constants.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714
  1. from __future__ import annotations
  2. import sys
  3. from enum import Enum, IntEnum, auto
  4. from typing import Any
  5. #
  6. # constants
  7. #
  8. GGUF_MAGIC = 0x46554747 # "GGUF"
  9. GGUF_VERSION = 3
  10. GGUF_DEFAULT_ALIGNMENT = 32
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. URL = "general.url"
  22. DESCRIPTION = "general.description"
  23. LICENSE = "general.license"
  24. SOURCE_URL = "general.source.url"
  25. SOURCE_HF_REPO = "general.source.huggingface.repository"
  26. FILE_TYPE = "general.file_type"
  27. class LLM:
  28. CONTEXT_LENGTH = "{arch}.context_length"
  29. EMBEDDING_LENGTH = "{arch}.embedding_length"
  30. BLOCK_COUNT = "{arch}.block_count"
  31. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  32. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  33. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  34. EXPERT_COUNT = "{arch}.expert_count"
  35. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  36. POOLING_TYPE = "{arch}.pooling_type"
  37. class Attention:
  38. HEAD_COUNT = "{arch}.attention.head_count"
  39. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  40. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  41. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  42. KEY_LENGTH = "{arch}.attention.key_length"
  43. VALUE_LENGTH = "{arch}.attention.value_length"
  44. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  45. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  46. CAUSAL = "{arch}.attention.causal"
  47. class Rope:
  48. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  49. FREQ_BASE = "{arch}.rope.freq_base"
  50. SCALING_TYPE = "{arch}.rope.scaling.type"
  51. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  52. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  53. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  54. class Tokenizer:
  55. MODEL = "tokenizer.ggml.model"
  56. LIST = "tokenizer.ggml.tokens"
  57. TOKEN_TYPE = "tokenizer.ggml.token_type"
  58. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  59. SCORES = "tokenizer.ggml.scores"
  60. MERGES = "tokenizer.ggml.merges"
  61. BOS_ID = "tokenizer.ggml.bos_token_id"
  62. EOS_ID = "tokenizer.ggml.eos_token_id"
  63. UNK_ID = "tokenizer.ggml.unknown_token_id"
  64. SEP_ID = "tokenizer.ggml.seperator_token_id"
  65. PAD_ID = "tokenizer.ggml.padding_token_id"
  66. CLS_ID = "tokenizer.ggml.cls_token_id"
  67. MASK_ID = "tokenizer.ggml.mask_token_id"
  68. ADD_BOS = "tokenizer.ggml.add_bos_token"
  69. ADD_EOS = "tokenizer.ggml.add_eos_token"
  70. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  71. HF_JSON = "tokenizer.huggingface.json"
  72. RWKV = "tokenizer.rwkv.world"
  73. CHAT_TEMPLATE = "tokenizer.chat_template"
  74. #
  75. # recommended mapping of model tensor names for storage in gguf
  76. #
  77. class MODEL_ARCH(IntEnum):
  78. LLAMA = auto()
  79. FALCON = auto()
  80. BAICHUAN = auto()
  81. GPT2 = auto()
  82. GPTJ = auto()
  83. GPTNEOX = auto()
  84. MPT = auto()
  85. STARCODER = auto()
  86. PERSIMMON = auto()
  87. REFACT = auto()
  88. BERT = auto()
  89. NOMIC_BERT = auto()
  90. BLOOM = auto()
  91. STABLELM = auto()
  92. QWEN = auto()
  93. QWEN2 = auto()
  94. PHI2 = auto()
  95. PLAMO = auto()
  96. CODESHELL = auto()
  97. ORION = auto()
  98. INTERNLM2 = auto()
  99. MINICPM = auto()
  100. GEMMA = auto()
  101. class MODEL_TENSOR(IntEnum):
  102. TOKEN_EMBD = auto()
  103. TOKEN_EMBD_NORM = auto()
  104. TOKEN_TYPES = auto()
  105. POS_EMBD = auto()
  106. OUTPUT = auto()
  107. OUTPUT_NORM = auto()
  108. ROPE_FREQS = auto()
  109. ATTN_Q = auto()
  110. ATTN_K = auto()
  111. ATTN_V = auto()
  112. ATTN_QKV = auto()
  113. ATTN_OUT = auto()
  114. ATTN_NORM = auto()
  115. ATTN_NORM_2 = auto()
  116. ATTN_OUT_NORM = auto()
  117. ATTN_ROT_EMBD = auto()
  118. FFN_GATE_INP = auto()
  119. FFN_NORM = auto()
  120. FFN_GATE = auto()
  121. FFN_DOWN = auto()
  122. FFN_UP = auto()
  123. FFN_ACT = auto()
  124. FFN_GATE_EXP = auto()
  125. FFN_DOWN_EXP = auto()
  126. FFN_UP_EXP = auto()
  127. ATTN_Q_NORM = auto()
  128. ATTN_K_NORM = auto()
  129. LAYER_OUT_NORM = auto()
  130. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  131. MODEL_ARCH.LLAMA: "llama",
  132. MODEL_ARCH.FALCON: "falcon",
  133. MODEL_ARCH.BAICHUAN: "baichuan",
  134. MODEL_ARCH.GPT2: "gpt2",
  135. MODEL_ARCH.GPTJ: "gptj",
  136. MODEL_ARCH.GPTNEOX: "gptneox",
  137. MODEL_ARCH.MPT: "mpt",
  138. MODEL_ARCH.STARCODER: "starcoder",
  139. MODEL_ARCH.PERSIMMON: "persimmon",
  140. MODEL_ARCH.REFACT: "refact",
  141. MODEL_ARCH.BERT: "bert",
  142. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  143. MODEL_ARCH.BLOOM: "bloom",
  144. MODEL_ARCH.STABLELM: "stablelm",
  145. MODEL_ARCH.QWEN: "qwen",
  146. MODEL_ARCH.QWEN2: "qwen2",
  147. MODEL_ARCH.PHI2: "phi2",
  148. MODEL_ARCH.PLAMO: "plamo",
  149. MODEL_ARCH.CODESHELL: "codeshell",
  150. MODEL_ARCH.ORION: "orion",
  151. MODEL_ARCH.INTERNLM2: "internlm2",
  152. MODEL_ARCH.MINICPM: "minicpm",
  153. MODEL_ARCH.GEMMA: "gemma",
  154. }
  155. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  156. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  157. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  158. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  159. MODEL_TENSOR.POS_EMBD: "position_embd",
  160. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  161. MODEL_TENSOR.OUTPUT: "output",
  162. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  163. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  164. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  165. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  166. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  167. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  168. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  169. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  170. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  171. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  172. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  173. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  174. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  175. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  176. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  177. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  178. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  179. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  180. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
  181. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
  182. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
  183. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  184. }
  185. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  186. MODEL_ARCH.LLAMA: [
  187. MODEL_TENSOR.TOKEN_EMBD,
  188. MODEL_TENSOR.OUTPUT_NORM,
  189. MODEL_TENSOR.OUTPUT,
  190. MODEL_TENSOR.ROPE_FREQS,
  191. MODEL_TENSOR.ATTN_NORM,
  192. MODEL_TENSOR.ATTN_Q,
  193. MODEL_TENSOR.ATTN_K,
  194. MODEL_TENSOR.ATTN_V,
  195. MODEL_TENSOR.ATTN_OUT,
  196. MODEL_TENSOR.ATTN_ROT_EMBD,
  197. MODEL_TENSOR.FFN_GATE_INP,
  198. MODEL_TENSOR.FFN_NORM,
  199. MODEL_TENSOR.FFN_GATE,
  200. MODEL_TENSOR.FFN_DOWN,
  201. MODEL_TENSOR.FFN_UP,
  202. MODEL_TENSOR.FFN_GATE_EXP,
  203. MODEL_TENSOR.FFN_DOWN_EXP,
  204. MODEL_TENSOR.FFN_UP_EXP,
  205. ],
  206. MODEL_ARCH.GPTNEOX: [
  207. MODEL_TENSOR.TOKEN_EMBD,
  208. MODEL_TENSOR.OUTPUT_NORM,
  209. MODEL_TENSOR.OUTPUT,
  210. MODEL_TENSOR.ATTN_NORM,
  211. MODEL_TENSOR.ATTN_QKV,
  212. MODEL_TENSOR.ATTN_OUT,
  213. MODEL_TENSOR.FFN_NORM,
  214. MODEL_TENSOR.FFN_DOWN,
  215. MODEL_TENSOR.FFN_UP,
  216. ],
  217. MODEL_ARCH.FALCON: [
  218. MODEL_TENSOR.TOKEN_EMBD,
  219. MODEL_TENSOR.OUTPUT_NORM,
  220. MODEL_TENSOR.OUTPUT,
  221. MODEL_TENSOR.ATTN_NORM,
  222. MODEL_TENSOR.ATTN_NORM_2,
  223. MODEL_TENSOR.ATTN_QKV,
  224. MODEL_TENSOR.ATTN_OUT,
  225. MODEL_TENSOR.FFN_DOWN,
  226. MODEL_TENSOR.FFN_UP,
  227. ],
  228. MODEL_ARCH.BAICHUAN: [
  229. MODEL_TENSOR.TOKEN_EMBD,
  230. MODEL_TENSOR.OUTPUT_NORM,
  231. MODEL_TENSOR.OUTPUT,
  232. MODEL_TENSOR.ROPE_FREQS,
  233. MODEL_TENSOR.ATTN_NORM,
  234. MODEL_TENSOR.ATTN_Q,
  235. MODEL_TENSOR.ATTN_K,
  236. MODEL_TENSOR.ATTN_V,
  237. MODEL_TENSOR.ATTN_OUT,
  238. MODEL_TENSOR.ATTN_ROT_EMBD,
  239. MODEL_TENSOR.FFN_NORM,
  240. MODEL_TENSOR.FFN_GATE,
  241. MODEL_TENSOR.FFN_DOWN,
  242. MODEL_TENSOR.FFN_UP,
  243. ],
  244. MODEL_ARCH.STARCODER: [
  245. MODEL_TENSOR.TOKEN_EMBD,
  246. MODEL_TENSOR.POS_EMBD,
  247. MODEL_TENSOR.OUTPUT_NORM,
  248. MODEL_TENSOR.OUTPUT,
  249. MODEL_TENSOR.ATTN_NORM,
  250. MODEL_TENSOR.ATTN_QKV,
  251. MODEL_TENSOR.ATTN_OUT,
  252. MODEL_TENSOR.FFN_NORM,
  253. MODEL_TENSOR.FFN_DOWN,
  254. MODEL_TENSOR.FFN_UP,
  255. ],
  256. MODEL_ARCH.BERT: [
  257. MODEL_TENSOR.TOKEN_EMBD,
  258. MODEL_TENSOR.TOKEN_EMBD_NORM,
  259. MODEL_TENSOR.TOKEN_TYPES,
  260. MODEL_TENSOR.POS_EMBD,
  261. MODEL_TENSOR.OUTPUT_NORM,
  262. MODEL_TENSOR.ATTN_OUT_NORM,
  263. MODEL_TENSOR.ATTN_Q,
  264. MODEL_TENSOR.ATTN_K,
  265. MODEL_TENSOR.ATTN_V,
  266. MODEL_TENSOR.ATTN_OUT,
  267. MODEL_TENSOR.FFN_DOWN,
  268. MODEL_TENSOR.FFN_UP,
  269. MODEL_TENSOR.LAYER_OUT_NORM,
  270. ],
  271. MODEL_ARCH.NOMIC_BERT: [
  272. MODEL_TENSOR.TOKEN_EMBD,
  273. MODEL_TENSOR.TOKEN_EMBD_NORM,
  274. MODEL_TENSOR.TOKEN_TYPES,
  275. MODEL_TENSOR.POS_EMBD,
  276. MODEL_TENSOR.OUTPUT_NORM,
  277. MODEL_TENSOR.ATTN_OUT_NORM,
  278. MODEL_TENSOR.ATTN_QKV,
  279. MODEL_TENSOR.ATTN_OUT,
  280. MODEL_TENSOR.FFN_GATE,
  281. MODEL_TENSOR.FFN_DOWN,
  282. MODEL_TENSOR.FFN_UP,
  283. MODEL_TENSOR.LAYER_OUT_NORM,
  284. ],
  285. MODEL_ARCH.MPT: [
  286. MODEL_TENSOR.TOKEN_EMBD,
  287. MODEL_TENSOR.OUTPUT_NORM,
  288. MODEL_TENSOR.OUTPUT,
  289. MODEL_TENSOR.ATTN_NORM,
  290. MODEL_TENSOR.ATTN_QKV,
  291. MODEL_TENSOR.ATTN_OUT,
  292. MODEL_TENSOR.FFN_NORM,
  293. MODEL_TENSOR.FFN_DOWN,
  294. MODEL_TENSOR.FFN_UP,
  295. MODEL_TENSOR.FFN_ACT,
  296. ],
  297. MODEL_ARCH.GPTJ: [
  298. MODEL_TENSOR.TOKEN_EMBD,
  299. MODEL_TENSOR.OUTPUT_NORM,
  300. MODEL_TENSOR.OUTPUT,
  301. MODEL_TENSOR.ATTN_NORM,
  302. MODEL_TENSOR.ATTN_Q,
  303. MODEL_TENSOR.ATTN_K,
  304. MODEL_TENSOR.ATTN_V,
  305. MODEL_TENSOR.ATTN_OUT,
  306. MODEL_TENSOR.FFN_DOWN,
  307. MODEL_TENSOR.FFN_UP,
  308. ],
  309. MODEL_ARCH.PERSIMMON: [
  310. MODEL_TENSOR.TOKEN_EMBD,
  311. MODEL_TENSOR.OUTPUT,
  312. MODEL_TENSOR.OUTPUT_NORM,
  313. MODEL_TENSOR.ATTN_NORM,
  314. MODEL_TENSOR.ATTN_QKV,
  315. MODEL_TENSOR.ATTN_OUT,
  316. MODEL_TENSOR.FFN_NORM,
  317. MODEL_TENSOR.FFN_DOWN,
  318. MODEL_TENSOR.FFN_UP,
  319. MODEL_TENSOR.ATTN_Q_NORM,
  320. MODEL_TENSOR.ATTN_K_NORM,
  321. MODEL_TENSOR.ATTN_ROT_EMBD,
  322. ],
  323. MODEL_ARCH.REFACT: [
  324. MODEL_TENSOR.TOKEN_EMBD,
  325. MODEL_TENSOR.OUTPUT_NORM,
  326. MODEL_TENSOR.OUTPUT,
  327. MODEL_TENSOR.ATTN_NORM,
  328. MODEL_TENSOR.ATTN_Q,
  329. MODEL_TENSOR.ATTN_K,
  330. MODEL_TENSOR.ATTN_V,
  331. MODEL_TENSOR.ATTN_OUT,
  332. MODEL_TENSOR.FFN_NORM,
  333. MODEL_TENSOR.FFN_GATE,
  334. MODEL_TENSOR.FFN_DOWN,
  335. MODEL_TENSOR.FFN_UP,
  336. ],
  337. MODEL_ARCH.BLOOM: [
  338. MODEL_TENSOR.TOKEN_EMBD,
  339. MODEL_TENSOR.TOKEN_EMBD_NORM,
  340. MODEL_TENSOR.OUTPUT_NORM,
  341. MODEL_TENSOR.OUTPUT,
  342. MODEL_TENSOR.ATTN_NORM,
  343. MODEL_TENSOR.ATTN_QKV,
  344. MODEL_TENSOR.ATTN_OUT,
  345. MODEL_TENSOR.FFN_NORM,
  346. MODEL_TENSOR.FFN_DOWN,
  347. MODEL_TENSOR.FFN_UP,
  348. ],
  349. MODEL_ARCH.STABLELM: [
  350. MODEL_TENSOR.TOKEN_EMBD,
  351. MODEL_TENSOR.OUTPUT_NORM,
  352. MODEL_TENSOR.OUTPUT,
  353. MODEL_TENSOR.ROPE_FREQS,
  354. MODEL_TENSOR.ATTN_NORM,
  355. MODEL_TENSOR.ATTN_Q,
  356. MODEL_TENSOR.ATTN_K,
  357. MODEL_TENSOR.ATTN_V,
  358. MODEL_TENSOR.ATTN_OUT,
  359. MODEL_TENSOR.FFN_NORM,
  360. MODEL_TENSOR.FFN_GATE,
  361. MODEL_TENSOR.FFN_DOWN,
  362. MODEL_TENSOR.FFN_UP,
  363. ],
  364. MODEL_ARCH.QWEN: [
  365. MODEL_TENSOR.TOKEN_EMBD,
  366. MODEL_TENSOR.OUTPUT_NORM,
  367. MODEL_TENSOR.OUTPUT,
  368. MODEL_TENSOR.ROPE_FREQS,
  369. MODEL_TENSOR.ATTN_NORM,
  370. MODEL_TENSOR.ATTN_QKV,
  371. MODEL_TENSOR.ATTN_OUT,
  372. MODEL_TENSOR.ATTN_ROT_EMBD,
  373. MODEL_TENSOR.FFN_NORM,
  374. MODEL_TENSOR.FFN_GATE,
  375. MODEL_TENSOR.FFN_DOWN,
  376. MODEL_TENSOR.FFN_UP,
  377. ],
  378. MODEL_ARCH.QWEN2: [
  379. MODEL_TENSOR.TOKEN_EMBD,
  380. MODEL_TENSOR.OUTPUT_NORM,
  381. MODEL_TENSOR.OUTPUT,
  382. MODEL_TENSOR.ATTN_NORM,
  383. MODEL_TENSOR.ATTN_Q,
  384. MODEL_TENSOR.ATTN_K,
  385. MODEL_TENSOR.ATTN_V,
  386. MODEL_TENSOR.ATTN_OUT,
  387. MODEL_TENSOR.FFN_NORM,
  388. MODEL_TENSOR.FFN_GATE,
  389. MODEL_TENSOR.FFN_DOWN,
  390. MODEL_TENSOR.FFN_UP,
  391. ],
  392. MODEL_ARCH.PLAMO: [
  393. MODEL_TENSOR.TOKEN_EMBD,
  394. MODEL_TENSOR.OUTPUT_NORM,
  395. MODEL_TENSOR.OUTPUT,
  396. MODEL_TENSOR.ROPE_FREQS,
  397. MODEL_TENSOR.ATTN_NORM,
  398. MODEL_TENSOR.ATTN_Q,
  399. MODEL_TENSOR.ATTN_K,
  400. MODEL_TENSOR.ATTN_V,
  401. MODEL_TENSOR.ATTN_OUT,
  402. MODEL_TENSOR.ATTN_ROT_EMBD,
  403. MODEL_TENSOR.FFN_GATE,
  404. MODEL_TENSOR.FFN_DOWN,
  405. MODEL_TENSOR.FFN_UP,
  406. ],
  407. MODEL_ARCH.GPT2: [
  408. MODEL_TENSOR.TOKEN_EMBD,
  409. MODEL_TENSOR.POS_EMBD,
  410. MODEL_TENSOR.OUTPUT_NORM,
  411. MODEL_TENSOR.OUTPUT,
  412. MODEL_TENSOR.ATTN_NORM,
  413. MODEL_TENSOR.ATTN_QKV,
  414. MODEL_TENSOR.ATTN_OUT,
  415. MODEL_TENSOR.FFN_NORM,
  416. MODEL_TENSOR.FFN_DOWN,
  417. MODEL_TENSOR.FFN_UP,
  418. ],
  419. MODEL_ARCH.PHI2: [
  420. MODEL_TENSOR.TOKEN_EMBD,
  421. MODEL_TENSOR.OUTPUT_NORM,
  422. MODEL_TENSOR.OUTPUT,
  423. MODEL_TENSOR.ATTN_NORM,
  424. MODEL_TENSOR.ATTN_QKV,
  425. MODEL_TENSOR.ATTN_Q,
  426. MODEL_TENSOR.ATTN_K,
  427. MODEL_TENSOR.ATTN_V,
  428. MODEL_TENSOR.ATTN_OUT,
  429. MODEL_TENSOR.FFN_NORM,
  430. MODEL_TENSOR.FFN_DOWN,
  431. MODEL_TENSOR.FFN_UP,
  432. ],
  433. MODEL_ARCH.CODESHELL: [
  434. MODEL_TENSOR.TOKEN_EMBD,
  435. MODEL_TENSOR.POS_EMBD,
  436. MODEL_TENSOR.OUTPUT_NORM,
  437. MODEL_TENSOR.OUTPUT,
  438. MODEL_TENSOR.ATTN_NORM,
  439. MODEL_TENSOR.ATTN_QKV,
  440. MODEL_TENSOR.ATTN_OUT,
  441. MODEL_TENSOR.ATTN_ROT_EMBD,
  442. MODEL_TENSOR.FFN_NORM,
  443. MODEL_TENSOR.FFN_DOWN,
  444. MODEL_TENSOR.FFN_UP,
  445. ],
  446. MODEL_ARCH.ORION: [
  447. MODEL_TENSOR.TOKEN_EMBD,
  448. MODEL_TENSOR.OUTPUT_NORM,
  449. MODEL_TENSOR.OUTPUT,
  450. MODEL_TENSOR.ROPE_FREQS,
  451. MODEL_TENSOR.ATTN_NORM,
  452. MODEL_TENSOR.ATTN_Q,
  453. MODEL_TENSOR.ATTN_K,
  454. MODEL_TENSOR.ATTN_V,
  455. MODEL_TENSOR.ATTN_OUT,
  456. MODEL_TENSOR.ATTN_ROT_EMBD,
  457. MODEL_TENSOR.FFN_NORM,
  458. MODEL_TENSOR.FFN_GATE,
  459. MODEL_TENSOR.FFN_DOWN,
  460. MODEL_TENSOR.FFN_UP,
  461. ],
  462. MODEL_ARCH.INTERNLM2: [
  463. MODEL_TENSOR.TOKEN_EMBD,
  464. MODEL_TENSOR.OUTPUT_NORM,
  465. MODEL_TENSOR.OUTPUT,
  466. MODEL_TENSOR.ATTN_NORM,
  467. MODEL_TENSOR.ATTN_Q,
  468. MODEL_TENSOR.ATTN_K,
  469. MODEL_TENSOR.ATTN_V,
  470. MODEL_TENSOR.ATTN_OUT,
  471. MODEL_TENSOR.ATTN_ROT_EMBD,
  472. MODEL_TENSOR.FFN_NORM,
  473. MODEL_TENSOR.FFN_GATE,
  474. MODEL_TENSOR.FFN_DOWN,
  475. MODEL_TENSOR.FFN_UP,
  476. ],
  477. MODEL_ARCH.MINICPM: [
  478. MODEL_TENSOR.TOKEN_EMBD,
  479. MODEL_TENSOR.OUTPUT_NORM,
  480. MODEL_TENSOR.ROPE_FREQS,
  481. MODEL_TENSOR.ATTN_NORM,
  482. MODEL_TENSOR.ATTN_Q,
  483. MODEL_TENSOR.ATTN_K,
  484. MODEL_TENSOR.ATTN_V,
  485. MODEL_TENSOR.ATTN_OUT,
  486. MODEL_TENSOR.ATTN_ROT_EMBD,
  487. MODEL_TENSOR.FFN_GATE_INP,
  488. MODEL_TENSOR.FFN_NORM,
  489. MODEL_TENSOR.FFN_GATE,
  490. MODEL_TENSOR.FFN_DOWN,
  491. MODEL_TENSOR.FFN_UP,
  492. MODEL_TENSOR.FFN_GATE_EXP,
  493. MODEL_TENSOR.FFN_DOWN_EXP,
  494. MODEL_TENSOR.FFN_UP_EXP,
  495. ],
  496. MODEL_ARCH.GEMMA: [
  497. MODEL_TENSOR.TOKEN_EMBD,
  498. MODEL_TENSOR.OUTPUT_NORM,
  499. MODEL_TENSOR.ATTN_NORM,
  500. MODEL_TENSOR.ATTN_Q,
  501. MODEL_TENSOR.ATTN_K,
  502. MODEL_TENSOR.ATTN_V,
  503. MODEL_TENSOR.ATTN_OUT,
  504. MODEL_TENSOR.FFN_GATE,
  505. MODEL_TENSOR.FFN_DOWN,
  506. MODEL_TENSOR.FFN_UP,
  507. MODEL_TENSOR.FFN_NORM,
  508. ],
  509. # TODO
  510. }
  511. # tensors that will not be serialized
  512. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  513. MODEL_ARCH.LLAMA: [
  514. MODEL_TENSOR.ROPE_FREQS,
  515. MODEL_TENSOR.ATTN_ROT_EMBD,
  516. ],
  517. MODEL_ARCH.BAICHUAN: [
  518. MODEL_TENSOR.ROPE_FREQS,
  519. MODEL_TENSOR.ATTN_ROT_EMBD,
  520. ],
  521. MODEL_ARCH.PERSIMMON: [
  522. MODEL_TENSOR.ROPE_FREQS,
  523. ],
  524. MODEL_ARCH.QWEN: [
  525. MODEL_TENSOR.ROPE_FREQS,
  526. MODEL_TENSOR.ATTN_ROT_EMBD,
  527. ],
  528. MODEL_ARCH.CODESHELL: [
  529. MODEL_TENSOR.ROPE_FREQS,
  530. MODEL_TENSOR.ATTN_ROT_EMBD,
  531. ],
  532. MODEL_ARCH.ORION: [
  533. MODEL_TENSOR.ROPE_FREQS,
  534. MODEL_TENSOR.ATTN_ROT_EMBD,
  535. ],
  536. }
  537. #
  538. # types
  539. #
  540. class TokenType(IntEnum):
  541. NORMAL = 1
  542. UNKNOWN = 2
  543. CONTROL = 3
  544. USER_DEFINED = 4
  545. UNUSED = 5
  546. BYTE = 6
  547. class RopeScalingType(Enum):
  548. NONE = 'none'
  549. LINEAR = 'linear'
  550. YARN = 'yarn'
  551. class PoolingType(IntEnum):
  552. NONE = 0
  553. MEAN = 1
  554. CLS = 2
  555. class GGMLQuantizationType(IntEnum):
  556. F32 = 0
  557. F16 = 1
  558. Q4_0 = 2
  559. Q4_1 = 3
  560. Q5_0 = 6
  561. Q5_1 = 7
  562. Q8_0 = 8
  563. Q8_1 = 9
  564. Q2_K = 10
  565. Q3_K = 11
  566. Q4_K = 12
  567. Q5_K = 13
  568. Q6_K = 14
  569. Q8_K = 15
  570. class GGUFEndian(IntEnum):
  571. LITTLE = 0
  572. BIG = 1
  573. class GGUFValueType(IntEnum):
  574. UINT8 = 0
  575. INT8 = 1
  576. UINT16 = 2
  577. INT16 = 3
  578. UINT32 = 4
  579. INT32 = 5
  580. FLOAT32 = 6
  581. BOOL = 7
  582. STRING = 8
  583. ARRAY = 9
  584. UINT64 = 10
  585. INT64 = 11
  586. FLOAT64 = 12
  587. @staticmethod
  588. def get_type(val: Any) -> GGUFValueType:
  589. if isinstance(val, (str, bytes, bytearray)):
  590. return GGUFValueType.STRING
  591. elif isinstance(val, list):
  592. return GGUFValueType.ARRAY
  593. elif isinstance(val, float):
  594. return GGUFValueType.FLOAT32
  595. elif isinstance(val, bool):
  596. return GGUFValueType.BOOL
  597. elif isinstance(val, int):
  598. return GGUFValueType.INT32
  599. # TODO: need help with 64-bit types in Python
  600. else:
  601. print("Unknown type:", type(val))
  602. sys.exit()
  603. # Note: Does not support GGML_QKK_64
  604. QK_K = 256
  605. # Items here are (block size, type size)
  606. GGML_QUANT_SIZES = {
  607. GGMLQuantizationType.F32: (1, 4),
  608. GGMLQuantizationType.F16: (1, 2),
  609. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  610. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  611. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  612. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  613. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  614. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  615. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  616. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  617. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  618. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  619. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  620. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  621. }
  622. # Aliases for backward compatibility.
  623. # general
  624. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  625. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  626. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  627. KEY_GENERAL_NAME = Keys.General.NAME
  628. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  629. KEY_GENERAL_URL = Keys.General.URL
  630. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  631. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  632. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  633. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  634. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  635. # LLM
  636. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  637. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  638. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  639. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  640. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  641. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  642. # attention
  643. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  644. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  645. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  646. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  647. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  648. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  649. # RoPE
  650. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  651. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  652. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  653. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  654. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  655. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  656. # tokenization
  657. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  658. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  659. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  660. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  661. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  662. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  663. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  664. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  665. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  666. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  667. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  668. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  669. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  670. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV