. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1091. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1092. ++n_changed;
  1093. }
  1094. }
  1095. }
  1096. }
  1097. if (!n_changed) {
  1098. break;
  1099. }
  1100. }
  1101. for (int i = 0; i < n; ++i) {
  1102. L[i] += nmax;
  1103. }
  1104. return sumlx / suml2;
  1105. }
  1106. for (int i = 0; i < n; ++i) {
  1107. int l = nearest_int(iscale * x[i]);
  1108. l = MAX(-nmax, MIN(nmax-1, l));
  1109. L[i] = l + nmax;
  1110. }
  1111. return 1/iscale;
  1112. }
  1113. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1114. int ntry, float alpha) {
  1115. float min = x[0];
  1116. float max = x[0];
  1117. for (int i = 1; i < n; ++i) {
  1118. if (x[i] < min) min = x[i];
  1119. if (x[i] > max) max = x[i];
  1120. }
  1121. if (max == min) {
  1122. for (int i = 0; i < n; ++i) L[i] = 0;
  1123. *the_min = 0;
  1124. return 0.f;
  1125. }
  1126. if (min > 0) min = 0;
  1127. float iscale = nmax/(max - min);
  1128. float scale = 1/iscale;
  1129. for (int itry = 0; itry < ntry; ++itry) {
  1130. float sumlx = 0; int suml2 = 0;
  1131. bool did_change = false;
  1132. for (int i = 0; i < n; ++i) {
  1133. int l = nearest_int(iscale*(x[i] - min));
  1134. l = MAX(0, MIN(nmax, l));
  1135. if (l != L[i]) {
  1136. L[i] = l;
  1137. did_change = true;
  1138. }
  1139. sumlx += (x[i] - min)*l;
  1140. suml2 += l*l;
  1141. }
  1142. scale = sumlx/suml2;
  1143. float sum = 0;
  1144. for (int i = 0; i < n; ++i) {
  1145. sum += x[i] - scale*L[i];
  1146. }
  1147. min = alpha*min + (1 - alpha)*sum/n;
  1148. if (min > 0) min = 0;
  1149. iscale = 1/scale;
  1150. if (!did_change) break;
  1151. }
  1152. *the_min = -min;
  1153. return scale;
  1154. }
  1155. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1156. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1157. float rmin, float rdelta, int nstep, bool use_mad) {
  1158. float min = x[0];
  1159. float max = x[0];
  1160. float sum_w = weights[0];
  1161. float sum_x = sum_w * x[0];
  1162. #ifdef HAVE_BUGGY_APPLE_LINKER
  1163. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1164. for (volatile int i = 1; i < n; ++i) {
  1165. #else
  1166. for (int i = 1; i < n; ++i) {
  1167. #endif
  1168. if (x[i] < min) min = x[i];
  1169. if (x[i] > max) max = x[i];
  1170. float w = weights[i];
  1171. sum_w += w;
  1172. sum_x += w * x[i];
  1173. }
  1174. if (min > 0) min = 0;
  1175. if (max == min) {
  1176. for (int i = 0; i < n; ++i) L[i] = 0;
  1177. *the_min = -min;
  1178. return 0.f;
  1179. }
  1180. float iscale = nmax/(max - min);
  1181. float scale = 1/iscale;
  1182. float best_mad = 0;
  1183. for (int i = 0; i < n; ++i) {
  1184. int l = nearest_int(iscale*(x[i] - min));
  1185. L[i] = MAX(0, MIN(nmax, l));
  1186. float diff = scale * L[i] + min - x[i];
  1187. diff = use_mad ? fabsf(diff) : diff * diff;
  1188. float w = weights[i];
  1189. best_mad += w * diff;
  1190. }
  1191. if (nstep < 1) {
  1192. *the_min = -min;
  1193. return scale;
  1194. }
  1195. for (int is = 0; is <= nstep; ++is) {
  1196. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1197. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1198. for (int i = 0; i < n; ++i) {
  1199. int l = nearest_int(iscale*(x[i] - min));
  1200. l = MAX(0, MIN(nmax, l));
  1201. Laux[i] = l;
  1202. float w = weights[i];
  1203. sum_l += w*l;
  1204. sum_l2 += w*l*l;
  1205. sum_xl += w*l*x[i];
  1206. }
  1207. float D = sum_w * sum_l2 - sum_l * sum_l;
  1208. if (D > 0) {
  1209. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1210. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1211. if (this_min > 0) {
  1212. this_min = 0;
  1213. this_scale = sum_xl / sum_l2;
  1214. }
  1215. float mad = 0;
  1216. for (int i = 0; i < n; ++i) {
  1217. float diff = this_scale * Laux[i] + this_min - x[i];
  1218. diff = use_mad ? fabsf(diff) : diff * diff;
  1219. float w = weights[i];
  1220. mad += w * diff;
  1221. }
  1222. if (mad < best_mad) {
  1223. for (int i = 0; i < n; ++i) {
  1224. L[i] = Laux[i];
  1225. }
  1226. best_mad = mad;
  1227. scale = this_scale;
  1228. min = this_min;
  1229. }
  1230. }
  1231. }
  1232. *the_min = -min;
  1233. return scale;
  1234. }
  1235. #if QK_K == 256
  1236. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1237. if (j < 4) {
  1238. *d = q[j] & 63; *m = q[j + 4] & 63;
  1239. } else {
  1240. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1241. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1242. }
  1243. }
  1244. #endif
  1245. //========================- 2-bit (de)-quantization
  1246. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  1247. assert(k % QK_K == 0);
  1248. const int nb = k / QK_K;
  1249. uint8_t L[QK_K];
  1250. uint8_t Laux[16];
  1251. float weights[16];
  1252. float mins[QK_K/16];
  1253. float scales[QK_K/16];
  1254. const float q4scale = 15.f;
  1255. for (int i = 0; i < nb; i++) {
  1256. float max_scale = 0; // as we are deducting the min, scales are always positive
  1257. float max_min = 0;
  1258. for (int j = 0; j < QK_K/16; ++j) {
  1259. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1260. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1261. float scale = scales[j];
  1262. if (scale > max_scale) {
  1263. max_scale = scale;
  1264. }
  1265. float min = mins[j];
  1266. if (min > max_min) {
  1267. max_min = min;
  1268. }
  1269. }
  1270. if (max_scale > 0) {
  1271. float iscale = q4scale/max_scale;
  1272. for (int j = 0; j < QK_K/16; ++j) {
  1273. int l = nearest_int(iscale*scales[j]);
  1274. y[i].scales[j] = l;
  1275. }
  1276. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1277. } else {
  1278. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1279. y[i].d = GGML_FP32_TO_FP16(0.f);
  1280. }
  1281. if (max_min > 0) {
  1282. float iscale = q4scale/max_min;
  1283. for (int j = 0; j < QK_K/16; ++j) {
  1284. int l = nearest_int(iscale*mins[j]);
  1285. y[i].scales[j] |= (l << 4);
  1286. }
  1287. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1288. } else {
  1289. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1290. }
  1291. for (int j = 0; j < QK_K/16; ++j) {
  1292. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1293. if (!d) continue;
  1294. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1295. for (int ii = 0; ii < 16; ++ii) {
  1296. int l = nearest_int((x[16*j + ii] + dm)/d);
  1297. l = MAX(0, MIN(3, l));
  1298. L[16*j + ii] = l;
  1299. }
  1300. }
  1301. #if QK_K == 256
  1302. for (int j = 0; j < QK_K; j += 128) {
  1303. for (int l = 0; l < 32; ++l) {
  1304. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1305. }
  1306. }
  1307. #else
  1308. for (int l = 0; l < 16; ++l) {
  1309. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1310. }
  1311. #endif
  1312. x += QK_K;
  1313. }
  1314. }
  1315. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  1316. assert(k % QK_K == 0);
  1317. const int nb = k / QK_K;
  1318. for (int i = 0; i < nb; i++) {
  1319. const float d = GGML_FP16_TO_FP32(x[i].d);
  1320. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1321. const uint8_t * q = x[i].qs;
  1322. #if QK_K == 256
  1323. int is = 0;
  1324. float dl, ml;
  1325. for (int n = 0; n < QK_K; n += 128) {
  1326. int shift = 0;
  1327. for (int j = 0; j < 4; ++j) {
  1328. uint8_t sc = x[i].scales[is++];
  1329. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1330. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1331. sc = x[i].scales[is++];
  1332. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1333. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1334. shift += 2;
  1335. }
  1336. q += 32;
  1337. }
  1338. #else
  1339. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1340. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1341. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1342. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1343. for (int l = 0; l < 16; ++l) {
  1344. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1345. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1346. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1347. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1348. }
  1349. y += QK_K;
  1350. #endif
  1351. }
  1352. }
  1353. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  1354. quantize_row_q2_K_reference(x, vy, k);
  1355. }
  1356. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1357. (void)hist; // TODO: collect histograms
  1358. for (int j = 0; j < n; j += k) {
  1359. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  1360. quantize_row_q2_K_reference(src + j, y, k);
  1361. }
  1362. return (n/QK_K*sizeof(block_q2_K));
  1363. }
  1364. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1365. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1366. float rmin, float rdelta, int nstep, bool use_mad) {
  1367. float min = x[0];
  1368. float max = x[0];
  1369. float sum_w = weights ? weights[0] : x[0]*x[0];
  1370. float sum_x = sum_w * x[0];
  1371. #ifdef HAVE_BUGGY_APPLE_LINKER
  1372. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1373. for (volatile int i = 1; i < n; ++i) {
  1374. #else
  1375. for (int i = 1; i < n; ++i) {
  1376. #endif
  1377. if (x[i] < min) min = x[i];
  1378. if (x[i] > max) max = x[i];
  1379. float w = weights ? weights[i] : x[i]*x[i];
  1380. sum_w += w;
  1381. sum_x += w * x[i];
  1382. }
  1383. if (min > 0) {
  1384. min = 0;
  1385. }
  1386. if (max <= min) {
  1387. memset(L, 0, n);
  1388. *the_min = -min;
  1389. return 0.f;
  1390. }
  1391. float iscale = nmax/(max - min);
  1392. float scale = 1/iscale;
  1393. float best_mad = 0;
  1394. for (int i = 0; i < n; ++i) {
  1395. int l = nearest_int(iscale*(x[i] - min));
  1396. L[i] = MAX(0, MIN(nmax, l));
  1397. float diff = scale * L[i] + min - x[i];
  1398. diff = use_mad ? fabsf(diff) : diff*diff;
  1399. float w = weights ? weights[i] : x[i]*x[i];
  1400. best_mad += w * diff;
  1401. }
  1402. if (nstep < 1) {
  1403. *the_min = -min;
  1404. return scale;
  1405. }
  1406. for (int is = 0; is <= nstep; ++is) {
  1407. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1408. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1409. for (int i = 0; i < n; ++i) {
  1410. int l = nearest_int(iscale*(x[i] - min));
  1411. l = MAX(0, MIN(nmax, l));
  1412. Laux[i] = l;
  1413. float w = weights ? weights[i] : x[i]*x[i];
  1414. sum_l += w*l;
  1415. sum_l2 += w*l*l;
  1416. sum_xl += w*l*x[i];
  1417. }
  1418. float D = sum_w * sum_l2 - sum_l * sum_l;
  1419. if (D > 0) {
  1420. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1421. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1422. if (this_min > 0) {
  1423. this_min = 0;
  1424. this_scale = sum_xl / sum_l2;
  1425. }
  1426. float mad = 0;
  1427. for (int i = 0; i < n; ++i) {
  1428. float diff = this_scale * Laux[i] + this_min - x[i];
  1429. diff = use_mad ? fabsf(diff) : diff*diff;
  1430. float w = weights ? weights[i] : x[i]*x[i];
  1431. mad += w * diff;
  1432. }
  1433. if (mad < best_mad) {
  1434. for (int i = 0; i < n; ++i) {
  1435. L[i] = Laux[i];
  1436. }
  1437. best_mad = mad;
  1438. scale = this_scale;
  1439. min = this_min;
  1440. }
  1441. }
  1442. }
  1443. *the_min = -min;
  1444. return scale;
  1445. }
  1446. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1447. float max = 0;
  1448. for (int i = 0; i < n; ++i) {
  1449. max = MAX(max, x[i]);
  1450. }
  1451. if (!max) { // all zero
  1452. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1453. return 0.f;
  1454. }
  1455. float iscale = nmax / max;
  1456. for (int i = 0; i < n; ++i) {
  1457. L[i] = nearest_int(iscale * x[i]);
  1458. }
  1459. float scale = 1/iscale;
  1460. float best_mse = 0;
  1461. for (int i = 0; i < n; ++i) {
  1462. float diff = x[i] - scale*L[i];
  1463. float w = quant_weights[i];
  1464. best_mse += w*diff*diff;
  1465. }
  1466. for (int is = -4; is <= 4; ++is) {
  1467. if (is == 0) continue;
  1468. float iscale_is = (0.1f*is + nmax)/max;
  1469. float scale_is = 1/iscale_is;
  1470. float mse = 0;
  1471. for (int i = 0; i < n; ++i) {
  1472. int l = nearest_int(iscale_is*x[i]);
  1473. l = MIN(nmax, l);
  1474. float diff = x[i] - scale_is*l;
  1475. float w = quant_weights[i];
  1476. mse += w*diff*diff;
  1477. }
  1478. if (mse < best_mse) {
  1479. best_mse = mse;
  1480. iscale = iscale_is;
  1481. }
  1482. }
  1483. float sumlx = 0;
  1484. float suml2 = 0;
  1485. for (int i = 0; i < n; ++i) {
  1486. int l = nearest_int(iscale * x[i]);
  1487. l = MIN(nmax, l);
  1488. L[i] = l;
  1489. float w = quant_weights[i];
  1490. sumlx += w*x[i]*l;
  1491. suml2 += w*l*l;
  1492. }
  1493. for (int itry = 0; itry < 5; ++itry) {
  1494. int n_changed = 0;
  1495. for (int i = 0; i < n; ++i) {
  1496. float w = quant_weights[i];
  1497. float slx = sumlx - w*x[i]*L[i];
  1498. float sl2 = suml2 - w*L[i]*L[i];
  1499. if (slx > 0 && sl2 > 0) {
  1500. int new_l = nearest_int(x[i] * sl2 / slx);
  1501. new_l = MIN(nmax, new_l);
  1502. if (new_l != L[i]) {
  1503. slx += w*x[i]*new_l;
  1504. sl2 += w*new_l*new_l;
  1505. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1506. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1507. ++n_changed;
  1508. }
  1509. }
  1510. }
  1511. }
  1512. if (!n_changed) {
  1513. break;
  1514. }
  1515. }
  1516. return sumlx / suml2;
  1517. }
  1518. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1519. GGML_ASSERT(quant_weights);
  1520. assert(k % QK_K == 0);
  1521. const int nb = k / QK_K;
  1522. const bool requantize = true;
  1523. uint8_t L[QK_K];
  1524. uint8_t Laux[16];
  1525. float mins[QK_K/16];
  1526. float scales[QK_K/16];
  1527. float sw[QK_K/16];
  1528. float weight[QK_K/16];
  1529. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1530. for (int i = 0; i < nb; i++) {
  1531. memset(sw, 0, QK_K/16*sizeof(float));
  1532. float sumx2 = 0;
  1533. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1534. float sigma2 = sumx2/QK_K;
  1535. for (int j = 0; j < QK_K/16; ++j) {
  1536. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1537. for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1538. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1539. scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1540. }
  1541. float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1542. float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1543. y[i].d = GGML_FP32_TO_FP16(dm);
  1544. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1545. dm = GGML_FP16_TO_FP32(y[i].d);
  1546. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1547. for (int j = 0; j < QK_K/16; ++j) {
  1548. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1549. }
  1550. if (requantize) {
  1551. for (int j = 0; j < QK_K/16; ++j) {
  1552. const float d = dm * (y[i].scales[j] & 0xF);
  1553. if (!d) continue;
  1554. const float m = mm * (y[i].scales[j] >> 4);
  1555. for (int ii = 0; ii < 16; ++ii) {
  1556. int l = nearest_int((x[16*j + ii] + m)/d);
  1557. l = MAX(0, MIN(3, l));
  1558. L[16*j + ii] = l;
  1559. }
  1560. }
  1561. }
  1562. #if QK_K == 256
  1563. for (int j = 0; j < QK_K; j += 128) {
  1564. for (int l = 0; l < 32; ++l) {
  1565. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1566. }
  1567. }
  1568. #else
  1569. for (int l = 0; l < 16; ++l) {
  1570. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1571. }
  1572. #endif
  1573. x += QK_K;
  1574. }
  1575. }
  1576. size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1577. (void)hist;
  1578. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1579. if (!quant_weights) {
  1580. quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
  1581. }
  1582. else {
  1583. char * qrow = (char *)dst;
  1584. for (int row = 0; row < nrow; ++row) {
  1585. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1586. src += n_per_row;
  1587. qrow += row_size;
  1588. }
  1589. }
  1590. return nrow * row_size;
  1591. }
  1592. //========================= 3-bit (de)-quantization
  1593. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  1594. assert(k % QK_K == 0);
  1595. const int nb = k / QK_K;
  1596. int8_t L[QK_K];
  1597. float scales[QK_K / 16];
  1598. for (int i = 0; i < nb; i++) {
  1599. float max_scale = 0;
  1600. float amax = 0;
  1601. for (int j = 0; j < QK_K/16; ++j) {
  1602. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1603. float scale = fabsf(scales[j]);
  1604. if (scale > amax) {
  1605. amax = scale; max_scale = scales[j];
  1606. }
  1607. }
  1608. #if QK_K == 256
  1609. memset(y[i].scales, 0, 12);
  1610. if (max_scale) {
  1611. float iscale = -32.f/max_scale;
  1612. for (int j = 0; j < QK_K/16; ++j) {
  1613. int8_t l = nearest_int(iscale*scales[j]);
  1614. l = MAX(-32, MIN(31, l)) + 32;
  1615. if (j < 8) {
  1616. y[i].scales[j] = l & 0xF;
  1617. } else {
  1618. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1619. }
  1620. l >>= 4;
  1621. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1622. }
  1623. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1624. } else {
  1625. y[i].d = GGML_FP32_TO_FP16(0.f);
  1626. }
  1627. int8_t sc;
  1628. for (int j = 0; j < QK_K/16; ++j) {
  1629. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1630. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1631. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1632. if (!d) {
  1633. continue;
  1634. }
  1635. for (int ii = 0; ii < 16; ++ii) {
  1636. int l = nearest_int(x[16*j + ii]/d);
  1637. l = MAX(-4, MIN(3, l));
  1638. L[16*j + ii] = l + 4;
  1639. }
  1640. }
  1641. #else
  1642. if (max_scale) {
  1643. float iscale = -8.f/max_scale;
  1644. for (int j = 0; j < QK_K/16; j+=2) {
  1645. int l1 = nearest_int(iscale*scales[j]);
  1646. l1 = 8 + MAX(-8, MIN(7, l1));
  1647. int l2 = nearest_int(iscale*scales[j+1]);
  1648. l2 = 8 + MAX(-8, MIN(7, l2));
  1649. y[i].scales[j/2] = l1 | (l2 << 4);
  1650. }
  1651. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1652. } else {
  1653. for (int j = 0; j < QK_K/16; j+=2) {
  1654. y[i].scales[j/2] = 0;
  1655. }
  1656. y[i].d = GGML_FP32_TO_FP16(0.f);
  1657. }
  1658. for (int j = 0; j < QK_K/16; ++j) {
  1659. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  1660. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  1661. if (!d) {
  1662. continue;
  1663. }
  1664. for (int ii = 0; ii < 16; ++ii) {
  1665. int l = nearest_int(x[16*j + ii]/d);
  1666. l = MAX(-4, MIN(3, l));
  1667. L[16*j + ii] = l + 4;
  1668. }
  1669. }
  1670. #endif
  1671. memset(y[i].hmask, 0, QK_K/8);
  1672. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1673. int m = 0;
  1674. uint8_t hm = 1;
  1675. for (int j = 0; j < QK_K; ++j) {
  1676. if (L[j] > 3) {
  1677. y[i].hmask[m] |= hm;
  1678. L[j] -= 4;
  1679. }
  1680. if (++m == QK_K/8) {
  1681. m = 0; hm <<= 1;
  1682. }
  1683. }
  1684. #if QK_K == 256
  1685. for (int j = 0; j < QK_K; j += 128) {
  1686. for (int l = 0; l < 32; ++l) {
  1687. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1688. }
  1689. }
  1690. #else
  1691. for (int l = 0; l < 16; ++l) {
  1692. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1693. }
  1694. #endif
  1695. x += QK_K;
  1696. }
  1697. }
  1698. #if QK_K == 256
  1699. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1700. assert(k % QK_K == 0);
  1701. const int nb = k / QK_K;
  1702. const uint32_t kmask1 = 0x03030303;
  1703. const uint32_t kmask2 = 0x0f0f0f0f;
  1704. uint32_t aux[4];
  1705. const int8_t * scales = (const int8_t*)aux;
  1706. for (int i = 0; i < nb; i++) {
  1707. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1708. const uint8_t * restrict q = x[i].qs;
  1709. const uint8_t * restrict hm = x[i].hmask;
  1710. uint8_t m = 1;
  1711. memcpy(aux, x[i].scales, 12);
  1712. uint32_t tmp = aux[2];
  1713. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1714. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1715. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1716. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1717. int is = 0;
  1718. float dl;
  1719. for (int n = 0; n < QK_K; n += 128) {
  1720. int shift = 0;
  1721. for (int j = 0; j < 4; ++j) {
  1722. dl = d_all * (scales[is++] - 32);
  1723. for (int l = 0; l < 16; ++l) {
  1724. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1725. }
  1726. dl = d_all * (scales[is++] - 32);
  1727. for (int l = 0; l < 16; ++l) {
  1728. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  1729. }
  1730. shift += 2;
  1731. m <<= 1;
  1732. }
  1733. q += 32;
  1734. }
  1735. }
  1736. }
  1737. #else
  1738. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1739. assert(k % QK_K == 0);
  1740. assert(QK_K == 64);
  1741. const int nb = k / QK_K;
  1742. for (int i = 0; i < nb; i++) {
  1743. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1744. const uint8_t * restrict q = x[i].qs;
  1745. const uint8_t * restrict hm = x[i].hmask;
  1746. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1747. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1748. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1749. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1750. for (int l=0; l<8; ++l) {
  1751. uint8_t h = hm[l];
  1752. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  1753. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  1754. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  1755. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  1756. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  1757. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  1758. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  1759. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  1760. }
  1761. y += QK_K;
  1762. }
  1763. }
  1764. #endif
  1765. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  1766. quantize_row_q3_K_reference(x, vy, k);
  1767. }
  1768. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1769. (void)hist; // TODO: collect histograms
  1770. for (int j = 0; j < n; j += k) {
  1771. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  1772. quantize_row_q3_K_reference(src + j, y, k);
  1773. }
  1774. return (n/QK_K*sizeof(block_q3_K));
  1775. }
  1776. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
  1777. #if QK_K != 256
  1778. (void)quant_weights;
  1779. quantize_row_q3_K_reference(x, y, n_per_row);
  1780. #else
  1781. assert(n_per_row % QK_K == 0);
  1782. const int nb = n_per_row / QK_K;
  1783. int8_t L[QK_K];
  1784. float scales[QK_K / 16];
  1785. float weight[16];
  1786. float sw[QK_K / 16];
  1787. int8_t Ls[QK_K / 16];
  1788. for (int i = 0; i < nb; i++) {
  1789. float sumx2 = 0;
  1790. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1791. float sigma2 = 2*sumx2/QK_K;
  1792. for (int j = 0; j < QK_K/16; ++j) {
  1793. if (quant_weights) {
  1794. const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
  1795. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  1796. } else {
  1797. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  1798. }
  1799. float sumw = 0;
  1800. for (int l = 0; l < 16; ++l) sumw += weight[l];
  1801. sw[j] = sumw;
  1802. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  1803. }
  1804. memset(y[i].scales, 0, 12);
  1805. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  1806. for (int j = 0; j < QK_K/16; ++j) {
  1807. int l = Ls[j];
  1808. if (j < 8) {
  1809. y[i].scales[j] = l & 0xF;
  1810. } else {
  1811. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1812. }
  1813. l >>= 4;
  1814. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1815. }
  1816. y[i].d = GGML_FP32_TO_FP16(d_block);
  1817. int8_t sc;
  1818. for (int j = 0; j < QK_K/16; ++j) {
  1819. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1820. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1821. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1822. if (!d) {
  1823. continue;
  1824. }
  1825. for (int ii = 0; ii < 16; ++ii) {
  1826. int l = nearest_int(x[16*j + ii]/d);
  1827. l = MAX(-4, MIN(3, l));
  1828. L[16*j + ii] = l + 4;
  1829. }
  1830. }
  1831. memset(y[i].hmask, 0, QK_K/8);
  1832. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1833. int m = 0;
  1834. uint8_t hm = 1;
  1835. for (int j = 0; j < QK_K; ++j) {
  1836. if (L[j] > 3) {
  1837. y[i].hmask[m] |= hm;
  1838. L[j] -= 4;
  1839. }
  1840. if (++m == QK_K/8) {
  1841. m = 0; hm <<= 1;
  1842. }
  1843. }
  1844. for (int j = 0; j < QK_K; j += 128) {
  1845. for (int l = 0; l < 32; ++l) {
  1846. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1847. }
  1848. }
  1849. x += QK_K;
  1850. }
  1851. #endif
  1852. }
  1853. size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1854. (void)hist;
  1855. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  1856. if (!quant_weights) {
  1857. quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
  1858. }
  1859. else {
  1860. char * qrow = (char *)dst;
  1861. for (int row = 0; row < nrow; ++row) {
  1862. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  1863. src += n_per_row;
  1864. qrow += row_size;
  1865. }
  1866. }
  1867. return nrow * row_size;
  1868. }
  1869. // ====================== 4-bit (de)-quantization
  1870. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  1871. assert(k % QK_K == 0);
  1872. const int nb = k / QK_K;
  1873. uint8_t L[QK_K];
  1874. uint8_t Laux[32];
  1875. float weights[32];
  1876. float mins[QK_K/32];
  1877. float scales[QK_K/32];
  1878. for (int i = 0; i < nb; i++) {
  1879. float max_scale = 0; // as we are deducting the min, scales are always positive
  1880. float max_min = 0;
  1881. for (int j = 0; j < QK_K/32; ++j) {
  1882. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  1883. float sum_x2 = 0;
  1884. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  1885. float av_x = sqrtf(sum_x2/32);
  1886. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1887. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  1888. float scale = scales[j];
  1889. if (scale > max_scale) {
  1890. max_scale = scale;
  1891. }
  1892. float min = mins[j];
  1893. if (min > max_min) {
  1894. max_min = min;
  1895. }
  1896. }
  1897. #if QK_K == 256
  1898. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  1899. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  1900. for (int j = 0; j < QK_K/32; ++j) {
  1901. uint8_t ls = nearest_int(inv_scale*scales[j]);
  1902. uint8_t lm = nearest_int(inv_min*mins[j]);
  1903. ls = MIN(63, ls);
  1904. lm = MIN(63, lm);
  1905. if (j < 4) {
  1906. y[i].scales[j] = ls;
  1907. y[i].scales[j+4] = lm;
  1908. } else {
  1909. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1910. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1911. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1912. }
  1913. }
  1914. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  1915. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  1916. uint8_t sc, m;
  1917. for (int j = 0; j < QK_K/32; ++j) {
  1918. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1919. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1920. if (!d) continue;
  1921. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1922. for (int ii = 0; ii < 32; ++ii) {
  1923. int l = nearest_int((x[32*j + ii] + dm)/d);
  1924. l = MAX(0, MIN(15, l));
  1925. L[32*j + ii] = l;
  1926. }
  1927. }
  1928. #else
  1929. const float s_factor = 15.f;
  1930. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  1931. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  1932. int d1 = nearest_int(inv_scale*scales[0]);
  1933. int m1 = nearest_int(inv_min*mins[0]);
  1934. int d2 = nearest_int(inv_scale*scales[1]);
  1935. int m2 = nearest_int(inv_min*mins[1]);
  1936. y[i].scales[0] = d1 | (m1 << 4);
  1937. y[i].scales[1] = d2 | (m2 << 4);
  1938. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  1939. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  1940. float sumlx = 0;
  1941. int suml2 = 0;
  1942. for (int j = 0; j < QK_K/32; ++j) {
  1943. const uint8_t sd = y[i].scales[j] & 0xF;
  1944. const uint8_t sm = y[i].scales[j] >> 4;
  1945. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  1946. if (!d) continue;
  1947. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  1948. for (int ii = 0; ii < 32; ++ii) {
  1949. int l = nearest_int((x[32*j + ii] + m)/d);
  1950. l = MAX(0, MIN(15, l));
  1951. L[32*j + ii] = l;
  1952. sumlx += (x[32*j + ii] + m)*l*sd;
  1953. suml2 += l*l*sd*sd;
  1954. }
  1955. }
  1956. if (suml2) {
  1957. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  1958. }
  1959. #endif
  1960. uint8_t * q = y[i].qs;
  1961. for (int j = 0; j < QK_K; j += 64) {
  1962. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  1963. q += 32;
  1964. }
  1965. x += QK_K;
  1966. }
  1967. }
  1968. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  1969. assert(k % QK_K == 0);
  1970. const int nb = k / QK_K;
  1971. for (int i = 0; i < nb; i++) {
  1972. const uint8_t * q = x[i].qs;
  1973. #if QK_K == 256
  1974. const float d = GGML_FP16_TO_FP32(x[i].d);
  1975. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1976. int is = 0;
  1977. uint8_t sc, m;
  1978. for (int j = 0; j < QK_K; j += 64) {
  1979. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  1980. const float d1 = d * sc; const float m1 = min * m;
  1981. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  1982. const float d2 = d * sc; const float m2 = min * m;
  1983. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  1984. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  1985. q += 32; is += 2;
  1986. }
  1987. #else
  1988. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  1989. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  1990. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  1991. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  1992. for (int l = 0; l < 32; ++l) {
  1993. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  1994. y[l+32] = d2 * (q[l] >> 4) - m2;
  1995. }
  1996. y += QK_K;
  1997. #endif
  1998. }
  1999. }
  2000. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  2001. assert(k % QK_K == 0);
  2002. block_q4_K * restrict y = vy;
  2003. quantize_row_q4_K_reference(x, y, k);
  2004. }
  2005. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2006. assert(k % QK_K == 0);
  2007. (void)hist; // TODO: collect histograms
  2008. for (int j = 0; j < n; j += k) {
  2009. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  2010. quantize_row_q4_K_reference(src + j, y, k);
  2011. }
  2012. return (n/QK_K*sizeof(block_q4_K));
  2013. }
  2014. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
  2015. #if QK_K != 256
  2016. (void)quant_weights;
  2017. quantize_row_q4_K_reference(x, y, n_per_row);
  2018. #else
  2019. assert(n_per_row % QK_K == 0);
  2020. const int nb = n_per_row / QK_K;
  2021. uint8_t L[QK_K];
  2022. uint8_t Laux[32];
  2023. uint8_t Ls[QK_K/32];
  2024. uint8_t Lm[QK_K/32];
  2025. float weights[32];
  2026. float sw[QK_K/32];
  2027. float mins[QK_K/32];
  2028. float scales[QK_K/32];
  2029. for (int i = 0; i < nb; i++) {
  2030. float sum_x2 = 0;
  2031. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2032. float sigma2 = 2*sum_x2/QK_K;
  2033. float av_x = sqrtf(sigma2);
  2034. for (int j = 0; j < QK_K/32; ++j) {
  2035. if (quant_weights) {
  2036. const float * qw = quant_weights + QK_K*i + 32*j;
  2037. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2038. } else {
  2039. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2040. }
  2041. float sumw = 0;
  2042. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2043. sw[j] = sumw;
  2044. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2045. }
  2046. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2047. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2048. for (int j = 0; j < QK_K/32; ++j) {
  2049. uint8_t ls = Ls[j];
  2050. uint8_t lm = Lm[j];
  2051. if (j < 4) {
  2052. y[i].scales[j] = ls;
  2053. y[i].scales[j+4] = lm;
  2054. } else {
  2055. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2056. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2057. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2058. }
  2059. }
  2060. y[i].d = GGML_FP32_TO_FP16(d_block);
  2061. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2062. uint8_t sc, m;
  2063. for (int j = 0; j < QK_K/32; ++j) {
  2064. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2065. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2066. if (!d) continue;
  2067. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2068. for (int ii = 0; ii < 32; ++ii) {
  2069. int l = nearest_int((x[32*j + ii] + dm)/d);
  2070. l = MAX(0, MIN(15, l));
  2071. L[32*j + ii] = l;
  2072. }
  2073. }
  2074. uint8_t * q = y[i].qs;
  2075. for (int j = 0; j < QK_K; j += 64) {
  2076. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2077. q += 32;
  2078. }
  2079. x += QK_K;
  2080. }
  2081. #endif
  2082. }
  2083. size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2084. (void)hist;
  2085. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2086. if (!quant_weights) {
  2087. quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
  2088. }
  2089. else {
  2090. char * qrow = (char *)dst;
  2091. for (int row = 0; row < nrow; ++row) {
  2092. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2093. src += n_per_row;
  2094. qrow += row_size;
  2095. }
  2096. }
  2097. return nrow * row_size;
  2098. }
  2099. // ====================== 5-bit (de)-quantization
  2100. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  2101. assert(k % QK_K == 0);
  2102. const int nb = k / QK_K;
  2103. #if QK_K == 256
  2104. uint8_t L[QK_K];
  2105. float mins[QK_K/32];
  2106. float scales[QK_K/32];
  2107. float weights[32];
  2108. uint8_t Laux[32];
  2109. #else
  2110. int8_t L[QK_K];
  2111. float scales[QK_K/16];
  2112. #endif
  2113. for (int i = 0; i < nb; i++) {
  2114. #if QK_K == 256
  2115. float max_scale = 0; // as we are deducting the min, scales are always positive
  2116. float max_min = 0;
  2117. for (int j = 0; j < QK_K/32; ++j) {
  2118. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2119. float sum_x2 = 0;
  2120. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2121. float av_x = sqrtf(sum_x2/32);
  2122. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2123. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2124. float scale = scales[j];
  2125. if (scale > max_scale) {
  2126. max_scale = scale;
  2127. }
  2128. float min = mins[j];
  2129. if (min > max_min) {
  2130. max_min = min;
  2131. }
  2132. }
  2133. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2134. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2135. for (int j = 0; j < QK_K/32; ++j) {
  2136. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2137. uint8_t lm = nearest_int(inv_min*mins[j]);
  2138. ls = MIN(63, ls);
  2139. lm = MIN(63, lm);
  2140. if (j < 4) {
  2141. y[i].scales[j] = ls;
  2142. y[i].scales[j+4] = lm;
  2143. } else {
  2144. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2145. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2146. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2147. }
  2148. }
  2149. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2150. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2151. uint8_t sc, m;
  2152. for (int j = 0; j < QK_K/32; ++j) {
  2153. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2154. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2155. if (!d) continue;
  2156. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2157. for (int ii = 0; ii < 32; ++ii) {
  2158. int l = nearest_int((x[32*j + ii] + dm)/d);
  2159. l = MAX(0, MIN(31, l));
  2160. L[32*j + ii] = l;
  2161. }
  2162. }
  2163. uint8_t * restrict qh = y[i].qh;
  2164. uint8_t * restrict ql = y[i].qs;
  2165. memset(qh, 0, QK_K/8);
  2166. uint8_t m1 = 1, m2 = 2;
  2167. for (int n = 0; n < QK_K; n += 64) {
  2168. for (int j = 0; j < 32; ++j) {
  2169. int l1 = L[n + j];
  2170. if (l1 > 15) {
  2171. l1 -= 16; qh[j] |= m1;
  2172. }
  2173. int l2 = L[n + j + 32];
  2174. if (l2 > 15) {
  2175. l2 -= 16; qh[j] |= m2;
  2176. }
  2177. ql[j] = l1 | (l2 << 4);
  2178. }
  2179. m1 <<= 2; m2 <<= 2;
  2180. ql += 32;
  2181. }
  2182. #else
  2183. float max_scale = 0, amax = 0;
  2184. for (int j = 0; j < QK_K/16; ++j) {
  2185. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2186. float abs_scale = fabsf(scales[j]);
  2187. if (abs_scale > amax) {
  2188. amax = abs_scale;
  2189. max_scale = scales[j];
  2190. }
  2191. }
  2192. float iscale = -128.f/max_scale;
  2193. for (int j = 0; j < QK_K/16; ++j) {
  2194. int l = nearest_int(iscale*scales[j]);
  2195. y[i].scales[j] = MAX(-128, MIN(127, l));
  2196. }
  2197. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2198. for (int j = 0; j < QK_K/16; ++j) {
  2199. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2200. if (!d) continue;
  2201. for (int ii = 0; ii < 16; ++ii) {
  2202. int l = nearest_int(x[16*j + ii]/d);
  2203. l = MAX(-16, MIN(15, l));
  2204. L[16*j + ii] = l + 16;
  2205. }
  2206. }
  2207. uint8_t * restrict qh = y[i].qh;
  2208. uint8_t * restrict ql = y[i].qs;
  2209. memset(qh, 0, QK_K/8);
  2210. for (int j = 0; j < 32; ++j) {
  2211. int jm = j%8;
  2212. int is = j/8;
  2213. int l1 = L[j];
  2214. if (l1 > 15) {
  2215. l1 -= 16; qh[jm] |= (1 << is);
  2216. }
  2217. int l2 = L[j + 32];
  2218. if (l2 > 15) {
  2219. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2220. }
  2221. ql[j] = l1 | (l2 << 4);
  2222. }
  2223. #endif
  2224. x += QK_K;
  2225. }
  2226. }
  2227. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  2228. assert(k % QK_K == 0);
  2229. const int nb = k / QK_K;
  2230. for (int i = 0; i < nb; i++) {
  2231. const uint8_t * ql = x[i].qs;
  2232. const uint8_t * qh = x[i].qh;
  2233. #if QK_K == 256
  2234. const float d = GGML_FP16_TO_FP32(x[i].d);
  2235. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2236. int is = 0;
  2237. uint8_t sc, m;
  2238. uint8_t u1 = 1, u2 = 2;
  2239. for (int j = 0; j < QK_K; j += 64) {
  2240. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2241. const float d1 = d * sc; const float m1 = min * m;
  2242. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2243. const float d2 = d * sc; const float m2 = min * m;
  2244. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2245. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2246. ql += 32; is += 2;
  2247. u1 <<= 2; u2 <<= 2;
  2248. }
  2249. #else
  2250. float d = GGML_FP16_TO_FP32(x[i].d);
  2251. const int8_t * restrict s = x[i].scales;
  2252. for (int l = 0; l < 8; ++l) {
  2253. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2254. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2255. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2256. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2257. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2258. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2259. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2260. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2261. }
  2262. y += QK_K;
  2263. #endif
  2264. }
  2265. }
  2266. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  2267. assert(k % QK_K == 0);
  2268. block_q5_K * restrict y = vy;
  2269. quantize_row_q5_K_reference(x, y, k);
  2270. }
  2271. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2272. assert(k % QK_K == 0);
  2273. (void)hist; // TODO: collect histograms
  2274. for (int j = 0; j < n; j += k) {
  2275. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  2276. quantize_row_q5_K_reference(src + j, y, k);
  2277. }
  2278. return (n/QK_K*sizeof(block_q5_K));
  2279. }
  2280. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
  2281. #if QK_K != 256
  2282. (void)quant_weights;
  2283. quantize_row_q5_K_reference(x, y, n_per_row);
  2284. #else
  2285. assert(n_per_row % QK_K == 0);
  2286. const int nb = n_per_row / QK_K;
  2287. uint8_t L[QK_K];
  2288. uint8_t Laux[32];
  2289. uint8_t Ls[QK_K/32];
  2290. uint8_t Lm[QK_K/32];
  2291. float mins[QK_K/32];
  2292. float scales[QK_K/32];
  2293. float sw[QK_K/32];
  2294. float weights[32];
  2295. for (int i = 0; i < nb; i++) {
  2296. float sum_x2 = 0;
  2297. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2298. float sigma2 = 2*sum_x2/QK_K;
  2299. float av_x = sqrtf(sigma2);
  2300. for (int j = 0; j < QK_K/32; ++j) {
  2301. if (quant_weights) {
  2302. const float * qw = quant_weights + QK_K*i + 32*j;
  2303. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2304. } else {
  2305. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2306. }
  2307. float sumw = 0;
  2308. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2309. sw[j] = sumw;
  2310. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2311. }
  2312. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2313. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2314. for (int j = 0; j < QK_K/32; ++j) {
  2315. uint8_t ls = Ls[j];
  2316. uint8_t lm = Lm[j];
  2317. ls = MIN(63, ls);
  2318. lm = MIN(63, lm);
  2319. if (j < 4) {
  2320. y[i].scales[j] = ls;
  2321. y[i].scales[j+4] = lm;
  2322. } else {
  2323. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2324. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2325. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2326. }
  2327. }
  2328. y[i].d = GGML_FP32_TO_FP16(d_block);
  2329. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2330. uint8_t sc, m;
  2331. for (int j = 0; j < QK_K/32; ++j) {
  2332. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2333. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2334. if (!d) continue;
  2335. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2336. for (int ii = 0; ii < 32; ++ii) {
  2337. int l = nearest_int((x[32*j + ii] + dm)/d);
  2338. l = MAX(0, MIN(31, l));
  2339. L[32*j + ii] = l;
  2340. }
  2341. }
  2342. uint8_t * restrict qh = y[i].qh;
  2343. uint8_t * restrict ql = y[i].qs;
  2344. memset(qh, 0, QK_K/8);
  2345. uint8_t m1 = 1, m2 = 2;
  2346. for (int n = 0; n < QK_K; n += 64) {
  2347. for (int j = 0; j < 32; ++j) {
  2348. int l1 = L[n + j];
  2349. if (l1 > 15) {
  2350. l1 -= 16; qh[j] |= m1;
  2351. }
  2352. int l2 = L[n + j + 32];
  2353. if (l2 > 15) {
  2354. l2 -= 16; qh[j] |= m2;
  2355. }
  2356. ql[j] = l1 | (l2 << 4);
  2357. }
  2358. m1 <<= 2; m2 <<= 2;
  2359. ql += 32;
  2360. }
  2361. x += QK_K;
  2362. }
  2363. #endif
  2364. }
  2365. size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2366. (void)hist;
  2367. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2368. if (!quant_weights) {
  2369. quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
  2370. }
  2371. else {
  2372. char * qrow = (char *)dst;
  2373. for (int row = 0; row < nrow; ++row) {
  2374. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2375. src += n_per_row;
  2376. qrow += row_size;
  2377. }
  2378. }
  2379. return nrow * row_size;
  2380. }
  2381. // ====================== 6-bit (de)-quantization
  2382. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  2383. assert(k % QK_K == 0);
  2384. const int nb = k / QK_K;
  2385. int8_t L[QK_K];
  2386. float scales[QK_K/16];
  2387. for (int i = 0; i < nb; i++) {
  2388. float max_scale = 0;
  2389. float max_abs_scale = 0;
  2390. for (int ib = 0; ib < QK_K/16; ++ib) {
  2391. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2392. scales[ib] = scale;
  2393. const float abs_scale = fabsf(scale);
  2394. if (abs_scale > max_abs_scale) {
  2395. max_abs_scale = abs_scale;
  2396. max_scale = scale;
  2397. }
  2398. }
  2399. if (!max_abs_scale) {
  2400. memset(&y[i], 0, sizeof(block_q6_K));
  2401. y[i].d = GGML_FP32_TO_FP16(0.f);
  2402. x += QK_K;
  2403. continue;
  2404. }
  2405. float iscale = -128.f/max_scale;
  2406. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2407. for (int ib = 0; ib < QK_K/16; ++ib) {
  2408. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2409. }
  2410. for (int j = 0; j < QK_K/16; ++j) {
  2411. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2412. if (!d) {
  2413. continue;
  2414. }
  2415. for (int ii = 0; ii < 16; ++ii) {
  2416. int l = nearest_int(x[16*j + ii]/d);
  2417. l = MAX(-32, MIN(31, l));
  2418. L[16*j + ii] = l + 32;
  2419. }
  2420. }
  2421. uint8_t * restrict ql = y[i].ql;
  2422. uint8_t * restrict qh = y[i].qh;
  2423. #if QK_K == 256
  2424. for (int j = 0; j < QK_K; j += 128) {
  2425. for (int l = 0; l < 32; ++l) {
  2426. const uint8_t q1 = L[j + l + 0] & 0xF;
  2427. const uint8_t q2 = L[j + l + 32] & 0xF;
  2428. const uint8_t q3 = L[j + l + 64] & 0xF;
  2429. const uint8_t q4 = L[j + l + 96] & 0xF;
  2430. ql[l+ 0] = q1 | (q3 << 4);
  2431. ql[l+32] = q2 | (q4 << 4);
  2432. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2433. }
  2434. ql += 64;
  2435. qh += 32;
  2436. }
  2437. #else
  2438. for (int l = 0; l < 32; ++l) {
  2439. const uint8_t q1 = L[l + 0] & 0xF;
  2440. const uint8_t q2 = L[l + 32] & 0xF;
  2441. ql[l] = q1 | (q2 << 4);
  2442. }
  2443. for (int l = 0; l < 16; ++l) {
  2444. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2445. }
  2446. #endif
  2447. x += QK_K;
  2448. }
  2449. }
  2450. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  2451. assert(k % QK_K == 0);
  2452. const int nb = k / QK_K;
  2453. for (int i = 0; i < nb; i++) {
  2454. const float d = GGML_FP16_TO_FP32(x[i].d);
  2455. const uint8_t * restrict ql = x[i].ql;
  2456. const uint8_t * restrict qh = x[i].qh;
  2457. const int8_t * restrict sc = x[i].scales;
  2458. #if QK_K == 256
  2459. for (int n = 0; n < QK_K; n += 128) {
  2460. for (int l = 0; l < 32; ++l) {
  2461. int is = l/16;
  2462. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2463. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2464. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2465. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2466. y[l + 0] = d * sc[is + 0] * q1;
  2467. y[l + 32] = d * sc[is + 2] * q2;
  2468. y[l + 64] = d * sc[is + 4] * q3;
  2469. y[l + 96] = d * sc[is + 6] * q4;
  2470. }
  2471. y += 128;
  2472. ql += 64;
  2473. qh += 32;
  2474. sc += 8;
  2475. }
  2476. #else
  2477. for (int l = 0; l < 16; ++l) {
  2478. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2479. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2480. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2481. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2482. y[l+ 0] = d * sc[0] * q1;
  2483. y[l+16] = d * sc[1] * q2;
  2484. y[l+32] = d * sc[2] * q3;
  2485. y[l+48] = d * sc[3] * q4;
  2486. }
  2487. y += 64;
  2488. #endif
  2489. }
  2490. }
  2491. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  2492. assert(k % QK_K == 0);
  2493. block_q6_K * restrict y = vy;
  2494. quantize_row_q6_K_reference(x, y, k);
  2495. }
  2496. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  2497. assert(k % QK_K == 0);
  2498. (void)hist; // TODO: collect histograms
  2499. for (int j = 0; j < n; j += k) {
  2500. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  2501. quantize_row_q6_K_reference(src + j, y, k);
  2502. }
  2503. return (n/QK_K*sizeof(block_q6_K));
  2504. }
  2505. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
  2506. #if QK_K != 256
  2507. (void)quant_weights;
  2508. quantize_row_q6_K_reference(x, y, n_per_row);
  2509. #else
  2510. assert(n_per_row % QK_K == 0);
  2511. const int nb = n_per_row / QK_K;
  2512. int8_t L[QK_K];
  2513. float scales[QK_K/16];
  2514. //float weights[16];
  2515. for (int i = 0; i < nb; i++) {
  2516. //float sum_x2 = 0;
  2517. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2518. //float sigma2 = sum_x2/QK_K;
  2519. float max_scale = 0;
  2520. float max_abs_scale = 0;
  2521. for (int ib = 0; ib < QK_K/16; ++ib) {
  2522. float scale;
  2523. if (quant_weights) {
  2524. const float * qw = quant_weights + QK_K*i + 16*ib;
  2525. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2526. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2527. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2528. } else {
  2529. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2530. }
  2531. scales[ib] = scale;
  2532. const float abs_scale = fabsf(scale);
  2533. if (abs_scale > max_abs_scale) {
  2534. max_abs_scale = abs_scale;
  2535. max_scale = scale;
  2536. }
  2537. }
  2538. if (!max_abs_scale) {
  2539. memset(&y[i], 0, sizeof(block_q6_K));
  2540. y[i].d = GGML_FP32_TO_FP16(0.f);
  2541. x += QK_K;
  2542. continue;
  2543. }
  2544. float iscale = -128.f/max_scale;
  2545. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2546. for (int ib = 0; ib < QK_K/16; ++ib) {
  2547. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2548. }
  2549. for (int j = 0; j < QK_K/16; ++j) {
  2550. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2551. if (!d) {
  2552. continue;
  2553. }
  2554. for (int ii = 0; ii < 16; ++ii) {
  2555. int l = nearest_int(x[16*j + ii]/d);
  2556. l = MAX(-32, MIN(31, l));
  2557. L[16*j + ii] = l + 32;
  2558. }
  2559. }
  2560. uint8_t * restrict ql = y[i].ql;
  2561. uint8_t * restrict qh = y[i].qh;
  2562. for (int j = 0; j < QK_K; j += 128) {
  2563. for (int l = 0; l < 32; ++l) {
  2564. const uint8_t q1 = L[j + l + 0] & 0xF;
  2565. const uint8_t q2 = L[j + l + 32] & 0xF;
  2566. const uint8_t q3 = L[j + l + 64] & 0xF;
  2567. const uint8_t q4 = L[j + l + 96] & 0xF;
  2568. ql[l+ 0] = q1 | (q3 << 4);
  2569. ql[l+32] = q2 | (q4 << 4);
  2570. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2571. }
  2572. ql += 64;
  2573. qh += 32;
  2574. }
  2575. x += QK_K;
  2576. }
  2577. #endif
  2578. }
  2579. size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2580. (void)hist;
  2581. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2582. if (!quant_weights) {
  2583. quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
  2584. }
  2585. else {
  2586. char * qrow = (char *)dst;
  2587. for (int row = 0; row < nrow; ++row) {
  2588. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2589. src += n_per_row;
  2590. qrow += row_size;
  2591. }
  2592. }
  2593. return nrow * row_size;
  2594. }
  2595. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
  2596. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2597. if (!quant_weights) {
  2598. quantize_row_q4_0_reference(x, y, n_per_row);
  2599. return;
  2600. }
  2601. float weight[QK4_0];
  2602. int8_t L[QK4_0];
  2603. float sum_x2 = 0;
  2604. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2605. float sigma2 = sum_x2/n_per_row;
  2606. const int nb = n_per_row/QK4_0;
  2607. for (int ib = 0; ib < nb; ++ib) {
  2608. const float * xb = x + QK4_0 * ib;
  2609. const float * qw = quant_weights + QK4_0 * ib;
  2610. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2611. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2612. y[ib].d = GGML_FP32_TO_FP16(d);
  2613. for (int j = 0; j < 16; ++j) {
  2614. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2615. }
  2616. }
  2617. }
  2618. size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2619. if (!quant_weights) {
  2620. return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2621. }
  2622. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2623. char * qrow = (char *)dst;
  2624. for (int row = 0; row < nrow; ++row) {
  2625. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2626. src += n_per_row;
  2627. qrow += row_size;
  2628. }
  2629. return nrow * row_size;
  2630. }
  2631. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
  2632. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2633. if (!quant_weights) {
  2634. quantize_row_q4_1_reference(x, y, n_per_row);
  2635. return;
  2636. }
  2637. float weight[QK4_1];
  2638. uint8_t L[QK4_1], Laux[QK4_1];
  2639. float sum_x2 = 0;
  2640. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2641. float sigma2 = sum_x2/n_per_row;
  2642. const int nb = n_per_row/QK4_1;
  2643. for (int ib = 0; ib < nb; ++ib) {
  2644. const float * xb = x + QK4_1 * ib;
  2645. const float * qw = quant_weights + QK4_1 * ib;
  2646. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2647. float min;
  2648. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2649. y[ib].d = GGML_FP32_TO_FP16(d);
  2650. y[ib].m = GGML_FP32_TO_FP16(-min);
  2651. for (int j = 0; j < 16; ++j) {
  2652. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2653. }
  2654. }
  2655. }
  2656. size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2657. if (!quant_weights) {
  2658. return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2659. }
  2660. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2661. char * qrow = (char *)dst;
  2662. for (int row = 0; row < nrow; ++row) {
  2663. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2664. src += n_per_row;
  2665. qrow += row_size;
  2666. }
  2667. return nrow * row_size;
  2668. }
  2669. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
  2670. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2671. if (!quant_weights) {
  2672. quantize_row_q5_0_reference(x, y, n_per_row);
  2673. return;
  2674. }
  2675. float weight[QK5_0];
  2676. int8_t L[QK5_0];
  2677. float sum_x2 = 0;
  2678. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2679. float sigma2 = sum_x2/n_per_row;
  2680. const int nb = n_per_row/QK5_0;
  2681. for (int ib = 0; ib < nb; ++ib) {
  2682. const float * xb = x + QK5_0 * ib;
  2683. const float * qw = quant_weights + QK5_0 * ib;
  2684. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2685. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2686. y[ib].d = GGML_FP32_TO_FP16(d);
  2687. uint32_t qh = 0;
  2688. for (int j = 0; j < 16; ++j) {
  2689. const uint8_t xi0 = L[j];
  2690. const uint8_t xi1 = L[j+16];
  2691. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2692. // get the 5-th bit and store it in qh at the right position
  2693. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2694. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2695. }
  2696. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2697. }
  2698. }
  2699. size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2700. if (!quant_weights) {
  2701. return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2702. }
  2703. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2704. char * qrow = (char *)dst;
  2705. for (int row = 0; row < nrow; ++row) {
  2706. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2707. src += n_per_row;
  2708. qrow += row_size;
  2709. }
  2710. return nrow * row_size;
  2711. }
  2712. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
  2713. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2714. if (!quant_weights) {
  2715. quantize_row_q5_1_reference(x, y, n_per_row);
  2716. return;
  2717. }
  2718. float weight[QK5_1];
  2719. uint8_t L[QK5_1], Laux[QK5_1];
  2720. float sum_x2 = 0;
  2721. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2722. float sigma2 = sum_x2/n_per_row;
  2723. const int nb = n_per_row/QK5_1;
  2724. for (int ib = 0; ib < nb; ++ib) {
  2725. const float * xb = x + QK5_1 * ib;
  2726. const float * qw = quant_weights + QK5_1 * ib;
  2727. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2728. float min;
  2729. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2730. y[ib].d = GGML_FP32_TO_FP16(d);
  2731. y[ib].m = GGML_FP32_TO_FP16(-min);
  2732. uint32_t qh = 0;
  2733. for (int j = 0; j < 16; ++j) {
  2734. const uint8_t xi0 = L[j];
  2735. const uint8_t xi1 = L[j+16];
  2736. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2737. // get the 5-th bit and store it in qh at the right position
  2738. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2739. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2740. }
  2741. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2742. }
  2743. }
  2744. size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2745. if (!quant_weights) {
  2746. return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2747. }
  2748. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2749. char * qrow = (char *)dst;
  2750. for (int row = 0; row < nrow; ++row) {
  2751. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2752. src += n_per_row;
  2753. qrow += row_size;
  2754. }
  2755. return nrow * row_size;
  2756. }
  2757. // ====================== "True" 2-bit (de)-quantization
  2758. static const uint64_t iq2xxs_grid[256] = {
  2759. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2760. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
  2761. 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
  2762. 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
  2763. 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
  2764. 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
  2765. 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
  2766. 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
  2767. 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
  2768. 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
  2769. 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
  2770. 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
  2771. 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
  2772. 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
  2773. 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
  2774. 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
  2775. 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
  2776. 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
  2777. 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
  2778. 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
  2779. 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
  2780. 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
  2781. 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
  2782. 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
  2783. 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
  2784. 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
  2785. 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
  2786. 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
  2787. 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
  2788. 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
  2789. 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
  2790. 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
  2791. 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
  2792. 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
  2793. 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
  2794. 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
  2795. 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
  2796. 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
  2797. 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
  2798. 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
  2799. 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
  2800. 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
  2801. 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
  2802. 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
  2803. 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
  2804. 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
  2805. 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
  2806. 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
  2807. 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
  2808. 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
  2809. 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
  2810. 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
  2811. 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
  2812. 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
  2813. 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
  2814. 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
  2815. 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
  2816. 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
  2817. 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
  2818. 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
  2819. 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
  2820. 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
  2821. 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
  2822. 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
  2823. };
  2824. static const uint64_t iq2xs_grid[512] = {
  2825. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2826. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
  2827. 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
  2828. 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
  2829. 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
  2830. 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
  2831. 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
  2832. 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
  2833. 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
  2834. 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
  2835. 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
  2836. 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
  2837. 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
  2838. 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
  2839. 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
  2840. 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
  2841. 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
  2842. 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
  2843. 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
  2844. 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
  2845. 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
  2846. 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
  2847. 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
  2848. 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
  2849. 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
  2850. 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
  2851. 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
  2852. 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
  2853. 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
  2854. 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
  2855. 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
  2856. 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
  2857. 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
  2858. 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
  2859. 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
  2860. 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
  2861. 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
  2862. 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
  2863. 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
  2864. 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
  2865. 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
  2866. 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
  2867. 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
  2868. 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
  2869. 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
  2870. 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
  2871. 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
  2872. 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
  2873. 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
  2874. 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
  2875. 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
  2876. 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
  2877. 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
  2878. 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
  2879. 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
  2880. 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
  2881. 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
  2882. 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
  2883. 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
  2884. 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
  2885. 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
  2886. 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
  2887. 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
  2888. 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
  2889. 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
  2890. 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
  2891. 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
  2892. 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
  2893. 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
  2894. 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
  2895. 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
  2896. 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
  2897. 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
  2898. 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
  2899. 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
  2900. 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
  2901. 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
  2902. 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
  2903. 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
  2904. 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
  2905. 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
  2906. 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
  2907. 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
  2908. 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
  2909. 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
  2910. 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
  2911. 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
  2912. 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
  2913. 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
  2914. 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
  2915. 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
  2916. 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
  2917. 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
  2918. 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
  2919. 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
  2920. 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
  2921. 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
  2922. 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
  2923. 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
  2924. 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
  2925. 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
  2926. 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
  2927. 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
  2928. 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
  2929. 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
  2930. 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
  2931. 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
  2932. 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
  2933. 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
  2934. 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
  2935. 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
  2936. 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
  2937. 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
  2938. 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
  2939. 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
  2940. 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
  2941. 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
  2942. 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
  2943. 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
  2944. 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
  2945. 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
  2946. 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
  2947. 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
  2948. 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
  2949. 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
  2950. 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
  2951. 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
  2952. 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
  2953. };
  2954. static const uint32_t iq3xxs_grid[256] = {
  2955. 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
  2956. 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
  2957. 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
  2958. 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
  2959. 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
  2960. 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
  2961. 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
  2962. 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
  2963. 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
  2964. 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
  2965. 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
  2966. 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
  2967. 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
  2968. 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
  2969. 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
  2970. 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
  2971. 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
  2972. 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
  2973. 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
  2974. 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
  2975. 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
  2976. 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
  2977. 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
  2978. 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
  2979. 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
  2980. 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
  2981. 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
  2982. 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
  2983. 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
  2984. 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
  2985. 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
  2986. 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
  2987. };
  2988. #define NGRID_IQ2XXS 512
  2989. static const uint64_t iq1s_grid[NGRID_IQ2XXS] = {
  2990. 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
  2991. 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
  2992. 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
  2993. 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
  2994. 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
  2995. 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
  2996. 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
  2997. 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
  2998. 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
  2999. 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
  3000. 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
  3001. 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
  3002. 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
  3003. 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
  3004. 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
  3005. 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
  3006. 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
  3007. 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
  3008. 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
  3009. 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
  3010. 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
  3011. 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
  3012. 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
  3013. 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
  3014. 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
  3015. 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
  3016. 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
  3017. 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
  3018. 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
  3019. 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
  3020. 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
  3021. 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
  3022. 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
  3023. 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
  3024. 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
  3025. 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
  3026. 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
  3027. 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
  3028. 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
  3029. 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
  3030. 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
  3031. 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
  3032. 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
  3033. 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
  3034. 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
  3035. 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
  3036. 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
  3037. 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
  3038. 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
  3039. 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
  3040. 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
  3041. 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
  3042. 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
  3043. 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
  3044. 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
  3045. 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
  3046. 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
  3047. 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
  3048. 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
  3049. 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
  3050. 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
  3051. 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
  3052. 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
  3053. 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
  3054. 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
  3055. 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
  3056. 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
  3057. 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
  3058. 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
  3059. 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
  3060. 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
  3061. 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
  3062. 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
  3063. 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
  3064. 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
  3065. 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
  3066. 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
  3067. 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
  3068. 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
  3069. 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
  3070. 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
  3071. 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
  3072. 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
  3073. 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
  3074. 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
  3075. 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
  3076. 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
  3077. 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
  3078. 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
  3079. 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
  3080. 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
  3081. 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
  3082. 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
  3083. 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
  3084. 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
  3085. 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
  3086. 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
  3087. 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
  3088. 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
  3089. 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
  3090. 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
  3091. 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
  3092. 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
  3093. 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
  3094. 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
  3095. 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
  3096. 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
  3097. 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
  3098. 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
  3099. 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
  3100. 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
  3101. 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
  3102. 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
  3103. 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
  3104. 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
  3105. 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
  3106. 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
  3107. 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
  3108. 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
  3109. 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
  3110. 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
  3111. 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
  3112. 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
  3113. 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
  3114. 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
  3115. 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
  3116. 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
  3117. 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,
  3118. };
  3119. static const uint8_t ksigns_iq2xs[128] = {
  3120. 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
  3121. 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
  3122. 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
  3123. 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
  3124. 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
  3125. 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
  3126. 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
  3127. 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
  3128. };
  3129. static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
  3130. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
  3131. assert(k % QK_K == 0);
  3132. const int nb = k / QK_K;
  3133. uint32_t aux32[2];
  3134. const uint8_t * aux8 = (const uint8_t *)aux32;
  3135. for (int i = 0; i < nb; i++) {
  3136. const float d = GGML_FP16_TO_FP32(x[i].d);
  3137. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3138. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  3139. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  3140. for (int l = 0; l < 4; ++l) {
  3141. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  3142. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  3143. for (int j = 0; j < 8; ++j) {
  3144. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3145. }
  3146. y += 8;
  3147. }
  3148. }
  3149. }
  3150. }
  3151. // ====================== 2.3125 bpw (de)-quantization
  3152. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
  3153. assert(k % QK_K == 0);
  3154. const int nb = k / QK_K;
  3155. float db[2];
  3156. for (int i = 0; i < nb; i++) {
  3157. const float d = GGML_FP16_TO_FP32(x[i].d);
  3158. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3159. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3160. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3161. for (int l = 0; l < 4; ++l) {
  3162. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3163. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3164. for (int j = 0; j < 8; ++j) {
  3165. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3166. }
  3167. y += 8;
  3168. }
  3169. }
  3170. }
  3171. }
  3172. // ====================== 3.0625 bpw (de)-quantization
  3173. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
  3174. assert(k % QK_K == 0);
  3175. const int nb = k / QK_K;
  3176. uint32_t aux32;
  3177. for (int i = 0; i < nb; i++) {
  3178. const float d = GGML_FP16_TO_FP32(x[i].d);
  3179. const uint8_t * qs = x[i].qs;
  3180. const uint8_t * scales_and_signs = qs + QK_K/4;
  3181. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3182. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3183. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3184. for (int l = 0; l < 4; ++l) {
  3185. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3186. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3187. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3188. for (int j = 0; j < 4; ++j) {
  3189. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3190. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3191. }
  3192. y += 8;
  3193. }
  3194. qs += 8;
  3195. }
  3196. }
  3197. }
  3198. // ====================== 1.5625 bpw (de)-quantization
  3199. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
  3200. assert(k % QK_K == 0);
  3201. const int nb = k / QK_K;
  3202. float db[4];
  3203. uint16_t idx[4];
  3204. //const int8_t * grid[4];
  3205. for (int i = 0; i < nb; i++) {
  3206. const float d = GGML_FP16_TO_FP32(x[i].d);
  3207. const uint8_t * sc = x[i].scales;
  3208. const uint8_t * qs = x[i].qs;
  3209. for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
  3210. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  3211. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  3212. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  3213. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  3214. //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
  3215. //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
  3216. //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
  3217. //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
  3218. db[0] = d * (2*(sc[0] & 7) + 1);
  3219. db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
  3220. db[2] = d * (2*(sc[1] & 7) + 1);
  3221. db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
  3222. for (int l = 0; l < 4; ++l) {
  3223. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3224. for (int j = 0; j < 8; ++j) {
  3225. //y[j] = db[l] * grid[l][j];
  3226. y[j] = db[l] * grid[j];
  3227. }
  3228. y += 8;
  3229. }
  3230. qs += 4;
  3231. sc += 2;
  3232. }
  3233. }
  3234. }
  3235. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3236. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
  3237. assert(k % QK4_NL == 0);
  3238. const int nb = k / QK4_NL;
  3239. for (int i = 0; i < nb; i++) {
  3240. const uint8_t * qs = x[i].qs;
  3241. const float d = GGML_FP16_TO_FP32(x[i].d);
  3242. for (int j = 0; j < QK4_NL/2; ++j) {
  3243. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3244. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3245. }
  3246. y += QK4_NL;
  3247. qs += QK4_NL/2;
  3248. }
  3249. }
  3250. //===================================== Q8_K ==============================================
  3251. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  3252. assert(k % QK_K == 0);
  3253. const int nb = k / QK_K;
  3254. for (int i = 0; i < nb; i++) {
  3255. float max = 0;
  3256. float amax = 0;
  3257. for (int j = 0; j < QK_K; ++j) {
  3258. float ax = fabsf(x[j]);
  3259. if (ax > amax) {
  3260. amax = ax; max = x[j];
  3261. }
  3262. }
  3263. if (!amax) {
  3264. y[i].d = 0;
  3265. memset(y[i].qs, 0, QK_K);
  3266. x += QK_K;
  3267. continue;
  3268. }
  3269. //const float iscale = -128.f/max;
  3270. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3271. const float iscale = -127.f/max;
  3272. for (int j = 0; j < QK_K; ++j) {
  3273. int v = nearest_int(iscale*x[j]);
  3274. y[i].qs[j] = MIN(127, v);
  3275. }
  3276. for (int j = 0; j < QK_K/16; ++j) {
  3277. int sum = 0;
  3278. for (int ii = 0; ii < 16; ++ii) {
  3279. sum += y[i].qs[j*16 + ii];
  3280. }
  3281. y[i].bsums[j] = sum;
  3282. }
  3283. y[i].d = 1/iscale;
  3284. x += QK_K;
  3285. }
  3286. }
  3287. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  3288. assert(k % QK_K == 0);
  3289. const int nb = k / QK_K;
  3290. for (int i = 0; i < nb; i++) {
  3291. for (int j = 0; j < QK_K; ++j) {
  3292. *y++ = x[i].d * x[i].qs[j];
  3293. }
  3294. }
  3295. }
  3296. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  3297. quantize_row_q8_K_reference(x, y, k);
  3298. }
  3299. //===================================== Dot ptoducts =================================
  3300. //
  3301. // Helper functions
  3302. //
  3303. #if __AVX__ || __AVX2__ || __AVX512F__
  3304. // shuffles to pick the required scales in dot products
  3305. static inline __m256i get_scale_shuffle_q3k(int i) {
  3306. static const uint8_t k_shuffle[128] = {
  3307. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3308. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3309. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3310. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3311. };
  3312. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3313. }
  3314. static inline __m256i get_scale_shuffle_k4(int i) {
  3315. static const uint8_t k_shuffle[256] = {
  3316. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3317. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3318. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3319. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3320. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3321. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3322. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3323. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3324. };
  3325. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3326. }
  3327. static inline __m128i get_scale_shuffle(int i) {
  3328. static const uint8_t k_shuffle[128] = {
  3329. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3330. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3331. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3332. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3333. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3334. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3335. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3336. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3337. };
  3338. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3339. }
  3340. #endif
  3341. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3342. const int qk = QK8_0;
  3343. const int nb = n / qk;
  3344. assert(n % qk == 0);
  3345. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3346. assert((nrc == 2) || (nrc == 1));
  3347. #else
  3348. assert(nrc == 1);
  3349. #endif
  3350. UNUSED(nrc);
  3351. UNUSED(bx);
  3352. UNUSED(by);
  3353. UNUSED(bs);
  3354. const block_q4_0 * restrict x = vx;
  3355. const block_q8_0 * restrict y = vy;
  3356. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3357. if (nrc == 2) {
  3358. const block_q4_0 * restrict vx0 = vx;
  3359. const block_q4_0 * restrict vx1 = vx + bx;
  3360. const block_q8_0 * restrict vy0 = vy;
  3361. const block_q8_0 * restrict vy1 = vy + by;
  3362. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3363. for (int i = 0; i < nb; i++) {
  3364. const block_q4_0 * restrict b_x0 = &vx0[i];
  3365. const block_q4_0 * restrict b_x1 = &vx1[i];
  3366. const block_q8_0 * restrict b_y0 = &vy0[i];
  3367. const block_q8_0 * restrict b_y1 = &vy1[i];
  3368. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3369. const int8x16_t s8b = vdupq_n_s8(0x8);
  3370. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3371. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3372. // 4-bit -> 8-bit
  3373. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3374. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3375. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3376. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3377. // sub 8
  3378. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3379. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3380. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3381. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3382. // load y
  3383. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3384. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3385. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3386. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3387. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3388. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3389. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3390. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3391. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3392. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3393. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3394. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3395. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3396. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3397. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3398. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3399. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3400. l1, r1)), l2, r2)), l3, r3))), scale);
  3401. }
  3402. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3403. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3404. vst1_f32(s, vget_low_f32(sumv2));
  3405. vst1_f32(s + bs, vget_high_f32(sumv2));
  3406. return;
  3407. }
  3408. #endif
  3409. #if defined(__ARM_NEON)
  3410. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3411. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3412. assert(nb % 2 == 0); // TODO: handle odd nb
  3413. for (int i = 0; i < nb; i += 2) {
  3414. const block_q4_0 * restrict x0 = &x[i + 0];
  3415. const block_q4_0 * restrict x1 = &x[i + 1];
  3416. const block_q8_0 * restrict y0 = &y[i + 0];
  3417. const block_q8_0 * restrict y1 = &y[i + 1];
  3418. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3419. const int8x16_t s8b = vdupq_n_s8(0x8);
  3420. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3421. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3422. // 4-bit -> 8-bit
  3423. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3424. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3425. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3426. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3427. // sub 8
  3428. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3429. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3430. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3431. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3432. // load y
  3433. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3434. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3435. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3436. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3437. // dot product into int32x4_t
  3438. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3439. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3440. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3441. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3442. }
  3443. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3444. #elif defined(__AVX2__)
  3445. // Initialize accumulator with zeros
  3446. __m256 acc = _mm256_setzero_ps();
  3447. // Main loop
  3448. for (int i = 0; i < nb; ++i) {
  3449. /* Compute combined scale for the block */
  3450. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3451. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3452. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3453. const __m256i off = _mm256_set1_epi8( 8 );
  3454. qx = _mm256_sub_epi8( qx, off );
  3455. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3456. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3457. /* Multiply q with scale and accumulate */
  3458. acc = _mm256_fmadd_ps( d, q, acc );
  3459. }
  3460. *s = hsum_float_8(acc);
  3461. #elif defined(__AVX__)
  3462. // Initialize accumulator with zeros
  3463. __m256 acc = _mm256_setzero_ps();
  3464. // Main loop
  3465. for (int i = 0; i < nb; ++i) {
  3466. // Compute combined scale for the block
  3467. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3468. const __m128i lowMask = _mm_set1_epi8(0xF);
  3469. const __m128i off = _mm_set1_epi8(8);
  3470. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3471. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3472. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3473. bx_0 = _mm_sub_epi8(bx_0, off);
  3474. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3475. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3476. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3477. bx_0 = _mm_sub_epi8(bx_0, off);
  3478. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3479. // Convert int32_t to float
  3480. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3481. // Apply the scale, and accumulate
  3482. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3483. }
  3484. *s = hsum_float_8(acc);
  3485. #elif defined(__SSSE3__)
  3486. // set constants
  3487. const __m128i lowMask = _mm_set1_epi8(0xF);
  3488. const __m128i off = _mm_set1_epi8(8);
  3489. // Initialize accumulator with zeros
  3490. __m128 acc_0 = _mm_setzero_ps();
  3491. __m128 acc_1 = _mm_setzero_ps();
  3492. __m128 acc_2 = _mm_setzero_ps();
  3493. __m128 acc_3 = _mm_setzero_ps();
  3494. // First round without accumulation
  3495. {
  3496. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3497. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3498. // Compute combined scale for the block 0 and 1
  3499. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3500. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3501. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3502. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3503. bx_0 = _mm_sub_epi8(bx_0, off);
  3504. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3505. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3506. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3507. bx_1 = _mm_sub_epi8(bx_1, off);
  3508. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3509. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3510. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3511. // Compute combined scale for the block 2 and 3
  3512. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3513. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3514. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3515. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3516. bx_2 = _mm_sub_epi8(bx_2, off);
  3517. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3518. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3519. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3520. bx_3 = _mm_sub_epi8(bx_3, off);
  3521. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3522. // Convert int32_t to float
  3523. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3524. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3525. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3526. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3527. // Apply the scale
  3528. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3529. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3530. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3531. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3532. }
  3533. assert(nb % 2 == 0); // TODO: handle odd nb
  3534. // Main loop
  3535. for (int i = 2; i < nb; i+=2) {
  3536. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3537. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3538. // Compute combined scale for the block 0 and 1
  3539. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3540. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3541. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3542. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3543. bx_0 = _mm_sub_epi8(bx_0, off);
  3544. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3545. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3546. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3547. bx_1 = _mm_sub_epi8(bx_1, off);
  3548. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3549. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3550. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3551. // Compute combined scale for the block 2 and 3
  3552. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3553. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3554. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3555. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3556. bx_2 = _mm_sub_epi8(bx_2, off);
  3557. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3558. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3559. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3560. bx_3 = _mm_sub_epi8(bx_3, off);
  3561. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3562. // Convert int32_t to float
  3563. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3564. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3565. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3566. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3567. // Apply the scale
  3568. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3569. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3570. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3571. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3572. // Acummulate
  3573. acc_0 = _mm_add_ps(p0_d, acc_0);
  3574. acc_1 = _mm_add_ps(p1_d, acc_1);
  3575. acc_2 = _mm_add_ps(p2_d, acc_2);
  3576. acc_3 = _mm_add_ps(p3_d, acc_3);
  3577. }
  3578. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3579. #elif defined(__riscv_v_intrinsic)
  3580. float sumf = 0.0;
  3581. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3582. for (int i = 0; i < nb; i++) {
  3583. // load elements
  3584. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3585. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3586. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3587. // mask and store lower part of x, and then upper part
  3588. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3589. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3590. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3591. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3592. // subtract offset
  3593. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3594. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3595. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3596. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3597. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3598. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3599. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3600. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3601. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3602. }
  3603. *s = sumf;
  3604. #else
  3605. // scalar
  3606. float sumf = 0.0;
  3607. for (int i = 0; i < nb; i++) {
  3608. int sumi = 0;
  3609. for (int j = 0; j < qk/2; ++j) {
  3610. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3611. const int v1 = (x[i].qs[j] >> 4) - 8;
  3612. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3613. }
  3614. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3615. }
  3616. *s = sumf;
  3617. #endif
  3618. }
  3619. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3620. const int qk = QK8_1;
  3621. const int nb = n / qk;
  3622. assert(n % qk == 0);
  3623. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3624. assert((nrc == 2) || (nrc == 1));
  3625. #else
  3626. assert(nrc == 1);
  3627. #endif
  3628. UNUSED(nrc);
  3629. UNUSED(bx);
  3630. UNUSED(by);
  3631. UNUSED(bs);
  3632. const block_q4_1 * restrict x = vx;
  3633. const block_q8_1 * restrict y = vy;
  3634. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3635. if (nrc == 2) {
  3636. const block_q4_1 * restrict vx0 = vx;
  3637. const block_q4_1 * restrict vx1 = vx + bx;
  3638. const block_q8_1 * restrict vy0 = vy;
  3639. const block_q8_1 * restrict vy1 = vy + by;
  3640. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3641. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3642. for (int i = 0; i < nb; i++) {
  3643. const block_q4_1 * restrict b_x0 = &vx0[i];
  3644. const block_q4_1 * restrict b_x1 = &vx1[i];
  3645. const block_q8_1 * restrict b_y0 = &vy0[i];
  3646. const block_q8_1 * restrict b_y1 = &vy1[i];
  3647. float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
  3648. GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
  3649. GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
  3650. GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
  3651. summs0 += summs_t;
  3652. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3653. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3654. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3655. // 4-bit -> 8-bit
  3656. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3657. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3658. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3659. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3660. // load y
  3661. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3662. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3663. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3664. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3665. // mmla into int32x4_t
  3666. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3667. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3668. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3669. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3670. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3671. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3672. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3673. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3674. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3675. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3676. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3677. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3678. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3679. l1, r1)), l2, r2)), l3, r3))), scale);
  3680. }
  3681. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3682. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3683. sumv2 = sumv2 + summs0;
  3684. vst1_f32(s, vget_low_f32(sumv2));
  3685. vst1_f32(s + bs, vget_high_f32(sumv2));
  3686. return;
  3687. }
  3688. #endif
  3689. // TODO: add WASM SIMD
  3690. #if defined(__ARM_NEON)
  3691. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3692. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3693. float summs = 0;
  3694. assert(nb % 2 == 0); // TODO: handle odd nb
  3695. for (int i = 0; i < nb; i += 2) {
  3696. const block_q4_1 * restrict x0 = &x[i + 0];
  3697. const block_q4_1 * restrict x1 = &x[i + 1];
  3698. const block_q8_1 * restrict y0 = &y[i + 0];
  3699. const block_q8_1 * restrict y1 = &y[i + 1];
  3700. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  3701. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3702. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3703. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3704. // 4-bit -> 8-bit
  3705. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3706. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3707. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3708. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3709. // load y
  3710. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3711. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3712. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3713. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3714. // dot product into int32x4_t
  3715. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3716. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3717. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  3718. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  3719. }
  3720. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3721. #elif defined(__AVX2__) || defined(__AVX__)
  3722. // Initialize accumulator with zeros
  3723. __m256 acc = _mm256_setzero_ps();
  3724. float summs = 0;
  3725. // Main loop
  3726. for (int i = 0; i < nb; ++i) {
  3727. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3728. const float d1 = y[i].d;
  3729. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  3730. const __m256 d0v = _mm256_set1_ps( d0 );
  3731. const __m256 d1v = _mm256_set1_ps( d1 );
  3732. // Compute combined scales
  3733. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3734. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3735. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3736. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3737. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3738. // Accumulate d0*d1*x*y
  3739. #if defined(__AVX2__)
  3740. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3741. #else
  3742. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3743. #endif
  3744. }
  3745. *s = hsum_float_8(acc) + summs;
  3746. #elif defined(__riscv_v_intrinsic)
  3747. float sumf = 0.0;
  3748. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3749. for (int i = 0; i < nb; i++) {
  3750. // load elements
  3751. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3752. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3753. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3754. // mask and store lower part of x, and then upper part
  3755. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3756. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3757. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3758. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3759. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3760. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3761. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3762. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3763. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3764. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3765. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3766. }
  3767. *s = sumf;
  3768. #else
  3769. // scalar
  3770. float sumf = 0.0;
  3771. for (int i = 0; i < nb; i++) {
  3772. int sumi = 0;
  3773. for (int j = 0; j < qk/2; ++j) {
  3774. const int v0 = (x[i].qs[j] & 0x0F);
  3775. const int v1 = (x[i].qs[j] >> 4);
  3776. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3777. }
  3778. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3779. }
  3780. *s = sumf;
  3781. #endif
  3782. }
  3783. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3784. const int qk = QK8_0;
  3785. const int nb = n / qk;
  3786. assert(n % qk == 0);
  3787. assert(qk == QK5_0);
  3788. assert(nrc == 1);
  3789. UNUSED(nrc);
  3790. UNUSED(bx);
  3791. UNUSED(by);
  3792. UNUSED(bs);
  3793. const block_q5_0 * restrict x = vx;
  3794. const block_q8_0 * restrict y = vy;
  3795. #if defined(__ARM_NEON)
  3796. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3797. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3798. uint32_t qh0;
  3799. uint32_t qh1;
  3800. uint64_t tmp0[4];
  3801. uint64_t tmp1[4];
  3802. assert(nb % 2 == 0); // TODO: handle odd nb
  3803. for (int i = 0; i < nb; i += 2) {
  3804. const block_q5_0 * restrict x0 = &x[i];
  3805. const block_q5_0 * restrict x1 = &x[i + 1];
  3806. const block_q8_0 * restrict y0 = &y[i];
  3807. const block_q8_0 * restrict y1 = &y[i + 1];
  3808. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3809. // extract the 5th bit via lookup table ((!b) << 4)
  3810. memcpy(&qh0, x0->qh, sizeof(qh0));
  3811. memcpy(&qh1, x1->qh, sizeof(qh1));
  3812. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3813. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3814. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3815. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3816. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3817. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3818. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3819. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3820. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3821. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3822. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3823. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3824. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3825. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3826. // 4-bit -> 8-bit
  3827. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3828. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3829. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3830. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3831. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3832. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3833. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3834. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3835. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3836. // load y
  3837. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3838. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3839. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3840. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3841. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3842. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3843. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3844. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3845. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3846. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3847. }
  3848. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3849. #elif defined(__wasm_simd128__)
  3850. v128_t sumv = wasm_f32x4_splat(0.0f);
  3851. uint32_t qh;
  3852. uint64_t tmp[4];
  3853. // TODO: check if unrolling this is better
  3854. for (int i = 0; i < nb; ++i) {
  3855. const block_q5_0 * restrict x0 = &x[i];
  3856. const block_q8_0 * restrict y0 = &y[i];
  3857. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3858. // extract the 5th bit
  3859. memcpy(&qh, x0->qh, sizeof(qh));
  3860. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3861. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3862. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3863. tmp[3] = table_b2b_1[(qh >> 24) ];
  3864. const v128_t qhl = wasm_v128_load(tmp + 0);
  3865. const v128_t qhh = wasm_v128_load(tmp + 2);
  3866. const v128_t v0 = wasm_v128_load(x0->qs);
  3867. // 4-bit -> 8-bit
  3868. const v128_t v0l = wasm_v128_and (v0, m4b);
  3869. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3870. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3871. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3872. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3873. // load y
  3874. const v128_t v1l = wasm_v128_load(y0->qs);
  3875. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3876. // int8x16 -> int16x8
  3877. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3878. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3879. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3880. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3881. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3882. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3883. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3884. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3885. // dot product
  3886. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3887. wasm_i32x4_add(
  3888. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3889. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3890. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3891. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3892. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3893. }
  3894. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3895. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3896. #elif defined(__AVX2__)
  3897. // Initialize accumulator with zeros
  3898. __m256 acc = _mm256_setzero_ps();
  3899. // Main loop
  3900. for (int i = 0; i < nb; i++) {
  3901. /* Compute combined scale for the block */
  3902. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3903. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3904. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3905. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3906. qx = _mm256_or_si256(qx, bxhi);
  3907. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3908. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3909. /* Multiply q with scale and accumulate */
  3910. acc = _mm256_fmadd_ps(d, q, acc);
  3911. }
  3912. *s = hsum_float_8(acc);
  3913. #elif defined(__AVX__)
  3914. // Initialize accumulator with zeros
  3915. __m256 acc = _mm256_setzero_ps();
  3916. __m128i mask = _mm_set1_epi8((char)0xF0);
  3917. // Main loop
  3918. for (int i = 0; i < nb; i++) {
  3919. /* Compute combined scale for the block */
  3920. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3921. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3922. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3923. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3924. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3925. bxhil = _mm_andnot_si128(bxhil, mask);
  3926. bxhih = _mm_andnot_si128(bxhih, mask);
  3927. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3928. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3929. bxl = _mm_or_si128(bxl, bxhil);
  3930. bxh = _mm_or_si128(bxh, bxhih);
  3931. bx_0 = MM256_SET_M128I(bxh, bxl);
  3932. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3933. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3934. /* Multiply q with scale and accumulate */
  3935. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3936. }
  3937. *s = hsum_float_8(acc);
  3938. #elif defined(__riscv_v_intrinsic)
  3939. float sumf = 0.0;
  3940. uint32_t qh;
  3941. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3942. // These temporary registers are for masking and shift operations
  3943. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3944. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3945. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3946. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3947. for (int i = 0; i < nb; i++) {
  3948. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  3949. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3950. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  3951. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  3952. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  3953. // ((qh & (1u << (j + 16))) >> (j + 12));
  3954. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  3955. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  3956. // narrowing
  3957. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  3958. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  3959. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  3960. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  3961. // load
  3962. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3963. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3964. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3965. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3966. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3967. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  3968. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  3969. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3970. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3971. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  3972. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  3973. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3974. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3975. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3976. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3977. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3978. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3979. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  3980. }
  3981. *s = sumf;
  3982. #else
  3983. // scalar
  3984. float sumf = 0.0;
  3985. for (int i = 0; i < nb; i++) {
  3986. uint32_t qh;
  3987. memcpy(&qh, x[i].qh, sizeof(qh));
  3988. int sumi = 0;
  3989. for (int j = 0; j < qk/2; ++j) {
  3990. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3991. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  3992. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  3993. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  3994. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  3995. }
  3996. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  3997. }
  3998. *s = sumf;
  3999. #endif
  4000. }
  4001. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4002. const int qk = QK8_1;
  4003. const int nb = n / qk;
  4004. assert(n % qk == 0);
  4005. assert(qk == QK5_1);
  4006. assert(nrc == 1);
  4007. UNUSED(nrc);
  4008. UNUSED(bx);
  4009. UNUSED(by);
  4010. UNUSED(bs);
  4011. const block_q5_1 * restrict x = vx;
  4012. const block_q8_1 * restrict y = vy;
  4013. #if defined(__ARM_NEON)
  4014. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4015. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4016. float summs0 = 0.0f;
  4017. float summs1 = 0.0f;
  4018. uint32_t qh0;
  4019. uint32_t qh1;
  4020. uint64_t tmp0[4];
  4021. uint64_t tmp1[4];
  4022. assert(nb % 2 == 0); // TODO: handle odd nb
  4023. for (int i = 0; i < nb; i += 2) {
  4024. const block_q5_1 * restrict x0 = &x[i];
  4025. const block_q5_1 * restrict x1 = &x[i + 1];
  4026. const block_q8_1 * restrict y0 = &y[i];
  4027. const block_q8_1 * restrict y1 = &y[i + 1];
  4028. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4029. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4030. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  4031. // extract the 5th bit via lookup table ((b) << 4)
  4032. memcpy(&qh0, x0->qh, sizeof(qh0));
  4033. memcpy(&qh1, x1->qh, sizeof(qh1));
  4034. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4035. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4036. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4037. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4038. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4039. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4040. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4041. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4042. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4043. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4044. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4045. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4046. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4047. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4048. // 4-bit -> 8-bit
  4049. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4050. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4051. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4052. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4053. // add high bit
  4054. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4055. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4056. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4057. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4058. // load y
  4059. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4060. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4061. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4062. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4063. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4064. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4065. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  4066. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4067. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4068. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  4069. }
  4070. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4071. #elif defined(__wasm_simd128__)
  4072. v128_t sumv = wasm_f32x4_splat(0.0f);
  4073. float summs = 0.0f;
  4074. uint32_t qh;
  4075. uint64_t tmp[4];
  4076. // TODO: check if unrolling this is better
  4077. for (int i = 0; i < nb; ++i) {
  4078. const block_q5_1 * restrict x0 = &x[i];
  4079. const block_q8_1 * restrict y0 = &y[i];
  4080. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4081. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4082. // extract the 5th bit
  4083. memcpy(&qh, x0->qh, sizeof(qh));
  4084. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4085. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4086. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4087. tmp[3] = table_b2b_0[(qh >> 24) ];
  4088. const v128_t qhl = wasm_v128_load(tmp + 0);
  4089. const v128_t qhh = wasm_v128_load(tmp + 2);
  4090. const v128_t v0 = wasm_v128_load(x0->qs);
  4091. // 4-bit -> 8-bit
  4092. const v128_t v0l = wasm_v128_and (v0, m4b);
  4093. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4094. // add high bit
  4095. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4096. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4097. // load y
  4098. const v128_t v1l = wasm_v128_load(y0->qs);
  4099. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4100. // int8x16 -> int16x8
  4101. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4102. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4103. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4104. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4105. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4106. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4107. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4108. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4109. // dot product
  4110. sumv = wasm_f32x4_add(sumv,
  4111. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4112. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4113. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4114. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4115. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4116. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  4117. }
  4118. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4119. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4120. #elif defined(__AVX2__)
  4121. // Initialize accumulator with zeros
  4122. __m256 acc = _mm256_setzero_ps();
  4123. float summs = 0.0f;
  4124. // Main loop
  4125. for (int i = 0; i < nb; i++) {
  4126. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4127. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4128. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4129. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4130. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4131. qx = _mm256_or_si256(qx, bxhi);
  4132. const __m256 dy = _mm256_set1_ps(y[i].d);
  4133. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4134. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4135. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4136. }
  4137. *s = hsum_float_8(acc) + summs;
  4138. #elif defined(__AVX__)
  4139. // Initialize accumulator with zeros
  4140. __m256 acc = _mm256_setzero_ps();
  4141. __m128i mask = _mm_set1_epi8(0x10);
  4142. float summs = 0.0f;
  4143. // Main loop
  4144. for (int i = 0; i < nb; i++) {
  4145. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4146. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4147. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4148. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4149. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4150. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4151. bxhil = _mm_and_si128(bxhil, mask);
  4152. bxhih = _mm_and_si128(bxhih, mask);
  4153. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4154. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4155. bxl = _mm_or_si128(bxl, bxhil);
  4156. bxh = _mm_or_si128(bxh, bxhih);
  4157. bx_0 = MM256_SET_M128I(bxh, bxl);
  4158. const __m256 dy = _mm256_set1_ps(y[i].d);
  4159. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4160. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4161. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4162. }
  4163. *s = hsum_float_8(acc) + summs;
  4164. #elif defined(__riscv_v_intrinsic)
  4165. float sumf = 0.0;
  4166. uint32_t qh;
  4167. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4168. // temporary registers for shift operations
  4169. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4170. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4171. for (int i = 0; i < nb; i++) {
  4172. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4173. // load qh
  4174. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4175. // ((qh >> (j + 0)) << 4) & 0x10;
  4176. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4177. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4178. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4179. // ((qh >> (j + 12)) ) & 0x10;
  4180. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4181. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4182. // narrowing
  4183. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4184. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4185. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4186. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4187. // load
  4188. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4189. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4190. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4191. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4192. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4193. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4194. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4195. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4196. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4197. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4198. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4199. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4200. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4201. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4202. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4203. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4204. }
  4205. *s = sumf;
  4206. #else
  4207. // scalar
  4208. float sumf = 0.0;
  4209. for (int i = 0; i < nb; i++) {
  4210. uint32_t qh;
  4211. memcpy(&qh, x[i].qh, sizeof(qh));
  4212. int sumi = 0;
  4213. for (int j = 0; j < qk/2; ++j) {
  4214. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4215. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4216. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4217. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4218. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4219. }
  4220. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4221. }
  4222. *s = sumf;
  4223. #endif
  4224. }
  4225. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4226. const int qk = QK8_0;
  4227. const int nb = n / qk;
  4228. assert(n % qk == 0);
  4229. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4230. assert((nrc == 2) || (nrc == 1));
  4231. #else
  4232. assert(nrc == 1);
  4233. #endif
  4234. UNUSED(nrc);
  4235. UNUSED(bx);
  4236. UNUSED(by);
  4237. UNUSED(bs);
  4238. const block_q8_0 * restrict x = vx;
  4239. const block_q8_0 * restrict y = vy;
  4240. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4241. if (nrc == 2) {
  4242. const block_q8_0 * restrict vx0 = vx;
  4243. const block_q8_0 * restrict vx1 = vx + bx;
  4244. const block_q8_0 * restrict vy0 = vy;
  4245. const block_q8_0 * restrict vy1 = vy + by;
  4246. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4247. for (int i = 0; i < nb; i++) {
  4248. const block_q8_0 * restrict b_x0 = &vx0[i];
  4249. const block_q8_0 * restrict b_y0 = &vy0[i];
  4250. const block_q8_0 * restrict b_x1 = &vx1[i];
  4251. const block_q8_0 * restrict b_y1 = &vy1[i];
  4252. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4253. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4254. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4255. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4256. // load y
  4257. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4258. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4259. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4260. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4261. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4262. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4263. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4264. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4265. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4266. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4267. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4268. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4269. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4270. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4271. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4272. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4273. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4274. l1, r1)), l2, r2)), l3, r3))), scale);
  4275. }
  4276. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4277. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4278. vst1_f32(s, vget_low_f32(sumv2));
  4279. vst1_f32(s + bs, vget_high_f32(sumv2));
  4280. return;
  4281. }
  4282. #endif
  4283. #if defined(__ARM_NEON)
  4284. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4285. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4286. assert(nb % 2 == 0); // TODO: handle odd nb
  4287. for (int i = 0; i < nb; i += 2) {
  4288. const block_q8_0 * restrict x0 = &x[i + 0];
  4289. const block_q8_0 * restrict x1 = &x[i + 1];
  4290. const block_q8_0 * restrict y0 = &y[i + 0];
  4291. const block_q8_0 * restrict y1 = &y[i + 1];
  4292. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4293. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4294. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4295. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4296. // load y
  4297. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4298. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4299. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4300. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4301. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4302. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4303. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4304. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4305. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4306. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4307. }
  4308. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4309. #elif defined(__AVX2__) || defined(__AVX__)
  4310. // Initialize accumulator with zeros
  4311. __m256 acc = _mm256_setzero_ps();
  4312. // Main loop
  4313. for (int i = 0; i < nb; ++i) {
  4314. // Compute combined scale for the block
  4315. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4316. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4317. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4318. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4319. // Multiply q with scale and accumulate
  4320. #if defined(__AVX2__)
  4321. acc = _mm256_fmadd_ps( d, q, acc );
  4322. #else
  4323. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4324. #endif
  4325. }
  4326. *s = hsum_float_8(acc);
  4327. #elif defined(__riscv_v_intrinsic)
  4328. float sumf = 0.0;
  4329. size_t vl = __riscv_vsetvl_e8m1(qk);
  4330. for (int i = 0; i < nb; i++) {
  4331. // load elements
  4332. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4333. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4334. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4335. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4336. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4337. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4338. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4339. }
  4340. *s = sumf;
  4341. #else
  4342. // scalar
  4343. float sumf = 0.0;
  4344. for (int i = 0; i < nb; i++) {
  4345. int sumi = 0;
  4346. for (int j = 0; j < qk; j++) {
  4347. sumi += x[i].qs[j]*y[i].qs[j];
  4348. }
  4349. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4350. }
  4351. *s = sumf;
  4352. #endif
  4353. }
  4354. #if QK_K == 256
  4355. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4356. assert(nrc == 1);
  4357. UNUSED(nrc);
  4358. UNUSED(bx);
  4359. UNUSED(by);
  4360. UNUSED(bs);
  4361. const block_q2_K * restrict x = vx;
  4362. const block_q8_K * restrict y = vy;
  4363. const int nb = n / QK_K;
  4364. #ifdef __ARM_NEON
  4365. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4366. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4367. const int32x4_t vzero = vdupq_n_s32(0);
  4368. ggml_int8x16x2_t q2bytes;
  4369. uint8_t aux[16];
  4370. float sum = 0;
  4371. for (int i = 0; i < nb; ++i) {
  4372. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4373. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4374. const uint8_t * restrict q2 = x[i].qs;
  4375. const int8_t * restrict q8 = y[i].qs;
  4376. const uint8_t * restrict sc = x[i].scales;
  4377. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4378. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4379. vst1q_u8(aux, scales);
  4380. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4381. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4382. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4383. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4384. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4385. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4386. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4387. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4388. int isum = 0;
  4389. int is = 0;
  4390. // We use this macro instead of a function call because for some reason
  4391. // the code runs 2-3% slower, even if the function is declared inline
  4392. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4393. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4394. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4395. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4396. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4397. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4398. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4399. MULTIPLY_ACCUM_WITH_SCALE((index));
  4400. for (int j = 0; j < QK_K/128; ++j) {
  4401. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4402. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4403. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4404. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4405. MULTIPLY_ACCUM_WITH_SCALE(0);
  4406. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4407. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4408. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4409. is += 8;
  4410. }
  4411. sum += d * isum;
  4412. }
  4413. *s = sum;
  4414. #elif defined __AVX2__
  4415. const __m256i m3 = _mm256_set1_epi8(3);
  4416. const __m128i m4 = _mm_set1_epi8(0xF);
  4417. __m256 acc = _mm256_setzero_ps();
  4418. for (int i = 0; i < nb; ++i) {
  4419. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4420. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4421. const uint8_t * restrict q2 = x[i].qs;
  4422. const int8_t * restrict q8 = y[i].qs;
  4423. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4424. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4425. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4426. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4427. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4428. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4429. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4430. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4431. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4432. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4433. __m256i sumi = _mm256_setzero_si256();
  4434. for (int j = 0; j < QK_K/128; ++j) {
  4435. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4436. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4437. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4438. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4439. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4440. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4441. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4442. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4443. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4444. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4445. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4446. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4447. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4448. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4449. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4450. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4451. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4452. p0 = _mm256_add_epi32(p0, p1);
  4453. p2 = _mm256_add_epi32(p2, p3);
  4454. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4455. }
  4456. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4457. }
  4458. *s = hsum_float_8(acc);
  4459. #elif defined __AVX__
  4460. const __m128i m3 = _mm_set1_epi8(0x3);
  4461. const __m128i m4 = _mm_set1_epi8(0xF);
  4462. const __m128i m2 = _mm_set1_epi8(0x2);
  4463. __m256 acc = _mm256_setzero_ps();
  4464. for (int i = 0; i < nb; ++i) {
  4465. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4466. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4467. const uint8_t * restrict q2 = x[i].qs;
  4468. const int8_t * restrict q8 = y[i].qs;
  4469. // load mins and scales from block_q2_K.scales[QK_K/16]
  4470. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4471. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4472. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4473. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4474. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4475. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4476. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4477. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4478. // sumf += -dmin * summs in 32bits*8
  4479. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4480. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4481. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4482. const __m128i scales[2] = { scales_0, scales_1 };
  4483. __m128i sumi_0 = _mm_setzero_si128();
  4484. __m128i sumi_1 = _mm_setzero_si128();
  4485. for (int j = 0; j < QK_K/128; ++j) {
  4486. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4487. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4488. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4489. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4490. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4491. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4492. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4493. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4494. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4495. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4496. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4497. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4498. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4499. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4500. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4501. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4502. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4503. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4504. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4505. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4506. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4507. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4508. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4509. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4510. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4511. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4512. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4513. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4514. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4515. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4516. __m128i shuffle = _mm_set1_epi16(0x0100);
  4517. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4518. shuffle = _mm_add_epi16(shuffle, m2);
  4519. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4520. shuffle = _mm_add_epi16(shuffle, m2);
  4521. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4522. shuffle = _mm_add_epi16(shuffle, m2);
  4523. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4524. shuffle = _mm_add_epi16(shuffle, m2);
  4525. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4526. shuffle = _mm_add_epi16(shuffle, m2);
  4527. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4528. shuffle = _mm_add_epi16(shuffle, m2);
  4529. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4530. shuffle = _mm_add_epi16(shuffle, m2);
  4531. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4532. p0 = _mm_add_epi32(p0, p1);
  4533. p2 = _mm_add_epi32(p2, p3);
  4534. p4 = _mm_add_epi32(p4, p5);
  4535. p6 = _mm_add_epi32(p6, p7);
  4536. // isum in 32bits*4*2
  4537. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4538. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4539. }
  4540. // sumf += dall * isum - dmin * summs in 32bits
  4541. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4542. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4543. }
  4544. *s = hsum_float_8(acc);
  4545. #elif defined __riscv_v_intrinsic
  4546. float sumf = 0;
  4547. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4548. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4549. for (int i = 0; i < nb; ++i) {
  4550. const uint8_t * q2 = x[i].qs;
  4551. const int8_t * q8 = y[i].qs;
  4552. const uint8_t * sc = x[i].scales;
  4553. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4554. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4555. size_t vl = 16;
  4556. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4557. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4558. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4559. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4560. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4561. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4562. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4563. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4564. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4565. vl = 32;
  4566. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4567. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4568. uint8_t is=0;
  4569. int isum=0;
  4570. for (int j = 0; j < QK_K/128; ++j) {
  4571. // load Q2
  4572. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4573. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4574. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4575. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4576. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4577. // duplicate scale elements for product
  4578. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4579. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4580. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4581. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4582. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4583. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4584. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4585. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4586. // load Q8
  4587. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4588. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4589. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4590. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4591. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4592. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4593. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4594. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4595. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4596. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4597. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4598. q2+=32; q8+=128; is=8;
  4599. }
  4600. sumf += dall * isum;
  4601. }
  4602. *s = sumf;
  4603. #else
  4604. float sumf = 0;
  4605. for (int i = 0; i < nb; ++i) {
  4606. const uint8_t * q2 = x[i].qs;
  4607. const int8_t * q8 = y[i].qs;
  4608. const uint8_t * sc = x[i].scales;
  4609. int summs = 0;
  4610. for (int j = 0; j < 16; ++j) {
  4611. summs += y[i].bsums[j] * (sc[j] >> 4);
  4612. }
  4613. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4614. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4615. int isum = 0;
  4616. int is = 0;
  4617. int d;
  4618. for (int k = 0; k < QK_K/128; ++k) {
  4619. int shift = 0;
  4620. for (int j = 0; j < 4; ++j) {
  4621. d = sc[is++] & 0xF;
  4622. int isuml = 0;
  4623. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4624. isum += d * isuml;
  4625. d = sc[is++] & 0xF;
  4626. isuml = 0;
  4627. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4628. isum += d * isuml;
  4629. shift += 2;
  4630. q8 += 32;
  4631. }
  4632. q2 += 32;
  4633. }
  4634. sumf += dall * isum - dmin * summs;
  4635. }
  4636. *s = sumf;
  4637. #endif
  4638. }
  4639. #else
  4640. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4641. assert(nrc == 1);
  4642. UNUSED(nrc);
  4643. UNUSED(bx);
  4644. UNUSED(by);
  4645. UNUSED(bs);
  4646. const block_q2_K * restrict x = vx;
  4647. const block_q8_K * restrict y = vy;
  4648. const int nb = n / QK_K;
  4649. #ifdef __ARM_NEON
  4650. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4651. const int32x4_t vzero = vdupq_n_s32(0);
  4652. ggml_int8x16x4_t q2bytes;
  4653. uint32_t aux32[2];
  4654. const uint8_t * scales = (const uint8_t *)aux32;
  4655. float sum = 0;
  4656. for (int i = 0; i < nb; ++i) {
  4657. const float d = y[i].d * (float)x[i].d;
  4658. const float dmin = -y[i].d * (float)x[i].dmin;
  4659. const uint8_t * restrict q2 = x[i].qs;
  4660. const int8_t * restrict q8 = y[i].qs;
  4661. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4662. aux32[0] = sc[0] & 0x0f0f0f0f;
  4663. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4664. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4665. int isum1 = 0, isum2 = 0;
  4666. const uint8x16_t q2bits = vld1q_u8(q2);
  4667. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  4668. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  4669. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  4670. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  4671. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  4672. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  4673. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  4674. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  4675. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  4676. sum += d * (isum1 + isum2);
  4677. }
  4678. *s = sum;
  4679. #elif defined __AVX2__
  4680. const __m256i m3 = _mm256_set1_epi8(3);
  4681. __m256 acc = _mm256_setzero_ps();
  4682. uint32_t ud, um;
  4683. const uint8_t * restrict db = (const uint8_t *)&ud;
  4684. const uint8_t * restrict mb = (const uint8_t *)&um;
  4685. float summs = 0;
  4686. // TODO: optimize this
  4687. for (int i = 0; i < nb; ++i) {
  4688. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4689. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4690. const uint8_t * restrict q2 = x[i].qs;
  4691. const int8_t * restrict q8 = y[i].qs;
  4692. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4693. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4694. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4695. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4696. summs += dmin * smin;
  4697. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4698. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  4699. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  4700. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4701. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4702. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4703. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4704. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  4705. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  4706. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  4707. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  4708. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  4709. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  4710. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  4711. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  4712. }
  4713. *s = hsum_float_8(acc) + summs;
  4714. #elif defined __AVX__
  4715. const __m128i m3 = _mm_set1_epi8(3);
  4716. __m256 acc = _mm256_setzero_ps();
  4717. uint32_t ud, um;
  4718. const uint8_t * restrict db = (const uint8_t *)&ud;
  4719. const uint8_t * restrict mb = (const uint8_t *)&um;
  4720. float summs = 0;
  4721. // TODO: optimize this
  4722. for (int i = 0; i < nb; ++i) {
  4723. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4724. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4725. const uint8_t * restrict q2 = x[i].qs;
  4726. const int8_t * restrict q8 = y[i].qs;
  4727. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4728. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4729. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4730. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4731. summs += dmin * smin;
  4732. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4733. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4734. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4735. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4736. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4737. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4738. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4739. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  4740. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  4741. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  4742. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  4743. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  4744. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  4745. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  4746. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  4747. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  4748. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  4749. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  4750. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  4751. }
  4752. *s = hsum_float_8(acc) + summs;
  4753. #elif defined __riscv_v_intrinsic
  4754. uint32_t aux32[2];
  4755. const uint8_t * scales = (const uint8_t *)aux32;
  4756. float sumf = 0;
  4757. for (int i = 0; i < nb; ++i) {
  4758. const float d = y[i].d * (float)x[i].d;
  4759. const float dmin = -y[i].d * (float)x[i].dmin;
  4760. const uint8_t * restrict q2 = x[i].qs;
  4761. const int8_t * restrict q8 = y[i].qs;
  4762. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4763. aux32[0] = sc[0] & 0x0f0f0f0f;
  4764. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4765. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4766. int isum1 = 0;
  4767. int isum2 = 0;
  4768. size_t vl = 16;
  4769. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4770. // load Q2
  4771. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  4772. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  4773. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  4774. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  4775. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  4776. // load Q8, and take product with Q2
  4777. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  4778. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  4779. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  4780. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  4781. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  4782. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  4783. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  4784. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  4785. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  4786. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  4787. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  4788. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  4789. sumf += d * (isum1 + isum2);
  4790. }
  4791. *s = sumf;
  4792. #else
  4793. float sumf = 0;
  4794. int isum[4];
  4795. for (int i = 0; i < nb; ++i) {
  4796. const uint8_t * q2 = x[i].qs;
  4797. const int8_t * q8 = y[i].qs;
  4798. const uint8_t * sc = x[i].scales;
  4799. int summs = 0;
  4800. for (int j = 0; j < QK_K/16; ++j) {
  4801. summs += y[i].bsums[j] * (sc[j] >> 4);
  4802. }
  4803. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4804. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4805. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  4806. for (int l = 0; l < 16; ++l) {
  4807. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  4808. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  4809. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  4810. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  4811. }
  4812. for (int l = 0; l < 4; ++l) {
  4813. isum[l] *= (sc[l] & 0xF);
  4814. }
  4815. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  4816. }
  4817. *s = sumf;
  4818. #endif
  4819. }
  4820. #endif
  4821. #if QK_K == 256
  4822. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4823. assert(n % QK_K == 0);
  4824. assert(nrc == 1);
  4825. UNUSED(nrc);
  4826. UNUSED(bx);
  4827. UNUSED(by);
  4828. UNUSED(bs);
  4829. const uint32_t kmask1 = 0x03030303;
  4830. const uint32_t kmask2 = 0x0f0f0f0f;
  4831. const block_q3_K * restrict x = vx;
  4832. const block_q8_K * restrict y = vy;
  4833. const int nb = n / QK_K;
  4834. #ifdef __ARM_NEON
  4835. uint32_t aux[3];
  4836. uint32_t utmp[4];
  4837. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4838. const int32x4_t vzero = vdupq_n_s32(0);
  4839. const uint8x16_t m0 = vdupq_n_u8(1);
  4840. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  4841. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  4842. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  4843. const int8_t m32 = 32;
  4844. ggml_int8x16x4_t q3bytes;
  4845. float sum = 0;
  4846. for (int i = 0; i < nb; ++i) {
  4847. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4848. const uint8_t * restrict q3 = x[i].qs;
  4849. const uint8_t * restrict qh = x[i].hmask;
  4850. const int8_t * restrict q8 = y[i].qs;
  4851. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4852. ggml_uint8x16x4_t q3h;
  4853. int32_t isum = 0;
  4854. // Set up scales
  4855. memcpy(aux, x[i].scales, 12);
  4856. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4857. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4858. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4859. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4860. int8_t * scale = (int8_t *)utmp;
  4861. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  4862. for (int j = 0; j < QK_K/128; ++j) {
  4863. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  4864. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4865. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4866. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  4867. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  4868. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  4869. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  4870. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4871. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4872. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4873. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4874. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  4875. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  4876. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  4877. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  4878. scale += 4;
  4879. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  4880. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  4881. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  4882. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  4883. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4884. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4885. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4886. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4887. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  4888. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  4889. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  4890. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  4891. scale += 4;
  4892. if (j == 0) {
  4893. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  4894. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  4895. }
  4896. }
  4897. sum += d * isum;
  4898. }
  4899. *s = sum;
  4900. #elif defined __AVX2__
  4901. const __m256i m3 = _mm256_set1_epi8(3);
  4902. const __m256i mone = _mm256_set1_epi8(1);
  4903. const __m128i m32 = _mm_set1_epi8(32);
  4904. __m256 acc = _mm256_setzero_ps();
  4905. uint32_t aux[3];
  4906. for (int i = 0; i < nb; ++i) {
  4907. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4908. const uint8_t * restrict q3 = x[i].qs;
  4909. const int8_t * restrict q8 = y[i].qs;
  4910. // Set up scales
  4911. memcpy(aux, x[i].scales, 12);
  4912. __m128i scales128 = _mm_set_epi32(
  4913. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4914. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4915. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4916. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4917. scales128 = _mm_sub_epi8(scales128, m32);
  4918. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  4919. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4920. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4921. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4922. // high bit
  4923. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  4924. // integer accumulator
  4925. __m256i sumi = _mm256_setzero_si256();
  4926. int bit = 0;
  4927. int is = 0;
  4928. for (int j = 0; j < QK_K/128; ++j) {
  4929. // load low 2 bits
  4930. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  4931. // prepare low and high bits
  4932. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  4933. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4934. ++bit;
  4935. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  4936. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4937. ++bit;
  4938. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  4939. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4940. ++bit;
  4941. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  4942. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4943. ++bit;
  4944. // load Q8 quants
  4945. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4946. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4947. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4948. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4949. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4950. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4951. // and 2 if the high bit was set)
  4952. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  4953. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  4954. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  4955. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  4956. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  4957. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  4958. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  4959. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  4960. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  4961. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  4962. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  4963. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  4964. // multiply with scales
  4965. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4966. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4967. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4968. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4969. // accumulate
  4970. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  4971. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  4972. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  4973. }
  4974. // multiply with block scale and accumulate
  4975. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4976. }
  4977. *s = hsum_float_8(acc);
  4978. #elif defined __AVX__
  4979. const __m128i m3 = _mm_set1_epi8(3);
  4980. const __m128i mone = _mm_set1_epi8(1);
  4981. const __m128i m32 = _mm_set1_epi8(32);
  4982. const __m128i m2 = _mm_set1_epi8(2);
  4983. __m256 acc = _mm256_setzero_ps();
  4984. const uint32_t *aux;
  4985. for (int i = 0; i < nb; ++i) {
  4986. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4987. const uint8_t * restrict q3 = x[i].qs;
  4988. const int8_t * restrict q8 = y[i].qs;
  4989. // Set up scales
  4990. aux = (const uint32_t *)x[i].scales;
  4991. __m128i scales128 = _mm_set_epi32(
  4992. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4993. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4994. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4995. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4996. scales128 = _mm_sub_epi8(scales128, m32);
  4997. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  4998. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  4999. const __m128i scales[2] = { scales_0, scales_1 };
  5000. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5001. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5002. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5003. // integer accumulator
  5004. __m128i sumi_0 = _mm_setzero_si128();
  5005. __m128i sumi_1 = _mm_setzero_si128();
  5006. for (int j = 0; j < QK_K/128; ++j) {
  5007. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5008. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5009. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5010. // prepare low and high bits
  5011. const int bit = j << 2;
  5012. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5013. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5014. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5015. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5016. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5017. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5018. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5019. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5020. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5021. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5022. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5023. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5024. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5025. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5026. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5027. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5028. // load Q8 quants from block_q8_K.qs[QK_K]
  5029. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5030. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5031. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5032. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5033. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5034. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5035. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5036. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5037. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5038. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5039. // and 2 if the high bit was set)
  5040. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5041. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5042. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5043. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5044. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5045. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5046. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5047. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5048. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5049. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5050. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5051. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5052. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5053. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5054. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5055. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5056. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5057. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5058. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5059. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5060. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5061. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5062. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5063. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5064. // multiply with scales
  5065. __m128i shuffle = _mm_set1_epi16(0x0100);
  5066. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5067. shuffle = _mm_add_epi16(shuffle, m2);
  5068. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5069. shuffle = _mm_add_epi16(shuffle, m2);
  5070. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5071. shuffle = _mm_add_epi16(shuffle, m2);
  5072. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5073. shuffle = _mm_add_epi16(shuffle, m2);
  5074. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5075. shuffle = _mm_add_epi16(shuffle, m2);
  5076. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5077. shuffle = _mm_add_epi16(shuffle, m2);
  5078. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5079. shuffle = _mm_add_epi16(shuffle, m2);
  5080. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5081. // accumulate
  5082. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5083. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5084. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5085. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5086. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5087. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5088. }
  5089. // multiply with block scale and accumulate
  5090. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5091. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5092. }
  5093. *s = hsum_float_8(acc);
  5094. #elif defined __riscv_v_intrinsic
  5095. uint32_t aux[3];
  5096. uint32_t utmp[4];
  5097. float sumf = 0;
  5098. for (int i = 0; i < nb; ++i) {
  5099. const uint8_t * restrict q3 = x[i].qs;
  5100. const uint8_t * restrict qh = x[i].hmask;
  5101. const int8_t * restrict q8 = y[i].qs;
  5102. memcpy(aux, x[i].scales, 12);
  5103. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5104. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5105. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5106. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5107. int8_t * scale = (int8_t *)utmp;
  5108. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5109. size_t vl = 32;
  5110. uint8_t m = 1;
  5111. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5112. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5113. int sum_t = 0;
  5114. for (int j = 0; j < QK_K; j += 128) {
  5115. vl = 32;
  5116. // load Q3
  5117. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5118. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5119. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5120. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5121. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5122. // compute mask for subtraction
  5123. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5124. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5125. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5126. m <<= 1;
  5127. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5128. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5129. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5130. m <<= 1;
  5131. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5132. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5133. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5134. m <<= 1;
  5135. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5136. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5137. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5138. m <<= 1;
  5139. // load Q8 and take product with Q3
  5140. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5141. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5142. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5143. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5144. vl = 16;
  5145. // retrieve lane to multiply with scale
  5146. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5147. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5148. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5149. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5150. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5151. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5152. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5153. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5154. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5155. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5156. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5157. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5158. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5159. q3 += 32; q8 += 128; scale += 8;
  5160. }
  5161. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5162. sumf += d*sum_t;
  5163. }
  5164. *s = sumf;
  5165. #else
  5166. // scalar version
  5167. // This function is written like this so the compiler can manage to vectorize most of it
  5168. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5169. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5170. // The ideal situation would be if we could just write the code once, and the compiler would
  5171. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5172. // write vectorized versions for AVX, ARM_NEON, etc.
  5173. int8_t aux8[QK_K];
  5174. int16_t aux16[8];
  5175. float sums [8];
  5176. int32_t aux32[8];
  5177. memset(sums, 0, 8*sizeof(float));
  5178. uint32_t auxs[4];
  5179. const int8_t * scales = (const int8_t*)auxs;
  5180. float sumf = 0;
  5181. for (int i = 0; i < nb; ++i) {
  5182. const uint8_t * restrict q3 = x[i].qs;
  5183. const uint8_t * restrict hm = x[i].hmask;
  5184. const int8_t * restrict q8 = y[i].qs;
  5185. memset(aux32, 0, 8*sizeof(int32_t));
  5186. int8_t * restrict a = aux8;
  5187. uint8_t m = 1;
  5188. for (int j = 0; j < QK_K; j += 128) {
  5189. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5190. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5191. a += 32; m <<= 1;
  5192. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5193. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5194. a += 32; m <<= 1;
  5195. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5196. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5197. a += 32; m <<= 1;
  5198. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5199. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5200. a += 32; m <<= 1;
  5201. q3 += 32;
  5202. }
  5203. a = aux8;
  5204. memcpy(auxs, x[i].scales, 12);
  5205. uint32_t tmp = auxs[2];
  5206. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5207. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5208. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5209. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5210. for (int j = 0; j < QK_K/16; ++j) {
  5211. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5212. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5213. q8 += 8; a += 8;
  5214. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5215. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5216. q8 += 8; a += 8;
  5217. }
  5218. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5219. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5220. }
  5221. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5222. *s = sumf;
  5223. #endif
  5224. }
  5225. #else
  5226. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5227. assert(n % QK_K == 0);
  5228. assert(nrc == 1);
  5229. UNUSED(nrc);
  5230. UNUSED(bx);
  5231. UNUSED(by);
  5232. UNUSED(bs);
  5233. const block_q3_K * restrict x = vx;
  5234. const block_q8_K * restrict y = vy;
  5235. const int nb = n / QK_K;
  5236. #ifdef __ARM_NEON
  5237. const int32x4_t vzero = vdupq_n_s32(0);
  5238. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5239. const uint8x16_t mh = vdupq_n_u8(4);
  5240. ggml_int8x16x4_t q3bytes;
  5241. uint16_t aux16[2];
  5242. int8_t * scales = (int8_t *)aux16;
  5243. float sum = 0;
  5244. for (int i = 0; i < nb; ++i) {
  5245. ggml_uint8x16x4_t q3h;
  5246. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  5247. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  5248. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  5249. const uint16_t a = *(const uint16_t *)x[i].scales;
  5250. aux16[0] = a & 0x0f0f;
  5251. aux16[1] = (a >> 4) & 0x0f0f;
  5252. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5253. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5254. const float d = y[i].d * (float)x[i].d;
  5255. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  5256. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  5257. q3h.val[1] = vandq_u8(mh, htmp);
  5258. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  5259. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  5260. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  5261. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  5262. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  5263. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  5264. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  5265. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  5266. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  5267. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  5268. sum += d * isum;
  5269. }
  5270. *s = sum;
  5271. #elif defined __AVX2__
  5272. const __m256i m3 = _mm256_set1_epi8(3);
  5273. const __m256i m1 = _mm256_set1_epi8(1);
  5274. __m256 acc = _mm256_setzero_ps();
  5275. uint64_t aux64;
  5276. uint16_t aux16[2];
  5277. const int8_t * aux8 = (const int8_t *)aux16;
  5278. for (int i = 0; i < nb; ++i) {
  5279. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5280. const uint8_t * restrict q3 = x[i].qs;
  5281. const int8_t * restrict q8 = y[i].qs;
  5282. const uint16_t a = *(const uint16_t *)x[i].scales;
  5283. aux16[0] = a & 0x0f0f;
  5284. aux16[1] = (a >> 4) & 0x0f0f;
  5285. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  5286. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  5287. memcpy(&aux64, x[i].hmask, 8);
  5288. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5289. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  5290. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  5291. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  5292. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  5293. // load low 2 bits
  5294. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5295. // prepare low and high bits
  5296. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  5297. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  5298. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  5299. // load Q8 quants
  5300. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5301. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5302. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5303. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5304. // and 2 if the high bit was set)
  5305. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5306. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5307. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5308. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5309. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5310. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5311. // multiply with scales
  5312. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5313. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5314. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5315. // multiply with block scale and accumulate
  5316. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  5317. }
  5318. *s = hsum_float_8(acc);
  5319. #elif defined __AVX__
  5320. const __m128i m3 = _mm_set1_epi8(3);
  5321. const __m128i m1 = _mm_set1_epi8(1);
  5322. __m256 acc = _mm256_setzero_ps();
  5323. uint64_t aux64;
  5324. uint16_t aux16[2];
  5325. const int8_t * aux8 = (const int8_t *)aux16;
  5326. for (int i = 0; i < nb; ++i) {
  5327. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5328. const uint8_t * restrict q3 = x[i].qs;
  5329. const int8_t * restrict q8 = y[i].qs;
  5330. const uint16_t a = *(const uint16_t *)x[i].scales;
  5331. aux16[0] = a & 0x0f0f;
  5332. aux16[1] = (a >> 4) & 0x0f0f;
  5333. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  5334. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  5335. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  5336. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  5337. memcpy(&aux64, x[i].hmask, 8);
  5338. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5339. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  5340. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  5341. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  5342. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  5343. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  5344. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  5345. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  5346. // load low 2 bits
  5347. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5348. // prepare low and high bits
  5349. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  5350. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  5351. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  5352. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  5353. // load Q8 quants
  5354. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5355. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5356. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  5357. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5358. // and 2 if the high bit was set)
  5359. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  5360. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  5361. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  5362. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  5363. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  5364. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  5365. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  5366. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  5367. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5368. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5369. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5370. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5371. // multiply with scales
  5372. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5373. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  5374. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  5375. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  5376. p16_0 = _mm_add_epi32(p16_0, p16_2);
  5377. p16_1 = _mm_add_epi32(p16_1, p16_3);
  5378. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  5379. // multiply with block scale and accumulate
  5380. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  5381. }
  5382. *s = hsum_float_8(acc);
  5383. #elif defined __riscv_v_intrinsic
  5384. uint16_t aux16[2];
  5385. int8_t * scales = (int8_t *)aux16;
  5386. float sumf = 0;
  5387. for (int i = 0; i < nb; ++i) {
  5388. const uint8_t * restrict q3 = x[i].qs;
  5389. const int8_t * restrict q8 = y[i].qs;
  5390. const uint16_t a = *(const uint16_t *)x[i].scales;
  5391. aux16[0] = a & 0x0f0f;
  5392. aux16[1] = (a >> 4) & 0x0f0f;
  5393. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5394. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5395. const float d = y[i].d * (float)x[i].d;
  5396. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5397. // load qh
  5398. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  5399. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  5400. size_t vl = 16;
  5401. // extend and combine both qh_x1 and qh_x2
  5402. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  5403. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5404. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  5405. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5406. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  5407. // load Q3
  5408. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  5409. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  5410. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  5411. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  5412. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  5413. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  5414. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  5415. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  5416. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  5417. // load Q8 and take product with Q3
  5418. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5419. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5420. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5421. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5422. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  5423. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  5424. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  5425. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  5426. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  5427. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  5428. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  5429. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  5430. sumf += d * isum;
  5431. }
  5432. *s = sumf;
  5433. #else
  5434. int8_t aux8[QK_K];
  5435. int16_t aux16[8];
  5436. float sums [8];
  5437. int32_t aux32[8];
  5438. int32_t scales[4];
  5439. memset(sums, 0, 8*sizeof(float));
  5440. float sumf = 0;
  5441. for (int i = 0; i < nb; ++i) {
  5442. const uint8_t * restrict q3 = x[i].qs;
  5443. const uint8_t * restrict hm = x[i].hmask;
  5444. const int8_t * restrict q8 = y[i].qs;
  5445. int8_t * restrict a = aux8;
  5446. for (int l = 0; l < 8; ++l) {
  5447. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  5448. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  5449. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  5450. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  5451. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  5452. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  5453. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  5454. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  5455. }
  5456. scales[0] = (x[i].scales[0] & 0xF) - 8;
  5457. scales[1] = (x[i].scales[0] >> 4) - 8;
  5458. scales[2] = (x[i].scales[1] & 0xF) - 8;
  5459. scales[3] = (x[i].scales[1] >> 4) - 8;
  5460. memset(aux32, 0, 8*sizeof(int32_t));
  5461. for (int j = 0; j < QK_K/16; ++j) {
  5462. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5463. q8 += 8; a += 8;
  5464. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  5465. q8 += 8; a += 8;
  5466. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  5467. }
  5468. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5469. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5470. }
  5471. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5472. *s = sumf;
  5473. #endif
  5474. }
  5475. #endif
  5476. #if QK_K == 256
  5477. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5478. assert(n % QK_K == 0);
  5479. assert(nrc == 1);
  5480. UNUSED(nrc);
  5481. UNUSED(bx);
  5482. UNUSED(by);
  5483. UNUSED(bs);
  5484. const block_q4_K * restrict x = vx;
  5485. const block_q8_K * restrict y = vy;
  5486. const int nb = n / QK_K;
  5487. static const uint32_t kmask1 = 0x3f3f3f3f;
  5488. static const uint32_t kmask2 = 0x0f0f0f0f;
  5489. static const uint32_t kmask3 = 0x03030303;
  5490. uint32_t utmp[4];
  5491. #ifdef __ARM_NEON
  5492. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5493. const int32x4_t mzero = vdupq_n_s32(0);
  5494. ggml_int8x16x2_t q4bytes;
  5495. ggml_int8x16x2_t q8bytes;
  5496. float sumf = 0;
  5497. for (int i = 0; i < nb; ++i) {
  5498. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5499. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5500. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5501. memcpy(utmp, x[i].scales, 12);
  5502. uint32x2_t mins8 = { 0 };
  5503. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5504. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5505. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5506. utmp[0] &= kmask1;
  5507. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5508. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5509. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5510. sumf -= dmin * vaddvq_s32(prod);
  5511. const uint8_t * scales = (const uint8_t *)utmp;
  5512. const uint8_t * restrict q4 = x[i].qs;
  5513. const int8_t * restrict q8 = y[i].qs;
  5514. int32_t sumi1 = 0;
  5515. int32_t sumi2 = 0;
  5516. for (int j = 0; j < QK_K/64; ++j) {
  5517. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5518. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5519. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5520. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5521. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5522. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5523. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5524. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5525. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5526. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5527. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5528. }
  5529. sumf += d * (sumi1 + sumi2);
  5530. }
  5531. *s = sumf;
  5532. #elif defined __AVX2__
  5533. const __m256i m4 = _mm256_set1_epi8(0xF);
  5534. __m256 acc = _mm256_setzero_ps();
  5535. __m128 acc_m = _mm_setzero_ps();
  5536. for (int i = 0; i < nb; ++i) {
  5537. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5538. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5539. memcpy(utmp, x[i].scales, 12);
  5540. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5541. const uint32_t uaux = utmp[1] & kmask1;
  5542. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5543. utmp[2] = uaux;
  5544. utmp[0] &= kmask1;
  5545. const uint8_t * restrict q4 = x[i].qs;
  5546. const int8_t * restrict q8 = y[i].qs;
  5547. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5548. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5549. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5550. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5551. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5552. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5553. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5554. __m256i sumi = _mm256_setzero_si256();
  5555. for (int j = 0; j < QK_K/64; ++j) {
  5556. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5557. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5558. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5559. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5560. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5561. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5562. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5563. p16l = _mm256_madd_epi16(scale_l, p16l);
  5564. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5565. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5566. p16h = _mm256_madd_epi16(scale_h, p16h);
  5567. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5568. sumi = _mm256_add_epi32(sumi, sumj);
  5569. }
  5570. __m256 vd = _mm256_set1_ps(d);
  5571. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5572. }
  5573. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5574. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5575. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5576. #elif defined __AVX__
  5577. const __m128i m4 = _mm_set1_epi8(0xF);
  5578. const __m128i m2 = _mm_set1_epi8(0x2);
  5579. __m256 acc = _mm256_setzero_ps();
  5580. __m128 acc_m = _mm_setzero_ps();
  5581. for (int i = 0; i < nb; ++i) {
  5582. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5583. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5584. const uint8_t * restrict q4 = x[i].qs;
  5585. const int8_t * restrict q8 = y[i].qs;
  5586. memcpy(utmp, x[i].scales, 12);
  5587. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5588. const uint32_t uaux = utmp[1] & kmask1;
  5589. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5590. utmp[2] = uaux;
  5591. utmp[0] &= kmask1;
  5592. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5593. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5594. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5595. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5596. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5597. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5598. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5599. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5600. __m128i sumi_0 = _mm_setzero_si128();
  5601. __m128i sumi_1 = _mm_setzero_si128();
  5602. __m128i shuffle = _mm_set1_epi16(0x0100);
  5603. for (int j = 0; j < QK_K/64; ++j) {
  5604. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5605. shuffle = _mm_add_epi16(shuffle, m2);
  5606. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5607. shuffle = _mm_add_epi16(shuffle, m2);
  5608. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5609. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5610. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5611. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5612. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5613. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5614. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5615. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5616. p16l = _mm_madd_epi16(scale_l, p16l);
  5617. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5618. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5619. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5620. p16l = _mm_madd_epi16(scale_l, p16l);
  5621. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5622. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5623. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5624. p16h = _mm_madd_epi16(scale_h, p16h);
  5625. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5626. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5627. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5628. p16h = _mm_madd_epi16(scale_h, p16h);
  5629. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5630. }
  5631. __m256 vd = _mm256_set1_ps(d);
  5632. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5633. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5634. }
  5635. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5636. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5637. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5638. #elif defined __riscv_v_intrinsic
  5639. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5640. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5641. float sumf = 0;
  5642. for (int i = 0; i < nb; ++i) {
  5643. size_t vl = 8;
  5644. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5645. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5646. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5647. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5648. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5649. memcpy(utmp, x[i].scales, 12);
  5650. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5651. const uint32_t uaux = utmp[1] & kmask1;
  5652. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5653. utmp[2] = uaux;
  5654. utmp[0] &= kmask1;
  5655. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5656. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5657. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5658. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5659. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5660. const uint8_t * restrict q4 = x[i].qs;
  5661. const int8_t * restrict q8 = y[i].qs;
  5662. vl = 32;
  5663. int32_t sum_1 = 0;
  5664. int32_t sum_2 = 0;
  5665. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5666. for (int j = 0; j < QK_K/64; ++j) {
  5667. // load Q4
  5668. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5669. // load Q8 and multiply it with lower Q4 nibble
  5670. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5671. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5672. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5673. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5674. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5675. // load Q8 and multiply it with upper Q4 nibble
  5676. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5677. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5678. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5679. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5680. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5681. q4 += 32; q8 += 64;
  5682. }
  5683. sumf += d*(sum_1 + sum_2);
  5684. }
  5685. *s = sumf;
  5686. #else
  5687. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5688. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5689. int8_t aux8[QK_K];
  5690. int16_t aux16[8];
  5691. float sums [8];
  5692. int32_t aux32[8];
  5693. memset(sums, 0, 8*sizeof(float));
  5694. float sumf = 0;
  5695. for (int i = 0; i < nb; ++i) {
  5696. const uint8_t * restrict q4 = x[i].qs;
  5697. const int8_t * restrict q8 = y[i].qs;
  5698. memset(aux32, 0, 8*sizeof(int32_t));
  5699. int8_t * restrict a = aux8;
  5700. for (int j = 0; j < QK_K/64; ++j) {
  5701. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5702. a += 32;
  5703. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5704. a += 32; q4 += 32;
  5705. }
  5706. memcpy(utmp, x[i].scales, 12);
  5707. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5708. const uint32_t uaux = utmp[1] & kmask1;
  5709. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5710. utmp[2] = uaux;
  5711. utmp[0] &= kmask1;
  5712. int sumi = 0;
  5713. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5714. a = aux8;
  5715. int is = 0;
  5716. for (int j = 0; j < QK_K/32; ++j) {
  5717. int32_t scale = scales[is++];
  5718. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5719. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5720. q8 += 8; a += 8;
  5721. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5722. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5723. q8 += 8; a += 8;
  5724. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5725. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5726. q8 += 8; a += 8;
  5727. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5728. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5729. q8 += 8; a += 8;
  5730. }
  5731. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5732. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5733. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5734. sumf -= dmin * sumi;
  5735. }
  5736. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5737. *s = sumf;
  5738. #endif
  5739. }
  5740. #else
  5741. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5742. assert(n % QK_K == 0);
  5743. assert(nrc == 1);
  5744. UNUSED(nrc);
  5745. UNUSED(bx);
  5746. UNUSED(by);
  5747. UNUSED(bs);
  5748. const block_q4_K * restrict x = vx;
  5749. const block_q8_K * restrict y = vy;
  5750. const int nb = n / QK_K;
  5751. #ifdef __ARM_NEON
  5752. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5753. const int32x4_t mzero = vdupq_n_s32(0);
  5754. float sumf = 0;
  5755. ggml_int8x16x2_t q4bytes;
  5756. ggml_int8x16x4_t q8bytes;
  5757. float sum_mins = 0.f;
  5758. uint16_t aux16[2];
  5759. const uint8_t * restrict scales = (const uint8_t *)aux16;
  5760. for (int i = 0; i < nb; ++i) {
  5761. const uint8_t * restrict q4 = x[i].qs;
  5762. const int8_t * restrict q8 = y[i].qs;
  5763. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  5764. aux16[0] = a[0] & 0x0f0f;
  5765. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5766. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  5767. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  5768. const float d = y[i].d * (float)x[i].d[0];
  5769. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  5770. q8bytes = ggml_vld1q_s8_x4(q8);
  5771. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5772. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5773. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5774. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  5775. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5776. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5777. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  5778. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  5779. sumf += d * (sumi1 + sumi2);
  5780. }
  5781. *s = sumf - sum_mins;
  5782. #elif defined __AVX2__
  5783. const __m256i m4 = _mm256_set1_epi8(0xF);
  5784. __m256 acc = _mm256_setzero_ps();
  5785. float summs = 0;
  5786. uint16_t aux16[2];
  5787. const uint8_t * scales = (const uint8_t *)aux16;
  5788. for (int i = 0; i < nb; ++i) {
  5789. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5790. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5791. const __m256 vd = _mm256_set1_ps(d);
  5792. const uint16_t * a = (const uint16_t *)x[i].scales;
  5793. aux16[0] = a[0] & 0x0f0f;
  5794. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5795. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5796. const uint8_t * restrict q4 = x[i].qs;
  5797. const int8_t * restrict q8 = y[i].qs;
  5798. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5799. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5800. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5801. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5802. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  5803. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5804. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5805. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  5806. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  5807. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  5808. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  5809. }
  5810. *s = hsum_float_8(acc) - summs;
  5811. #elif defined __AVX__
  5812. const __m128i m4 = _mm_set1_epi8(0xF);
  5813. __m256 acc = _mm256_setzero_ps();
  5814. float summs = 0;
  5815. uint16_t aux16[2];
  5816. const uint8_t * scales = (const uint8_t *)aux16;
  5817. for (int i = 0; i < nb; ++i) {
  5818. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5819. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5820. const __m256 vd = _mm256_set1_ps(d);
  5821. const uint16_t * a = (const uint16_t *)x[i].scales;
  5822. aux16[0] = a[0] & 0x0f0f;
  5823. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5824. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5825. const uint8_t * restrict q4 = x[i].qs;
  5826. const int8_t * restrict q8 = y[i].qs;
  5827. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5828. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  5829. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  5830. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  5831. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  5832. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  5833. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  5834. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5835. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5836. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  5837. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  5838. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  5839. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  5840. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  5841. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  5842. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  5843. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  5844. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  5845. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  5846. }
  5847. *s = hsum_float_8(acc) - summs;
  5848. #elif defined __riscv_v_intrinsic
  5849. uint16_t s16[2];
  5850. const uint8_t * restrict scales = (const uint8_t *)s16;
  5851. float sumf = 0;
  5852. for (int i = 0; i < nb; ++i) {
  5853. const uint8_t * restrict q4 = x[i].qs;
  5854. const int8_t * restrict q8 = y[i].qs;
  5855. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  5856. s16[0] = b[0] & 0x0f0f;
  5857. s16[1] = (b[0] >> 4) & 0x0f0f;
  5858. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5859. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5860. size_t vl = 32;
  5861. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5862. // load Q4
  5863. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5864. // load Q8 and multiply it with lower Q4 nibble
  5865. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5866. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  5867. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  5868. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  5869. // load Q8 and multiply it with upper Q4 nibble
  5870. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5871. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5872. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  5873. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  5874. }
  5875. *s = sumf;
  5876. #else
  5877. uint8_t aux8[QK_K];
  5878. int16_t aux16[16];
  5879. float sums [8];
  5880. memset(sums, 0, 8*sizeof(float));
  5881. uint16_t s16[2];
  5882. const uint8_t * restrict scales = (const uint8_t *)s16;
  5883. float sumf = 0;
  5884. for (int i = 0; i < nb; ++i) {
  5885. const uint8_t * restrict q4 = x[i].qs;
  5886. const int8_t * restrict q8 = y[i].qs;
  5887. uint8_t * restrict a = aux8;
  5888. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  5889. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  5890. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  5891. s16[0] = b[0] & 0x0f0f;
  5892. s16[1] = (b[0] >> 4) & 0x0f0f;
  5893. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5894. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5895. for (int j = 0; j < QK_K/32; ++j) {
  5896. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  5897. q8 += 16; a += 16;
  5898. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  5899. q8 += 16; a += 16;
  5900. const float dl = d * scales[j];
  5901. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  5902. }
  5903. }
  5904. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5905. *s = sumf;
  5906. #endif
  5907. }
  5908. #endif
  5909. #if QK_K == 256
  5910. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5911. assert(n % QK_K == 0);
  5912. assert(nrc == 1);
  5913. UNUSED(nrc);
  5914. UNUSED(bx);
  5915. UNUSED(by);
  5916. UNUSED(bs);
  5917. const block_q5_K * restrict x = vx;
  5918. const block_q8_K * restrict y = vy;
  5919. const int nb = n / QK_K;
  5920. static const uint32_t kmask1 = 0x3f3f3f3f;
  5921. static const uint32_t kmask2 = 0x0f0f0f0f;
  5922. static const uint32_t kmask3 = 0x03030303;
  5923. uint32_t utmp[4];
  5924. #ifdef __ARM_NEON
  5925. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5926. const uint8x16_t mone = vdupq_n_u8(1);
  5927. const uint8x16_t mtwo = vdupq_n_u8(2);
  5928. const int32x4_t mzero = vdupq_n_s32(0);
  5929. ggml_int8x16x4_t q5bytes;
  5930. float sumf = 0;
  5931. for (int i = 0; i < nb; ++i) {
  5932. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5933. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5934. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5935. memcpy(utmp, x[i].scales, 12);
  5936. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5937. const uint32_t uaux = utmp[1] & kmask1;
  5938. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5939. utmp[2] = uaux;
  5940. utmp[0] &= kmask1;
  5941. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  5942. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  5943. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5944. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5945. int32_t sumi_mins = vaddvq_s32(prod);
  5946. const uint8_t * scales = (const uint8_t *)utmp;
  5947. const uint8_t * restrict q5 = x[i].qs;
  5948. const uint8_t * restrict qh = x[i].qh;
  5949. const int8_t * restrict q8 = y[i].qs;
  5950. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5951. ggml_uint8x16x4_t q5h;
  5952. int32_t sumi = 0;
  5953. for (int j = 0; j < QK_K/64; ++j) {
  5954. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  5955. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5956. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  5957. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  5958. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  5959. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  5960. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  5961. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  5962. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  5963. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  5964. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  5965. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  5966. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  5967. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  5968. }
  5969. sumf += d * sumi - dmin * sumi_mins;
  5970. }
  5971. *s = sumf;
  5972. #elif defined __AVX2__
  5973. const __m256i m4 = _mm256_set1_epi8(0xF);
  5974. const __m128i mzero = _mm_setzero_si128();
  5975. const __m256i mone = _mm256_set1_epi8(1);
  5976. __m256 acc = _mm256_setzero_ps();
  5977. float summs = 0.f;
  5978. for (int i = 0; i < nb; ++i) {
  5979. const uint8_t * restrict q5 = x[i].qs;
  5980. const int8_t * restrict q8 = y[i].qs;
  5981. #if QK_K == 256
  5982. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5983. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5984. memcpy(utmp, x[i].scales, 12);
  5985. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5986. const uint32_t uaux = utmp[1] & kmask1;
  5987. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5988. utmp[2] = uaux;
  5989. utmp[0] &= kmask1;
  5990. #else
  5991. // TODO
  5992. const float d = 0, dmin = 0;
  5993. #endif
  5994. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5995. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5996. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5997. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5998. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  5999. summs += dmin * _mm_extract_epi32(hsum, 0);
  6000. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6001. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6002. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6003. __m256i hmask = mone;
  6004. __m256i sumi = _mm256_setzero_si256();
  6005. int bit = 0;
  6006. for (int j = 0; j < QK_K/64; ++j) {
  6007. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6008. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6009. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6010. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6011. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6012. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6013. hmask = _mm256_slli_epi16(hmask, 1);
  6014. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6015. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6016. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6017. hmask = _mm256_slli_epi16(hmask, 1);
  6018. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6019. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6020. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6021. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6022. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6023. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6024. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6025. }
  6026. __m256 vd = _mm256_set1_ps(d);
  6027. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6028. }
  6029. *s = hsum_float_8(acc) + summs;
  6030. #elif defined __AVX__
  6031. const __m128i m4 = _mm_set1_epi8(0xF);
  6032. const __m128i mzero = _mm_setzero_si128();
  6033. const __m128i mone = _mm_set1_epi8(1);
  6034. const __m128i m2 = _mm_set1_epi8(2);
  6035. __m256 acc = _mm256_setzero_ps();
  6036. float summs = 0.f;
  6037. for (int i = 0; i < nb; ++i) {
  6038. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6039. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6040. const uint8_t * restrict q5 = x[i].qs;
  6041. const int8_t * restrict q8 = y[i].qs;
  6042. memcpy(utmp, x[i].scales, 12);
  6043. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6044. const uint32_t uaux = utmp[1] & kmask1;
  6045. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6046. utmp[2] = uaux;
  6047. utmp[0] &= kmask1;
  6048. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6049. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6050. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6051. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6052. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6053. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6054. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6055. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6056. summs += dmin * _mm_extract_epi32(hsum, 0);
  6057. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6058. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6059. __m128i hmask = mone;
  6060. __m128i sumi_0 = _mm_setzero_si128();
  6061. __m128i sumi_1 = _mm_setzero_si128();
  6062. int bit = 0;
  6063. __m128i shuffle = _mm_set1_epi16(0x0100);
  6064. for (int j = 0; j < QK_K/64; ++j) {
  6065. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6066. shuffle = _mm_add_epi16(shuffle, m2);
  6067. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6068. shuffle = _mm_add_epi16(shuffle, m2);
  6069. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6070. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6071. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6072. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6073. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6074. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6075. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6076. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6077. hmask = _mm_slli_epi16(hmask, 1);
  6078. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6079. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6080. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6081. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6082. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6083. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6084. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6085. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6086. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6087. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6088. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6089. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6090. hmask = _mm_slli_epi16(hmask, 1);
  6091. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6092. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6093. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6094. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6095. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6096. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6097. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6098. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6099. }
  6100. __m256 vd = _mm256_set1_ps(d);
  6101. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6102. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6103. }
  6104. *s = hsum_float_8(acc) + summs;
  6105. #elif defined __riscv_v_intrinsic
  6106. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6107. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6108. float sumf = 0;
  6109. float sums = 0.0;
  6110. size_t vl;
  6111. for (int i = 0; i < nb; ++i) {
  6112. vl = 8;
  6113. const uint8_t * restrict q5 = x[i].qs;
  6114. const uint8_t * restrict hm = x[i].qh;
  6115. const int8_t * restrict q8 = y[i].qs;
  6116. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6117. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6118. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6119. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6120. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6121. memcpy(utmp, x[i].scales, 12);
  6122. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6123. const uint32_t uaux = utmp[1] & kmask1;
  6124. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6125. utmp[2] = uaux;
  6126. utmp[0] &= kmask1;
  6127. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6128. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6129. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6130. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6131. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6132. vl = 32;
  6133. int32_t aux32 = 0;
  6134. int is = 0;
  6135. uint8_t m = 1;
  6136. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6137. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6138. for (int j = 0; j < QK_K/64; ++j) {
  6139. // load Q5 and Q8
  6140. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6141. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6142. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6143. // compute mask for addition
  6144. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6145. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6146. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6147. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6148. m <<= 1;
  6149. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6150. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6151. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6152. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6153. m <<= 1;
  6154. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6155. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6156. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6157. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6158. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6159. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6160. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6161. q5 += 32; q8 += 64;
  6162. }
  6163. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6164. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6165. }
  6166. *s = sumf+sums;
  6167. #else
  6168. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6169. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6170. int8_t aux8[QK_K];
  6171. int16_t aux16[8];
  6172. float sums [8];
  6173. int32_t aux32[8];
  6174. memset(sums, 0, 8*sizeof(float));
  6175. float sumf = 0;
  6176. for (int i = 0; i < nb; ++i) {
  6177. const uint8_t * restrict q4 = x[i].qs;
  6178. const uint8_t * restrict hm = x[i].qh;
  6179. const int8_t * restrict q8 = y[i].qs;
  6180. memset(aux32, 0, 8*sizeof(int32_t));
  6181. int8_t * restrict a = aux8;
  6182. uint8_t m = 1;
  6183. for (int j = 0; j < QK_K/64; ++j) {
  6184. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6185. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6186. a += 32; m <<= 1;
  6187. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6188. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6189. a += 32; m <<= 1;
  6190. q4 += 32;
  6191. }
  6192. memcpy(utmp, x[i].scales, 12);
  6193. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6194. const uint32_t uaux = utmp[1] & kmask1;
  6195. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6196. utmp[2] = uaux;
  6197. utmp[0] &= kmask1;
  6198. int sumi = 0;
  6199. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6200. a = aux8;
  6201. int is = 0;
  6202. for (int j = 0; j < QK_K/32; ++j) {
  6203. int32_t scale = scales[is++];
  6204. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6205. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6206. q8 += 8; a += 8;
  6207. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6208. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6209. q8 += 8; a += 8;
  6210. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6211. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6212. q8 += 8; a += 8;
  6213. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6214. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6215. q8 += 8; a += 8;
  6216. }
  6217. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6218. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6219. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6220. sumf -= dmin * sumi;
  6221. }
  6222. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6223. *s = sumf;
  6224. #endif
  6225. }
  6226. #else
  6227. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6228. assert(n % QK_K == 0);
  6229. assert(nrc == 1);
  6230. UNUSED(nrc);
  6231. UNUSED(bx);
  6232. UNUSED(by);
  6233. UNUSED(bs);
  6234. const block_q5_K * restrict x = vx;
  6235. const block_q8_K * restrict y = vy;
  6236. const int nb = n / QK_K;
  6237. #ifdef __ARM_NEON
  6238. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6239. const uint8x16_t mh = vdupq_n_u8(16);
  6240. const int32x4_t mzero = vdupq_n_s32(0);
  6241. ggml_int8x16x4_t q5bytes;
  6242. ggml_uint8x16x4_t q5h;
  6243. float sumf = 0;
  6244. for (int i = 0; i < nb; ++i) {
  6245. const float d = y[i].d * (float)x[i].d;
  6246. const int8_t * sc = x[i].scales;
  6247. const uint8_t * restrict q5 = x[i].qs;
  6248. const uint8_t * restrict qh = x[i].qh;
  6249. const int8_t * restrict q8 = y[i].qs;
  6250. const uint8x8_t qhbits = vld1_u8(qh);
  6251. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  6252. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6253. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  6254. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  6255. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  6256. q5h.val[2] = vbicq_u8(mh, htmp);
  6257. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  6258. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  6259. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  6260. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  6261. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  6262. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  6263. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  6264. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  6265. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  6266. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6267. }
  6268. *s = sumf;
  6269. #elif defined __AVX2__
  6270. const __m256i m4 = _mm256_set1_epi8(0xF);
  6271. const __m256i mone = _mm256_set1_epi8(1);
  6272. __m256 acc = _mm256_setzero_ps();
  6273. for (int i = 0; i < nb; ++i) {
  6274. const uint8_t * restrict q5 = x[i].qs;
  6275. const int8_t * restrict q8 = y[i].qs;
  6276. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6277. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6278. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  6279. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  6280. int64_t aux64;
  6281. memcpy(&aux64, x[i].qh, 8);
  6282. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  6283. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  6284. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  6285. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  6286. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6287. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6288. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6289. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6290. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  6291. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  6292. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  6293. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  6294. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  6295. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  6296. }
  6297. *s = hsum_float_8(acc);
  6298. #elif defined __AVX__
  6299. const __m128i m4 = _mm_set1_epi8(0xF);
  6300. const __m128i mone = _mm_set1_epi8(1);
  6301. __m256 acc = _mm256_setzero_ps();
  6302. for (int i = 0; i < nb; ++i) {
  6303. const uint8_t * restrict q5 = x[i].qs;
  6304. const int8_t * restrict q8 = y[i].qs;
  6305. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6306. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6307. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  6308. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  6309. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  6310. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  6311. int64_t aux64;
  6312. memcpy(&aux64, x[i].qh, 8);
  6313. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  6314. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  6315. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  6316. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  6317. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  6318. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  6319. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  6320. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  6321. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  6322. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  6323. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6324. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6325. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  6326. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  6327. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  6328. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  6329. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  6330. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  6331. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  6332. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  6333. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  6334. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  6335. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  6336. }
  6337. *s = hsum_float_8(acc);
  6338. #elif defined __riscv_v_intrinsic
  6339. float sumf = 0;
  6340. for (int i = 0; i < nb; ++i) {
  6341. const float d = y[i].d * (float)x[i].d;
  6342. const int8_t * sc = x[i].scales;
  6343. const uint8_t * restrict q5 = x[i].qs;
  6344. const uint8_t * restrict qh = x[i].qh;
  6345. const int8_t * restrict q8 = y[i].qs;
  6346. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6347. // load qh
  6348. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  6349. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6350. size_t vl = 16;
  6351. // combine both qh_1 and qh_2
  6352. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6353. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6354. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  6355. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  6356. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6357. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  6358. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  6359. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  6360. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  6361. // load q5
  6362. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  6363. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  6364. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  6365. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  6366. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  6367. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  6368. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  6369. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  6370. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  6371. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  6372. // load Q8 and multiply it with Q5
  6373. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6374. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6375. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6376. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6377. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6378. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6379. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6380. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6381. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  6382. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  6383. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  6384. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  6385. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6386. }
  6387. *s = sumf;
  6388. #else
  6389. int8_t aux8[QK_K];
  6390. int16_t aux16[16];
  6391. float sums [8];
  6392. memset(sums, 0, 8*sizeof(float));
  6393. float sumf = 0;
  6394. for (int i = 0; i < nb; ++i) {
  6395. const uint8_t * restrict q4 = x[i].qs;
  6396. const uint8_t * restrict hm = x[i].qh;
  6397. const int8_t * restrict q8 = y[i].qs;
  6398. int8_t * restrict a = aux8;
  6399. for (int l = 0; l < 32; ++l) {
  6400. a[l+ 0] = q4[l] & 0xF;
  6401. a[l+32] = q4[l] >> 4;
  6402. }
  6403. for (int is = 0; is < 8; ++is) {
  6404. uint8_t m = 1 << is;
  6405. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  6406. }
  6407. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6408. const int8_t * restrict sc = x[i].scales;
  6409. for (int j = 0; j < QK_K/16; ++j) {
  6410. const float dl = d * sc[j];
  6411. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6412. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  6413. q8 += 16; a += 16;
  6414. }
  6415. }
  6416. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6417. *s = sumf;
  6418. #endif
  6419. }
  6420. #endif
  6421. #if QK_K == 256
  6422. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6423. assert(n % QK_K == 0);
  6424. assert(nrc == 1);
  6425. UNUSED(nrc);
  6426. UNUSED(bx);
  6427. UNUSED(by);
  6428. UNUSED(bs);
  6429. const block_q6_K * restrict x = vx;
  6430. const block_q8_K * restrict y = vy;
  6431. const int nb = n / QK_K;
  6432. #ifdef __ARM_NEON
  6433. float sum = 0;
  6434. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6435. const int32x4_t vzero = vdupq_n_s32(0);
  6436. //const int8x16_t m32s = vdupq_n_s8(32);
  6437. const uint8x16_t mone = vdupq_n_u8(3);
  6438. ggml_int8x16x4_t q6bytes;
  6439. ggml_uint8x16x4_t q6h;
  6440. for (int i = 0; i < nb; ++i) {
  6441. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6442. const uint8_t * restrict q6 = x[i].ql;
  6443. const uint8_t * restrict qh = x[i].qh;
  6444. const int8_t * restrict q8 = y[i].qs;
  6445. const int8_t * restrict scale = x[i].scales;
  6446. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6447. const int8x16_t scales = vld1q_s8(scale);
  6448. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6449. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6450. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6451. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6452. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6453. int32_t isum_mins = vaddvq_s32(prod);
  6454. int32_t isum = 0;
  6455. for (int j = 0; j < QK_K/128; ++j) {
  6456. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6457. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6458. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6459. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6460. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6461. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6462. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6463. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6464. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6465. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6466. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6467. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6468. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6469. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6470. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6471. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6472. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6473. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6474. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6475. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6476. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6477. scale += 4;
  6478. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6479. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6480. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6481. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6482. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6483. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6484. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6485. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6486. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6487. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6488. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6489. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6490. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6491. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6492. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6493. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6494. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6495. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6496. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6497. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6498. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6499. scale += 4;
  6500. }
  6501. //sum += isum * d_all * y[i].d;
  6502. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6503. }
  6504. *s = sum;
  6505. #elif defined __AVX2__
  6506. const __m256i m4 = _mm256_set1_epi8(0xF);
  6507. const __m256i m2 = _mm256_set1_epi8(3);
  6508. const __m256i m32s = _mm256_set1_epi8(32);
  6509. __m256 acc = _mm256_setzero_ps();
  6510. for (int i = 0; i < nb; ++i) {
  6511. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6512. const uint8_t * restrict q4 = x[i].ql;
  6513. const uint8_t * restrict qh = x[i].qh;
  6514. const int8_t * restrict q8 = y[i].qs;
  6515. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6516. __m256i sumi = _mm256_setzero_si256();
  6517. int is = 0;
  6518. for (int j = 0; j < QK_K/128; ++j) {
  6519. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6520. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6521. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6522. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6523. is += 4;
  6524. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6525. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6526. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6527. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6528. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6529. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6530. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6531. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6532. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6533. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6534. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6535. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6536. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6537. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6538. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6539. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6540. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6541. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6542. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6543. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6544. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6545. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6546. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6547. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6548. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6549. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6550. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6551. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6552. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6553. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6554. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6555. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6556. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6557. }
  6558. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6559. }
  6560. *s = hsum_float_8(acc);
  6561. #elif defined __AVX__
  6562. const __m128i m4 = _mm_set1_epi8(0xF);
  6563. const __m128i m3 = _mm_set1_epi8(3);
  6564. const __m128i m32s = _mm_set1_epi8(32);
  6565. const __m128i m2 = _mm_set1_epi8(2);
  6566. __m256 acc = _mm256_setzero_ps();
  6567. for (int i = 0; i < nb; ++i) {
  6568. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6569. const uint8_t * restrict q4 = x[i].ql;
  6570. const uint8_t * restrict qh = x[i].qh;
  6571. const int8_t * restrict q8 = y[i].qs;
  6572. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6573. __m128i sumi_0 = _mm_setzero_si128();
  6574. __m128i sumi_1 = _mm_setzero_si128();
  6575. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6576. for (int j = 0; j < QK_K/128; ++j) {
  6577. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6578. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6579. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6580. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6581. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6582. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6583. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6584. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6585. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6586. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6587. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6588. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6589. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6590. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6591. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6592. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6593. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6594. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6595. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6596. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6597. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6598. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6599. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6600. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6601. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6602. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6603. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6604. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6605. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6606. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6607. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6608. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6609. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6610. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6611. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6612. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6613. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6614. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6615. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6616. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6617. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6618. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6619. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6620. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6621. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6622. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6623. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6624. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6625. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6626. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6627. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6628. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6629. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6630. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6631. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6632. shuffle = _mm_add_epi8(shuffle, m2);
  6633. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6634. shuffle = _mm_add_epi8(shuffle, m2);
  6635. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6636. shuffle = _mm_add_epi8(shuffle, m2);
  6637. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6638. shuffle = _mm_add_epi8(shuffle, m2);
  6639. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6640. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6641. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6642. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6643. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6644. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6645. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6646. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6647. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6648. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6649. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6650. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6651. }
  6652. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6653. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6654. }
  6655. *s = hsum_float_8(acc);
  6656. #elif defined __riscv_v_intrinsic
  6657. float sumf = 0;
  6658. for (int i = 0; i < nb; ++i) {
  6659. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6660. const uint8_t * restrict q6 = x[i].ql;
  6661. const uint8_t * restrict qh = x[i].qh;
  6662. const int8_t * restrict q8 = y[i].qs;
  6663. const int8_t * restrict scale = x[i].scales;
  6664. size_t vl;
  6665. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6666. int sum_t = 0;
  6667. int is = 0;
  6668. for (int j = 0; j < QK_K/128; ++j) {
  6669. vl = 32;
  6670. // load qh
  6671. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6672. // load Q6
  6673. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6674. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6675. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6676. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6677. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6678. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6679. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6680. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6681. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6682. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6683. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6684. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6685. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6686. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6687. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6688. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6689. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6690. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6691. // load Q8 and take product
  6692. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6693. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6694. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6695. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6696. vl = 16;
  6697. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6698. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6699. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6700. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6701. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6702. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6703. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6704. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6705. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6706. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6707. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6708. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6709. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6710. q6 += 64; qh += 32; q8 += 128; is=8;
  6711. }
  6712. sumf += d * sum_t;
  6713. }
  6714. *s = sumf;
  6715. #else
  6716. int8_t aux8[QK_K];
  6717. int16_t aux16[8];
  6718. float sums [8];
  6719. int32_t aux32[8];
  6720. memset(sums, 0, 8*sizeof(float));
  6721. float sumf = 0;
  6722. for (int i = 0; i < nb; ++i) {
  6723. const uint8_t * restrict q4 = x[i].ql;
  6724. const uint8_t * restrict qh = x[i].qh;
  6725. const int8_t * restrict q8 = y[i].qs;
  6726. memset(aux32, 0, 8*sizeof(int32_t));
  6727. int8_t * restrict a = aux8;
  6728. for (int j = 0; j < QK_K; j += 128) {
  6729. for (int l = 0; l < 32; ++l) {
  6730. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6731. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6732. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6733. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6734. }
  6735. a += 128;
  6736. q4 += 64;
  6737. qh += 32;
  6738. }
  6739. a = aux8;
  6740. int is = 0;
  6741. for (int j = 0; j < QK_K/16; ++j) {
  6742. int scale = x[i].scales[is++];
  6743. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6744. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6745. q8 += 8; a += 8;
  6746. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6747. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6748. q8 += 8; a += 8;
  6749. }
  6750. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6751. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6752. }
  6753. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6754. *s = sumf;
  6755. #endif
  6756. }
  6757. #else
  6758. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6759. assert(n % QK_K == 0);
  6760. assert(nrc == 1);
  6761. UNUSED(nrc);
  6762. UNUSED(bx);
  6763. UNUSED(by);
  6764. UNUSED(bs);
  6765. const block_q6_K * restrict x = vx;
  6766. const block_q8_K * restrict y = vy;
  6767. const int nb = n / QK_K;
  6768. #ifdef __ARM_NEON
  6769. float sum = 0;
  6770. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6771. const int8x16_t m32s = vdupq_n_s8(32);
  6772. const int32x4_t vzero = vdupq_n_s32(0);
  6773. const uint8x16_t mone = vdupq_n_u8(3);
  6774. ggml_int8x16x4_t q6bytes;
  6775. ggml_uint8x16x4_t q6h;
  6776. for (int i = 0; i < nb; ++i) {
  6777. const float d_all = (float)x[i].d;
  6778. const uint8_t * restrict q6 = x[i].ql;
  6779. const uint8_t * restrict qh = x[i].qh;
  6780. const int8_t * restrict q8 = y[i].qs;
  6781. const int8_t * restrict scale = x[i].scales;
  6782. int32_t isum = 0;
  6783. uint8x16_t qhbits = vld1q_u8(qh);
  6784. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  6785. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6786. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  6787. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  6788. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6789. shifted = vshrq_n_u8(qhbits, 4);
  6790. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6791. shifted = vshrq_n_u8(qhbits, 6);
  6792. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6793. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6794. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6795. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  6796. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  6797. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6798. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6799. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6800. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6801. sum += isum * d_all * y[i].d;
  6802. }
  6803. *s = sum;
  6804. #elif defined __AVX2__
  6805. const __m256i m4 = _mm256_set1_epi8(0xF);
  6806. const __m256i m2 = _mm256_set1_epi8(3);
  6807. const __m256i m32s = _mm256_set1_epi8(32);
  6808. __m256 acc = _mm256_setzero_ps();
  6809. for (int i = 0; i < nb; ++i) {
  6810. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6811. const uint8_t * restrict q4 = x[i].ql;
  6812. const uint8_t * restrict qh = x[i].qh;
  6813. const int8_t * restrict q8 = y[i].qs;
  6814. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6815. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6816. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6817. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6818. __m256i sumi = _mm256_setzero_si256();
  6819. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6820. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6821. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6822. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6823. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  6824. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  6825. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6826. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  6827. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6828. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6829. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6830. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6831. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6832. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6833. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6834. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6835. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6836. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6837. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6838. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6839. }
  6840. *s = hsum_float_8(acc);
  6841. #elif defined __AVX__
  6842. const __m128i m4 = _mm_set1_epi8(0xF);
  6843. const __m128i m2 = _mm_set1_epi8(3);
  6844. const __m128i m32s = _mm_set1_epi8(32);
  6845. __m256 acc = _mm256_setzero_ps();
  6846. for (int i = 0; i < nb; ++i) {
  6847. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6848. const uint8_t * restrict q4 = x[i].ql;
  6849. const uint8_t * restrict qh = x[i].qh;
  6850. const int8_t * restrict q8 = y[i].qs;
  6851. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6852. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6853. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6854. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6855. __m128i sumi_0 = _mm_setzero_si128();
  6856. __m128i sumi_1 = _mm_setzero_si128();
  6857. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6858. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6859. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6860. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6861. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  6862. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  6863. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  6864. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  6865. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  6866. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  6867. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  6868. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  6869. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6870. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6871. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  6872. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  6873. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  6874. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  6875. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  6876. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  6877. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  6878. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  6879. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6880. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6881. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6882. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6883. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6884. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6885. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6886. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6887. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6888. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6889. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  6890. }
  6891. *s = hsum_float_8(acc);
  6892. #elif defined __riscv_v_intrinsic
  6893. float sumf = 0;
  6894. for (int i = 0; i < nb; ++i) {
  6895. const float d_all = (float)x[i].d;
  6896. const uint8_t * restrict q6 = x[i].ql;
  6897. const uint8_t * restrict qh = x[i].qh;
  6898. const int8_t * restrict q8 = y[i].qs;
  6899. const int8_t * restrict scale = x[i].scales;
  6900. int32_t isum = 0;
  6901. size_t vl = 16;
  6902. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6903. // load Q6
  6904. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  6905. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  6906. // load qh
  6907. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  6908. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6909. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  6910. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6911. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  6912. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6913. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  6914. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6915. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  6916. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  6917. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  6918. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  6919. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  6920. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  6921. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  6922. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  6923. // load Q8 and take product
  6924. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6925. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6926. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6927. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6928. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6929. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6930. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6931. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6932. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  6933. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  6934. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  6935. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  6936. sumf += isum * d_all * y[i].d;
  6937. }
  6938. *s = sumf;
  6939. #else
  6940. int8_t aux8[QK_K];
  6941. int16_t aux16[8];
  6942. float sums [8];
  6943. int32_t aux32[8];
  6944. memset(sums, 0, 8*sizeof(float));
  6945. float sumf = 0;
  6946. for (int i = 0; i < nb; ++i) {
  6947. const uint8_t * restrict q4 = x[i].ql;
  6948. const uint8_t * restrict qh = x[i].qh;
  6949. const int8_t * restrict q8 = y[i].qs;
  6950. memset(aux32, 0, 8*sizeof(int32_t));
  6951. int8_t * restrict a = aux8;
  6952. for (int l = 0; l < 16; ++l) {
  6953. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6954. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6955. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6956. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6957. }
  6958. int is = 0;
  6959. for (int j = 0; j < QK_K/16; ++j) {
  6960. int scale = x[i].scales[is++];
  6961. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6962. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6963. q8 += 8; a += 8;
  6964. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6965. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6966. q8 += 8; a += 8;
  6967. }
  6968. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6969. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6970. }
  6971. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6972. *s = sumf;
  6973. #endif
  6974. }
  6975. #endif
  6976. static const int8_t keven_signs_q2xs[1024] = {
  6977. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  6978. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  6979. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  6980. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  6981. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  6982. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  6983. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  6984. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  6985. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  6986. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  6987. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  6988. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  6989. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  6990. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  6991. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  6992. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  6993. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  6994. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  6995. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  6996. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  6997. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  6998. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  6999. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7000. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7001. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7002. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7003. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7004. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7005. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7006. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7007. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7008. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7009. };
  7010. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7011. assert(n % QK_K == 0);
  7012. assert(nrc == 1);
  7013. UNUSED(nrc);
  7014. UNUSED(bx);
  7015. UNUSED(by);
  7016. UNUSED(bs);
  7017. const block_iq2_xxs * restrict x = vx;
  7018. const block_q8_K * restrict y = vy;
  7019. const int nb = n / QK_K;
  7020. #if defined(__ARM_NEON)
  7021. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7022. uint32_t aux32[4];
  7023. const uint8_t * aux8 = (const uint8_t *)aux32;
  7024. ggml_int8x16x4_t q2u;
  7025. ggml_int8x16x4_t q2s;
  7026. ggml_int8x16x4_t q8b;
  7027. float sumf = 0;
  7028. for (int i = 0; i < nb; ++i) {
  7029. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7030. const uint16_t * restrict q2 = x[i].qs;
  7031. const int8_t * restrict q8 = y[i].qs;
  7032. float sumf1 = 0, sumf2 = 0;
  7033. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7034. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7035. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7036. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7037. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7038. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7039. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7040. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7041. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7042. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7043. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7044. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7045. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7046. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7047. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7048. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7049. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7050. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7051. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7052. }
  7053. sumf += d*(sumf1 + sumf2);
  7054. }
  7055. *s = 0.25f * sumf;
  7056. #elif defined(__AVX2__)
  7057. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7058. uint32_t aux32[4];
  7059. const uint8_t * aux8 = (const uint8_t *)aux32;
  7060. __m256 accumf = _mm256_setzero_ps();
  7061. for (int i = 0; i < nb; ++i) {
  7062. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7063. const uint16_t * restrict q2 = x[i].qs;
  7064. const int8_t * restrict q8 = y[i].qs;
  7065. __m256i sumi1 = _mm256_setzero_si256();
  7066. __m256i sumi2 = _mm256_setzero_si256();
  7067. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7068. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7069. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7070. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7071. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7072. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7073. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7074. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7075. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7076. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7077. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7078. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7079. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7080. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7081. const uint16_t ls1 = aux32[1] >> 28;
  7082. const uint16_t ls2 = aux32[3] >> 28;
  7083. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7084. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7085. sumi1 = _mm256_add_epi32(sumi1, p1);
  7086. sumi2 = _mm256_add_epi32(sumi2, p2);
  7087. }
  7088. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7089. }
  7090. *s = 0.125f * hsum_float_8(accumf);
  7091. #else
  7092. uint32_t aux32[2];
  7093. const uint8_t * aux8 = (const uint8_t *)aux32;
  7094. float sumf = 0.f;
  7095. for (int i = 0; i < nb; ++i) {
  7096. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7097. const uint16_t * restrict q2 = x[i].qs;
  7098. const int8_t * restrict q8 = y[i].qs;
  7099. int32_t bsum = 0;
  7100. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7101. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7102. q2 += 4;
  7103. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7104. int32_t sumi = 0;
  7105. for (int l = 0; l < 4; ++l) {
  7106. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7107. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7108. for (int j = 0; j < 8; ++j) {
  7109. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7110. }
  7111. q8 += 8;
  7112. }
  7113. bsum += sumi * ls;
  7114. }
  7115. sumf += d * bsum;
  7116. }
  7117. *s = 0.125f * sumf;
  7118. #endif
  7119. }
  7120. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7121. assert(n % QK_K == 0);
  7122. assert(nrc == 1);
  7123. UNUSED(nrc);
  7124. UNUSED(bx);
  7125. UNUSED(by);
  7126. UNUSED(bs);
  7127. const block_iq2_xs * restrict x = vx;
  7128. const block_q8_K * restrict y = vy;
  7129. const int nb = n / QK_K;
  7130. #if defined(__ARM_NEON)
  7131. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7132. ggml_int8x16x4_t q2u;
  7133. ggml_int8x16x4_t q2s;
  7134. ggml_int8x16x4_t q8b;
  7135. int32x4x4_t scales32;
  7136. float sumf = 0;
  7137. for (int i = 0; i < nb; ++i) {
  7138. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7139. const uint16_t * restrict q2 = x[i].qs;
  7140. const int8_t * restrict q8 = y[i].qs;
  7141. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7142. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7143. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7144. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7145. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7146. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7147. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7148. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7149. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7150. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7151. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7152. int32x4_t sumi = vdupq_n_s32(0);
  7153. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7154. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7155. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7156. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7157. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7158. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7159. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7160. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7161. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7162. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7163. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7164. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7165. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7166. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7167. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7168. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7169. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7170. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7171. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7172. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7173. q2 += 8;
  7174. }
  7175. sumf += d*vaddvq_s32(sumi);
  7176. }
  7177. *s = 0.125f * sumf;
  7178. #elif defined(__AVX2__)
  7179. const __m128i m4 = _mm_set1_epi8(0xf);
  7180. const __m128i m1 = _mm_set1_epi8(1);
  7181. const __m256i m511 = _mm256_set1_epi16(511);
  7182. const __m256i mone = _mm256_set1_epi8(1);
  7183. static const uint8_t k_bit_helper[32] = {
  7184. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7185. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7186. };
  7187. static const char block_sign_shuffle_mask_1[32] = {
  7188. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7189. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7190. };
  7191. static const char block_sign_shuffle_mask_2[32] = {
  7192. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7193. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7194. };
  7195. static const uint8_t bit_selector_mask_bytes[32] = {
  7196. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7197. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7198. };
  7199. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7200. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7201. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7202. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7203. uint64_t aux64;
  7204. // somewhat hacky, but gives a significant boost in performance
  7205. __m256i aux_gindex;
  7206. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7207. __m256 accumf = _mm256_setzero_ps();
  7208. for (int i = 0; i < nb; ++i) {
  7209. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7210. const uint16_t * restrict q2 = x[i].qs;
  7211. const int8_t * restrict q8 = y[i].qs;
  7212. memcpy(&aux64, x[i].scales, 8);
  7213. __m128i stmp = _mm_set1_epi64x(aux64);
  7214. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7215. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7216. __m256i sumi1 = _mm256_setzero_si256();
  7217. __m256i sumi2 = _mm256_setzero_si256();
  7218. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7219. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7220. aux_gindex = _mm256_and_si256(q2_data, m511);
  7221. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7222. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7223. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7224. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7225. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7226. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7227. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7228. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7229. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7230. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7231. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7232. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7233. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7234. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7235. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7236. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7237. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7238. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7239. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7240. const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
  7241. const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
  7242. __m256i signs;
  7243. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7244. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7245. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7246. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7247. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7248. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7249. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7250. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7251. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7252. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7253. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7254. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7255. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7256. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7257. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7258. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7259. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7260. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7261. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7262. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7263. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7264. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7265. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7266. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7267. }
  7268. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7269. }
  7270. *s = 0.125f * hsum_float_8(accumf);
  7271. #else
  7272. float sumf = 0.f;
  7273. for (int i = 0; i < nb; ++i) {
  7274. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7275. const uint16_t * restrict q2 = x[i].qs;
  7276. const uint8_t * restrict sc = x[i].scales;
  7277. const int8_t * restrict q8 = y[i].qs;
  7278. int32_t bsum = 0;
  7279. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7280. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7281. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7282. int32_t sumi = 0;
  7283. for (int l = 0; l < 2; ++l) {
  7284. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7285. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7286. for (int j = 0; j < 8; ++j) {
  7287. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7288. }
  7289. q8 += 8;
  7290. }
  7291. bsum += sumi * ls1;
  7292. sumi = 0;
  7293. for (int l = 2; l < 4; ++l) {
  7294. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7295. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7296. for (int j = 0; j < 8; ++j) {
  7297. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7298. }
  7299. q8 += 8;
  7300. }
  7301. bsum += sumi * ls2;
  7302. q2 += 4;
  7303. }
  7304. sumf += d * bsum;
  7305. }
  7306. *s = 0.125f * sumf;
  7307. #endif
  7308. }
  7309. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7310. assert(n % QK_K == 0);
  7311. assert(nrc == 1);
  7312. UNUSED(nrc);
  7313. UNUSED(bx);
  7314. UNUSED(by);
  7315. UNUSED(bs);
  7316. const block_iq3_xxs * restrict x = vx;
  7317. const block_q8_K * restrict y = vy;
  7318. const int nb = n / QK_K;
  7319. #if defined(__ARM_NEON)
  7320. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7321. uint32_t aux32[2];
  7322. ggml_int8x16x4_t q3s;
  7323. ggml_int8x16x4_t q8b;
  7324. float sumf = 0;
  7325. for (int i = 0; i < nb; ++i) {
  7326. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7327. const uint8_t * restrict q3 = x[i].qs;
  7328. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7329. const int8_t * restrict q8 = y[i].qs;
  7330. float sumf1 = 0, sumf2 = 0;
  7331. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7332. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7333. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7334. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7335. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7336. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7337. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7338. q3 += 16;
  7339. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7340. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7341. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7342. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7343. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7344. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7345. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7346. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7347. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7348. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7349. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7350. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7351. }
  7352. sumf += d*(sumf1 + sumf2);
  7353. }
  7354. *s = 0.5f * sumf;
  7355. #elif defined(__AVX2__)
  7356. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7357. uint32_t aux32[2];
  7358. __m256 accumf = _mm256_setzero_ps();
  7359. for (int i = 0; i < nb; ++i) {
  7360. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7361. const uint8_t * restrict q3 = x[i].qs;
  7362. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7363. const int8_t * restrict q8 = y[i].qs;
  7364. __m256i sumi1 = _mm256_setzero_si256();
  7365. __m256i sumi2 = _mm256_setzero_si256();
  7366. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7367. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7368. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7369. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7370. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7371. q3 += 8;
  7372. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7373. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7374. q3 += 8;
  7375. memcpy(aux32, gas, 8); gas += 8;
  7376. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7377. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7378. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7379. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7380. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7381. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7382. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7383. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7384. const uint16_t ls1 = aux32[0] >> 28;
  7385. const uint16_t ls2 = aux32[1] >> 28;
  7386. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7387. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7388. sumi1 = _mm256_add_epi32(sumi1, p1);
  7389. sumi2 = _mm256_add_epi32(sumi2, p2);
  7390. }
  7391. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7392. }
  7393. *s = 0.25f * hsum_float_8(accumf);
  7394. #else
  7395. uint32_t aux32;
  7396. float sumf = 0.f;
  7397. for (int i = 0; i < nb; ++i) {
  7398. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7399. const uint8_t * restrict q3 = x[i].qs;
  7400. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7401. const int8_t * restrict q8 = y[i].qs;
  7402. int32_t bsum = 0;
  7403. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7404. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7405. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7406. int32_t sumi = 0;
  7407. for (int l = 0; l < 4; ++l) {
  7408. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7409. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7410. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7411. for (int j = 0; j < 4; ++j) {
  7412. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7413. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7414. }
  7415. q8 += 8;
  7416. }
  7417. q3 += 8;
  7418. bsum += sumi * ls;
  7419. }
  7420. sumf += d * bsum;
  7421. }
  7422. *s = 0.25f * sumf;
  7423. #endif
  7424. }
  7425. #ifdef __AVX2__
  7426. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7427. const __m256i ax = _mm256_sign_epi8(x, x);
  7428. const __m256i sy = _mm256_sign_epi8(y, x);
  7429. return _mm256_maddubs_epi16(ax, sy);
  7430. }
  7431. #endif
  7432. void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  7433. assert(n % QK_K == 0);
  7434. assert(nrc == 1);
  7435. UNUSED(nrc);
  7436. UNUSED(bx);
  7437. UNUSED(by);
  7438. UNUSED(bs);
  7439. const block_iq1_s * restrict x = vx;
  7440. const block_q8_K * restrict y = vy;
  7441. const int nb = n / QK_K;
  7442. #if defined __ARM_NEON
  7443. const uint8x16_t m8 = vdupq_n_u8(0x08);
  7444. const uint8x16_t m7 = vdupq_n_u8(0x07);
  7445. const uint8x16_t m1 = vdupq_n_u8(0x01);
  7446. const int32x4_t vzero = vdupq_n_s32(0);
  7447. uint16_t gindex[8];
  7448. uint16x8x2_t vindex;
  7449. int8x16x4_t q1b;
  7450. int8x16x4_t q8b;
  7451. uint16x8x4_t scales;
  7452. int32x4x2_t sumi;
  7453. int32x4x2_t dotq;
  7454. float sumf = 0;
  7455. for (int i = 0; i < nb; ++i) {
  7456. const int8_t * q8 = y[i].qs;
  7457. const uint8_t * qs = x[i].qs;
  7458. const uint8_t * sc = x[i].scales;
  7459. sumi.val[0] = sumi.val[1] = vzero;
  7460. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7461. const uint8x16_t ql = vld1q_u8(qs); qs += 16;
  7462. const uint8x8_t tm1 = vld1_u8 (sc); sc += 8;
  7463. const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
  7464. const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
  7465. const uint8x16_t hbit = vandq_u8(qh, m8);
  7466. vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
  7467. vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
  7468. const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
  7469. scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
  7470. scales.val[1] = vmovl_u8(vget_high_u8 (scales8));
  7471. for (int l = 0; l < 2; ++l) {
  7472. vst1q_u16(gindex+0, vindex.val[l]);
  7473. q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
  7474. q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
  7475. q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
  7476. q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
  7477. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7478. dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
  7479. dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));
  7480. sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
  7481. sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
  7482. }
  7483. }
  7484. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
  7485. }
  7486. *s = sumf;
  7487. #elif defined __AVX2__
  7488. const __m128i m8 = _mm_set1_epi8(0x08);
  7489. const __m128i m7 = _mm_set1_epi8(0x07);
  7490. const __m128i m1 = _mm_set1_epi8(0x01);
  7491. const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
  7492. const __m128i shuffle_s[4] = {
  7493. _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
  7494. _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
  7495. _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
  7496. _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
  7497. };
  7498. uint64_t aux64;
  7499. __m256i v_gindex;
  7500. const uint16_t * gindex = (const uint16_t *)&v_gindex;
  7501. __m256 accum = _mm256_setzero_ps();
  7502. for (int i = 0; i < nb; ++i) {
  7503. const int8_t * q8 = y[i].qs;
  7504. const uint8_t * qs = x[i].qs;
  7505. const uint8_t * sc = x[i].scales;
  7506. __m256i sumi = _mm256_setzero_si256();
  7507. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7508. const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  7509. memcpy(&aux64, sc, 8); sc += 8;
  7510. const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
  7511. const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
  7512. v_gindex = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
  7513. const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);
  7514. for (int i32 = 0; i32 < 4; ++i32) {
  7515. const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7516. const __m256i q1b = _mm256_set_epi64x(iq1s_grid[gindex[4*i32+3]], iq1s_grid[gindex[4*i32+2]],
  7517. iq1s_grid[gindex[4*i32+1]], iq1s_grid[gindex[4*i32+0]]);
  7518. const __m256i dot = mul_add_epi8(q1b, q8b);
  7519. const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
  7520. const __m256i p = _mm256_madd_epi16(s16, dot);
  7521. sumi = _mm256_add_epi32(sumi, p);
  7522. }
  7523. }
  7524. accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);
  7525. }
  7526. *s = hsum_float_8(accum);
  7527. #else
  7528. int db[4];
  7529. uint16_t idx[4];
  7530. float sumf = 0;
  7531. for (int i = 0; i < nb; ++i) {
  7532. const int8_t * q8 = y[i].qs;
  7533. const uint8_t * qs = x[i].qs;
  7534. const uint8_t * sc = x[i].scales;
  7535. int sumi = 0;
  7536. for (int i32 = 0; i32 < QK_K/32; ++i32) {
  7537. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  7538. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  7539. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  7540. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  7541. db[0] = (2*(sc[0] & 7) + 1);
  7542. db[1] = (2*((sc[0] >> 4) & 7) + 1);
  7543. db[2] = (2*(sc[1] & 7) + 1);
  7544. db[3] = (2*((sc[1] >> 4) & 7) + 1);
  7545. for (int l = 0; l < 4; ++l) {
  7546. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  7547. int suml = 0;
  7548. for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
  7549. sumi += db[l] * suml;
  7550. q8 += 8;
  7551. }
  7552. qs += 4;
  7553. sc += 2;
  7554. }
  7555. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
  7556. }
  7557. *s = sumf;
  7558. #endif
  7559. }
  7560. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7561. assert(nrc == 1);
  7562. UNUSED(nrc);
  7563. UNUSED(bx);
  7564. UNUSED(by);
  7565. UNUSED(bs);
  7566. assert(n % QK4_NL == 0);
  7567. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  7568. const block_iq4_nl * restrict x = vx;
  7569. const block_q8_0 * restrict y = vy;
  7570. const int nb = n / QK4_NL;
  7571. #if defined __ARM_NEON
  7572. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  7573. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  7574. uint8x16x2_t q4bits;
  7575. int8x16x4_t q4b;
  7576. int8x16x4_t q8b;
  7577. int32x4_t prod_1, prod_2;
  7578. float sumf = 0;
  7579. for (int ib = 0; ib < nb; ib += 2) {
  7580. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  7581. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  7582. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  7583. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  7584. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  7585. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  7586. q4b.val[0] = vqtbl1q_s8(values, vandq_u8(q4bits.val[0], m4b));
  7587. q4b.val[1] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  7588. q4b.val[2] = vqtbl1q_s8(values, vandq_u8(q4bits.val[1], m4b));
  7589. q4b.val[3] = vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  7590. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  7591. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  7592. sumf += (float)x[ib+0].d * (float)y[ib+0].d * vaddvq_s32(prod_1) + (float)x[ib+1].d * (float)y[ib+1].d * vaddvq_s32(prod_2);
  7593. }
  7594. *s = sumf;
  7595. #elif defined __AVX2__
  7596. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  7597. const __m128i m4b = _mm_set1_epi8(0x0f);
  7598. const __m256i mone = _mm256_set1_epi16(1);
  7599. __m256 accum1 = _mm256_setzero_ps();
  7600. __m256 accum2 = _mm256_setzero_ps();
  7601. for (int ib = 0; ib < nb; ib += 2) {
  7602. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  7603. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  7604. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  7605. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  7606. const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  7607. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  7608. const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  7609. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  7610. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  7611. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  7612. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  7613. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  7614. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  7615. _mm256_cvtepi32_ps(p_1), accum1);
  7616. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  7617. _mm256_cvtepi32_ps(p_2), accum2);
  7618. y += 2;
  7619. x += 2;
  7620. }
  7621. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  7622. #else
  7623. float sumf = 0;
  7624. for (int ib = 0; ib < nb; ++ib) {
  7625. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  7626. int sumi1 = 0, sumi2 = 0;
  7627. for (int j = 0; j < QK4_NL/2; ++j) {
  7628. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  7629. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  7630. }
  7631. sumf += d * (sumi1 + sumi2);
  7632. }
  7633. *s = sumf;
  7634. #endif
  7635. }
  7636. // ================================ IQ2 quantization =============================================
  7637. typedef struct {
  7638. uint64_t * grid;
  7639. int * map;
  7640. uint16_t * neighbours;
  7641. } iq2_entry_t;
  7642. static iq2_entry_t iq2_data[3] = {
  7643. {NULL, NULL, NULL},
  7644. {NULL, NULL, NULL},
  7645. {NULL, NULL, NULL},
  7646. };
  7647. static inline int iq2_data_index(enum ggml_type type) {
  7648. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7649. return type == GGML_TYPE_IQ2_XXS ? 0 :
  7650. type == GGML_TYPE_IQ2_XS ? 1 : 2;
  7651. }
  7652. static inline int iq2_grid_size(enum ggml_type type) {
  7653. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7654. return type == GGML_TYPE_IQ2_XXS ? 256 :
  7655. type == GGML_TYPE_IQ2_XS ? 512 : 512;
  7656. }
  7657. static int iq2_compare_func(const void * left, const void * right) {
  7658. const int * l = (const int *)left;
  7659. const int * r = (const int *)right;
  7660. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  7661. }
  7662. void iq2xs_init_impl(enum ggml_type type) {
  7663. const int gindex = iq2_data_index(type);
  7664. const int grid_size = iq2_grid_size(type);
  7665. if (iq2_data[gindex].grid) {
  7666. return;
  7667. }
  7668. static const uint16_t kgrid_2bit_256[256] = {
  7669. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  7670. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  7671. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  7672. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  7673. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  7674. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  7675. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  7676. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  7677. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  7678. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  7679. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  7680. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  7681. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  7682. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  7683. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  7684. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  7685. };
  7686. static const uint16_t kgrid_2bit_512[512] = {
  7687. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  7688. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  7689. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  7690. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  7691. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  7692. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  7693. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  7694. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  7695. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  7696. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  7697. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  7698. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  7699. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  7700. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  7701. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  7702. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  7703. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  7704. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  7705. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  7706. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  7707. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  7708. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  7709. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  7710. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  7711. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  7712. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  7713. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  7714. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  7715. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  7716. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  7717. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  7718. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  7719. };
  7720. static const uint16_t kgrid_1bit_512[512] = {
  7721. 10, 33, 41, 85, 132, 134, 160, 162, 277, 337, 340, 345, 357, 405, 516, 545,
  7722. 553, 598, 641, 650, 681, 1042, 1044, 1097, 1169, 1176, 1320, 1345, 1365, 1378, 1434, 1444,
  7723. 1545, 1617, 1642, 1685, 2053, 2080, 2089, 2133, 2176, 2182, 2208, 2214, 2306, 2384, 2393, 2440,
  7724. 2453, 2581, 2664, 2690, 2721, 4117, 4161, 4182, 4184, 4261, 4357, 4369, 4372, 4377, 4390, 4422,
  7725. 4432, 4437, 4449, 4457, 4485, 4497, 4505, 4629, 4677, 4696, 4774, 5205, 5217, 5225, 5386, 5397,
  7726. 5409, 5445, 5457, 5460, 5461, 5462, 5465, 5472, 5477, 5525, 5545, 5650, 5668, 5717, 5729, 5769,
  7727. 5777, 6212, 6234, 6244, 6293, 6424, 6482, 6485, 6502, 6505, 6529, 6538, 6565, 6656, 6682, 6788,
  7728. 6806, 6820, 8218, 8224, 8226, 8232, 8277, 8326, 8354, 8469, 8521, 8530, 8549, 8596, 8737, 8794,
  7729. 9221, 9253, 9348, 9369, 9380, 9474, 9557, 9633, 9732, 9753, 9793, 9830, 9862, 9880, 10240, 10272,
  7730. 10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
  7731. 16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
  7732. 17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
  7733. 18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
  7734. 20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
  7735. 20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
  7736. 21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
  7737. 21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
  7738. 21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
  7739. 22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
  7740. 23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
  7741. 25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
  7742. 25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
  7743. 26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
  7744. 32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
  7745. 33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
  7746. 34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
  7747. 37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
  7748. 38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
  7749. 38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
  7750. 39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
  7751. 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
  7752. 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
  7753. };
  7754. const int kmap_size = 43692;
  7755. const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  7756. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  7757. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : kgrid_1bit_512;
  7758. uint64_t * kgrid_q2xs;
  7759. int * kmap_q2xs;
  7760. uint16_t * kneighbors_q2xs;
  7761. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  7762. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  7763. for (int k = 0; k < grid_size; ++k) {
  7764. int8_t * pos = (int8_t *)(the_grid + k);
  7765. for (int i = 0; i < 8; ++i) {
  7766. int l = (kgrid[k] >> 2*i) & 0x3;
  7767. pos[i] = 2*l + 1;
  7768. }
  7769. }
  7770. kgrid_q2xs = the_grid;
  7771. iq2_data[gindex].grid = the_grid;
  7772. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  7773. iq2_data[gindex].map = kmap_q2xs;
  7774. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  7775. uint64_t aux64;
  7776. uint8_t * aux8 = (uint8_t *)&aux64;
  7777. for (int i = 0; i < grid_size; ++i) {
  7778. aux64 = kgrid_q2xs[i];
  7779. uint16_t index = 0;
  7780. for (int k=0; k<8; ++k) {
  7781. uint16_t q = (aux8[k] - 1)/2;
  7782. index |= (q << 2*k);
  7783. }
  7784. kmap_q2xs[index] = i;
  7785. }
  7786. int8_t pos[8];
  7787. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  7788. int num_neighbors = 0, num_not_in_map = 0;
  7789. for (int i = 0; i < kmap_size; ++i) {
  7790. if (kmap_q2xs[i] >= 0) continue;
  7791. ++num_not_in_map;
  7792. for (int k = 0; k < 8; ++k) {
  7793. int l = (i >> 2*k) & 0x3;
  7794. pos[k] = 2*l + 1;
  7795. }
  7796. for (int j = 0; j < grid_size; ++j) {
  7797. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  7798. int d2 = 0;
  7799. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  7800. dist2[2*j+0] = d2;
  7801. dist2[2*j+1] = j;
  7802. }
  7803. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  7804. int n = 0; int d2 = dist2[0];
  7805. int nhave = 1;
  7806. for (int j = 0; j < grid_size; ++j) {
  7807. if (dist2[2*j] > d2) {
  7808. if (nhave == nwant) break;
  7809. d2 = dist2[2*j];
  7810. ++nhave;
  7811. }
  7812. ++n;
  7813. }
  7814. num_neighbors += n;
  7815. }
  7816. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  7817. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  7818. iq2_data[gindex].neighbours = kneighbors_q2xs;
  7819. int counter = 0;
  7820. for (int i = 0; i < kmap_size; ++i) {
  7821. if (kmap_q2xs[i] >= 0) continue;
  7822. for (int k = 0; k < 8; ++k) {
  7823. int l = (i >> 2*k) & 0x3;
  7824. pos[k] = 2*l + 1;
  7825. }
  7826. for (int j = 0; j < grid_size; ++j) {
  7827. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  7828. int d2 = 0;
  7829. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  7830. dist2[2*j+0] = d2;
  7831. dist2[2*j+1] = j;
  7832. }
  7833. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  7834. kmap_q2xs[i] = -(counter + 1);
  7835. int d2 = dist2[0];
  7836. uint16_t * start = &kneighbors_q2xs[counter++];
  7837. int n = 0, nhave = 1;
  7838. for (int j = 0; j < grid_size; ++j) {
  7839. if (dist2[2*j] > d2) {
  7840. if (nhave == nwant) break;
  7841. d2 = dist2[2*j];
  7842. ++nhave;
  7843. }
  7844. kneighbors_q2xs[counter++] = dist2[2*j+1];
  7845. ++n;
  7846. }
  7847. *start = n;
  7848. }
  7849. free(dist2);
  7850. }
  7851. void iq2xs_free_impl(enum ggml_type type) {
  7852. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7853. const int gindex = iq2_data_index(type);
  7854. if (iq2_data[gindex].grid) {
  7855. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  7856. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  7857. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  7858. }
  7859. }
  7860. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  7861. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  7862. int num_neighbors = neighbours[0];
  7863. GGML_ASSERT(num_neighbors > 0);
  7864. float best_d2 = FLT_MAX;
  7865. int grid_index = -1;
  7866. for (int j = 1; j <= num_neighbors; ++j) {
  7867. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  7868. float d2 = 0;
  7869. for (int i = 0; i < 8; ++i) {
  7870. float q = pg[i];
  7871. float diff = scale*q - xval[i];
  7872. d2 += weight[i]*diff*diff;
  7873. }
  7874. if (d2 < best_d2) {
  7875. best_d2 = d2; grid_index = neighbours[j];
  7876. }
  7877. }
  7878. GGML_ASSERT(grid_index >= 0);
  7879. const int8_t * pg = (const int8_t *)(grid + grid_index);
  7880. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  7881. return grid_index;
  7882. }
  7883. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  7884. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  7885. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  7886. const int * kmap_q2xs = iq2_data[gindex].map;
  7887. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  7888. GGML_ASSERT(quant_weights && "missing quantization weights");
  7889. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  7890. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  7891. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  7892. GGML_ASSERT(n%QK_K == 0);
  7893. const int kMaxQ = 3;
  7894. const int nbl = n/256;
  7895. block_iq2_xxs * y = vy;
  7896. float scales[QK_K/32];
  7897. float weight[32];
  7898. float xval[32];
  7899. int8_t L[32];
  7900. int8_t Laux[32];
  7901. float waux[32];
  7902. uint8_t block_signs[4];
  7903. uint32_t q2[2*(QK_K/32)];
  7904. for (int ibl = 0; ibl < nbl; ++ibl) {
  7905. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  7906. memset(q2, 0, QK_K/4);
  7907. float max_scale = 0;
  7908. const float * xbl = x + QK_K*ibl;
  7909. float sumx2 = 0;
  7910. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  7911. float sigma2 = sumx2/QK_K;
  7912. for (int ib = 0; ib < QK_K/32; ++ib) {
  7913. const float * xb = xbl + 32*ib;
  7914. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  7915. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  7916. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  7917. for (int k = 0; k < 4; ++k) {
  7918. int nflip = 0;
  7919. uint8_t s = 0;
  7920. for (int i = 0; i < 8; ++i) {
  7921. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  7922. else {
  7923. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  7924. }
  7925. }
  7926. if (nflip%2) {
  7927. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  7928. for (int i = 1; i < 8; ++i) {
  7929. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  7930. if (ax < min) {
  7931. min = ax; imin = i;
  7932. }
  7933. }
  7934. xval[8*k+imin] = -xval[8*k+imin];
  7935. s ^= (1 << imin);
  7936. }
  7937. block_signs[k] = s & 127;
  7938. }
  7939. float max = xval[0];
  7940. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  7941. if (!max) {
  7942. scales[ib] = 0;
  7943. memset(L, 0, 32);
  7944. continue;
  7945. }
  7946. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  7947. float eff_max = scale*kMaxQ;
  7948. float best = 0;
  7949. for (int is = -6; is <= 6; ++is) {
  7950. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  7951. float this_scale = 1/id;
  7952. for (int k = 0; k < 4; ++k) {
  7953. for (int i = 0; i < 8; ++i) {
  7954. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  7955. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  7956. }
  7957. uint16_t u = 0;
  7958. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  7959. int grid_index = kmap_q2xs[u];
  7960. if (grid_index < 0) {
  7961. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  7962. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  7963. }
  7964. }
  7965. float sumqx = 0, sumq2 = 0;
  7966. for (int i = 0; i < 32; ++i) {
  7967. float w = weight[i];
  7968. float q = 2*Laux[i] + 1;
  7969. sumqx += w*xval[i]*q;
  7970. sumq2 += w*q*q;
  7971. }
  7972. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  7973. scale = sumqx/sumq2; best = scale*sumqx;
  7974. memcpy(L, Laux, 32);
  7975. }
  7976. }
  7977. if (scale > 0) {
  7978. float id = 1/scale;
  7979. for (int k = 0; k < 4; ++k) {
  7980. uint16_t u = 0;
  7981. for (int i = 0; i < 8; ++i) {
  7982. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  7983. l = MAX(0, MIN(kMaxQ-1, l));
  7984. u |= (l << 2*i);
  7985. }
  7986. int grid_index = kmap_q2xs[u];
  7987. if (grid_index < 0) {
  7988. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  7989. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  7990. }
  7991. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  7992. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  7993. }
  7994. float sumqx = 0, sumq2 = 0;
  7995. for (int i = 0; i < 32; ++i) {
  7996. float w = weight[i];
  7997. float q = 2*L[i] + 1;
  7998. sumqx += w*xval[i]*q;
  7999. sumq2 += w*q*q;
  8000. }
  8001. if (sumq2 > 0) scale = sumqx/sumq2;
  8002. }
  8003. if (scale < 0) {
  8004. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8005. // and correspondingly flip quant signs.
  8006. scale = -scale;
  8007. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8008. }
  8009. for (int k = 0; k < 4; ++k) {
  8010. uint16_t u = 0;
  8011. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8012. int grid_index = kmap_q2xs[u];
  8013. if (grid_index < 0) {
  8014. printf("Oops: found point %u not on grid:", u);
  8015. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8016. printf("\n");
  8017. GGML_ASSERT(false);
  8018. }
  8019. q2[2*ib+0] |= (grid_index << 8*k);
  8020. q2[2*ib+1] |= (block_signs[k] << 7*k);
  8021. }
  8022. GGML_ASSERT(scale >= 0);
  8023. scales[ib] = scale;
  8024. max_scale = MAX(max_scale, scale);
  8025. }
  8026. if (!max_scale) {
  8027. memset(y[ibl].qs, 0, QK_K/4);
  8028. continue;
  8029. }
  8030. float d = max_scale/31;
  8031. y[ibl].d = GGML_FP32_TO_FP16(d);
  8032. float id = 1/d;
  8033. for (int ib = 0; ib < QK_K/32; ++ib) {
  8034. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8035. l = MAX(0, MIN(15, l));
  8036. q2[2*ib+1] |= ((uint32_t)l << 28);
  8037. }
  8038. memcpy(y[ibl].qs, q2, QK_K/4);
  8039. }
  8040. }
  8041. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8042. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  8043. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8044. const int * kmap_q2xs = iq2_data[gindex].map;
  8045. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8046. GGML_ASSERT(quant_weights && "missing quantization weights");
  8047. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8048. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8049. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8050. GGML_ASSERT(n%QK_K == 0);
  8051. const int kMaxQ = 3;
  8052. const int nbl = n/256;
  8053. block_iq2_xs * y = vy;
  8054. float scales[QK_K/16];
  8055. float weight[16];
  8056. float xval[16];
  8057. int8_t L[16];
  8058. int8_t Laux[16];
  8059. float waux[16];
  8060. bool is_on_grid[2];
  8061. bool is_on_grid_aux[2];
  8062. uint8_t block_signs[2];
  8063. uint16_t q2[2*(QK_K/16)];
  8064. for (int ibl = 0; ibl < nbl; ++ibl) {
  8065. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8066. memset(q2, 0, QK_K/4);
  8067. memset(y[ibl].scales, 0, QK_K/32);
  8068. float max_scale = 0;
  8069. const float * xbl = x + QK_K*ibl;
  8070. float sumx2 = 0;
  8071. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8072. float sigma2 = sumx2/QK_K;
  8073. for (int ib = 0; ib < QK_K/16; ++ib) {
  8074. const float * xb = xbl + 16*ib;
  8075. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  8076. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8077. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  8078. for (int k = 0; k < 2; ++k) {
  8079. int nflip = 0;
  8080. uint8_t s = 0;
  8081. for (int i = 0; i < 8; ++i) {
  8082. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8083. else {
  8084. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8085. }
  8086. }
  8087. if (nflip%2) {
  8088. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8089. for (int i = 1; i < 8; ++i) {
  8090. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8091. if (ax < min) {
  8092. min = ax; imin = i;
  8093. }
  8094. }
  8095. xval[8*k+imin] = -xval[8*k+imin];
  8096. s ^= (1 << imin);
  8097. }
  8098. block_signs[k] = s & 127;
  8099. }
  8100. float max = xval[0];
  8101. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  8102. if (!max) {
  8103. scales[ib] = 0;
  8104. memset(L, 0, 16);
  8105. continue;
  8106. }
  8107. float best = 0;
  8108. float scale = max/(2*kMaxQ-1);
  8109. is_on_grid[0] = is_on_grid[1] = true;
  8110. for (int is = -9; is <= 9; ++is) {
  8111. float id = (2*kMaxQ-1+is*0.1f)/max;
  8112. float this_scale = 1/id;
  8113. for (int k = 0; k < 2; ++k) {
  8114. for (int i = 0; i < 8; ++i) {
  8115. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8116. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8117. }
  8118. uint16_t u = 0;
  8119. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8120. int grid_index = kmap_q2xs[u];
  8121. is_on_grid_aux[k] = true;
  8122. if (grid_index < 0) {
  8123. is_on_grid_aux[k] = false;
  8124. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8125. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8126. }
  8127. }
  8128. float sumqx = 0, sumq2 = 0;
  8129. for (int i = 0; i < 16; ++i) {
  8130. float w = weight[i];
  8131. float q = 2*Laux[i] + 1;
  8132. sumqx += w*xval[i]*q;
  8133. sumq2 += w*q*q;
  8134. }
  8135. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8136. scale = sumqx/sumq2; best = scale*sumqx;
  8137. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  8138. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8139. }
  8140. }
  8141. int n_not_ongrid = 0;
  8142. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8143. if (n_not_ongrid > 0 && scale > 0) {
  8144. float id = 1/scale;
  8145. for (int k = 0; k < 2; ++k) {
  8146. if (is_on_grid[k]) continue;
  8147. uint16_t u = 0;
  8148. for (int i = 0; i < 8; ++i) {
  8149. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8150. l = MAX(0, MIN(kMaxQ-1, l));
  8151. u |= (l << 2*i);
  8152. L[8*k + i] = l;
  8153. }
  8154. int grid_index = kmap_q2xs[u];
  8155. if (grid_index < 0) {
  8156. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8157. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8158. }
  8159. }
  8160. float sumqx = 0, sumq2 = 0;
  8161. for (int i = 0; i < 16; ++i) {
  8162. float w = weight[i];
  8163. float q = 2*L[i] + 1;
  8164. sumqx += w*xval[i]*q;
  8165. sumq2 += w*q*q;
  8166. }
  8167. if (sumq2 > 0) scale = sumqx/sumq2;
  8168. }
  8169. if (scale < 0) {
  8170. scale = -scale;
  8171. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8172. }
  8173. for (int k = 0; k < 2; ++k) {
  8174. uint16_t u = 0;
  8175. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8176. int grid_index = kmap_q2xs[u];
  8177. if (grid_index < 0) {
  8178. printf("Oops: found point %u not on grid:", u);
  8179. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8180. printf("\n");
  8181. GGML_ASSERT(false);
  8182. }
  8183. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  8184. }
  8185. GGML_ASSERT(scale >= 0);
  8186. scales[ib] = scale;
  8187. max_scale = MAX(max_scale, scale);
  8188. }
  8189. if (!max_scale) {
  8190. memset(y[ibl].qs, 0, QK_K/4);
  8191. continue;
  8192. }
  8193. float d = max_scale/31;
  8194. y[ibl].d = GGML_FP32_TO_FP16(d);
  8195. float id = 1/d;
  8196. for (int ib = 0; ib < QK_K/16; ++ib) {
  8197. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8198. l = MAX(0, MIN(15, l));
  8199. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  8200. else y[ibl].scales[ib/2] |= (l << 4);
  8201. }
  8202. memcpy(y[ibl].qs, q2, QK_K/4);
  8203. }
  8204. }
  8205. size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8206. (void)hist;
  8207. GGML_ASSERT(n_per_row%QK_K == 0);
  8208. int nblock = n_per_row/QK_K;
  8209. char * qrow = (char *)dst;
  8210. for (int row = 0; row < nrow; ++row) {
  8211. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  8212. src += n_per_row;
  8213. qrow += nblock*sizeof(block_iq2_xxs);
  8214. }
  8215. return nrow * nblock * sizeof(block_iq2_xxs);
  8216. }
  8217. size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8218. (void)hist;
  8219. GGML_ASSERT(n_per_row%QK_K == 0);
  8220. int nblock = n_per_row/QK_K;
  8221. char * qrow = (char *)dst;
  8222. for (int row = 0; row < nrow; ++row) {
  8223. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  8224. src += n_per_row;
  8225. qrow += nblock*sizeof(block_iq2_xs);
  8226. }
  8227. return nrow * nblock * sizeof(block_iq2_xs);
  8228. }
  8229. //
  8230. // ============================================= 3-bit using D4 lattice
  8231. //
  8232. typedef struct {
  8233. uint32_t * grid;
  8234. int * map;
  8235. uint16_t * neighbours;
  8236. } iq3_entry_t;
  8237. static iq3_entry_t iq3_data[1] = {
  8238. {NULL, NULL, NULL},
  8239. };
  8240. static inline int iq3_data_index(int grid_size) {
  8241. (void)grid_size;
  8242. GGML_ASSERT(grid_size == 256);
  8243. return 0;
  8244. }
  8245. static int iq3_compare_func(const void * left, const void * right) {
  8246. const int * l = (const int *)left;
  8247. const int * r = (const int *)right;
  8248. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  8249. }
  8250. void iq3xs_init_impl(int grid_size) {
  8251. const int gindex = iq3_data_index(grid_size);
  8252. if (iq3_data[gindex].grid) {
  8253. return;
  8254. }
  8255. static const uint16_t kgrid_256[256] = {
  8256. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  8257. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  8258. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  8259. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  8260. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  8261. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  8262. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  8263. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  8264. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  8265. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  8266. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  8267. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  8268. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  8269. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  8270. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  8271. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  8272. };
  8273. const int kmap_size = 4096;
  8274. const int nwant = 2;
  8275. const uint16_t * kgrid = kgrid_256;
  8276. uint32_t * kgrid_q3xs;
  8277. int * kmap_q3xs;
  8278. uint16_t * kneighbors_q3xs;
  8279. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8280. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  8281. for (int k = 0; k < grid_size; ++k) {
  8282. int8_t * pos = (int8_t *)(the_grid + k);
  8283. for (int i = 0; i < 4; ++i) {
  8284. int l = (kgrid[k] >> 3*i) & 0x7;
  8285. pos[i] = 2*l + 1;
  8286. }
  8287. }
  8288. kgrid_q3xs = the_grid;
  8289. iq3_data[gindex].grid = the_grid;
  8290. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  8291. iq3_data[gindex].map = kmap_q3xs;
  8292. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  8293. uint32_t aux32;
  8294. uint8_t * aux8 = (uint8_t *)&aux32;
  8295. for (int i = 0; i < grid_size; ++i) {
  8296. aux32 = kgrid_q3xs[i];
  8297. uint16_t index = 0;
  8298. for (int k=0; k<4; ++k) {
  8299. uint16_t q = (aux8[k] - 1)/2;
  8300. index |= (q << 3*k);
  8301. }
  8302. kmap_q3xs[index] = i;
  8303. }
  8304. int8_t pos[4];
  8305. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8306. int num_neighbors = 0, num_not_in_map = 0;
  8307. for (int i = 0; i < kmap_size; ++i) {
  8308. if (kmap_q3xs[i] >= 0) continue;
  8309. ++num_not_in_map;
  8310. for (int k = 0; k < 4; ++k) {
  8311. int l = (i >> 3*k) & 0x7;
  8312. pos[k] = 2*l + 1;
  8313. }
  8314. for (int j = 0; j < grid_size; ++j) {
  8315. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8316. int d2 = 0;
  8317. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8318. dist2[2*j+0] = d2;
  8319. dist2[2*j+1] = j;
  8320. }
  8321. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8322. int n = 0; int d2 = dist2[0];
  8323. int nhave = 1;
  8324. for (int j = 0; j < grid_size; ++j) {
  8325. if (dist2[2*j] > d2) {
  8326. if (nhave == nwant) break;
  8327. d2 = dist2[2*j];
  8328. ++nhave;
  8329. }
  8330. ++n;
  8331. }
  8332. num_neighbors += n;
  8333. }
  8334. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8335. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8336. iq3_data[gindex].neighbours = kneighbors_q3xs;
  8337. int counter = 0;
  8338. for (int i = 0; i < kmap_size; ++i) {
  8339. if (kmap_q3xs[i] >= 0) continue;
  8340. for (int k = 0; k < 4; ++k) {
  8341. int l = (i >> 3*k) & 0x7;
  8342. pos[k] = 2*l + 1;
  8343. }
  8344. for (int j = 0; j < grid_size; ++j) {
  8345. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8346. int d2 = 0;
  8347. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8348. dist2[2*j+0] = d2;
  8349. dist2[2*j+1] = j;
  8350. }
  8351. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8352. kmap_q3xs[i] = -(counter + 1);
  8353. int d2 = dist2[0];
  8354. uint16_t * start = &kneighbors_q3xs[counter++];
  8355. int n = 0, nhave = 1;
  8356. for (int j = 0; j < grid_size; ++j) {
  8357. if (dist2[2*j] > d2) {
  8358. if (nhave == nwant) break;
  8359. d2 = dist2[2*j];
  8360. ++nhave;
  8361. }
  8362. kneighbors_q3xs[counter++] = dist2[2*j+1];
  8363. ++n;
  8364. }
  8365. *start = n;
  8366. }
  8367. free(dist2);
  8368. }
  8369. void iq3xs_free_impl(int grid_size) {
  8370. GGML_ASSERT(grid_size == 256);
  8371. const int gindex = iq3_data_index(grid_size);
  8372. if (iq3_data[gindex].grid) {
  8373. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  8374. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  8375. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  8376. }
  8377. }
  8378. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  8379. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8380. int num_neighbors = neighbours[0];
  8381. GGML_ASSERT(num_neighbors > 0);
  8382. float best_d2 = FLT_MAX;
  8383. int grid_index = -1;
  8384. for (int j = 1; j <= num_neighbors; ++j) {
  8385. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8386. float d2 = 0;
  8387. for (int i = 0; i < 4; ++i) {
  8388. float q = pg[i];
  8389. float diff = scale*q - xval[i];
  8390. d2 += weight[i]*diff*diff;
  8391. }
  8392. if (d2 < best_d2) {
  8393. best_d2 = d2; grid_index = neighbours[j];
  8394. }
  8395. }
  8396. GGML_ASSERT(grid_index >= 0);
  8397. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8398. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  8399. return grid_index;
  8400. }
  8401. static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8402. const int gindex = iq3_data_index(256);
  8403. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  8404. const int * kmap_q3xs = iq3_data[gindex].map;
  8405. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  8406. //GGML_ASSERT(quant_weights && "missing quantization weights");
  8407. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  8408. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  8409. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  8410. GGML_ASSERT(n%QK_K == 0);
  8411. const int kMaxQ = 8;
  8412. const int nbl = n/256;
  8413. block_iq3_xxs * y = vy;
  8414. float scales[QK_K/32];
  8415. float weight[32];
  8416. float xval[32];
  8417. int8_t L[32];
  8418. int8_t Laux[32];
  8419. float waux[32];
  8420. bool is_on_grid[8];
  8421. bool is_on_grid_aux[8];
  8422. uint8_t block_signs[8];
  8423. uint8_t q3[3*(QK_K/8)];
  8424. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  8425. for (int ibl = 0; ibl < nbl; ++ibl) {
  8426. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8427. memset(q3, 0, 3*QK_K/8);
  8428. float max_scale = 0;
  8429. const float * xbl = x + QK_K*ibl;
  8430. float sumx2 = 0;
  8431. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8432. float sigma2 = sumx2/QK_K;
  8433. for (int ib = 0; ib < QK_K/32; ++ib) {
  8434. const float * xb = xbl + 32*ib;
  8435. if (quant_weights) {
  8436. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8437. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8438. } else {
  8439. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  8440. }
  8441. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8442. for (int k = 0; k < 4; ++k) {
  8443. int nflip = 0;
  8444. uint8_t s = 0;
  8445. for (int i = 0; i < 8; ++i) {
  8446. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8447. else {
  8448. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8449. }
  8450. }
  8451. if (nflip%2) {
  8452. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8453. for (int i = 1; i < 8; ++i) {
  8454. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8455. if (ax < min) {
  8456. min = ax; imin = i;
  8457. }
  8458. }
  8459. xval[8*k+imin] = -xval[8*k+imin];
  8460. s ^= (1 << imin);
  8461. }
  8462. block_signs[k] = s & 127;
  8463. }
  8464. float max = xval[0];
  8465. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8466. if (!max) {
  8467. scales[ib] = 0;
  8468. memset(L, 0, 32);
  8469. continue;
  8470. }
  8471. float best = 0;
  8472. float scale = max/(2*kMaxQ-1);
  8473. for (int is = -15; is <= 15; ++is) {
  8474. float id = (2*kMaxQ-1+is*0.2f)/max;
  8475. float this_scale = 1/id;
  8476. for (int k = 0; k < 8; ++k) {
  8477. for (int i = 0; i < 4; ++i) {
  8478. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8479. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8480. }
  8481. uint16_t u = 0;
  8482. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  8483. int grid_index = kmap_q3xs[u];
  8484. is_on_grid_aux[k] = true;
  8485. if (grid_index < 0) {
  8486. is_on_grid_aux[k] = false;
  8487. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8488. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  8489. }
  8490. }
  8491. float sumqx = 0, sumq2 = 0;
  8492. for (int i = 0; i < 32; ++i) {
  8493. float w = weight[i];
  8494. float q = 2*Laux[i] + 1;
  8495. sumqx += w*xval[i]*q;
  8496. sumq2 += w*q*q;
  8497. }
  8498. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8499. scale = sumqx/sumq2; best = scale*sumqx;
  8500. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  8501. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8502. }
  8503. }
  8504. int n_not_ongrid = 0;
  8505. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8506. if (n_not_ongrid > 0 && scale > 0) {
  8507. float id = 1/scale;
  8508. for (int k = 0; k < 8; ++k) {
  8509. if (is_on_grid[k]) continue;
  8510. uint16_t u = 0;
  8511. for (int i = 0; i < 4; ++i) {
  8512. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8513. l = MAX(0, MIN(kMaxQ-1, l));
  8514. u |= (l << 3*i);
  8515. }
  8516. int grid_index = kmap_q3xs[u];
  8517. if (grid_index < 0) {
  8518. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8519. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  8520. }
  8521. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  8522. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  8523. }
  8524. float sumqx = 0, sumq2 = 0;
  8525. for (int i = 0; i < 32; ++i) {
  8526. float w = weight[i];
  8527. float q = 2*L[i] + 1;
  8528. sumqx += w*xval[i]*q;
  8529. sumq2 += w*q*q;
  8530. }
  8531. if (sumq2 > 0) scale = sumqx/sumq2;
  8532. }
  8533. if (scale < 0) {
  8534. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8535. // and correspondingly flip quant signs.
  8536. scale = -scale;
  8537. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8538. }
  8539. for (int k = 0; k < 8; ++k) {
  8540. uint16_t u = 0;
  8541. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  8542. int grid_index = kmap_q3xs[u];
  8543. if (grid_index < 0) {
  8544. printf("Oops: found point %u not on grid:", u);
  8545. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  8546. printf("\n");
  8547. GGML_ASSERT(false);
  8548. }
  8549. q3[8*ib+k] = grid_index;
  8550. }
  8551. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  8552. GGML_ASSERT(scale >= 0);
  8553. scales[ib] = scale;
  8554. max_scale = MAX(max_scale, scale);
  8555. }
  8556. if (!max_scale) {
  8557. memset(y[ibl].qs, 0, 3*QK_K/8);
  8558. continue;
  8559. }
  8560. float d = max_scale/31;
  8561. y[ibl].d = GGML_FP32_TO_FP16(d);
  8562. float id = 1/d;
  8563. float sumqx = 0, sumq2 = 0;
  8564. for (int ib = 0; ib < QK_K/32; ++ib) {
  8565. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8566. l = MAX(0, MIN(15, l));
  8567. scales_and_signs[ib] |= ((uint32_t)l << 28);
  8568. if (false) {
  8569. const float * xb = xbl + 32*ib;
  8570. if (quant_weights) {
  8571. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8572. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8573. } else {
  8574. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  8575. }
  8576. const float db = 0.25f * d * (1 + 2*l);
  8577. for (int k = 0; k < 8; ++k) {
  8578. const int8_t * signs = keven_signs_q2xs + 8*((scales_and_signs[ib] >> 7*(k/2)) & 127) + 4*(k%2);
  8579. const float * xk = xb + 4*k;
  8580. const float * wk = weight + 4*k;
  8581. //const uint8_t * grid = (const uint8_t *)(kgrid_q3xs + q3[8*ib+k]);
  8582. const uint8_t * grid = (const uint8_t *)(iq3xxs_grid + q3[8*ib+k]);
  8583. float best_mse = 0; int best_index = q3[8*ib+k];
  8584. for (int j = 0; j < 4; ++j) {
  8585. float diff = db * grid[j] * signs[j] - xk[j];
  8586. best_mse += wk[j] * diff * diff;
  8587. }
  8588. for (int idx = 0; idx < 256; ++idx) {
  8589. //grid = (const uint8_t *)(kgrid_q3xs + idx);
  8590. grid = (const uint8_t *)(iq3xxs_grid + idx);
  8591. float mse = 0;
  8592. for (int j = 0; j < 4; ++j) {
  8593. float diff = db * grid[j] * signs[j] - xk[j];
  8594. mse += wk[j] * diff * diff;
  8595. }
  8596. if (mse < best_mse) {
  8597. best_mse = mse; best_index = idx;
  8598. }
  8599. }
  8600. q3[8*ib+k] = best_index;
  8601. //grid = (const uint8_t *)(kgrid_q3xs + best_index);
  8602. grid = (const uint8_t *)(iq3xxs_grid + best_index);
  8603. for (int j = 0; j < 4; ++j) {
  8604. float q = db * grid[j] * signs[j];
  8605. sumqx += wk[j] * q * xk[j];
  8606. sumq2 += wk[j] * q * q;
  8607. }
  8608. }
  8609. if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2);
  8610. }
  8611. }
  8612. memcpy(y[ibl].qs, q3, 3*QK_K/8);
  8613. }
  8614. }
  8615. size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8616. (void)hist;
  8617. GGML_ASSERT(n_per_row%QK_K == 0);
  8618. int nblock = n_per_row/QK_K;
  8619. char * qrow = (char *)dst;
  8620. for (int row = 0; row < nrow; ++row) {
  8621. quantize_row_iq3_xxs_impl(src, qrow, n_per_row, quant_weights);
  8622. src += n_per_row;
  8623. qrow += nblock*sizeof(block_iq3_xxs);
  8624. }
  8625. return nrow * nblock * sizeof(block_iq3_xxs);
  8626. }
  8627. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
  8628. assert(k % QK_K == 0);
  8629. block_iq3_xxs * restrict y = vy;
  8630. quantize_row_iq3_xxs_reference(x, y, k);
  8631. }
  8632. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
  8633. assert(k % QK_K == 0);
  8634. quantize_row_iq3_xxs_impl(x, y, k, NULL);
  8635. }
  8636. // =================================== 1.5 bpw ===================================================
  8637. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  8638. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  8639. int num_neighbors = neighbours[0];
  8640. GGML_ASSERT(num_neighbors > 0);
  8641. float best_score = 0;
  8642. int grid_index = -1;
  8643. for (int j = 1; j <= num_neighbors; ++j) {
  8644. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8645. float sumqx = 0, sumq2 = 0;
  8646. for (int i = 0; i < 8; ++i) {
  8647. float q = (pg[i] - 3)/2;
  8648. float w = weight[i];
  8649. sumqx += w*q*xval[i];
  8650. sumq2 += w*q*q;
  8651. }
  8652. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  8653. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  8654. grid_index = neighbours[j];
  8655. }
  8656. }
  8657. if (grid_index < 0) {
  8658. for (int i = 0; i < ngrid; ++i) {
  8659. const int8_t * grid_i = (const int8_t *)(grid + i);
  8660. float sumqx = 0, sumq2 = 0;
  8661. for (int j = 0; j < 8; ++j) {
  8662. float w = weight[j];
  8663. float q = (grid_i[j] - 3)/2;
  8664. sumqx += w*q*xval[j];
  8665. sumq2 += w*q*q;
  8666. }
  8667. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  8668. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  8669. grid_index = i;
  8670. }
  8671. }
  8672. }
  8673. if (grid_index < 0) {
  8674. printf("Oops, did not find grid point\n");
  8675. printf("Have %d neighbours\n", num_neighbors);
  8676. for (int j = 1; j <= num_neighbors; ++j) {
  8677. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8678. float sumqx = 0, sumq2 = 0;
  8679. for (int i = 0; i < 8; ++i) {
  8680. float q = (pg[i] - 3)/2;
  8681. float w = weight[i];
  8682. sumqx += w*q*xval[i];
  8683. sumq2 += w*q*q;
  8684. }
  8685. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  8686. }
  8687. }
  8688. GGML_ASSERT(grid_index >= 0);
  8689. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  8690. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  8691. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  8692. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8693. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  8694. return grid_index;
  8695. }
  8696. static int iq1_sort_helper(const void * left, const void * right) {
  8697. const float * l = left;
  8698. const float * r = right;
  8699. return *l < *r ? -1 : *l > *r ? 1 : 0;
  8700. }
  8701. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8702. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  8703. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8704. const int * kmap_q2xs = iq2_data[gindex].map;
  8705. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8706. GGML_ASSERT(quant_weights && "missing quantization weights");
  8707. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8708. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8709. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8710. GGML_ASSERT(n%QK_K == 0);
  8711. const int nbl = n/256;
  8712. block_iq1_s * y = vy;
  8713. float scales[QK_K/8];
  8714. float weight[8];
  8715. int8_t L[8];
  8716. float sumx[9];
  8717. float sumw[9];
  8718. float pairs[16];
  8719. int * idx = (int *)(pairs + 1);
  8720. uint8_t hbit[QK_K/8];
  8721. for (int ibl = 0; ibl < nbl; ++ibl) {
  8722. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8723. memset(y[ibl].qs, 0, QK_K/8);
  8724. memset(y[ibl].scales, 0, QK_K/16);
  8725. float max_scale = 0;
  8726. const float * xbl = x + QK_K*ibl;
  8727. float sumx2 = 0;
  8728. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8729. float sigma2 = sumx2/QK_K;
  8730. for (int ib = 0; ib < QK_K/8; ++ib) {
  8731. const float * xb = xbl + 8*ib;
  8732. const float * qw = quant_weights + QK_K*ibl + 8*ib;
  8733. for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8734. float max = fabsf(xb[0]);
  8735. for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
  8736. if (!max) {
  8737. scales[ib] = 0;
  8738. memset(L, 1, 8);
  8739. continue;
  8740. }
  8741. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  8742. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  8743. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  8744. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  8745. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  8746. // for each possible and score for each split.
  8747. for (int j = 0; j < 8; ++j) {
  8748. pairs[2*j] = xb[j];
  8749. idx[2*j] = j;
  8750. }
  8751. qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
  8752. {
  8753. sumx[0] = sumw[0] = 0;
  8754. for (int j = 0; j < 8; ++j) {
  8755. int i = idx[2*j];
  8756. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  8757. sumw[j+1] = sumw[j] + weight[i];
  8758. }
  8759. }
  8760. float best_score = 0, scale = max;
  8761. int besti1 = 0, besti2 = 0;
  8762. for (int i1 = 0; i1 <= 8; ++i1) {
  8763. for (int i2 = i1; i2 <= 8; ++i2) {
  8764. float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
  8765. float sumq2 = (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
  8766. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  8767. scale = sumqx/sumq2; best_score = scale*sumqx;
  8768. besti1 = i1; besti2 = i2;
  8769. }
  8770. }
  8771. }
  8772. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  8773. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  8774. for (int j = besti2; j < 8; ++j) L[idx[2*j]] = 2;
  8775. if (scale < 0) {
  8776. for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
  8777. scale = -scale;
  8778. }
  8779. // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
  8780. // grid point that minimizes SSD.
  8781. uint16_t u = 0;
  8782. for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
  8783. int grid_index = kmap_q2xs[u];
  8784. if (grid_index < 0) {
  8785. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8786. grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
  8787. GGML_ASSERT(grid_index >= 0);
  8788. }
  8789. y[ibl].qs[ib] = grid_index & 255;
  8790. hbit[ib] = grid_index >> 8;
  8791. GGML_ASSERT(scale >= 0);
  8792. scales[ib] = scale;
  8793. max_scale = MAX(max_scale, scale);
  8794. }
  8795. if (!max_scale) {
  8796. memset(y[ibl].qs, 0, QK_K/8);
  8797. continue;
  8798. }
  8799. float d = max_scale/15;
  8800. y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
  8801. float id = 1/d;
  8802. for (int ib = 0; ib < QK_K/8; ++ib) {
  8803. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8804. l = MAX(0, MIN(7, l));
  8805. if (hbit[ib]) l |= 8;
  8806. y[ibl].scales[ib/2] |= (l << 4*(ib%2));
  8807. }
  8808. }
  8809. }
  8810. size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8811. (void)hist;
  8812. GGML_ASSERT(n_per_row%QK_K == 0);
  8813. int nblock = n_per_row/QK_K;
  8814. char * qrow = (char *)dst;
  8815. for (int row = 0; row < nrow; ++row) {
  8816. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
  8817. src += n_per_row;
  8818. qrow += nblock*sizeof(block_iq1_s);
  8819. }
  8820. return nrow * nblock * sizeof(block_iq1_s);
  8821. }
  8822. // ============================ 4-bit non-linear quants
  8823. static inline int best_index_int8(int n, const int8_t * val, float x) {
  8824. if (x <= val[0]) return 0;
  8825. if (x >= val[n-1]) return n-1;
  8826. int ml = 0, mu = n-1;
  8827. while (mu-ml > 1) {
  8828. int mav = (ml+mu)/2;
  8829. if (x < val[mav]) mu = mav; else ml = mav;
  8830. }
  8831. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  8832. }
  8833. static void quantize_row_iq4_nl_impl(const int block_size, const float * GGML_RESTRICT x,
  8834. ggml_fp16_t * dh, uint8_t * q4,
  8835. float * weight, uint8_t * L,
  8836. const int8_t * values,
  8837. const float * quant_weights) {
  8838. const int ntry = 7;
  8839. float sigma2 = 0;
  8840. for (int j = 0; j < QK4_NL; ++j) sigma2 += x[j]*x[j];
  8841. sigma2 *= 2.f/QK4_NL;
  8842. const int nb = QK4_NL/block_size;
  8843. memset(q4, 0, QK4_NL/2);
  8844. for (int ib = 0; ib < nb; ++ib) {
  8845. dh[ib] = GGML_FP32_TO_FP16(0.f);
  8846. const float * xb = x + ib*block_size;
  8847. if (quant_weights) {
  8848. const float * qw = quant_weights + ib*block_size;
  8849. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  8850. } else {
  8851. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  8852. }
  8853. float amax = 0, max = 0;
  8854. for (int j = 0; j < block_size; ++j) {
  8855. float ax = fabsf(xb[j]);
  8856. if (ax > amax) {
  8857. amax = ax; max = xb[j];
  8858. }
  8859. }
  8860. if (!amax) {
  8861. continue;
  8862. }
  8863. float d = -max/values[0];
  8864. float id = 1/d;
  8865. float sumqx = 0, sumq2 = 0;
  8866. for (int j = 0; j < block_size; ++j) {
  8867. float al = id*xb[j];
  8868. int l = best_index_int8(16, values, al);
  8869. float q = values[l];
  8870. float w = weight[j];
  8871. sumqx += w*q*xb[j];
  8872. sumq2 += w*q*q;
  8873. }
  8874. float best_id = id;
  8875. d = sumqx/sumq2;
  8876. float best = d*sumqx;
  8877. for (int itry = -ntry; itry <= ntry; ++itry) {
  8878. id = (itry + values[0])/max;
  8879. sumqx = sumq2 = 0;
  8880. for (int j = 0; j < block_size; ++j) {
  8881. float al = id*xb[j];
  8882. int l = best_index_int8(16, values, al);
  8883. float q = values[l];
  8884. float w = weight[j];
  8885. sumqx += w*q*xb[j];
  8886. sumq2 += w*q*q;
  8887. }
  8888. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8889. d = sumqx/sumq2; best = d * sumqx;
  8890. best_id = id;
  8891. }
  8892. }
  8893. dh[ib] = GGML_FP32_TO_FP16(d);
  8894. for (int j = 0; j < block_size; ++j) {
  8895. L[ib*block_size + j] = best_index_int8(16, values, best_id*xb[j]);
  8896. }
  8897. }
  8898. for (int i = 0; i < QK4_NL/32; ++i) {
  8899. for (int j = 0; j < 16; ++j) {
  8900. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  8901. }
  8902. }
  8903. }
  8904. size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8905. (void)hist;
  8906. GGML_ASSERT(n_per_row%QK4_NL == 0);
  8907. int nblock = n_per_row/QK4_NL;
  8908. char * qrow = (char *)dst;
  8909. uint8_t L[QK4_NL];
  8910. float weight[32];
  8911. for (int row = 0; row < nrow; ++row) {
  8912. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  8913. for (int ibl = 0; ibl < nblock; ++ibl) {
  8914. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  8915. quantize_row_iq4_nl_impl(32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, weight, L, kvalues_iq4nl, qw);
  8916. }
  8917. src += n_per_row;
  8918. qrow += nblock*sizeof(block_iq4_nl);
  8919. }
  8920. return nrow * nblock * sizeof(block_iq4_nl);
  8921. }
  8922. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
  8923. assert(k % QK4_NL == 0);
  8924. block_iq4_nl * restrict y = vy;
  8925. quantize_row_iq4_nl_reference(x, y, k);
  8926. }
  8927. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
  8928. assert(k % QK4_NL == 0);
  8929. quantize_iq4_nl(x, y, 1, k, NULL, NULL);
  8930. }