ggml.c 316 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. #define GGML_MLOCK_SUPPORT 0
  83. #ifdef __has_include
  84. #if __has_include(<sys/mman.h>)
  85. #undef GGML_MLOCK_SUPPORT
  86. #define GGML_MLOCK_SUPPORT 1
  87. #include <sys/mman.h>
  88. #endif
  89. #endif
  90. /*#define GGML_PERF*/
  91. #define GGML_DEBUG 0
  92. #define GGML_GELU_FP16
  93. #define GGML_SILU_FP16
  94. #define GGML_SOFT_MAX_UNROLL 4
  95. #define GGML_VEC_DOT_UNROLL 2
  96. #ifdef GGML_USE_ACCELERATE
  97. // uncomment to use vDSP for soft max computation
  98. // note: not sure if it is actually faster
  99. //#define GGML_SOFT_MAX_ACCELERATE
  100. #endif
  101. #if UINTPTR_MAX == 0xFFFFFFFF
  102. #define GGML_MEM_ALIGN 4
  103. #else
  104. #define GGML_MEM_ALIGN 16
  105. #endif
  106. #define UNUSED(x) (void)(x)
  107. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  108. #define GGML_ASSERT(x) \
  109. do { \
  110. if (!(x)) { \
  111. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  112. abort(); \
  113. } \
  114. } while (0)
  115. #ifdef GGML_USE_ACCELERATE
  116. #include <Accelerate/Accelerate.h>
  117. #elif GGML_USE_OPENBLAS
  118. #include <cblas.h>
  119. #endif
  120. #undef MIN
  121. #undef MAX
  122. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  123. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  124. // floating point type used to accumulate sums
  125. typedef double ggml_float;
  126. // 16-bit float
  127. // on Arm, we use __fp16
  128. // on x86, we use uint16_t
  129. #ifdef __ARM_NEON
  130. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  131. //
  132. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  133. //
  134. #include <arm_neon.h>
  135. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  136. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  137. #define GGML_FP16_TO_FP32(x) ((float) (x))
  138. #define GGML_FP32_TO_FP16(x) (x)
  139. #else
  140. #ifdef __wasm_simd128__
  141. #include <wasm_simd128.h>
  142. #else
  143. #ifdef __POWER9_VECTOR__
  144. #include <altivec.h>
  145. #undef bool
  146. #define bool _Bool
  147. #else
  148. #include <immintrin.h>
  149. #endif
  150. #endif
  151. #ifdef __F16C__
  152. #ifdef _MSC_VER
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  155. #else
  156. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  157. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  158. #endif
  159. #elif defined(__POWER9_VECTOR__)
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  162. /* the inline asm below is about 12% faster than the lookup method */
  163. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  164. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  165. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  166. register float f;
  167. register double d;
  168. __asm__(
  169. "mtfprd %0,%2\n"
  170. "xscvhpdp %0,%0\n"
  171. "frsp %1,%0\n" :
  172. /* temp */ "=d"(d),
  173. /* out */ "=f"(f):
  174. /* in */ "r"(h));
  175. return f;
  176. }
  177. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  178. register double d;
  179. register ggml_fp16_t r;
  180. __asm__( /* xscvdphp can work on double or single precision */
  181. "xscvdphp %0,%2\n"
  182. "mffprd %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=r"(r):
  185. /* in */ "f"(f));
  186. return r;
  187. }
  188. #else
  189. // FP16 <-> FP32
  190. // ref: https://github.com/Maratyszcza/FP16
  191. static inline float fp32_from_bits(uint32_t w) {
  192. union {
  193. uint32_t as_bits;
  194. float as_value;
  195. } fp32;
  196. fp32.as_bits = w;
  197. return fp32.as_value;
  198. }
  199. static inline uint32_t fp32_to_bits(float f) {
  200. union {
  201. float as_value;
  202. uint32_t as_bits;
  203. } fp32;
  204. fp32.as_value = f;
  205. return fp32.as_bits;
  206. }
  207. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  208. const uint32_t w = (uint32_t) h << 16;
  209. const uint32_t sign = w & UINT32_C(0x80000000);
  210. const uint32_t two_w = w + w;
  211. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  212. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  213. const float exp_scale = 0x1.0p-112f;
  214. #else
  215. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  216. #endif
  217. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  218. const uint32_t magic_mask = UINT32_C(126) << 23;
  219. const float magic_bias = 0.5f;
  220. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  221. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  222. const uint32_t result = sign |
  223. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  224. return fp32_from_bits(result);
  225. }
  226. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  227. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  228. const float scale_to_inf = 0x1.0p+112f;
  229. const float scale_to_zero = 0x1.0p-110f;
  230. #else
  231. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  232. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  233. #endif
  234. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  235. const uint32_t w = fp32_to_bits(f);
  236. const uint32_t shl1_w = w + w;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  239. if (bias < UINT32_C(0x71000000)) {
  240. bias = UINT32_C(0x71000000);
  241. }
  242. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  243. const uint32_t bits = fp32_to_bits(base);
  244. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  245. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  246. const uint32_t nonsign = exp_bits + mantissa_bits;
  247. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  248. }
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  251. #endif // __F16C__
  252. #endif // __ARM_NEON
  253. //
  254. // global data
  255. //
  256. // precomputed gelu table for f16 (128 KB)
  257. static ggml_fp16_t table_gelu_f16[1 << 16];
  258. // precomputed silu table for f16 (128 KB)
  259. static ggml_fp16_t table_silu_f16[1 << 16];
  260. // precomputed exp table for f16 (128 KB)
  261. static ggml_fp16_t table_exp_f16[1 << 16];
  262. // precomputed f32 table for f16 (256 KB)
  263. static float table_f32_f16[1 << 16];
  264. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  265. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  266. // This is also true for POWER9.
  267. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  268. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  269. uint16_t s;
  270. memcpy(&s, &f, sizeof(uint16_t));
  271. return table_f32_f16[s];
  272. }
  273. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  274. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  275. #endif
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return (float) GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. //
  285. // timing
  286. //
  287. #if defined(_MSC_VER) || defined(__MINGW32__)
  288. static int64_t timer_freq;
  289. void ggml_time_init(void) {
  290. LARGE_INTEGER frequency;
  291. QueryPerformanceFrequency(&frequency);
  292. timer_freq = frequency.QuadPart;
  293. }
  294. int64_t ggml_time_ms(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return (t.QuadPart * 1000) / timer_freq;
  298. }
  299. int64_t ggml_time_us(void) {
  300. LARGE_INTEGER t;
  301. QueryPerformanceCounter(&t);
  302. return (t.QuadPart * 1000000) / timer_freq;
  303. }
  304. #else
  305. void ggml_time_init(void) {}
  306. int64_t ggml_time_ms(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  310. }
  311. int64_t ggml_time_us(void) {
  312. struct timespec ts;
  313. clock_gettime(CLOCK_MONOTONIC, &ts);
  314. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  315. }
  316. #endif
  317. int64_t ggml_cycles(void) {
  318. return clock();
  319. }
  320. int64_t ggml_cycles_per_ms(void) {
  321. return CLOCKS_PER_SEC/1000;
  322. }
  323. #ifdef GGML_PERF
  324. #define ggml_perf_time_ms() ggml_time_ms()
  325. #define ggml_perf_time_us() ggml_time_us()
  326. #define ggml_perf_cycles() ggml_cycles()
  327. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  328. #else
  329. #define ggml_perf_time_ms() 0
  330. #define ggml_perf_time_us() 0
  331. #define ggml_perf_cycles() 0
  332. #define ggml_perf_cycles_per_ms() 0
  333. #endif
  334. //
  335. // cache line
  336. //
  337. #if defined(__cpp_lib_hardware_interference_size)
  338. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  339. #else
  340. #if defined(__POWER9_VECTOR__)
  341. #define CACHE_LINE_SIZE 128
  342. #else
  343. #define CACHE_LINE_SIZE 64
  344. #endif
  345. #endif
  346. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  347. //
  348. // quantization
  349. //
  350. #define QK 32
  351. // AVX routines provided by GH user Const-me
  352. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  353. #if __AVX2__ || __AVX512F__
  354. // Unpack 32 4-bit fields into 32 bytes
  355. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  356. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  357. {
  358. // Load 16 bytes from memory
  359. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  360. // Expand bytes into uint16_t values
  361. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  362. // Unpack values into individual bytes
  363. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  364. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  365. __m256i low = _mm256_and_si256( lowMask, bytes );
  366. high = _mm256_slli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. return bytes;
  369. }
  370. static inline __m128i packNibbles( __m256i bytes )
  371. {
  372. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  373. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  374. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  375. __m256i low = _mm256_and_si256( lowByte, bytes );
  376. high = _mm256_srli_epi16( high, 4 );
  377. bytes = _mm256_or_si256( low, high );
  378. // Compress uint16_t lanes into bytes
  379. __m128i r0 = _mm256_castsi256_si128( bytes );
  380. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  381. return _mm_packus_epi16( r0, r1 );
  382. }
  383. #endif
  384. // method 5
  385. // blocks of QK elements
  386. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  387. typedef struct {
  388. float d; // delta
  389. uint8_t qs[QK / 2]; // nibbles / quants
  390. } block_q4_0;
  391. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  392. // method 4
  393. // blocks of QK elements
  394. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  395. typedef struct {
  396. float d;
  397. float m;
  398. uint8_t qs[QK / 2]; // nibbles / quants
  399. } block_q4_1;
  400. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  401. // reference implementation for deterministic creation of model files
  402. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  403. assert(k % QK == 0);
  404. const int nb = k / QK;
  405. uint8_t pp[QK/2];
  406. for (int i = 0; i < nb; i++) {
  407. float amax = 0.0f; // absolute max
  408. for (int l = 0; l < QK; l++) {
  409. const float v = x[i*QK + l];
  410. amax = MAX(amax, fabsf(v));
  411. }
  412. const float d = amax / ((1 << 3) - 1);
  413. const float id = d ? 1.0f/d : 0.0f;
  414. y[i].d = d;
  415. for (int l = 0; l < QK; l += 2) {
  416. const float v0 = x[i*QK + l + 0]*id;
  417. const float v1 = x[i*QK + l + 1]*id;
  418. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  419. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  420. assert(vi0 >= 0 && vi0 < 16);
  421. assert(vi1 >= 0 && vi1 < 16);
  422. pp[l/2] = vi0 | (vi1 << 4);
  423. }
  424. memcpy(y[i].qs, pp, sizeof(pp));
  425. }
  426. }
  427. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  428. assert(k % QK == 0);
  429. const int nb = k / QK;
  430. block_q4_0 * restrict y = vy;
  431. #if defined(__POWER9_VECTOR__)
  432. const vector float v85 = vec_splats(8.5f);
  433. for (int i = 0; i < nb; i++) {
  434. float amax = 0.0f; // absolute max
  435. vector float srcv [8];
  436. vector float asrcv[8];
  437. vector float amaxv[8];
  438. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  439. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  440. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  441. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  442. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  443. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  444. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  445. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  446. amax = MAX(
  447. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  448. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  449. const float d = amax / ((1 << 3) - 1);
  450. const float id = d ? 1.0/d : 0.0;
  451. y[i].d = d;
  452. const vector float vid = vec_splats(id);
  453. uint8_t * restrict pb = y[i].qs;
  454. for (int l = 0; l < 8; l++) {
  455. const vector float vf = vec_madd(srcv[l], vid, v85);
  456. const vector signed int vi = vec_signed(vf);
  457. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  458. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  459. }
  460. }
  461. #elif __ARM_NEON
  462. for (int i = 0; i < nb; i++) {
  463. float32x4_t srcv [8];
  464. float32x4_t asrcv[8];
  465. float32x4_t amaxv[8];
  466. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  467. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  468. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  469. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  470. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  471. // absolute max
  472. const float amax = MAX(
  473. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  474. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  475. const float d = amax / ((1 << 3) - 1);
  476. const float id = d ? 1.0f/d : 0.0f;
  477. y[i].d = d;
  478. for (int l = 0; l < 8; l++) {
  479. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  480. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  481. const int32x4_t vi = vcvtq_s32_f32(vf);
  482. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  483. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  484. }
  485. }
  486. #elif defined(__AVX2__)
  487. for (int i = 0; i < nb; i++) {
  488. // Load elements into 4 AVX vectors
  489. __m256 v0 = _mm256_loadu_ps( x );
  490. __m256 v1 = _mm256_loadu_ps( x + 8 );
  491. __m256 v2 = _mm256_loadu_ps( x + 16 );
  492. __m256 v3 = _mm256_loadu_ps( x + 24 );
  493. x += 32;
  494. // Compute max(abs(e)) for the block
  495. const __m256 signBit = _mm256_set1_ps( -0.0f );
  496. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  497. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  498. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  499. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  500. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  501. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  502. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  503. const float maxScalar = _mm_cvtss_f32( max4 );
  504. // Quantize these floats
  505. const float d = maxScalar / 7.0f;
  506. y[i].d = d;
  507. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  508. const __m256 mul = _mm256_set1_ps( id );
  509. // Apply the multiplier
  510. v0 = _mm256_mul_ps( v0, mul );
  511. v1 = _mm256_mul_ps( v1, mul );
  512. v2 = _mm256_mul_ps( v2, mul );
  513. v3 = _mm256_mul_ps( v3, mul );
  514. // Round to nearest integer
  515. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  516. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  517. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  518. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  519. // Convert floats to integers
  520. __m256i i0 = _mm256_cvtps_epi32( v0 );
  521. __m256i i1 = _mm256_cvtps_epi32( v1 );
  522. __m256i i2 = _mm256_cvtps_epi32( v2 );
  523. __m256i i3 = _mm256_cvtps_epi32( v3 );
  524. // Convert int32 to int16
  525. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  526. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  527. // Convert int16 to int8
  528. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  529. // We got our precious signed bytes, but the order is now wrong
  530. // These AVX2 pack instructions process 16-byte pieces independently
  531. // The following instruction is fixing the order
  532. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  533. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  534. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  535. const __m256i off = _mm256_set1_epi8( 8 );
  536. i0 = _mm256_add_epi8( i0, off );
  537. // Compress the vector into 4 bit/value, and store
  538. __m128i res = packNibbles( i0 );
  539. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  540. }
  541. #elif defined(__wasm_simd128__)
  542. for (int i = 0; i < nb; i++) {
  543. float amax = 0.0f; // absolute max
  544. v128_t srcv [8];
  545. v128_t asrcv[8];
  546. v128_t amaxv[8];
  547. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  548. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  549. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  550. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  551. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  552. amax = MAX(
  553. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  554. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  555. const float d = amax / ((1 << 3) - 1);
  556. const float id = d ? 1.0/d : 0.0;
  557. y[i].d = d;
  558. for (int l = 0; l < 8; l++) {
  559. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  560. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  561. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  562. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  563. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  564. }
  565. }
  566. #else
  567. // scalar
  568. quantize_row_q4_0_reference(x, y, k);
  569. #endif
  570. }
  571. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  572. assert(k % QK == 0);
  573. const int nb = k / QK;
  574. block_q4_1 * restrict y = vy;
  575. uint8_t pp[QK/2];
  576. for (int i = 0; i < nb; i++) {
  577. float min = FLT_MAX;
  578. float max = -FLT_MAX;
  579. for (int l = 0; l < QK; l++) {
  580. const float v = x[i*QK + l];
  581. if (v < min) min = v;
  582. if (v > max) max = v;
  583. }
  584. const float d = (max - min) / ((1 << 4) - 1);
  585. const float id = d ? 1.0f/d : 0.0f;
  586. y[i].d = d;
  587. y[i].m = min;
  588. for (int l = 0; l < QK; l += 2) {
  589. const float v0 = (x[i*QK + l + 0] - min)*id;
  590. const float v1 = (x[i*QK + l + 1] - min)*id;
  591. const uint8_t vi0 = roundf(v0);
  592. const uint8_t vi1 = roundf(v1);
  593. assert(vi0 >= 0 && vi0 < 16);
  594. assert(vi1 >= 0 && vi1 < 16);
  595. pp[l/2] = vi0 | (vi1 << 4);
  596. }
  597. memcpy(y[i].qs, pp, sizeof(pp));
  598. }
  599. }
  600. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  601. assert(k % QK == 0);
  602. const int nb = k / QK;
  603. block_q4_1 * restrict y = vy;
  604. #if defined(__AVX2__)
  605. for (int i = 0; i < nb; i++) {
  606. // Load elements into 4 AVX vectors
  607. __m256 v0 = _mm256_loadu_ps( x );
  608. __m256 v1 = _mm256_loadu_ps( x + 8 );
  609. __m256 v2 = _mm256_loadu_ps( x + 16 );
  610. __m256 v3 = _mm256_loadu_ps( x + 24 );
  611. x += 32;
  612. // Compute max for the block
  613. __m256 vmax;
  614. vmax = _mm256_max_ps( v0, v1 );
  615. vmax = _mm256_max_ps( vmax, v2 );
  616. vmax = _mm256_max_ps( vmax, v3 );
  617. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  618. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  619. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  620. const float maxScalar = _mm_cvtss_f32( max4 );
  621. // Compute min for the block
  622. __m256 vmin;
  623. vmin = _mm256_min_ps( v0, v1 );
  624. vmin = _mm256_min_ps( vmin, v2 );
  625. vmin = _mm256_min_ps( vmin, v3 );
  626. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  627. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  628. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  629. const float minScalar = _mm_cvtss_f32( min4 );
  630. // Quantize these floats
  631. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  632. const float id = d ? 1.0f/d : 0.0f;
  633. y[i].m = minScalar;
  634. y[i].d = d;
  635. // x = (x-min)*id
  636. const __m256 mul = _mm256_set1_ps( id );
  637. const __m256 off = _mm256_set1_ps( minScalar );
  638. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  639. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  640. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  641. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  642. // Round to nearest integer
  643. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  644. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  645. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  646. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  647. // Convert floats to integers
  648. __m256i i0 = _mm256_cvtps_epi32( v0 );
  649. __m256i i1 = _mm256_cvtps_epi32( v1 );
  650. __m256i i2 = _mm256_cvtps_epi32( v2 );
  651. __m256i i3 = _mm256_cvtps_epi32( v3 );
  652. // Convert int32 to int16
  653. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  654. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  655. // Convert int16 to int8
  656. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  657. // We got our precious signed bytes, but the order is now wrong
  658. // These AVX2 pack instructions process 16-byte pieces independently
  659. // The following instruction is fixing the order
  660. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  661. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  662. // Compress the vector into 4 bit/value, and store
  663. __m128i res = packNibbles( i0 );
  664. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  665. }
  666. #elif __ARM_NEON
  667. for (int i = 0; i < nb; i++) {
  668. float32x4_t srcv[8];
  669. float32x4_t minv[8];
  670. float32x4_t maxv[8];
  671. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  672. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  673. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  674. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  675. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  676. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  677. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  678. const float min = vminvq_f32(minv[0]);
  679. const float max = vmaxvq_f32(maxv[0]);
  680. const float d = (max - min) / ((1 << 4) - 1);
  681. const float id = d ? 1.0f/d : 0.0f;
  682. y[i].d = d;
  683. y[i].m = min;
  684. const float32x4_t minv0 = vdupq_n_f32(min);
  685. for (int l = 0; l < 8; l++) {
  686. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  687. const int32x4_t vi = vcvtq_s32_f32(v);
  688. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  689. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  690. }
  691. }
  692. #else
  693. // scalar
  694. quantize_row_q4_1_reference(x, vy, k);
  695. #endif
  696. }
  697. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  698. assert(k % QK == 0);
  699. const int nb = k / QK;
  700. const block_q4_0 * restrict x = vx;
  701. #if defined(__AVX2__)
  702. for (int i = 0; i < nb; i++) {
  703. // scale factor
  704. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  705. const uint8_t * restrict pp = x[i].qs;
  706. for (int l = 0; l < QK; l += 32) {
  707. // Load 32x4-bit integers into 32x8-bit integers
  708. __m256i vx8 = bytesFromNibbles(pp+l/2);
  709. // Subtract 8 from the integers
  710. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  711. // Convert to 16-bit int
  712. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  713. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  714. // Convert to 32-bit int -> float 32
  715. const __m256 vf[4] = {
  716. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  717. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  718. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  719. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  720. };
  721. // Scale and store
  722. for (int j = 0; j < 4; j++) {
  723. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  724. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  725. }
  726. }
  727. }
  728. #elif defined(__ARM_NEON)
  729. for (int i = 0; i < nb; i++) {
  730. const float32x4_t vd = vdupq_n_f32(x[i].d);
  731. const uint8_t * restrict pp = x[i].qs;
  732. for (int l = 0; l < QK; l += 16) {
  733. // Load 16x4-bit integers into 8x8-bit integers
  734. const uint8x8_t v8 = vld1_u8(pp + l/2);
  735. // Expand 4-bit qs to 8-bit bytes
  736. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  737. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  738. // Convert to signed 8-bit integers
  739. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  740. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  741. // Subtract 8 from each byte
  742. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  743. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  744. // Interleave and combine
  745. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  746. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  747. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  748. // convert to 2x int16x8_t
  749. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  750. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  751. // convert to 4x float32x4_t
  752. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  753. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  754. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  755. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  756. // Multiply by d
  757. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  758. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  759. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  760. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  761. // Store
  762. vst1q_f32(y + i*QK + l + 0, r0);
  763. vst1q_f32(y + i*QK + l + 4, r1);
  764. vst1q_f32(y + i*QK + l + 8, r2);
  765. vst1q_f32(y + i*QK + l + 12, r3);
  766. }
  767. }
  768. #else
  769. // scalar
  770. for (int i = 0; i < nb; i++) {
  771. const float d = x[i].d;
  772. const uint8_t * restrict pp = x[i].qs;
  773. for (int l = 0; l < QK; l += 2) {
  774. const uint8_t vi = pp[l/2];
  775. const int8_t vi0 = vi & 0xf;
  776. const int8_t vi1 = vi >> 4;
  777. const float v0 = (vi0 - 8)*d;
  778. const float v1 = (vi1 - 8)*d;
  779. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  780. y[i*QK + l + 0] = v0;
  781. y[i*QK + l + 1] = v1;
  782. assert(!isnan(y[i*QK + l + 0]));
  783. assert(!isnan(y[i*QK + l + 1]));
  784. }
  785. }
  786. #endif
  787. }
  788. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  789. assert(k % QK == 0);
  790. const int nb = k / QK;
  791. const block_q4_1 * restrict x = vx;
  792. #if defined(__AVX2__)
  793. for (int i = 0; i < nb; i++) {
  794. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  795. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  796. const uint8_t * restrict pp = x[i].qs;
  797. for (int l = 0; l < QK; l += 32) {
  798. // Load 32x4-bit integers into 32x8-bit integers
  799. __m256i vx8 = bytesFromNibbles(pp+l/2);
  800. // Convert to 16-bit int
  801. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  802. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  803. // Convert to 32-bit int -> float 32
  804. const __m256 vf[4] = {
  805. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  806. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  807. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  808. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  809. };
  810. // Scale, add m and store
  811. for (int j = 0; j < 4; j++) {
  812. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  813. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  814. }
  815. }
  816. }
  817. #elif defined(__ARM_NEON)
  818. for (int i = 0; i < nb; i++) {
  819. const float32x4_t vd = vdupq_n_f32(x[i].d);
  820. const float32x4_t vm = vdupq_n_f32(x[i].m);
  821. const uint8_t * restrict pp = x[i].qs;
  822. for (int l = 0; l < QK; l += 16) {
  823. // Load 16x4-bit integers into 8x8-bit integers
  824. const uint8x8_t v8 = vld1_u8(pp + l/2);
  825. // Expand 4-bit qs to 8-bit bytes
  826. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  827. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  828. // Interleave and combine
  829. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  830. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  831. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  832. // convert to 2x uint16x8_t
  833. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  834. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  835. // convert to 4x float32x4_t
  836. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  837. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  838. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  839. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  840. // multiply by d and add m
  841. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  842. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  843. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  844. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  845. // Store
  846. vst1q_f32(y + i*QK + l + 0, r0);
  847. vst1q_f32(y + i*QK + l + 4, r1);
  848. vst1q_f32(y + i*QK + l + 8, r2);
  849. vst1q_f32(y + i*QK + l + 12, r3);
  850. }
  851. }
  852. #else
  853. for (int i = 0; i < nb; i++) {
  854. const float d = x[i].d;
  855. const float m = x[i].m;
  856. const uint8_t * restrict pp = x[i].qs;
  857. for (int l = 0; l < QK; l += 2) {
  858. const uint8_t vi = pp[l/2];
  859. const int8_t vi0 = vi & 0xf;
  860. const int8_t vi1 = vi >> 4;
  861. const float v0 = vi0*d + m;
  862. const float v1 = vi1*d + m;
  863. y[i*QK + l + 0] = v0;
  864. y[i*QK + l + 1] = v1;
  865. assert(!isnan(y[i*QK + l + 0]));
  866. assert(!isnan(y[i*QK + l + 1]));
  867. }
  868. }
  869. #endif
  870. }
  871. //
  872. // simd mappings
  873. //
  874. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  875. // we then implement the fundamental computation operations below using only these macros
  876. // adding support for new architectures requires to define the corresponding SIMD macros
  877. //
  878. // GGML_F32_STEP / GGML_F16_STEP
  879. // number of elements to process in a single step
  880. //
  881. // GGML_F32_EPR / GGML_F16_EPR
  882. // number of elements to fit in a single register
  883. //
  884. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  885. #define GGML_SIMD
  886. // F32 NEON
  887. #define GGML_F32_STEP 16
  888. #define GGML_F32_EPR 4
  889. #define GGML_F32x4 float32x4_t
  890. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  891. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  892. #define GGML_F32x4_LOAD vld1q_f32
  893. #define GGML_F32x4_STORE vst1q_f32
  894. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  895. #define GGML_F32x4_ADD vaddq_f32
  896. #define GGML_F32x4_MUL vmulq_f32
  897. #if defined(__ARM_FEATURE_QRDMX)
  898. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  899. #else
  900. #define GGML_F32x4_REDUCE_ONE(x) \
  901. (vgetq_lane_f32(x, 0) + \
  902. vgetq_lane_f32(x, 1) + \
  903. vgetq_lane_f32(x, 2) + \
  904. vgetq_lane_f32(x, 3))
  905. #endif
  906. #define GGML_F32x4_REDUCE(res, x) \
  907. { \
  908. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  909. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  910. } \
  911. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  912. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  913. } \
  914. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  915. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  916. } \
  917. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  918. }
  919. #define GGML_F32_VEC GGML_F32x4
  920. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  921. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  922. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  923. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  924. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  925. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  926. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  927. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  928. // F16 NEON
  929. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  930. #define GGML_F16_STEP 32
  931. #define GGML_F16_EPR 8
  932. #define GGML_F16x8 float16x8_t
  933. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  934. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  935. #define GGML_F16x8_LOAD vld1q_f16
  936. #define GGML_F16x8_STORE vst1q_f16
  937. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  938. #define GGML_F16x8_ADD vaddq_f16
  939. #define GGML_F16x8_MUL vmulq_f16
  940. #define GGML_F16x8_REDUCE(res, x) \
  941. { \
  942. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  943. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  944. } \
  945. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  946. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  947. } \
  948. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  949. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  950. } \
  951. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  952. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  953. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  954. }
  955. #define GGML_F16_VEC GGML_F16x8
  956. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  957. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  958. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  959. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  960. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  961. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  962. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  963. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  964. #else
  965. // if FP16 vector arithmetic is not supported, we use FP32 instead
  966. // and take advantage of the vcvt_ functions to convert to/from FP16
  967. #define GGML_F16_STEP 16
  968. #define GGML_F16_EPR 4
  969. #define GGML_F32Cx4 float32x4_t
  970. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  971. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  972. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  973. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  974. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  975. #define GGML_F32Cx4_ADD vaddq_f32
  976. #define GGML_F32Cx4_MUL vmulq_f32
  977. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  978. #define GGML_F16_VEC GGML_F32Cx4
  979. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  980. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  981. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  982. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  983. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  984. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  985. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  986. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  987. #endif
  988. #elif defined(__AVX__)
  989. #define GGML_SIMD
  990. // F32 AVX
  991. #define GGML_F32_STEP 32
  992. #define GGML_F32_EPR 8
  993. #define GGML_F32x8 __m256
  994. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  995. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  996. #define GGML_F32x8_LOAD _mm256_loadu_ps
  997. #define GGML_F32x8_STORE _mm256_storeu_ps
  998. #if defined(__FMA__)
  999. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1000. #else
  1001. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1002. #endif
  1003. #define GGML_F32x8_ADD _mm256_add_ps
  1004. #define GGML_F32x8_MUL _mm256_mul_ps
  1005. #define GGML_F32x8_REDUCE(res, x) \
  1006. { \
  1007. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1008. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1009. } \
  1010. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1011. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1012. } \
  1013. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1014. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1015. } \
  1016. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1017. _mm256_extractf128_ps(x[0], 1)); \
  1018. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1019. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1020. }
  1021. // TODO: is this optimal ?
  1022. #define GGML_F32_VEC GGML_F32x8
  1023. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1024. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1025. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1026. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1027. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1028. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1029. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1030. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1031. // F16 AVX
  1032. #define GGML_F16_STEP 32
  1033. #define GGML_F16_EPR 8
  1034. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1035. #define GGML_F32Cx8 __m256
  1036. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1037. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1038. #if defined(__F16C__)
  1039. // the _mm256_cvt intrinsics require F16C
  1040. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1041. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1042. #else
  1043. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1044. float tmp[8];
  1045. for (int i = 0; i < 8; i++)
  1046. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1047. return _mm256_loadu_ps(tmp);
  1048. }
  1049. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1050. float arr[8];
  1051. _mm256_storeu_ps(arr, y);
  1052. for (int i = 0; i < 8; i++)
  1053. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1054. }
  1055. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1056. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1057. #endif
  1058. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1059. #define GGML_F32Cx8_ADD _mm256_add_ps
  1060. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1061. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1062. #define GGML_F16_VEC GGML_F32Cx8
  1063. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1071. #elif defined(__POWER9_VECTOR__)
  1072. #define GGML_SIMD
  1073. // F32 POWER9
  1074. #define GGML_F32_STEP 32
  1075. #define GGML_F32_EPR 4
  1076. #define GGML_F32x4 vector float
  1077. #define GGML_F32x4_ZERO 0.0f
  1078. #define GGML_F32x4_SET1 vec_splats
  1079. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1080. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1081. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1082. #define GGML_F32x4_ADD vec_add
  1083. #define GGML_F32x4_MUL vec_mul
  1084. #define GGML_F32x4_REDUCE(res, x) \
  1085. { \
  1086. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1087. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1088. } \
  1089. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1090. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1091. } \
  1092. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1093. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1094. } \
  1095. res = vec_extract(x[0], 0) + \
  1096. vec_extract(x[0], 1) + \
  1097. vec_extract(x[0], 2) + \
  1098. vec_extract(x[0], 3); \
  1099. }
  1100. #define GGML_F32_VEC GGML_F32x4
  1101. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1102. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1103. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1104. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1105. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1106. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1107. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1108. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1109. // F16 POWER9
  1110. #define GGML_F16_STEP GGML_F32_STEP
  1111. #define GGML_F16_EPR GGML_F32_EPR
  1112. #define GGML_F16_VEC GGML_F32x4
  1113. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1114. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1115. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1116. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1117. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1118. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1119. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1120. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1121. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1122. #define GGML_F16_VEC_STORE(p, r, i) \
  1123. if (i & 0x1) \
  1124. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1125. r[i - GGML_ENDIAN_BYTE(0)]), \
  1126. 0, p - GGML_F16_EPR)
  1127. #elif defined(__wasm_simd128__)
  1128. #define GGML_SIMD
  1129. // F32 WASM
  1130. #define GGML_F32_STEP 16
  1131. #define GGML_F32_EPR 4
  1132. #define GGML_F32x4 v128_t
  1133. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1134. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1135. #define GGML_F32x4_LOAD wasm_v128_load
  1136. #define GGML_F32x4_STORE wasm_v128_store
  1137. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1138. #define GGML_F32x4_ADD wasm_f32x4_add
  1139. #define GGML_F32x4_MUL wasm_f32x4_mul
  1140. #define GGML_F32x4_REDUCE(res, x) \
  1141. { \
  1142. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1143. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1144. } \
  1145. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1146. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1147. } \
  1148. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1149. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1150. } \
  1151. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1152. wasm_f32x4_extract_lane(x[0], 1) + \
  1153. wasm_f32x4_extract_lane(x[0], 2) + \
  1154. wasm_f32x4_extract_lane(x[0], 3); \
  1155. }
  1156. #define GGML_F32_VEC GGML_F32x4
  1157. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1158. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1159. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1160. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1161. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1162. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1163. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1164. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1165. // F16 WASM
  1166. #define GGML_F16_STEP 16
  1167. #define GGML_F16_EPR 4
  1168. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1169. float tmp[4];
  1170. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1171. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1172. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1173. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1174. return wasm_v128_load(tmp);
  1175. }
  1176. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1177. float tmp[4];
  1178. wasm_v128_store(tmp, x);
  1179. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1180. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1181. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1182. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1183. }
  1184. #define GGML_F16x4 v128_t
  1185. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1186. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1187. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1188. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1189. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1190. #define GGML_F16x4_ADD wasm_f32x4_add
  1191. #define GGML_F16x4_MUL wasm_f32x4_mul
  1192. #define GGML_F16x4_REDUCE(res, x) \
  1193. { \
  1194. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1195. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1196. } \
  1197. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1198. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1199. } \
  1200. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1201. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1202. } \
  1203. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1204. wasm_f32x4_extract_lane(x[0], 1) + \
  1205. wasm_f32x4_extract_lane(x[0], 2) + \
  1206. wasm_f32x4_extract_lane(x[0], 3); \
  1207. }
  1208. #define GGML_F16_VEC GGML_F16x4
  1209. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1210. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1211. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1212. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1213. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1214. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1215. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1216. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1217. #elif defined(__SSE3__)
  1218. #define GGML_SIMD
  1219. // F32 SSE
  1220. #define GGML_F32_STEP 32
  1221. #define GGML_F32_EPR 4
  1222. #define GGML_F32x4 __m128
  1223. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1224. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1225. #define GGML_F32x4_LOAD _mm_loadu_ps
  1226. #define GGML_F32x4_STORE _mm_storeu_ps
  1227. #if defined(__FMA__)
  1228. // TODO: Does this work?
  1229. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1230. #else
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1232. #endif
  1233. #define GGML_F32x4_ADD _mm_add_ps
  1234. #define GGML_F32x4_MUL _mm_mul_ps
  1235. #define GGML_F32x4_REDUCE(res, x) \
  1236. { \
  1237. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1238. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1239. } \
  1240. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1241. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1242. } \
  1243. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1244. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1245. } \
  1246. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1247. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1248. }
  1249. // TODO: is this optimal ?
  1250. #define GGML_F32_VEC GGML_F32x4
  1251. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1252. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1253. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1254. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1255. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1256. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1257. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1258. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1259. // F16 SSE
  1260. #define GGML_F16_STEP 32
  1261. #define GGML_F16_EPR 4
  1262. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1263. float tmp[4];
  1264. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1265. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1266. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1267. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1268. return _mm_loadu_ps(tmp);
  1269. }
  1270. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1271. float arr[4];
  1272. _mm_storeu_ps(arr, y);
  1273. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1274. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1275. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1276. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1277. }
  1278. #define GGML_F32Cx4 __m128
  1279. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1280. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1281. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1282. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1283. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1284. #define GGML_F32Cx4_ADD _mm_add_ps
  1285. #define GGML_F32Cx4_MUL _mm_mul_ps
  1286. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1287. #define GGML_F16_VEC GGML_F32Cx4
  1288. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1296. #endif
  1297. // GGML_F32_ARR / GGML_F16_ARR
  1298. // number of registers to use per step
  1299. #ifdef GGML_SIMD
  1300. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1301. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1302. #endif
  1303. //
  1304. // fundamental operations
  1305. //
  1306. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1307. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1308. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1309. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1310. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1311. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1312. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1313. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1314. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1316. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1317. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1318. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1319. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1320. #ifdef GGML_SIMD
  1321. float sumf = 0.0f;
  1322. const int np = (n & ~(GGML_F32_STEP - 1));
  1323. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1324. GGML_F32_VEC ax[GGML_F32_ARR];
  1325. GGML_F32_VEC ay[GGML_F32_ARR];
  1326. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1327. for (int j = 0; j < GGML_F32_ARR; j++) {
  1328. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1329. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1330. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1331. }
  1332. }
  1333. // reduce sum0..sum3 to sum0
  1334. GGML_F32_VEC_REDUCE(sumf, sum);
  1335. // leftovers
  1336. for (int i = np; i < n; ++i) {
  1337. sumf += x[i]*y[i];
  1338. }
  1339. #else
  1340. // scalar
  1341. ggml_float sumf = 0.0;
  1342. for (int i = 0; i < n; ++i) {
  1343. sumf += (ggml_float)(x[i]*y[i]);
  1344. }
  1345. #endif
  1346. *s = sumf;
  1347. }
  1348. #if __AVX512F__ && QK == 32
  1349. static inline __m512 dot_q4_0_oneblock_avx512(
  1350. __m512 acc,
  1351. const block_q4_0 * restrict x,
  1352. const block_q4_0 * restrict y,
  1353. int i
  1354. ) {
  1355. // Compute combined scale for the block
  1356. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1357. __m256i bx = bytesFromNibbles( x[i].qs );
  1358. __m256i by = bytesFromNibbles( y[i].qs );
  1359. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1360. const __m256i off = _mm256_set1_epi8( 8 );
  1361. bx = _mm256_sub_epi8( bx, off );
  1362. by = _mm256_sub_epi8( by, off );
  1363. // Sign-extend 16 signed bytes into int16_t
  1364. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1365. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1366. // Compute products of int16_t integers, add pairwise
  1367. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1368. // Convert int32_t to float
  1369. __m512 p = _mm512_cvtepi32_ps( i64 );
  1370. // Apply the scale, and accumulate
  1371. return _mm512_fmadd_ps( d, p, acc );
  1372. }
  1373. #endif
  1374. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1375. ggml_float sumf = 0.0;
  1376. #if defined(GGML_SIMD)
  1377. const int np = (n & ~(GGML_F16_STEP - 1));
  1378. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1379. GGML_F16_VEC ax[GGML_F16_ARR];
  1380. GGML_F16_VEC ay[GGML_F16_ARR];
  1381. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1382. for (int j = 0; j < GGML_F16_ARR; j++) {
  1383. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1384. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1385. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1386. }
  1387. }
  1388. // reduce sum0..sum3 to sum0
  1389. GGML_F16_VEC_REDUCE(sumf, sum);
  1390. // leftovers
  1391. for (int i = np; i < n; ++i) {
  1392. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1393. }
  1394. #else
  1395. for (int i = 0; i < n; ++i) {
  1396. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1397. }
  1398. #endif
  1399. *s = sumf;
  1400. }
  1401. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1402. const int nb = n / QK;
  1403. assert(n % QK == 0);
  1404. assert(nb % 2 == 0);
  1405. const block_q4_0 * restrict x = vx;
  1406. const block_q4_0 * restrict y = vy;
  1407. ggml_float sumf = 0.0;
  1408. #if defined(__ARM_NEON)
  1409. float sum0 = 0.0f;
  1410. float sum1 = 0.0f;
  1411. for (int i = 0; i < nb; i += 2) {
  1412. const block_q4_0 * restrict x0 = &x[i + 0];
  1413. const block_q4_0 * restrict y0 = &y[i + 0];
  1414. const block_q4_0 * restrict x1 = &x[i + 1];
  1415. const block_q4_0 * restrict y1 = &y[i + 1];
  1416. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1417. const int8x16_t s8b = vdupq_n_s8(0x8);
  1418. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1419. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1420. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1421. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1422. // 4-bit -> 8-bit
  1423. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1424. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1425. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1426. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1427. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1428. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1429. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1430. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1431. // sub 8
  1432. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1433. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1434. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1435. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1436. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1437. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1438. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1439. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1440. #if defined(__ARM_FEATURE_DOTPROD)
  1441. // dot product into int16x8_t
  1442. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1443. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1444. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1445. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1446. // scalar
  1447. #if defined(__ARM_FEATURE_QRDMX)
  1448. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1449. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1450. #else
  1451. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1452. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1453. #endif
  1454. #else
  1455. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1456. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1457. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1458. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1459. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1460. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1461. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1462. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1463. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1464. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1465. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1466. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1467. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1468. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1469. // scalar
  1470. #if defined(__ARM_FEATURE_QRDMX)
  1471. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1472. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1473. #else
  1474. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1475. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1476. #endif
  1477. #endif
  1478. }
  1479. sumf = (ggml_float)(sum0 + sum1);
  1480. #elif defined(__AVX512F__)
  1481. // Initialize accumulator with zeros
  1482. __m512 acc0 = _mm512_setzero_ps();
  1483. __m512 acc1 = _mm512_setzero_ps();
  1484. const int superblock_size = 8;
  1485. const int superblock_count = nb / superblock_size;
  1486. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1487. int i = superblock_ix * superblock_size;
  1488. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1489. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1490. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1491. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1492. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1493. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1494. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1495. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1496. }
  1497. // Remainders
  1498. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1499. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1500. }
  1501. // Horizontal sum of all lanes of the accumulator
  1502. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1503. #elif defined(__AVX2__)
  1504. // Initialize accumulator with zeros
  1505. __m256 acc = _mm256_setzero_ps();
  1506. // Main loop
  1507. for (int i = 0; i < nb; ++i) {
  1508. // Compute combined scale for the block
  1509. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1510. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1511. __m256i bx = bytesFromNibbles( x[i].qs );
  1512. __m256i by = bytesFromNibbles( y[i].qs );
  1513. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1514. const __m256i off = _mm256_set1_epi8( 8 );
  1515. bx = _mm256_sub_epi8( bx, off );
  1516. by = _mm256_sub_epi8( by, off );
  1517. // Sign-extend first 16 signed bytes into int16_t
  1518. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1519. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1520. // Compute products of int16_t integers, add pairwise
  1521. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1522. // Sign-extend last 16 signed bytes into int16_t vectors
  1523. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1524. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1525. // Accumulate products of int16_t integers
  1526. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1527. // Convert int32_t to float
  1528. __m256 p = _mm256_cvtepi32_ps( i32 );
  1529. // Apply the scale, and accumulate
  1530. acc = _mm256_fmadd_ps( d, p, acc );
  1531. }
  1532. // Return horizontal sum of the acc vector
  1533. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1534. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1535. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1536. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1537. sumf = _mm_cvtss_f32( res );
  1538. #elif defined(__wasm_simd128__)
  1539. // wasm simd
  1540. float sum0 = 0.0f;
  1541. float sum1 = 0.0f;
  1542. for (int i = 0; i < nb; i += 2) {
  1543. const block_q4_0 * restrict x0 = &px[i + 0];
  1544. const block_q4_0 * restrict y0 = &py[i + 0];
  1545. const block_q4_0 * restrict x1 = &px[i + 1];
  1546. const block_q4_0 * restrict y1 = &py[i + 1];
  1547. const v128_t m4b = wasm_u8x16_splat(0xf);
  1548. const v128_t s8b = wasm_i8x16_splat(0x8);
  1549. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1550. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1551. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1552. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1553. // 4-bit -> 8-bit
  1554. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1555. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1556. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1557. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1558. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1559. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1560. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1561. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1562. // sub 8
  1563. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1564. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1565. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1566. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1567. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1568. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1569. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1570. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1571. // dot product into int16x8_t
  1572. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1573. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1574. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1575. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1576. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1577. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1578. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1579. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1580. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1581. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1582. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1583. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1584. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1585. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1586. sum0 += x0->d * y0->d * (
  1587. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1588. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1589. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1590. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1591. sum1 += x1->d * y1->d * (
  1592. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1593. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1594. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1595. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1596. }
  1597. sumf = sum0 + sum1;
  1598. #else
  1599. // scalar
  1600. for (int i = 0; i < nb; i++) {
  1601. const float d0 = x[i].d;
  1602. const float d1 = y[i].d;
  1603. const uint8_t * restrict p0 = x[i].qs;
  1604. const uint8_t * restrict p1 = y[i].qs;
  1605. for (int j = 0; j < QK/2; j++) {
  1606. const uint8_t v0 = p0[j];
  1607. const uint8_t v1 = p1[j];
  1608. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1609. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1610. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1611. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1612. sumf += f0*f2 + f1*f3;
  1613. }
  1614. }
  1615. #endif
  1616. *s = sumf;
  1617. }
  1618. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1619. const int nb = n / QK;
  1620. const block_q4_1 * restrict x = vx;
  1621. const block_q4_1 * restrict y = vy;
  1622. float sumf = 0.0;
  1623. #if defined(__AVX2__)
  1624. // Initialize accumulator with zeros
  1625. __m256 acc = _mm256_setzero_ps();
  1626. // Accumulator for constant offsets
  1627. float acc_offset = 0.0f;
  1628. // Main loop
  1629. for (int i = 0; i < nb; ++i) {
  1630. const float * d0 = &x[i].d;
  1631. const float * d1 = &y[i].d;
  1632. const float * m0 = &x[i].m;
  1633. const float * m1 = &y[i].m;
  1634. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1635. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1636. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1637. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1638. // Compute combined scale for the block
  1639. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1640. // Compute cross scales for the block
  1641. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1642. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1643. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1644. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1645. __m256i bx = bytesFromNibbles( x[i].qs );
  1646. __m256i by = bytesFromNibbles( y[i].qs );
  1647. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1648. // Sign-extend first 16 signed bytes into int16_t
  1649. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1650. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1651. // Compute products of int16_t integers, add pairwise
  1652. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1653. // Sign-extend last 16 signed bytes into int16_t vectors
  1654. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1655. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1656. // Accumulate products of int16_t integers
  1657. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1658. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1659. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1660. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1661. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1662. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1663. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1664. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1665. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1666. // Convert int32_t to float
  1667. __m256 p = _mm256_cvtepi32_ps( i32 );
  1668. // Apply the scale, and accumulate
  1669. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1670. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1671. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1672. // acc_offset += m0*m1 (for each entry in the block)
  1673. acc_offset += (*m0)*(*m1);
  1674. }
  1675. // Return horizontal sum of the acc vector
  1676. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1677. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1678. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1679. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1680. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1681. #elif defined(__ARM_NEON)
  1682. float sum00 = 0.0f;
  1683. float sum01 = 0.0f;
  1684. float sum10 = 0.0f;
  1685. float sum11 = 0.0f;
  1686. for (int i = 0; i < nb; ++i) {
  1687. const block_q4_1 * restrict x0 = &x[i + 0];
  1688. const block_q4_1 * restrict y0 = &y[i + 0];
  1689. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1690. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1691. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1692. // and with 0xf
  1693. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1694. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1695. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1696. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1697. // dot product into uint16x8_t
  1698. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1699. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1700. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1701. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1702. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1703. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1704. sum00 += x0->m*y0->m;
  1705. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1706. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1707. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1708. }
  1709. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1710. #else
  1711. // scalar
  1712. for (int i = 0; i < nb; i++) {
  1713. const float d0 = x[i].d;
  1714. const float d1 = y[i].d;
  1715. const float m0 = x[i].m;
  1716. const float m1 = y[i].m;
  1717. const uint8_t * restrict p0 = x[i].qs;
  1718. const uint8_t * restrict p1 = y[i].qs;
  1719. for (int j = 0; j < QK/2; j++) {
  1720. const uint8_t v0 = p0[j];
  1721. const uint8_t v1 = p1[j];
  1722. const float f0 = d0*(v0 & 0xf) + m0;
  1723. const float f1 = d0*(v0 >> 4) + m0;
  1724. const float f2 = d1*(v1 & 0xf) + m1;
  1725. const float f3 = d1*(v1 >> 4) + m1;
  1726. sumf += f0*f2 + f1*f3;
  1727. }
  1728. }
  1729. #endif
  1730. *s = sumf;
  1731. }
  1732. // compute GGML_VEC_DOT_UNROLL dot products at once
  1733. // xs - x row stride in bytes
  1734. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1735. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1736. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1737. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1738. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1739. }
  1740. #if defined(GGML_SIMD)
  1741. const int np = (n & ~(GGML_F16_STEP - 1));
  1742. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1743. GGML_F16_VEC ax[GGML_F16_ARR];
  1744. GGML_F16_VEC ay[GGML_F16_ARR];
  1745. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1746. for (int j = 0; j < GGML_F16_ARR; j++) {
  1747. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1748. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1749. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1750. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1751. }
  1752. }
  1753. }
  1754. // reduce sum0..sum3 to sum0
  1755. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1756. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1757. }
  1758. // leftovers
  1759. for (int i = np; i < n; ++i) {
  1760. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1761. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1762. }
  1763. }
  1764. #else
  1765. for (int i = 0; i < n; ++i) {
  1766. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1767. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1768. }
  1769. }
  1770. #endif
  1771. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1772. s[i] = sumf[i];
  1773. }
  1774. }
  1775. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1776. #if defined(GGML_SIMD)
  1777. const int np = (n & ~(GGML_F32_STEP - 1));
  1778. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1779. GGML_F32_VEC ax[GGML_F32_ARR];
  1780. GGML_F32_VEC ay[GGML_F32_ARR];
  1781. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1782. for (int j = 0; j < GGML_F32_ARR; j++) {
  1783. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1784. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1785. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1786. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1787. }
  1788. }
  1789. // leftovers
  1790. for (int i = np; i < n; ++i) {
  1791. y[i] += x[i]*v;
  1792. }
  1793. #else
  1794. // scalar
  1795. for (int i = 0; i < n; ++i) {
  1796. y[i] += x[i]*v;
  1797. }
  1798. #endif
  1799. }
  1800. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1801. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1802. #if defined(GGML_SIMD)
  1803. const int np = (n & ~(GGML_F32_STEP - 1));
  1804. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1805. GGML_F32_VEC ay[GGML_F32_ARR];
  1806. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1807. for (int j = 0; j < GGML_F32_ARR; j++) {
  1808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1809. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1810. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1811. }
  1812. }
  1813. // leftovers
  1814. for (int i = np; i < n; ++i) {
  1815. y[i] *= v;
  1816. }
  1817. #else
  1818. // scalar
  1819. for (int i = 0; i < n; ++i) {
  1820. y[i] *= v;
  1821. }
  1822. #endif
  1823. }
  1824. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1825. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1826. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1827. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1828. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1829. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1830. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1831. static const float GELU_COEF_A = 0.044715f;
  1832. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1833. inline static float ggml_gelu_f32(float x) {
  1834. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1835. }
  1836. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1837. const uint16_t * i16 = (const uint16_t *) x;
  1838. for (int i = 0; i < n; ++i) {
  1839. y[i] = table_gelu_f16[i16[i]];
  1840. }
  1841. }
  1842. #ifdef GGML_GELU_FP16
  1843. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1844. uint16_t t;
  1845. for (int i = 0; i < n; ++i) {
  1846. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1847. memcpy(&t, &fp16, sizeof(uint16_t));
  1848. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1849. }
  1850. }
  1851. #else
  1852. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1853. for (int i = 0; i < n; ++i) {
  1854. y[i] = ggml_gelu_f32(x[i]);
  1855. }
  1856. }
  1857. #endif
  1858. // Sigmoid Linear Unit (SiLU) function
  1859. inline static float ggml_silu_f32(float x) {
  1860. return x/(1.0f + expf(-x));
  1861. }
  1862. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1863. const uint16_t * i16 = (const uint16_t *) x;
  1864. for (int i = 0; i < n; ++i) {
  1865. y[i] = table_silu_f16[i16[i]];
  1866. }
  1867. }
  1868. #ifdef GGML_SILU_FP16
  1869. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1870. uint16_t t;
  1871. for (int i = 0; i < n; ++i) {
  1872. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1873. memcpy(&t, &fp16, sizeof(uint16_t));
  1874. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1875. }
  1876. }
  1877. #else
  1878. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1879. for (int i = 0; i < n; ++i) {
  1880. y[i] = ggml_silu_f32(x[i]);
  1881. }
  1882. }
  1883. #endif
  1884. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1885. #ifndef GGML_USE_ACCELERATE
  1886. ggml_float sum = 0.0;
  1887. for (int i = 0; i < n; ++i) {
  1888. sum += (ggml_float)x[i];
  1889. }
  1890. *s = sum;
  1891. #else
  1892. vDSP_sve(x, 1, s, n);
  1893. #endif
  1894. }
  1895. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1896. #ifndef GGML_USE_ACCELERATE
  1897. float max = -INFINITY;
  1898. for (int i = 0; i < n; ++i) {
  1899. max = MAX(max, x[i]);
  1900. }
  1901. *s = max;
  1902. #else
  1903. vDSP_maxv(x, 1, s, n);
  1904. #endif
  1905. }
  1906. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1907. ggml_vec_norm_f32(n, s, x);
  1908. *s = 1.f/(*s);
  1909. }
  1910. //
  1911. // logging
  1912. //
  1913. #if (GGML_DEBUG >= 1)
  1914. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1915. #else
  1916. #define GGML_PRINT_DEBUG(...)
  1917. #endif
  1918. #if (GGML_DEBUG >= 5)
  1919. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1920. #else
  1921. #define GGML_PRINT_DEBUG_5(...)
  1922. #endif
  1923. #if (GGML_DEBUG >= 10)
  1924. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1925. #else
  1926. #define GGML_PRINT_DEBUG_10(...)
  1927. #endif
  1928. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1929. //
  1930. // data types
  1931. //
  1932. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1933. QK,
  1934. QK,
  1935. 1,
  1936. 1,
  1937. 1,
  1938. 1,
  1939. 1,
  1940. };
  1941. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1942. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1943. sizeof(block_q4_0),
  1944. sizeof(block_q4_1),
  1945. sizeof(int8_t ),
  1946. sizeof(int16_t),
  1947. sizeof(int32_t),
  1948. sizeof(ggml_fp16_t),
  1949. sizeof(float ),
  1950. };
  1951. // don't forget to update the array above when adding new types
  1952. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1953. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1954. "NONE",
  1955. "DUP",
  1956. "ADD",
  1957. "SUB",
  1958. "MUL",
  1959. "DIV",
  1960. "SQR",
  1961. "SQRT",
  1962. "SUM",
  1963. "MEAN",
  1964. "REPEAT",
  1965. "ABS",
  1966. "SGN",
  1967. "NEG",
  1968. "STEP",
  1969. "RELU",
  1970. "GELU",
  1971. "SILU",
  1972. "NORM",
  1973. "RMS_NORM",
  1974. "MUL_MAT",
  1975. "SCALE",
  1976. "CPY",
  1977. "RESHAPE",
  1978. "VIEW",
  1979. "PERMUTE",
  1980. "TRANSPOSE",
  1981. "GET_ROWS",
  1982. "DIAG_MASK_INF",
  1983. "SOFT_MAX",
  1984. "ROPE",
  1985. "CONV_1D_1S",
  1986. "CONV_1D_2S",
  1987. "FLASH_ATTN",
  1988. "FLASH_FF",
  1989. };
  1990. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1991. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1992. "none",
  1993. "x",
  1994. "x+y",
  1995. "x-y",
  1996. "x*y",
  1997. "x/y",
  1998. "x^2",
  1999. "√x",
  2000. "Σx",
  2001. "Σx/n",
  2002. "repeat(x)",
  2003. "abs(x)",
  2004. "sgn(x)",
  2005. "-x",
  2006. "step(x)",
  2007. "relu(x)",
  2008. "gelu(x)",
  2009. "silu(x)",
  2010. "norm(x)",
  2011. "rms_norm(x)",
  2012. "X*Y",
  2013. "x*v",
  2014. "x-\\>y",
  2015. "reshape(x)",
  2016. "view(x)",
  2017. "permute(x)",
  2018. "transpose(x)",
  2019. "get_rows(x)",
  2020. "diag_mask_inf(x)",
  2021. "soft_max(x)",
  2022. "rope(x)",
  2023. "conv_1d_1s(x)",
  2024. "conv_1d_2s(x)",
  2025. "flash_attn(x)",
  2026. "flash_ff(x)",
  2027. };
  2028. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2029. //
  2030. // ggml object
  2031. //
  2032. struct ggml_object {
  2033. size_t offs;
  2034. size_t size;
  2035. struct ggml_object * next;
  2036. char padding[8];
  2037. };
  2038. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2039. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2040. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2041. //
  2042. // ggml context
  2043. //
  2044. struct ggml_context {
  2045. size_t mem_size;
  2046. void * mem_buffer;
  2047. bool mem_buffer_owned;
  2048. bool mem_buffer_mlocked;
  2049. bool no_alloc;
  2050. int n_objects;
  2051. struct ggml_object * objects_begin;
  2052. struct ggml_object * objects_end;
  2053. struct ggml_scratch scratch;
  2054. struct ggml_scratch scratch_save;
  2055. };
  2056. struct ggml_context_container {
  2057. bool used;
  2058. struct ggml_context context;
  2059. };
  2060. //
  2061. // compute types
  2062. //
  2063. enum ggml_task_type {
  2064. GGML_TASK_INIT = 0,
  2065. GGML_TASK_COMPUTE,
  2066. GGML_TASK_FINALIZE,
  2067. };
  2068. struct ggml_compute_params {
  2069. enum ggml_task_type type;
  2070. int ith, nth;
  2071. // work buffer for all threads
  2072. size_t wsize;
  2073. void * wdata;
  2074. };
  2075. //
  2076. // ggml state
  2077. //
  2078. struct ggml_state {
  2079. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2080. };
  2081. // global state
  2082. static struct ggml_state g_state;
  2083. static atomic_int g_state_barrier = 0;
  2084. // barrier via spin lock
  2085. inline static void ggml_critical_section_start(void) {
  2086. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2087. while (processing > 0) {
  2088. // wait for other threads to finish
  2089. atomic_fetch_sub(&g_state_barrier, 1);
  2090. sched_yield(); // TODO: reconsider this
  2091. processing = atomic_fetch_add(&g_state_barrier, 1);
  2092. }
  2093. }
  2094. // TODO: make this somehow automatically executed
  2095. // some sort of "sentry" mechanism
  2096. inline static void ggml_critical_section_end(void) {
  2097. atomic_fetch_sub(&g_state_barrier, 1);
  2098. }
  2099. ////////////////////////////////////////////////////////////////////////////////
  2100. void ggml_print_object(const struct ggml_object * obj) {
  2101. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2102. obj->offs, obj->size, (const void *) obj->next);
  2103. }
  2104. void ggml_print_objects(const struct ggml_context * ctx) {
  2105. struct ggml_object * obj = ctx->objects_begin;
  2106. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2107. while (obj != NULL) {
  2108. ggml_print_object(obj);
  2109. obj = obj->next;
  2110. }
  2111. GGML_PRINT("%s: --- end ---\n", __func__);
  2112. }
  2113. int ggml_nelements(const struct ggml_tensor * tensor) {
  2114. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2115. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2116. }
  2117. int ggml_nrows(const struct ggml_tensor * tensor) {
  2118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2119. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2120. }
  2121. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2122. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2123. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2124. }
  2125. int ggml_blck_size(enum ggml_type type) {
  2126. return GGML_BLCK_SIZE[type];
  2127. }
  2128. size_t ggml_type_size(enum ggml_type type) {
  2129. return GGML_TYPE_SIZE[type];
  2130. }
  2131. float ggml_type_sizef(enum ggml_type type) {
  2132. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2133. }
  2134. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2135. return GGML_TYPE_SIZE[tensor->type];
  2136. }
  2137. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2138. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2139. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2140. }
  2141. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2142. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2143. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2144. }
  2145. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2146. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2147. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2148. }
  2149. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2150. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2151. return
  2152. (t0->ne[0] == t1->ne[0]) &&
  2153. (t0->ne[2] == t1->ne[2]) &&
  2154. (t0->ne[3] == t1->ne[3]);
  2155. }
  2156. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2157. return tensor->nb[0] > tensor->nb[1];
  2158. }
  2159. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2160. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2161. return
  2162. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2163. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2164. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2165. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2166. }
  2167. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2168. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2169. return
  2170. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2171. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2172. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2173. }
  2174. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2175. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2176. return
  2177. (t0->ne[0] == t1->ne[0] ) &&
  2178. (t0->ne[1] == t1->ne[1] ) &&
  2179. (t0->ne[2] == t1->ne[2] ) &&
  2180. (t0->ne[3] == t1->ne[3] );
  2181. }
  2182. // check if t1 can be represented as a repeatition of t0
  2183. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2184. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2185. return
  2186. (t1->ne[0]%t0->ne[0] == 0) &&
  2187. (t1->ne[1]%t0->ne[1] == 0) &&
  2188. (t1->ne[2]%t0->ne[2] == 0) &&
  2189. (t1->ne[3]%t0->ne[3] == 0);
  2190. }
  2191. static inline int ggml_up32(int n) {
  2192. return (n + 31) & ~31;
  2193. }
  2194. static inline int ggml_up64(int n) {
  2195. return (n + 63) & ~63;
  2196. }
  2197. static inline int ggml_up(int n, int m) {
  2198. // assert m is a power of 2
  2199. GGML_ASSERT((m & (m - 1)) == 0);
  2200. return (n + m - 1) & ~(m - 1);
  2201. }
  2202. // assert that pointer is aligned to GGML_MEM_ALIGN
  2203. #define ggml_assert_aligned(ptr) \
  2204. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2205. ////////////////////////////////////////////////////////////////////////////////
  2206. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2207. // make this function thread safe
  2208. ggml_critical_section_start();
  2209. static bool is_first_call = true;
  2210. if (is_first_call) {
  2211. // initialize time system (required on Windows)
  2212. ggml_time_init();
  2213. // initialize GELU, SILU and EXP F32 tables
  2214. {
  2215. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2216. ggml_fp16_t ii;
  2217. for (int i = 0; i < (1 << 16); ++i) {
  2218. uint16_t ui = i;
  2219. memcpy(&ii, &ui, sizeof(ii));
  2220. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2221. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2222. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2223. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2224. }
  2225. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2226. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2227. }
  2228. // initialize g_state
  2229. {
  2230. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2231. g_state = (struct ggml_state) {
  2232. /*.contexts =*/ { { 0 } },
  2233. };
  2234. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2235. g_state.contexts[i].used = false;
  2236. }
  2237. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2238. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2239. }
  2240. is_first_call = false;
  2241. }
  2242. // find non-used context in g_state
  2243. struct ggml_context * ctx = NULL;
  2244. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2245. if (!g_state.contexts[i].used) {
  2246. g_state.contexts[i].used = true;
  2247. ctx = &g_state.contexts[i].context;
  2248. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2249. break;
  2250. }
  2251. }
  2252. if (ctx == NULL) {
  2253. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2254. ggml_critical_section_end();
  2255. return NULL;
  2256. }
  2257. *ctx = (struct ggml_context) {
  2258. /*.mem_size =*/ params.mem_size,
  2259. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2260. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2261. /*.mem_buffer_mlocked =*/ false,
  2262. /*.no_alloc =*/ params.no_alloc,
  2263. /*.n_objects =*/ 0,
  2264. /*.objects_begin =*/ NULL,
  2265. /*.objects_end =*/ NULL,
  2266. /*.scratch =*/ { 0, 0, NULL, },
  2267. /*.scratch_save =*/ { 0, 0, NULL, },
  2268. };
  2269. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2270. ggml_assert_aligned(ctx->mem_buffer);
  2271. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2272. ggml_critical_section_end();
  2273. return ctx;
  2274. }
  2275. void ggml_free(struct ggml_context * ctx) {
  2276. // make this function thread safe
  2277. ggml_critical_section_start();
  2278. bool found = false;
  2279. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2280. if (&g_state.contexts[i].context == ctx) {
  2281. g_state.contexts[i].used = false;
  2282. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2283. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2284. #if GGML_MLOCK_SUPPORT
  2285. if (ctx->mem_buffer_mlocked) {
  2286. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2287. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2288. }
  2289. }
  2290. #endif
  2291. if (ctx->mem_buffer_owned) {
  2292. free(ctx->mem_buffer);
  2293. }
  2294. found = true;
  2295. break;
  2296. }
  2297. }
  2298. if (!found) {
  2299. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2300. }
  2301. ggml_critical_section_end();
  2302. }
  2303. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2304. return ctx->objects_end->offs + ctx->objects_end->size;
  2305. }
  2306. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2307. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2308. ctx->scratch = scratch;
  2309. return result;
  2310. }
  2311. bool ggml_mlock_supported(void) {
  2312. return GGML_MLOCK_SUPPORT;
  2313. }
  2314. #if GGML_MLOCK_SUPPORT
  2315. #ifdef __APPLE__
  2316. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2317. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2318. #else
  2319. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2320. #endif
  2321. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2322. if (ctx->mem_buffer_mlocked) {
  2323. return true;
  2324. }
  2325. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2326. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2327. ctx->mem_size, strerror(errno));
  2328. GGML_ASSERT(ret >= 0);
  2329. return false;
  2330. }
  2331. ctx->mem_buffer_mlocked = true;
  2332. return true;
  2333. }
  2334. #else // GGML_MLOCK_SUPPORT
  2335. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2336. *err_p = strdup("can't mlock because it's not supported on this system");
  2337. return false;
  2338. }
  2339. #endif // GGML_MLOCK_SUPPORT
  2340. ////////////////////////////////////////////////////////////////////////////////
  2341. struct ggml_tensor * ggml_new_tensor_impl(
  2342. struct ggml_context * ctx,
  2343. enum ggml_type type,
  2344. int n_dims,
  2345. const int* ne,
  2346. void* data) {
  2347. // always insert objects at the end of the context's memory pool
  2348. struct ggml_object * obj_cur = ctx->objects_end;
  2349. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2350. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2351. const size_t cur_end = cur_offs + cur_size;
  2352. size_t size_needed = 0;
  2353. if (data == NULL && !ctx->no_alloc) {
  2354. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2355. for (int i = 1; i < n_dims; i++) {
  2356. size_needed *= ne[i];
  2357. }
  2358. // align to GGML_MEM_ALIGN
  2359. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2360. }
  2361. char * const mem_buffer = ctx->mem_buffer;
  2362. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2363. if (ctx->scratch.data == NULL || data != NULL) {
  2364. size_needed += sizeof(struct ggml_tensor);
  2365. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2366. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2367. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2368. assert(false);
  2369. return NULL;
  2370. }
  2371. *obj_new = (struct ggml_object) {
  2372. .offs = cur_end + GGML_OBJECT_SIZE,
  2373. .size = size_needed,
  2374. .next = NULL,
  2375. };
  2376. } else {
  2377. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2378. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2379. assert(false);
  2380. return NULL;
  2381. }
  2382. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2383. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2384. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2385. assert(false);
  2386. return NULL;
  2387. }
  2388. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2389. *obj_new = (struct ggml_object) {
  2390. .offs = cur_end + GGML_OBJECT_SIZE,
  2391. .size = sizeof(struct ggml_tensor),
  2392. .next = NULL,
  2393. };
  2394. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2395. ctx->scratch.offs += size_needed;
  2396. }
  2397. if (obj_cur != NULL) {
  2398. obj_cur->next = obj_new;
  2399. } else {
  2400. // this is the first object in this context
  2401. ctx->objects_begin = obj_new;
  2402. }
  2403. ctx->objects_end = obj_new;
  2404. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2405. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2406. ggml_assert_aligned(result);
  2407. *result = (struct ggml_tensor) {
  2408. /*.type =*/ type,
  2409. /*.n_dims =*/ n_dims,
  2410. /*.ne =*/ { 1, 1, 1, 1 },
  2411. /*.nb =*/ { 0, 0, 0, 0 },
  2412. /*.op =*/ GGML_OP_NONE,
  2413. /*.is_param =*/ false,
  2414. /*.grad =*/ NULL,
  2415. /*.src0 =*/ NULL,
  2416. /*.src1 =*/ NULL,
  2417. /*.opt =*/ { NULL },
  2418. /*.n_tasks =*/ 0,
  2419. /*.perf_runs =*/ 0,
  2420. /*.perf_cycles =*/ 0,
  2421. /*.perf_time_us =*/ 0,
  2422. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2423. /*.pad =*/ { 0 },
  2424. };
  2425. ggml_assert_aligned(result->data);
  2426. for (int i = 0; i < n_dims; i++) {
  2427. result->ne[i] = ne[i];
  2428. }
  2429. result->nb[0] = GGML_TYPE_SIZE[type];
  2430. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2431. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2432. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2433. }
  2434. ctx->n_objects++;
  2435. return result;
  2436. }
  2437. struct ggml_tensor * ggml_new_tensor(
  2438. struct ggml_context * ctx,
  2439. enum ggml_type type,
  2440. int n_dims,
  2441. const int * ne) {
  2442. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2443. }
  2444. struct ggml_tensor * ggml_new_tensor_1d(
  2445. struct ggml_context * ctx,
  2446. enum ggml_type type,
  2447. int ne0) {
  2448. return ggml_new_tensor(ctx, type, 1, &ne0);
  2449. }
  2450. struct ggml_tensor * ggml_new_tensor_2d(
  2451. struct ggml_context * ctx,
  2452. enum ggml_type type,
  2453. int ne0,
  2454. int ne1) {
  2455. const int ne[2] = { ne0, ne1 };
  2456. return ggml_new_tensor(ctx, type, 2, ne);
  2457. }
  2458. struct ggml_tensor * ggml_new_tensor_3d(
  2459. struct ggml_context * ctx,
  2460. enum ggml_type type,
  2461. int ne0,
  2462. int ne1,
  2463. int ne2) {
  2464. const int ne[3] = { ne0, ne1, ne2 };
  2465. return ggml_new_tensor(ctx, type, 3, ne);
  2466. }
  2467. struct ggml_tensor * ggml_new_tensor_4d(
  2468. struct ggml_context * ctx,
  2469. enum ggml_type type,
  2470. int ne0,
  2471. int ne1,
  2472. int ne2,
  2473. int ne3) {
  2474. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2475. return ggml_new_tensor(ctx, type, 4, ne);
  2476. }
  2477. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2478. ctx->scratch_save = ctx->scratch;
  2479. ctx->scratch.data = NULL;
  2480. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2481. ctx->scratch = ctx->scratch_save;
  2482. ggml_set_i32(result, value);
  2483. return result;
  2484. }
  2485. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2486. ctx->scratch_save = ctx->scratch;
  2487. ctx->scratch.data = NULL;
  2488. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2489. ctx->scratch = ctx->scratch_save;
  2490. ggml_set_f32(result, value);
  2491. return result;
  2492. }
  2493. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2494. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2495. }
  2496. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2497. memset(tensor->data, 0, ggml_nbytes(tensor));
  2498. return tensor;
  2499. }
  2500. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2501. const int n = ggml_nrows(tensor);
  2502. const int nc = tensor->ne[0];
  2503. const size_t n1 = tensor->nb[1];
  2504. char * const data = tensor->data;
  2505. switch (tensor->type) {
  2506. case GGML_TYPE_Q4_0:
  2507. {
  2508. GGML_ASSERT(false);
  2509. } break;
  2510. case GGML_TYPE_Q4_1:
  2511. {
  2512. GGML_ASSERT(false);
  2513. } break;
  2514. case GGML_TYPE_I8:
  2515. {
  2516. assert(tensor->nb[0] == sizeof(int8_t));
  2517. for (int i = 0; i < n; i++) {
  2518. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2519. }
  2520. } break;
  2521. case GGML_TYPE_I16:
  2522. {
  2523. assert(tensor->nb[0] == sizeof(int16_t));
  2524. for (int i = 0; i < n; i++) {
  2525. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2526. }
  2527. } break;
  2528. case GGML_TYPE_I32:
  2529. {
  2530. assert(tensor->nb[0] == sizeof(int32_t));
  2531. for (int i = 0; i < n; i++) {
  2532. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2533. }
  2534. } break;
  2535. case GGML_TYPE_F16:
  2536. {
  2537. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2538. for (int i = 0; i < n; i++) {
  2539. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2540. }
  2541. } break;
  2542. case GGML_TYPE_F32:
  2543. {
  2544. assert(tensor->nb[0] == sizeof(float));
  2545. for (int i = 0; i < n; i++) {
  2546. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2547. }
  2548. } break;
  2549. case GGML_TYPE_COUNT:
  2550. {
  2551. GGML_ASSERT(false);
  2552. } break;
  2553. }
  2554. return tensor;
  2555. }
  2556. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2557. const int n = ggml_nrows(tensor);
  2558. const int nc = tensor->ne[0];
  2559. const size_t n1 = tensor->nb[1];
  2560. char * const data = tensor->data;
  2561. switch (tensor->type) {
  2562. case GGML_TYPE_Q4_0:
  2563. {
  2564. GGML_ASSERT(false);
  2565. } break;
  2566. case GGML_TYPE_Q4_1:
  2567. {
  2568. GGML_ASSERT(false);
  2569. } break;
  2570. case GGML_TYPE_I8:
  2571. {
  2572. assert(tensor->nb[0] == sizeof(int8_t));
  2573. for (int i = 0; i < n; i++) {
  2574. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2575. }
  2576. } break;
  2577. case GGML_TYPE_I16:
  2578. {
  2579. assert(tensor->nb[0] == sizeof(int16_t));
  2580. for (int i = 0; i < n; i++) {
  2581. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2582. }
  2583. } break;
  2584. case GGML_TYPE_I32:
  2585. {
  2586. assert(tensor->nb[0] == sizeof(int32_t));
  2587. for (int i = 0; i < n; i++) {
  2588. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2589. }
  2590. } break;
  2591. case GGML_TYPE_F16:
  2592. {
  2593. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2594. for (int i = 0; i < n; i++) {
  2595. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2596. }
  2597. } break;
  2598. case GGML_TYPE_F32:
  2599. {
  2600. assert(tensor->nb[0] == sizeof(float));
  2601. for (int i = 0; i < n; i++) {
  2602. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2603. }
  2604. } break;
  2605. case GGML_TYPE_COUNT:
  2606. {
  2607. GGML_ASSERT(false);
  2608. } break;
  2609. }
  2610. return tensor;
  2611. }
  2612. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2613. switch (tensor->type) {
  2614. case GGML_TYPE_Q4_0:
  2615. {
  2616. GGML_ASSERT(false);
  2617. } break;
  2618. case GGML_TYPE_Q4_1:
  2619. {
  2620. GGML_ASSERT(false);
  2621. } break;
  2622. case GGML_TYPE_I8:
  2623. {
  2624. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2625. return ((int8_t *)(tensor->data))[i];
  2626. } break;
  2627. case GGML_TYPE_I16:
  2628. {
  2629. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2630. return ((int16_t *)(tensor->data))[i];
  2631. } break;
  2632. case GGML_TYPE_I32:
  2633. {
  2634. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2635. return ((int32_t *)(tensor->data))[i];
  2636. } break;
  2637. case GGML_TYPE_F16:
  2638. {
  2639. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2640. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2641. } break;
  2642. case GGML_TYPE_F32:
  2643. {
  2644. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2645. return ((float *)(tensor->data))[i];
  2646. } break;
  2647. case GGML_TYPE_COUNT:
  2648. {
  2649. GGML_ASSERT(false);
  2650. } break;
  2651. }
  2652. return 0.0f;
  2653. }
  2654. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2655. switch (tensor->type) {
  2656. case GGML_TYPE_Q4_0:
  2657. {
  2658. GGML_ASSERT(false);
  2659. } break;
  2660. case GGML_TYPE_Q4_1:
  2661. {
  2662. GGML_ASSERT(false);
  2663. } break;
  2664. case GGML_TYPE_I8:
  2665. {
  2666. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2667. ((int8_t *)(tensor->data))[i] = value;
  2668. } break;
  2669. case GGML_TYPE_I16:
  2670. {
  2671. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2672. ((int16_t *)(tensor->data))[i] = value;
  2673. } break;
  2674. case GGML_TYPE_I32:
  2675. {
  2676. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2677. ((int32_t *)(tensor->data))[i] = value;
  2678. } break;
  2679. case GGML_TYPE_F16:
  2680. {
  2681. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2682. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2683. } break;
  2684. case GGML_TYPE_F32:
  2685. {
  2686. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2687. ((float *)(tensor->data))[i] = value;
  2688. } break;
  2689. case GGML_TYPE_COUNT:
  2690. {
  2691. GGML_ASSERT(false);
  2692. } break;
  2693. }
  2694. }
  2695. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2696. switch (tensor->type) {
  2697. case GGML_TYPE_Q4_0:
  2698. {
  2699. GGML_ASSERT(false);
  2700. } break;
  2701. case GGML_TYPE_Q4_1:
  2702. {
  2703. GGML_ASSERT(false);
  2704. } break;
  2705. case GGML_TYPE_I8:
  2706. {
  2707. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2708. return ((int8_t *)(tensor->data))[i];
  2709. } break;
  2710. case GGML_TYPE_I16:
  2711. {
  2712. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2713. return ((int16_t *)(tensor->data))[i];
  2714. } break;
  2715. case GGML_TYPE_I32:
  2716. {
  2717. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2718. return ((int32_t *)(tensor->data))[i];
  2719. } break;
  2720. case GGML_TYPE_F16:
  2721. {
  2722. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2723. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2724. } break;
  2725. case GGML_TYPE_F32:
  2726. {
  2727. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2728. return ((float *)(tensor->data))[i];
  2729. } break;
  2730. case GGML_TYPE_COUNT:
  2731. {
  2732. GGML_ASSERT(false);
  2733. } break;
  2734. }
  2735. return 0.0f;
  2736. }
  2737. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2738. switch (tensor->type) {
  2739. case GGML_TYPE_Q4_0:
  2740. {
  2741. GGML_ASSERT(false);
  2742. } break;
  2743. case GGML_TYPE_Q4_1:
  2744. {
  2745. GGML_ASSERT(false);
  2746. } break;
  2747. case GGML_TYPE_I8:
  2748. {
  2749. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2750. ((int8_t *)(tensor->data))[i] = value;
  2751. } break;
  2752. case GGML_TYPE_I16:
  2753. {
  2754. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2755. ((int16_t *)(tensor->data))[i] = value;
  2756. } break;
  2757. case GGML_TYPE_I32:
  2758. {
  2759. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2760. ((int32_t *)(tensor->data))[i] = value;
  2761. } break;
  2762. case GGML_TYPE_F16:
  2763. {
  2764. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2765. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2766. } break;
  2767. case GGML_TYPE_F32:
  2768. {
  2769. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2770. ((float *)(tensor->data))[i] = value;
  2771. } break;
  2772. case GGML_TYPE_COUNT:
  2773. {
  2774. GGML_ASSERT(false);
  2775. } break;
  2776. }
  2777. }
  2778. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2779. return tensor->data;
  2780. }
  2781. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2782. assert(tensor->type == GGML_TYPE_F32);
  2783. return (float *)(tensor->data);
  2784. }
  2785. struct ggml_tensor * ggml_view_tensor(
  2786. struct ggml_context * ctx,
  2787. const struct ggml_tensor * src) {
  2788. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2789. }
  2790. ////////////////////////////////////////////////////////////////////////////////
  2791. // ggml_dup
  2792. struct ggml_tensor * ggml_dup_impl(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. bool inplace) {
  2796. bool is_node = false;
  2797. if (!inplace && (a->grad)) {
  2798. is_node = true;
  2799. }
  2800. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2801. result->op = GGML_OP_DUP;
  2802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2803. result->src0 = a;
  2804. result->src1 = NULL;
  2805. return result;
  2806. }
  2807. struct ggml_tensor * ggml_dup(
  2808. struct ggml_context * ctx,
  2809. struct ggml_tensor * a) {
  2810. return ggml_dup_impl(ctx, a, false);
  2811. }
  2812. struct ggml_tensor * ggml_dup_inplace(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a) {
  2815. return ggml_dup_impl(ctx, a, true);
  2816. }
  2817. // ggml_add
  2818. struct ggml_tensor * ggml_add_impl(
  2819. struct ggml_context * ctx,
  2820. struct ggml_tensor * a,
  2821. struct ggml_tensor * b,
  2822. bool inplace) {
  2823. GGML_ASSERT(ggml_are_same_shape(a, b));
  2824. bool is_node = false;
  2825. if (!inplace && (a->grad || b->grad)) {
  2826. is_node = true;
  2827. }
  2828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2829. result->op = GGML_OP_ADD;
  2830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2831. result->src0 = a;
  2832. result->src1 = b;
  2833. return result;
  2834. }
  2835. struct ggml_tensor * ggml_add(
  2836. struct ggml_context * ctx,
  2837. struct ggml_tensor * a,
  2838. struct ggml_tensor * b) {
  2839. return ggml_add_impl(ctx, a, b, false);
  2840. }
  2841. struct ggml_tensor * ggml_add_inplace(
  2842. struct ggml_context * ctx,
  2843. struct ggml_tensor * a,
  2844. struct ggml_tensor * b) {
  2845. return ggml_add_impl(ctx, a, b, true);
  2846. }
  2847. // ggml_sub
  2848. struct ggml_tensor * ggml_sub_impl(
  2849. struct ggml_context * ctx,
  2850. struct ggml_tensor * a,
  2851. struct ggml_tensor * b,
  2852. bool inplace) {
  2853. GGML_ASSERT(ggml_are_same_shape(a, b));
  2854. bool is_node = false;
  2855. if (!inplace && (a->grad || b->grad)) {
  2856. is_node = true;
  2857. }
  2858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2859. result->op = GGML_OP_SUB;
  2860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2861. result->src0 = a;
  2862. result->src1 = b;
  2863. return result;
  2864. }
  2865. struct ggml_tensor * ggml_sub(
  2866. struct ggml_context * ctx,
  2867. struct ggml_tensor * a,
  2868. struct ggml_tensor * b) {
  2869. return ggml_sub_impl(ctx, a, b, false);
  2870. }
  2871. struct ggml_tensor * ggml_sub_inplace(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. struct ggml_tensor * b) {
  2875. return ggml_sub_impl(ctx, a, b, true);
  2876. }
  2877. // ggml_mul
  2878. struct ggml_tensor * ggml_mul_impl(
  2879. struct ggml_context * ctx,
  2880. struct ggml_tensor * a,
  2881. struct ggml_tensor * b,
  2882. bool inplace) {
  2883. GGML_ASSERT(ggml_are_same_shape(a, b));
  2884. bool is_node = false;
  2885. if (!inplace && (a->grad || b->grad)) {
  2886. is_node = true;
  2887. }
  2888. if (inplace) {
  2889. GGML_ASSERT(is_node == false);
  2890. }
  2891. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2892. result->op = GGML_OP_MUL;
  2893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2894. result->src0 = a;
  2895. result->src1 = b;
  2896. return result;
  2897. }
  2898. struct ggml_tensor * ggml_mul(
  2899. struct ggml_context * ctx,
  2900. struct ggml_tensor * a,
  2901. struct ggml_tensor * b) {
  2902. return ggml_mul_impl(ctx, a, b, false);
  2903. }
  2904. struct ggml_tensor * ggml_mul_inplace(
  2905. struct ggml_context * ctx,
  2906. struct ggml_tensor * a,
  2907. struct ggml_tensor * b) {
  2908. return ggml_mul_impl(ctx, a, b, true);
  2909. }
  2910. // ggml_div
  2911. struct ggml_tensor * ggml_div_impl(
  2912. struct ggml_context * ctx,
  2913. struct ggml_tensor * a,
  2914. struct ggml_tensor * b,
  2915. bool inplace) {
  2916. GGML_ASSERT(ggml_are_same_shape(a, b));
  2917. bool is_node = false;
  2918. if (!inplace && (a->grad || b->grad)) {
  2919. is_node = true;
  2920. }
  2921. if (inplace) {
  2922. GGML_ASSERT(is_node == false);
  2923. }
  2924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2925. result->op = GGML_OP_DIV;
  2926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2927. result->src0 = a;
  2928. result->src1 = b;
  2929. return result;
  2930. }
  2931. struct ggml_tensor * ggml_div(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a,
  2934. struct ggml_tensor * b) {
  2935. return ggml_div_impl(ctx, a, b, false);
  2936. }
  2937. struct ggml_tensor * ggml_div_inplace(
  2938. struct ggml_context * ctx,
  2939. struct ggml_tensor * a,
  2940. struct ggml_tensor * b) {
  2941. return ggml_div_impl(ctx, a, b, true);
  2942. }
  2943. // ggml_sqr
  2944. struct ggml_tensor * ggml_sqr_impl(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. bool inplace) {
  2948. bool is_node = false;
  2949. if (!inplace && (a->grad)) {
  2950. is_node = true;
  2951. }
  2952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2953. result->op = GGML_OP_SQR;
  2954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2955. result->src0 = a;
  2956. result->src1 = NULL;
  2957. return result;
  2958. }
  2959. struct ggml_tensor * ggml_sqr(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a) {
  2962. return ggml_sqr_impl(ctx, a, false);
  2963. }
  2964. struct ggml_tensor * ggml_sqr_inplace(
  2965. struct ggml_context * ctx,
  2966. struct ggml_tensor * a) {
  2967. return ggml_sqr_impl(ctx, a, true);
  2968. }
  2969. // ggml_sqrt
  2970. struct ggml_tensor * ggml_sqrt_impl(
  2971. struct ggml_context * ctx,
  2972. struct ggml_tensor * a,
  2973. bool inplace) {
  2974. bool is_node = false;
  2975. if (!inplace && (a->grad)) {
  2976. is_node = true;
  2977. }
  2978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2979. result->op = GGML_OP_SQRT;
  2980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2981. result->src0 = a;
  2982. result->src1 = NULL;
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_sqrt(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_sqrt_impl(ctx, a, false);
  2989. }
  2990. struct ggml_tensor * ggml_sqrt_inplace(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a) {
  2993. return ggml_sqrt_impl(ctx, a, true);
  2994. }
  2995. // ggml_sum
  2996. struct ggml_tensor * ggml_sum(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a) {
  2999. bool is_node = false;
  3000. if (a->grad) {
  3001. is_node = true;
  3002. }
  3003. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3004. result->op = GGML_OP_SUM;
  3005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3006. result->src0 = a;
  3007. result->src1 = NULL;
  3008. return result;
  3009. }
  3010. // ggml_mean
  3011. struct ggml_tensor * ggml_mean(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a) {
  3014. bool is_node = false;
  3015. if (a->grad) {
  3016. GGML_ASSERT(false); // TODO: implement
  3017. is_node = true;
  3018. }
  3019. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3020. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3021. result->op = GGML_OP_MEAN;
  3022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3023. result->src0 = a;
  3024. result->src1 = NULL;
  3025. return result;
  3026. }
  3027. // ggml_repeat
  3028. struct ggml_tensor * ggml_repeat(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a,
  3031. struct ggml_tensor * b) {
  3032. GGML_ASSERT(ggml_can_repeat(a, b));
  3033. bool is_node = false;
  3034. if (a->grad) {
  3035. is_node = true;
  3036. }
  3037. if (ggml_are_same_shape(a, b) && !is_node) {
  3038. return a;
  3039. }
  3040. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3041. result->op = GGML_OP_REPEAT;
  3042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3043. result->src0 = a;
  3044. result->src1 = b;
  3045. return result;
  3046. }
  3047. // ggml_abs
  3048. struct ggml_tensor * ggml_abs_impl(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. bool inplace) {
  3052. bool is_node = false;
  3053. if (!inplace && (a->grad)) {
  3054. is_node = true;
  3055. }
  3056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3057. result->op = GGML_OP_ABS;
  3058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3059. result->src0 = a;
  3060. result->src1 = NULL;
  3061. return result;
  3062. }
  3063. struct ggml_tensor * ggml_abs(
  3064. struct ggml_context * ctx,
  3065. struct ggml_tensor * a) {
  3066. return ggml_abs_impl(ctx, a, false);
  3067. }
  3068. struct ggml_tensor * ggml_abs_inplace(
  3069. struct ggml_context * ctx,
  3070. struct ggml_tensor * a) {
  3071. return ggml_abs_impl(ctx, a, true);
  3072. }
  3073. // ggml_sgn
  3074. struct ggml_tensor * ggml_sgn_impl(
  3075. struct ggml_context * ctx,
  3076. struct ggml_tensor * a,
  3077. bool inplace) {
  3078. bool is_node = false;
  3079. if (!inplace && (a->grad)) {
  3080. is_node = true;
  3081. }
  3082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3083. result->op = GGML_OP_SGN;
  3084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3085. result->src0 = a;
  3086. result->src1 = NULL;
  3087. return result;
  3088. }
  3089. struct ggml_tensor * ggml_sgn(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a) {
  3092. return ggml_sgn_impl(ctx, a, false);
  3093. }
  3094. struct ggml_tensor * ggml_sgn_inplace(
  3095. struct ggml_context * ctx,
  3096. struct ggml_tensor * a) {
  3097. return ggml_sgn_impl(ctx, a, true);
  3098. }
  3099. // ggml_neg
  3100. struct ggml_tensor * ggml_neg_impl(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a,
  3103. bool inplace) {
  3104. bool is_node = false;
  3105. if (!inplace && (a->grad)) {
  3106. is_node = true;
  3107. }
  3108. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3109. result->op = GGML_OP_NEG;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src0 = a;
  3112. result->src1 = NULL;
  3113. return result;
  3114. }
  3115. struct ggml_tensor * ggml_neg(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a) {
  3118. return ggml_neg_impl(ctx, a, false);
  3119. }
  3120. struct ggml_tensor * ggml_neg_inplace(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a) {
  3123. return ggml_neg_impl(ctx, a, true);
  3124. }
  3125. // ggml_step
  3126. struct ggml_tensor * ggml_step_impl(
  3127. struct ggml_context * ctx,
  3128. struct ggml_tensor * a,
  3129. bool inplace) {
  3130. bool is_node = false;
  3131. if (!inplace && (a->grad)) {
  3132. is_node = true;
  3133. }
  3134. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3135. result->op = GGML_OP_STEP;
  3136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3137. result->src0 = a;
  3138. result->src1 = NULL;
  3139. return result;
  3140. }
  3141. struct ggml_tensor * ggml_step(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a) {
  3144. return ggml_step_impl(ctx, a, false);
  3145. }
  3146. struct ggml_tensor * ggml_step_inplace(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a) {
  3149. return ggml_step_impl(ctx, a, true);
  3150. }
  3151. // ggml_relu
  3152. struct ggml_tensor * ggml_relu_impl(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a,
  3155. bool inplace) {
  3156. bool is_node = false;
  3157. if (!inplace && (a->grad)) {
  3158. is_node = true;
  3159. }
  3160. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3161. result->op = GGML_OP_RELU;
  3162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3163. result->src0 = a;
  3164. result->src1 = NULL;
  3165. return result;
  3166. }
  3167. struct ggml_tensor * ggml_relu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_relu_impl(ctx, a, false);
  3171. }
  3172. struct ggml_tensor * ggml_relu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_relu_impl(ctx, a, true);
  3176. }
  3177. // ggml_gelu
  3178. struct ggml_tensor * ggml_gelu_impl(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. bool inplace) {
  3182. bool is_node = false;
  3183. if (!inplace && (a->grad)) {
  3184. is_node = true;
  3185. }
  3186. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3187. result->op = GGML_OP_GELU;
  3188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3189. result->src0 = a;
  3190. result->src1 = NULL;
  3191. return result;
  3192. }
  3193. struct ggml_tensor * ggml_gelu(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a) {
  3196. return ggml_gelu_impl(ctx, a, false);
  3197. }
  3198. struct ggml_tensor * ggml_gelu_inplace(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_gelu_impl(ctx, a, true);
  3202. }
  3203. // ggml_silu
  3204. struct ggml_tensor * ggml_silu_impl(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a,
  3207. bool inplace) {
  3208. bool is_node = false;
  3209. if (!inplace && (a->grad)) {
  3210. is_node = true;
  3211. }
  3212. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3213. result->op = GGML_OP_SILU;
  3214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3215. result->src0 = a;
  3216. result->src1 = NULL;
  3217. return result;
  3218. }
  3219. struct ggml_tensor * ggml_silu(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_silu_impl(ctx, a, false);
  3223. }
  3224. struct ggml_tensor * ggml_silu_inplace(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a) {
  3227. return ggml_silu_impl(ctx, a, true);
  3228. }
  3229. // ggml_norm
  3230. struct ggml_tensor * ggml_norm_impl(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a,
  3233. bool inplace) {
  3234. bool is_node = false;
  3235. if (!inplace && (a->grad)) {
  3236. GGML_ASSERT(false); // TODO: implement backward
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3240. result->op = GGML_OP_NORM;
  3241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3242. result->src0 = a;
  3243. result->src1 = NULL; // TODO: maybe store epsilon here?
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_norm(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_norm_impl(ctx, a, false);
  3250. }
  3251. struct ggml_tensor * ggml_norm_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_norm_impl(ctx, a, true);
  3255. }
  3256. struct ggml_tensor * ggml_rms_norm_impl(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a,
  3259. bool inplace) {
  3260. bool is_node = false;
  3261. if (!inplace && (a->grad)) {
  3262. GGML_ASSERT(false); // TODO: implement backward
  3263. is_node = true;
  3264. }
  3265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3266. result->op = GGML_OP_RMS_NORM;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src0 = a;
  3269. result->src1 = NULL; // TODO: maybe store epsilon here?
  3270. return result;
  3271. }
  3272. struct ggml_tensor * ggml_rms_norm(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a) {
  3275. return ggml_rms_norm_impl(ctx, a, false);
  3276. }
  3277. struct ggml_tensor * ggml_rms_norm_inplace(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a) {
  3280. return ggml_rms_norm_impl(ctx, a, true);
  3281. }
  3282. // ggml_mul_mat
  3283. struct ggml_tensor * ggml_mul_mat(
  3284. struct ggml_context * ctx,
  3285. struct ggml_tensor * a,
  3286. struct ggml_tensor * b) {
  3287. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3288. GGML_ASSERT(!ggml_is_transposed(a));
  3289. bool is_node = false;
  3290. if (a->grad || b->grad) {
  3291. is_node = true;
  3292. }
  3293. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3294. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3295. result->op = GGML_OP_MUL_MAT;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src0 = a;
  3298. result->src1 = b;
  3299. return result;
  3300. }
  3301. // ggml_scale
  3302. struct ggml_tensor * ggml_scale_impl(
  3303. struct ggml_context * ctx,
  3304. struct ggml_tensor * a,
  3305. struct ggml_tensor * b,
  3306. bool inplace) {
  3307. GGML_ASSERT(ggml_is_scalar(b));
  3308. GGML_ASSERT(ggml_is_padded_1d(a));
  3309. bool is_node = false;
  3310. if (!inplace && (a->grad || b->grad)) {
  3311. GGML_ASSERT(false); // TODO: implement backward
  3312. is_node = true;
  3313. }
  3314. // TODO: when implement backward, fix this:
  3315. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3316. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3317. result->op = GGML_OP_SCALE;
  3318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3319. result->src0 = a;
  3320. result->src1 = b;
  3321. return result;
  3322. }
  3323. struct ggml_tensor * ggml_scale(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. struct ggml_tensor * b) {
  3327. return ggml_scale_impl(ctx, a, b, false);
  3328. }
  3329. struct ggml_tensor * ggml_scale_inplace(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a,
  3332. struct ggml_tensor * b) {
  3333. return ggml_scale_impl(ctx, a, b, true);
  3334. }
  3335. // ggml_cpy
  3336. struct ggml_tensor * ggml_cpy_impl(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a,
  3339. struct ggml_tensor * b,
  3340. bool inplace) {
  3341. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3342. bool is_node = false;
  3343. if (!inplace && (a->grad || b->grad)) {
  3344. GGML_ASSERT(false); // TODO: implement backward
  3345. is_node = true;
  3346. }
  3347. // make a view of the destination
  3348. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3349. result->op = GGML_OP_CPY;
  3350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3351. result->src0 = a;
  3352. result->src1 = b;
  3353. return result;
  3354. }
  3355. struct ggml_tensor * ggml_cpy(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. struct ggml_tensor * b) {
  3359. return ggml_cpy_impl(ctx, a, b, false);
  3360. }
  3361. struct ggml_tensor * ggml_cpy_inplace(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a,
  3364. struct ggml_tensor * b) {
  3365. return ggml_cpy_impl(ctx, a, b, true);
  3366. }
  3367. // ggml_reshape
  3368. struct ggml_tensor * ggml_reshape(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a,
  3371. struct ggml_tensor * b) {
  3372. GGML_ASSERT(ggml_is_contiguous(a));
  3373. GGML_ASSERT(ggml_is_contiguous(b));
  3374. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3375. bool is_node = false;
  3376. if (a->grad || b->grad) {
  3377. GGML_ASSERT(false); // TODO: implement backward
  3378. is_node = true;
  3379. }
  3380. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3381. result->op = GGML_OP_RESHAPE;
  3382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3383. result->src0 = a;
  3384. result->src1 = NULL;
  3385. return result;
  3386. }
  3387. struct ggml_tensor * ggml_reshape_2d(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. int ne0,
  3391. int ne1) {
  3392. GGML_ASSERT(ggml_is_contiguous(a));
  3393. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3394. bool is_node = false;
  3395. if (a->grad) {
  3396. GGML_ASSERT(false); // TODO: implement backward
  3397. is_node = true;
  3398. }
  3399. const int ne[2] = { ne0, ne1 };
  3400. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3401. result->op = GGML_OP_RESHAPE;
  3402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3403. result->src0 = a;
  3404. result->src1 = NULL;
  3405. return result;
  3406. }
  3407. struct ggml_tensor * ggml_reshape_3d(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. int ne0,
  3411. int ne1,
  3412. int ne2) {
  3413. GGML_ASSERT(ggml_is_contiguous(a));
  3414. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3415. bool is_node = false;
  3416. if (a->grad) {
  3417. GGML_ASSERT(false); // TODO: implement backward
  3418. is_node = true;
  3419. }
  3420. const int ne[3] = { ne0, ne1, ne2 };
  3421. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3422. result->op = GGML_OP_RESHAPE;
  3423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3424. result->src0 = a;
  3425. result->src1 = NULL;
  3426. return result;
  3427. }
  3428. // ggml_view_1d
  3429. struct ggml_tensor * ggml_view_1d(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. int ne0,
  3433. size_t offset) {
  3434. if (a->grad) {
  3435. GGML_ASSERT(false); // gradient propagation is not supported
  3436. }
  3437. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3438. result->op = GGML_OP_VIEW;
  3439. result->grad = NULL;
  3440. result->src0 = a;
  3441. result->src1 = NULL; // TODO: maybe store the offset here?
  3442. return result;
  3443. }
  3444. // ggml_view_2d
  3445. struct ggml_tensor * ggml_view_2d(
  3446. struct ggml_context * ctx,
  3447. struct ggml_tensor * a,
  3448. int ne0,
  3449. int ne1,
  3450. size_t nb1,
  3451. size_t offset) {
  3452. if (a->grad) {
  3453. GGML_ASSERT(false); // gradient propagation is not supported
  3454. }
  3455. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3456. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3457. result->nb[1] = nb1;
  3458. result->nb[2] = result->nb[1]*ne1;
  3459. result->nb[3] = result->nb[2];
  3460. result->op = GGML_OP_VIEW;
  3461. result->grad = NULL;
  3462. result->src0 = a;
  3463. result->src1 = NULL; // TODO: maybe store the offset here?
  3464. return result;
  3465. }
  3466. // ggml_permute
  3467. struct ggml_tensor * ggml_permute(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. int axis0,
  3471. int axis1,
  3472. int axis2,
  3473. int axis3) {
  3474. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3475. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3476. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3477. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3478. GGML_ASSERT(axis0 != axis1);
  3479. GGML_ASSERT(axis0 != axis2);
  3480. GGML_ASSERT(axis0 != axis3);
  3481. GGML_ASSERT(axis1 != axis2);
  3482. GGML_ASSERT(axis1 != axis3);
  3483. GGML_ASSERT(axis2 != axis3);
  3484. bool is_node = false;
  3485. if (a->grad) {
  3486. GGML_ASSERT(false); // TODO: implement backward
  3487. is_node = true;
  3488. }
  3489. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3490. int ne[GGML_MAX_DIMS];
  3491. int nb[GGML_MAX_DIMS];
  3492. ne[axis0] = a->ne[0];
  3493. ne[axis1] = a->ne[1];
  3494. ne[axis2] = a->ne[2];
  3495. ne[axis3] = a->ne[3];
  3496. nb[axis0] = a->nb[0];
  3497. nb[axis1] = a->nb[1];
  3498. nb[axis2] = a->nb[2];
  3499. nb[axis3] = a->nb[3];
  3500. result->ne[0] = ne[0];
  3501. result->ne[1] = ne[1];
  3502. result->ne[2] = ne[2];
  3503. result->ne[3] = ne[3];
  3504. result->nb[0] = nb[0];
  3505. result->nb[1] = nb[1];
  3506. result->nb[2] = nb[2];
  3507. result->nb[3] = nb[3];
  3508. result->op = GGML_OP_PERMUTE;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src0 = a;
  3511. result->src1 = NULL; // TODO: maybe store the permutation here?
  3512. return result;
  3513. }
  3514. // ggml_transpose
  3515. struct ggml_tensor * ggml_transpose(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a) {
  3518. bool is_node = false;
  3519. if (a->grad) {
  3520. GGML_ASSERT(false); // TODO: implement backward
  3521. is_node = true;
  3522. }
  3523. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3524. result->ne[0] = a->ne[1];
  3525. result->ne[1] = a->ne[0];
  3526. result->nb[0] = a->nb[1];
  3527. result->nb[1] = a->nb[0];
  3528. result->op = GGML_OP_TRANSPOSE;
  3529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3530. result->src0 = a;
  3531. result->src1 = NULL;
  3532. return result;
  3533. }
  3534. // ggml_get_rows
  3535. struct ggml_tensor * ggml_get_rows(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b) {
  3539. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3540. bool is_node = false;
  3541. if (a->grad || b->grad) {
  3542. GGML_ASSERT(false); // TODO: implement backward
  3543. is_node = true;
  3544. }
  3545. // TODO: implement non F32 return
  3546. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3547. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3548. result->op = GGML_OP_GET_ROWS;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src0 = a;
  3551. result->src1 = b;
  3552. return result;
  3553. }
  3554. // ggml_diag_mask_inf
  3555. struct ggml_tensor * ggml_diag_mask_inf(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. int n_past) {
  3559. bool is_node = false;
  3560. if (a->grad) {
  3561. GGML_ASSERT(false); // TODO: implement backward
  3562. is_node = true;
  3563. }
  3564. // TODO: when implement backward, fix this:
  3565. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3566. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3567. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3568. result->op = GGML_OP_DIAG_MASK_INF;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src0 = a;
  3571. result->src1 = b;
  3572. return result;
  3573. }
  3574. // ggml_soft_max
  3575. struct ggml_tensor * ggml_soft_max(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a) {
  3578. bool is_node = false;
  3579. if (a->grad) {
  3580. GGML_ASSERT(false); // TODO: implement backward
  3581. is_node = true;
  3582. }
  3583. // TODO: when implement backward, fix this:
  3584. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3585. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3586. result->op = GGML_OP_SOFT_MAX;
  3587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3588. result->src0 = a;
  3589. result->src1 = NULL;
  3590. return result;
  3591. }
  3592. // ggml_rope
  3593. struct ggml_tensor * ggml_rope(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. int n_past,
  3597. int n_dims,
  3598. int mode) {
  3599. GGML_ASSERT(n_past >= 0);
  3600. bool is_node = false;
  3601. if (a->grad) {
  3602. GGML_ASSERT(false); // TODO: implement backward
  3603. is_node = true;
  3604. }
  3605. // TODO: when implement backward, fix this:
  3606. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3607. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3608. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3609. ((int32_t *) b->data)[0] = n_past;
  3610. ((int32_t *) b->data)[1] = n_dims;
  3611. ((int32_t *) b->data)[2] = mode;
  3612. result->op = GGML_OP_ROPE;
  3613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3614. result->src0 = a;
  3615. result->src1 = b;
  3616. return result;
  3617. }
  3618. // ggml_conv_1d_1s
  3619. struct ggml_tensor * ggml_conv_1d_1s(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. struct ggml_tensor * b) {
  3623. GGML_ASSERT(ggml_is_matrix(b));
  3624. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3625. GGML_ASSERT(a->ne[3] == 1);
  3626. bool is_node = false;
  3627. if (a->grad || b->grad) {
  3628. GGML_ASSERT(false); // TODO: implement backward
  3629. is_node = true;
  3630. }
  3631. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3632. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3633. result->op = GGML_OP_CONV_1D_1S;
  3634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3635. result->src0 = a;
  3636. result->src1 = b;
  3637. return result;
  3638. }
  3639. // ggml_conv_1d_2s
  3640. struct ggml_tensor * ggml_conv_1d_2s(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a,
  3643. struct ggml_tensor * b) {
  3644. GGML_ASSERT(ggml_is_matrix(b));
  3645. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3646. GGML_ASSERT(a->ne[3] == 1);
  3647. bool is_node = false;
  3648. if (a->grad || b->grad) {
  3649. GGML_ASSERT(false); // TODO: implement backward
  3650. is_node = true;
  3651. }
  3652. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3653. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3654. result->op = GGML_OP_CONV_1D_2S;
  3655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3656. result->src0 = a;
  3657. result->src1 = b;
  3658. return result;
  3659. }
  3660. // ggml_flash_attn
  3661. struct ggml_tensor * ggml_flash_attn(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * q,
  3664. struct ggml_tensor * k,
  3665. struct ggml_tensor * v,
  3666. bool masked) {
  3667. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3668. // TODO: check if vT can be multiplied by (k*qT)
  3669. bool is_node = false;
  3670. if (q->grad || k->grad || v->grad) {
  3671. GGML_ASSERT(false); // TODO: implement backward
  3672. is_node = true;
  3673. }
  3674. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3676. result->op = GGML_OP_FLASH_ATTN;
  3677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3678. result->src0 = q;
  3679. result->src1 = k;
  3680. result->opt[0] = v;
  3681. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3682. return result;
  3683. }
  3684. // ggml_flash_ff
  3685. struct ggml_tensor * ggml_flash_ff(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a,
  3688. struct ggml_tensor * b0,
  3689. struct ggml_tensor * b1,
  3690. struct ggml_tensor * c0,
  3691. struct ggml_tensor * c1) {
  3692. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3693. // TODO: more checks
  3694. bool is_node = false;
  3695. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3696. GGML_ASSERT(false); // TODO: implement backward
  3697. is_node = true;
  3698. }
  3699. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3700. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3701. result->op = GGML_OP_FLASH_FF;
  3702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3703. result->src0 = a;
  3704. result->src1 = b0;
  3705. result->opt[0] = b1;
  3706. result->opt[1] = c0;
  3707. result->opt[2] = c1;
  3708. return result;
  3709. }
  3710. ////////////////////////////////////////////////////////////////////////////////
  3711. void ggml_set_param(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * tensor) {
  3714. tensor->is_param = true;
  3715. GGML_ASSERT(tensor->grad == NULL);
  3716. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3717. }
  3718. // ggml_compute_forward_dup
  3719. static void ggml_compute_forward_dup_f16(
  3720. const struct ggml_compute_params * params,
  3721. const struct ggml_tensor * src0,
  3722. struct ggml_tensor * dst) {
  3723. GGML_ASSERT(params->ith == 0);
  3724. GGML_ASSERT(ggml_is_contiguous(dst));
  3725. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3727. return;
  3728. }
  3729. const int ne00 = src0->ne[0];
  3730. const int ne01 = src0->ne[1];
  3731. const int ne02 = src0->ne[2];
  3732. const int ne03 = src0->ne[3];
  3733. const size_t nb00 = src0->nb[0];
  3734. const size_t nb01 = src0->nb[1];
  3735. const size_t nb02 = src0->nb[2];
  3736. const size_t nb03 = src0->nb[3];
  3737. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3738. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3739. return;
  3740. }
  3741. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3742. if (dst->type == GGML_TYPE_F16) {
  3743. size_t id = 0;
  3744. const size_t rs = ne00*nb00;
  3745. for (int i03 = 0; i03 < ne03; i03++) {
  3746. for (int i02 = 0; i02 < ne02; i02++) {
  3747. for (int i01 = 0; i01 < ne01; i01++) {
  3748. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3749. char * dst_ptr = (char *) dst->data + id*rs;
  3750. memcpy(dst_ptr, src0_ptr, rs);
  3751. id++;
  3752. }
  3753. }
  3754. }
  3755. } else if (dst->type == GGML_TYPE_F32) {
  3756. size_t id = 0;
  3757. float * dst_ptr = (float *) dst->data;
  3758. for (int i03 = 0; i03 < ne03; i03++) {
  3759. for (int i02 = 0; i02 < ne02; i02++) {
  3760. for (int i01 = 0; i01 < ne01; i01++) {
  3761. for (int i00 = 0; i00 < ne00; i00++) {
  3762. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3763. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3764. id++;
  3765. }
  3766. }
  3767. }
  3768. }
  3769. } else {
  3770. GGML_ASSERT(false); // TODO: implement
  3771. }
  3772. } else {
  3773. //printf("%s: this is not optimal - fix me\n", __func__);
  3774. if (dst->type == GGML_TYPE_F32) {
  3775. size_t id = 0;
  3776. float * dst_ptr = (float *) dst->data;
  3777. for (int i03 = 0; i03 < ne03; i03++) {
  3778. for (int i02 = 0; i02 < ne02; i02++) {
  3779. for (int i01 = 0; i01 < ne01; i01++) {
  3780. for (int i00 = 0; i00 < ne00; i00++) {
  3781. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3782. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3783. id++;
  3784. }
  3785. }
  3786. }
  3787. }
  3788. } else if (dst->type == GGML_TYPE_F16) {
  3789. size_t id = 0;
  3790. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3791. for (int i03 = 0; i03 < ne03; i03++) {
  3792. for (int i02 = 0; i02 < ne02; i02++) {
  3793. for (int i01 = 0; i01 < ne01; i01++) {
  3794. for (int i00 = 0; i00 < ne00; i00++) {
  3795. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3796. dst_ptr[id] = *src0_ptr;
  3797. id++;
  3798. }
  3799. }
  3800. }
  3801. }
  3802. } else {
  3803. GGML_ASSERT(false); // TODO: implement
  3804. }
  3805. }
  3806. }
  3807. static void ggml_compute_forward_dup_f32(
  3808. const struct ggml_compute_params * params,
  3809. const struct ggml_tensor * src0,
  3810. struct ggml_tensor * dst) {
  3811. GGML_ASSERT(params->ith == 0);
  3812. GGML_ASSERT(ggml_is_contiguous(dst));
  3813. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3815. return;
  3816. }
  3817. const int ne00 = src0->ne[0];
  3818. const int ne01 = src0->ne[1];
  3819. const int ne02 = src0->ne[2];
  3820. const int ne03 = src0->ne[3];
  3821. const size_t nb00 = src0->nb[0];
  3822. const size_t nb01 = src0->nb[1];
  3823. const size_t nb02 = src0->nb[2];
  3824. const size_t nb03 = src0->nb[3];
  3825. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3826. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3827. return;
  3828. }
  3829. if (src0->nb[0] == sizeof(float)) {
  3830. if (dst->type == GGML_TYPE_F32) {
  3831. size_t id = 0;
  3832. const size_t rs = ne00*nb00;
  3833. for (int i03 = 0; i03 < ne03; i03++) {
  3834. for (int i02 = 0; i02 < ne02; i02++) {
  3835. for (int i01 = 0; i01 < ne01; i01++) {
  3836. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3837. char * dst_ptr = (char *) dst->data + id*rs;
  3838. memcpy(dst_ptr, src0_ptr, rs);
  3839. id++;
  3840. }
  3841. }
  3842. }
  3843. } else if (dst->type == GGML_TYPE_F16) {
  3844. size_t id = 0;
  3845. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3846. for (int i03 = 0; i03 < ne03; i03++) {
  3847. for (int i02 = 0; i02 < ne02; i02++) {
  3848. for (int i01 = 0; i01 < ne01; i01++) {
  3849. for (int i00 = 0; i00 < ne00; i00++) {
  3850. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3851. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3852. id++;
  3853. }
  3854. }
  3855. }
  3856. }
  3857. } else {
  3858. GGML_ASSERT(false); // TODO: implement
  3859. }
  3860. } else {
  3861. //printf("%s: this is not optimal - fix me\n", __func__);
  3862. if (dst->type == GGML_TYPE_F32) {
  3863. size_t id = 0;
  3864. float * dst_ptr = (float *) dst->data;
  3865. for (int i03 = 0; i03 < ne03; i03++) {
  3866. for (int i02 = 0; i02 < ne02; i02++) {
  3867. for (int i01 = 0; i01 < ne01; i01++) {
  3868. for (int i00 = 0; i00 < ne00; i00++) {
  3869. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3870. dst_ptr[id] = *src0_ptr;
  3871. id++;
  3872. }
  3873. }
  3874. }
  3875. }
  3876. } else if (dst->type == GGML_TYPE_F16) {
  3877. size_t id = 0;
  3878. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3879. for (int i03 = 0; i03 < ne03; i03++) {
  3880. for (int i02 = 0; i02 < ne02; i02++) {
  3881. for (int i01 = 0; i01 < ne01; i01++) {
  3882. for (int i00 = 0; i00 < ne00; i00++) {
  3883. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3884. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3885. id++;
  3886. }
  3887. }
  3888. }
  3889. }
  3890. } else {
  3891. GGML_ASSERT(false); // TODO: implement
  3892. }
  3893. }
  3894. }
  3895. static void ggml_compute_forward_dup(
  3896. const struct ggml_compute_params * params,
  3897. const struct ggml_tensor * src0,
  3898. struct ggml_tensor * dst) {
  3899. switch (src0->type) {
  3900. case GGML_TYPE_F16:
  3901. {
  3902. ggml_compute_forward_dup_f16(params, src0, dst);
  3903. } break;
  3904. case GGML_TYPE_F32:
  3905. {
  3906. ggml_compute_forward_dup_f32(params, src0, dst);
  3907. } break;
  3908. case GGML_TYPE_Q4_0:
  3909. case GGML_TYPE_Q4_1:
  3910. case GGML_TYPE_I8:
  3911. case GGML_TYPE_I16:
  3912. case GGML_TYPE_I32:
  3913. case GGML_TYPE_COUNT:
  3914. {
  3915. GGML_ASSERT(false);
  3916. } break;
  3917. }
  3918. }
  3919. // ggml_compute_forward_add
  3920. static void ggml_compute_forward_add_f32(
  3921. const struct ggml_compute_params * params,
  3922. const struct ggml_tensor * src0,
  3923. const struct ggml_tensor * src1,
  3924. struct ggml_tensor * dst) {
  3925. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3927. return;
  3928. }
  3929. const int ith = params->ith;
  3930. const int nth = params->nth;
  3931. const int n = ggml_nrows(src0);
  3932. const int nc = src0->ne[0];
  3933. const size_t nb00 = src0->nb[0];
  3934. const size_t nb01 = src0->nb[1];
  3935. const size_t nb10 = src1->nb[0];
  3936. const size_t nb11 = src1->nb[1];
  3937. const size_t nb0 = dst->nb[0];
  3938. const size_t nb1 = dst->nb[1];
  3939. GGML_ASSERT( nb0 == sizeof(float));
  3940. GGML_ASSERT(nb00 == sizeof(float));
  3941. if (nb10 == sizeof(float)) {
  3942. const int j0 = (n/nth)*ith;
  3943. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3944. for (int j = j0; j < j1; j++) {
  3945. ggml_vec_add_f32(nc,
  3946. (float *) ((char *) dst->data + j*nb1),
  3947. (float *) ((char *) src0->data + j*nb01),
  3948. (float *) ((char *) src1->data + j*nb11));
  3949. }
  3950. } else {
  3951. // src1 is not contiguous
  3952. for (int j = ith; j < n; j += nth) {
  3953. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3954. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3955. for (int i = 0; i < nc; i++) {
  3956. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3957. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3958. }
  3959. }
  3960. }
  3961. }
  3962. static void ggml_compute_forward_add(
  3963. const struct ggml_compute_params * params,
  3964. const struct ggml_tensor * src0,
  3965. const struct ggml_tensor * src1,
  3966. struct ggml_tensor * dst) {
  3967. switch (src0->type) {
  3968. case GGML_TYPE_F32:
  3969. {
  3970. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3971. } break;
  3972. case GGML_TYPE_Q4_0:
  3973. case GGML_TYPE_Q4_1:
  3974. case GGML_TYPE_I8:
  3975. case GGML_TYPE_I16:
  3976. case GGML_TYPE_I32:
  3977. case GGML_TYPE_F16:
  3978. case GGML_TYPE_COUNT:
  3979. {
  3980. GGML_ASSERT(false);
  3981. } break;
  3982. }
  3983. }
  3984. // ggml_compute_forward_sub
  3985. static void ggml_compute_forward_sub_f32(
  3986. const struct ggml_compute_params * params,
  3987. const struct ggml_tensor * src0,
  3988. const struct ggml_tensor * src1,
  3989. struct ggml_tensor * dst) {
  3990. assert(params->ith == 0);
  3991. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3993. return;
  3994. }
  3995. const int n = ggml_nrows(src0);
  3996. const int nc = src0->ne[0];
  3997. assert( dst->nb[0] == sizeof(float));
  3998. assert(src0->nb[0] == sizeof(float));
  3999. assert(src1->nb[0] == sizeof(float));
  4000. for (int i = 0; i < n; i++) {
  4001. ggml_vec_sub_f32(nc,
  4002. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4003. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4004. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4005. }
  4006. }
  4007. static void ggml_compute_forward_sub(
  4008. const struct ggml_compute_params * params,
  4009. const struct ggml_tensor * src0,
  4010. const struct ggml_tensor * src1,
  4011. struct ggml_tensor * dst) {
  4012. switch (src0->type) {
  4013. case GGML_TYPE_F32:
  4014. {
  4015. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4016. } break;
  4017. case GGML_TYPE_Q4_0:
  4018. case GGML_TYPE_Q4_1:
  4019. case GGML_TYPE_I8:
  4020. case GGML_TYPE_I16:
  4021. case GGML_TYPE_I32:
  4022. case GGML_TYPE_F16:
  4023. case GGML_TYPE_COUNT:
  4024. {
  4025. GGML_ASSERT(false);
  4026. } break;
  4027. }
  4028. }
  4029. // ggml_compute_forward_mul
  4030. static void ggml_compute_forward_mul_f32(
  4031. const struct ggml_compute_params * params,
  4032. const struct ggml_tensor * src0,
  4033. const struct ggml_tensor * src1,
  4034. struct ggml_tensor * dst) {
  4035. assert(params->ith == 0);
  4036. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4038. return;
  4039. }
  4040. const int n = ggml_nrows(src0);
  4041. const int nc = src0->ne[0];
  4042. assert( dst->nb[0] == sizeof(float));
  4043. assert(src0->nb[0] == sizeof(float));
  4044. assert(src1->nb[0] == sizeof(float));
  4045. for (int i = 0; i < n; i++) {
  4046. ggml_vec_mul_f32(nc,
  4047. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4048. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4049. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4050. }
  4051. }
  4052. static void ggml_compute_forward_mul(
  4053. const struct ggml_compute_params * params,
  4054. const struct ggml_tensor * src0,
  4055. const struct ggml_tensor * src1,
  4056. struct ggml_tensor * dst) {
  4057. switch (src0->type) {
  4058. case GGML_TYPE_F32:
  4059. {
  4060. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4061. } break;
  4062. case GGML_TYPE_Q4_0:
  4063. case GGML_TYPE_Q4_1:
  4064. case GGML_TYPE_I8:
  4065. case GGML_TYPE_I16:
  4066. case GGML_TYPE_I32:
  4067. case GGML_TYPE_F16:
  4068. case GGML_TYPE_COUNT:
  4069. {
  4070. GGML_ASSERT(false);
  4071. } break;
  4072. }
  4073. }
  4074. // ggml_compute_forward_div
  4075. static void ggml_compute_forward_div_f32(
  4076. const struct ggml_compute_params * params,
  4077. const struct ggml_tensor * src0,
  4078. const struct ggml_tensor * src1,
  4079. struct ggml_tensor * dst) {
  4080. assert(params->ith == 0);
  4081. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4083. return;
  4084. }
  4085. const int n = ggml_nrows(src0);
  4086. const int nc = src0->ne[0];
  4087. assert( dst->nb[0] == sizeof(float));
  4088. assert(src0->nb[0] == sizeof(float));
  4089. assert(src1->nb[0] == sizeof(float));
  4090. for (int i = 0; i < n; i++) {
  4091. ggml_vec_div_f32(nc,
  4092. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4093. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4094. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4095. }
  4096. }
  4097. static void ggml_compute_forward_div(
  4098. const struct ggml_compute_params * params,
  4099. const struct ggml_tensor * src0,
  4100. const struct ggml_tensor * src1,
  4101. struct ggml_tensor * dst) {
  4102. switch (src0->type) {
  4103. case GGML_TYPE_F32:
  4104. {
  4105. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4106. } break;
  4107. case GGML_TYPE_Q4_0:
  4108. case GGML_TYPE_Q4_1:
  4109. case GGML_TYPE_I8:
  4110. case GGML_TYPE_I16:
  4111. case GGML_TYPE_I32:
  4112. case GGML_TYPE_F16:
  4113. case GGML_TYPE_COUNT:
  4114. {
  4115. GGML_ASSERT(false);
  4116. } break;
  4117. }
  4118. }
  4119. // ggml_compute_forward_sqr
  4120. static void ggml_compute_forward_sqr_f32(
  4121. const struct ggml_compute_params * params,
  4122. const struct ggml_tensor * src0,
  4123. struct ggml_tensor * dst) {
  4124. assert(params->ith == 0);
  4125. assert(ggml_are_same_shape(src0, dst));
  4126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4127. return;
  4128. }
  4129. const int n = ggml_nrows(src0);
  4130. const int nc = src0->ne[0];
  4131. assert( dst->nb[0] == sizeof(float));
  4132. assert(src0->nb[0] == sizeof(float));
  4133. for (int i = 0; i < n; i++) {
  4134. ggml_vec_sqr_f32(nc,
  4135. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4136. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4137. }
  4138. }
  4139. static void ggml_compute_forward_sqr(
  4140. const struct ggml_compute_params * params,
  4141. const struct ggml_tensor * src0,
  4142. struct ggml_tensor * dst) {
  4143. switch (src0->type) {
  4144. case GGML_TYPE_F32:
  4145. {
  4146. ggml_compute_forward_sqr_f32(params, src0, dst);
  4147. } break;
  4148. case GGML_TYPE_Q4_0:
  4149. case GGML_TYPE_Q4_1:
  4150. case GGML_TYPE_I8:
  4151. case GGML_TYPE_I16:
  4152. case GGML_TYPE_I32:
  4153. case GGML_TYPE_F16:
  4154. case GGML_TYPE_COUNT:
  4155. {
  4156. GGML_ASSERT(false);
  4157. } break;
  4158. }
  4159. }
  4160. // ggml_compute_forward_sqrt
  4161. static void ggml_compute_forward_sqrt_f32(
  4162. const struct ggml_compute_params * params,
  4163. const struct ggml_tensor * src0,
  4164. struct ggml_tensor * dst) {
  4165. assert(params->ith == 0);
  4166. assert(ggml_are_same_shape(src0, dst));
  4167. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4168. return;
  4169. }
  4170. const int n = ggml_nrows(src0);
  4171. const int nc = src0->ne[0];
  4172. assert( dst->nb[0] == sizeof(float));
  4173. assert(src0->nb[0] == sizeof(float));
  4174. for (int i = 0; i < n; i++) {
  4175. ggml_vec_sqrt_f32(nc,
  4176. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4177. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4178. }
  4179. }
  4180. static void ggml_compute_forward_sqrt(
  4181. const struct ggml_compute_params * params,
  4182. const struct ggml_tensor * src0,
  4183. struct ggml_tensor * dst) {
  4184. switch (src0->type) {
  4185. case GGML_TYPE_F32:
  4186. {
  4187. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4188. } break;
  4189. case GGML_TYPE_Q4_0:
  4190. case GGML_TYPE_Q4_1:
  4191. case GGML_TYPE_I8:
  4192. case GGML_TYPE_I16:
  4193. case GGML_TYPE_I32:
  4194. case GGML_TYPE_F16:
  4195. case GGML_TYPE_COUNT:
  4196. {
  4197. GGML_ASSERT(false);
  4198. } break;
  4199. }
  4200. }
  4201. // ggml_compute_forward_sum
  4202. static void ggml_compute_forward_sum_f32(
  4203. const struct ggml_compute_params * params,
  4204. const struct ggml_tensor * src0,
  4205. struct ggml_tensor * dst) {
  4206. assert(params->ith == 0);
  4207. assert(ggml_is_scalar(dst));
  4208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4209. return;
  4210. }
  4211. assert(ggml_is_scalar(dst));
  4212. assert(src0->nb[0] == sizeof(float));
  4213. const int ne00 = src0->ne[0];
  4214. const int ne01 = src0->ne[1];
  4215. const int ne02 = src0->ne[2];
  4216. const int ne03 = src0->ne[3];
  4217. const size_t nb01 = src0->nb[1];
  4218. const size_t nb02 = src0->nb[2];
  4219. const size_t nb03 = src0->nb[3];
  4220. for (int i03 = 0; i03 < ne03; i03++) {
  4221. for (int i02 = 0; i02 < ne02; i02++) {
  4222. for (int i01 = 0; i01 < ne01; i01++) {
  4223. ggml_vec_sum_f32(ne00,
  4224. (float *) (dst->data),
  4225. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4226. }
  4227. }
  4228. }
  4229. }
  4230. static void ggml_compute_forward_sum(
  4231. const struct ggml_compute_params * params,
  4232. const struct ggml_tensor * src0,
  4233. struct ggml_tensor * dst) {
  4234. switch (src0->type) {
  4235. case GGML_TYPE_F32:
  4236. {
  4237. ggml_compute_forward_sum_f32(params, src0, dst);
  4238. } break;
  4239. case GGML_TYPE_Q4_0:
  4240. case GGML_TYPE_Q4_1:
  4241. case GGML_TYPE_I8:
  4242. case GGML_TYPE_I16:
  4243. case GGML_TYPE_I32:
  4244. case GGML_TYPE_F16:
  4245. case GGML_TYPE_COUNT:
  4246. {
  4247. GGML_ASSERT(false);
  4248. } break;
  4249. }
  4250. }
  4251. // ggml_compute_forward_mean
  4252. static void ggml_compute_forward_mean_f32(
  4253. const struct ggml_compute_params * params,
  4254. const struct ggml_tensor * src0,
  4255. struct ggml_tensor * dst) {
  4256. assert(params->ith == 0);
  4257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4258. return;
  4259. }
  4260. assert(src0->nb[0] == sizeof(float));
  4261. const int ne00 = src0->ne[0];
  4262. const int ne01 = src0->ne[1];
  4263. const int ne02 = src0->ne[2];
  4264. const int ne03 = src0->ne[3];
  4265. const size_t nb01 = src0->nb[1];
  4266. const size_t nb02 = src0->nb[2];
  4267. const size_t nb03 = src0->nb[3];
  4268. const int ne0 = dst->ne[0];
  4269. const int ne1 = dst->ne[1];
  4270. const int ne2 = dst->ne[2];
  4271. const int ne3 = dst->ne[3];
  4272. assert(ne0 == 1);
  4273. assert(ne1 == ne01);
  4274. assert(ne2 == ne02);
  4275. assert(ne3 == ne03);
  4276. UNUSED(ne0);
  4277. UNUSED(ne1);
  4278. UNUSED(ne2);
  4279. UNUSED(ne3);
  4280. const size_t nb1 = dst->nb[1];
  4281. const size_t nb2 = dst->nb[2];
  4282. const size_t nb3 = dst->nb[3];
  4283. for (int i03 = 0; i03 < ne03; i03++) {
  4284. for (int i02 = 0; i02 < ne02; i02++) {
  4285. for (int i01 = 0; i01 < ne01; i01++) {
  4286. ggml_vec_sum_f32(ne00,
  4287. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4288. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4289. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4290. }
  4291. }
  4292. }
  4293. }
  4294. static void ggml_compute_forward_mean(
  4295. const struct ggml_compute_params * params,
  4296. const struct ggml_tensor * src0,
  4297. struct ggml_tensor * dst) {
  4298. switch (src0->type) {
  4299. case GGML_TYPE_F32:
  4300. {
  4301. ggml_compute_forward_mean_f32(params, src0, dst);
  4302. } break;
  4303. case GGML_TYPE_Q4_0:
  4304. case GGML_TYPE_Q4_1:
  4305. case GGML_TYPE_I8:
  4306. case GGML_TYPE_I16:
  4307. case GGML_TYPE_I32:
  4308. case GGML_TYPE_F16:
  4309. case GGML_TYPE_COUNT:
  4310. {
  4311. GGML_ASSERT(false);
  4312. } break;
  4313. }
  4314. }
  4315. // ggml_compute_forward_repeat
  4316. static void ggml_compute_forward_repeat_f32(
  4317. const struct ggml_compute_params * params,
  4318. const struct ggml_tensor * src0,
  4319. struct ggml_tensor * dst) {
  4320. assert(params->ith == 0);
  4321. assert(ggml_can_repeat(src0, dst));
  4322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4323. return;
  4324. }
  4325. // TODO: implement support for rank > 2 tensors
  4326. assert(src0->ne[2] == 1);
  4327. assert(src0->ne[3] == 1);
  4328. assert( dst->ne[2] == 1);
  4329. assert( dst->ne[3] == 1);
  4330. const int nc = dst->ne[0];
  4331. const int nr = dst->ne[1];
  4332. const int nc0 = src0->ne[0];
  4333. const int nr0 = src0->ne[1];
  4334. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4335. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4336. // TODO: support for transposed / permuted tensors
  4337. assert( dst->nb[0] == sizeof(float));
  4338. assert(src0->nb[0] == sizeof(float));
  4339. // TODO: maybe this is not optimal?
  4340. for (int i = 0; i < nrr; i++) {
  4341. for (int j = 0; j < ncr; j++) {
  4342. for (int k = 0; k < nr0; k++) {
  4343. ggml_vec_cpy_f32(nc0,
  4344. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4345. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4346. }
  4347. }
  4348. }
  4349. }
  4350. static void ggml_compute_forward_repeat(
  4351. const struct ggml_compute_params * params,
  4352. const struct ggml_tensor * src0,
  4353. struct ggml_tensor * dst) {
  4354. switch (src0->type) {
  4355. case GGML_TYPE_F32:
  4356. {
  4357. ggml_compute_forward_repeat_f32(params, src0, dst);
  4358. } break;
  4359. case GGML_TYPE_Q4_0:
  4360. case GGML_TYPE_Q4_1:
  4361. case GGML_TYPE_I8:
  4362. case GGML_TYPE_I16:
  4363. case GGML_TYPE_I32:
  4364. case GGML_TYPE_F16:
  4365. case GGML_TYPE_COUNT:
  4366. {
  4367. GGML_ASSERT(false);
  4368. } break;
  4369. }
  4370. }
  4371. // ggml_compute_forward_abs
  4372. static void ggml_compute_forward_abs_f32(
  4373. const struct ggml_compute_params * params,
  4374. const struct ggml_tensor * src0,
  4375. struct ggml_tensor * dst) {
  4376. assert(params->ith == 0);
  4377. assert(ggml_are_same_shape(src0, dst));
  4378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4379. return;
  4380. }
  4381. const int n = ggml_nrows(src0);
  4382. const int nc = src0->ne[0];
  4383. assert(dst->nb[0] == sizeof(float));
  4384. assert(src0->nb[0] == sizeof(float));
  4385. for (int i = 0; i < n; i++) {
  4386. ggml_vec_abs_f32(nc,
  4387. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4388. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4389. }
  4390. }
  4391. static void ggml_compute_forward_abs(
  4392. const struct ggml_compute_params * params,
  4393. const struct ggml_tensor * src0,
  4394. struct ggml_tensor * dst) {
  4395. switch (src0->type) {
  4396. case GGML_TYPE_F32:
  4397. {
  4398. ggml_compute_forward_abs_f32(params, src0, dst);
  4399. } break;
  4400. case GGML_TYPE_Q4_0:
  4401. case GGML_TYPE_Q4_1:
  4402. case GGML_TYPE_I8:
  4403. case GGML_TYPE_I16:
  4404. case GGML_TYPE_I32:
  4405. case GGML_TYPE_F16:
  4406. case GGML_TYPE_COUNT:
  4407. {
  4408. GGML_ASSERT(false);
  4409. } break;
  4410. }
  4411. }
  4412. // ggml_compute_forward_sgn
  4413. static void ggml_compute_forward_sgn_f32(
  4414. const struct ggml_compute_params * params,
  4415. const struct ggml_tensor * src0,
  4416. struct ggml_tensor * dst) {
  4417. assert(params->ith == 0);
  4418. assert(ggml_are_same_shape(src0, dst));
  4419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4420. return;
  4421. }
  4422. const int n = ggml_nrows(src0);
  4423. const int nc = src0->ne[0];
  4424. assert(dst->nb[0] == sizeof(float));
  4425. assert(src0->nb[0] == sizeof(float));
  4426. for (int i = 0; i < n; i++) {
  4427. ggml_vec_sgn_f32(nc,
  4428. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4429. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4430. }
  4431. }
  4432. static void ggml_compute_forward_sgn(
  4433. const struct ggml_compute_params * params,
  4434. const struct ggml_tensor * src0,
  4435. struct ggml_tensor * dst) {
  4436. switch (src0->type) {
  4437. case GGML_TYPE_F32:
  4438. {
  4439. ggml_compute_forward_sgn_f32(params, src0, dst);
  4440. } break;
  4441. case GGML_TYPE_Q4_0:
  4442. case GGML_TYPE_Q4_1:
  4443. case GGML_TYPE_I8:
  4444. case GGML_TYPE_I16:
  4445. case GGML_TYPE_I32:
  4446. case GGML_TYPE_F16:
  4447. case GGML_TYPE_COUNT:
  4448. {
  4449. GGML_ASSERT(false);
  4450. } break;
  4451. }
  4452. }
  4453. // ggml_compute_forward_neg
  4454. static void ggml_compute_forward_neg_f32(
  4455. const struct ggml_compute_params * params,
  4456. const struct ggml_tensor * src0,
  4457. struct ggml_tensor * dst) {
  4458. assert(params->ith == 0);
  4459. assert(ggml_are_same_shape(src0, dst));
  4460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4461. return;
  4462. }
  4463. const int n = ggml_nrows(src0);
  4464. const int nc = src0->ne[0];
  4465. assert(dst->nb[0] == sizeof(float));
  4466. assert(src0->nb[0] == sizeof(float));
  4467. for (int i = 0; i < n; i++) {
  4468. ggml_vec_neg_f32(nc,
  4469. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4470. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4471. }
  4472. }
  4473. static void ggml_compute_forward_neg(
  4474. const struct ggml_compute_params * params,
  4475. const struct ggml_tensor * src0,
  4476. struct ggml_tensor * dst) {
  4477. switch (src0->type) {
  4478. case GGML_TYPE_F32:
  4479. {
  4480. ggml_compute_forward_neg_f32(params, src0, dst);
  4481. } break;
  4482. case GGML_TYPE_Q4_0:
  4483. case GGML_TYPE_Q4_1:
  4484. case GGML_TYPE_I8:
  4485. case GGML_TYPE_I16:
  4486. case GGML_TYPE_I32:
  4487. case GGML_TYPE_F16:
  4488. case GGML_TYPE_COUNT:
  4489. {
  4490. GGML_ASSERT(false);
  4491. } break;
  4492. }
  4493. }
  4494. // ggml_compute_forward_step
  4495. static void ggml_compute_forward_step_f32(
  4496. const struct ggml_compute_params * params,
  4497. const struct ggml_tensor * src0,
  4498. struct ggml_tensor * dst) {
  4499. assert(params->ith == 0);
  4500. assert(ggml_are_same_shape(src0, dst));
  4501. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4502. return;
  4503. }
  4504. const int n = ggml_nrows(src0);
  4505. const int nc = src0->ne[0];
  4506. assert(dst->nb[0] == sizeof(float));
  4507. assert(src0->nb[0] == sizeof(float));
  4508. for (int i = 0; i < n; i++) {
  4509. ggml_vec_step_f32(nc,
  4510. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4511. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4512. }
  4513. }
  4514. static void ggml_compute_forward_step(
  4515. const struct ggml_compute_params * params,
  4516. const struct ggml_tensor * src0,
  4517. struct ggml_tensor * dst) {
  4518. switch (src0->type) {
  4519. case GGML_TYPE_F32:
  4520. {
  4521. ggml_compute_forward_step_f32(params, src0, dst);
  4522. } break;
  4523. case GGML_TYPE_Q4_0:
  4524. case GGML_TYPE_Q4_1:
  4525. case GGML_TYPE_I8:
  4526. case GGML_TYPE_I16:
  4527. case GGML_TYPE_I32:
  4528. case GGML_TYPE_F16:
  4529. case GGML_TYPE_COUNT:
  4530. {
  4531. GGML_ASSERT(false);
  4532. } break;
  4533. }
  4534. }
  4535. // ggml_compute_forward_relu
  4536. static void ggml_compute_forward_relu_f32(
  4537. const struct ggml_compute_params * params,
  4538. const struct ggml_tensor * src0,
  4539. struct ggml_tensor * dst) {
  4540. assert(params->ith == 0);
  4541. assert(ggml_are_same_shape(src0, dst));
  4542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4543. return;
  4544. }
  4545. const int n = ggml_nrows(src0);
  4546. const int nc = src0->ne[0];
  4547. assert(dst->nb[0] == sizeof(float));
  4548. assert(src0->nb[0] == sizeof(float));
  4549. for (int i = 0; i < n; i++) {
  4550. ggml_vec_relu_f32(nc,
  4551. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4552. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4553. }
  4554. }
  4555. static void ggml_compute_forward_relu(
  4556. const struct ggml_compute_params * params,
  4557. const struct ggml_tensor * src0,
  4558. struct ggml_tensor * dst) {
  4559. switch (src0->type) {
  4560. case GGML_TYPE_F32:
  4561. {
  4562. ggml_compute_forward_relu_f32(params, src0, dst);
  4563. } break;
  4564. case GGML_TYPE_Q4_0:
  4565. case GGML_TYPE_Q4_1:
  4566. case GGML_TYPE_I8:
  4567. case GGML_TYPE_I16:
  4568. case GGML_TYPE_I32:
  4569. case GGML_TYPE_F16:
  4570. case GGML_TYPE_COUNT:
  4571. {
  4572. GGML_ASSERT(false);
  4573. } break;
  4574. }
  4575. }
  4576. // ggml_compute_forward_gelu
  4577. static void ggml_compute_forward_gelu_f32(
  4578. const struct ggml_compute_params * params,
  4579. const struct ggml_tensor * src0,
  4580. struct ggml_tensor * dst) {
  4581. GGML_ASSERT(ggml_is_contiguous(src0));
  4582. GGML_ASSERT(ggml_is_contiguous(dst));
  4583. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4585. return;
  4586. }
  4587. const int ith = params->ith;
  4588. const int nth = params->nth;
  4589. const int nc = src0->ne[0];
  4590. const int nr = ggml_nrows(src0);
  4591. // rows per thread
  4592. const int dr = (nr + nth - 1)/nth;
  4593. // row range for this thread
  4594. const int ir0 = dr*ith;
  4595. const int ir1 = MIN(ir0 + dr, nr);
  4596. for (int i1 = ir0; i1 < ir1; i1++) {
  4597. ggml_vec_gelu_f32(nc,
  4598. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4599. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4600. #ifndef NDEBUG
  4601. for (int k = 0; k < nc; k++) {
  4602. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4603. UNUSED(x);
  4604. assert(!isnan(x));
  4605. assert(!isinf(x));
  4606. }
  4607. #endif
  4608. }
  4609. }
  4610. static void ggml_compute_forward_gelu(
  4611. const struct ggml_compute_params * params,
  4612. const struct ggml_tensor * src0,
  4613. struct ggml_tensor * dst) {
  4614. switch (src0->type) {
  4615. case GGML_TYPE_F32:
  4616. {
  4617. ggml_compute_forward_gelu_f32(params, src0, dst);
  4618. } break;
  4619. case GGML_TYPE_Q4_0:
  4620. case GGML_TYPE_Q4_1:
  4621. case GGML_TYPE_I8:
  4622. case GGML_TYPE_I16:
  4623. case GGML_TYPE_I32:
  4624. case GGML_TYPE_F16:
  4625. case GGML_TYPE_COUNT:
  4626. {
  4627. GGML_ASSERT(false);
  4628. } break;
  4629. }
  4630. //printf("XXXXXXXX gelu\n");
  4631. }
  4632. // ggml_compute_forward_silu
  4633. static void ggml_compute_forward_silu_f32(
  4634. const struct ggml_compute_params * params,
  4635. const struct ggml_tensor * src0,
  4636. struct ggml_tensor * dst) {
  4637. GGML_ASSERT(ggml_is_contiguous(src0));
  4638. GGML_ASSERT(ggml_is_contiguous(dst));
  4639. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4641. return;
  4642. }
  4643. const int ith = params->ith;
  4644. const int nth = params->nth;
  4645. const int nc = src0->ne[0];
  4646. const int nr = ggml_nrows(src0);
  4647. // rows per thread
  4648. const int dr = (nr + nth - 1)/nth;
  4649. // row range for this thread
  4650. const int ir0 = dr*ith;
  4651. const int ir1 = MIN(ir0 + dr, nr);
  4652. for (int i1 = ir0; i1 < ir1; i1++) {
  4653. ggml_vec_silu_f32(nc,
  4654. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4655. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4656. #ifndef NDEBUG
  4657. for (int k = 0; k < nc; k++) {
  4658. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4659. UNUSED(x);
  4660. assert(!isnan(x));
  4661. assert(!isinf(x));
  4662. }
  4663. #endif
  4664. }
  4665. }
  4666. static void ggml_compute_forward_silu(
  4667. const struct ggml_compute_params * params,
  4668. const struct ggml_tensor * src0,
  4669. struct ggml_tensor * dst) {
  4670. switch (src0->type) {
  4671. case GGML_TYPE_F32:
  4672. {
  4673. ggml_compute_forward_silu_f32(params, src0, dst);
  4674. } break;
  4675. case GGML_TYPE_Q4_0:
  4676. case GGML_TYPE_Q4_1:
  4677. case GGML_TYPE_I8:
  4678. case GGML_TYPE_I16:
  4679. case GGML_TYPE_I32:
  4680. case GGML_TYPE_F16:
  4681. case GGML_TYPE_COUNT:
  4682. {
  4683. GGML_ASSERT(false);
  4684. } break;
  4685. }
  4686. }
  4687. // ggml_compute_forward_norm
  4688. static void ggml_compute_forward_norm_f32(
  4689. const struct ggml_compute_params * params,
  4690. const struct ggml_tensor * src0,
  4691. struct ggml_tensor * dst) {
  4692. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4693. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4694. return;
  4695. }
  4696. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4697. const int ith = params->ith;
  4698. const int nth = params->nth;
  4699. const int ne00 = src0->ne[0];
  4700. const int ne01 = src0->ne[1];
  4701. const int ne02 = src0->ne[2];
  4702. const int ne03 = src0->ne[3];
  4703. const size_t nb01 = src0->nb[1];
  4704. const size_t nb02 = src0->nb[2];
  4705. const size_t nb03 = src0->nb[3];
  4706. const size_t nb1 = dst->nb[1];
  4707. const size_t nb2 = dst->nb[2];
  4708. const size_t nb3 = dst->nb[3];
  4709. const float eps = 1e-5f; // TODO: make this a parameter
  4710. // TODO: optimize
  4711. for (int i03 = 0; i03 < ne03; i03++) {
  4712. for (int i02 = 0; i02 < ne02; i02++) {
  4713. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4714. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4715. ggml_float sum = 0.0;
  4716. for (int i00 = 0; i00 < ne00; i00++) {
  4717. sum += (ggml_float)x[i00];
  4718. }
  4719. float mean = sum/ne00;
  4720. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4721. ggml_float sum2 = 0.0;
  4722. for (int i00 = 0; i00 < ne00; i00++) {
  4723. float v = x[i00] - mean;
  4724. y[i00] = v;
  4725. sum2 += (ggml_float)(v*v);
  4726. }
  4727. float variance = sum2/ne00;
  4728. const float scale = 1.0f/sqrtf(variance + eps);
  4729. ggml_vec_scale_f32(ne00, y, scale);
  4730. }
  4731. }
  4732. }
  4733. }
  4734. static void ggml_compute_forward_norm(
  4735. const struct ggml_compute_params * params,
  4736. const struct ggml_tensor * src0,
  4737. struct ggml_tensor * dst) {
  4738. switch (src0->type) {
  4739. case GGML_TYPE_F32:
  4740. {
  4741. ggml_compute_forward_norm_f32(params, src0, dst);
  4742. } break;
  4743. case GGML_TYPE_Q4_0:
  4744. case GGML_TYPE_Q4_1:
  4745. case GGML_TYPE_I8:
  4746. case GGML_TYPE_I16:
  4747. case GGML_TYPE_I32:
  4748. case GGML_TYPE_F16:
  4749. case GGML_TYPE_COUNT:
  4750. {
  4751. GGML_ASSERT(false);
  4752. } break;
  4753. }
  4754. }
  4755. static void ggml_compute_forward_rms_norm_f32(
  4756. const struct ggml_compute_params * params,
  4757. const struct ggml_tensor * src0,
  4758. struct ggml_tensor * dst) {
  4759. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4760. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4761. return;
  4762. }
  4763. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4764. const int ith = params->ith;
  4765. const int nth = params->nth;
  4766. const int ne00 = src0->ne[0];
  4767. const int ne01 = src0->ne[1];
  4768. const int ne02 = src0->ne[2];
  4769. const int ne03 = src0->ne[3];
  4770. const size_t nb01 = src0->nb[1];
  4771. const size_t nb02 = src0->nb[2];
  4772. const size_t nb03 = src0->nb[3];
  4773. const size_t nb1 = dst->nb[1];
  4774. const size_t nb2 = dst->nb[2];
  4775. const size_t nb3 = dst->nb[3];
  4776. const float eps = 1e-6f; // TODO: make this a parameter
  4777. // TODO: optimize
  4778. for (int i03 = 0; i03 < ne03; i03++) {
  4779. for (int i02 = 0; i02 < ne02; i02++) {
  4780. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4781. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4782. ggml_float sum = 0.0;
  4783. for (int i00 = 0; i00 < ne00; i00++) {
  4784. sum += (ggml_float)(x[i00] * x[i00]);
  4785. }
  4786. float mean = sum/ne00;
  4787. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4788. memcpy(y, x, ne00 * sizeof(float));
  4789. // for (int i00 = 0; i00 < ne00; i00++) {
  4790. // y[i00] = x[i00];
  4791. // }
  4792. const float scale = 1.0f/sqrtf(mean + eps);
  4793. ggml_vec_scale_f32(ne00, y, scale);
  4794. }
  4795. }
  4796. }
  4797. }
  4798. static void ggml_compute_forward_rms_norm(
  4799. const struct ggml_compute_params * params,
  4800. const struct ggml_tensor * src0,
  4801. struct ggml_tensor * dst) {
  4802. switch (src0->type) {
  4803. case GGML_TYPE_F32:
  4804. {
  4805. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4806. } break;
  4807. case GGML_TYPE_Q4_0:
  4808. case GGML_TYPE_Q4_1:
  4809. case GGML_TYPE_I8:
  4810. case GGML_TYPE_I16:
  4811. case GGML_TYPE_I32:
  4812. case GGML_TYPE_F16:
  4813. case GGML_TYPE_COUNT:
  4814. {
  4815. GGML_ASSERT(false);
  4816. } break;
  4817. }
  4818. }
  4819. // ggml_compute_forward_mul_mat
  4820. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4821. // helper function to determine if it is better to use BLAS or not
  4822. // for large matrices, BLAS is faster
  4823. static bool ggml_compute_forward_mul_mat_use_blas(
  4824. const struct ggml_tensor * src0,
  4825. const struct ggml_tensor * src1,
  4826. struct ggml_tensor * dst) {
  4827. //const int ne00 = src0->ne[0];
  4828. //const int ne01 = src0->ne[1];
  4829. const int ne10 = src1->ne[0];
  4830. const int ne0 = dst->ne[0];
  4831. const int ne1 = dst->ne[1];
  4832. // TODO: find the optimal values for these
  4833. if (ggml_is_contiguous(src0) &&
  4834. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4835. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4836. return true;
  4837. }
  4838. return false;
  4839. }
  4840. #endif
  4841. static void ggml_compute_forward_mul_mat_f32(
  4842. const struct ggml_compute_params * params,
  4843. const struct ggml_tensor * src0,
  4844. const struct ggml_tensor * src1,
  4845. struct ggml_tensor * dst) {
  4846. int64_t t0 = ggml_perf_time_us();
  4847. UNUSED(t0);
  4848. const int ne00 = src0->ne[0];
  4849. const int ne01 = src0->ne[1];
  4850. const int ne02 = src0->ne[2];
  4851. const int ne03 = src0->ne[3];
  4852. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4853. const int ne10 = src1->ne[0];
  4854. #endif
  4855. const int ne11 = src1->ne[1];
  4856. #ifndef NDEBUG
  4857. const int ne12 = src1->ne[2];
  4858. const int ne13 = src1->ne[3];
  4859. const int ne0 = dst->ne[0];
  4860. const int ne1 = dst->ne[1];
  4861. const int ne2 = dst->ne[2];
  4862. const int ne3 = dst->ne[3];
  4863. const int nb00 = src0->nb[0];
  4864. #endif
  4865. const int nb01 = src0->nb[1];
  4866. const int nb02 = src0->nb[2];
  4867. const int nb03 = src0->nb[3];
  4868. #ifndef NDEBUG
  4869. const int nb10 = src1->nb[0];
  4870. #endif
  4871. const int nb11 = src1->nb[1];
  4872. const int nb12 = src1->nb[2];
  4873. const int nb13 = src1->nb[3];
  4874. const int nb0 = dst->nb[0];
  4875. const int nb1 = dst->nb[1];
  4876. const int nb2 = dst->nb[2];
  4877. const int nb3 = dst->nb[3];
  4878. const int ith = params->ith;
  4879. const int nth = params->nth;
  4880. assert(ne02 == ne12);
  4881. assert(ne03 == ne13);
  4882. assert(ne2 == ne12);
  4883. assert(ne3 == ne13);
  4884. // we don't support permuted src0 or src1
  4885. assert(nb00 == sizeof(float));
  4886. assert(nb10 == sizeof(float));
  4887. // dst cannot be transposed or permuted
  4888. assert(nb0 == sizeof(float));
  4889. assert(nb0 <= nb1);
  4890. assert(nb1 <= nb2);
  4891. assert(nb2 <= nb3);
  4892. assert(ne0 == ne01);
  4893. assert(ne1 == ne11);
  4894. assert(ne2 == ne02);
  4895. assert(ne3 == ne03);
  4896. // nb01 >= nb00 - src0 is not transposed
  4897. // compute by src0 rows
  4898. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4899. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4900. if (params->ith != 0) {
  4901. return;
  4902. }
  4903. if (params->type == GGML_TASK_INIT) {
  4904. return;
  4905. }
  4906. if (params->type == GGML_TASK_FINALIZE) {
  4907. return;
  4908. }
  4909. for (int i03 = 0; i03 < ne03; i03++) {
  4910. for (int i02 = 0; i02 < ne02; i02++) {
  4911. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4912. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4913. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4914. // zT = y * xT
  4915. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4916. ne11, ne01, ne10,
  4917. 1.0f, y, ne10,
  4918. x, ne10,
  4919. 0.0f, d, ne01);
  4920. }
  4921. }
  4922. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4923. return;
  4924. }
  4925. #endif
  4926. if (params->type == GGML_TASK_INIT) {
  4927. return;
  4928. }
  4929. if (params->type == GGML_TASK_FINALIZE) {
  4930. return;
  4931. }
  4932. // parallelize by src0 rows using ggml_vec_dot_f32
  4933. // total rows in src0
  4934. const int nr = ne01*ne02*ne03;
  4935. // rows per thread
  4936. const int dr = (nr + nth - 1)/nth;
  4937. // row range for this thread
  4938. const int ir0 = dr*ith;
  4939. const int ir1 = MIN(ir0 + dr, nr);
  4940. for (int ir = ir0; ir < ir1; ++ir) {
  4941. // src0 indices
  4942. const int i03 = ir/(ne02*ne01);
  4943. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4944. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4945. for (int ic = 0; ic < ne11; ++ic) {
  4946. // src1 indices
  4947. const int i13 = i03;
  4948. const int i12 = i02;
  4949. const int i11 = ic;
  4950. // dst indices
  4951. const int i0 = i01;
  4952. const int i1 = i11;
  4953. const int i2 = i02;
  4954. const int i3 = i03;
  4955. ggml_vec_dot_f32(ne00,
  4956. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4957. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4958. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4959. }
  4960. }
  4961. //int64_t t1 = ggml_perf_time_us();
  4962. //static int64_t acc = 0;
  4963. //acc += t1 - t0;
  4964. //if (t1 - t0 > 10) {
  4965. // printf("\n");
  4966. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4967. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4968. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4969. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4970. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4971. //}
  4972. }
  4973. static void ggml_compute_forward_mul_mat_f16_f32(
  4974. const struct ggml_compute_params * params,
  4975. const struct ggml_tensor * src0,
  4976. const struct ggml_tensor * src1,
  4977. struct ggml_tensor * dst) {
  4978. int64_t t0 = ggml_perf_time_us();
  4979. UNUSED(t0);
  4980. const int ne00 = src0->ne[0];
  4981. const int ne01 = src0->ne[1];
  4982. const int ne02 = src0->ne[2];
  4983. const int ne03 = src0->ne[3];
  4984. const int ne10 = src1->ne[0];
  4985. const int ne11 = src1->ne[1];
  4986. const int ne12 = src1->ne[2];
  4987. const int ne13 = src1->ne[3];
  4988. const int ne0 = dst->ne[0];
  4989. const int ne1 = dst->ne[1];
  4990. const int ne2 = dst->ne[2];
  4991. const int ne3 = dst->ne[3];
  4992. //const int ne = ne0*ne1*ne2*ne3;
  4993. const int nb00 = src0->nb[0];
  4994. const int nb01 = src0->nb[1];
  4995. const int nb02 = src0->nb[2];
  4996. const int nb03 = src0->nb[3];
  4997. const int nb10 = src1->nb[0];
  4998. const int nb11 = src1->nb[1];
  4999. const int nb12 = src1->nb[2];
  5000. const int nb13 = src1->nb[3];
  5001. const int nb0 = dst->nb[0];
  5002. const int nb1 = dst->nb[1];
  5003. const int nb2 = dst->nb[2];
  5004. const int nb3 = dst->nb[3];
  5005. const int ith = params->ith;
  5006. const int nth = params->nth;
  5007. GGML_ASSERT(ne02 == ne12);
  5008. GGML_ASSERT(ne03 == ne13);
  5009. GGML_ASSERT(ne2 == ne12);
  5010. GGML_ASSERT(ne3 == ne13);
  5011. // TODO: we don't support permuted src0
  5012. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5013. // dst cannot be transposed or permuted
  5014. GGML_ASSERT(nb0 == sizeof(float));
  5015. GGML_ASSERT(nb0 <= nb1);
  5016. GGML_ASSERT(nb1 <= nb2);
  5017. GGML_ASSERT(nb2 <= nb3);
  5018. GGML_ASSERT(ne0 == ne01);
  5019. GGML_ASSERT(ne1 == ne11);
  5020. GGML_ASSERT(ne2 == ne02);
  5021. GGML_ASSERT(ne3 == ne03);
  5022. // nb01 >= nb00 - src0 is not transposed
  5023. // compute by src0 rows
  5024. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5025. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5026. GGML_ASSERT(nb10 == sizeof(float));
  5027. if (params->ith != 0) {
  5028. return;
  5029. }
  5030. if (params->type == GGML_TASK_INIT) {
  5031. return;
  5032. }
  5033. if (params->type == GGML_TASK_FINALIZE) {
  5034. return;
  5035. }
  5036. float * const wdata = params->wdata;
  5037. for (int i03 = 0; i03 < ne03; i03++) {
  5038. for (int i02 = 0; i02 < ne02; i02++) {
  5039. {
  5040. size_t id = 0;
  5041. for (int i01 = 0; i01 < ne01; ++i01) {
  5042. for (int i00 = 0; i00 < ne00; ++i00) {
  5043. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5044. }
  5045. }
  5046. }
  5047. const float * x = wdata;
  5048. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5049. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5050. // zT = y * xT
  5051. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5052. ne11, ne01, ne10,
  5053. 1.0f, y, ne10,
  5054. x, ne10,
  5055. 0.0f, d, ne01);
  5056. }
  5057. }
  5058. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5059. return;
  5060. }
  5061. #endif
  5062. if (params->type == GGML_TASK_INIT) {
  5063. ggml_fp16_t * const wdata = params->wdata;
  5064. size_t id = 0;
  5065. for (int i13 = 0; i13 < ne13; ++i13) {
  5066. for (int i12 = 0; i12 < ne12; ++i12) {
  5067. for (int i11 = 0; i11 < ne11; ++i11) {
  5068. for (int i10 = 0; i10 < ne10; ++i10) {
  5069. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5070. }
  5071. }
  5072. }
  5073. }
  5074. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5075. return;
  5076. }
  5077. if (params->type == GGML_TASK_FINALIZE) {
  5078. return;
  5079. }
  5080. // fp16 -> half the size, so divide by 2
  5081. // TODO: do not support transposed src1
  5082. assert(nb10/2 == sizeof(ggml_fp16_t));
  5083. // parallelize by src0 rows using ggml_vec_dot_f16
  5084. // total rows in src0
  5085. const int nr = ne01*ne02*ne03;
  5086. // rows per thread
  5087. const int dr = (nr + nth - 1)/nth;
  5088. // row range for this thread
  5089. const int ir0 = dr*ith;
  5090. const int ir1 = MIN(ir0 + dr, nr);
  5091. ggml_fp16_t * wdata = params->wdata;
  5092. for (int ir = ir0; ir < ir1; ++ir) {
  5093. // src0 indices
  5094. const int i03 = ir/(ne02*ne01);
  5095. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5096. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5097. const int i13 = i03;
  5098. const int i12 = i02;
  5099. const int i0 = i01;
  5100. const int i2 = i02;
  5101. const int i3 = i03;
  5102. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5103. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5104. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5105. for (int ic = 0; ic < ne11; ++ic) {
  5106. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5107. }
  5108. }
  5109. //int64_t t1 = ggml_time_us();
  5110. //static int64_t acc = 0;
  5111. //acc += t1 - t0;
  5112. //if (t1 - t0 > 10) {
  5113. // printf("\n");
  5114. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5115. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5116. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5117. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5118. //}
  5119. }
  5120. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5121. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5122. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5123. typedef struct {
  5124. dequantize_row_q_t dequantize_row_q;
  5125. quantize_row_q_t quantize_row_q;
  5126. vec_dot_q_t vec_dot_q;
  5127. } quantize_fns_t;
  5128. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5129. [GGML_TYPE_Q4_0] = {
  5130. .dequantize_row_q = dequantize_row_q4_0,
  5131. .quantize_row_q = quantize_row_q4_0,
  5132. .vec_dot_q = ggml_vec_dot_q4_0,
  5133. },
  5134. [GGML_TYPE_Q4_1] = {
  5135. .dequantize_row_q = dequantize_row_q4_1,
  5136. .quantize_row_q = quantize_row_q4_1,
  5137. .vec_dot_q = ggml_vec_dot_q4_1,
  5138. },
  5139. };
  5140. static void ggml_compute_forward_mul_mat_q_f32(
  5141. const struct ggml_compute_params * params,
  5142. const struct ggml_tensor * src0,
  5143. const struct ggml_tensor * src1,
  5144. struct ggml_tensor * dst) {
  5145. int64_t t0 = ggml_perf_time_us();
  5146. UNUSED(t0);
  5147. const int ne00 = src0->ne[0];
  5148. const int ne01 = src0->ne[1];
  5149. const int ne02 = src0->ne[2];
  5150. const int ne03 = src0->ne[3];
  5151. const int ne10 = src1->ne[0];
  5152. const int ne11 = src1->ne[1];
  5153. const int ne12 = src1->ne[2];
  5154. const int ne13 = src1->ne[3];
  5155. const int ne0 = dst->ne[0];
  5156. const int ne1 = dst->ne[1];
  5157. const int ne2 = dst->ne[2];
  5158. const int ne3 = dst->ne[3];
  5159. const int nb00 = src0->nb[0];
  5160. const int nb01 = src0->nb[1];
  5161. const int nb02 = src0->nb[2];
  5162. const int nb03 = src0->nb[3];
  5163. const int nb10 = src1->nb[0];
  5164. const int nb11 = src1->nb[1];
  5165. const int nb12 = src1->nb[2];
  5166. const int nb13 = src1->nb[3];
  5167. const int nb0 = dst->nb[0];
  5168. const int nb1 = dst->nb[1];
  5169. const int nb2 = dst->nb[2];
  5170. const int nb3 = dst->nb[3];
  5171. const int ith = params->ith;
  5172. const int nth = params->nth;
  5173. GGML_ASSERT(ne02 == ne12);
  5174. GGML_ASSERT(ne03 == ne13);
  5175. GGML_ASSERT(ne2 == ne12);
  5176. GGML_ASSERT(ne3 == ne13);
  5177. const enum ggml_type type = src0->type;
  5178. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5179. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5180. // we don't support permuted src0 or src1
  5181. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5182. GGML_ASSERT(nb10 == sizeof(float));
  5183. // dst cannot be transposed or permuted
  5184. GGML_ASSERT(nb0 == sizeof(float));
  5185. GGML_ASSERT(nb0 <= nb1);
  5186. GGML_ASSERT(nb1 <= nb2);
  5187. GGML_ASSERT(nb2 <= nb3);
  5188. GGML_ASSERT(ne0 == ne01);
  5189. GGML_ASSERT(ne1 == ne11);
  5190. GGML_ASSERT(ne2 == ne02);
  5191. GGML_ASSERT(ne3 == ne03);
  5192. // nb01 >= nb00 - src0 is not transposed
  5193. // compute by src0 rows
  5194. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5195. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5196. if (params->ith != 0) {
  5197. return;
  5198. }
  5199. if (params->type == GGML_TASK_INIT) {
  5200. return;
  5201. }
  5202. if (params->type == GGML_TASK_FINALIZE) {
  5203. return;
  5204. }
  5205. float * const wdata = params->wdata;
  5206. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5207. for (int i03 = 0; i03 < ne03; i03++) {
  5208. for (int i02 = 0; i02 < ne02; i02++) {
  5209. {
  5210. size_t id = 0;
  5211. for (int i01 = 0; i01 < ne01; ++i01) {
  5212. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5213. id += ne00;
  5214. }
  5215. }
  5216. const float * x = wdata;
  5217. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5218. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5219. // zT = y * xT
  5220. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5221. ne11, ne01, ne10,
  5222. 1.0f, y, ne10,
  5223. x, ne10,
  5224. 0.0f, d, ne01);
  5225. }
  5226. }
  5227. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5228. return;
  5229. }
  5230. #endif
  5231. if (params->type == GGML_TASK_INIT) {
  5232. char * wdata = params->wdata;
  5233. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5234. for (int i13 = 0; i13 < ne13; ++i13) {
  5235. for (int i12 = 0; i12 < ne12; ++i12) {
  5236. for (int i11 = 0; i11 < ne11; ++i11) {
  5237. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5238. wdata += row_size;
  5239. }
  5240. }
  5241. }
  5242. return;
  5243. }
  5244. if (params->type == GGML_TASK_FINALIZE) {
  5245. return;
  5246. }
  5247. // parallelize by src0 rows using ggml_vec_dot_q
  5248. // total rows in src0
  5249. const int nr = ne01*ne02*ne03;
  5250. // rows per thread
  5251. const int dr = (nr + nth - 1)/nth;
  5252. // row range for this thread
  5253. const int ir0 = dr*ith;
  5254. const int ir1 = MIN(ir0 + dr, nr);
  5255. void * wdata = params->wdata;
  5256. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5257. for (int ir = ir0; ir < ir1; ++ir) {
  5258. // src0 indices
  5259. const int i03 = ir/(ne02*ne01);
  5260. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5261. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5262. const int i13 = i03;
  5263. const int i12 = i02;
  5264. const int i0 = i01;
  5265. const int i2 = i02;
  5266. const int i3 = i03;
  5267. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5268. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5269. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5270. assert(ne00 % 32 == 0);
  5271. for (int ic = 0; ic < ne11; ++ic) {
  5272. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5273. }
  5274. }
  5275. //int64_t t1 = ggml_time_us();
  5276. //static int64_t acc = 0;
  5277. //acc += t1 - t0;
  5278. //if (t1 - t0 > 10) {
  5279. // printf("\n");
  5280. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5281. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5282. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5283. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5284. //}
  5285. }
  5286. static void ggml_compute_forward_mul_mat(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. const struct ggml_tensor * src1,
  5290. struct ggml_tensor * dst) {
  5291. switch (src0->type) {
  5292. case GGML_TYPE_Q4_0:
  5293. case GGML_TYPE_Q4_1:
  5294. {
  5295. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5296. } break;
  5297. case GGML_TYPE_F16:
  5298. {
  5299. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5300. } break;
  5301. case GGML_TYPE_F32:
  5302. {
  5303. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5304. } break;
  5305. case GGML_TYPE_I8:
  5306. case GGML_TYPE_I16:
  5307. case GGML_TYPE_I32:
  5308. case GGML_TYPE_COUNT:
  5309. {
  5310. GGML_ASSERT(false);
  5311. } break;
  5312. }
  5313. #if 0
  5314. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5315. static int first = 8;
  5316. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5317. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5318. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5319. if (first) {
  5320. --first;
  5321. } else {
  5322. for (int k = 0; k < dst->ne[1]; ++k) {
  5323. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5324. for (int i = 0; i < 16; ++i) {
  5325. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5326. }
  5327. printf("\n");
  5328. }
  5329. printf("\n");
  5330. }
  5331. printf("\n");
  5332. exit(0);
  5333. }
  5334. } else {
  5335. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5336. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5337. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5338. }
  5339. #endif
  5340. }
  5341. // ggml_compute_forward_scale
  5342. static void ggml_compute_forward_scale_f32(
  5343. const struct ggml_compute_params * params,
  5344. const struct ggml_tensor * src0,
  5345. const struct ggml_tensor * src1,
  5346. struct ggml_tensor * dst) {
  5347. GGML_ASSERT(ggml_is_contiguous(src0));
  5348. GGML_ASSERT(ggml_is_contiguous(dst));
  5349. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5350. GGML_ASSERT(ggml_is_scalar(src1));
  5351. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5352. return;
  5353. }
  5354. // scale factor
  5355. const float v = *(float *) src1->data;
  5356. const int ith = params->ith;
  5357. const int nth = params->nth;
  5358. const int nc = src0->ne[0];
  5359. const int nr = ggml_nrows(src0);
  5360. // rows per thread
  5361. const int dr = (nr + nth - 1)/nth;
  5362. // row range for this thread
  5363. const int ir0 = dr*ith;
  5364. const int ir1 = MIN(ir0 + dr, nr);
  5365. for (int i1 = ir0; i1 < ir1; i1++) {
  5366. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5367. }
  5368. }
  5369. static void ggml_compute_forward_scale(
  5370. const struct ggml_compute_params * params,
  5371. const struct ggml_tensor * src0,
  5372. const struct ggml_tensor * src1,
  5373. struct ggml_tensor * dst) {
  5374. switch (src0->type) {
  5375. case GGML_TYPE_F32:
  5376. {
  5377. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5378. } break;
  5379. case GGML_TYPE_Q4_0:
  5380. case GGML_TYPE_Q4_1:
  5381. case GGML_TYPE_I8:
  5382. case GGML_TYPE_I16:
  5383. case GGML_TYPE_I32:
  5384. case GGML_TYPE_F16:
  5385. case GGML_TYPE_COUNT:
  5386. {
  5387. GGML_ASSERT(false);
  5388. } break;
  5389. }
  5390. }
  5391. // ggml_compute_forward_cpy
  5392. static void ggml_compute_forward_cpy(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0,
  5395. struct ggml_tensor * dst) {
  5396. ggml_compute_forward_dup(params, src0, dst);
  5397. }
  5398. // ggml_compute_forward_reshape
  5399. static void ggml_compute_forward_reshape(
  5400. const struct ggml_compute_params * params,
  5401. const struct ggml_tensor * src0,
  5402. struct ggml_tensor * dst) {
  5403. // NOP
  5404. UNUSED(params);
  5405. UNUSED(src0);
  5406. UNUSED(dst);
  5407. }
  5408. // ggml_compute_forward_view
  5409. static void ggml_compute_forward_view(
  5410. const struct ggml_compute_params * params,
  5411. const struct ggml_tensor * src0) {
  5412. // NOP
  5413. UNUSED(params);
  5414. UNUSED(src0);
  5415. }
  5416. // ggml_compute_forward_permute
  5417. static void ggml_compute_forward_permute(
  5418. const struct ggml_compute_params * params,
  5419. const struct ggml_tensor * src0) {
  5420. // NOP
  5421. UNUSED(params);
  5422. UNUSED(src0);
  5423. }
  5424. // ggml_compute_forward_transpose
  5425. static void ggml_compute_forward_transpose(
  5426. const struct ggml_compute_params * params,
  5427. const struct ggml_tensor * src0) {
  5428. // NOP
  5429. UNUSED(params);
  5430. UNUSED(src0);
  5431. }
  5432. // ggml_compute_forward_get_rows
  5433. static void ggml_compute_forward_get_rows_q(
  5434. const struct ggml_compute_params * params,
  5435. const struct ggml_tensor * src0,
  5436. const struct ggml_tensor * src1,
  5437. struct ggml_tensor * dst) {
  5438. assert(params->ith == 0);
  5439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5440. return;
  5441. }
  5442. const int nc = src0->ne[0];
  5443. const int nr = ggml_nelements(src1);
  5444. const enum ggml_type type = src0->type;
  5445. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5446. assert( dst->ne[0] == nc);
  5447. assert( dst->ne[1] == nr);
  5448. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5449. for (int i = 0; i < nr; ++i) {
  5450. const int r = ((int32_t *) src1->data)[i];
  5451. dequantize_row_q(
  5452. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5453. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5454. }
  5455. }
  5456. static void ggml_compute_forward_get_rows_f16(
  5457. const struct ggml_compute_params * params,
  5458. const struct ggml_tensor * src0,
  5459. const struct ggml_tensor * src1,
  5460. struct ggml_tensor * dst) {
  5461. assert(params->ith == 0);
  5462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5463. return;
  5464. }
  5465. const int nc = src0->ne[0];
  5466. const int nr = ggml_nelements(src1);
  5467. assert( dst->ne[0] == nc);
  5468. assert( dst->ne[1] == nr);
  5469. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5470. for (int i = 0; i < nr; ++i) {
  5471. const int r = ((int32_t *) src1->data)[i];
  5472. for (int j = 0; j < nc; ++j) {
  5473. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5474. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5475. }
  5476. }
  5477. }
  5478. static void ggml_compute_forward_get_rows_f32(
  5479. const struct ggml_compute_params * params,
  5480. const struct ggml_tensor * src0,
  5481. const struct ggml_tensor * src1,
  5482. struct ggml_tensor * dst) {
  5483. assert(params->ith == 0);
  5484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5485. return;
  5486. }
  5487. const int nc = src0->ne[0];
  5488. const int nr = ggml_nelements(src1);
  5489. assert( dst->ne[0] == nc);
  5490. assert( dst->ne[1] == nr);
  5491. assert(src0->nb[0] == sizeof(float));
  5492. for (int i = 0; i < nr; ++i) {
  5493. const int r = ((int32_t *) src1->data)[i];
  5494. ggml_vec_cpy_f32(nc,
  5495. (float *) ((char *) dst->data + i*dst->nb[1]),
  5496. (float *) ((char *) src0->data + r*src0->nb[1]));
  5497. }
  5498. }
  5499. static void ggml_compute_forward_get_rows(
  5500. const struct ggml_compute_params * params,
  5501. const struct ggml_tensor * src0,
  5502. const struct ggml_tensor * src1,
  5503. struct ggml_tensor * dst) {
  5504. switch (src0->type) {
  5505. case GGML_TYPE_Q4_0:
  5506. case GGML_TYPE_Q4_1:
  5507. {
  5508. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5509. } break;
  5510. case GGML_TYPE_F16:
  5511. {
  5512. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5513. } break;
  5514. case GGML_TYPE_F32:
  5515. {
  5516. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5517. } break;
  5518. case GGML_TYPE_I8:
  5519. case GGML_TYPE_I16:
  5520. case GGML_TYPE_I32:
  5521. case GGML_TYPE_COUNT:
  5522. {
  5523. GGML_ASSERT(false);
  5524. } break;
  5525. }
  5526. //static bool first = true;
  5527. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5528. //if (first) {
  5529. // first = false;
  5530. //} else {
  5531. // for (int k = 0; k < dst->ne[1]; ++k) {
  5532. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5533. // for (int i = 0; i < 16; ++i) {
  5534. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5535. // }
  5536. // printf("\n");
  5537. // }
  5538. // printf("\n");
  5539. // }
  5540. // printf("\n");
  5541. // exit(0);
  5542. //}
  5543. }
  5544. // ggml_compute_forward_diag_mask_inf
  5545. static void ggml_compute_forward_diag_mask_inf_f32(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0,
  5548. const struct ggml_tensor * src1,
  5549. struct ggml_tensor * dst) {
  5550. assert(params->ith == 0);
  5551. assert(src1->type == GGML_TYPE_I32);
  5552. assert(ggml_nelements(src1) == 1);
  5553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5554. return;
  5555. }
  5556. const int n_past = ((int32_t *) src1->data)[0];
  5557. // TODO: handle transposed/permuted matrices
  5558. const int n = ggml_nrows(src0);
  5559. const int nc = src0->ne[0];
  5560. const int nr = src0->ne[1];
  5561. const int nz = n/nr;
  5562. assert( dst->nb[0] == sizeof(float));
  5563. assert(src0->nb[0] == sizeof(float));
  5564. for (int k = 0; k < nz; k++) {
  5565. for (int j = 0; j < nr; j++) {
  5566. for (int i = n_past; i < nc; i++) {
  5567. if (i > n_past + j) {
  5568. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5569. }
  5570. }
  5571. }
  5572. }
  5573. }
  5574. static void ggml_compute_forward_diag_mask_inf(
  5575. const struct ggml_compute_params * params,
  5576. const struct ggml_tensor * src0,
  5577. const struct ggml_tensor * src1,
  5578. struct ggml_tensor * dst) {
  5579. switch (src0->type) {
  5580. case GGML_TYPE_F32:
  5581. {
  5582. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5583. } break;
  5584. case GGML_TYPE_Q4_0:
  5585. case GGML_TYPE_Q4_1:
  5586. case GGML_TYPE_I8:
  5587. case GGML_TYPE_I16:
  5588. case GGML_TYPE_I32:
  5589. case GGML_TYPE_F16:
  5590. case GGML_TYPE_COUNT:
  5591. {
  5592. GGML_ASSERT(false);
  5593. } break;
  5594. }
  5595. }
  5596. // ggml_compute_forward_soft_max
  5597. static void ggml_compute_forward_soft_max_f32(
  5598. const struct ggml_compute_params * params,
  5599. const struct ggml_tensor * src0,
  5600. struct ggml_tensor * dst) {
  5601. GGML_ASSERT(ggml_is_contiguous(src0));
  5602. GGML_ASSERT(ggml_is_contiguous(dst));
  5603. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5605. return;
  5606. }
  5607. // TODO: handle transposed/permuted matrices
  5608. const int ith = params->ith;
  5609. const int nth = params->nth;
  5610. const int nc = src0->ne[0];
  5611. const int nr = ggml_nrows(src0);
  5612. // rows per thread
  5613. const int dr = (nr + nth - 1)/nth;
  5614. // row range for this thread
  5615. const int ir0 = dr*ith;
  5616. const int ir1 = MIN(ir0 + dr, nr);
  5617. for (int i1 = ir0; i1 < ir1; i1++) {
  5618. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5619. #ifndef NDEBUG
  5620. for (int i = 0; i < nc; ++i) {
  5621. //printf("p[%d] = %f\n", i, p[i]);
  5622. assert(!isnan(p[i]));
  5623. }
  5624. #endif
  5625. float max = -INFINITY;
  5626. ggml_vec_max_f32(nc, &max, p);
  5627. ggml_float sum = 0.0;
  5628. uint16_t scvt;
  5629. for (int i = 0; i < nc; i++) {
  5630. if (p[i] == -INFINITY) {
  5631. p[i] = 0.0f;
  5632. } else {
  5633. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5634. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5635. memcpy(&scvt, &s, sizeof(scvt));
  5636. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5637. sum += (ggml_float)val;
  5638. p[i] = val;
  5639. }
  5640. }
  5641. assert(sum > 0.0);
  5642. sum = 1.0/sum;
  5643. ggml_vec_scale_f32(nc, p, sum);
  5644. #ifndef NDEBUG
  5645. for (int i = 0; i < nc; ++i) {
  5646. assert(!isnan(p[i]));
  5647. assert(!isinf(p[i]));
  5648. }
  5649. #endif
  5650. }
  5651. }
  5652. static void ggml_compute_forward_soft_max(
  5653. const struct ggml_compute_params * params,
  5654. const struct ggml_tensor * src0,
  5655. struct ggml_tensor * dst) {
  5656. switch (src0->type) {
  5657. case GGML_TYPE_F32:
  5658. {
  5659. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5660. } break;
  5661. case GGML_TYPE_Q4_0:
  5662. case GGML_TYPE_Q4_1:
  5663. case GGML_TYPE_I8:
  5664. case GGML_TYPE_I16:
  5665. case GGML_TYPE_I32:
  5666. case GGML_TYPE_F16:
  5667. case GGML_TYPE_COUNT:
  5668. {
  5669. GGML_ASSERT(false);
  5670. } break;
  5671. }
  5672. }
  5673. // ggml_compute_forward_rope
  5674. static void ggml_compute_forward_rope_f32(
  5675. const struct ggml_compute_params * params,
  5676. const struct ggml_tensor * src0,
  5677. const struct ggml_tensor * src1,
  5678. struct ggml_tensor * dst) {
  5679. assert(params->ith == 0);
  5680. assert(src1->type == GGML_TYPE_I32);
  5681. assert(ggml_nelements(src1) == 3);
  5682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5683. return;
  5684. }
  5685. const int n_past = ((int32_t *) src1->data)[0];
  5686. const int n_dims = ((int32_t *) src1->data)[1];
  5687. const int mode = ((int32_t *) src1->data)[2];
  5688. //const int ne0 = src0->ne[0];
  5689. const int ne1 = src0->ne[1];
  5690. const int ne2 = src0->ne[2];
  5691. const int ne3 = src0->ne[3];
  5692. const int nb0 = src0->nb[0];
  5693. const int nb1 = src0->nb[1];
  5694. const int nb2 = src0->nb[2];
  5695. const int nb3 = src0->nb[3];
  5696. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5697. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5698. assert(nb0 == sizeof(float));
  5699. // TODO: optimize
  5700. for (int i3 = 0; i3 < ne3; i3++) {
  5701. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5702. const int p = (mode == 0 ? n_past + i2 : i2);
  5703. for (int i1 = 0; i1 < ne1; i1++) {
  5704. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5705. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5706. const float cos_theta = cosf(p*theta);
  5707. const float sin_theta = sinf(p*theta);
  5708. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5709. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5710. const float x0 = src[0];
  5711. const float x1 = src[1];
  5712. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5713. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. static void ggml_compute_forward_rope_f16(
  5720. const struct ggml_compute_params * params,
  5721. const struct ggml_tensor * src0,
  5722. const struct ggml_tensor * src1,
  5723. struct ggml_tensor * dst) {
  5724. assert(params->ith == 0);
  5725. assert(src1->type == GGML_TYPE_I32);
  5726. assert(ggml_nelements(src1) == 3);
  5727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5728. return;
  5729. }
  5730. const int n_past = ((int32_t *) src1->data)[0];
  5731. const int n_dims = ((int32_t *) src1->data)[1];
  5732. const int mode = ((int32_t *) src1->data)[2];
  5733. //const int ne0 = src0->ne[0];
  5734. const int ne1 = src0->ne[1];
  5735. const int ne2 = src0->ne[2];
  5736. const int ne3 = src0->ne[3];
  5737. const int nb0 = src0->nb[0];
  5738. const int nb1 = src0->nb[1];
  5739. const int nb2 = src0->nb[2];
  5740. const int nb3 = src0->nb[3];
  5741. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5742. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5743. assert(nb0 == sizeof(ggml_fp16_t));
  5744. for (int i3 = 0; i3 < ne3; i3++) {
  5745. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5746. const int p = (mode == 0 ? n_past + i2 : i2);
  5747. for (int i1 = 0; i1 < ne1; i1++) {
  5748. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5749. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5750. const float cos_theta = cosf(p*theta);
  5751. const float sin_theta = sinf(p*theta);
  5752. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5753. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5754. const float x0 = ggml_fp16_to_fp32(src[0]);
  5755. const float x1 = ggml_fp16_to_fp32(src[1]);
  5756. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5757. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5758. }
  5759. }
  5760. }
  5761. }
  5762. }
  5763. static void ggml_compute_forward_rope(
  5764. const struct ggml_compute_params * params,
  5765. const struct ggml_tensor * src0,
  5766. const struct ggml_tensor * src1,
  5767. struct ggml_tensor * dst) {
  5768. switch (src0->type) {
  5769. case GGML_TYPE_F16:
  5770. {
  5771. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5772. } break;
  5773. case GGML_TYPE_F32:
  5774. {
  5775. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5776. } break;
  5777. case GGML_TYPE_Q4_0:
  5778. case GGML_TYPE_Q4_1:
  5779. case GGML_TYPE_I8:
  5780. case GGML_TYPE_I16:
  5781. case GGML_TYPE_I32:
  5782. case GGML_TYPE_COUNT:
  5783. {
  5784. GGML_ASSERT(false);
  5785. } break;
  5786. }
  5787. }
  5788. // ggml_compute_forward_conv_1d_1s
  5789. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5790. const struct ggml_compute_params * params,
  5791. const struct ggml_tensor * src0,
  5792. const struct ggml_tensor * src1,
  5793. struct ggml_tensor * dst) {
  5794. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5795. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5796. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5797. int64_t t0 = ggml_perf_time_us();
  5798. UNUSED(t0);
  5799. const int ne00 = src0->ne[0];
  5800. const int ne01 = src0->ne[1];
  5801. const int ne02 = src0->ne[2];
  5802. //const int ne03 = src0->ne[3];
  5803. const int ne10 = src1->ne[0];
  5804. const int ne11 = src1->ne[1];
  5805. //const int ne12 = src1->ne[2];
  5806. //const int ne13 = src1->ne[3];
  5807. //const int ne0 = dst->ne[0];
  5808. //const int ne1 = dst->ne[1];
  5809. //const int ne2 = dst->ne[2];
  5810. //const int ne3 = dst->ne[3];
  5811. //const int ne = ne0*ne1*ne2*ne3;
  5812. const int nb00 = src0->nb[0];
  5813. const int nb01 = src0->nb[1];
  5814. const int nb02 = src0->nb[2];
  5815. //const int nb03 = src0->nb[3];
  5816. const int nb10 = src1->nb[0];
  5817. const int nb11 = src1->nb[1];
  5818. //const int nb12 = src1->nb[2];
  5819. //const int nb13 = src1->nb[3];
  5820. //const int nb0 = dst->nb[0];
  5821. const int nb1 = dst->nb[1];
  5822. //const int nb2 = dst->nb[2];
  5823. //const int nb3 = dst->nb[3];
  5824. const int ith = params->ith;
  5825. const int nth = params->nth;
  5826. const int nk = ne00;
  5827. const int nh = nk/2;
  5828. const int ew0 = ggml_up32(ne01);
  5829. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5830. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5831. GGML_ASSERT(nb10 == sizeof(float));
  5832. if (params->type == GGML_TASK_INIT) {
  5833. // TODO: fix this memset (wsize is overestimated)
  5834. memset(params->wdata, 0, params->wsize);
  5835. // prepare kernel data (src0)
  5836. {
  5837. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5838. for (int i02 = 0; i02 < ne02; i02++) {
  5839. for (int i01 = 0; i01 < ne01; i01++) {
  5840. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5841. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5842. for (int i00 = 0; i00 < ne00; i00++) {
  5843. dst_data[i00*ew0 + i01] = src[i00];
  5844. }
  5845. }
  5846. }
  5847. }
  5848. // prepare source data (src1)
  5849. {
  5850. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5851. for (int i11 = 0; i11 < ne11; i11++) {
  5852. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5853. ggml_fp16_t * dst_data = wdata;
  5854. for (int i10 = 0; i10 < ne10; i10++) {
  5855. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5856. }
  5857. }
  5858. }
  5859. return;
  5860. }
  5861. if (params->type == GGML_TASK_FINALIZE) {
  5862. return;
  5863. }
  5864. // total rows in dst
  5865. const int nr = ne02;
  5866. // rows per thread
  5867. const int dr = (nr + nth - 1)/nth;
  5868. // row range for this thread
  5869. const int ir0 = dr*ith;
  5870. const int ir1 = MIN(ir0 + dr, nr);
  5871. for (int i1 = ir0; i1 < ir1; i1++) {
  5872. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5873. for (int i0 = 0; i0 < ne10; ++i0) {
  5874. dst_data[i0] = 0;
  5875. for (int k = -nh; k <= nh; k++) {
  5876. float v = 0.0f;
  5877. ggml_vec_dot_f16(ew0, &v,
  5878. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5879. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5880. dst_data[i0] += v;
  5881. }
  5882. }
  5883. }
  5884. }
  5885. static void ggml_compute_forward_conv_1d_1s_f32(
  5886. const struct ggml_compute_params * params,
  5887. const struct ggml_tensor * src0,
  5888. const struct ggml_tensor * src1,
  5889. struct ggml_tensor * dst) {
  5890. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5891. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5892. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5893. int64_t t0 = ggml_perf_time_us();
  5894. UNUSED(t0);
  5895. const int ne00 = src0->ne[0];
  5896. const int ne01 = src0->ne[1];
  5897. const int ne02 = src0->ne[2];
  5898. //const int ne03 = src0->ne[3];
  5899. const int ne10 = src1->ne[0];
  5900. const int ne11 = src1->ne[1];
  5901. //const int ne12 = src1->ne[2];
  5902. //const int ne13 = src1->ne[3];
  5903. //const int ne0 = dst->ne[0];
  5904. //const int ne1 = dst->ne[1];
  5905. //const int ne2 = dst->ne[2];
  5906. //const int ne3 = dst->ne[3];
  5907. //const int ne = ne0*ne1*ne2*ne3;
  5908. const int nb00 = src0->nb[0];
  5909. const int nb01 = src0->nb[1];
  5910. const int nb02 = src0->nb[2];
  5911. //const int nb03 = src0->nb[3];
  5912. const int nb10 = src1->nb[0];
  5913. const int nb11 = src1->nb[1];
  5914. //const int nb12 = src1->nb[2];
  5915. //const int nb13 = src1->nb[3];
  5916. //const int nb0 = dst->nb[0];
  5917. const int nb1 = dst->nb[1];
  5918. //const int nb2 = dst->nb[2];
  5919. //const int nb3 = dst->nb[3];
  5920. const int ith = params->ith;
  5921. const int nth = params->nth;
  5922. const int nk = ne00;
  5923. const int nh = nk/2;
  5924. const int ew0 = ggml_up32(ne01);
  5925. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5926. GGML_ASSERT(nb00 == sizeof(float));
  5927. GGML_ASSERT(nb10 == sizeof(float));
  5928. if (params->type == GGML_TASK_INIT) {
  5929. // TODO: fix this memset (wsize is overestimated)
  5930. memset(params->wdata, 0, params->wsize);
  5931. // prepare kernel data (src0)
  5932. {
  5933. float * const wdata = (float *) params->wdata + 0;
  5934. for (int i02 = 0; i02 < ne02; i02++) {
  5935. for (int i01 = 0; i01 < ne01; i01++) {
  5936. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5937. float * dst_data = wdata + i02*ew0*ne00;
  5938. for (int i00 = 0; i00 < ne00; i00++) {
  5939. dst_data[i00*ew0 + i01] = src[i00];
  5940. }
  5941. }
  5942. }
  5943. }
  5944. // prepare source data (src1)
  5945. {
  5946. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5947. for (int i11 = 0; i11 < ne11; i11++) {
  5948. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5949. float * dst_data = wdata;
  5950. for (int i10 = 0; i10 < ne10; i10++) {
  5951. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5952. }
  5953. }
  5954. }
  5955. return;
  5956. }
  5957. if (params->type == GGML_TASK_FINALIZE) {
  5958. return;
  5959. }
  5960. // total rows in dst
  5961. const int nr = ne02;
  5962. // rows per thread
  5963. const int dr = (nr + nth - 1)/nth;
  5964. // row range for this thread
  5965. const int ir0 = dr*ith;
  5966. const int ir1 = MIN(ir0 + dr, nr);
  5967. for (int i1 = ir0; i1 < ir1; i1++) {
  5968. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5969. for (int i0 = 0; i0 < ne10; ++i0) {
  5970. dst_data[i0] = 0;
  5971. for (int k = -nh; k <= nh; k++) {
  5972. float v = 0.0f;
  5973. ggml_vec_dot_f32(ew0, &v,
  5974. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5975. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5976. dst_data[i0] += v;
  5977. }
  5978. }
  5979. }
  5980. }
  5981. static void ggml_compute_forward_conv_1d_1s(
  5982. const struct ggml_compute_params * params,
  5983. const struct ggml_tensor * src0,
  5984. const struct ggml_tensor * src1,
  5985. struct ggml_tensor * dst) {
  5986. switch (src0->type) {
  5987. case GGML_TYPE_F16:
  5988. {
  5989. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5990. } break;
  5991. case GGML_TYPE_F32:
  5992. {
  5993. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5994. } break;
  5995. case GGML_TYPE_Q4_0:
  5996. case GGML_TYPE_Q4_1:
  5997. case GGML_TYPE_I8:
  5998. case GGML_TYPE_I16:
  5999. case GGML_TYPE_I32:
  6000. case GGML_TYPE_COUNT:
  6001. {
  6002. GGML_ASSERT(false);
  6003. } break;
  6004. }
  6005. }
  6006. // ggml_compute_forward_conv_1d_2s
  6007. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6008. const struct ggml_compute_params * params,
  6009. const struct ggml_tensor * src0,
  6010. const struct ggml_tensor * src1,
  6011. struct ggml_tensor * dst) {
  6012. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6013. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6014. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6015. int64_t t0 = ggml_perf_time_us();
  6016. UNUSED(t0);
  6017. const int ne00 = src0->ne[0];
  6018. const int ne01 = src0->ne[1];
  6019. const int ne02 = src0->ne[2];
  6020. //const int ne03 = src0->ne[3];
  6021. const int ne10 = src1->ne[0];
  6022. const int ne11 = src1->ne[1];
  6023. //const int ne12 = src1->ne[2];
  6024. //const int ne13 = src1->ne[3];
  6025. //const int ne0 = dst->ne[0];
  6026. //const int ne1 = dst->ne[1];
  6027. //const int ne2 = dst->ne[2];
  6028. //const int ne3 = dst->ne[3];
  6029. //const int ne = ne0*ne1*ne2*ne3;
  6030. const int nb00 = src0->nb[0];
  6031. const int nb01 = src0->nb[1];
  6032. const int nb02 = src0->nb[2];
  6033. //const int nb03 = src0->nb[3];
  6034. const int nb10 = src1->nb[0];
  6035. const int nb11 = src1->nb[1];
  6036. //const int nb12 = src1->nb[2];
  6037. //const int nb13 = src1->nb[3];
  6038. //const int nb0 = dst->nb[0];
  6039. const int nb1 = dst->nb[1];
  6040. //const int nb2 = dst->nb[2];
  6041. //const int nb3 = dst->nb[3];
  6042. const int ith = params->ith;
  6043. const int nth = params->nth;
  6044. const int nk = ne00;
  6045. const int nh = nk/2;
  6046. const int ew0 = ggml_up32(ne01);
  6047. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6048. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6049. GGML_ASSERT(nb10 == sizeof(float));
  6050. if (params->type == GGML_TASK_INIT) {
  6051. // TODO: fix this memset (wsize is overestimated)
  6052. memset(params->wdata, 0, params->wsize);
  6053. // prepare kernel data (src0)
  6054. {
  6055. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6056. for (int i02 = 0; i02 < ne02; i02++) {
  6057. for (int i01 = 0; i01 < ne01; i01++) {
  6058. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6059. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6060. for (int i00 = 0; i00 < ne00; i00++) {
  6061. dst_data[i00*ew0 + i01] = src[i00];
  6062. }
  6063. }
  6064. }
  6065. }
  6066. // prepare source data (src1)
  6067. {
  6068. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6069. for (int i11 = 0; i11 < ne11; i11++) {
  6070. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6071. ggml_fp16_t * dst_data = wdata;
  6072. for (int i10 = 0; i10 < ne10; i10++) {
  6073. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6074. }
  6075. }
  6076. }
  6077. return;
  6078. }
  6079. if (params->type == GGML_TASK_FINALIZE) {
  6080. return;
  6081. }
  6082. // total rows in dst
  6083. const int nr = ne02;
  6084. // rows per thread
  6085. const int dr = (nr + nth - 1)/nth;
  6086. // row range for this thread
  6087. const int ir0 = dr*ith;
  6088. const int ir1 = MIN(ir0 + dr, nr);
  6089. for (int i1 = ir0; i1 < ir1; i1++) {
  6090. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6091. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6092. dst_data[i0/2] = 0;
  6093. for (int k = -nh; k <= nh; k++) {
  6094. float v = 0.0f;
  6095. ggml_vec_dot_f16(ew0, &v,
  6096. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6097. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6098. dst_data[i0/2] += v;
  6099. }
  6100. }
  6101. }
  6102. }
  6103. static void ggml_compute_forward_conv_1d_2s_f32(
  6104. const struct ggml_compute_params * params,
  6105. const struct ggml_tensor * src0,
  6106. const struct ggml_tensor * src1,
  6107. struct ggml_tensor * dst) {
  6108. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6109. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6110. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6111. int64_t t0 = ggml_perf_time_us();
  6112. UNUSED(t0);
  6113. const int ne00 = src0->ne[0];
  6114. const int ne01 = src0->ne[1];
  6115. const int ne02 = src0->ne[2];
  6116. //const int ne03 = src0->ne[3];
  6117. const int ne10 = src1->ne[0];
  6118. const int ne11 = src1->ne[1];
  6119. //const int ne12 = src1->ne[2];
  6120. //const int ne13 = src1->ne[3];
  6121. //const int ne0 = dst->ne[0];
  6122. //const int ne1 = dst->ne[1];
  6123. //const int ne2 = dst->ne[2];
  6124. //const int ne3 = dst->ne[3];
  6125. //const int ne = ne0*ne1*ne2*ne3;
  6126. const int nb00 = src0->nb[0];
  6127. const int nb01 = src0->nb[1];
  6128. const int nb02 = src0->nb[2];
  6129. //const int nb03 = src0->nb[3];
  6130. const int nb10 = src1->nb[0];
  6131. const int nb11 = src1->nb[1];
  6132. //const int nb12 = src1->nb[2];
  6133. //const int nb13 = src1->nb[3];
  6134. //const int nb0 = dst->nb[0];
  6135. const int nb1 = dst->nb[1];
  6136. //const int nb2 = dst->nb[2];
  6137. //const int nb3 = dst->nb[3];
  6138. const int ith = params->ith;
  6139. const int nth = params->nth;
  6140. const int nk = ne00;
  6141. const int nh = nk/2;
  6142. const int ew0 = ggml_up32(ne01);
  6143. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6144. GGML_ASSERT(nb00 == sizeof(float));
  6145. GGML_ASSERT(nb10 == sizeof(float));
  6146. if (params->type == GGML_TASK_INIT) {
  6147. // TODO: fix this memset (wsize is overestimated)
  6148. memset(params->wdata, 0, params->wsize);
  6149. // prepare kernel data (src0)
  6150. {
  6151. float * const wdata = (float *) params->wdata + 0;
  6152. for (int i02 = 0; i02 < ne02; i02++) {
  6153. for (int i01 = 0; i01 < ne01; i01++) {
  6154. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6155. float * dst_data = wdata + i02*ew0*ne00;
  6156. for (int i00 = 0; i00 < ne00; i00++) {
  6157. dst_data[i00*ew0 + i01] = src[i00];
  6158. }
  6159. }
  6160. }
  6161. }
  6162. // prepare source data (src1)
  6163. {
  6164. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6165. for (int i11 = 0; i11 < ne11; i11++) {
  6166. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6167. float * dst_data = wdata;
  6168. for (int i10 = 0; i10 < ne10; i10++) {
  6169. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6170. }
  6171. }
  6172. }
  6173. return;
  6174. }
  6175. if (params->type == GGML_TASK_FINALIZE) {
  6176. return;
  6177. }
  6178. // total rows in dst
  6179. const int nr = ne02;
  6180. // rows per thread
  6181. const int dr = (nr + nth - 1)/nth;
  6182. // row range for this thread
  6183. const int ir0 = dr*ith;
  6184. const int ir1 = MIN(ir0 + dr, nr);
  6185. for (int i1 = ir0; i1 < ir1; i1++) {
  6186. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6187. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6188. dst_data[i0/2] = 0;
  6189. for (int k = -nh; k <= nh; k++) {
  6190. float v = 0.0f;
  6191. ggml_vec_dot_f32(ew0, &v,
  6192. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6193. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6194. dst_data[i0/2] += v;
  6195. }
  6196. }
  6197. }
  6198. }
  6199. static void ggml_compute_forward_conv_1d_2s(
  6200. const struct ggml_compute_params * params,
  6201. const struct ggml_tensor * src0,
  6202. const struct ggml_tensor * src1,
  6203. struct ggml_tensor * dst) {
  6204. switch (src0->type) {
  6205. case GGML_TYPE_F16:
  6206. {
  6207. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6208. } break;
  6209. case GGML_TYPE_F32:
  6210. {
  6211. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6212. } break;
  6213. case GGML_TYPE_Q4_0:
  6214. case GGML_TYPE_Q4_1:
  6215. case GGML_TYPE_I8:
  6216. case GGML_TYPE_I16:
  6217. case GGML_TYPE_I32:
  6218. case GGML_TYPE_COUNT:
  6219. {
  6220. GGML_ASSERT(false);
  6221. } break;
  6222. }
  6223. }
  6224. // ggml_compute_forward_flash_attn
  6225. static void ggml_compute_forward_flash_attn_f32(
  6226. const struct ggml_compute_params * params,
  6227. const struct ggml_tensor * q,
  6228. const struct ggml_tensor * k,
  6229. const struct ggml_tensor * v,
  6230. const bool masked,
  6231. struct ggml_tensor * dst) {
  6232. int64_t t0 = ggml_perf_time_us();
  6233. UNUSED(t0);
  6234. const int neq0 = q->ne[0];
  6235. const int neq1 = q->ne[1];
  6236. const int neq2 = q->ne[2];
  6237. const int neq3 = q->ne[3];
  6238. const int nek0 = k->ne[0];
  6239. const int nek1 = k->ne[1];
  6240. //const int nek2 = k->ne[2];
  6241. //const int nek3 = k->ne[3];
  6242. //const int nev0 = v->ne[0];
  6243. const int nev1 = v->ne[1];
  6244. //const int nev2 = v->ne[2];
  6245. //const int nev3 = v->ne[3];
  6246. const int ne0 = dst->ne[0];
  6247. const int ne1 = dst->ne[1];
  6248. //const int ne2 = dst->ne[2];
  6249. //const int ne3 = dst->ne[3];
  6250. const int nbk0 = k->nb[0];
  6251. const int nbk1 = k->nb[1];
  6252. const int nbk2 = k->nb[2];
  6253. const int nbk3 = k->nb[3];
  6254. const int nbq0 = q->nb[0];
  6255. const int nbq1 = q->nb[1];
  6256. const int nbq2 = q->nb[2];
  6257. const int nbq3 = q->nb[3];
  6258. const int nbv0 = v->nb[0];
  6259. const int nbv1 = v->nb[1];
  6260. const int nbv2 = v->nb[2];
  6261. const int nbv3 = v->nb[3];
  6262. const int nb0 = dst->nb[0];
  6263. const int nb1 = dst->nb[1];
  6264. const int nb2 = dst->nb[2];
  6265. const int nb3 = dst->nb[3];
  6266. const int ith = params->ith;
  6267. const int nth = params->nth;
  6268. const int D = neq0;
  6269. const int N = neq1;
  6270. const int P = nek1 - N;
  6271. const int M = P + N;
  6272. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6273. GGML_ASSERT(ne0 == D);
  6274. GGML_ASSERT(ne1 == N);
  6275. GGML_ASSERT(P >= 0);
  6276. GGML_ASSERT(nbq0 == sizeof(float));
  6277. GGML_ASSERT(nbk0 == sizeof(float));
  6278. GGML_ASSERT(nbv0 == sizeof(float));
  6279. GGML_ASSERT(neq0 == D);
  6280. GGML_ASSERT(nek0 == D);
  6281. GGML_ASSERT(nev1 == D);
  6282. GGML_ASSERT(neq1 == N);
  6283. GGML_ASSERT(nek1 == N + P);
  6284. GGML_ASSERT(nev1 == D);
  6285. // dst cannot be transposed or permuted
  6286. GGML_ASSERT(nb0 == sizeof(float));
  6287. GGML_ASSERT(nb0 <= nb1);
  6288. GGML_ASSERT(nb1 <= nb2);
  6289. GGML_ASSERT(nb2 <= nb3);
  6290. if (params->type == GGML_TASK_INIT) {
  6291. return;
  6292. }
  6293. if (params->type == GGML_TASK_FINALIZE) {
  6294. return;
  6295. }
  6296. // parallelize by q rows using ggml_vec_dot_f32
  6297. // total rows in q
  6298. const int nr = neq1*neq2*neq3;
  6299. // rows per thread
  6300. const int dr = (nr + nth - 1)/nth;
  6301. // row range for this thread
  6302. const int ir0 = dr*ith;
  6303. const int ir1 = MIN(ir0 + dr, nr);
  6304. const float scale = 1.0f/sqrtf(D);
  6305. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6306. for (int ir = ir0; ir < ir1; ++ir) {
  6307. // q indices
  6308. const int iq3 = ir/(neq2*neq1);
  6309. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6310. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6311. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6312. for (int i = M; i < Mup; ++i) {
  6313. S[i] = -INFINITY;
  6314. }
  6315. for (int ic = 0; ic < nek1; ++ic) {
  6316. // k indices
  6317. const int ik3 = iq3;
  6318. const int ik2 = iq2;
  6319. const int ik1 = ic;
  6320. // S indices
  6321. const int i1 = ik1;
  6322. ggml_vec_dot_f32(neq0,
  6323. S + i1,
  6324. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6325. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6326. }
  6327. // scale
  6328. ggml_vec_scale_f32(nek1, S, scale);
  6329. if (masked) {
  6330. for (int i = P; i < M; i++) {
  6331. if (i > P + iq1) {
  6332. S[i] = -INFINITY;
  6333. }
  6334. }
  6335. }
  6336. // softmax
  6337. {
  6338. float max = -INFINITY;
  6339. ggml_vec_max_f32(M, &max, S);
  6340. ggml_float sum = 0.0;
  6341. {
  6342. #ifdef GGML_SOFT_MAX_ACCELERATE
  6343. max = -max;
  6344. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6345. vvexpf(S, S, &Mup);
  6346. ggml_vec_sum_f32(Mup, &sum, S);
  6347. #else
  6348. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6349. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6350. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6351. float * SS = S + i;
  6352. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6353. if (SS[j] == -INFINITY) {
  6354. SS[j] = 0.0f;
  6355. } else {
  6356. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6357. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6358. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6359. sump[j] += (ggml_float)val;
  6360. SS[j] = val;
  6361. }
  6362. }
  6363. }
  6364. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6365. sum += sump[i];
  6366. }
  6367. #endif
  6368. }
  6369. assert(sum > 0.0);
  6370. sum = 1.0/sum;
  6371. ggml_vec_scale_f32(M, S, sum);
  6372. #ifndef NDEBUG
  6373. for (int i = 0; i < M; ++i) {
  6374. assert(!isnan(S[i]));
  6375. assert(!isinf(S[i]));
  6376. }
  6377. #endif
  6378. }
  6379. for (int ic = 0; ic < nev1; ++ic) {
  6380. // dst indices
  6381. const int i1 = iq1;
  6382. const int i2 = iq2;
  6383. const int i3 = iq3;
  6384. ggml_vec_dot_f32(nek1,
  6385. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6386. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6387. S);
  6388. }
  6389. }
  6390. }
  6391. static void ggml_compute_forward_flash_attn_f16(
  6392. const struct ggml_compute_params * params,
  6393. const struct ggml_tensor * q,
  6394. const struct ggml_tensor * k,
  6395. const struct ggml_tensor * v,
  6396. const bool masked,
  6397. struct ggml_tensor * dst) {
  6398. int64_t t0 = ggml_perf_time_us();
  6399. UNUSED(t0);
  6400. const int neq0 = q->ne[0];
  6401. const int neq1 = q->ne[1];
  6402. const int neq2 = q->ne[2];
  6403. const int neq3 = q->ne[3];
  6404. const int nek0 = k->ne[0];
  6405. const int nek1 = k->ne[1];
  6406. //const int nek2 = k->ne[2];
  6407. //const int nek3 = k->ne[3];
  6408. //const int nev0 = v->ne[0];
  6409. const int nev1 = v->ne[1];
  6410. //const int nev2 = v->ne[2];
  6411. //const int nev3 = v->ne[3];
  6412. const int ne0 = dst->ne[0];
  6413. const int ne1 = dst->ne[1];
  6414. //const int ne2 = dst->ne[2];
  6415. //const int ne3 = dst->ne[3];
  6416. const int nbk0 = k->nb[0];
  6417. const int nbk1 = k->nb[1];
  6418. const int nbk2 = k->nb[2];
  6419. const int nbk3 = k->nb[3];
  6420. const int nbq0 = q->nb[0];
  6421. const int nbq1 = q->nb[1];
  6422. const int nbq2 = q->nb[2];
  6423. const int nbq3 = q->nb[3];
  6424. const int nbv0 = v->nb[0];
  6425. const int nbv1 = v->nb[1];
  6426. const int nbv2 = v->nb[2];
  6427. const int nbv3 = v->nb[3];
  6428. const int nb0 = dst->nb[0];
  6429. const int nb1 = dst->nb[1];
  6430. const int nb2 = dst->nb[2];
  6431. const int nb3 = dst->nb[3];
  6432. const int ith = params->ith;
  6433. const int nth = params->nth;
  6434. const int D = neq0;
  6435. const int N = neq1;
  6436. const int P = nek1 - N;
  6437. const int M = P + N;
  6438. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6439. GGML_ASSERT(ne0 == D);
  6440. GGML_ASSERT(ne1 == N);
  6441. GGML_ASSERT(P >= 0);
  6442. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6443. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6444. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6445. GGML_ASSERT(neq0 == D);
  6446. GGML_ASSERT(nek0 == D);
  6447. GGML_ASSERT(nev1 == D);
  6448. GGML_ASSERT(neq1 == N);
  6449. GGML_ASSERT(nek1 == N + P);
  6450. GGML_ASSERT(nev1 == D);
  6451. // dst cannot be transposed or permuted
  6452. GGML_ASSERT(nb0 == sizeof(float));
  6453. GGML_ASSERT(nb0 <= nb1);
  6454. GGML_ASSERT(nb1 <= nb2);
  6455. GGML_ASSERT(nb2 <= nb3);
  6456. if (params->type == GGML_TASK_INIT) {
  6457. return;
  6458. }
  6459. if (params->type == GGML_TASK_FINALIZE) {
  6460. return;
  6461. }
  6462. // parallelize by q rows using ggml_vec_dot_f32
  6463. // total rows in q
  6464. const int nr = neq1*neq2*neq3;
  6465. // rows per thread
  6466. const int dr = (nr + nth - 1)/nth;
  6467. // row range for this thread
  6468. const int ir0 = dr*ith;
  6469. const int ir1 = MIN(ir0 + dr, nr);
  6470. const float scale = 1.0f/sqrtf(D);
  6471. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6472. for (int ir = ir0; ir < ir1; ++ir) {
  6473. // q indices
  6474. const int iq3 = ir/(neq2*neq1);
  6475. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6476. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6477. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6478. for (int i = M; i < Mup; ++i) {
  6479. S[i] = -INFINITY;
  6480. }
  6481. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6482. for (int ic = 0; ic < nek1; ++ic) {
  6483. // k indices
  6484. const int ik3 = iq3;
  6485. const int ik2 = iq2;
  6486. const int ik1 = ic;
  6487. // S indices
  6488. const int i1 = ik1;
  6489. ggml_vec_dot_f16(neq0,
  6490. S + i1,
  6491. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6492. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6493. }
  6494. } else {
  6495. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6496. // k indices
  6497. const int ik3 = iq3;
  6498. const int ik2 = iq2;
  6499. const int ik1 = ic;
  6500. // S indices
  6501. const int i1 = ik1;
  6502. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6503. S + i1,
  6504. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6505. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6506. }
  6507. }
  6508. // scale
  6509. ggml_vec_scale_f32(nek1, S, scale);
  6510. if (masked) {
  6511. for (int i = P; i < M; i++) {
  6512. if (i > P + iq1) {
  6513. S[i] = -INFINITY;
  6514. }
  6515. }
  6516. }
  6517. // softmax
  6518. {
  6519. float max = -INFINITY;
  6520. ggml_vec_max_f32(M, &max, S);
  6521. ggml_float sum = 0.0;
  6522. {
  6523. #ifdef GGML_SOFT_MAX_ACCELERATE
  6524. max = -max;
  6525. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6526. vvexpf(S, S, &Mup);
  6527. ggml_vec_sum_f32(Mup, &sum, S);
  6528. #else
  6529. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6530. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6531. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6532. float * SS = S + i;
  6533. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6534. if (SS[j] == -INFINITY) {
  6535. SS[j] = 0.0f;
  6536. } else {
  6537. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6538. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6539. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6540. sump[j] += (ggml_float)val;
  6541. SS[j] = val;
  6542. }
  6543. }
  6544. }
  6545. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6546. sum += sump[i];
  6547. }
  6548. #endif
  6549. }
  6550. assert(sum > 0.0);
  6551. sum = 1.0/sum;
  6552. ggml_vec_scale_f32(M, S, sum);
  6553. #ifndef NDEBUG
  6554. for (int i = 0; i < M; ++i) {
  6555. assert(!isnan(S[i]));
  6556. assert(!isinf(S[i]));
  6557. }
  6558. #endif
  6559. }
  6560. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6561. for (int i = 0; i < M; i++) {
  6562. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6563. }
  6564. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6565. for (int ic = 0; ic < nev1; ++ic) {
  6566. // dst indices
  6567. const int i1 = iq1;
  6568. const int i2 = iq2;
  6569. const int i3 = iq3;
  6570. ggml_vec_dot_f16(nek1,
  6571. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6572. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6573. S16);
  6574. }
  6575. } else {
  6576. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6577. // dst indices
  6578. const int i1 = iq1;
  6579. const int i2 = iq2;
  6580. const int i3 = iq3;
  6581. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6582. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6583. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6584. S16);
  6585. }
  6586. }
  6587. }
  6588. }
  6589. static void ggml_compute_forward_flash_attn(
  6590. const struct ggml_compute_params * params,
  6591. const struct ggml_tensor * q,
  6592. const struct ggml_tensor * k,
  6593. const struct ggml_tensor * v,
  6594. const bool masked,
  6595. struct ggml_tensor * dst) {
  6596. switch (q->type) {
  6597. case GGML_TYPE_F16:
  6598. {
  6599. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6600. } break;
  6601. case GGML_TYPE_F32:
  6602. {
  6603. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6604. } break;
  6605. case GGML_TYPE_Q4_0:
  6606. case GGML_TYPE_Q4_1:
  6607. case GGML_TYPE_I8:
  6608. case GGML_TYPE_I16:
  6609. case GGML_TYPE_I32:
  6610. case GGML_TYPE_COUNT:
  6611. {
  6612. GGML_ASSERT(false);
  6613. } break;
  6614. }
  6615. }
  6616. // ggml_compute_forward_flash_ff
  6617. static void ggml_compute_forward_flash_ff_f16(
  6618. const struct ggml_compute_params * params,
  6619. const struct ggml_tensor * a, // F16
  6620. const struct ggml_tensor * b0, // F16 fc_w
  6621. const struct ggml_tensor * b1, // F32 fc_b
  6622. const struct ggml_tensor * c0, // F16 proj_w
  6623. const struct ggml_tensor * c1, // F32 proj_b
  6624. struct ggml_tensor * dst) {
  6625. int64_t t0 = ggml_perf_time_us();
  6626. UNUSED(t0);
  6627. const int nea0 = a->ne[0];
  6628. const int nea1 = a->ne[1];
  6629. const int nea2 = a->ne[2];
  6630. const int nea3 = a->ne[3];
  6631. const int neb00 = b0->ne[0];
  6632. const int neb01 = b0->ne[1];
  6633. //const int neb02 = b0->ne[2];
  6634. //const int neb03 = b0->ne[3];
  6635. const int neb10 = b1->ne[0];
  6636. const int neb11 = b1->ne[1];
  6637. //const int neb12 = b1->ne[2];
  6638. //const int neb13 = b1->ne[3];
  6639. const int nec00 = c0->ne[0];
  6640. const int nec01 = c0->ne[1];
  6641. //const int nec02 = c0->ne[2];
  6642. //const int nec03 = c0->ne[3];
  6643. const int nec10 = c1->ne[0];
  6644. const int nec11 = c1->ne[1];
  6645. //const int nec12 = c1->ne[2];
  6646. //const int nec13 = c1->ne[3];
  6647. const int ne0 = dst->ne[0];
  6648. const int ne1 = dst->ne[1];
  6649. const int ne2 = dst->ne[2];
  6650. //const int ne3 = dst->ne[3];
  6651. const int nba0 = a->nb[0];
  6652. const int nba1 = a->nb[1];
  6653. const int nba2 = a->nb[2];
  6654. const int nba3 = a->nb[3];
  6655. const int nbb00 = b0->nb[0];
  6656. const int nbb01 = b0->nb[1];
  6657. const int nbb02 = b0->nb[2];
  6658. const int nbb03 = b0->nb[3];
  6659. const int nbb10 = b1->nb[0];
  6660. //const int nbb11 = b1->nb[1];
  6661. //const int nbb12 = b1->nb[2];
  6662. //const int nbb13 = b1->nb[3];
  6663. const int nbc00 = c0->nb[0];
  6664. const int nbc01 = c0->nb[1];
  6665. const int nbc02 = c0->nb[2];
  6666. const int nbc03 = c0->nb[3];
  6667. const int nbc10 = c1->nb[0];
  6668. //const int nbc11 = c1->nb[1];
  6669. //const int nbc12 = c1->nb[2];
  6670. //const int nbc13 = c1->nb[3];
  6671. const int nb0 = dst->nb[0];
  6672. const int nb1 = dst->nb[1];
  6673. const int nb2 = dst->nb[2];
  6674. const int nb3 = dst->nb[3];
  6675. const int ith = params->ith;
  6676. const int nth = params->nth;
  6677. const int D = nea0;
  6678. //const int N = nea1;
  6679. const int M = neb01;
  6680. GGML_ASSERT(ne0 == nea0);
  6681. GGML_ASSERT(ne1 == nea1);
  6682. GGML_ASSERT(ne2 == nea2);
  6683. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6684. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6685. GGML_ASSERT(nbb10 == sizeof(float));
  6686. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6687. GGML_ASSERT(nbc10 == sizeof(float));
  6688. GGML_ASSERT(neb00 == D);
  6689. GGML_ASSERT(neb01 == M);
  6690. GGML_ASSERT(neb10 == M);
  6691. GGML_ASSERT(neb11 == 1);
  6692. GGML_ASSERT(nec00 == M);
  6693. GGML_ASSERT(nec01 == D);
  6694. GGML_ASSERT(nec10 == D);
  6695. GGML_ASSERT(nec11 == 1);
  6696. // dst cannot be transposed or permuted
  6697. GGML_ASSERT(nb0 == sizeof(float));
  6698. GGML_ASSERT(nb0 <= nb1);
  6699. GGML_ASSERT(nb1 <= nb2);
  6700. GGML_ASSERT(nb2 <= nb3);
  6701. if (params->type == GGML_TASK_INIT) {
  6702. return;
  6703. }
  6704. if (params->type == GGML_TASK_FINALIZE) {
  6705. return;
  6706. }
  6707. // parallelize by a rows using ggml_vec_dot_f32
  6708. // total rows in a
  6709. const int nr = nea1*nea2*nea3;
  6710. // rows per thread
  6711. const int dr = (nr + nth - 1)/nth;
  6712. // row range for this thread
  6713. const int ir0 = dr*ith;
  6714. const int ir1 = MIN(ir0 + dr, nr);
  6715. for (int ir = ir0; ir < ir1; ++ir) {
  6716. // a indices
  6717. const int ia3 = ir/(nea2*nea1);
  6718. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6719. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6720. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6721. for (int ic = 0; ic < neb01; ++ic) {
  6722. // b0 indices
  6723. const int ib03 = ia3;
  6724. const int ib02 = ia2;
  6725. const int ib01 = ic;
  6726. // S indices
  6727. const int i1 = ib01;
  6728. ggml_vec_dot_f16(nea0,
  6729. S + i1,
  6730. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6731. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6732. }
  6733. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6734. //ggml_vec_gelu_f32(neb01, S, S);
  6735. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6736. for (int i = 0; i < M; i++) {
  6737. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6738. }
  6739. ggml_vec_gelu_f16(neb01, S16, S16);
  6740. {
  6741. // dst indices
  6742. const int i1 = ia1;
  6743. const int i2 = ia2;
  6744. const int i3 = ia3;
  6745. for (int ic = 0; ic < nec01; ++ic) {
  6746. ggml_vec_dot_f16(neb01,
  6747. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6748. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6749. S16);
  6750. }
  6751. ggml_vec_add_f32(nec01,
  6752. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6753. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6754. (float *) c1->data);
  6755. }
  6756. }
  6757. }
  6758. static void ggml_compute_forward_flash_ff(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * a,
  6761. const struct ggml_tensor * b0,
  6762. const struct ggml_tensor * b1,
  6763. const struct ggml_tensor * c0,
  6764. const struct ggml_tensor * c1,
  6765. struct ggml_tensor * dst) {
  6766. switch (b0->type) {
  6767. case GGML_TYPE_F16:
  6768. {
  6769. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6770. } break;
  6771. case GGML_TYPE_F32:
  6772. {
  6773. GGML_ASSERT(false); // TODO
  6774. } break;
  6775. case GGML_TYPE_Q4_0:
  6776. case GGML_TYPE_Q4_1:
  6777. case GGML_TYPE_I8:
  6778. case GGML_TYPE_I16:
  6779. case GGML_TYPE_I32:
  6780. case GGML_TYPE_COUNT:
  6781. {
  6782. GGML_ASSERT(false);
  6783. } break;
  6784. }
  6785. }
  6786. /////////////////////////////////
  6787. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6788. GGML_ASSERT(params);
  6789. switch (tensor->op) {
  6790. case GGML_OP_DUP:
  6791. {
  6792. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6793. } break;
  6794. case GGML_OP_ADD:
  6795. {
  6796. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6797. } break;
  6798. case GGML_OP_SUB:
  6799. {
  6800. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6801. } break;
  6802. case GGML_OP_MUL:
  6803. {
  6804. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6805. } break;
  6806. case GGML_OP_DIV:
  6807. {
  6808. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6809. } break;
  6810. case GGML_OP_SQR:
  6811. {
  6812. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6813. } break;
  6814. case GGML_OP_SQRT:
  6815. {
  6816. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6817. } break;
  6818. case GGML_OP_SUM:
  6819. {
  6820. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6821. } break;
  6822. case GGML_OP_MEAN:
  6823. {
  6824. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6825. } break;
  6826. case GGML_OP_REPEAT:
  6827. {
  6828. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6829. } break;
  6830. case GGML_OP_ABS:
  6831. {
  6832. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6833. } break;
  6834. case GGML_OP_SGN:
  6835. {
  6836. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6837. } break;
  6838. case GGML_OP_NEG:
  6839. {
  6840. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6841. } break;
  6842. case GGML_OP_STEP:
  6843. {
  6844. ggml_compute_forward_step(params, tensor->src0, tensor);
  6845. } break;
  6846. case GGML_OP_RELU:
  6847. {
  6848. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6849. } break;
  6850. case GGML_OP_GELU:
  6851. {
  6852. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6853. } break;
  6854. case GGML_OP_SILU:
  6855. {
  6856. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6857. } break;
  6858. case GGML_OP_NORM:
  6859. {
  6860. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6861. } break;
  6862. case GGML_OP_RMS_NORM:
  6863. {
  6864. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6865. } break;
  6866. case GGML_OP_MUL_MAT:
  6867. {
  6868. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6869. } break;
  6870. case GGML_OP_SCALE:
  6871. {
  6872. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6873. } break;
  6874. case GGML_OP_CPY:
  6875. {
  6876. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6877. } break;
  6878. case GGML_OP_RESHAPE:
  6879. {
  6880. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6881. } break;
  6882. case GGML_OP_VIEW:
  6883. {
  6884. ggml_compute_forward_view(params, tensor->src0);
  6885. } break;
  6886. case GGML_OP_PERMUTE:
  6887. {
  6888. ggml_compute_forward_permute(params, tensor->src0);
  6889. } break;
  6890. case GGML_OP_TRANSPOSE:
  6891. {
  6892. ggml_compute_forward_transpose(params, tensor->src0);
  6893. } break;
  6894. case GGML_OP_GET_ROWS:
  6895. {
  6896. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6897. } break;
  6898. case GGML_OP_DIAG_MASK_INF:
  6899. {
  6900. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6901. } break;
  6902. case GGML_OP_SOFT_MAX:
  6903. {
  6904. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6905. } break;
  6906. case GGML_OP_ROPE:
  6907. {
  6908. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6909. } break;
  6910. case GGML_OP_CONV_1D_1S:
  6911. {
  6912. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6913. } break;
  6914. case GGML_OP_CONV_1D_2S:
  6915. {
  6916. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6917. } break;
  6918. case GGML_OP_FLASH_ATTN:
  6919. {
  6920. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6921. GGML_ASSERT(t == 0 || t == 1);
  6922. bool masked = t != 0;
  6923. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6924. } break;
  6925. case GGML_OP_FLASH_FF:
  6926. {
  6927. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6928. } break;
  6929. case GGML_OP_NONE:
  6930. {
  6931. // nop
  6932. } break;
  6933. case GGML_OP_COUNT:
  6934. {
  6935. GGML_ASSERT(false);
  6936. } break;
  6937. }
  6938. }
  6939. ////////////////////////////////////////////////////////////////////////////////
  6940. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6941. struct ggml_tensor * src0 = tensor->src0;
  6942. struct ggml_tensor * src1 = tensor->src1;
  6943. switch (tensor->op) {
  6944. case GGML_OP_DUP:
  6945. {
  6946. if (src0->grad) {
  6947. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6948. }
  6949. } break;
  6950. case GGML_OP_ADD:
  6951. {
  6952. if (src0->grad) {
  6953. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6954. }
  6955. if (src1->grad) {
  6956. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6957. }
  6958. } break;
  6959. case GGML_OP_SUB:
  6960. {
  6961. if (src0->grad) {
  6962. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6963. }
  6964. if (src1->grad) {
  6965. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6966. }
  6967. } break;
  6968. case GGML_OP_MUL:
  6969. {
  6970. if (src0->grad) {
  6971. src0->grad =
  6972. ggml_add_impl(ctx,
  6973. src0->grad,
  6974. ggml_mul(ctx, src1, tensor->grad),
  6975. inplace);
  6976. }
  6977. if (src1->grad) {
  6978. src1->grad =
  6979. ggml_add_impl(ctx,
  6980. src1->grad,
  6981. ggml_mul(ctx, src0, tensor->grad),
  6982. inplace);
  6983. }
  6984. } break;
  6985. case GGML_OP_DIV:
  6986. {
  6987. if (src0->grad) {
  6988. src0->grad =
  6989. ggml_add_impl(ctx,
  6990. src0->grad,
  6991. ggml_div(ctx, tensor->grad, src1),
  6992. inplace);
  6993. }
  6994. if (src1->grad) {
  6995. src1->grad =
  6996. ggml_sub_impl(ctx,
  6997. src1->grad,
  6998. ggml_mul(ctx,
  6999. tensor->grad,
  7000. ggml_div(ctx, tensor, src1)),
  7001. inplace);
  7002. }
  7003. } break;
  7004. case GGML_OP_SQR:
  7005. {
  7006. if (src0->grad) {
  7007. src0->grad =
  7008. ggml_add_impl(ctx,
  7009. src0->grad,
  7010. ggml_mul(ctx,
  7011. ggml_mul(ctx, src0, tensor->grad),
  7012. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7013. inplace);
  7014. }
  7015. } break;
  7016. case GGML_OP_SQRT:
  7017. {
  7018. if (src0->grad) {
  7019. src0->grad =
  7020. ggml_add_impl(ctx,
  7021. src0->grad,
  7022. ggml_div(ctx,
  7023. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7024. tensor),
  7025. inplace);
  7026. }
  7027. } break;
  7028. case GGML_OP_SUM:
  7029. {
  7030. if (src0->grad) {
  7031. src0->grad =
  7032. ggml_add_impl(ctx,
  7033. src0->grad,
  7034. ggml_repeat(ctx, tensor->grad, src0->grad),
  7035. inplace);
  7036. }
  7037. } break;
  7038. case GGML_OP_MEAN:
  7039. {
  7040. GGML_ASSERT(false); // TODO: implement
  7041. } break;
  7042. case GGML_OP_REPEAT:
  7043. {
  7044. if (src0->grad) {
  7045. src0->grad =
  7046. ggml_add_impl(ctx,
  7047. src0->grad,
  7048. ggml_sum(ctx, tensor->grad),
  7049. inplace);
  7050. }
  7051. } break;
  7052. case GGML_OP_ABS:
  7053. {
  7054. if (src0->grad) {
  7055. src0->grad =
  7056. ggml_add_impl(ctx,
  7057. src0->grad,
  7058. ggml_mul(ctx,
  7059. ggml_sgn(ctx, src0),
  7060. tensor->grad),
  7061. inplace);
  7062. }
  7063. } break;
  7064. case GGML_OP_SGN:
  7065. {
  7066. if (src0->grad) {
  7067. // noop
  7068. }
  7069. } break;
  7070. case GGML_OP_NEG:
  7071. {
  7072. if (src0->grad) {
  7073. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7074. }
  7075. } break;
  7076. case GGML_OP_STEP:
  7077. {
  7078. if (src0->grad) {
  7079. // noop
  7080. }
  7081. } break;
  7082. case GGML_OP_RELU:
  7083. {
  7084. if (src0->grad) {
  7085. src0->grad = ggml_sub_impl(ctx,
  7086. src0->grad,
  7087. ggml_mul(ctx,
  7088. ggml_step(ctx, src0),
  7089. tensor->grad),
  7090. inplace);
  7091. }
  7092. } break;
  7093. case GGML_OP_GELU:
  7094. {
  7095. GGML_ASSERT(false); // TODO: not implemented
  7096. } break;
  7097. case GGML_OP_SILU:
  7098. {
  7099. GGML_ASSERT(false); // TODO: not implemented
  7100. } break;
  7101. case GGML_OP_NORM:
  7102. {
  7103. GGML_ASSERT(false); // TODO: not implemented
  7104. } break;
  7105. case GGML_OP_RMS_NORM:
  7106. {
  7107. GGML_ASSERT(false); // TODO: not implemented
  7108. } break;
  7109. case GGML_OP_MUL_MAT:
  7110. {
  7111. if (src0->grad) {
  7112. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7113. GGML_ASSERT(false);
  7114. }
  7115. if (src1->grad) {
  7116. src1->grad =
  7117. ggml_add_impl(ctx,
  7118. src1->grad,
  7119. // TODO: fix transpose, the node will break the graph connections
  7120. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7121. inplace);
  7122. }
  7123. } break;
  7124. case GGML_OP_SCALE:
  7125. {
  7126. GGML_ASSERT(false); // TODO: not implemented
  7127. } break;
  7128. case GGML_OP_CPY:
  7129. {
  7130. GGML_ASSERT(false); // TODO: not implemented
  7131. } break;
  7132. case GGML_OP_RESHAPE:
  7133. {
  7134. GGML_ASSERT(false); // TODO: not implemented
  7135. } break;
  7136. case GGML_OP_VIEW:
  7137. {
  7138. GGML_ASSERT(false); // not supported
  7139. } break;
  7140. case GGML_OP_PERMUTE:
  7141. {
  7142. GGML_ASSERT(false); // TODO: not implemented
  7143. } break;
  7144. case GGML_OP_TRANSPOSE:
  7145. {
  7146. GGML_ASSERT(false); // TODO: not implemented
  7147. } break;
  7148. case GGML_OP_GET_ROWS:
  7149. {
  7150. GGML_ASSERT(false); // TODO: not implemented
  7151. } break;
  7152. case GGML_OP_DIAG_MASK_INF:
  7153. {
  7154. GGML_ASSERT(false); // TODO: not implemented
  7155. } break;
  7156. case GGML_OP_SOFT_MAX:
  7157. {
  7158. GGML_ASSERT(false); // TODO: not implemented
  7159. } break;
  7160. case GGML_OP_ROPE:
  7161. {
  7162. GGML_ASSERT(false); // TODO: not implemented
  7163. } break;
  7164. case GGML_OP_CONV_1D_1S:
  7165. {
  7166. GGML_ASSERT(false); // TODO: not implemented
  7167. } break;
  7168. case GGML_OP_CONV_1D_2S:
  7169. {
  7170. GGML_ASSERT(false); // TODO: not implemented
  7171. } break;
  7172. case GGML_OP_FLASH_ATTN:
  7173. {
  7174. GGML_ASSERT(false); // not supported
  7175. } break;
  7176. case GGML_OP_FLASH_FF:
  7177. {
  7178. GGML_ASSERT(false); // not supported
  7179. } break;
  7180. case GGML_OP_NONE:
  7181. {
  7182. // nop
  7183. } break;
  7184. case GGML_OP_COUNT:
  7185. {
  7186. GGML_ASSERT(false);
  7187. } break;
  7188. }
  7189. }
  7190. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7191. if (node->grad == NULL) {
  7192. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7193. // it can also happen during forward pass, if the user performs computations with constants
  7194. if (node->op != GGML_OP_NONE) {
  7195. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7196. }
  7197. }
  7198. // check if already visited
  7199. for (int i = 0; i < cgraph->n_nodes; i++) {
  7200. if (cgraph->nodes[i] == node) {
  7201. return;
  7202. }
  7203. }
  7204. for (int i = 0; i < cgraph->n_leafs; i++) {
  7205. if (cgraph->leafs[i] == node) {
  7206. return;
  7207. }
  7208. }
  7209. if (node->src0) {
  7210. ggml_visit_parents(cgraph, node->src0);
  7211. }
  7212. if (node->src1) {
  7213. ggml_visit_parents(cgraph, node->src1);
  7214. }
  7215. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7216. if (node->opt[i]) {
  7217. ggml_visit_parents(cgraph, node->opt[i]);
  7218. }
  7219. }
  7220. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7221. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7222. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7223. cgraph->leafs[cgraph->n_leafs] = node;
  7224. cgraph->n_leafs++;
  7225. } else {
  7226. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7227. cgraph->nodes[cgraph->n_nodes] = node;
  7228. cgraph->grads[cgraph->n_nodes] = node->grad;
  7229. cgraph->n_nodes++;
  7230. }
  7231. }
  7232. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7233. if (!expand) {
  7234. cgraph->n_nodes = 0;
  7235. cgraph->n_leafs = 0;
  7236. }
  7237. const int n0 = cgraph->n_nodes;
  7238. UNUSED(n0);
  7239. ggml_visit_parents(cgraph, tensor);
  7240. const int n_new = cgraph->n_nodes - n0;
  7241. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7242. if (n_new > 0) {
  7243. // the last added node should always be starting point
  7244. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7245. }
  7246. }
  7247. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7248. ggml_build_forward_impl(cgraph, tensor, true);
  7249. }
  7250. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7251. struct ggml_cgraph result = {
  7252. /*.n_nodes =*/ 0,
  7253. /*.n_leafs =*/ 0,
  7254. /*.n_threads =*/ 0,
  7255. /*.work_size =*/ 0,
  7256. /*.work =*/ NULL,
  7257. /*.nodes =*/ { NULL },
  7258. /*.grads =*/ { NULL },
  7259. /*.leafs =*/ { NULL },
  7260. /*.perf_runs =*/ 0,
  7261. /*.perf_cycles =*/ 0,
  7262. /*.perf_time_us =*/ 0,
  7263. };
  7264. ggml_build_forward_impl(&result, tensor, false);
  7265. return result;
  7266. }
  7267. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7268. struct ggml_cgraph result = *gf;
  7269. GGML_ASSERT(gf->n_nodes > 0);
  7270. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7271. if (keep) {
  7272. for (int i = 0; i < gf->n_nodes; i++) {
  7273. struct ggml_tensor * node = gf->nodes[i];
  7274. if (node->grad) {
  7275. node->grad = ggml_dup_tensor(ctx, node);
  7276. gf->grads[i] = node->grad;
  7277. }
  7278. }
  7279. }
  7280. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7281. struct ggml_tensor * node = gf->nodes[i];
  7282. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7283. if (node->grad) {
  7284. ggml_compute_backward(ctx, node, keep);
  7285. }
  7286. }
  7287. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7288. struct ggml_tensor * node = gf->nodes[i];
  7289. if (node->is_param) {
  7290. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7291. ggml_build_forward_impl(&result, node->grad, true);
  7292. }
  7293. }
  7294. return result;
  7295. }
  7296. //
  7297. // thread data
  7298. //
  7299. // synchronization is done via busy loops
  7300. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7301. //
  7302. #ifdef __APPLE__
  7303. //#include <os/lock.h>
  7304. //
  7305. //typedef os_unfair_lock ggml_lock_t;
  7306. //
  7307. //#define ggml_lock_init(x) UNUSED(x)
  7308. //#define ggml_lock_destroy(x) UNUSED(x)
  7309. //#define ggml_lock_lock os_unfair_lock_lock
  7310. //#define ggml_lock_unlock os_unfair_lock_unlock
  7311. //
  7312. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7313. typedef int ggml_lock_t;
  7314. #define ggml_lock_init(x) UNUSED(x)
  7315. #define ggml_lock_destroy(x) UNUSED(x)
  7316. #define ggml_lock_lock(x) UNUSED(x)
  7317. #define ggml_lock_unlock(x) UNUSED(x)
  7318. #define GGML_LOCK_INITIALIZER 0
  7319. typedef pthread_t ggml_thread_t;
  7320. #define ggml_thread_create pthread_create
  7321. #define ggml_thread_join pthread_join
  7322. #else
  7323. //typedef pthread_spinlock_t ggml_lock_t;
  7324. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7325. //#define ggml_lock_destroy pthread_spin_destroy
  7326. //#define ggml_lock_lock pthread_spin_lock
  7327. //#define ggml_lock_unlock pthread_spin_unlock
  7328. typedef int ggml_lock_t;
  7329. #define ggml_lock_init(x) UNUSED(x)
  7330. #define ggml_lock_destroy(x) UNUSED(x)
  7331. #define ggml_lock_lock(x) UNUSED(x)
  7332. #define ggml_lock_unlock(x) UNUSED(x)
  7333. #define GGML_LOCK_INITIALIZER 0
  7334. typedef pthread_t ggml_thread_t;
  7335. #define ggml_thread_create pthread_create
  7336. #define ggml_thread_join pthread_join
  7337. #endif
  7338. struct ggml_compute_state_shared {
  7339. ggml_lock_t spin;
  7340. int n_threads;
  7341. // synchronization primitives
  7342. atomic_int n_ready;
  7343. atomic_bool has_work;
  7344. atomic_bool stop; // stop all threads
  7345. };
  7346. struct ggml_compute_state {
  7347. ggml_thread_t thrd;
  7348. struct ggml_compute_params params;
  7349. struct ggml_tensor * node;
  7350. struct ggml_compute_state_shared * shared;
  7351. };
  7352. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7353. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7354. const int n_threads = state->shared->n_threads;
  7355. while (true) {
  7356. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7357. atomic_store(&state->shared->has_work, false);
  7358. } else {
  7359. while (atomic_load(&state->shared->has_work)) {
  7360. if (atomic_load(&state->shared->stop)) {
  7361. return 0;
  7362. }
  7363. ggml_lock_lock (&state->shared->spin);
  7364. ggml_lock_unlock(&state->shared->spin);
  7365. }
  7366. }
  7367. atomic_fetch_sub(&state->shared->n_ready, 1);
  7368. // wait for work
  7369. while (!atomic_load(&state->shared->has_work)) {
  7370. if (atomic_load(&state->shared->stop)) {
  7371. return 0;
  7372. }
  7373. ggml_lock_lock (&state->shared->spin);
  7374. ggml_lock_unlock(&state->shared->spin);
  7375. }
  7376. // check if we should stop
  7377. if (atomic_load(&state->shared->stop)) {
  7378. break;
  7379. }
  7380. if (state->node) {
  7381. if (state->params.ith < state->params.nth) {
  7382. ggml_compute_forward(&state->params, state->node);
  7383. }
  7384. state->node = NULL;
  7385. } else {
  7386. break;
  7387. }
  7388. }
  7389. return 0;
  7390. }
  7391. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7392. const int n_threads = cgraph->n_threads;
  7393. struct ggml_compute_state_shared state_shared = {
  7394. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7395. /*.n_threads =*/ n_threads,
  7396. /*.n_ready =*/ 0,
  7397. /*.has_work =*/ false,
  7398. /*.stop =*/ false,
  7399. };
  7400. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7401. // create thread pool
  7402. if (n_threads > 1) {
  7403. ggml_lock_init(&state_shared.spin);
  7404. atomic_store(&state_shared.has_work, true);
  7405. for (int j = 0; j < n_threads - 1; j++) {
  7406. workers[j] = (struct ggml_compute_state) {
  7407. .thrd = 0,
  7408. .params = {
  7409. .type = GGML_TASK_COMPUTE,
  7410. .ith = j + 1,
  7411. .nth = n_threads,
  7412. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7413. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7414. },
  7415. .node = NULL,
  7416. .shared = &state_shared,
  7417. };
  7418. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7419. GGML_ASSERT(rc == 0);
  7420. UNUSED(rc);
  7421. }
  7422. }
  7423. // initialize tasks + work buffer
  7424. {
  7425. size_t work_size = 0;
  7426. // thread scheduling for the different operations
  7427. for (int i = 0; i < cgraph->n_nodes; i++) {
  7428. struct ggml_tensor * node = cgraph->nodes[i];
  7429. switch (node->op) {
  7430. case GGML_OP_DUP:
  7431. {
  7432. node->n_tasks = 1;
  7433. } break;
  7434. case GGML_OP_ADD:
  7435. {
  7436. node->n_tasks = n_threads;
  7437. } break;
  7438. case GGML_OP_SUB:
  7439. case GGML_OP_MUL:
  7440. case GGML_OP_DIV:
  7441. case GGML_OP_SQR:
  7442. case GGML_OP_SQRT:
  7443. case GGML_OP_SUM:
  7444. case GGML_OP_MEAN:
  7445. case GGML_OP_REPEAT:
  7446. case GGML_OP_ABS:
  7447. case GGML_OP_SGN:
  7448. case GGML_OP_NEG:
  7449. case GGML_OP_STEP:
  7450. case GGML_OP_RELU:
  7451. {
  7452. node->n_tasks = 1;
  7453. } break;
  7454. case GGML_OP_GELU:
  7455. {
  7456. node->n_tasks = n_threads;
  7457. } break;
  7458. case GGML_OP_SILU:
  7459. {
  7460. node->n_tasks = n_threads;
  7461. } break;
  7462. case GGML_OP_NORM:
  7463. case GGML_OP_RMS_NORM:
  7464. {
  7465. node->n_tasks = n_threads;
  7466. } break;
  7467. case GGML_OP_MUL_MAT:
  7468. {
  7469. node->n_tasks = n_threads;
  7470. // TODO: use different scheduling for different matrix sizes
  7471. //const int nr0 = ggml_nrows(node->src0);
  7472. //const int nr1 = ggml_nrows(node->src1);
  7473. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7474. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7475. size_t cur = 0;
  7476. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7477. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7478. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7479. node->n_tasks = 1; // TODO: this actually is doing nothing
  7480. // the threads are still spinning
  7481. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7482. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7483. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7484. //printf("cur = %zu\n", cur);
  7485. } else {
  7486. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7487. }
  7488. #else
  7489. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7490. #endif
  7491. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7492. cur = 0;
  7493. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7494. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7495. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7496. node->n_tasks = 1;
  7497. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7498. } else
  7499. #endif
  7500. {
  7501. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7502. }
  7503. } else {
  7504. GGML_ASSERT(false);
  7505. }
  7506. work_size = MAX(work_size, cur);
  7507. } break;
  7508. case GGML_OP_SCALE:
  7509. {
  7510. node->n_tasks = n_threads;
  7511. } break;
  7512. case GGML_OP_CPY:
  7513. case GGML_OP_RESHAPE:
  7514. case GGML_OP_VIEW:
  7515. case GGML_OP_PERMUTE:
  7516. case GGML_OP_TRANSPOSE:
  7517. case GGML_OP_GET_ROWS:
  7518. case GGML_OP_DIAG_MASK_INF:
  7519. {
  7520. node->n_tasks = 1;
  7521. } break;
  7522. case GGML_OP_SOFT_MAX:
  7523. {
  7524. node->n_tasks = n_threads;
  7525. } break;
  7526. case GGML_OP_ROPE:
  7527. {
  7528. node->n_tasks = 1;
  7529. } break;
  7530. case GGML_OP_CONV_1D_1S:
  7531. case GGML_OP_CONV_1D_2S:
  7532. {
  7533. node->n_tasks = n_threads;
  7534. GGML_ASSERT(node->src0->ne[3] == 1);
  7535. GGML_ASSERT(node->src1->ne[2] == 1);
  7536. GGML_ASSERT(node->src1->ne[3] == 1);
  7537. size_t cur = 0;
  7538. const int nk = node->src0->ne[0];
  7539. if (node->src0->type == GGML_TYPE_F16 &&
  7540. node->src1->type == GGML_TYPE_F32) {
  7541. cur = sizeof(ggml_fp16_t)*(
  7542. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7543. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7544. );
  7545. } else if (node->src0->type == GGML_TYPE_F32 &&
  7546. node->src1->type == GGML_TYPE_F32) {
  7547. cur = sizeof(float)*(
  7548. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7549. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7550. );
  7551. } else {
  7552. GGML_ASSERT(false);
  7553. }
  7554. work_size = MAX(work_size, cur);
  7555. } break;
  7556. case GGML_OP_FLASH_ATTN:
  7557. {
  7558. node->n_tasks = n_threads;
  7559. size_t cur = 0;
  7560. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7561. if (node->src1->type == GGML_TYPE_F32) {
  7562. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7563. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7564. }
  7565. if (node->src1->type == GGML_TYPE_F16) {
  7566. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7567. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7568. }
  7569. work_size = MAX(work_size, cur);
  7570. } break;
  7571. case GGML_OP_FLASH_FF:
  7572. {
  7573. node->n_tasks = n_threads;
  7574. size_t cur = 0;
  7575. if (node->src1->type == GGML_TYPE_F32) {
  7576. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7577. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7578. }
  7579. if (node->src1->type == GGML_TYPE_F16) {
  7580. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7581. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7582. }
  7583. work_size = MAX(work_size, cur);
  7584. } break;
  7585. case GGML_OP_NONE:
  7586. {
  7587. node->n_tasks = 1;
  7588. } break;
  7589. case GGML_OP_COUNT:
  7590. {
  7591. GGML_ASSERT(false);
  7592. } break;
  7593. }
  7594. }
  7595. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7596. GGML_ASSERT(false); // TODO: better handling
  7597. }
  7598. if (work_size > 0 && cgraph->work == NULL) {
  7599. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7600. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7601. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7602. }
  7603. }
  7604. const int64_t perf_start_cycles = ggml_perf_cycles();
  7605. const int64_t perf_start_time_us = ggml_perf_time_us();
  7606. for (int i = 0; i < cgraph->n_nodes; i++) {
  7607. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7608. struct ggml_tensor * node = cgraph->nodes[i];
  7609. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7610. //if (node->grad == NULL && node->perf_runs > 0) {
  7611. // continue;
  7612. //}
  7613. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7614. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7615. // INIT
  7616. struct ggml_compute_params params = {
  7617. /*.type =*/ GGML_TASK_INIT,
  7618. /*.ith =*/ 0,
  7619. /*.nth =*/ node->n_tasks,
  7620. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7621. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7622. };
  7623. ggml_compute_forward(&params, node);
  7624. // COMPUTE
  7625. if (node->n_tasks > 1) {
  7626. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7627. atomic_store(&state_shared.has_work, false);
  7628. }
  7629. while (atomic_load(&state_shared.has_work)) {
  7630. ggml_lock_lock (&state_shared.spin);
  7631. ggml_lock_unlock(&state_shared.spin);
  7632. }
  7633. // launch thread pool
  7634. for (int j = 0; j < n_threads - 1; j++) {
  7635. workers[j].params = (struct ggml_compute_params) {
  7636. .type = GGML_TASK_COMPUTE,
  7637. .ith = j + 1,
  7638. .nth = node->n_tasks,
  7639. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7640. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7641. };
  7642. workers[j].node = node;
  7643. }
  7644. atomic_fetch_sub(&state_shared.n_ready, 1);
  7645. while (atomic_load(&state_shared.n_ready) > 0) {
  7646. ggml_lock_lock (&state_shared.spin);
  7647. ggml_lock_unlock(&state_shared.spin);
  7648. }
  7649. atomic_store(&state_shared.has_work, true);
  7650. }
  7651. params.type = GGML_TASK_COMPUTE;
  7652. ggml_compute_forward(&params, node);
  7653. // wait for thread pool
  7654. if (node->n_tasks > 1) {
  7655. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7656. atomic_store(&state_shared.has_work, false);
  7657. }
  7658. while (atomic_load(&state_shared.has_work)) {
  7659. ggml_lock_lock (&state_shared.spin);
  7660. ggml_lock_unlock(&state_shared.spin);
  7661. }
  7662. atomic_fetch_sub(&state_shared.n_ready, 1);
  7663. while (atomic_load(&state_shared.n_ready) != 0) {
  7664. ggml_lock_lock (&state_shared.spin);
  7665. ggml_lock_unlock(&state_shared.spin);
  7666. }
  7667. }
  7668. // FINALIZE
  7669. if (node->n_tasks > 1) {
  7670. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7671. atomic_store(&state_shared.has_work, false);
  7672. }
  7673. while (atomic_load(&state_shared.has_work)) {
  7674. ggml_lock_lock (&state_shared.spin);
  7675. ggml_lock_unlock(&state_shared.spin);
  7676. }
  7677. // launch thread pool
  7678. for (int j = 0; j < n_threads - 1; j++) {
  7679. workers[j].params = (struct ggml_compute_params) {
  7680. .type = GGML_TASK_FINALIZE,
  7681. .ith = j + 1,
  7682. .nth = node->n_tasks,
  7683. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7684. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7685. };
  7686. workers[j].node = node;
  7687. }
  7688. atomic_fetch_sub(&state_shared.n_ready, 1);
  7689. while (atomic_load(&state_shared.n_ready) > 0) {
  7690. ggml_lock_lock (&state_shared.spin);
  7691. ggml_lock_unlock(&state_shared.spin);
  7692. }
  7693. atomic_store(&state_shared.has_work, true);
  7694. }
  7695. params.type = GGML_TASK_FINALIZE;
  7696. ggml_compute_forward(&params, node);
  7697. // wait for thread pool
  7698. if (node->n_tasks > 1) {
  7699. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7700. atomic_store(&state_shared.has_work, false);
  7701. }
  7702. while (atomic_load(&state_shared.has_work)) {
  7703. ggml_lock_lock (&state_shared.spin);
  7704. ggml_lock_unlock(&state_shared.spin);
  7705. }
  7706. atomic_fetch_sub(&state_shared.n_ready, 1);
  7707. while (atomic_load(&state_shared.n_ready) != 0) {
  7708. ggml_lock_lock (&state_shared.spin);
  7709. ggml_lock_unlock(&state_shared.spin);
  7710. }
  7711. }
  7712. // performance stats (node)
  7713. {
  7714. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7715. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7716. node->perf_runs++;
  7717. node->perf_cycles += perf_cycles_cur;
  7718. node->perf_time_us += perf_time_us_cur;
  7719. }
  7720. }
  7721. // join thread pool
  7722. if (n_threads > 1) {
  7723. atomic_store(&state_shared.stop, true);
  7724. atomic_store(&state_shared.has_work, true);
  7725. for (int j = 0; j < n_threads - 1; j++) {
  7726. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7727. GGML_ASSERT(rc == 0);
  7728. UNUSED(rc);
  7729. }
  7730. ggml_lock_destroy(&state_shared.spin);
  7731. }
  7732. // performance stats (graph)
  7733. {
  7734. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7735. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7736. cgraph->perf_runs++;
  7737. cgraph->perf_cycles += perf_cycles_cur;
  7738. cgraph->perf_time_us += perf_time_us_cur;
  7739. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7740. __func__, cgraph->perf_runs,
  7741. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7742. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7743. (double) perf_time_us_cur / 1000.0,
  7744. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7745. }
  7746. }
  7747. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7748. for (int i = 0; i < cgraph->n_nodes; i++) {
  7749. struct ggml_tensor * grad = cgraph->grads[i];
  7750. if (grad) {
  7751. ggml_set_zero(grad);
  7752. }
  7753. }
  7754. }
  7755. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7756. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7757. GGML_PRINT("=== GRAPH ===\n");
  7758. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7759. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7760. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7761. for (int i = 0; i < cgraph->n_nodes; i++) {
  7762. struct ggml_tensor * node = cgraph->nodes[i];
  7763. perf_total_per_op_us[node->op] += node->perf_time_us;
  7764. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7765. i,
  7766. node->ne[0], node->ne[1], node->ne[2],
  7767. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7768. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7769. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7770. (double) node->perf_time_us / 1000.0,
  7771. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7772. }
  7773. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7774. for (int i = 0; i < cgraph->n_leafs; i++) {
  7775. struct ggml_tensor * node = cgraph->leafs[i];
  7776. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7777. i,
  7778. node->ne[0], node->ne[1],
  7779. GGML_OP_LABEL[node->op]);
  7780. }
  7781. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7782. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7783. }
  7784. GGML_PRINT("========================================\n");
  7785. }
  7786. // check if node is part of the graph
  7787. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7788. if (cgraph == NULL) {
  7789. return true;
  7790. }
  7791. for (int i = 0; i < cgraph->n_nodes; i++) {
  7792. if (cgraph->nodes[i] == node) {
  7793. return true;
  7794. }
  7795. }
  7796. return false;
  7797. }
  7798. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7799. for (int i = 0; i < cgraph->n_nodes; i++) {
  7800. struct ggml_tensor * parent = cgraph->nodes[i];
  7801. if (parent->grad == node) {
  7802. return parent;
  7803. }
  7804. }
  7805. return NULL;
  7806. }
  7807. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7808. char color[16];
  7809. FILE * fp = fopen(filename, "w");
  7810. GGML_ASSERT(fp);
  7811. fprintf(fp, "digraph G {\n");
  7812. fprintf(fp, " newrank = true;\n");
  7813. fprintf(fp, " rankdir = LR;\n");
  7814. for (int i = 0; i < gb->n_nodes; i++) {
  7815. struct ggml_tensor * node = gb->nodes[i];
  7816. if (ggml_graph_get_parent(gb, node) != NULL) {
  7817. continue;
  7818. }
  7819. if (node->is_param) {
  7820. snprintf(color, sizeof(color), "yellow");
  7821. } else if (node->grad) {
  7822. if (ggml_graph_find(gf, node)) {
  7823. snprintf(color, sizeof(color), "green");
  7824. } else {
  7825. snprintf(color, sizeof(color), "lightblue");
  7826. }
  7827. } else {
  7828. snprintf(color, sizeof(color), "white");
  7829. }
  7830. fprintf(fp, " \"%p\" [ \
  7831. style = filled; fillcolor = %s; shape = record; \
  7832. label=\"%d [%d, %d] | <x>%s",
  7833. (void *) node, color,
  7834. i, node->ne[0], node->ne[1],
  7835. GGML_OP_SYMBOL[node->op]);
  7836. if (node->grad) {
  7837. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7838. } else {
  7839. fprintf(fp, "\"; ]\n");
  7840. }
  7841. }
  7842. for (int i = 0; i < gb->n_leafs; i++) {
  7843. struct ggml_tensor * node = gb->leafs[i];
  7844. snprintf(color, sizeof(color), "pink");
  7845. if (ggml_nelements(node) == 1) {
  7846. fprintf(fp, " \"%p\" [ \
  7847. style = filled; fillcolor = %s; shape = record; \
  7848. label=\"<x>%.1e\"; ]\n",
  7849. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7850. } else {
  7851. fprintf(fp, " \"%p\" [ \
  7852. style = filled; fillcolor = %s; shape = record; \
  7853. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7854. (void *) node, color,
  7855. i, node->ne[0], node->ne[1]);
  7856. }
  7857. }
  7858. for (int i = 0; i < gb->n_nodes; i++) {
  7859. struct ggml_tensor * node = gb->nodes[i];
  7860. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7861. if (node->src0) {
  7862. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7863. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7864. parent0 ? (void *) parent0 : (void *) node->src0,
  7865. parent0 ? "g" : "x",
  7866. parent ? (void *) parent : (void *) node,
  7867. parent ? "g" : "x",
  7868. parent ? "empty" : "vee",
  7869. parent ? "dashed" : "solid");
  7870. }
  7871. if (node->src1) {
  7872. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7873. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7874. parent1 ? (void *) parent1 : (void *) node->src1,
  7875. parent1 ? "g" : "x",
  7876. parent ? (void *) parent : (void *) node,
  7877. parent ? "g" : "x",
  7878. parent ? "empty" : "vee",
  7879. parent ? "dashed" : "solid");
  7880. }
  7881. }
  7882. for (int i = 0; i < gb->n_leafs; i++) {
  7883. struct ggml_tensor * node = gb->leafs[i];
  7884. if (node->src0) {
  7885. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7886. (void *) node->src0, "x",
  7887. (void *) node, "x");
  7888. }
  7889. if (node->src1) {
  7890. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7891. (void *) node->src1, "x",
  7892. (void *) node, "x");
  7893. }
  7894. }
  7895. fprintf(fp, "}\n");
  7896. fclose(fp);
  7897. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7898. }
  7899. ////////////////////////////////////////////////////////////////////////////////
  7900. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7901. int i = 0;
  7902. for (int p = 0; p < np; ++p) {
  7903. const int ne = ggml_nelements(ps[p]) ;
  7904. // TODO: add function to set tensor from array
  7905. for (int j = 0; j < ne; ++j) {
  7906. ggml_set_f32_1d(ps[p], j, x[i++]);
  7907. }
  7908. }
  7909. }
  7910. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7911. int i = 0;
  7912. for (int p = 0; p < np; ++p) {
  7913. const int ne = ggml_nelements(ps[p]) ;
  7914. // TODO: add function to get all elements at once
  7915. for (int j = 0; j < ne; ++j) {
  7916. x[i++] = ggml_get_f32_1d(ps[p], j);
  7917. }
  7918. }
  7919. }
  7920. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7921. int i = 0;
  7922. for (int p = 0; p < np; ++p) {
  7923. const int ne = ggml_nelements(ps[p]) ;
  7924. // TODO: add function to get all elements at once
  7925. for (int j = 0; j < ne; ++j) {
  7926. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7927. }
  7928. }
  7929. }
  7930. //
  7931. // ADAM
  7932. //
  7933. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7934. //
  7935. static enum ggml_opt_result ggml_opt_adam(
  7936. struct ggml_context * ctx,
  7937. struct ggml_opt_params params,
  7938. struct ggml_tensor * f,
  7939. struct ggml_cgraph * gf,
  7940. struct ggml_cgraph * gb) {
  7941. GGML_ASSERT(ggml_is_scalar(f));
  7942. gf->n_threads = params.n_threads;
  7943. gb->n_threads = params.n_threads;
  7944. // these will store the parameters we want to optimize
  7945. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7946. int np = 0;
  7947. int nx = 0;
  7948. for (int i = 0; i < gf->n_nodes; ++i) {
  7949. if (gf->nodes[i]->is_param) {
  7950. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7951. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7952. ps[np++] = gf->nodes[i];
  7953. nx += ggml_nelements(gf->nodes[i]);
  7954. }
  7955. }
  7956. // constants
  7957. const float alpha = params.adam.alpha;
  7958. const float beta1 = params.adam.beta1;
  7959. const float beta2 = params.adam.beta2;
  7960. const float eps = params.adam.eps;
  7961. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7962. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7963. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7964. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7965. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7966. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7967. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7968. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7969. // initialize
  7970. ggml_vec_set_f32(nx, m, 0.0f);
  7971. ggml_vec_set_f32(nx, v, 0.0f);
  7972. // update view
  7973. ggml_opt_get_params(np, ps, x);
  7974. // compute the function value
  7975. ggml_graph_reset (gf);
  7976. ggml_set_f32 (f->grad, 1.0f);
  7977. ggml_graph_compute(ctx, gb);
  7978. float fx_prev = ggml_get_f32_1d(f, 0);
  7979. if (pf) {
  7980. pf[0] = fx_prev;
  7981. }
  7982. int n_no_improvement = 0;
  7983. float fx_best = fx_prev;
  7984. // run the optimizer
  7985. for (int t = 0; t < params.adam.n_iter; ++t) {
  7986. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7987. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7988. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7989. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7990. for (int i = 0; i < np; ++i) {
  7991. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7992. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7993. }
  7994. const int64_t t_start_wall = ggml_time_us();
  7995. const int64_t t_start_cpu = ggml_cycles();
  7996. UNUSED(t_start_wall);
  7997. UNUSED(t_start_cpu);
  7998. {
  7999. // update the gradient
  8000. ggml_opt_get_grad(np, ps, g1);
  8001. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8002. ggml_vec_scale_f32(nx, m, beta1);
  8003. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8004. // g2 = g1^2
  8005. ggml_vec_sqr_f32 (nx, g2, g1);
  8006. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8007. ggml_vec_scale_f32(nx, v, beta2);
  8008. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8009. // m^hat = m_t / (1 - beta1^t)
  8010. // v^hat = v_t / (1 - beta2^t)
  8011. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8012. ggml_vec_cpy_f32 (nx, mh, m);
  8013. ggml_vec_cpy_f32 (nx, vh, v);
  8014. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8015. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8016. ggml_vec_sqrt_f32 (nx, vh, vh);
  8017. ggml_vec_acc1_f32 (nx, vh, eps);
  8018. ggml_vec_div_f32 (nx, mh, mh, vh);
  8019. ggml_vec_sub_f32 (nx, x, x, mh);
  8020. // update the parameters
  8021. ggml_opt_set_params(np, ps, x);
  8022. }
  8023. ggml_graph_reset (gf);
  8024. ggml_set_f32 (f->grad, 1.0f);
  8025. ggml_graph_compute(ctx, gb);
  8026. const float fx = ggml_get_f32_1d(f, 0);
  8027. // check convergence
  8028. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8029. GGML_PRINT_DEBUG("converged\n");
  8030. return GGML_OPT_OK;
  8031. }
  8032. // delta-based convergence test
  8033. if (pf != NULL) {
  8034. // need at least params.past iterations to start checking for convergence
  8035. if (params.past <= t) {
  8036. const float rate = (pf[t%params.past] - fx)/fx;
  8037. if (fabsf(rate) < params.delta) {
  8038. return GGML_OPT_OK;
  8039. }
  8040. }
  8041. pf[t%params.past] = fx;
  8042. }
  8043. // check for improvement
  8044. if (params.max_no_improvement > 0) {
  8045. if (fx_best > fx) {
  8046. fx_best = fx;
  8047. n_no_improvement = 0;
  8048. } else {
  8049. ++n_no_improvement;
  8050. if (n_no_improvement >= params.max_no_improvement) {
  8051. return GGML_OPT_OK;
  8052. }
  8053. }
  8054. }
  8055. fx_prev = fx;
  8056. {
  8057. const int64_t t_end_cpu = ggml_cycles();
  8058. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8059. UNUSED(t_end_cpu);
  8060. const int64_t t_end_wall = ggml_time_us();
  8061. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8062. UNUSED(t_end_wall);
  8063. }
  8064. }
  8065. return GGML_OPT_DID_NOT_CONVERGE;
  8066. }
  8067. //
  8068. // L-BFGS
  8069. //
  8070. // the L-BFGS implementation below is based on the following implementation:
  8071. //
  8072. // https://github.com/chokkan/liblbfgs
  8073. //
  8074. struct ggml_lbfgs_iteration_data {
  8075. float alpha;
  8076. float ys;
  8077. float * s;
  8078. float * y;
  8079. };
  8080. static enum ggml_opt_result linesearch_backtracking(
  8081. struct ggml_context * ctx,
  8082. const struct ggml_opt_params * params,
  8083. int nx,
  8084. float * x,
  8085. float * fx,
  8086. float * g,
  8087. float * d,
  8088. float * step,
  8089. const float * xp,
  8090. struct ggml_tensor * f,
  8091. struct ggml_cgraph * gf,
  8092. struct ggml_cgraph * gb,
  8093. const int np,
  8094. struct ggml_tensor * ps[]) {
  8095. int count = 0;
  8096. float width = 0.0f;
  8097. float dg = 0.0f;
  8098. float finit = 0.0f;
  8099. float dginit = 0.0f;
  8100. float dgtest = 0.0f;
  8101. const float dec = 0.5f;
  8102. const float inc = 2.1f;
  8103. if (*step <= 0.f) {
  8104. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8105. }
  8106. // compute the initial gradient in the search direction
  8107. ggml_vec_dot_f32(nx, &dginit, g, d);
  8108. // make sure that d points to a descent direction
  8109. if (0 < dginit) {
  8110. return GGML_LINESEARCH_FAIL;
  8111. }
  8112. // initialize local variables
  8113. finit = *fx;
  8114. dgtest = params->lbfgs.ftol*dginit;
  8115. while (true) {
  8116. ggml_vec_cpy_f32(nx, x, xp);
  8117. ggml_vec_mad_f32(nx, x, d, *step);
  8118. // evaluate the function and gradient values
  8119. {
  8120. ggml_opt_set_params(np, ps, x);
  8121. ggml_graph_reset (gf);
  8122. ggml_set_f32 (f->grad, 1.0f);
  8123. ggml_graph_compute(ctx, gb);
  8124. ggml_opt_get_grad(np, ps, g);
  8125. *fx = ggml_get_f32_1d(f, 0);
  8126. }
  8127. ++count;
  8128. if (*fx > finit + (*step)*dgtest) {
  8129. width = dec;
  8130. } else {
  8131. // Armijo condition is satisfied
  8132. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8133. return count;
  8134. }
  8135. ggml_vec_dot_f32(nx, &dg, g, d);
  8136. // check the Wolfe condition
  8137. if (dg < params->lbfgs.wolfe * dginit) {
  8138. width = inc;
  8139. } else {
  8140. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8141. // regular Wolfe conditions
  8142. return count;
  8143. }
  8144. if(dg > -params->lbfgs.wolfe*dginit) {
  8145. width = dec;
  8146. } else {
  8147. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8148. return count;
  8149. }
  8150. return count;
  8151. }
  8152. }
  8153. if (*step < params->lbfgs.min_step) {
  8154. return GGML_LINESEARCH_MINIMUM_STEP;
  8155. }
  8156. if (*step > params->lbfgs.max_step) {
  8157. return GGML_LINESEARCH_MAXIMUM_STEP;
  8158. }
  8159. if (params->lbfgs.max_linesearch <= count) {
  8160. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8161. }
  8162. (*step) *= width;
  8163. }
  8164. return GGML_LINESEARCH_FAIL;
  8165. }
  8166. static enum ggml_opt_result ggml_opt_lbfgs(
  8167. struct ggml_context * ctx,
  8168. struct ggml_opt_params params,
  8169. struct ggml_tensor * f,
  8170. struct ggml_cgraph * gf,
  8171. struct ggml_cgraph * gb) {
  8172. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8173. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8174. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8175. return GGML_OPT_INVALID_WOLFE;
  8176. }
  8177. }
  8178. gf->n_threads = params.n_threads;
  8179. gb->n_threads = params.n_threads;
  8180. const int m = params.lbfgs.m;
  8181. // these will store the parameters we want to optimize
  8182. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8183. int np = 0;
  8184. int nx = 0;
  8185. for (int i = 0; i < gf->n_nodes; ++i) {
  8186. if (gf->nodes[i]->is_param) {
  8187. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8188. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8189. ps[np++] = gf->nodes[i];
  8190. nx += ggml_nelements(gf->nodes[i]);
  8191. }
  8192. }
  8193. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8194. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8195. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8196. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8197. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8198. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8199. float fx = 0.0f; // cost function value
  8200. float xnorm = 0.0f; // ||x||
  8201. float gnorm = 0.0f; // ||g||
  8202. float step = 0.0f;
  8203. // initialize x from the graph nodes
  8204. ggml_opt_get_params(np, ps, x);
  8205. // the L-BFGS memory
  8206. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8207. for (int i = 0; i < m; ++i) {
  8208. lm[i].alpha = 0.0f;
  8209. lm[i].ys = 0.0f;
  8210. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8211. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8212. }
  8213. // evaluate the function value and its gradient
  8214. {
  8215. ggml_opt_set_params(np, ps, x);
  8216. ggml_graph_reset (gf);
  8217. ggml_set_f32 (f->grad, 1.0f);
  8218. ggml_graph_compute(ctx, gb);
  8219. ggml_opt_get_grad(np, ps, g);
  8220. fx = ggml_get_f32_1d(f, 0);
  8221. }
  8222. if (pf) {
  8223. pf[0] = fx;
  8224. }
  8225. float fx_best = fx;
  8226. // search direction = -gradient
  8227. ggml_vec_neg_f32(nx, d, g);
  8228. // ||x||, ||g||
  8229. ggml_vec_norm_f32(nx, &xnorm, x);
  8230. ggml_vec_norm_f32(nx, &gnorm, g);
  8231. if (xnorm < 1.0f) {
  8232. xnorm = 1.0f;
  8233. }
  8234. // already optimized
  8235. if (gnorm/xnorm <= params.lbfgs.eps) {
  8236. return GGML_OPT_OK;
  8237. }
  8238. // initial step
  8239. ggml_vec_norm_inv_f32(nx, &step, d);
  8240. int j = 0;
  8241. int k = 1;
  8242. int ls = 0;
  8243. int end = 0;
  8244. int bound = 0;
  8245. int n_no_improvement = 0;
  8246. float ys = 0.0f;
  8247. float yy = 0.0f;
  8248. float beta = 0.0f;
  8249. while (true) {
  8250. // store the current position and gradient vectors
  8251. ggml_vec_cpy_f32(nx, xp, x);
  8252. ggml_vec_cpy_f32(nx, gp, g);
  8253. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8254. if (ls < 0) {
  8255. // linesearch failed - go back to the previous point and return
  8256. ggml_vec_cpy_f32(nx, x, xp);
  8257. ggml_vec_cpy_f32(nx, g, gp);
  8258. return ls;
  8259. }
  8260. ggml_vec_norm_f32(nx, &xnorm, x);
  8261. ggml_vec_norm_f32(nx, &gnorm, g);
  8262. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8263. if (xnorm < 1.0f) {
  8264. xnorm = 1.0f;
  8265. }
  8266. if (gnorm/xnorm <= params.lbfgs.eps) {
  8267. // converged
  8268. return GGML_OPT_OK;
  8269. }
  8270. // delta-based convergence test
  8271. if (pf != NULL) {
  8272. // need at least params.past iterations to start checking for convergence
  8273. if (params.past <= k) {
  8274. const float rate = (pf[k%params.past] - fx)/fx;
  8275. if (fabsf(rate) < params.delta) {
  8276. return GGML_OPT_OK;
  8277. }
  8278. }
  8279. pf[k%params.past] = fx;
  8280. }
  8281. // check for improvement
  8282. if (params.max_no_improvement > 0) {
  8283. if (fx < fx_best) {
  8284. fx_best = fx;
  8285. n_no_improvement = 0;
  8286. } else {
  8287. n_no_improvement++;
  8288. if (n_no_improvement >= params.max_no_improvement) {
  8289. return GGML_OPT_OK;
  8290. }
  8291. }
  8292. }
  8293. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8294. // reached the maximum number of iterations
  8295. return GGML_OPT_DID_NOT_CONVERGE;
  8296. }
  8297. // update vectors s and y:
  8298. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8299. // y_{k+1} = g_{k+1} - g_{k}.
  8300. //
  8301. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8302. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8303. // compute scalars ys and yy:
  8304. // ys = y^t \cdot s -> 1 / \rho.
  8305. // yy = y^t \cdot y.
  8306. //
  8307. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8308. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8309. lm[end].ys = ys;
  8310. // find new search direction
  8311. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8312. bound = (m <= k) ? m : k;
  8313. k++;
  8314. end = (end + 1)%m;
  8315. // initialize search direction with -g
  8316. ggml_vec_neg_f32(nx, d, g);
  8317. j = end;
  8318. for (int i = 0; i < bound; ++i) {
  8319. j = (j + m - 1) % m;
  8320. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8321. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8322. lm[j].alpha /= lm[j].ys;
  8323. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8324. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8325. }
  8326. ggml_vec_scale_f32(nx, d, ys/yy);
  8327. for (int i = 0; i < bound; ++i) {
  8328. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8329. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8330. beta /= lm[j].ys;
  8331. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8332. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8333. j = (j + 1)%m;
  8334. }
  8335. step = 1.0;
  8336. }
  8337. return GGML_OPT_DID_NOT_CONVERGE;
  8338. }
  8339. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8340. struct ggml_opt_params result;
  8341. switch (type) {
  8342. case GGML_OPT_ADAM:
  8343. {
  8344. result = (struct ggml_opt_params) {
  8345. .type = GGML_OPT_ADAM,
  8346. .n_threads = 1,
  8347. .past = 0,
  8348. .delta = 1e-5f,
  8349. .max_no_improvement = 100,
  8350. .print_forward_graph = true,
  8351. .print_backward_graph = true,
  8352. .adam = {
  8353. .n_iter = 10000,
  8354. .alpha = 0.001f,
  8355. .beta1 = 0.9f,
  8356. .beta2 = 0.999f,
  8357. .eps = 1e-8f,
  8358. .eps_f = 1e-5f,
  8359. .eps_g = 1e-3f,
  8360. },
  8361. };
  8362. } break;
  8363. case GGML_OPT_LBFGS:
  8364. {
  8365. result = (struct ggml_opt_params) {
  8366. .type = GGML_OPT_LBFGS,
  8367. .n_threads = 1,
  8368. .past = 0,
  8369. .delta = 1e-5f,
  8370. .max_no_improvement = 0,
  8371. .print_forward_graph = true,
  8372. .print_backward_graph = true,
  8373. .lbfgs = {
  8374. .m = 6,
  8375. .n_iter = 100,
  8376. .max_linesearch = 20,
  8377. .eps = 1e-5f,
  8378. .ftol = 1e-4f,
  8379. .wolfe = 0.9f,
  8380. .min_step = 1e-20f,
  8381. .max_step = 1e+20f,
  8382. .linesearch = GGML_LINESEARCH_DEFAULT,
  8383. },
  8384. };
  8385. } break;
  8386. }
  8387. return result;
  8388. }
  8389. enum ggml_opt_result ggml_opt(
  8390. struct ggml_context * ctx,
  8391. struct ggml_opt_params params,
  8392. struct ggml_tensor * f) {
  8393. bool free_ctx = false;
  8394. if (ctx == NULL) {
  8395. struct ggml_init_params params_ctx = {
  8396. .mem_size = 16*1024*1024,
  8397. .mem_buffer = NULL,
  8398. .no_alloc = false,
  8399. };
  8400. ctx = ggml_init(params_ctx);
  8401. if (ctx == NULL) {
  8402. return GGML_OPT_NO_CONTEXT;
  8403. }
  8404. free_ctx = true;
  8405. }
  8406. enum ggml_opt_result result = GGML_OPT_OK;
  8407. // build forward + backward compute graphs
  8408. struct ggml_cgraph gf = ggml_build_forward (f);
  8409. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8410. switch (params.type) {
  8411. case GGML_OPT_ADAM:
  8412. {
  8413. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8414. } break;
  8415. case GGML_OPT_LBFGS:
  8416. {
  8417. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8418. } break;
  8419. }
  8420. if (params.print_forward_graph) {
  8421. ggml_graph_print (&gf);
  8422. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8423. }
  8424. if (params.print_backward_graph) {
  8425. ggml_graph_print (&gb);
  8426. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8427. }
  8428. if (free_ctx) {
  8429. ggml_free(ctx);
  8430. }
  8431. return result;
  8432. }
  8433. ////////////////////////////////////////////////////////////////////////////////
  8434. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8435. assert(k % QK == 0);
  8436. const int nb = k / QK;
  8437. for (int j = 0; j < n; j += k) {
  8438. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8439. quantize_row_q4_0_reference(src + j, y, k);
  8440. for (int i = 0; i < nb; i++) {
  8441. for (int l = 0; l < QK; l += 2) {
  8442. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8443. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8444. hist[vi0]++;
  8445. hist[vi1]++;
  8446. }
  8447. }
  8448. }
  8449. return (n/QK*sizeof(block_q4_0));
  8450. }
  8451. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8452. assert(k % QK == 0);
  8453. const int nb = k / QK;
  8454. for (int j = 0; j < n; j += k) {
  8455. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8456. quantize_row_q4_1_reference(src + j, y, k);
  8457. for (int i = 0; i < nb; i++) {
  8458. for (int l = 0; l < QK; l += 2) {
  8459. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8460. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8461. hist[vi0]++;
  8462. hist[vi1]++;
  8463. }
  8464. }
  8465. }
  8466. return (n/QK*sizeof(block_q4_1));
  8467. }
  8468. ////////////////////////////////////////////////////////////////////////////////
  8469. int ggml_cpu_has_avx(void) {
  8470. #if defined(__AVX__)
  8471. return 1;
  8472. #else
  8473. return 0;
  8474. #endif
  8475. }
  8476. int ggml_cpu_has_avx2(void) {
  8477. #if defined(__AVX2__)
  8478. return 1;
  8479. #else
  8480. return 0;
  8481. #endif
  8482. }
  8483. int ggml_cpu_has_avx512(void) {
  8484. #if defined(__AVX512F__)
  8485. return 1;
  8486. #else
  8487. return 0;
  8488. #endif
  8489. }
  8490. int ggml_cpu_has_fma(void) {
  8491. #if defined(__FMA__)
  8492. return 1;
  8493. #else
  8494. return 0;
  8495. #endif
  8496. }
  8497. int ggml_cpu_has_neon(void) {
  8498. #if defined(__ARM_NEON)
  8499. return 1;
  8500. #else
  8501. return 0;
  8502. #endif
  8503. }
  8504. int ggml_cpu_has_arm_fma(void) {
  8505. #if defined(__ARM_FEATURE_FMA)
  8506. return 1;
  8507. #else
  8508. return 0;
  8509. #endif
  8510. }
  8511. int ggml_cpu_has_f16c(void) {
  8512. #if defined(__F16C__)
  8513. return 1;
  8514. #else
  8515. return 0;
  8516. #endif
  8517. }
  8518. int ggml_cpu_has_fp16_va(void) {
  8519. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8520. return 1;
  8521. #else
  8522. return 0;
  8523. #endif
  8524. }
  8525. int ggml_cpu_has_wasm_simd(void) {
  8526. #if defined(__wasm_simd128__)
  8527. return 1;
  8528. #else
  8529. return 0;
  8530. #endif
  8531. }
  8532. int ggml_cpu_has_blas(void) {
  8533. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8534. return 1;
  8535. #else
  8536. return 0;
  8537. #endif
  8538. }
  8539. int ggml_cpu_has_sse3(void) {
  8540. #if defined(__SSE3__)
  8541. return 1;
  8542. #else
  8543. return 0;
  8544. #endif
  8545. }
  8546. int ggml_cpu_has_vsx(void) {
  8547. #if defined(__POWER9_VECTOR__)
  8548. return 1;
  8549. #else
  8550. return 0;
  8551. #endif
  8552. }
  8553. ////////////////////////////////////////////////////////////////////////////////