convert_hf_to_gguf.py 310 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  262. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  263. )
  264. )
  265. or not new_name.endswith(".weight")
  266. ):
  267. data_qtype = gguf.GGMLQuantizationType.F32
  268. if data_qtype is False and any(
  269. self.match_model_tensor_name(new_name, key, bid)
  270. for key in (
  271. gguf.MODEL_TENSOR.TOKEN_EMBD,
  272. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.OUTPUT,
  274. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  275. gguf.MODEL_TENSOR.LAUREL_L,
  276. gguf.MODEL_TENSOR.LAUREL_R,
  277. )
  278. ):
  279. if self.ftype in (
  280. gguf.LlamaFileType.MOSTLY_TQ1_0,
  281. gguf.LlamaFileType.MOSTLY_TQ2_0,
  282. ):
  283. # TODO: use Q4_K and Q6_K
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  286. if isinstance(data_qtype, bool):
  287. if self.ftype == gguf.LlamaFileType.ALL_F32:
  288. data_qtype = gguf.GGMLQuantizationType.F32
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  290. data_qtype = gguf.GGMLQuantizationType.F16
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  292. data_qtype = gguf.GGMLQuantizationType.BF16
  293. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  294. data_qtype = gguf.GGMLQuantizationType.Q8_0
  295. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  296. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  298. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  299. else:
  300. raise ValueError(f"Unknown file type: {self.ftype.name}")
  301. try:
  302. data = gguf.quants.quantize(data, data_qtype)
  303. except gguf.QuantError as e:
  304. logger.warning("%s, %s", e, "falling back to F16")
  305. data_qtype = gguf.GGMLQuantizationType.F16
  306. data = gguf.quants.quantize(data, data_qtype)
  307. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  308. # reverse shape to make it similar to the internal ggml dimension order
  309. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  310. # n_dims is implicit in the shape
  311. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  312. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  313. def set_type(self):
  314. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  315. def prepare_metadata(self, vocab_only: bool):
  316. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  317. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  318. # If we are using HF model id, set the metadata name to the model id
  319. if self.remote_hf_model_id:
  320. self.metadata.name = self.remote_hf_model_id
  321. # Fallback to model directory name if metadata name is still missing
  322. if self.metadata.name is None:
  323. self.metadata.name = self.dir_model.name
  324. # Generate parameter weight class (useful for leader boards) if not yet determined
  325. if self.metadata.size_label is None and total_params > 0:
  326. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  327. self.set_type()
  328. logger.info("Set meta model")
  329. self.metadata.set_gguf_meta_model(self.gguf_writer)
  330. logger.info("Set model parameters")
  331. self.set_gguf_parameters()
  332. logger.info("Set model quantization version")
  333. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  334. def write_vocab(self):
  335. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  336. def write(self):
  337. self.prepare_tensors()
  338. self.prepare_metadata(vocab_only=False)
  339. self.gguf_writer.write_header_to_file(path=self.fname_out)
  340. self.gguf_writer.write_kv_data_to_file()
  341. self.gguf_writer.write_tensors_to_file(progress=True)
  342. self.gguf_writer.close()
  343. @staticmethod
  344. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  345. part_names: list[str] = []
  346. for filename in os.listdir(dir_model):
  347. if filename.startswith(prefix) and filename.endswith(suffix):
  348. part_names.append(filename)
  349. part_names.sort()
  350. return part_names
  351. @staticmethod
  352. def load_hparams(dir_model: Path):
  353. try:
  354. # for security reason, we don't allow loading remote code by default
  355. # if a model need remote code, we will fallback to config.json
  356. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  357. except Exception as e:
  358. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  359. logger.warning("Trying to load config.json instead")
  360. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  361. config = json.load(f)
  362. if "llm_config" in config:
  363. # rename for InternVL
  364. config["text_config"] = config["llm_config"]
  365. if "thinker_config" in config:
  366. # rename for Qwen2.5-Omni
  367. config["text_config"] = config["thinker_config"]["text_config"]
  368. return config
  369. @classmethod
  370. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  371. assert names
  372. def func(modelcls: AnyModel) -> AnyModel:
  373. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  374. for name in names:
  375. cls._model_classes[model_type][name] = modelcls
  376. return modelcls
  377. return func
  378. @classmethod
  379. def print_registered_models(cls):
  380. for model_type, model_classes in cls._model_classes.items():
  381. logger.error(f"{model_type.name} models:")
  382. for name in sorted(model_classes.keys()):
  383. logger.error(f" - {name}")
  384. @classmethod
  385. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  386. try:
  387. return cls._model_classes[model_type][arch]
  388. except KeyError:
  389. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  390. class TextModel(ModelBase):
  391. model_type = ModelType.TEXT
  392. hf_arch: str
  393. def __init__(self, *args, **kwargs):
  394. super().__init__(*args, **kwargs)
  395. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  396. if "text_config" in self.hparams:
  397. # move the text_config to the root level
  398. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  399. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  400. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  401. @classmethod
  402. def __init_subclass__(cls):
  403. # can't use an abstract property, because overriding it without type errors
  404. # would require using decorated functions instead of simply defining the property
  405. if "model_arch" not in cls.__dict__:
  406. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  407. def set_vocab(self):
  408. self._set_vocab_gpt2()
  409. def prepare_metadata(self, vocab_only: bool):
  410. super().prepare_metadata(vocab_only=vocab_only)
  411. total_params = self.gguf_writer.get_total_parameter_count()[0]
  412. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  413. output_type: str = self.ftype.name.partition("_")[2]
  414. # Filename Output
  415. if self.fname_out.is_dir():
  416. # Generate default filename based on model specification and available metadata
  417. if not vocab_only:
  418. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  419. else:
  420. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  421. # Use the default filename
  422. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  423. else:
  424. # Output path is a custom defined templated filename
  425. # Note: `not is_dir()` is used because `.is_file()` will not detect
  426. # file template strings as it doesn't actually exist as a file
  427. # Process templated file name with the output ftype, useful with the "auto" ftype
  428. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  429. logger.info("Set model tokenizer")
  430. self.set_vocab()
  431. def set_gguf_parameters(self):
  432. self.gguf_writer.add_block_count(self.block_count)
  433. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  434. self.gguf_writer.add_context_length(n_ctx)
  435. logger.info(f"gguf: context length = {n_ctx}")
  436. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  437. self.gguf_writer.add_embedding_length(n_embd)
  438. logger.info(f"gguf: embedding length = {n_embd}")
  439. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  440. self.gguf_writer.add_feed_forward_length(n_ff)
  441. logger.info(f"gguf: feed forward length = {n_ff}")
  442. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  443. self.gguf_writer.add_head_count(n_head)
  444. logger.info(f"gguf: head count = {n_head}")
  445. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  446. self.gguf_writer.add_head_count_kv(n_head_kv)
  447. logger.info(f"gguf: key-value head count = {n_head_kv}")
  448. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  449. self.gguf_writer.add_rope_freq_base(rope_theta)
  450. logger.info(f"gguf: rope theta = {rope_theta}")
  451. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  452. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  453. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  454. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  455. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  456. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  457. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  458. self.gguf_writer.add_expert_count(n_experts)
  459. logger.info(f"gguf: expert count = {n_experts}")
  460. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  461. self.gguf_writer.add_expert_used_count(n_experts_used)
  462. logger.info(f"gguf: experts used count = {n_experts_used}")
  463. if (head_dim := self.hparams.get("head_dim")) is not None:
  464. self.gguf_writer.add_key_length(head_dim)
  465. self.gguf_writer.add_value_length(head_dim)
  466. self.gguf_writer.add_file_type(self.ftype)
  467. logger.info(f"gguf: file type = {self.ftype}")
  468. def write_vocab(self):
  469. if len(self.gguf_writer.tensors) != 1:
  470. raise ValueError('Splitting the vocabulary is not supported')
  471. self.prepare_metadata(vocab_only=True)
  472. self.gguf_writer.write_header_to_file(path=self.fname_out)
  473. self.gguf_writer.write_kv_data_to_file()
  474. self.gguf_writer.close()
  475. def does_token_look_special(self, token: str | bytes) -> bool:
  476. if isinstance(token, (bytes, bytearray)):
  477. token_text = token.decode(encoding="utf-8")
  478. elif isinstance(token, memoryview):
  479. token_text = token.tobytes().decode(encoding="utf-8")
  480. else:
  481. token_text = token
  482. # Some models mark some added tokens which ought to be control tokens as not special.
  483. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  484. seems_special = token_text in (
  485. "<pad>", # deepseek-coder
  486. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  487. )
  488. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  490. # TODO: should these be marked as UNUSED instead? (maybe not)
  491. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  492. return seems_special
  493. # used for GPT-2 BPE and WordPiece vocabs
  494. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  495. tokens: list[str] = []
  496. toktypes: list[int] = []
  497. from transformers import AutoTokenizer
  498. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  499. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  500. assert max(tokenizer.vocab.values()) < vocab_size
  501. tokpre = self.get_vocab_base_pre(tokenizer)
  502. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  503. added_vocab = tokenizer.get_added_vocab()
  504. added_tokens_decoder = tokenizer.added_tokens_decoder
  505. for i in range(vocab_size):
  506. if i not in reverse_vocab:
  507. tokens.append(f"[PAD{i}]")
  508. toktypes.append(gguf.TokenType.UNUSED)
  509. else:
  510. token: str = reverse_vocab[i]
  511. if token in added_vocab:
  512. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  513. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  514. if not added_tokens_decoder[i].normalized:
  515. previous_token = token
  516. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  517. if previous_token != token:
  518. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  519. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  520. toktypes.append(gguf.TokenType.CONTROL)
  521. else:
  522. # NOTE: this was added for Gemma.
  523. # Encoding and decoding the tokens above isn't sufficient for this case.
  524. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  525. toktypes.append(gguf.TokenType.USER_DEFINED)
  526. else:
  527. toktypes.append(gguf.TokenType.NORMAL)
  528. tokens.append(token)
  529. return tokens, toktypes, tokpre
  530. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  531. # do not modify it manually!
  532. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  533. # Marker: Start get_vocab_base_pre
  534. def get_vocab_base_pre(self, tokenizer) -> str:
  535. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  536. # is specific for the BPE pre-tokenizer used by the model
  537. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  538. # use in llama.cpp to implement the same pre-tokenizer
  539. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  540. chktok = tokenizer.encode(chktxt)
  541. chkhsh = sha256(str(chktok).encode()).hexdigest()
  542. logger.debug(f"chktok: {chktok}")
  543. logger.debug(f"chkhsh: {chkhsh}")
  544. res = None
  545. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  546. # or pull the latest version of the model from Huggingface
  547. # don't edit the hashes manually!
  548. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  549. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  550. res = "llama-bpe"
  551. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  552. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  553. res = "deepseek-llm"
  554. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  555. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  556. res = "deepseek-coder"
  557. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  558. # ref: https://huggingface.co/tiiuae/falcon-7b
  559. res = "falcon"
  560. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  561. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  562. res = "bert-bge"
  563. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  564. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  565. res = "falcon3"
  566. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  567. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  568. res = "bert-bge-large"
  569. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  570. # ref: https://huggingface.co/mosaicml/mpt-7b
  571. res = "mpt"
  572. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  573. # ref: https://huggingface.co/bigcode/starcoder2-3b
  574. res = "starcoder"
  575. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  576. # ref: https://huggingface.co/openai-community/gpt2
  577. res = "gpt-2"
  578. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  579. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  580. res = "stablelm2"
  581. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  582. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  583. res = "refact"
  584. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  585. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  586. res = "command-r"
  587. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  588. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  589. res = "qwen2"
  590. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  591. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  592. res = "olmo"
  593. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  594. # ref: https://huggingface.co/databricks/dbrx-base
  595. res = "dbrx"
  596. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  597. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  598. res = "jina-v1-en"
  599. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  600. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  601. res = "jina-v2-en"
  602. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  603. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  604. res = "jina-v2-es"
  605. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  606. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  607. res = "jina-v2-de"
  608. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  609. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  610. res = "smaug-bpe"
  611. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  612. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  613. res = "poro-chat"
  614. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  615. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  616. res = "jina-v2-code"
  617. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  618. # ref: https://huggingface.co/LumiOpen/Viking-7B
  619. res = "viking"
  620. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  621. # ref: https://huggingface.co/core42/jais-13b
  622. res = "jais"
  623. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  624. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  625. res = "codeshell"
  626. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  627. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  628. res = "tekken"
  629. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  630. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  631. res = "smollm"
  632. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  633. # ref: https://huggingface.co/bigscience/bloom
  634. res = "bloom"
  635. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  636. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  637. res = "gpt3-finnish"
  638. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  639. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  640. res = "exaone"
  641. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  642. # ref: https://huggingface.co/microsoft/phi-2
  643. res = "phi-2"
  644. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  645. # ref: https://huggingface.co/facebook/chameleon-7b
  646. res = "chameleon"
  647. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  648. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  649. res = "roberta-bpe"
  650. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  651. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  652. res = "gigachat"
  653. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  654. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  655. res = "megrez"
  656. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  657. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  658. res = "deepseek-v3"
  659. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  660. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  661. res = "deepseek-r1-qwen"
  662. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  663. # ref: https://huggingface.co/Xenova/gpt-4o
  664. res = "gpt-4o"
  665. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  666. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  667. res = "superbpe"
  668. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  669. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  670. res = "trillion"
  671. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  672. # ref: https://huggingface.co/inclusionAI/Ling-lite
  673. res = "bailingmoe"
  674. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  675. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  676. res = "llama4"
  677. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  678. # ref: https://huggingface.co/mistral-community/pixtral-12b
  679. res = "pixtral"
  680. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  681. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  682. res = "seed-coder"
  683. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  684. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  685. res = "chatglm-bpe"
  686. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  687. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  688. res = "chatglm-bpe"
  689. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  690. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  691. res = "glm4"
  692. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  693. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  694. res = "minerva-7b"
  695. if res is None:
  696. logger.warning("\n")
  697. logger.warning("**************************************************************************************")
  698. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  699. logger.warning("** There are 2 possible reasons for this:")
  700. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  701. logger.warning("** - the pre-tokenization config has changed upstream")
  702. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  703. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  704. logger.warning("**")
  705. logger.warning(f"** chkhsh: {chkhsh}")
  706. logger.warning("**************************************************************************************")
  707. logger.warning("\n")
  708. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  709. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  710. logger.debug(f"chkhsh: {chkhsh}")
  711. return res
  712. # Marker: End get_vocab_base_pre
  713. def _set_vocab_none(self) -> None:
  714. self.gguf_writer.add_tokenizer_model("none")
  715. def _set_vocab_gpt2(self) -> None:
  716. tokens, toktypes, tokpre = self.get_vocab_base()
  717. self.gguf_writer.add_tokenizer_model("gpt2")
  718. self.gguf_writer.add_tokenizer_pre(tokpre)
  719. self.gguf_writer.add_token_list(tokens)
  720. self.gguf_writer.add_token_types(toktypes)
  721. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  722. special_vocab.add_to_gguf(self.gguf_writer)
  723. def _set_vocab_qwen(self):
  724. dir_model = self.dir_model
  725. hparams = self.hparams
  726. tokens: list[str] = []
  727. toktypes: list[int] = []
  728. from transformers import AutoTokenizer
  729. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  730. vocab_size = hparams["vocab_size"]
  731. assert max(tokenizer.get_vocab().values()) < vocab_size
  732. tokpre = self.get_vocab_base_pre(tokenizer)
  733. merges = []
  734. vocab = {}
  735. mergeable_ranks = tokenizer.mergeable_ranks
  736. for token, rank in mergeable_ranks.items():
  737. vocab[QwenModel.token_bytes_to_string(token)] = rank
  738. if len(token) == 1:
  739. continue
  740. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  741. assert len(merged) == 2
  742. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  743. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  744. added_vocab = tokenizer.special_tokens
  745. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  746. for i in range(vocab_size):
  747. if i not in reverse_vocab:
  748. tokens.append(f"[PAD{i}]")
  749. toktypes.append(gguf.TokenType.UNUSED)
  750. elif reverse_vocab[i] in added_vocab:
  751. tokens.append(reverse_vocab[i])
  752. toktypes.append(gguf.TokenType.CONTROL)
  753. else:
  754. tokens.append(reverse_vocab[i])
  755. toktypes.append(gguf.TokenType.NORMAL)
  756. self.gguf_writer.add_tokenizer_model("gpt2")
  757. self.gguf_writer.add_tokenizer_pre(tokpre)
  758. self.gguf_writer.add_token_list(tokens)
  759. self.gguf_writer.add_token_types(toktypes)
  760. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  761. special_vocab.merges = merges
  762. # only add special tokens when they were not already loaded from config.json
  763. if len(special_vocab.special_token_ids) == 0:
  764. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  765. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  766. # this one is usually not in config.json anyway
  767. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  768. special_vocab.add_to_gguf(self.gguf_writer)
  769. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  770. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  771. self.gguf_writer.add_tokenizer_model("llama")
  772. self.gguf_writer.add_tokenizer_pre("default")
  773. self.gguf_writer.add_token_list(tokens)
  774. self.gguf_writer.add_token_scores(scores)
  775. self.gguf_writer.add_token_types(toktypes)
  776. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  777. special_vocab.add_to_gguf(self.gguf_writer)
  778. def _create_vocab_sentencepiece(self):
  779. from sentencepiece import SentencePieceProcessor
  780. tokenizer_path = self.dir_model / 'tokenizer.model'
  781. if not tokenizer_path.is_file():
  782. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  783. tokenizer = SentencePieceProcessor()
  784. tokenizer.LoadFromFile(str(tokenizer_path))
  785. vocab_size = self.find_hparam([
  786. "vocab_size_per_layer_input", # gemma3n
  787. "vocab_size",
  788. ], optional=True) or tokenizer.vocab_size()
  789. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  790. scores: list[float] = [-10000.0] * vocab_size
  791. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  792. for token_id in range(tokenizer.vocab_size()):
  793. if token_id >= vocab_size:
  794. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  795. break
  796. piece = tokenizer.IdToPiece(token_id)
  797. text = piece.encode("utf-8")
  798. score = tokenizer.GetScore(token_id)
  799. toktype = SentencePieceTokenTypes.NORMAL
  800. if tokenizer.IsUnknown(token_id):
  801. toktype = SentencePieceTokenTypes.UNKNOWN
  802. elif tokenizer.IsControl(token_id):
  803. toktype = SentencePieceTokenTypes.CONTROL
  804. elif tokenizer.IsUnused(token_id):
  805. toktype = SentencePieceTokenTypes.UNUSED
  806. elif tokenizer.IsByte(token_id):
  807. toktype = SentencePieceTokenTypes.BYTE
  808. tokens[token_id] = text
  809. scores[token_id] = score
  810. toktypes[token_id] = toktype
  811. added_tokens_file = self.dir_model / 'added_tokens.json'
  812. if added_tokens_file.is_file():
  813. with open(added_tokens_file, "r", encoding="utf-8") as f:
  814. added_tokens_json = json.load(f)
  815. for key in added_tokens_json:
  816. token_id = added_tokens_json[key]
  817. if token_id >= vocab_size:
  818. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  819. continue
  820. tokens[token_id] = key.encode("utf-8")
  821. scores[token_id] = -1000.0
  822. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  823. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  824. if tokenizer_config_file.is_file():
  825. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  826. tokenizer_config_json = json.load(f)
  827. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  828. for token_id, token_data in added_tokens_decoder.items():
  829. token_id = int(token_id)
  830. token: str = token_data["content"]
  831. if token_id >= vocab_size:
  832. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  833. continue
  834. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  835. if tokens[token_id] != token.encode("utf-8"):
  836. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  837. if token_data.get("special") or self.does_token_look_special(token):
  838. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  839. else:
  840. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  841. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  842. scores[token_id] = -1000.0
  843. tokens[token_id] = token.encode("utf-8")
  844. if vocab_size > len(tokens):
  845. pad_count = vocab_size - len(tokens)
  846. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  847. for i in range(1, pad_count + 1):
  848. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  849. scores.append(-1000.0)
  850. toktypes.append(SentencePieceTokenTypes.UNUSED)
  851. return tokens, scores, toktypes
  852. def _set_vocab_llama_hf(self):
  853. vocab = gguf.LlamaHfVocab(self.dir_model)
  854. tokens = []
  855. scores = []
  856. toktypes = []
  857. for text, score, toktype in vocab.all_tokens():
  858. tokens.append(text)
  859. scores.append(score)
  860. toktypes.append(toktype)
  861. assert len(tokens) == vocab.vocab_size
  862. self.gguf_writer.add_tokenizer_model("llama")
  863. self.gguf_writer.add_tokenizer_pre("default")
  864. self.gguf_writer.add_token_list(tokens)
  865. self.gguf_writer.add_token_scores(scores)
  866. self.gguf_writer.add_token_types(toktypes)
  867. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  868. special_vocab.add_to_gguf(self.gguf_writer)
  869. def _set_vocab_rwkv_world(self):
  870. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  871. vocab_size = self.hparams.get("vocab_size", 65536)
  872. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  873. toktypes: list[int] = [gguf.TokenType.CONTROL]
  874. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  875. lines = f.readlines()
  876. for line in lines:
  877. parts = line.split(' ')
  878. assert len(parts) >= 3
  879. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  880. token = token.encode("utf-8") if isinstance(token, str) else token
  881. assert isinstance(token, bytes)
  882. assert len(token) == token_len
  883. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  884. tokens.append(token_text.encode("utf-8"))
  885. toktypes.append(gguf.TokenType.NORMAL)
  886. remainder = vocab_size - len(tokens)
  887. assert remainder >= 0
  888. for i in range(len(tokens), vocab_size):
  889. tokens.append(f"[PAD{i}]".encode("utf-8"))
  890. toktypes.append(gguf.TokenType.UNUSED)
  891. self.gguf_writer.add_tokenizer_model("rwkv")
  892. self.gguf_writer.add_token_list(tokens)
  893. self.gguf_writer.add_token_types(toktypes)
  894. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  895. special_vocab.chat_template = "rwkv-world"
  896. # hack: Add '\n\n' as the EOT token to make it chat normally
  897. special_vocab._set_special_token("eot", 261)
  898. # hack: Override these as they have already been set (incorrectly)
  899. special_vocab.special_token_ids["bos"] = 0
  900. special_vocab.special_token_ids["eos"] = 0
  901. special_vocab.add_to_gguf(self.gguf_writer)
  902. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  903. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  904. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  905. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  906. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  907. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  908. assert field # tokenizer model
  909. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  910. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  911. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  912. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  913. assert field # token list
  914. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  915. if model_name == "llama-spm":
  916. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  917. assert field # token scores
  918. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  919. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  920. assert field # token types
  921. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  922. if model_name != "llama-spm":
  923. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  924. assert field # token merges
  925. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  926. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  927. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  928. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  929. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  930. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  931. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  932. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  933. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  934. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  935. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  936. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  937. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  938. def _try_set_pooling_type(self) -> None:
  939. # get pooling path
  940. pooling_path = None
  941. module_path = self.dir_model / "modules.json"
  942. if module_path.is_file():
  943. with open(module_path, encoding="utf-8") as f:
  944. modules = json.load(f)
  945. for mod in modules:
  946. if mod["type"] == "sentence_transformers.models.Pooling":
  947. pooling_path = mod["path"]
  948. break
  949. # get pooling type
  950. if pooling_path is not None:
  951. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  952. pooling = json.load(f)
  953. if pooling["pooling_mode_mean_tokens"]:
  954. pooling_type = gguf.PoolingType.MEAN
  955. elif pooling["pooling_mode_cls_token"]:
  956. pooling_type = gguf.PoolingType.CLS
  957. elif pooling["pooling_mode_lasttoken"]:
  958. pooling_type = gguf.PoolingType.LAST
  959. else:
  960. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  961. self.gguf_writer.add_pooling_type(pooling_type)
  962. class MmprojModel(ModelBase):
  963. model_type = ModelType.MMPROJ
  964. model_arch = gguf.MODEL_ARCH.MMPROJ
  965. preprocessor_config: dict[str, Any]
  966. global_config: dict[str, Any]
  967. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  968. has_vision_encoder: bool = True # by default
  969. has_audio_encoder: bool = False
  970. # for models having multiple encoders, we need to separate their hparams
  971. hparams_vision: dict[str, Any] | None = None
  972. hparams_audio: dict[str, Any] | None = None
  973. def __init__(self, *args, **kwargs):
  974. super().__init__(*args, **kwargs)
  975. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  976. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  977. # get n_embd of the text model
  978. if "text_config" not in self.hparams:
  979. self.hparams["text_config"] = {}
  980. if "audio_config" not in self.hparams:
  981. self.hparams["audio_config"] = {}
  982. text_config = {**self.hparams, **self.hparams["text_config"]}
  983. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  984. assert self.n_embd_text > 0, "n_embd not found in hparams"
  985. # move vision config to the top level, while preserving the original hparams in global_config
  986. import copy
  987. self.global_config = copy.deepcopy(self.hparams)
  988. self.hparams_vision = self.get_vision_config()
  989. self.hparams_audio = self.get_audio_config()
  990. if self.hparams_vision is None and self.hparams_audio is None:
  991. raise ValueError("vision_config / audio_config not found in hparams")
  992. # for compat with vision-only models
  993. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  994. # TODO @ngxson : this is a hack to support both vision and audio encoders
  995. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  996. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  997. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  998. # load preprocessor config
  999. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1000. self.preprocessor_config = json.load(f)
  1001. def get_vision_config(self) -> dict[str, Any] | None:
  1002. return self.global_config.get("vision_config")
  1003. def get_audio_config(self) -> dict[str, Any] | None:
  1004. return self.global_config.get("audio_config")
  1005. def set_type(self):
  1006. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1007. def set_gguf_parameters(self):
  1008. self.gguf_writer.add_file_type(self.ftype)
  1009. if self.has_vision_encoder:
  1010. self.gguf_writer.add_clip_has_vision_encoder(True)
  1011. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1012. # vision config
  1013. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1014. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1015. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1016. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1017. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1018. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1019. # preprocessor config
  1020. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1021. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1022. if self.has_audio_encoder:
  1023. self.gguf_writer.add_clip_has_audio_encoder(True)
  1024. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1025. # audio config
  1026. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1027. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1028. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1029. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1030. if not self.has_vision_encoder and not self.has_audio_encoder:
  1031. raise ValueError("MmprojModel must have either vision or audio encoder")
  1032. def write_vocab(self):
  1033. raise ValueError("MmprojModel does not support vocab writing")
  1034. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1035. assert self.hparams_vision is not None
  1036. return self._find_param(self.hparams_vision, keys, optional)
  1037. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1038. assert self.hparams_audio is not None
  1039. return self._find_param(self.hparams_audio, keys, optional)
  1040. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1041. key = next((k for k in keys if k in obj), None)
  1042. if key is not None:
  1043. return obj[key]
  1044. if optional:
  1045. return None
  1046. raise KeyError(f"could not find any of: {keys}")
  1047. @ModelBase.register("GPTNeoXForCausalLM")
  1048. class GPTNeoXModel(TextModel):
  1049. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1050. def set_gguf_parameters(self):
  1051. block_count = self.hparams["num_hidden_layers"]
  1052. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1053. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1054. self.gguf_writer.add_block_count(block_count)
  1055. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1056. self.gguf_writer.add_rope_dimension_count(
  1057. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1058. )
  1059. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1060. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1061. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1062. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1063. del bid # unused
  1064. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1065. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1066. tensors: list[tuple[str, Tensor]] = []
  1067. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1068. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1069. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1070. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1071. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1072. data_torch = torch.cat(
  1073. (
  1074. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1075. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1076. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1077. ),
  1078. dim=0,
  1079. )
  1080. logger.info("re-format attention.linear_qkv.weight")
  1081. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1082. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1083. data_torch = torch.cat(
  1084. (
  1085. qkv_bias[:, 0, :].reshape((n_embed,)),
  1086. qkv_bias[:, 1, :].reshape((n_embed,)),
  1087. qkv_bias[:, 2, :].reshape((n_embed,)),
  1088. ),
  1089. dim=0,
  1090. )
  1091. logger.info("re-format attention.linear_qkv.bias")
  1092. tensors.append((self.map_tensor_name(name), data_torch))
  1093. return tensors
  1094. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1095. class BloomModel(TextModel):
  1096. model_arch = gguf.MODEL_ARCH.BLOOM
  1097. def set_gguf_parameters(self):
  1098. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1099. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1100. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1101. self.gguf_writer.add_embedding_length(n_embed)
  1102. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1103. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1104. self.gguf_writer.add_head_count(n_head)
  1105. self.gguf_writer.add_head_count_kv(n_head)
  1106. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1107. self.gguf_writer.add_file_type(self.ftype)
  1108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1109. del bid # unused
  1110. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1111. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1112. name = re.sub(r'transformer\.', '', name)
  1113. tensors: list[tuple[str, Tensor]] = []
  1114. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1115. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1116. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1117. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1118. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1119. data_torch = torch.cat(
  1120. (
  1121. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1122. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1123. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1124. ),
  1125. dim=0,
  1126. )
  1127. logger.info("re-format attention.linear_qkv.weight")
  1128. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1129. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1130. data_torch = torch.cat(
  1131. (
  1132. qkv_bias[:, 0, :].reshape((n_embed,)),
  1133. qkv_bias[:, 1, :].reshape((n_embed,)),
  1134. qkv_bias[:, 2, :].reshape((n_embed,)),
  1135. ),
  1136. dim=0,
  1137. )
  1138. logger.info("re-format attention.linear_qkv.bias")
  1139. tensors.append((self.map_tensor_name(name), data_torch))
  1140. return tensors
  1141. @ModelBase.register("MPTForCausalLM")
  1142. class MPTModel(TextModel):
  1143. model_arch = gguf.MODEL_ARCH.MPT
  1144. def set_vocab(self):
  1145. try:
  1146. self._set_vocab_gpt2()
  1147. except Exception:
  1148. # Fallback for SEA-LION model
  1149. self._set_vocab_sentencepiece()
  1150. self.gguf_writer.add_add_bos_token(False)
  1151. self.gguf_writer.add_pad_token_id(3)
  1152. self.gguf_writer.add_eos_token_id(1)
  1153. self.gguf_writer.add_unk_token_id(0)
  1154. def set_gguf_parameters(self):
  1155. block_count = self.hparams["n_layers"]
  1156. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1157. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1158. self.gguf_writer.add_block_count(block_count)
  1159. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1160. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1161. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1162. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1163. self.gguf_writer.add_layer_norm_eps(1e-5)
  1164. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1165. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1166. if self.hparams["attn_config"]["alibi"]:
  1167. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1168. else:
  1169. self.gguf_writer.add_max_alibi_bias(0.0)
  1170. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1171. del bid # unused
  1172. if "scales" in name:
  1173. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1174. new_name = new_name.replace("scales", "act.scales")
  1175. else:
  1176. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1177. return [(new_name, data_torch)]
  1178. @ModelBase.register("OrionForCausalLM")
  1179. class OrionModel(TextModel):
  1180. model_arch = gguf.MODEL_ARCH.ORION
  1181. def set_vocab(self):
  1182. self._set_vocab_sentencepiece()
  1183. def set_gguf_parameters(self):
  1184. block_count = self.hparams["num_hidden_layers"]
  1185. head_count = self.hparams["num_attention_heads"]
  1186. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1187. ctx_length = 0
  1188. if "max_sequence_length" in self.hparams:
  1189. ctx_length = self.hparams["max_sequence_length"]
  1190. elif "max_position_embeddings" in self.hparams:
  1191. ctx_length = self.hparams["max_position_embeddings"]
  1192. elif "model_max_length" in self.hparams:
  1193. ctx_length = self.hparams["model_max_length"]
  1194. else:
  1195. raise ValueError("gguf: can not find ctx length parameter.")
  1196. self.gguf_writer.add_file_type(self.ftype)
  1197. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1198. self.gguf_writer.add_context_length(ctx_length)
  1199. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1200. self.gguf_writer.add_block_count(block_count)
  1201. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1202. self.gguf_writer.add_head_count(head_count)
  1203. self.gguf_writer.add_head_count_kv(head_count_kv)
  1204. # note: config provides rms norm but it is actually layer norm
  1205. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1206. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1207. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1208. class BaichuanModel(TextModel):
  1209. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1210. def set_vocab(self):
  1211. self._set_vocab_sentencepiece()
  1212. def set_gguf_parameters(self):
  1213. block_count = self.hparams["num_hidden_layers"]
  1214. head_count = self.hparams["num_attention_heads"]
  1215. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1216. ctx_length = 0
  1217. if "max_sequence_length" in self.hparams:
  1218. ctx_length = self.hparams["max_sequence_length"]
  1219. elif "max_position_embeddings" in self.hparams:
  1220. ctx_length = self.hparams["max_position_embeddings"]
  1221. elif "model_max_length" in self.hparams:
  1222. ctx_length = self.hparams["model_max_length"]
  1223. else:
  1224. raise ValueError("gguf: can not find ctx length parameter.")
  1225. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1226. self.gguf_writer.add_context_length(ctx_length)
  1227. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1228. self.gguf_writer.add_block_count(block_count)
  1229. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1230. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1231. self.gguf_writer.add_head_count(head_count)
  1232. self.gguf_writer.add_head_count_kv(head_count_kv)
  1233. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1234. self.gguf_writer.add_file_type(self.ftype)
  1235. rope_scaling = self.hparams.get("rope_scaling") or {}
  1236. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1237. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1238. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1239. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1240. head_count = self.hparams["num_attention_heads"]
  1241. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1242. tensors: list[tuple[str, Tensor]] = []
  1243. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1244. logger.info(f"Unpacking and permuting layer {bid}")
  1245. tensors = [
  1246. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1247. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1248. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1249. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1250. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1251. self._reverse_hf_part(data_torch, 2)),
  1252. ]
  1253. else:
  1254. tensors = [(self.map_tensor_name(name), data_torch)]
  1255. return tensors
  1256. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1257. if n_kv_head is not None and n_head != n_kv_head:
  1258. n_head //= n_kv_head
  1259. return (
  1260. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1261. .swapaxes(1, 2)
  1262. .reshape(weights.shape)
  1263. )
  1264. def _reverse_hf_permute_part(
  1265. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1266. ) -> Tensor:
  1267. r = weights.shape[0] // 3
  1268. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1269. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1270. r = weights.shape[0] // 3
  1271. return weights[r * n_part:r * n_part + r, ...]
  1272. @ModelBase.register("XverseForCausalLM")
  1273. class XverseModel(TextModel):
  1274. model_arch = gguf.MODEL_ARCH.XVERSE
  1275. def set_vocab(self):
  1276. assert (self.dir_model / "tokenizer.json").is_file()
  1277. dir_model = self.dir_model
  1278. hparams = self.hparams
  1279. tokens: list[bytes] = []
  1280. toktypes: list[int] = []
  1281. from transformers import AutoTokenizer
  1282. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1283. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1284. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1285. # because vocab_size is the count of items, and indexes start at 0.
  1286. max_vocab_index = max(tokenizer.get_vocab().values())
  1287. if max_vocab_index >= vocab_size:
  1288. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1289. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1290. added_vocab = tokenizer.get_added_vocab()
  1291. for token_id in range(vocab_size):
  1292. token_text = reverse_vocab[token_id].encode('utf-8')
  1293. # replace "\x00" to string with length > 0
  1294. if token_text == b"\x00":
  1295. toktype = gguf.TokenType.BYTE # special
  1296. token_text = f"<{token_text}>".encode('utf-8')
  1297. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1298. toktype = gguf.TokenType.BYTE # special
  1299. elif reverse_vocab[token_id] in added_vocab:
  1300. if tokenizer.added_tokens_decoder[token_id].special:
  1301. toktype = gguf.TokenType.CONTROL
  1302. else:
  1303. toktype = gguf.TokenType.USER_DEFINED
  1304. else:
  1305. toktype = gguf.TokenType.NORMAL
  1306. tokens.append(token_text)
  1307. toktypes.append(toktype)
  1308. self.gguf_writer.add_tokenizer_model("llama")
  1309. self.gguf_writer.add_tokenizer_pre("default")
  1310. self.gguf_writer.add_token_list(tokens)
  1311. self.gguf_writer.add_token_types(toktypes)
  1312. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1313. special_vocab.add_to_gguf(self.gguf_writer)
  1314. def set_gguf_parameters(self):
  1315. block_count = self.hparams["num_hidden_layers"]
  1316. head_count = self.hparams["num_attention_heads"]
  1317. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1318. ctx_length = 0
  1319. if "max_sequence_length" in self.hparams:
  1320. ctx_length = self.hparams["max_sequence_length"]
  1321. elif "max_position_embeddings" in self.hparams:
  1322. ctx_length = self.hparams["max_position_embeddings"]
  1323. elif "model_max_length" in self.hparams:
  1324. ctx_length = self.hparams["model_max_length"]
  1325. else:
  1326. raise ValueError("gguf: can not find ctx length parameter.")
  1327. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1328. self.gguf_writer.add_context_length(ctx_length)
  1329. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1330. self.gguf_writer.add_block_count(block_count)
  1331. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1332. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1333. self.gguf_writer.add_head_count(head_count)
  1334. self.gguf_writer.add_head_count_kv(head_count_kv)
  1335. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1336. self.gguf_writer.add_file_type(self.ftype)
  1337. rope_scaling = self.hparams.get("rope_scaling") or {}
  1338. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1339. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1340. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1342. del bid # unused
  1343. head_count = self.hparams["num_attention_heads"]
  1344. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1345. # HF models permute some of the tensors, so we need to undo that
  1346. if name.endswith("q_proj.weight"):
  1347. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1348. if name.endswith("k_proj.weight"):
  1349. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1350. return [(self.map_tensor_name(name), data_torch)]
  1351. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1352. if n_kv_head is not None and n_head != n_kv_head:
  1353. n_head //= n_kv_head
  1354. return (
  1355. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1356. .swapaxes(1, 2)
  1357. .reshape(weights.shape)
  1358. )
  1359. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1360. class FalconModel(TextModel):
  1361. model_arch = gguf.MODEL_ARCH.FALCON
  1362. def set_gguf_parameters(self):
  1363. block_count = self.hparams.get("num_hidden_layers")
  1364. if block_count is None:
  1365. block_count = self.hparams["n_layer"] # old name
  1366. n_head = self.hparams.get("num_attention_heads")
  1367. if n_head is None:
  1368. n_head = self.hparams["n_head"] # old name
  1369. n_head_kv = self.hparams.get("num_kv_heads")
  1370. if n_head_kv is None:
  1371. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1372. self.gguf_writer.add_context_length(2048) # not in config.json
  1373. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1374. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1375. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1376. self.gguf_writer.add_block_count(block_count)
  1377. self.gguf_writer.add_head_count(n_head)
  1378. self.gguf_writer.add_head_count_kv(n_head_kv)
  1379. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1380. self.gguf_writer.add_file_type(self.ftype)
  1381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1382. del bid # unused
  1383. # QKV tensor transform
  1384. # The original query_key_value tensor contains n_head_kv "kv groups",
  1385. # each consisting of n_head/n_head_kv query weights followed by one key
  1386. # and one value weight (shared by all query heads in the kv group).
  1387. # This layout makes it a big pain to work with in GGML.
  1388. # So we rearrange them here,, so that we have n_head query weights
  1389. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1390. # in contiguous fashion.
  1391. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1392. if "query_key_value" in name:
  1393. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1394. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1395. head_dim = self.hparams["hidden_size"] // n_head
  1396. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1397. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1398. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1399. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1400. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1401. return [(self.map_tensor_name(name), data_torch)]
  1402. @ModelBase.register("GPTBigCodeForCausalLM")
  1403. class StarCoderModel(TextModel):
  1404. model_arch = gguf.MODEL_ARCH.STARCODER
  1405. def set_gguf_parameters(self):
  1406. block_count = self.hparams["n_layer"]
  1407. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1408. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1409. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1410. self.gguf_writer.add_block_count(block_count)
  1411. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1412. self.gguf_writer.add_head_count_kv(1)
  1413. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1414. self.gguf_writer.add_file_type(self.ftype)
  1415. @ModelBase.register("GPTRefactForCausalLM")
  1416. class RefactModel(TextModel):
  1417. model_arch = gguf.MODEL_ARCH.REFACT
  1418. def set_vocab(self):
  1419. super().set_vocab()
  1420. # TODO: how to determine special FIM tokens automatically?
  1421. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1422. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1423. special_vocab._set_special_token("prefix", 1)
  1424. special_vocab._set_special_token("suffix", 3)
  1425. special_vocab._set_special_token("middle", 2)
  1426. special_vocab.chat_template = None # do not add it twice
  1427. special_vocab.add_to_gguf(self.gguf_writer)
  1428. def set_gguf_parameters(self):
  1429. hidden_dim = self.hparams["n_embd"]
  1430. inner_dim = 4 * hidden_dim
  1431. hidden_dim = int(2 * inner_dim / 3)
  1432. multiple_of = 256
  1433. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1434. block_count = self.hparams["n_layer"]
  1435. # refact uses Alibi. So this is from config.json which might be used by training.
  1436. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1437. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1438. self.gguf_writer.add_feed_forward_length(ff_dim)
  1439. self.gguf_writer.add_block_count(block_count)
  1440. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1441. self.gguf_writer.add_head_count_kv(1)
  1442. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1443. self.gguf_writer.add_file_type(self.ftype)
  1444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1445. hidden_dim = self.hparams["n_embd"]
  1446. inner_dim = 4 * hidden_dim
  1447. hidden_dim = int(2 * inner_dim / 3)
  1448. multiple_of = 256
  1449. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1450. n_head = self.hparams["n_head"]
  1451. n_head_kv = 1
  1452. head_dim = self.hparams["n_embd"] // n_head
  1453. tensors: list[tuple[str, Tensor]] = []
  1454. if bid is not None:
  1455. if name == f"transformer.h.{bid}.attn.kv.weight":
  1456. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1457. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1458. elif name == f"transformer.h.{bid}.attn.q.weight":
  1459. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1460. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1461. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1462. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1463. if len(tensors) == 0:
  1464. tensors.append((self.map_tensor_name(name), data_torch))
  1465. return tensors
  1466. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1467. class StableLMModel(TextModel):
  1468. model_arch = gguf.MODEL_ARCH.STABLELM
  1469. def set_vocab(self):
  1470. if (self.dir_model / "tokenizer.json").is_file():
  1471. self._set_vocab_gpt2()
  1472. else:
  1473. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1474. self._set_vocab_qwen()
  1475. def set_gguf_parameters(self):
  1476. hparams = self.hparams
  1477. block_count = hparams["num_hidden_layers"]
  1478. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1479. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1480. self.gguf_writer.add_block_count(block_count)
  1481. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1482. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1483. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1484. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1485. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1486. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1487. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1488. self.gguf_writer.add_file_type(self.ftype)
  1489. _q_norms: list[dict[str, Tensor]] | None = None
  1490. _k_norms: list[dict[str, Tensor]] | None = None
  1491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1492. n_head = self.hparams["num_attention_heads"]
  1493. n_kv_head = self.hparams["num_key_value_heads"]
  1494. if name.find("q_layernorm.norms") != -1:
  1495. assert bid is not None
  1496. if self._q_norms is None:
  1497. self._q_norms = [{} for _ in range(self.block_count)]
  1498. self._q_norms[bid][name] = data_torch
  1499. if len(self._q_norms[bid]) >= n_head:
  1500. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1501. else:
  1502. return []
  1503. if name.find("k_layernorm.norms") != -1:
  1504. assert bid is not None
  1505. if self._k_norms is None:
  1506. self._k_norms = [{} for _ in range(self.block_count)]
  1507. self._k_norms[bid][name] = data_torch
  1508. if len(self._k_norms[bid]) >= n_kv_head:
  1509. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1510. else:
  1511. return []
  1512. return [(self.map_tensor_name(name), data_torch)]
  1513. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1514. datas: list[Tensor] = []
  1515. # extract the norms in order
  1516. for xid in range(n_head):
  1517. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1518. datas.append(norms[ename])
  1519. del norms[ename]
  1520. data_torch = torch.stack(datas, dim=0)
  1521. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1522. new_name = self.map_tensor_name(merged_name)
  1523. return [(new_name, data_torch)]
  1524. def prepare_tensors(self):
  1525. super().prepare_tensors()
  1526. if self._q_norms is not None or self._k_norms is not None:
  1527. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1528. norms = (
  1529. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1530. ) + (
  1531. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1532. )
  1533. if len(norms) > 0:
  1534. raise ValueError(f"Unprocessed norms: {norms}")
  1535. @ModelBase.register(
  1536. "LLaMAForCausalLM",
  1537. "LlamaForCausalLM",
  1538. "MistralForCausalLM",
  1539. "MixtralForCausalLM",
  1540. "VLlama3ForCausalLM",
  1541. "LlavaForConditionalGeneration",
  1542. "LlamaModel")
  1543. class LlamaModel(TextModel):
  1544. model_arch = gguf.MODEL_ARCH.LLAMA
  1545. undo_permute = True
  1546. def __init__(self, *args, **kwargs):
  1547. super().__init__(*args, **kwargs)
  1548. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1549. if self.hf_arch == "VLlama3ForCausalLM":
  1550. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1551. def set_vocab(self):
  1552. try:
  1553. self._set_vocab_sentencepiece()
  1554. except FileNotFoundError:
  1555. try:
  1556. self._set_vocab_llama_hf()
  1557. except (FileNotFoundError, TypeError):
  1558. # Llama 3
  1559. self._set_vocab_gpt2()
  1560. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1561. if self.hparams.get("vocab_size", 32000) == 32016:
  1562. special_vocab = gguf.SpecialVocab(
  1563. self.dir_model, load_merges=False,
  1564. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1565. )
  1566. special_vocab._set_special_token("prefix", 32007)
  1567. special_vocab._set_special_token("suffix", 32008)
  1568. special_vocab._set_special_token("middle", 32009)
  1569. special_vocab._set_special_token("eot", 32010)
  1570. special_vocab.add_to_gguf(self.gguf_writer)
  1571. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1572. if tokenizer_config_file.is_file():
  1573. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1574. tokenizer_config_json = json.load(f)
  1575. if "add_prefix_space" in tokenizer_config_json:
  1576. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1577. # Apply to granite small models only
  1578. if self.hparams.get("vocab_size", 32000) == 49152:
  1579. self.gguf_writer.add_add_bos_token(False)
  1580. def set_gguf_parameters(self):
  1581. super().set_gguf_parameters()
  1582. hparams = self.hparams
  1583. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1584. if (rope_dim := hparams.get("head_dim")) is None:
  1585. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1586. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1587. rope_scaling = self.hparams.get("rope_scaling") or {}
  1588. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1589. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1590. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1591. @staticmethod
  1592. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1593. if n_head_kv is not None and n_head != n_head_kv:
  1594. n_head = n_head_kv
  1595. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1596. .swapaxes(1, 2)
  1597. .reshape(weights.shape))
  1598. _experts: list[dict[str, Tensor]] | None = None
  1599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1600. n_head = self.hparams["num_attention_heads"]
  1601. n_kv_head = self.hparams.get("num_key_value_heads")
  1602. is_vision_tensor = "vision_tower" in name \
  1603. or "vision_model" in name \
  1604. or "model.connector" in name \
  1605. or "multi_modal_projector" in name
  1606. if is_vision_tensor:
  1607. return [] # skip vision tensors
  1608. elif self.hf_arch == "LlamaModel":
  1609. name = "model." + name
  1610. elif name.startswith("model.text_model"):
  1611. name = name.replace("text_model.", "") # for SmolVLM
  1612. elif name.startswith("language_model."):
  1613. name = name.replace("language_model.", "") # for the rest
  1614. if self.undo_permute:
  1615. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1616. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1617. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1618. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1619. # process the experts separately
  1620. if name.find("block_sparse_moe.experts") != -1:
  1621. n_experts = self.hparams["num_local_experts"]
  1622. assert bid is not None
  1623. if self._experts is None:
  1624. self._experts = [{} for _ in range(self.block_count)]
  1625. self._experts[bid][name] = data_torch
  1626. if len(self._experts[bid]) >= n_experts * 3:
  1627. tensors: list[tuple[str, Tensor]] = []
  1628. # merge the experts into a single 3d tensor
  1629. for wid in ["w1", "w2", "w3"]:
  1630. datas: list[Tensor] = []
  1631. for xid in range(n_experts):
  1632. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1633. datas.append(self._experts[bid][ename])
  1634. del self._experts[bid][ename]
  1635. data_torch = torch.stack(datas, dim=0)
  1636. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1637. new_name = self.map_tensor_name(merged_name)
  1638. tensors.append((new_name, data_torch))
  1639. return tensors
  1640. else:
  1641. return []
  1642. return [(self.map_tensor_name(name), data_torch)]
  1643. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1644. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1645. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1646. base = self.hparams.get("rope_theta", 10000.0)
  1647. if (dim := self.hparams.get("head_dim")) is None:
  1648. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1649. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1650. factor = rope_scaling.get("factor", 8.0)
  1651. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1652. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1653. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1654. low_freq_wavelen = old_context_len / low_freq_factor
  1655. high_freq_wavelen = old_context_len / high_freq_factor
  1656. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1657. rope_factors = []
  1658. for freq in freqs:
  1659. wavelen = 2 * math.pi / freq
  1660. if wavelen < high_freq_wavelen:
  1661. rope_factors.append(1)
  1662. elif wavelen > low_freq_wavelen:
  1663. rope_factors.append(factor)
  1664. else:
  1665. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1666. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1667. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1668. def prepare_tensors(self):
  1669. super().prepare_tensors()
  1670. if self._experts is not None:
  1671. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1672. experts = [k for d in self._experts for k in d.keys()]
  1673. if len(experts) > 0:
  1674. raise ValueError(f"Unprocessed experts: {experts}")
  1675. @ModelBase.register("ArceeForCausalLM")
  1676. class ArceeModel(LlamaModel):
  1677. model_arch = gguf.MODEL_ARCH.ARCEE
  1678. def set_gguf_parameters(self):
  1679. super().set_gguf_parameters()
  1680. self._try_set_pooling_type()
  1681. rope_scaling = self.hparams.get("rope_scaling") or {}
  1682. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1683. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1684. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1685. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1686. @ModelBase.register(
  1687. "LlavaForConditionalGeneration", # pixtral
  1688. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1689. )
  1690. class LlavaVisionModel(MmprojModel):
  1691. img_break_tok_id = -1
  1692. def __init__(self, *args, **kwargs):
  1693. super().__init__(*args, **kwargs)
  1694. if self.hparams["model_type"] == "pixtral":
  1695. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1696. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1697. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1698. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1699. else:
  1700. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1701. def get_token_id(self, token: str) -> int:
  1702. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1703. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1704. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1705. for id_, token_data in added_tokens_decoder.items():
  1706. if token_data["content"] == token:
  1707. return int(id_)
  1708. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1709. def set_gguf_parameters(self):
  1710. super().set_gguf_parameters()
  1711. hparams = self.hparams
  1712. if hparams["model_type"] == "pixtral":
  1713. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1714. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1715. # hidden_act
  1716. if hparams["hidden_act"] == "silu":
  1717. self.gguf_writer.add_vision_use_silu(True)
  1718. elif hparams["hidden_act"] == "gelu":
  1719. self.gguf_writer.add_vision_use_gelu(True)
  1720. else:
  1721. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1722. # spatial_merge_size
  1723. if "spatial_merge_size" in self.global_config:
  1724. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1726. del bid # unused
  1727. n_head = self.hparams["num_attention_heads"]
  1728. n_kv_head = n_head
  1729. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1730. # process vision tensors
  1731. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1732. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1733. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1734. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1735. return [(self.map_tensor_name(name), data_torch)]
  1736. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1737. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1738. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1739. img_break_embd = data_torch[self.img_break_tok_id]
  1740. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1741. return [(self.map_tensor_name(name), img_break_embd)]
  1742. return [] # skip other tensors
  1743. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1744. class SmolVLMModel(MmprojModel):
  1745. def __init__(self, *args, **kwargs):
  1746. super().__init__(*args, **kwargs)
  1747. if self.hparams["model_type"] == "smolvlm_vision":
  1748. # fix for SmolVLM2, missing some keys in config.json
  1749. # default values are taken from transformers code
  1750. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1751. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1752. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1753. def set_gguf_parameters(self):
  1754. super().set_gguf_parameters()
  1755. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1756. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1757. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1758. self.gguf_writer.add_vision_use_gelu(True)
  1759. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1760. del bid, new_name, n_dims # unused
  1761. if ".embeddings." in name:
  1762. return gguf.GGMLQuantizationType.F32
  1763. return False
  1764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1765. del bid # unused
  1766. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1767. if is_vision_tensor:
  1768. return [(self.map_tensor_name(name), data_torch)]
  1769. return [] # skip other tensors
  1770. @ModelBase.register("Llama4ForConditionalGeneration")
  1771. class Llama4Model(LlamaModel):
  1772. model_arch = gguf.MODEL_ARCH.LLAMA4
  1773. undo_permute = False
  1774. def __init__(self, *args, **kwargs):
  1775. super().__init__(*args, **kwargs)
  1776. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1777. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1778. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1779. def set_vocab(self):
  1780. self._set_vocab_gpt2()
  1781. def set_gguf_parameters(self):
  1782. super().set_gguf_parameters()
  1783. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1784. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1786. if name.startswith("language_model."):
  1787. name = name.replace("language_model.", "")
  1788. # split the gate_up into gate and up
  1789. if "gate_up_proj" in name:
  1790. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1791. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1792. dim_half = data_torch.shape[-1] // 2
  1793. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1794. return [
  1795. (self.map_tensor_name(name_gate), gate_proj_weight),
  1796. (self.map_tensor_name(name_up), up_proj_weight)
  1797. ]
  1798. if name.endswith("down_proj"):
  1799. name += ".weight"
  1800. data_torch = data_torch.transpose(-1, -2)
  1801. if "multi_modal_projector" in name or "vision_model" in name:
  1802. return []
  1803. return super().modify_tensors(data_torch, name, bid)
  1804. @ModelBase.register("Llama4ForConditionalGeneration")
  1805. class Llama4VisionModel(MmprojModel):
  1806. def set_gguf_parameters(self):
  1807. super().set_gguf_parameters()
  1808. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1809. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1810. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1811. assert self.hparams["hidden_act"] == "gelu"
  1812. self.gguf_writer.add_vision_use_gelu(True)
  1813. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1814. del bid # unused
  1815. if "multi_modal_projector" in name or "vision_model" in name:
  1816. # process vision tensors
  1817. if "positional_embedding_vlm" in name and ".weight" not in name:
  1818. name += ".weight"
  1819. if "multi_modal_projector.linear_1" in name:
  1820. # despite the name with number postfix, this is a single fully connected layer
  1821. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1822. return [(self.map_tensor_name(name), data_torch)]
  1823. return []
  1824. @ModelBase.register("Mistral3ForConditionalGeneration")
  1825. class Mistral3Model(LlamaModel):
  1826. model_arch = gguf.MODEL_ARCH.LLAMA
  1827. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1828. name = name.replace("language_model.", "")
  1829. if "multi_modal_projector" in name or "vision_tower" in name:
  1830. return []
  1831. return super().modify_tensors(data_torch, name, bid)
  1832. @ModelBase.register("DeciLMForCausalLM")
  1833. class DeciModel(TextModel):
  1834. model_arch = gguf.MODEL_ARCH.DECI
  1835. @staticmethod
  1836. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1837. # DeciLM-specific code
  1838. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1839. return DeciModel._find_multiple(intermediate_size, 256)
  1840. @staticmethod
  1841. def _find_multiple(n: int, k: int) -> int:
  1842. # DeciLM-specific code
  1843. if n % k == 0:
  1844. return n
  1845. return n + k - (n % k)
  1846. def __init__(self, *args, **kwargs):
  1847. super().__init__(*args, **kwargs)
  1848. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1849. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1850. assert self.block_count == len(_block_configs)
  1851. self._num_kv_heads = list()
  1852. self._num_heads = list()
  1853. _ffn_multipliers = list()
  1854. # ***linear attention layer***
  1855. # if n_heads_in_group is None and replace_with_linear is True
  1856. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1857. # ***attention-free layer***
  1858. # if n_heads_in_group is None and replace_with_linear is False
  1859. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1860. # ***normal attention-layer***
  1861. # if n_heads_in_group is not None, then
  1862. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1863. # _num_heads[il] is num_attention_head
  1864. # ***dummy layer*** for nemotron 253B
  1865. # if n_heads_in_group is None and ffn_mult is None
  1866. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1867. for il in range(len(_block_configs)):
  1868. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1869. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1870. self._num_kv_heads.append(0)
  1871. self._num_heads.append(self.hparams["num_attention_heads"])
  1872. else:
  1873. self._num_kv_heads.append(0)
  1874. self._num_heads.append(0)
  1875. else:
  1876. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1877. self._num_heads.append(self.hparams["num_attention_heads"])
  1878. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1879. _ffn_multipliers.append(0.0)
  1880. else:
  1881. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1882. assert self.block_count == len(self._num_kv_heads)
  1883. assert self.block_count == len(self._num_heads)
  1884. assert self.block_count == len(_ffn_multipliers)
  1885. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1886. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1887. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1888. self._ffn_dims: list[int] = [
  1889. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1890. for multiplier in _ffn_multipliers
  1891. ]
  1892. def set_vocab(self):
  1893. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1894. # eos_token from '|eot_id|' to '|end_of_text|'
  1895. if self.hparams.get("vocab_size", 128256) == 128256:
  1896. tokens, toktypes, tokpre = self.get_vocab_base()
  1897. self.gguf_writer.add_tokenizer_model("gpt2")
  1898. self.gguf_writer.add_tokenizer_pre(tokpre)
  1899. self.gguf_writer.add_token_list(tokens)
  1900. self.gguf_writer.add_token_types(toktypes)
  1901. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1902. special_vocab.add_to_gguf(self.gguf_writer)
  1903. else:
  1904. # DeciLM-7B
  1905. self._set_vocab_llama_hf()
  1906. def set_gguf_parameters(self):
  1907. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1908. assert self.block_count == len(self._num_kv_heads)
  1909. assert self.block_count == len(self._num_heads)
  1910. assert self.block_count == len(self._ffn_dims)
  1911. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1912. self.gguf_writer.add_rope_freq_base(rope_theta)
  1913. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1914. self.gguf_writer.add_head_count(self._num_heads)
  1915. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1916. self.gguf_writer.add_block_count(self.block_count)
  1917. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1918. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1919. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1920. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1921. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1922. self.gguf_writer.add_file_type(self.ftype)
  1923. else: # DeciLM-7B
  1924. super().set_gguf_parameters()
  1925. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1926. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1927. assert self.block_count == len(self._num_kv_heads)
  1928. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1929. hparams = self.hparams
  1930. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1931. if (rope_dim := hparams.get("head_dim")) is None:
  1932. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1933. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1934. rope_scaling = self.hparams.get("rope_scaling") or {}
  1935. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1936. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1937. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1938. @staticmethod
  1939. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1940. if n_head_kv is not None and n_head != n_head_kv:
  1941. n_head = n_head_kv
  1942. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1943. .swapaxes(1, 2)
  1944. .reshape(weights.shape))
  1945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1946. n_head = self.hparams["num_attention_heads"]
  1947. if bid is not None:
  1948. if "num_key_value_heads_per_layer" in self.hparams:
  1949. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1950. elif "block_configs" in self.hparams:
  1951. n_kv_head = self._num_kv_heads[bid]
  1952. n_head = self._num_heads[bid]
  1953. else:
  1954. n_kv_head = self.hparams.get("num_key_value_heads")
  1955. else:
  1956. n_kv_head = self.hparams.get("num_key_value_heads")
  1957. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1958. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1959. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1960. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1961. return [(self.map_tensor_name(name), data_torch)]
  1962. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1963. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1964. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1965. base = self.hparams.get("rope_theta", 10000.0)
  1966. if (dim := self.hparams.get("head_dim")) is None:
  1967. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1968. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1969. factor = rope_scaling.get("factor", 8.0)
  1970. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1971. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1972. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1973. low_freq_wavelen = old_context_len / low_freq_factor
  1974. high_freq_wavelen = old_context_len / high_freq_factor
  1975. assert low_freq_wavelen != high_freq_wavelen
  1976. rope_factors = []
  1977. for freq in freqs:
  1978. wavelen = 2 * math.pi / freq
  1979. if wavelen < high_freq_wavelen:
  1980. rope_factors.append(1)
  1981. elif wavelen > low_freq_wavelen:
  1982. rope_factors.append(factor)
  1983. else:
  1984. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1985. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1986. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1987. def prepare_tensors(self):
  1988. super().prepare_tensors()
  1989. @ModelBase.register("BitnetForCausalLM")
  1990. class BitnetModel(TextModel):
  1991. model_arch = gguf.MODEL_ARCH.BITNET
  1992. def set_vocab(self):
  1993. self._set_vocab_sentencepiece()
  1994. def set_gguf_parameters(self):
  1995. super().set_gguf_parameters()
  1996. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1997. self.gguf_writer.add_rope_scaling_factor(1.0)
  1998. def weight_quant(self, weight: Tensor) -> Tensor:
  1999. dtype = weight.dtype
  2000. weight = weight.float()
  2001. scale = weight.abs().mean().clamp(min=1e-5)
  2002. iscale = 1 / scale
  2003. # TODO: multiply by the scale directly instead of inverting it twice
  2004. # (this is also unnecessarily doubly inverted upstream)
  2005. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2006. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2007. return result.type(dtype)
  2008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2009. new_name = self.map_tensor_name(name)
  2010. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2011. gguf.MODEL_TENSOR.ATTN_Q,
  2012. gguf.MODEL_TENSOR.ATTN_K,
  2013. gguf.MODEL_TENSOR.ATTN_V,
  2014. gguf.MODEL_TENSOR.ATTN_OUT,
  2015. gguf.MODEL_TENSOR.FFN_UP,
  2016. gguf.MODEL_TENSOR.FFN_DOWN,
  2017. gguf.MODEL_TENSOR.FFN_GATE,
  2018. ]):
  2019. # transform weight into 1/0/-1 (in fp32)
  2020. data_torch = self.weight_quant(data_torch)
  2021. yield (new_name, data_torch)
  2022. @ModelBase.register("GrokForCausalLM")
  2023. class GrokModel(TextModel):
  2024. model_arch = gguf.MODEL_ARCH.GROK
  2025. def set_vocab(self):
  2026. self._set_vocab_sentencepiece()
  2027. def __init__(self, *args, **kwargs):
  2028. super().__init__(*args, **kwargs)
  2029. def set_gguf_parameters(self):
  2030. super().set_gguf_parameters()
  2031. _experts: list[dict[str, Tensor]] | None = None
  2032. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2033. # process the experts separately
  2034. if name.find(".moe.") != -1:
  2035. n_experts = self.hparams["num_local_experts"]
  2036. assert bid is not None
  2037. if self._experts is None:
  2038. self._experts = [{} for _ in range(self.block_count)]
  2039. self._experts[bid][name] = data_torch
  2040. if len(self._experts[bid]) >= n_experts * 3:
  2041. tensors: list[tuple[str, Tensor]] = []
  2042. # merge the experts into a single 3d tensor
  2043. for wid in ["linear", "linear_1", "linear_v"]:
  2044. datas: list[Tensor] = []
  2045. for xid in range(n_experts):
  2046. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2047. datas.append(self._experts[bid][ename])
  2048. del self._experts[bid][ename]
  2049. data_torch = torch.stack(datas, dim=0)
  2050. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2051. new_name = self.map_tensor_name(merged_name)
  2052. tensors.append((new_name, data_torch))
  2053. return tensors
  2054. else:
  2055. return []
  2056. return [(self.map_tensor_name(name), data_torch)]
  2057. @ModelBase.register("DbrxForCausalLM")
  2058. class DbrxModel(TextModel):
  2059. model_arch = gguf.MODEL_ARCH.DBRX
  2060. def set_gguf_parameters(self):
  2061. ffn_config = self.hparams["ffn_config"]
  2062. attn_config = self.hparams["attn_config"]
  2063. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2064. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2065. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2066. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2067. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2068. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2069. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2070. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2071. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2072. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2073. self.gguf_writer.add_layer_norm_eps(1e-5)
  2074. self.gguf_writer.add_file_type(self.ftype)
  2075. logger.info(f"gguf: file type = {self.ftype}")
  2076. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2077. del bid # unused
  2078. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2079. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2080. n_embd = self.hparams["d_model"]
  2081. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2082. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2083. # But llama.cpp moe graph works differently
  2084. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2085. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2086. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2087. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2088. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2089. experts = False
  2090. for exp_tensor_name in exp_tensor_names.keys():
  2091. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2092. experts = True
  2093. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2094. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2095. data_torch = data_torch.permute(*permute_tensor)
  2096. break
  2097. # map tensor names
  2098. # In MoE models the ffn tensors are typically most of the model weights,
  2099. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2100. # Every other model has the weight names ending in .weight,
  2101. # let's assume that is the convention which is not the case for dbrx:
  2102. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2103. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2104. return [(new_name, data_torch)]
  2105. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2106. del name, new_name, bid # unused
  2107. return n_dims > 1
  2108. @ModelBase.register("MiniCPMForCausalLM")
  2109. class MiniCPMModel(TextModel):
  2110. model_arch = gguf.MODEL_ARCH.MINICPM
  2111. def set_gguf_parameters(self):
  2112. super().set_gguf_parameters()
  2113. embedding_scale = float(self.hparams["scale_emb"])
  2114. self.gguf_writer.add_embedding_scale(embedding_scale)
  2115. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2116. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2117. self.gguf_writer.add_residual_scale(residual_scale)
  2118. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2119. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2120. self.gguf_writer.add_logit_scale(logit_scale)
  2121. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2122. rope_scaling = self.hparams.get("rope_scaling") or {}
  2123. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2124. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2125. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2126. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2127. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2128. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2129. if rope_scaling is not None:
  2130. long_factors = rope_scaling.get('long_factor', None)
  2131. short_factors = rope_scaling.get('short_factor', None)
  2132. if long_factors is None or short_factors is None:
  2133. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2134. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2135. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2136. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2137. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2138. def set_vocab(self):
  2139. self._set_vocab_sentencepiece()
  2140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2141. del bid # unused
  2142. n_head = self.hparams["num_attention_heads"]
  2143. n_kv_head = self.hparams.get("num_key_value_heads")
  2144. # HF models permute some of the tensors, so we need to undo that
  2145. if name.endswith(("q_proj.weight")):
  2146. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2147. if name.endswith(("k_proj.weight")):
  2148. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2149. return [(self.map_tensor_name(name), data_torch)]
  2150. @ModelBase.register("MiniCPM3ForCausalLM")
  2151. class MiniCPM3Model(TextModel):
  2152. model_arch = gguf.MODEL_ARCH.MINICPM3
  2153. def set_gguf_parameters(self):
  2154. hparams = self.hparams
  2155. self.gguf_writer.add_file_type(self.ftype)
  2156. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2157. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2158. self.gguf_writer.add_block_count(self.block_count)
  2159. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2160. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2161. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2162. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2163. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2164. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2165. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2166. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2167. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2168. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2169. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2170. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2171. if rope_scaling is not None:
  2172. rope_dims = self.hparams["qk_rope_head_dim"]
  2173. long_factors = rope_scaling.get('long_factor', None)
  2174. short_factors = rope_scaling.get('short_factor', None)
  2175. if long_factors is None or short_factors is None:
  2176. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2177. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2178. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2179. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2180. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2181. def set_vocab(self):
  2182. self._set_vocab_sentencepiece()
  2183. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2184. if n_kv_head is not None and n_head != n_kv_head:
  2185. n_head //= n_kv_head
  2186. return (
  2187. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2188. .swapaxes(1, 2)
  2189. .reshape(weights.shape)
  2190. )
  2191. @ModelBase.register("QWenLMHeadModel")
  2192. class QwenModel(TextModel):
  2193. model_arch = gguf.MODEL_ARCH.QWEN
  2194. @staticmethod
  2195. def token_bytes_to_string(b):
  2196. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2197. byte_encoder = bytes_to_unicode()
  2198. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2199. @staticmethod
  2200. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2201. parts = [bytes([b]) for b in token]
  2202. while True:
  2203. min_idx = None
  2204. min_rank = None
  2205. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2206. rank = mergeable_ranks.get(pair[0] + pair[1])
  2207. if rank is not None and (min_rank is None or rank < min_rank):
  2208. min_idx = i
  2209. min_rank = rank
  2210. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2211. break
  2212. assert min_idx is not None
  2213. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2214. return parts
  2215. def set_vocab(self):
  2216. self._set_vocab_qwen()
  2217. def set_gguf_parameters(self):
  2218. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2219. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2220. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2221. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2222. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2223. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2224. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2225. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2226. self.gguf_writer.add_file_type(self.ftype)
  2227. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2228. class Qwen2Model(TextModel):
  2229. model_arch = gguf.MODEL_ARCH.QWEN2
  2230. def set_vocab(self):
  2231. try:
  2232. self._set_vocab_sentencepiece()
  2233. except FileNotFoundError:
  2234. self._set_vocab_gpt2()
  2235. def set_gguf_parameters(self):
  2236. super().set_gguf_parameters()
  2237. self._try_set_pooling_type()
  2238. rope_scaling = self.hparams.get("rope_scaling") or {}
  2239. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2240. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2241. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2242. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2244. if self.hf_arch == "Qwen2Model":
  2245. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2246. if "language_model." in name:
  2247. name = name.replace("language_model.", "") # for InternVL
  2248. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2249. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2250. # skip vision and audio tensors
  2251. return []
  2252. yield from super().modify_tensors(data_torch, name, bid)
  2253. @ModelBase.register("Ernie4_5_ForCausalLM")
  2254. class Ernie4_5Model(TextModel):
  2255. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2256. def set_vocab(self):
  2257. self._set_vocab_sentencepiece()
  2258. def set_gguf_parameters(self):
  2259. super().set_gguf_parameters()
  2260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2261. num_heads = self.hparams["num_attention_heads"]
  2262. num_kv_heads = self.hparams["num_key_value_heads"]
  2263. head_dim = self.hparams["head_dim"]
  2264. if "ernie." in name:
  2265. name = name.replace("ernie.", "model.")
  2266. # split the qkv weights
  2267. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2268. if "qkv_proj" in name:
  2269. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2270. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2271. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2272. total_q_dim = num_heads * head_dim
  2273. total_k_dim = num_kv_heads * head_dim
  2274. total_v_dim = num_kv_heads * head_dim
  2275. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2276. return [
  2277. (self.map_tensor_name(name_q), q_proj_weight),
  2278. (self.map_tensor_name(name_k), k_proj_weight),
  2279. (self.map_tensor_name(name_v), v_proj_weight)
  2280. ]
  2281. # split the up_gate_proj into gate and up
  2282. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2283. if "up_gate_proj" in name:
  2284. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2285. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2286. dim_half = data_torch.shape[0] // 2
  2287. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2288. return [
  2289. (self.map_tensor_name(name_gate), gate_proj_weight),
  2290. (self.map_tensor_name(name_up), up_proj_weight)
  2291. ]
  2292. return [(self.map_tensor_name(name), data_torch)]
  2293. @ModelBase.register(
  2294. "Qwen2VLModel",
  2295. "Qwen2VLForConditionalGeneration",
  2296. "Qwen2_5_VLForConditionalGeneration",
  2297. "Qwen2_5OmniModel",
  2298. )
  2299. class Qwen2VLModel(TextModel):
  2300. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2301. def set_gguf_parameters(self):
  2302. super().set_gguf_parameters()
  2303. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2304. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2305. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2306. def set_vocab(self):
  2307. try:
  2308. self._set_vocab_sentencepiece()
  2309. except FileNotFoundError:
  2310. self._set_vocab_gpt2()
  2311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2312. del bid # unused
  2313. if name.startswith("thinker."):
  2314. name = name.replace("thinker.", "")
  2315. if name.startswith("visual") or name.startswith("audio") or \
  2316. name.startswith("talker") or name.startswith("token2wav"):
  2317. # skip multimodal tensors
  2318. return []
  2319. return [(self.map_tensor_name(name), data_torch)]
  2320. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2321. class Qwen2VLVisionModel(MmprojModel):
  2322. def __init__(self, *args, **kwargs):
  2323. super().__init__(*args, **kwargs)
  2324. assert self.hparams_vision is not None
  2325. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2326. # rename config.json values
  2327. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2328. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2329. if "embed_dim" in self.hparams_vision: # qwen2vl
  2330. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2331. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2332. def set_gguf_parameters(self):
  2333. super().set_gguf_parameters()
  2334. assert self.hparams_vision is not None
  2335. hparams = self.hparams_vision
  2336. model_type = self.global_config['model_type']
  2337. if model_type == 'qwen2_vl':
  2338. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2339. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2340. if model_type == 'qwen2_5_omni':
  2341. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2342. else:
  2343. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2344. self.gguf_writer.add_vision_use_silu(True)
  2345. # find n_wa_pattern (window attention pattern)
  2346. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2347. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2348. n_wa_pattern = fullatt_block_indexes[0] + 1
  2349. # validate n_wa_pattern
  2350. for i in range(1, len(fullatt_block_indexes)):
  2351. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2352. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2353. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2354. else:
  2355. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2356. # default values below are taken from HF tranformers code
  2357. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2358. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2359. del bid, name, n_dims # unused
  2360. if ".patch_embd." in new_name:
  2361. return gguf.GGMLQuantizationType.F16
  2362. if ".position_embd." in new_name:
  2363. return gguf.GGMLQuantizationType.F32
  2364. return False
  2365. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2366. del bid # unused
  2367. if name.startswith("visual."):
  2368. # process visual tensors
  2369. # split QKV tensors if needed
  2370. if ".qkv." in name:
  2371. if data_torch.ndim == 2: # weight
  2372. c3, _ = data_torch.shape
  2373. else: # bias
  2374. c3 = data_torch.shape[0]
  2375. assert c3 % 3 == 0
  2376. c = c3 // 3
  2377. wq = data_torch[:c]
  2378. wk = data_torch[c: c * 2]
  2379. wv = data_torch[c * 2:]
  2380. return [
  2381. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2382. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2383. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2384. ]
  2385. elif 'patch_embed.proj.weight' in name:
  2386. # split Conv3D into Conv2Ds
  2387. c1, c2, kt, kh, kw = data_torch.shape
  2388. del c1, c2, kh, kw # unused
  2389. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2390. return [
  2391. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2392. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2393. ]
  2394. else:
  2395. return [(self.map_tensor_name(name), data_torch)]
  2396. return [] # skip other tensors
  2397. @ModelBase.register("Qwen2_5OmniModel")
  2398. class Qwen25OmniModel(Qwen2VLVisionModel):
  2399. has_vision_encoder = True
  2400. has_audio_encoder = True
  2401. def __init__(self, *args, **kwargs):
  2402. super().__init__(*args, **kwargs)
  2403. assert self.hparams_audio is not None
  2404. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2405. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2406. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2407. def set_gguf_parameters(self):
  2408. super().set_gguf_parameters()
  2409. assert self.hparams_audio is not None
  2410. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2411. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2412. def get_vision_config(self) -> dict[str, Any] | None:
  2413. return self.global_config["thinker_config"].get("vision_config")
  2414. def get_audio_config(self) -> dict[str, Any] | None:
  2415. return self.global_config["thinker_config"].get("audio_config")
  2416. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2417. # SinusoidsPositionEmbedding
  2418. assert self.hparams_audio is not None
  2419. max_timescale = 10000
  2420. length = 1500
  2421. channels = self.hparams_audio["hidden_size"]
  2422. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2423. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2424. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2425. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2426. yield ("audio_tower.embed_positions.weight", pos_embd)
  2427. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2428. del bid, new_name, n_dims # unused
  2429. if ".conv" in name and ".weight" in name:
  2430. return gguf.GGMLQuantizationType.F16
  2431. return False
  2432. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2433. if name.startswith("thinker."):
  2434. name = name.replace("thinker.", "")
  2435. if name.startswith("audio_tower"):
  2436. # process audio tensors
  2437. if "conv1.bias" in name or "conv2.bias" in name:
  2438. # transpose conv1 and conv2 bias
  2439. data_torch = data_torch.unsqueeze(-1)
  2440. if "audio_bos_eos_token" in name:
  2441. # this tensor is left unused in transformers code
  2442. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2443. return []
  2444. return [(self.map_tensor_name(name), data_torch)]
  2445. return super().modify_tensors(data_torch, name, bid)
  2446. @ModelBase.register("InternVisionModel")
  2447. class InternVisionModel(MmprojModel):
  2448. def set_gguf_parameters(self):
  2449. super().set_gguf_parameters()
  2450. hparams = self.hparams
  2451. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2452. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2453. # hidden_act
  2454. if hparams["hidden_act"] == "silu":
  2455. self.gguf_writer.add_vision_use_silu(True)
  2456. elif hparams["hidden_act"] == "gelu":
  2457. self.gguf_writer.add_vision_use_gelu(True)
  2458. else:
  2459. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2460. # downsample_ratio
  2461. downsample_ratio = self.global_config.get("downsample_ratio")
  2462. assert downsample_ratio is not None
  2463. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2464. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2465. del bid, name, n_dims # unused
  2466. if ".patch_embd." in new_name:
  2467. return gguf.GGMLQuantizationType.F16
  2468. if ".position_embd." in new_name:
  2469. return gguf.GGMLQuantizationType.F32
  2470. return False
  2471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2472. del bid # unused
  2473. if name.startswith("vision_model") or name.startswith("mlp"):
  2474. # process visual tensors
  2475. # correct name
  2476. if name.startswith("vision_model"):
  2477. name = "vision_tower." + name
  2478. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2479. name += ".weight"
  2480. # split QKV tensors if needed
  2481. if ".qkv." in name:
  2482. if data_torch.ndim == 2: # weight
  2483. c3, _ = data_torch.shape
  2484. else: # bias
  2485. c3 = data_torch.shape[0]
  2486. assert c3 % 3 == 0
  2487. c = c3 // 3
  2488. wq = data_torch[:c]
  2489. wk = data_torch[c: c * 2]
  2490. wv = data_torch[c * 2:]
  2491. return [
  2492. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2493. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2494. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2495. ]
  2496. return [(self.map_tensor_name(name), data_torch)]
  2497. return [] # skip other tensors
  2498. @ModelBase.register("WavTokenizerDec")
  2499. class WavTokenizerDecModel(TextModel):
  2500. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2501. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2502. del bid # unused
  2503. if \
  2504. name.endswith("codebook.cluster_size") or \
  2505. name.endswith("codebook.embed_avg") or \
  2506. name.endswith("codebook.inited"):
  2507. logger.debug(f"Skipping {name!r}")
  2508. return []
  2509. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2510. return [(self.map_tensor_name(name), data_torch)]
  2511. def set_vocab(self):
  2512. self._set_vocab_none()
  2513. def set_gguf_parameters(self):
  2514. super().set_gguf_parameters()
  2515. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2516. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2517. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2518. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2519. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2520. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2521. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2522. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2523. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2524. self.gguf_writer.add_causal_attention(False)
  2525. @ModelBase.register("Qwen2MoeForCausalLM")
  2526. class Qwen2MoeModel(TextModel):
  2527. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2528. def set_gguf_parameters(self):
  2529. super().set_gguf_parameters()
  2530. if (n_experts := self.hparams.get("num_experts")) is not None:
  2531. self.gguf_writer.add_expert_count(n_experts)
  2532. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2533. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2534. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2535. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2536. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2537. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2538. # YaRN is not enabled by default
  2539. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2540. rope_scaling = self.hparams.get("rope_scaling") or {}
  2541. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2542. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2543. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2544. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2545. _experts: list[dict[str, Tensor]] | None = None
  2546. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2547. # process the experts separately
  2548. if name.find("experts") != -1:
  2549. n_experts = self.hparams["num_experts"]
  2550. assert bid is not None
  2551. if self._experts is None:
  2552. self._experts = [{} for _ in range(self.block_count)]
  2553. self._experts[bid][name] = data_torch
  2554. if len(self._experts[bid]) >= n_experts * 3:
  2555. tensors: list[tuple[str, Tensor]] = []
  2556. # merge the experts into a single 3d tensor
  2557. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2558. datas: list[Tensor] = []
  2559. for xid in range(n_experts):
  2560. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2561. datas.append(self._experts[bid][ename])
  2562. del self._experts[bid][ename]
  2563. data_torch = torch.stack(datas, dim=0)
  2564. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2565. new_name = self.map_tensor_name(merged_name)
  2566. tensors.append((new_name, data_torch))
  2567. return tensors
  2568. else:
  2569. return []
  2570. return [(self.map_tensor_name(name), data_torch)]
  2571. def prepare_tensors(self):
  2572. super().prepare_tensors()
  2573. if self._experts is not None:
  2574. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2575. experts = [k for d in self._experts for k in d.keys()]
  2576. if len(experts) > 0:
  2577. raise ValueError(f"Unprocessed experts: {experts}")
  2578. @ModelBase.register("Qwen3ForCausalLM")
  2579. class Qwen3Model(Qwen2Model):
  2580. model_arch = gguf.MODEL_ARCH.QWEN3
  2581. @ModelBase.register("Qwen3MoeForCausalLM")
  2582. class Qwen3MoeModel(Qwen2MoeModel):
  2583. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2584. @ModelBase.register("GPT2LMHeadModel")
  2585. class GPT2Model(TextModel):
  2586. model_arch = gguf.MODEL_ARCH.GPT2
  2587. def set_gguf_parameters(self):
  2588. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2589. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2590. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2591. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2592. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2593. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2594. self.gguf_writer.add_file_type(self.ftype)
  2595. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2596. del bid # unused
  2597. tensors: list[tuple[str, Tensor]] = []
  2598. # we don't need these
  2599. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2600. return tensors
  2601. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2602. data_torch = data_torch.transpose(1, 0)
  2603. new_name = self.map_tensor_name(name)
  2604. tensors.append((new_name, data_torch))
  2605. return tensors
  2606. @ModelBase.register("PhiForCausalLM")
  2607. class Phi2Model(TextModel):
  2608. model_arch = gguf.MODEL_ARCH.PHI2
  2609. def set_gguf_parameters(self):
  2610. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2611. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2612. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2613. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2614. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2615. self.gguf_writer.add_embedding_length(n_embd)
  2616. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2617. self.gguf_writer.add_block_count(block_count)
  2618. self.gguf_writer.add_head_count(n_head)
  2619. self.gguf_writer.add_head_count_kv(n_head)
  2620. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2621. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2622. self.gguf_writer.add_file_type(self.ftype)
  2623. self.gguf_writer.add_add_bos_token(False)
  2624. @ModelBase.register("Phi3ForCausalLM")
  2625. class Phi3MiniModel(TextModel):
  2626. model_arch = gguf.MODEL_ARCH.PHI3
  2627. def set_vocab(self):
  2628. # Phi-4 model uses GPT2Tokenizer
  2629. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2630. if tokenizer_config_file.is_file():
  2631. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2632. tokenizer_config_json = json.load(f)
  2633. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2634. if tokenizer_class == 'GPT2Tokenizer':
  2635. return self._set_vocab_gpt2()
  2636. from sentencepiece import SentencePieceProcessor
  2637. tokenizer_path = self.dir_model / 'tokenizer.model'
  2638. if not tokenizer_path.is_file():
  2639. raise ValueError(f'Error: Missing {tokenizer_path}')
  2640. tokenizer = SentencePieceProcessor()
  2641. tokenizer.LoadFromFile(str(tokenizer_path))
  2642. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2643. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2644. scores: list[float] = [-10000.0] * vocab_size
  2645. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2646. for token_id in range(tokenizer.vocab_size()):
  2647. piece = tokenizer.IdToPiece(token_id)
  2648. text = piece.encode("utf-8")
  2649. score = tokenizer.GetScore(token_id)
  2650. toktype = SentencePieceTokenTypes.NORMAL
  2651. if tokenizer.IsUnknown(token_id):
  2652. toktype = SentencePieceTokenTypes.UNKNOWN
  2653. elif tokenizer.IsControl(token_id):
  2654. toktype = SentencePieceTokenTypes.CONTROL
  2655. elif tokenizer.IsUnused(token_id):
  2656. toktype = SentencePieceTokenTypes.UNUSED
  2657. elif tokenizer.IsByte(token_id):
  2658. toktype = SentencePieceTokenTypes.BYTE
  2659. tokens[token_id] = text
  2660. scores[token_id] = score
  2661. toktypes[token_id] = toktype
  2662. added_tokens_file = self.dir_model / 'added_tokens.json'
  2663. if added_tokens_file.is_file():
  2664. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2665. added_tokens_json = json.load(f)
  2666. for key in added_tokens_json:
  2667. token_id = added_tokens_json[key]
  2668. if token_id >= vocab_size:
  2669. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2670. continue
  2671. tokens[token_id] = key.encode("utf-8")
  2672. scores[token_id] = -1000.0
  2673. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2674. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2675. if tokenizer_config_file.is_file():
  2676. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2677. tokenizer_config_json = json.load(f)
  2678. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2679. for token_id, foken_data in added_tokens_decoder.items():
  2680. token_id = int(token_id)
  2681. token = foken_data["content"].encode("utf-8")
  2682. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2683. if tokens[token_id] != token:
  2684. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2685. tokens[token_id] = token
  2686. scores[token_id] = -1000.0
  2687. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2688. if foken_data.get("special"):
  2689. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2690. tokenizer_file = self.dir_model / 'tokenizer.json'
  2691. if tokenizer_file.is_file():
  2692. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2693. tokenizer_json = json.load(f)
  2694. added_tokens = tokenizer_json.get("added_tokens", [])
  2695. for foken_data in added_tokens:
  2696. token_id = int(foken_data["id"])
  2697. token = foken_data["content"].encode("utf-8")
  2698. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2699. if tokens[token_id] != token:
  2700. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2701. tokens[token_id] = token
  2702. scores[token_id] = -1000.0
  2703. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2704. if foken_data.get("special"):
  2705. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2706. self.gguf_writer.add_tokenizer_model("llama")
  2707. self.gguf_writer.add_tokenizer_pre("default")
  2708. self.gguf_writer.add_token_list(tokens)
  2709. self.gguf_writer.add_token_scores(scores)
  2710. self.gguf_writer.add_token_types(toktypes)
  2711. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2712. special_vocab.add_to_gguf(self.gguf_writer)
  2713. def set_gguf_parameters(self):
  2714. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2715. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2716. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2717. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2718. rms_eps = self.find_hparam(["rms_norm_eps"])
  2719. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2720. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2721. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2722. rope_dims = int(rot_pct * n_embd) // n_head
  2723. self.gguf_writer.add_context_length(max_pos_embds)
  2724. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2725. self.gguf_writer.add_embedding_length(n_embd)
  2726. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2727. self.gguf_writer.add_block_count(block_count)
  2728. self.gguf_writer.add_head_count(n_head)
  2729. self.gguf_writer.add_head_count_kv(n_head_kv)
  2730. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2731. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2732. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2733. self.gguf_writer.add_file_type(self.ftype)
  2734. sliding_window = self.hparams.get("sliding_window")
  2735. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2736. if sliding_window is None:
  2737. sliding_window = 0
  2738. self.gguf_writer.add_sliding_window(sliding_window)
  2739. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2740. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2741. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2742. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2743. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2744. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2745. rope_dims = int(rot_pct * n_embd) // n_head
  2746. # write rope scaling for long context (128k) model
  2747. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2748. if rope_scaling is None:
  2749. return
  2750. scale = max_pos_embds / orig_max_pos_embds
  2751. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2752. if len(rope_scaling_type) == 0:
  2753. raise KeyError('Missing the required key rope_scaling.type')
  2754. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2755. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2756. elif rope_scaling_type == 'yarn':
  2757. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2758. else:
  2759. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2760. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2761. long_factors = rope_scaling.get('long_factor', None)
  2762. short_factors = rope_scaling.get('short_factor', None)
  2763. if long_factors is None or short_factors is None:
  2764. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2765. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2766. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2767. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2768. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2769. @ModelBase.register("PhiMoEForCausalLM")
  2770. class PhiMoeModel(Phi3MiniModel):
  2771. model_arch = gguf.MODEL_ARCH.PHIMOE
  2772. _experts: list[dict[str, Tensor]] | None = None
  2773. def set_gguf_parameters(self):
  2774. super().set_gguf_parameters()
  2775. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2776. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2777. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2778. # process the experts separately
  2779. if name.find("block_sparse_moe.experts") != -1:
  2780. n_experts = self.hparams["num_local_experts"]
  2781. assert bid is not None
  2782. if self._experts is None:
  2783. self._experts = [{} for _ in range(self.block_count)]
  2784. self._experts[bid][name] = data_torch
  2785. if len(self._experts[bid]) >= n_experts * 3:
  2786. tensors: list[tuple[str, Tensor]] = []
  2787. # merge the experts into a single 3d tensor
  2788. for w_name in ["w1", "w2", "w3"]:
  2789. datas: list[Tensor] = []
  2790. for xid in range(n_experts):
  2791. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2792. datas.append(self._experts[bid][ename])
  2793. del self._experts[bid][ename]
  2794. data_torch = torch.stack(datas, dim=0)
  2795. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2796. new_name = self.map_tensor_name(merged_name)
  2797. tensors.append((new_name, data_torch))
  2798. return tensors
  2799. else:
  2800. return []
  2801. return [(self.map_tensor_name(name), data_torch)]
  2802. def prepare_tensors(self):
  2803. super().prepare_tensors()
  2804. if self._experts is not None:
  2805. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2806. experts = [k for d in self._experts for k in d.keys()]
  2807. if len(experts) > 0:
  2808. raise ValueError(f"Unprocessed experts: {experts}")
  2809. @ModelBase.register("PlamoForCausalLM")
  2810. class PlamoModel(TextModel):
  2811. model_arch = gguf.MODEL_ARCH.PLAMO
  2812. def set_vocab(self):
  2813. self._set_vocab_sentencepiece()
  2814. def set_gguf_parameters(self):
  2815. hparams = self.hparams
  2816. block_count = hparams["num_hidden_layers"]
  2817. self.gguf_writer.add_context_length(4096) # not in config.json
  2818. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2819. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2820. self.gguf_writer.add_block_count(block_count)
  2821. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2822. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2823. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2824. self.gguf_writer.add_file_type(self.ftype)
  2825. def shuffle_attn_q_weight(self, data_torch):
  2826. assert data_torch.size() == (5120, 5120)
  2827. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2828. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2829. data_torch = torch.reshape(data_torch, (5120, 5120))
  2830. return data_torch
  2831. def shuffle_attn_output_weight(self, data_torch):
  2832. assert data_torch.size() == (5120, 5120)
  2833. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2834. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2835. data_torch = torch.reshape(data_torch, (5120, 5120))
  2836. return data_torch
  2837. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2838. del bid # unused
  2839. new_name = self.map_tensor_name(name)
  2840. # shuffle for broadcasting of gqa in ggml_mul_mat
  2841. if new_name.endswith("attn_q.weight"):
  2842. data_torch = self.shuffle_attn_q_weight(data_torch)
  2843. elif new_name.endswith("attn_output.weight"):
  2844. data_torch = self.shuffle_attn_output_weight(data_torch)
  2845. return [(new_name, data_torch)]
  2846. @ModelBase.register("CodeShellForCausalLM")
  2847. class CodeShellModel(TextModel):
  2848. model_arch = gguf.MODEL_ARCH.CODESHELL
  2849. def set_gguf_parameters(self):
  2850. block_count = self.hparams["n_layer"]
  2851. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2852. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2853. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2854. self.gguf_writer.add_block_count(block_count)
  2855. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2856. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2857. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2858. self.gguf_writer.add_file_type(self.ftype)
  2859. self.gguf_writer.add_rope_freq_base(10000.0)
  2860. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2861. self.gguf_writer.add_rope_scaling_factor(1.0)
  2862. _has_tok_embd = False
  2863. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2864. del bid # unused
  2865. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2866. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2867. new_name = self.map_tensor_name(name)
  2868. # assuming token_embd.weight is seen before output.weight
  2869. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2870. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2871. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2872. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2873. self.tensor_names.remove("transformer.wte.weight")
  2874. elif new_name == tok_embd_name:
  2875. self._has_tok_embd = True
  2876. return [(new_name, data_torch)]
  2877. @ModelBase.register("InternLM2ForCausalLM")
  2878. class InternLM2Model(TextModel):
  2879. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2880. def set_vocab(self):
  2881. # (TODO): Is there a better way?
  2882. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2883. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2884. # recognized as an empty string in C++.
  2885. from sentencepiece import SentencePieceProcessor
  2886. from sentencepiece import sentencepiece_model_pb2 as model
  2887. tokenizer_path = self.dir_model / 'tokenizer.model'
  2888. tokens: list[bytes] = []
  2889. scores: list[float] = []
  2890. toktypes: list[int] = []
  2891. if not tokenizer_path.is_file():
  2892. logger.error(f'Error: Missing {tokenizer_path}')
  2893. sys.exit(1)
  2894. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2895. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2896. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2897. tokenizer = SentencePieceProcessor()
  2898. tokenizer.LoadFromFile(str(tokenizer_path))
  2899. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2900. for token_id in range(vocab_size):
  2901. piece = tokenizer.IdToPiece(token_id)
  2902. text = piece.encode("utf-8")
  2903. score = tokenizer.GetScore(token_id)
  2904. if text == b"\x00":
  2905. # (TODO): fixme
  2906. # Hack here and replace the \x00 characters.
  2907. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2908. text = "🐉".encode("utf-8")
  2909. toktype = SentencePieceTokenTypes.NORMAL
  2910. if tokenizer.IsUnknown(token_id):
  2911. toktype = SentencePieceTokenTypes.UNKNOWN
  2912. elif tokenizer.IsControl(token_id):
  2913. toktype = SentencePieceTokenTypes.CONTROL
  2914. elif tokenizer.IsUnused(token_id):
  2915. toktype = SentencePieceTokenTypes.UNUSED
  2916. elif tokenizer.IsByte(token_id):
  2917. toktype = SentencePieceTokenTypes.BYTE
  2918. # take care of ununsed raw token
  2919. if piece.startswith('[UNUSED'):
  2920. toktype = SentencePieceTokenTypes.UNUSED
  2921. tokens.append(text)
  2922. scores.append(score)
  2923. toktypes.append(toktype)
  2924. added_tokens_file = self.dir_model / 'added_tokens.json'
  2925. if added_tokens_file.is_file():
  2926. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2927. added_tokens_json = json.load(f)
  2928. for key in added_tokens_json:
  2929. tokens.append(key.encode("utf-8"))
  2930. scores.append(-1000.0)
  2931. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2932. chat_eos_token = '<|im_end|>'
  2933. chat_eos_token_id = None
  2934. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2935. if tokenizer_config_file.is_file():
  2936. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2937. tokenizer_config_json = json.load(f)
  2938. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2939. for token_id, foken_data in added_tokens_decoder.items():
  2940. token_id = int(token_id)
  2941. token = foken_data["content"]
  2942. if token == chat_eos_token:
  2943. chat_eos_token_id = token_id
  2944. token = token.encode("utf-8")
  2945. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2946. if tokens[token_id] != token:
  2947. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2948. tokens[token_id] = token
  2949. scores[token_id] = -1000.0
  2950. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2951. if foken_data.get("special"):
  2952. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2953. tokenizer_file = self.dir_model / 'tokenizer.json'
  2954. if tokenizer_file.is_file():
  2955. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2956. tokenizer_json = json.load(f)
  2957. added_tokens = tokenizer_json.get("added_tokens", [])
  2958. for foken_data in added_tokens:
  2959. token_id = int(foken_data["id"])
  2960. token = foken_data["content"]
  2961. if token == chat_eos_token:
  2962. chat_eos_token_id = token_id
  2963. token = token.encode("utf-8")
  2964. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2965. if tokens[token_id] != token:
  2966. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2967. tokens[token_id] = token
  2968. scores[token_id] = -1000.0
  2969. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2970. if foken_data.get("special"):
  2971. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2972. self.gguf_writer.add_tokenizer_model("llama")
  2973. self.gguf_writer.add_tokenizer_pre("default")
  2974. self.gguf_writer.add_token_list(tokens)
  2975. self.gguf_writer.add_token_scores(scores)
  2976. self.gguf_writer.add_token_types(toktypes)
  2977. self.gguf_writer.add_add_space_prefix(add_prefix)
  2978. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2979. old_eos = special_vocab.special_token_ids["eos"]
  2980. if chat_eos_token_id is not None:
  2981. # For the chat model, we replace the eos with '<|im_end|>'.
  2982. # TODO: this is a hack, should be fixed
  2983. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2984. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2985. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2986. " in chat mode so that the conversation can end normally.")
  2987. special_vocab.add_to_gguf(self.gguf_writer)
  2988. def set_gguf_parameters(self):
  2989. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2990. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2991. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2992. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2993. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2994. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2995. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2996. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2997. self.gguf_writer.add_file_type(self.ftype)
  2998. rope_scaling = self.hparams.get("rope_scaling") or {}
  2999. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3000. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3001. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3003. num_heads = self.hparams["num_attention_heads"]
  3004. num_kv_heads = self.hparams["num_key_value_heads"]
  3005. n_embd = self.hparams["hidden_size"]
  3006. q_per_kv = num_heads // num_kv_heads
  3007. head_dim = n_embd // num_heads
  3008. num_groups = num_heads // q_per_kv
  3009. name = name.replace("language_model.", "") # InternVL
  3010. if name.startswith("mlp") or name.startswith("vision_model"):
  3011. # skip visual tensors
  3012. return []
  3013. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3014. qkv = data_torch
  3015. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3016. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3017. # The model weights of q and k equire additional reshape.
  3018. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3019. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3020. v = v.reshape((-1, v.shape[-1]))
  3021. return [
  3022. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3023. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3024. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3025. ]
  3026. else:
  3027. return [(self.map_tensor_name(name), data_torch)]
  3028. @ModelBase.register("InternLM3ForCausalLM")
  3029. class InternLM3Model(TextModel):
  3030. model_arch = gguf.MODEL_ARCH.LLAMA
  3031. def set_vocab(self):
  3032. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3033. self.gguf_writer.add_tokenizer_model("llama")
  3034. self.gguf_writer.add_tokenizer_pre("default")
  3035. self.gguf_writer.add_token_list(tokens)
  3036. self.gguf_writer.add_token_scores(scores)
  3037. self.gguf_writer.add_token_types(toktypes)
  3038. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3039. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3040. if tokenizer_config_file.is_file():
  3041. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3042. tokenizer_config_json = json.load(f)
  3043. if "add_prefix_space" in tokenizer_config_json:
  3044. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3045. if "added_tokens_decoder" in tokenizer_config_json:
  3046. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3047. if token_data.get("special"):
  3048. token_id = int(token_id)
  3049. token = token_data["content"]
  3050. special_vocab._set_special_token(token, token_id)
  3051. # update eos token
  3052. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3053. special_vocab.special_token_ids["eos"] = token_id
  3054. special_vocab.add_to_gguf(self.gguf_writer)
  3055. def set_gguf_parameters(self):
  3056. super().set_gguf_parameters()
  3057. hparams = self.hparams
  3058. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3059. if (rope_dim := hparams.get("head_dim")) is None:
  3060. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3061. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3062. rope_scaling = self.hparams.get("rope_scaling") or {}
  3063. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3064. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3065. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3067. n_head = self.hparams["num_attention_heads"]
  3068. n_kv_head = self.hparams.get("num_key_value_heads")
  3069. name = name.replace("language_model.", "") # InternVL
  3070. if name.startswith("mlp") or name.startswith("vision_model"):
  3071. # skip visual tensors
  3072. return []
  3073. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3074. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3075. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3076. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3077. return [(self.map_tensor_name(name), data_torch)]
  3078. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3079. class BertModel(TextModel):
  3080. model_arch = gguf.MODEL_ARCH.BERT
  3081. def __init__(self, *args, **kwargs):
  3082. super().__init__(*args, **kwargs)
  3083. self.vocab_size = None
  3084. if cls_out_labels := self.hparams.get("id2label"):
  3085. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3086. # Remove dummy labels added by AutoConfig
  3087. cls_out_labels = None
  3088. self.cls_out_labels = cls_out_labels
  3089. def set_gguf_parameters(self):
  3090. super().set_gguf_parameters()
  3091. self.gguf_writer.add_causal_attention(False)
  3092. self._try_set_pooling_type()
  3093. if self.cls_out_labels:
  3094. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3095. def set_vocab(self):
  3096. tokens, toktypes, tokpre = self.get_vocab_base()
  3097. self.vocab_size = len(tokens)
  3098. # we need this to validate the size of the token_type embeddings
  3099. # though currently we are passing all zeros to the token_type embeddings
  3100. # "Sequence A" or "Sequence B"
  3101. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3102. # convert to phantom space vocab
  3103. def phantom(tok):
  3104. if tok.startswith("[") and tok.endswith("]"):
  3105. return tok
  3106. if tok.startswith("##"):
  3107. return tok[2:]
  3108. return "\u2581" + tok
  3109. tokens = list(map(phantom, tokens))
  3110. # add vocab to gguf
  3111. self.gguf_writer.add_tokenizer_model("bert")
  3112. self.gguf_writer.add_tokenizer_pre(tokpre)
  3113. self.gguf_writer.add_token_list(tokens)
  3114. self.gguf_writer.add_token_types(toktypes)
  3115. # handle special tokens
  3116. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3117. special_vocab.add_to_gguf(self.gguf_writer)
  3118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3119. del bid # unused
  3120. if name.startswith("bert."):
  3121. name = name[5:]
  3122. if name.endswith(".gamma"):
  3123. name = name[:-6] + ".weight"
  3124. if name.endswith(".beta"):
  3125. name = name[:-5] + ".bias"
  3126. # we are only using BERT for embeddings so we don't need the pooling layer
  3127. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3128. return [] # we don't need these
  3129. if name.startswith("cls.predictions"):
  3130. return []
  3131. if name.startswith("cls.seq_relationship"):
  3132. return []
  3133. if self.cls_out_labels:
  3134. # For BertForSequenceClassification (direct projection layer)
  3135. if name == "classifier.weight":
  3136. name = "classifier.out_proj.weight"
  3137. if name == "classifier.bias":
  3138. name = "classifier.out_proj.bias"
  3139. return [(self.map_tensor_name(name), data_torch)]
  3140. def _xlmroberta_tokenizer_init(self) -> None:
  3141. # we need the pad_token_id to know how to chop down position_embd matrix
  3142. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3143. self._position_offset = 1 + pad_token_id
  3144. if "max_position_embeddings" in self.hparams:
  3145. self.hparams["max_position_embeddings"] -= self._position_offset
  3146. else:
  3147. self._position_offset = None
  3148. def _xlmroberta_set_vocab(self) -> None:
  3149. # to avoid TypeError: Descriptors cannot be created directly
  3150. # exception when importing sentencepiece_model_pb2
  3151. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3152. from sentencepiece import SentencePieceProcessor
  3153. from sentencepiece import sentencepiece_model_pb2 as model
  3154. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3155. tokenizer_json = {}
  3156. tokenizer_config_json = {}
  3157. if not tokenizer_path.is_file():
  3158. tokenizer_path = self.dir_model / 'tokenizer.json'
  3159. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3160. if not tokenizer_path.is_file():
  3161. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3162. from base64 import b64decode
  3163. from transformers import AutoTokenizer
  3164. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3165. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3166. tokenizer_json = json.load(fp)
  3167. if tokenizer_config_path.is_file():
  3168. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3169. tokenizer_config_json = json.load(fp)
  3170. add_prefix = tokenizer.add_prefix_space
  3171. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3172. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3173. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3174. else:
  3175. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3176. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3177. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3178. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3179. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3180. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3181. tokenizer = SentencePieceProcessor()
  3182. tokenizer.LoadFromFile(str(tokenizer_path))
  3183. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3184. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3185. scores: list[float] = [-10000.0] * vocab_size
  3186. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3187. if isinstance(tokenizer, SentencePieceProcessor):
  3188. for token_id in range(tokenizer.vocab_size()):
  3189. piece = tokenizer.IdToPiece(token_id)
  3190. text = piece.encode("utf-8")
  3191. score = tokenizer.GetScore(token_id)
  3192. toktype = SentencePieceTokenTypes.NORMAL
  3193. if tokenizer.IsUnknown(token_id):
  3194. toktype = SentencePieceTokenTypes.UNKNOWN
  3195. elif tokenizer.IsControl(token_id):
  3196. toktype = SentencePieceTokenTypes.CONTROL
  3197. elif tokenizer.IsUnused(token_id):
  3198. toktype = SentencePieceTokenTypes.UNUSED
  3199. elif tokenizer.IsByte(token_id):
  3200. toktype = SentencePieceTokenTypes.BYTE
  3201. tokens[token_id] = text
  3202. scores[token_id] = score
  3203. toktypes[token_id] = toktype
  3204. else:
  3205. added_vocab = tokenizer.get_added_vocab()
  3206. unk_token = tokenizer_config_json.get("unk_token")
  3207. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3208. for token_id in range(tokenizer.vocab_size):
  3209. piece = tokenizer._convert_id_to_token(token_id)
  3210. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3211. text = piece.encode("utf-8")
  3212. score = tokenizer_json["model"]["vocab"][token_id][1]
  3213. toktype = SentencePieceTokenTypes.NORMAL
  3214. if token_id == unk_token_id:
  3215. toktype = SentencePieceTokenTypes.UNKNOWN
  3216. elif token_id in tokenizer.all_special_ids:
  3217. toktype = SentencePieceTokenTypes.CONTROL
  3218. elif token_id in added_vocab.values():
  3219. toktype = SentencePieceTokenTypes.USER_DEFINED
  3220. # No reliable way to detect this, but jina doesn't have any
  3221. # elif tokenizer.IsByte(token_id):
  3222. # toktype = SentencePieceTokenTypes.BYTE
  3223. tokens[token_id] = text
  3224. scores[token_id] = score
  3225. toktypes[token_id] = toktype
  3226. if isinstance(tokenizer, SentencePieceProcessor):
  3227. # realign tokens (see HF tokenizer code)
  3228. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3229. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3230. toktypes = [
  3231. SentencePieceTokenTypes.CONTROL,
  3232. SentencePieceTokenTypes.CONTROL,
  3233. SentencePieceTokenTypes.CONTROL,
  3234. SentencePieceTokenTypes.UNKNOWN,
  3235. ] + toktypes[3:-1]
  3236. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3237. # Add mask token missing from sentencepiece.bpe.model
  3238. tokens[250001] = b'<mask>'
  3239. scores[250001] = 0.0
  3240. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3241. self.gguf_writer.add_tokenizer_model("t5")
  3242. self.gguf_writer.add_tokenizer_pre("default")
  3243. self.gguf_writer.add_token_list(tokens)
  3244. self.gguf_writer.add_token_scores(scores)
  3245. self.gguf_writer.add_token_types(toktypes)
  3246. self.gguf_writer.add_add_space_prefix(add_prefix)
  3247. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3248. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3249. if precompiled_charsmap:
  3250. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3251. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3252. special_vocab.add_to_gguf(self.gguf_writer)
  3253. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3254. class DistilBertModel(BertModel):
  3255. model_arch = gguf.MODEL_ARCH.BERT
  3256. def set_gguf_parameters(self):
  3257. self.gguf_writer.add_layer_norm_eps(1e-12)
  3258. logger.info("gguf: layer norm epsilon = 1e-12")
  3259. super().set_gguf_parameters()
  3260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3261. if name.startswith("distilbert."):
  3262. name = name[11:]
  3263. # These layers act as MLM head, so we don't need them
  3264. if name.startswith("vocab_"):
  3265. return []
  3266. return super().modify_tensors(data_torch, name, bid)
  3267. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3268. class RobertaModel(BertModel):
  3269. model_arch = gguf.MODEL_ARCH.BERT
  3270. def __init__(self, *args, **kwargs):
  3271. super().__init__(*args, **kwargs)
  3272. # we need the pad_token_id to know how to chop down position_embd matrix
  3273. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3274. self._position_offset = 1 + pad_token_id
  3275. if "max_position_embeddings" in self.hparams:
  3276. self.hparams["max_position_embeddings"] -= self._position_offset
  3277. else:
  3278. self._position_offset = None
  3279. def set_vocab(self):
  3280. """Support BPE tokenizers for roberta models"""
  3281. bpe_tok_path = self.dir_model / "tokenizer.json"
  3282. if bpe_tok_path.exists():
  3283. self._set_vocab_gpt2()
  3284. # we need this to validate the size of the token_type embeddings
  3285. # though currently we are passing all zeros to the token_type embeddings
  3286. # "Sequence A" or "Sequence B"
  3287. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3288. else:
  3289. return super().set_vocab()
  3290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3291. # if name starts with "roberta.", remove the prefix
  3292. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3293. if name.startswith("roberta."):
  3294. name = name[8:]
  3295. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3296. if name == "embeddings.position_embeddings.weight":
  3297. if self._position_offset is not None:
  3298. data_torch = data_torch[self._position_offset:,:]
  3299. return super().modify_tensors(data_torch, name, bid)
  3300. @ModelBase.register("NomicBertModel")
  3301. class NomicBertModel(BertModel):
  3302. model_arch = gguf.MODEL_ARCH.BERT
  3303. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3304. hparams = kwargs.pop("hparams", None)
  3305. if hparams is None:
  3306. hparams = ModelBase.load_hparams(dir_model)
  3307. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3308. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3309. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3310. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3311. if self._tokenizer_is_xlmroberta:
  3312. self._xlmroberta_tokenizer_init()
  3313. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3314. if npos == 8192 and mtp == 2048:
  3315. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3316. elif npos == 2048 and mtp == 2048:
  3317. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3318. else:
  3319. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3320. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3321. # this doesn't do anything in the HF version
  3322. assert self.hparams["causal"] is False
  3323. # no bias tensors unless MoE
  3324. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3325. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3326. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3327. # norm at end of layer
  3328. assert self.hparams["prenorm"] is False
  3329. # standard RoPE
  3330. assert self.hparams["rotary_emb_fraction"] == 1.0
  3331. assert self.hparams["rotary_emb_interleaved"] is False
  3332. assert self.hparams["rotary_emb_scale_base"] is None
  3333. def set_vocab(self) -> None:
  3334. if self._tokenizer_is_xlmroberta:
  3335. return self._xlmroberta_set_vocab()
  3336. return super().set_vocab()
  3337. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3338. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3339. if "mlp.experts.bias" in name:
  3340. return [] # Explicitly return an empty list.
  3341. if "mlp.experts.mlp.w1" in name:
  3342. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3343. name += ".weight"
  3344. if "mlp.experts.mlp.w2" in name:
  3345. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3346. data_torch = data_torch.transpose(1, 2)
  3347. name += ".weight"
  3348. return [(self.map_tensor_name(name), data_torch)]
  3349. def set_gguf_parameters(self):
  3350. super().set_gguf_parameters()
  3351. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3352. if self.is_moe:
  3353. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3354. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3355. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3356. def _is_tokenizer_xlmroberta(self) -> bool:
  3357. with open(self.dir_model / "tokenizer.json") as f:
  3358. tokenizer_json = json.load(f)
  3359. toktyp = tokenizer_json["model"]["type"]
  3360. if toktyp == "Unigram":
  3361. return True
  3362. if toktyp == "WordPiece":
  3363. return False
  3364. raise ValueError(f"unknown tokenizer: {toktyp}")
  3365. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3366. class NeoBert(BertModel):
  3367. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3368. def set_gguf_parameters(self):
  3369. super().set_gguf_parameters()
  3370. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3371. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3372. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3373. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3374. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3375. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3376. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3377. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3378. def modify_tensors(self, data_torch, name, bid):
  3379. if name.startswith("decoder."):
  3380. return []
  3381. if name.startswith("model."):
  3382. name = name[6:]
  3383. return super().modify_tensors(data_torch, name, bid)
  3384. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3385. class XLMRobertaModel(BertModel):
  3386. model_arch = gguf.MODEL_ARCH.BERT
  3387. def __init__(self, *args, **kwargs):
  3388. super().__init__(*args, **kwargs)
  3389. self._xlmroberta_tokenizer_init()
  3390. def set_vocab(self):
  3391. self._xlmroberta_set_vocab()
  3392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3393. # if name starts with "roberta.", remove the prefix
  3394. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3395. if name.startswith("roberta."):
  3396. name = name[8:]
  3397. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3398. if name == "embeddings.position_embeddings.weight":
  3399. if self._position_offset is not None:
  3400. data_torch = data_torch[self._position_offset:,:]
  3401. return super().modify_tensors(data_torch, name, bid)
  3402. @ModelBase.register("GemmaForCausalLM")
  3403. class GemmaModel(TextModel):
  3404. model_arch = gguf.MODEL_ARCH.GEMMA
  3405. def set_vocab(self):
  3406. self._set_vocab_sentencepiece()
  3407. # TODO: these special tokens should be exported only for the CodeGemma family
  3408. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3409. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3410. special_vocab._set_special_token("prefix", 67)
  3411. special_vocab._set_special_token("suffix", 69)
  3412. special_vocab._set_special_token("middle", 68)
  3413. special_vocab._set_special_token("fsep", 70)
  3414. special_vocab._set_special_token("eot", 107)
  3415. special_vocab.chat_template = None # do not add it twice
  3416. special_vocab.add_to_gguf(self.gguf_writer)
  3417. self.gguf_writer.add_add_space_prefix(False)
  3418. def set_gguf_parameters(self):
  3419. hparams = self.hparams
  3420. block_count = hparams["num_hidden_layers"]
  3421. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3422. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3423. self.gguf_writer.add_block_count(block_count)
  3424. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3425. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3426. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3427. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3428. self.gguf_writer.add_key_length(hparams["head_dim"])
  3429. self.gguf_writer.add_value_length(hparams["head_dim"])
  3430. self.gguf_writer.add_file_type(self.ftype)
  3431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3432. del bid # unused
  3433. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3434. # To prevent errors, skip loading lm_head.weight.
  3435. if name == "lm_head.weight":
  3436. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3437. return []
  3438. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3439. if name.endswith("norm.weight"):
  3440. data_torch = data_torch + 1
  3441. return [(self.map_tensor_name(name), data_torch)]
  3442. @ModelBase.register("Gemma2ForCausalLM")
  3443. class Gemma2Model(TextModel):
  3444. model_arch = gguf.MODEL_ARCH.GEMMA2
  3445. def set_vocab(self):
  3446. self._set_vocab_sentencepiece()
  3447. self.gguf_writer.add_add_space_prefix(False)
  3448. def set_gguf_parameters(self):
  3449. hparams = self.hparams
  3450. block_count = hparams["num_hidden_layers"]
  3451. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3452. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3453. self.gguf_writer.add_block_count(block_count)
  3454. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3455. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3456. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3457. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3458. self.gguf_writer.add_key_length(hparams["head_dim"])
  3459. self.gguf_writer.add_value_length(hparams["head_dim"])
  3460. self.gguf_writer.add_file_type(self.ftype)
  3461. self.gguf_writer.add_attn_logit_softcapping(
  3462. self.hparams["attn_logit_softcapping"]
  3463. )
  3464. self.gguf_writer.add_final_logit_softcapping(
  3465. self.hparams["final_logit_softcapping"]
  3466. )
  3467. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3468. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3469. del bid # unused
  3470. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3471. # To prevent errors, skip loading lm_head.weight.
  3472. if name == "lm_head.weight":
  3473. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3474. return []
  3475. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3476. if name.endswith("norm.weight"):
  3477. data_torch = data_torch + 1
  3478. return [(self.map_tensor_name(name), data_torch)]
  3479. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3480. class Gemma3Model(TextModel):
  3481. model_arch = gguf.MODEL_ARCH.GEMMA3
  3482. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3483. def set_vocab(self):
  3484. self._set_vocab_sentencepiece()
  3485. self.gguf_writer.add_add_space_prefix(False)
  3486. def set_gguf_parameters(self):
  3487. hparams = self.hparams
  3488. block_count = hparams["num_hidden_layers"]
  3489. # some default values are not specified in the hparams
  3490. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3491. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3492. self.gguf_writer.add_block_count(block_count)
  3493. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3494. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3495. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3496. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3497. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3498. self.gguf_writer.add_file_type(self.ftype)
  3499. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3500. # attn_logit_softcapping is removed in Gemma3
  3501. assert hparams.get("attn_logit_softcapping") is None
  3502. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3503. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3504. if hparams.get("rope_scaling") is not None:
  3505. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3506. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3507. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3508. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3510. del bid # unused
  3511. if "language_model." in name:
  3512. name = name.replace("language_model.", "")
  3513. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3514. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3515. return [] # skip vision tensors
  3516. # remove OOV (out-of-vocabulary) rows in token_embd
  3517. if "embed_tokens.weight" in name:
  3518. vocab = self._create_vocab_sentencepiece()
  3519. tokens = vocab[0]
  3520. data_torch = data_torch[:len(tokens)]
  3521. # ref code in Gemma3RMSNorm
  3522. # output = output * (1.0 + self.weight.float())
  3523. # note: this is not the case on gemma3n
  3524. if name.endswith("norm.weight"):
  3525. data_torch = data_torch + self.norm_shift
  3526. return [(self.map_tensor_name(name), data_torch)]
  3527. @ModelBase.register("Gemma3ForConditionalGeneration")
  3528. class Gemma3VisionModel(MmprojModel):
  3529. def set_gguf_parameters(self):
  3530. super().set_gguf_parameters()
  3531. hparams = self.hparams
  3532. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3533. # default values below are taken from HF tranformers code
  3534. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3535. self.gguf_writer.add_vision_use_gelu(True)
  3536. # calculate proj_scale_factor (used by tinygemma3 test model)
  3537. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3538. n_per_side = int(image_seq_length ** 0.5)
  3539. image_size = self.hparams["image_size"]
  3540. patch_size = self.hparams["patch_size"]
  3541. proj_scale_factor = (image_size // patch_size) // n_per_side
  3542. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3543. # we only need to write this if it's not the default value
  3544. # in this case, we are converting a test model
  3545. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3546. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3547. del bid, new_name, n_dims # unused
  3548. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3549. if "input_projection" in name:
  3550. return gguf.GGMLQuantizationType.F16
  3551. if ".embeddings." in name:
  3552. return gguf.GGMLQuantizationType.F32
  3553. return False
  3554. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3555. del bid # unused
  3556. if "vision_model.head." in name:
  3557. return [] # skip redundant tensors for tinygemma3
  3558. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3559. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3560. # process vision tensors
  3561. name = name.replace("_weight", ".weight")
  3562. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3563. # the other norm values are part of SigLIP model, and they are already correct
  3564. # ref code: Gemma3RMSNorm
  3565. if "soft_emb_norm.weight" in name:
  3566. logger.info(f"Correcting norm value for '{name}'")
  3567. data_torch = data_torch + 1
  3568. return [(self.map_tensor_name(name), data_torch)]
  3569. return [] # skip other tensors
  3570. @ModelBase.register("Gemma3nForConditionalGeneration")
  3571. class Gemma3NModel(Gemma3Model):
  3572. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3573. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3574. _altup_proj: list[Tensor] = []
  3575. _altup_unembd: list[Tensor] = []
  3576. def __init__(self, *args, **kwargs):
  3577. super().__init__(*args, **kwargs)
  3578. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3579. self._altup_proj = [
  3580. torch.Tensor(), # to be replaced
  3581. torch.Tensor(), # to be replaced
  3582. torch.Tensor(), # to be replaced
  3583. ]
  3584. self._altup_unembd = [
  3585. torch.Tensor(), # to be replaced
  3586. torch.Tensor(), # to be replaced
  3587. torch.Tensor(), # to be replaced
  3588. ]
  3589. def set_vocab(self):
  3590. super().set_vocab()
  3591. def set_gguf_parameters(self):
  3592. super().set_gguf_parameters()
  3593. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3594. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3595. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3596. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3597. activation_sparsity_scale = []
  3598. for s in self.hparams["activation_sparsity_pattern"]:
  3599. normal_dist = torch.distributions.normal.Normal(0, 1)
  3600. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3601. activation_sparsity_scale.append(std_multiplier.item())
  3602. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3603. sliding_window_pattern = []
  3604. for t in self.hparams["layer_types"]:
  3605. sliding_window_pattern.append(t == "sliding_attention")
  3606. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3607. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3608. has_all = all(m.numel() > 0 for m in matrices)
  3609. if not has_all:
  3610. return None
  3611. else:
  3612. return torch.stack(matrices, dim=0)
  3613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3614. if name.endswith("_scale"):
  3615. name = name + ".weight"
  3616. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3617. if "language_model." not in name:
  3618. return [] # skip non-language model tensors
  3619. if "altup_unembed_projections" in name:
  3620. data_torch = data_torch.to(device="cpu")
  3621. if ".0." in name:
  3622. self._altup_unembd[0] = data_torch
  3623. elif ".1." in name:
  3624. self._altup_unembd[1] = data_torch
  3625. elif ".2." in name:
  3626. self._altup_unembd[2] = data_torch
  3627. else:
  3628. raise ValueError(f"Unknown name: {name}")
  3629. out = self._stack_matrices(self._altup_unembd)
  3630. if out is not None:
  3631. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3632. else:
  3633. return []
  3634. if "altup_projections" in name:
  3635. data_torch = data_torch.to(device="cpu")
  3636. if ".0." in name:
  3637. self._altup_proj[0] = data_torch
  3638. elif ".1." in name:
  3639. self._altup_proj[1] = data_torch
  3640. elif ".2." in name:
  3641. self._altup_proj[2] = data_torch
  3642. else:
  3643. raise ValueError(f"Unknown name: {name}")
  3644. out = self._stack_matrices(self._altup_proj)
  3645. if out is not None:
  3646. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3647. else:
  3648. return []
  3649. return super().modify_tensors(data_torch, name, bid)
  3650. @ModelBase.register("Starcoder2ForCausalLM")
  3651. class StarCoder2Model(TextModel):
  3652. model_arch = gguf.MODEL_ARCH.STARCODER2
  3653. @ModelBase.register("Rwkv6ForCausalLM")
  3654. class Rwkv6Model(TextModel):
  3655. model_arch = gguf.MODEL_ARCH.RWKV6
  3656. def set_vocab(self):
  3657. self._set_vocab_rwkv_world()
  3658. def set_gguf_parameters(self):
  3659. block_count = self.hparams["num_hidden_layers"]
  3660. head_size = self.hparams["head_size"]
  3661. hidden_size = self.hparams["hidden_size"]
  3662. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3663. rescale_every_n_layers = self.hparams["rescale_every"]
  3664. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3665. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3666. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3667. # RWKV isn't context limited
  3668. self.gguf_writer.add_context_length(1048576)
  3669. self.gguf_writer.add_embedding_length(hidden_size)
  3670. self.gguf_writer.add_block_count(block_count)
  3671. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3672. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3673. self.gguf_writer.add_wkv_head_size(head_size)
  3674. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3675. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3676. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3677. self.gguf_writer.add_file_type(self.ftype)
  3678. # required by llama.cpp, unused
  3679. self.gguf_writer.add_head_count(0)
  3680. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3681. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3682. new_name = self.map_tensor_name(name)
  3683. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3684. new_name += ".weight"
  3685. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3686. data_torch = data_torch.transpose(0, 1)
  3687. if new_name.endswith("time_mix_w2.weight"):
  3688. data_torch = data_torch.permute(0, 2, 1)
  3689. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3690. data_torch = data_torch.squeeze()
  3691. try:
  3692. rescale_every_n_layers = self.hparams["rescale_every"]
  3693. if rescale_every_n_layers > 0:
  3694. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3695. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3696. except KeyError:
  3697. pass
  3698. # concat time_mix_lerp weights to reduce some cpu overhead
  3699. # also reduces the number of tensors in the model
  3700. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3701. try:
  3702. self.lerp_weights[bid][new_name] = data_torch
  3703. except KeyError:
  3704. self.lerp_weights[bid] = {new_name: data_torch}
  3705. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3706. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3707. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3708. yield (new_name, data)
  3709. return
  3710. yield (new_name, data_torch)
  3711. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3712. class RWKV6Qwen2Model(Rwkv6Model):
  3713. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3714. def set_vocab(self):
  3715. try:
  3716. self._set_vocab_sentencepiece()
  3717. except FileNotFoundError:
  3718. self._set_vocab_gpt2()
  3719. def set_gguf_parameters(self):
  3720. block_count = self.hparams["num_hidden_layers"]
  3721. num_attention_heads = self.hparams["num_attention_heads"]
  3722. num_key_value_heads = self.hparams["num_key_value_heads"]
  3723. hidden_size = self.hparams["hidden_size"]
  3724. head_size = hidden_size // num_attention_heads
  3725. rms_norm_eps = self.hparams["rms_norm_eps"]
  3726. intermediate_size = self.hparams["intermediate_size"]
  3727. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3728. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3729. # RWKV isn't context limited
  3730. self.gguf_writer.add_context_length(1048576)
  3731. self.gguf_writer.add_embedding_length(hidden_size)
  3732. self.gguf_writer.add_block_count(block_count)
  3733. self.gguf_writer.add_wkv_head_size(head_size)
  3734. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3735. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3736. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3737. self.gguf_writer.add_file_type(self.ftype)
  3738. # special parameters for time_mixing in RWKV6QWEN2
  3739. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3740. self.gguf_writer.add_token_shift_count(1)
  3741. # RWKV6QWEN2 use grouped key/value like GQA
  3742. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3743. # required by llama.cpp, unused
  3744. self.gguf_writer.add_head_count(0)
  3745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3746. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3747. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3748. data = data.view(5, -1, data.shape[-1])
  3749. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3750. # permute them here to avoid code changes
  3751. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3752. if "w2" in new_name:
  3753. data = data.view(5, -1, data.shape[-1])
  3754. yield (new_name, data)
  3755. continue
  3756. yield (new_name, data)
  3757. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3758. class Rwkv7Model(TextModel):
  3759. model_arch = gguf.MODEL_ARCH.RWKV7
  3760. def set_vocab(self):
  3761. self._set_vocab_rwkv_world()
  3762. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3763. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3764. def set_gguf_parameters(self):
  3765. block_count = self.hparams["num_hidden_layers"]
  3766. try:
  3767. head_size = self.hparams["head_size"]
  3768. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3769. except KeyError:
  3770. head_size = self.hparams["head_dim"]
  3771. layer_norm_eps = self.hparams["norm_eps"]
  3772. hidden_size = self.hparams["hidden_size"]
  3773. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3774. # ICLR: In-Context-Learning-Rate
  3775. try:
  3776. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3777. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3778. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3779. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3780. except KeyError:
  3781. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3782. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3783. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3784. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3785. # RWKV isn't context limited
  3786. self.gguf_writer.add_context_length(1048576)
  3787. self.gguf_writer.add_embedding_length(hidden_size)
  3788. self.gguf_writer.add_block_count(block_count)
  3789. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3790. self.gguf_writer.add_wkv_head_size(head_size)
  3791. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3792. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3793. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3794. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3795. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3796. self.gguf_writer.add_file_type(self.ftype)
  3797. # required by llama.cpp, unused
  3798. self.gguf_writer.add_head_count(0)
  3799. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3800. lora_needs_transpose: bool = True
  3801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3802. # unify tensor names here to make life easier
  3803. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3804. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3805. name = name.replace("time_mixer.", "")
  3806. # lora layer names in fla-hub's impl
  3807. if "_lora.lora" in name:
  3808. self.lora_needs_transpose = False
  3809. name = name.replace("_lora.lora.0.weight", "1.weight")
  3810. name = name.replace("_lora.lora.2.weight", "2.weight")
  3811. name = name.replace("_lora.lora.2.bias", "0.weight")
  3812. name = name.replace("feed_forward_norm", "ln2")
  3813. name = name.replace("g_norm", "ln_x")
  3814. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3815. # some models have dummy v0/v1/v2 on first layer while others don't
  3816. # ignore them all since they are not used
  3817. return
  3818. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3819. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3820. if bid is not None and "attention.x_" in name:
  3821. if "attention.x_x" in name:
  3822. # already concatenated
  3823. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3824. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3825. yield (new_name, data)
  3826. else:
  3827. try:
  3828. self.lerp_weights[bid][name] = data_torch
  3829. except KeyError:
  3830. self.lerp_weights[bid] = {name: data_torch}
  3831. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3832. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3833. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3834. yield (new_name, data)
  3835. return
  3836. else:
  3837. data_torch = data_torch.squeeze()
  3838. new_name = self.map_tensor_name(name)
  3839. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3840. new_name += ".weight"
  3841. if self.lora_needs_transpose and any(
  3842. new_name.endswith(t) for t in [
  3843. "time_mix_w1.weight", "time_mix_w2.weight",
  3844. "time_mix_a1.weight", "time_mix_a2.weight",
  3845. "time_mix_v1.weight", "time_mix_v2.weight",
  3846. "time_mix_g1.weight", "time_mix_g2.weight",
  3847. ]
  3848. ):
  3849. data_torch = data_torch.transpose(0, 1)
  3850. if 'r_k' in new_name:
  3851. data_torch = data_torch.flatten()
  3852. if bid == 0 and "time_mix_a" in new_name:
  3853. # dummy v0/v1/v2 on first layer
  3854. # easist way to make llama happy
  3855. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3856. yield (new_name, data_torch)
  3857. @ModelBase.register("RwkvHybridForCausalLM")
  3858. class ARwkv7Model(Rwkv7Model):
  3859. model_arch = gguf.MODEL_ARCH.ARWKV7
  3860. def set_vocab(self):
  3861. try:
  3862. self._set_vocab_sentencepiece()
  3863. except FileNotFoundError:
  3864. self._set_vocab_gpt2()
  3865. def set_gguf_parameters(self):
  3866. block_count = self.hparams["num_hidden_layers"]
  3867. hidden_size = self.hparams["hidden_size"]
  3868. head_size = self.hparams["head_size"]
  3869. rms_norm_eps = self.hparams["rms_norm_eps"]
  3870. intermediate_size = self.hparams["intermediate_size"]
  3871. wkv_has_gate = self.hparams["wkv_has_gate"]
  3872. assert self.hparams["wkv_version"] == 7
  3873. # ICLR: In-Context-Learning-Rate
  3874. lora_rank_decay = 64
  3875. lora_rank_iclr = 64
  3876. lora_rank_value_residual_mix = 32
  3877. lora_rank_gate = 128 if wkv_has_gate else 0
  3878. # RWKV isn't context limited
  3879. self.gguf_writer.add_context_length(1048576)
  3880. self.gguf_writer.add_embedding_length(hidden_size)
  3881. self.gguf_writer.add_block_count(block_count)
  3882. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3883. self.gguf_writer.add_wkv_head_size(head_size)
  3884. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3885. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3886. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3887. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3888. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3889. self.gguf_writer.add_file_type(self.ftype)
  3890. self.gguf_writer.add_token_shift_count(1)
  3891. # required by llama.cpp, unused
  3892. self.gguf_writer.add_head_count(0)
  3893. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3894. class MambaModel(TextModel):
  3895. model_arch = gguf.MODEL_ARCH.MAMBA
  3896. def __init__(self, dir_model: Path, *args, **kwargs):
  3897. # Avoid using AutoConfig for hparams
  3898. hparams = kwargs.pop("hparams", None)
  3899. if hparams is None:
  3900. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3901. hparams = json.load(f)
  3902. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  3903. def set_vocab(self):
  3904. vocab_size = self.hparams["vocab_size"]
  3905. # Round vocab size to next multiple of 8
  3906. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3907. # pad using ceiling division
  3908. # ref: https://stackoverflow.com/a/17511341/22827863
  3909. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3910. self.hparams["vocab_size"] = vocab_size
  3911. if (self.dir_model / "tokenizer.json").is_file():
  3912. self._set_vocab_gpt2()
  3913. elif (self.dir_model / "tokenizer.model").is_file():
  3914. self._set_vocab_sentencepiece()
  3915. else:
  3916. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3917. self._set_vocab_builtin("gpt-neox", vocab_size)
  3918. def set_gguf_parameters(self):
  3919. d_model = self.find_hparam(["hidden_size", "d_model"])
  3920. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3921. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3922. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3923. # ceiling division
  3924. # ref: https://stackoverflow.com/a/17511341/22827863
  3925. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3926. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3927. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3928. use_dt_b_c_norm = False
  3929. # For falconmamba we do apply RMS norm on B / DT and C layers
  3930. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3931. use_dt_b_c_norm = True
  3932. # Fail early for models which don't have a block expansion factor of 2
  3933. assert d_inner == 2 * d_model
  3934. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3935. self.gguf_writer.add_embedding_length(d_model)
  3936. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3937. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3938. self.gguf_writer.add_block_count(self.block_count)
  3939. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3940. self.gguf_writer.add_ssm_inner_size(d_inner)
  3941. self.gguf_writer.add_ssm_state_size(d_state)
  3942. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3943. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3944. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3945. self.gguf_writer.add_file_type(self.ftype)
  3946. _tok_embd = None
  3947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3948. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3949. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3950. new_name = self.map_tensor_name(name)
  3951. if name.endswith(".A_log"):
  3952. logger.debug("A_log --> A ==> " + new_name)
  3953. data_torch = -torch.exp(data_torch)
  3954. # [4 1 8192 1] -> [4 8192 1 1]
  3955. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3956. data_torch = data_torch.squeeze()
  3957. # assuming token_embd.weight is seen before output.weight
  3958. if self._tok_embd is not None and new_name == output_name:
  3959. if torch.equal(self._tok_embd, data_torch):
  3960. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3961. return []
  3962. elif new_name == tok_embd_name:
  3963. self._tok_embd = data_torch
  3964. return [(new_name, data_torch)]
  3965. @ModelBase.register("Mamba2ForCausalLM")
  3966. class Mamba2Model(TextModel):
  3967. model_arch = gguf.MODEL_ARCH.MAMBA2
  3968. def __init__(self, dir_model: Path, *args, **kwargs):
  3969. # Avoid using AutoConfig for hparams
  3970. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  3971. hparams = kwargs.pop("hparams", None)
  3972. if hparams is None:
  3973. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  3974. hparams = json.load(f)
  3975. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  3976. def set_vocab(self):
  3977. vocab_size = self.hparams["vocab_size"]
  3978. # Round vocab size to next multiple of 16
  3979. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  3980. # pad using ceiling division
  3981. # ref: https://stackoverflow.com/a/17511341/22827863
  3982. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3983. self.hparams["vocab_size"] = vocab_size
  3984. if (self.dir_model / "tokenizer.model").is_file():
  3985. self._set_vocab_sentencepiece()
  3986. elif (self.dir_model / "tokenizer.model.v3").is_file():
  3987. # mamba-codestral
  3988. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  3989. elif (self.dir_model / "tokenizer.json").is_file():
  3990. self._set_vocab_gpt2()
  3991. else:
  3992. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3993. self._set_vocab_builtin("gpt-neox", vocab_size)
  3994. def set_gguf_parameters(self):
  3995. d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  3996. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3997. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3998. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  3999. head_dim = self.find_hparam(["head_dim"], optional=True) or 64
  4000. n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4001. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4002. # Fail early for models which don't have a block expansion factor of 2
  4003. # TODO: does this really matter?
  4004. assert d_inner == 2 * d_model
  4005. assert d_inner % head_dim == 0
  4006. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4007. self.gguf_writer.add_embedding_length(d_model)
  4008. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4009. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4010. self.gguf_writer.add_block_count(self.block_count)
  4011. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4012. self.gguf_writer.add_ssm_inner_size(d_inner)
  4013. self.gguf_writer.add_ssm_state_size(d_state)
  4014. self.gguf_writer.add_ssm_time_step_rank(d_inner // head_dim)
  4015. self.gguf_writer.add_ssm_group_count(n_group)
  4016. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4017. self.gguf_writer.add_file_type(self.ftype)
  4018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4019. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4020. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4021. name = name.removeprefix("model.")
  4022. if name.endswith(".dt_bias"):
  4023. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4024. new_name = self.map_tensor_name(name)
  4025. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4026. data_torch = data_torch.squeeze()
  4027. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4028. gguf.MODEL_TENSOR.SSM_A,
  4029. gguf.MODEL_TENSOR.SSM_D,
  4030. ]):
  4031. # unsqueeze A to use similar shape semantics as Mamba-1
  4032. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4033. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4034. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4035. d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4036. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4037. n_group = self.hparams.get("n_groups", 1)
  4038. data_torch = data_torch.reshape((n_group, d_inner // n_group))
  4039. if name.endswith(".A_log"):
  4040. logger.debug("A_log --> A ==> " + new_name)
  4041. data_torch = -torch.exp(data_torch)
  4042. yield (new_name, data_torch)
  4043. @ModelBase.register("CohereForCausalLM")
  4044. class CommandR2Model(TextModel):
  4045. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4046. def __init__(self, *args, **kwargs):
  4047. super().__init__(*args, **kwargs)
  4048. # max_position_embeddings = 8192 in config.json but model was actually
  4049. # trained on 128k context length
  4050. # aya-23 models don't have model_max_length specified
  4051. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4052. def set_gguf_parameters(self):
  4053. super().set_gguf_parameters()
  4054. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4055. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4056. @ModelBase.register("Cohere2ForCausalLM")
  4057. class Cohere2Model(TextModel):
  4058. model_arch = gguf.MODEL_ARCH.COHERE2
  4059. def set_gguf_parameters(self):
  4060. super().set_gguf_parameters()
  4061. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4062. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4063. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4064. rotary_pct = self.hparams["rotary_pct"]
  4065. hidden_size = self.hparams["hidden_size"]
  4066. num_attention_heads = self.hparams["num_attention_heads"]
  4067. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4068. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4069. @ModelBase.register("OlmoForCausalLM")
  4070. @ModelBase.register("OLMoForCausalLM")
  4071. class OlmoModel(TextModel):
  4072. model_arch = gguf.MODEL_ARCH.OLMO
  4073. def set_gguf_parameters(self):
  4074. super().set_gguf_parameters()
  4075. self.gguf_writer.add_layer_norm_eps(1e-5)
  4076. clip_qkv = self.hparams.get("clip_qkv")
  4077. if clip_qkv is not None:
  4078. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4079. # Same as super class, but permuting q_proj, k_proj
  4080. # Copied from: LlamaModel
  4081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4082. del bid # unused
  4083. n_head = self.hparams["num_attention_heads"]
  4084. n_kv_head = self.hparams.get("num_key_value_heads")
  4085. if name.endswith("q_proj.weight"):
  4086. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4087. if name.endswith("k_proj.weight"):
  4088. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4089. return [(self.map_tensor_name(name), data_torch)]
  4090. @ModelBase.register("Olmo2ForCausalLM")
  4091. class Olmo2Model(TextModel):
  4092. model_arch = gguf.MODEL_ARCH.OLMO2
  4093. @ModelBase.register("OlmoeForCausalLM")
  4094. class OlmoeModel(TextModel):
  4095. model_arch = gguf.MODEL_ARCH.OLMOE
  4096. def set_gguf_parameters(self):
  4097. super().set_gguf_parameters()
  4098. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4099. if (n_experts := self.hparams.get("num_experts")) is not None:
  4100. self.gguf_writer.add_expert_count(n_experts)
  4101. _experts: list[dict[str, Tensor]] | None = None
  4102. # Copied from: Qwen2MoeModel
  4103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4104. # process the experts separately
  4105. if name.find("experts") != -1:
  4106. n_experts = self.hparams["num_experts"]
  4107. assert bid is not None
  4108. if self._experts is None:
  4109. self._experts = [{} for _ in range(self.block_count)]
  4110. self._experts[bid][name] = data_torch
  4111. if len(self._experts[bid]) >= n_experts * 3:
  4112. tensors: list[tuple[str, Tensor]] = []
  4113. # merge the experts into a single 3d tensor
  4114. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4115. datas: list[Tensor] = []
  4116. for xid in range(n_experts):
  4117. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4118. datas.append(self._experts[bid][ename])
  4119. del self._experts[bid][ename]
  4120. data_torch = torch.stack(datas, dim=0)
  4121. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4122. new_name = self.map_tensor_name(merged_name)
  4123. tensors.append((new_name, data_torch))
  4124. return tensors
  4125. else:
  4126. return []
  4127. return [(self.map_tensor_name(name), data_torch)]
  4128. # Copied from: Qwen2MoeModel
  4129. def prepare_tensors(self):
  4130. super().prepare_tensors()
  4131. if self._experts is not None:
  4132. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4133. experts = [k for d in self._experts for k in d.keys()]
  4134. if len(experts) > 0:
  4135. raise ValueError(f"Unprocessed experts: {experts}")
  4136. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4137. class JinaBertV2Model(BertModel):
  4138. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4139. def set_vocab(self):
  4140. tokenizer_class = 'BertTokenizer'
  4141. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4142. tokenizer_class = json.load(f)['tokenizer_class']
  4143. if tokenizer_class == 'BertTokenizer':
  4144. super().set_vocab()
  4145. elif tokenizer_class == 'RobertaTokenizer':
  4146. self._set_vocab_gpt2()
  4147. self.gguf_writer.add_token_type_count(2)
  4148. else:
  4149. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4150. @ModelBase.register("OpenELMForCausalLM")
  4151. class OpenELMModel(TextModel):
  4152. model_arch = gguf.MODEL_ARCH.OPENELM
  4153. @staticmethod
  4154. def _make_divisible(v: float | int, divisor: int) -> int:
  4155. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4156. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4157. # Make sure that round down does not go down by more than 10%.
  4158. if new_v < 0.9 * v:
  4159. new_v += divisor
  4160. return new_v
  4161. def __init__(self, *args, **kwargs):
  4162. super().__init__(*args, **kwargs)
  4163. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4164. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4165. self._n_embd: int = self.hparams["model_dim"]
  4166. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4167. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4168. self._ffn_dims: list[int] = [
  4169. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4170. for multiplier in ffn_multipliers
  4171. ]
  4172. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4173. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4174. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4175. def set_vocab(self):
  4176. try:
  4177. self._set_vocab_sentencepiece()
  4178. except FileNotFoundError:
  4179. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4180. def set_gguf_parameters(self):
  4181. n_embd = self._n_embd
  4182. head_dim = self.hparams["head_dim"]
  4183. rot_pct = 1.0
  4184. assert self.block_count == len(self._num_kv_heads)
  4185. assert self.block_count == len(self._num_query_heads)
  4186. assert self.block_count == len(self._ffn_dims)
  4187. self.gguf_writer.add_block_count(self.block_count)
  4188. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4189. self.gguf_writer.add_embedding_length(n_embd)
  4190. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4191. self.gguf_writer.add_head_count(self._num_query_heads)
  4192. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4193. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4194. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4195. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4196. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4197. self.gguf_writer.add_key_length(head_dim)
  4198. self.gguf_writer.add_value_length(head_dim)
  4199. self.gguf_writer.add_file_type(self.ftype)
  4200. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4201. if "n_layers" in keys:
  4202. return self.hparams["num_transformer_layers"]
  4203. return super().find_hparam(keys, optional)
  4204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4205. # split ff
  4206. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4207. ff_dim = self._ffn_dims[bid]
  4208. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4209. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4210. return
  4211. yield (self.map_tensor_name(name), data_torch)
  4212. @ModelBase.register("ArcticForCausalLM")
  4213. class ArcticModel(TextModel):
  4214. model_arch = gguf.MODEL_ARCH.ARCTIC
  4215. def set_vocab(self):
  4216. # The reason for using a custom implementation here is that the
  4217. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4218. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4219. from sentencepiece import SentencePieceProcessor
  4220. tokenizer_path = self.dir_model / 'tokenizer.model'
  4221. if not tokenizer_path.is_file():
  4222. logger.error(f'Error: Missing {tokenizer_path}')
  4223. sys.exit(1)
  4224. # Read the whole vocabulary from the tokenizer.model file
  4225. tokenizer = SentencePieceProcessor()
  4226. tokenizer.LoadFromFile(str(tokenizer_path))
  4227. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4228. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4229. scores: list[float] = [-10000.0] * vocab_size
  4230. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4231. for token_id in range(tokenizer.vocab_size()):
  4232. piece = tokenizer.IdToPiece(token_id)
  4233. text = piece.encode("utf-8")
  4234. score = tokenizer.GetScore(token_id)
  4235. toktype = SentencePieceTokenTypes.NORMAL
  4236. if tokenizer.IsUnknown(token_id):
  4237. toktype = SentencePieceTokenTypes.UNKNOWN
  4238. elif tokenizer.IsControl(token_id):
  4239. toktype = SentencePieceTokenTypes.CONTROL
  4240. elif tokenizer.IsUnused(token_id):
  4241. toktype = SentencePieceTokenTypes.UNUSED
  4242. elif tokenizer.IsByte(token_id):
  4243. toktype = SentencePieceTokenTypes.BYTE
  4244. tokens[token_id] = text
  4245. scores[token_id] = score
  4246. toktypes[token_id] = toktype
  4247. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4248. # of information about added/redefined tokens and modify them accordingly.
  4249. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4250. if tokenizer_config_file.is_file():
  4251. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4252. tokenizer_config_json = json.load(f)
  4253. if "added_tokens_decoder" in tokenizer_config_json:
  4254. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4255. for token_id, token_json in added_tokens_decoder.items():
  4256. token_id = int(token_id)
  4257. if token_id >= vocab_size:
  4258. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4259. continue
  4260. token_content = token_json["content"]
  4261. token_type = SentencePieceTokenTypes.USER_DEFINED
  4262. token_score = -10000.0
  4263. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4264. # Set the score to 0.0 as in the original tokenizer.model
  4265. if ("special" in token_json) and token_json["special"]:
  4266. if token_content == tokenizer_config_json["unk_token"]:
  4267. token_type = SentencePieceTokenTypes.UNKNOWN
  4268. else:
  4269. token_type = SentencePieceTokenTypes.CONTROL
  4270. token_score = 0.0
  4271. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4272. tokens[token_id] = token_content.encode("utf-8")
  4273. toktypes[token_id] = token_type
  4274. scores[token_id] = token_score
  4275. self.gguf_writer.add_tokenizer_model("llama")
  4276. self.gguf_writer.add_tokenizer_pre("default")
  4277. self.gguf_writer.add_token_list(tokens)
  4278. self.gguf_writer.add_token_scores(scores)
  4279. self.gguf_writer.add_token_types(toktypes)
  4280. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4281. special_vocab.add_to_gguf(self.gguf_writer)
  4282. def set_gguf_parameters(self):
  4283. super().set_gguf_parameters()
  4284. hparams = self.hparams
  4285. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4286. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4287. _experts: list[dict[str, Tensor]] | None = None
  4288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4289. n_head = self.hparams["num_attention_heads"]
  4290. n_kv_head = self.hparams.get("num_key_value_heads")
  4291. if name.endswith("q_proj.weight"):
  4292. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4293. if name.endswith("k_proj.weight"):
  4294. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4295. # process the experts separately
  4296. if name.find("block_sparse_moe.experts") != -1:
  4297. n_experts = self.hparams["num_local_experts"]
  4298. assert bid is not None
  4299. if self._experts is None:
  4300. self._experts = [{} for _ in range(self.block_count)]
  4301. self._experts[bid][name] = data_torch
  4302. if len(self._experts[bid]) >= n_experts * 3:
  4303. tensors: list[tuple[str, Tensor]] = []
  4304. # merge the experts into a single 3d tensor
  4305. for wid in ["w1", "w2", "w3"]:
  4306. datas: list[Tensor] = []
  4307. for xid in range(n_experts):
  4308. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4309. datas.append(self._experts[bid][ename])
  4310. del self._experts[bid][ename]
  4311. data_torch = torch.stack(datas, dim=0)
  4312. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4313. new_name = self.map_tensor_name(merged_name)
  4314. tensors.append((new_name, data_torch))
  4315. return tensors
  4316. else:
  4317. return []
  4318. return [(self.map_tensor_name(name), data_torch)]
  4319. def prepare_tensors(self):
  4320. super().prepare_tensors()
  4321. if self._experts is not None:
  4322. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4323. experts = [k for d in self._experts for k in d.keys()]
  4324. if len(experts) > 0:
  4325. raise ValueError(f"Unprocessed experts: {experts}")
  4326. @ModelBase.register("DeepseekForCausalLM")
  4327. class DeepseekModel(TextModel):
  4328. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4329. def set_vocab(self):
  4330. try:
  4331. self._set_vocab_sentencepiece()
  4332. except FileNotFoundError:
  4333. self._set_vocab_gpt2()
  4334. def set_gguf_parameters(self):
  4335. super().set_gguf_parameters()
  4336. hparams = self.hparams
  4337. if (rope_dim := hparams.get("head_dim")) is None:
  4338. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4339. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4340. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4341. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4342. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4343. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4344. self.gguf_writer.add_expert_weights_scale(1.0)
  4345. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4346. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4347. _experts: list[dict[str, Tensor]] | None = None
  4348. @staticmethod
  4349. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4350. if n_head_kv is not None and n_head != n_head_kv:
  4351. n_head = n_head_kv
  4352. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4353. .swapaxes(1, 2)
  4354. .reshape(weights.shape))
  4355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4356. n_head = self.hparams["num_attention_heads"]
  4357. n_kv_head = self.hparams.get("num_key_value_heads")
  4358. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4359. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4360. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4361. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4362. # process the experts separately
  4363. if name.find("mlp.experts") != -1:
  4364. n_experts = self.hparams["n_routed_experts"]
  4365. assert bid is not None
  4366. if self._experts is None:
  4367. self._experts = [{} for _ in range(self.block_count)]
  4368. self._experts[bid][name] = data_torch
  4369. if len(self._experts[bid]) >= n_experts * 3:
  4370. tensors: list[tuple[str, Tensor]] = []
  4371. # merge the experts into a single 3d tensor
  4372. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4373. datas: list[Tensor] = []
  4374. for xid in range(n_experts):
  4375. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4376. datas.append(self._experts[bid][ename])
  4377. del self._experts[bid][ename]
  4378. data_torch = torch.stack(datas, dim=0)
  4379. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4380. new_name = self.map_tensor_name(merged_name)
  4381. tensors.append((new_name, data_torch))
  4382. return tensors
  4383. else:
  4384. return []
  4385. return [(self.map_tensor_name(name), data_torch)]
  4386. def prepare_tensors(self):
  4387. super().prepare_tensors()
  4388. if self._experts is not None:
  4389. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4390. experts = [k for d in self._experts for k in d.keys()]
  4391. if len(experts) > 0:
  4392. raise ValueError(f"Unprocessed experts: {experts}")
  4393. @ModelBase.register("DeepseekV2ForCausalLM")
  4394. @ModelBase.register("DeepseekV3ForCausalLM")
  4395. class DeepseekV2Model(TextModel):
  4396. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4397. def set_vocab(self):
  4398. self._set_vocab_gpt2()
  4399. def set_gguf_parameters(self):
  4400. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4401. self.hparams["num_key_value_heads"] = 1
  4402. super().set_gguf_parameters()
  4403. hparams = self.hparams
  4404. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4405. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4406. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4407. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4408. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4409. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4410. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4411. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4412. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4413. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4414. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4415. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4416. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4417. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4418. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4419. if hparams["scoring_func"] == "sigmoid":
  4420. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4421. elif hparams["scoring_func"] == "softmax":
  4422. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4423. else:
  4424. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4425. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4426. rope_scaling = self.hparams.get("rope_scaling") or {}
  4427. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4428. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4429. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4430. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4431. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4432. _experts: list[dict[str, Tensor]] | None = None
  4433. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4434. # rename e_score_correction_bias tensors
  4435. if name.endswith("e_score_correction_bias"):
  4436. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4437. # skip Multi-Token Prediction (MTP) layers
  4438. block_count = self.hparams["num_hidden_layers"]
  4439. match = re.match(r"model.layers.(\d+)", name)
  4440. if match and int(match.group(1)) >= block_count:
  4441. return []
  4442. # process the experts separately
  4443. if name.find("mlp.experts") != -1:
  4444. n_experts = self.hparams["n_routed_experts"]
  4445. assert bid is not None
  4446. if self._experts is None:
  4447. self._experts = [{} for _ in range(self.block_count)]
  4448. self._experts[bid][name] = data_torch
  4449. if len(self._experts[bid]) >= n_experts * 3:
  4450. tensors: list[tuple[str, Tensor]] = []
  4451. # merge the experts into a single 3d tensor
  4452. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4453. datas: list[Tensor] = []
  4454. for xid in range(n_experts):
  4455. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4456. datas.append(self._experts[bid][ename])
  4457. del self._experts[bid][ename]
  4458. data_torch = torch.stack(datas, dim=0)
  4459. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4460. new_name = self.map_tensor_name(merged_name)
  4461. tensors.append((new_name, data_torch))
  4462. return tensors
  4463. else:
  4464. return []
  4465. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4466. if name.endswith("kv_b_proj.weight"):
  4467. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4468. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4469. n_head_kv = self.hparams["num_key_value_heads"]
  4470. v_head_dim = self.hparams["v_head_dim"]
  4471. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4472. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4473. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4474. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4475. k_b = k_b.transpose(1, 2)
  4476. return [
  4477. (self.map_tensor_name(name_kb), k_b),
  4478. (self.map_tensor_name(name_vb), v_b)
  4479. ]
  4480. return [(self.map_tensor_name(name), data_torch)]
  4481. def prepare_tensors(self):
  4482. super().prepare_tensors()
  4483. if self._experts is not None:
  4484. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4485. experts = [k for d in self._experts for k in d.keys()]
  4486. if len(experts) > 0:
  4487. raise ValueError(f"Unprocessed experts: {experts}")
  4488. @ModelBase.register("Dots1ForCausalLM")
  4489. class Dots1Model(Qwen2MoeModel):
  4490. model_arch = gguf.MODEL_ARCH.DOTS1
  4491. def __init__(self, *args, **kwargs):
  4492. super().__init__(*args, **kwargs)
  4493. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4494. def set_gguf_parameters(self):
  4495. super().set_gguf_parameters()
  4496. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4497. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4498. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4499. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4500. if self.hparams["scoring_func"] == "noaux_tc":
  4501. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4502. else:
  4503. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4504. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4505. if name.endswith("e_score_correction_bias"):
  4506. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4507. if "shared_experts" in name:
  4508. return [(self.map_tensor_name(name), data_torch)]
  4509. return super().modify_tensors(data_torch, name, bid)
  4510. @ModelBase.register("PLMForCausalLM")
  4511. class PLMModel(TextModel):
  4512. model_arch = gguf.MODEL_ARCH.PLM
  4513. def set_vocab(self):
  4514. self._set_vocab_gpt2()
  4515. def set_gguf_parameters(self):
  4516. super().set_gguf_parameters()
  4517. hparams = self.hparams
  4518. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4519. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4520. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4521. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4522. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4524. return [(self.map_tensor_name(name), data_torch)]
  4525. def prepare_tensors(self):
  4526. super().prepare_tensors()
  4527. @ModelBase.register("T5WithLMHeadModel")
  4528. @ModelBase.register("T5ForConditionalGeneration")
  4529. @ModelBase.register("MT5ForConditionalGeneration")
  4530. @ModelBase.register("UMT5ForConditionalGeneration")
  4531. class T5Model(TextModel):
  4532. model_arch = gguf.MODEL_ARCH.T5
  4533. def __init__(self, *args, **kwargs):
  4534. super().__init__(*args, **kwargs)
  4535. self.shared_token_embeddings_found = False
  4536. def set_vocab(self):
  4537. # to avoid TypeError: Descriptors cannot be created directly
  4538. # exception when importing sentencepiece_model_pb2
  4539. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4540. from sentencepiece import SentencePieceProcessor
  4541. from sentencepiece import sentencepiece_model_pb2 as model
  4542. tokenizer_path = self.dir_model / 'tokenizer.model'
  4543. # many older models use spiece.model tokenizer model filename
  4544. if not tokenizer_path.is_file():
  4545. tokenizer_path = self.dir_model / 'spiece.model'
  4546. if not tokenizer_path.is_file():
  4547. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4548. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4549. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4550. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4551. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4552. # assure the tokenizer model file name is correct
  4553. assert tokenizer_path.name == 'tokenizer.model'
  4554. return self._set_vocab_sentencepiece()
  4555. else:
  4556. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4557. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4558. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4559. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4560. tokenizer = SentencePieceProcessor()
  4561. tokenizer.LoadFromFile(str(tokenizer_path))
  4562. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4563. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4564. scores: list[float] = [-10000.0] * vocab_size
  4565. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4566. for token_id in range(tokenizer.vocab_size()):
  4567. piece = tokenizer.IdToPiece(token_id)
  4568. text = piece.encode("utf-8")
  4569. score = tokenizer.GetScore(token_id)
  4570. toktype = SentencePieceTokenTypes.NORMAL
  4571. if tokenizer.IsUnknown(token_id):
  4572. toktype = SentencePieceTokenTypes.UNKNOWN
  4573. elif tokenizer.IsControl(token_id):
  4574. toktype = SentencePieceTokenTypes.CONTROL
  4575. elif tokenizer.IsUnused(token_id):
  4576. toktype = SentencePieceTokenTypes.UNUSED
  4577. elif tokenizer.IsByte(token_id):
  4578. toktype = SentencePieceTokenTypes.BYTE
  4579. tokens[token_id] = text
  4580. scores[token_id] = score
  4581. toktypes[token_id] = toktype
  4582. added_tokens_file = self.dir_model / 'added_tokens.json'
  4583. if added_tokens_file.is_file():
  4584. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4585. added_tokens_json = json.load(f)
  4586. for key in added_tokens_json:
  4587. token_id = added_tokens_json[key]
  4588. if token_id >= vocab_size:
  4589. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4590. continue
  4591. tokens[token_id] = key.encode("utf-8")
  4592. scores[token_id] = -1000.0
  4593. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4594. if vocab_size > len(tokens):
  4595. pad_count = vocab_size - len(tokens)
  4596. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4597. for i in range(1, pad_count + 1):
  4598. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4599. scores.append(-1000.0)
  4600. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4601. self.gguf_writer.add_tokenizer_model("t5")
  4602. self.gguf_writer.add_tokenizer_pre("default")
  4603. self.gguf_writer.add_token_list(tokens)
  4604. self.gguf_writer.add_token_scores(scores)
  4605. self.gguf_writer.add_token_types(toktypes)
  4606. self.gguf_writer.add_add_space_prefix(add_prefix)
  4607. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4608. if precompiled_charsmap:
  4609. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4610. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4611. special_vocab.add_to_gguf(self.gguf_writer)
  4612. def set_gguf_parameters(self):
  4613. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4614. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4615. n_ctx = 512
  4616. self.gguf_writer.add_context_length(n_ctx)
  4617. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4618. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4619. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4620. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4621. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4622. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4623. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4624. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4625. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4626. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4627. self.gguf_writer.add_file_type(self.ftype)
  4628. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4629. del bid # unused
  4630. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4631. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4632. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4633. # and decoder and ignore the remaining ones.
  4634. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4635. if not self.shared_token_embeddings_found:
  4636. name = "shared.weight"
  4637. self.shared_token_embeddings_found = True
  4638. else:
  4639. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4640. return []
  4641. return [(self.map_tensor_name(name), data_torch)]
  4642. @ModelBase.register("T5EncoderModel")
  4643. class T5EncoderModel(TextModel):
  4644. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4645. def __init__(self, *args, **kwargs):
  4646. super().__init__(*args, **kwargs)
  4647. self.shared_token_embeddings_found = False
  4648. def set_vocab(self):
  4649. # to avoid TypeError: Descriptors cannot be created directly
  4650. # exception when importing sentencepiece_model_pb2
  4651. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4652. from sentencepiece import SentencePieceProcessor
  4653. from sentencepiece import sentencepiece_model_pb2 as model
  4654. tokenizer_path = self.dir_model / 'tokenizer.model'
  4655. # many older models use spiece.model tokenizer model filename
  4656. if not tokenizer_path.is_file():
  4657. tokenizer_path = self.dir_model / 'spiece.model'
  4658. if not tokenizer_path.is_file():
  4659. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4660. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4661. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4662. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4663. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4664. # assure the tokenizer model file name is correct
  4665. assert tokenizer_path.name == 'tokenizer.model'
  4666. return self._set_vocab_sentencepiece()
  4667. else:
  4668. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4669. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4670. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4671. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4672. tokenizer = SentencePieceProcessor()
  4673. tokenizer.LoadFromFile(str(tokenizer_path))
  4674. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4675. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4676. scores: list[float] = [-10000.0] * vocab_size
  4677. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4678. for token_id in range(tokenizer.vocab_size()):
  4679. piece = tokenizer.IdToPiece(token_id)
  4680. text = piece.encode("utf-8")
  4681. score = tokenizer.GetScore(token_id)
  4682. toktype = SentencePieceTokenTypes.NORMAL
  4683. if tokenizer.IsUnknown(token_id):
  4684. toktype = SentencePieceTokenTypes.UNKNOWN
  4685. elif tokenizer.IsControl(token_id):
  4686. toktype = SentencePieceTokenTypes.CONTROL
  4687. elif tokenizer.IsUnused(token_id):
  4688. toktype = SentencePieceTokenTypes.UNUSED
  4689. elif tokenizer.IsByte(token_id):
  4690. toktype = SentencePieceTokenTypes.BYTE
  4691. tokens[token_id] = text
  4692. scores[token_id] = score
  4693. toktypes[token_id] = toktype
  4694. added_tokens_file = self.dir_model / 'added_tokens.json'
  4695. if added_tokens_file.is_file():
  4696. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4697. added_tokens_json = json.load(f)
  4698. for key in added_tokens_json:
  4699. token_id = added_tokens_json[key]
  4700. if token_id >= vocab_size:
  4701. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4702. continue
  4703. tokens[token_id] = key.encode("utf-8")
  4704. scores[token_id] = -1000.0
  4705. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4706. if vocab_size > len(tokens):
  4707. pad_count = vocab_size - len(tokens)
  4708. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4709. for i in range(1, pad_count + 1):
  4710. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4711. scores.append(-1000.0)
  4712. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4713. self.gguf_writer.add_tokenizer_model("t5")
  4714. self.gguf_writer.add_tokenizer_pre("default")
  4715. self.gguf_writer.add_token_list(tokens)
  4716. self.gguf_writer.add_token_scores(scores)
  4717. self.gguf_writer.add_token_types(toktypes)
  4718. self.gguf_writer.add_add_space_prefix(add_prefix)
  4719. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4720. if precompiled_charsmap:
  4721. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4722. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4723. special_vocab.add_to_gguf(self.gguf_writer)
  4724. def set_gguf_parameters(self):
  4725. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4726. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4727. n_ctx = 512
  4728. self.gguf_writer.add_context_length(n_ctx)
  4729. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4730. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4731. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4732. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4733. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4734. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4735. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4736. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4737. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4738. self.gguf_writer.add_file_type(self.ftype)
  4739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4740. del bid # unused
  4741. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4742. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4743. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4744. # and decoder and ignore the remaining ones.
  4745. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4746. if not self.shared_token_embeddings_found:
  4747. name = "shared.weight"
  4748. self.shared_token_embeddings_found = True
  4749. else:
  4750. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4751. return []
  4752. return [(self.map_tensor_name(name), data_torch)]
  4753. @ModelBase.register("JAISLMHeadModel")
  4754. class JaisModel(TextModel):
  4755. model_arch = gguf.MODEL_ARCH.JAIS
  4756. def __init__(self, *args, **kwargs):
  4757. super().__init__(*args, **kwargs)
  4758. # SwigLU activation
  4759. assert self.hparams["activation_function"] == "swiglu"
  4760. # ALiBi position embedding
  4761. assert self.hparams["position_embedding_type"] == "alibi"
  4762. # Embeddings scale
  4763. self.embeddings_scale = 1.0
  4764. if 'mup_embeddings_scale' in self.hparams:
  4765. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4766. elif 'embeddings_scale' in self.hparams:
  4767. self.embeddings_scale = self.hparams['embeddings_scale']
  4768. else:
  4769. assert False
  4770. self.width_scale = 1.0
  4771. if 'mup_output_alpha' in self.hparams:
  4772. assert 'mup_width_scale' in self.hparams
  4773. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4774. elif 'width_scale' in self.hparams:
  4775. self.width_scale = self.hparams['width_scale']
  4776. else:
  4777. assert False
  4778. self.max_alibi_bias = 8.0
  4779. def set_vocab(self):
  4780. self._set_vocab_gpt2()
  4781. def set_gguf_parameters(self):
  4782. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4783. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4784. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4785. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4786. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4787. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4788. self.gguf_writer.add_file_type(self.ftype)
  4789. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4790. del bid # unused
  4791. tensors: list[tuple[str, Tensor]] = []
  4792. # we don't need these
  4793. if name.endswith((".attn.bias")):
  4794. return tensors
  4795. if name.endswith(("relative_pe.slopes")):
  4796. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4797. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4798. # but Jais's PyTorch model simply precalculates the slope values and places them
  4799. # in relative_pes.slopes
  4800. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4801. first_val = float(data_torch[0].item())
  4802. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4803. return tensors
  4804. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4805. data_torch = data_torch.transpose(1, 0)
  4806. new_name = self.map_tensor_name(name)
  4807. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4808. tensors.append((new_name, data_torch * self.embeddings_scale))
  4809. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4810. tensors.append((new_name, data_torch * self.width_scale))
  4811. else:
  4812. tensors.append((new_name, data_torch))
  4813. return tensors
  4814. def prepare_tensors(self):
  4815. super().prepare_tensors()
  4816. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4817. @ModelBase.register("Glm4ForCausalLM")
  4818. class Glm4Model(TextModel):
  4819. model_arch = gguf.MODEL_ARCH.GLM4
  4820. def set_vocab(self):
  4821. from transformers import AutoTokenizer
  4822. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4823. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4824. tokens, toktypes, tokpre = self.get_vocab_base()
  4825. self.gguf_writer.add_tokenizer_model("gpt2")
  4826. self.gguf_writer.add_tokenizer_pre(tokpre)
  4827. self.gguf_writer.add_token_list(tokens)
  4828. self.gguf_writer.add_token_types(toktypes)
  4829. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4830. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4831. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4832. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4833. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4834. special_vocab.add_to_gguf(self.gguf_writer)
  4835. def set_gguf_parameters(self):
  4836. super().set_gguf_parameters()
  4837. rope_dim = self.hparams["head_dim"]
  4838. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4839. rope_scaling = self.hparams.get("rope_scaling") or {}
  4840. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4841. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4842. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4843. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4844. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4845. class ChatGLMModel(TextModel):
  4846. model_arch = gguf.MODEL_ARCH.CHATGLM
  4847. def set_vocab_chatglm3(self):
  4848. dir_model = self.dir_model
  4849. hparams = self.hparams
  4850. tokens: list[bytes] = []
  4851. toktypes: list[int] = []
  4852. scores: list[float] = []
  4853. from transformers import AutoTokenizer
  4854. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4855. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4856. assert max(tokenizer.get_vocab().values()) < vocab_size
  4857. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4858. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4859. for token_id in range(vocab_size):
  4860. piece = tokenizer._convert_id_to_token(token_id)
  4861. if token_id == 0:
  4862. piece = "<unk>"
  4863. elif token_id == 1:
  4864. piece = "<bos>"
  4865. elif token_id == 2:
  4866. piece = "<eos>"
  4867. text = piece.encode("utf-8")
  4868. score = 0.0
  4869. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4870. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4871. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4872. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4873. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4874. if piece in special_tokens:
  4875. toktype = SentencePieceTokenTypes.CONTROL
  4876. elif len(piece) == 0:
  4877. text = f"[PAD{token_id}]".encode("utf-8")
  4878. toktype = SentencePieceTokenTypes.UNUSED
  4879. else:
  4880. toktype = SentencePieceTokenTypes.USER_DEFINED
  4881. tokens.append(text)
  4882. scores.append(score)
  4883. toktypes.append(toktype)
  4884. continue
  4885. toktype = SentencePieceTokenTypes.NORMAL
  4886. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4887. toktype = SentencePieceTokenTypes.UNKNOWN
  4888. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4889. toktype = SentencePieceTokenTypes.CONTROL
  4890. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4891. toktype = SentencePieceTokenTypes.UNUSED
  4892. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4893. toktype = SentencePieceTokenTypes.BYTE
  4894. tokens.append(text)
  4895. scores.append(score)
  4896. toktypes.append(toktype)
  4897. self.gguf_writer.add_tokenizer_model("llama")
  4898. # glm3 needs prefix and suffix formatted as:
  4899. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4900. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4901. self.gguf_writer.add_token_list(tokens)
  4902. self.gguf_writer.add_token_scores(scores)
  4903. self.gguf_writer.add_token_types(toktypes)
  4904. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4905. special_vocab.add_to_gguf(self.gguf_writer)
  4906. @staticmethod
  4907. def token_bytes_to_string(b):
  4908. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4909. byte_encoder = bytes_to_unicode()
  4910. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4911. @staticmethod
  4912. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4913. parts = [bytes([b]) for b in token]
  4914. while True:
  4915. min_idx = None
  4916. min_rank = None
  4917. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4918. rank = mergeable_ranks.get(pair[0] + pair[1])
  4919. if rank is not None and (min_rank is None or rank < min_rank):
  4920. min_idx = i
  4921. min_rank = rank
  4922. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4923. break
  4924. assert min_idx is not None
  4925. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4926. return parts
  4927. def set_vocab(self):
  4928. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4929. self.set_vocab_chatglm3()
  4930. return
  4931. dir_model = self.dir_model
  4932. hparams = self.hparams
  4933. tokens: list[str] = []
  4934. toktypes: list[int] = []
  4935. from transformers import AutoTokenizer
  4936. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4937. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4938. assert max(tokenizer.get_vocab().values()) < vocab_size
  4939. tokens, toktypes, tokpre = self.get_vocab_base()
  4940. self.gguf_writer.add_tokenizer_model("gpt2")
  4941. self.gguf_writer.add_tokenizer_pre(tokpre)
  4942. self.gguf_writer.add_token_list(tokens)
  4943. self.gguf_writer.add_token_types(toktypes)
  4944. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4945. # only add special tokens when they were not already loaded from config.json
  4946. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4947. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4948. # this one is usually not in config.json anyway
  4949. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4950. special_vocab.add_to_gguf(self.gguf_writer)
  4951. def set_gguf_parameters(self):
  4952. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4953. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4954. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4955. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4956. self.gguf_writer.add_embedding_length(n_embed)
  4957. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4958. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4959. self.gguf_writer.add_head_count(n_head)
  4960. self.gguf_writer.add_head_count_kv(n_head_kv)
  4961. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4962. self.gguf_writer.add_file_type(self.ftype)
  4963. if "attention_dim" in self.hparams:
  4964. rope_dim = self.hparams["attention_dim"]
  4965. else:
  4966. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4967. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4968. self.gguf_writer.add_add_bos_token(False)
  4969. rope_freq = 10000
  4970. if "rope_ratio" in self.hparams:
  4971. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4972. self.gguf_writer.add_rope_freq_base(rope_freq)
  4973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4974. del bid # unused
  4975. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4976. return []
  4977. name = name.removeprefix("transformer.")
  4978. return [(self.map_tensor_name(name), data_torch)]
  4979. @ModelBase.register("NemotronForCausalLM")
  4980. class NemotronModel(TextModel):
  4981. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4982. def set_vocab(self):
  4983. self._set_vocab_sentencepiece()
  4984. self.gguf_writer.add_pad_token_id(0)
  4985. self.gguf_writer.add_unk_token_id(1)
  4986. def set_gguf_parameters(self):
  4987. super().set_gguf_parameters()
  4988. hparams = self.hparams
  4989. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4990. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4991. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4992. # * Partial RoPE
  4993. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4994. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4995. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4996. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4997. # * RopeScaling for Nemotron
  4998. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4999. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5000. else:
  5001. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5002. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5004. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5005. # model.layers.{l}.input_layernorm.weight
  5006. # model.layers.{l}.post_attention_layernorm.weight
  5007. # model.norm.weight
  5008. if name.endswith("norm.weight"):
  5009. data_torch = data_torch + 1
  5010. return [(self.map_tensor_name(name), data_torch)]
  5011. @ModelBase.register("ExaoneForCausalLM")
  5012. class ExaoneModel(TextModel):
  5013. model_arch = gguf.MODEL_ARCH.EXAONE
  5014. def set_gguf_parameters(self):
  5015. hparams = self.hparams
  5016. assert (hparams["activation_function"] == "silu")
  5017. max_position_embeddings = hparams["max_position_embeddings"]
  5018. embed_dim = hparams["hidden_size"]
  5019. num_heads = hparams["num_attention_heads"]
  5020. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5021. layer_norm_eps = hparams["layer_norm_epsilon"]
  5022. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5023. num_layers = hparams["num_layers"]
  5024. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5025. # attention_dropout_rate = hparams["attention_dropout"]
  5026. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5027. # embed_dropout_rate = hparams["embed_dropout"]
  5028. self.gguf_writer.add_embedding_length(embed_dim)
  5029. self.gguf_writer.add_head_count(num_heads)
  5030. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5031. self.gguf_writer.add_context_length(max_position_embeddings)
  5032. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5033. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5034. self.gguf_writer.add_block_count(num_layers)
  5035. self.gguf_writer.add_file_type(self.ftype)
  5036. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5037. self.gguf_writer.add_rope_freq_base(rope_theta)
  5038. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5039. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5040. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5041. rope_scaling = self.hparams.get("rope_scaling") or {}
  5042. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5043. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5044. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5045. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5046. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5047. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5048. base = self.hparams.get("rope_theta", 10000.0)
  5049. if (dim := self.hparams.get("head_dim")) is None:
  5050. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5051. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5052. factor = rope_scaling.get("factor", 8.0)
  5053. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5054. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5055. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5056. low_freq_wavelen = old_context_len / low_freq_factor
  5057. high_freq_wavelen = old_context_len / high_freq_factor
  5058. assert low_freq_wavelen != high_freq_wavelen
  5059. rope_factors = []
  5060. for freq in freqs:
  5061. wavelen = 2 * math.pi / freq
  5062. if wavelen < high_freq_wavelen:
  5063. rope_factors.append(1)
  5064. elif wavelen > low_freq_wavelen:
  5065. rope_factors.append(factor)
  5066. else:
  5067. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5068. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5069. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5070. @ModelBase.register("GraniteForCausalLM")
  5071. class GraniteModel(LlamaModel):
  5072. """Conversion for IBM's GraniteForCausalLM"""
  5073. model_arch = gguf.MODEL_ARCH.GRANITE
  5074. def set_gguf_parameters(self):
  5075. """Granite uses standard llama parameters with the following differences:
  5076. - No head_dim support
  5077. - New multiplier params:
  5078. - attention_scale
  5079. - embedding_scale
  5080. - residual_scale
  5081. - logits_scaling
  5082. """
  5083. if head_dim := self.hparams.pop("head_dim", None):
  5084. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5085. super().set_gguf_parameters()
  5086. # NOTE: Convert _multiplier params to _scale params for naming
  5087. # consistency
  5088. if attention_scale := self.hparams.get("attention_multiplier"):
  5089. self.gguf_writer.add_attention_scale(attention_scale)
  5090. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5091. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5092. self.gguf_writer.add_embedding_scale(embedding_scale)
  5093. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5094. if residual_scale := self.hparams.get("residual_multiplier"):
  5095. self.gguf_writer.add_residual_scale(residual_scale)
  5096. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5097. if logits_scale := self.hparams.get("logits_scaling"):
  5098. self.gguf_writer.add_logit_scale(logits_scale)
  5099. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5100. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5101. class GraniteMoeModel(GraniteModel):
  5102. """Conversion for IBM's GraniteMoeForCausalLM"""
  5103. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5104. def set_gguf_parameters(self):
  5105. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5106. - shared_intermediate_size
  5107. """
  5108. super().set_gguf_parameters()
  5109. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5110. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5111. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5113. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5114. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5115. the hidden size that is then split during forward. To keep compatibility
  5116. with existing mixtral support, we pull them apart here.
  5117. """
  5118. if name.endswith("block_sparse_moe.input_linear.weight"):
  5119. ffn_dim = self.hparams["intermediate_size"]
  5120. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5121. gate, up = data_torch.split(ffn_dim, dim=-2)
  5122. return [
  5123. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5124. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5125. ]
  5126. if name.endswith("shared_mlp.input_linear.weight"):
  5127. ffn_dim = self.hparams["shared_intermediate_size"]
  5128. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5129. gate, up = data_torch.split(ffn_dim, dim=-2)
  5130. return [
  5131. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5132. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5133. ]
  5134. return super().modify_tensors(data_torch, name, bid)
  5135. @ModelBase.register("BailingMoeForCausalLM")
  5136. class BailingMoeModel(TextModel):
  5137. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5138. def set_vocab(self):
  5139. self._set_vocab_gpt2()
  5140. def set_gguf_parameters(self):
  5141. super().set_gguf_parameters()
  5142. hparams = self.hparams
  5143. if (rope_dim := hparams.get("head_dim")) is None:
  5144. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5145. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5146. rope_scaling = self.hparams.get("rope_scaling") or {}
  5147. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5148. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5149. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5150. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5151. else:
  5152. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5153. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5154. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5155. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5156. self.gguf_writer.add_expert_weights_scale(1.0)
  5157. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5158. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5159. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5160. _experts: list[dict[str, Tensor]] | None = None
  5161. @staticmethod
  5162. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5163. if n_head_kv is not None and n_head != n_head_kv:
  5164. n_head = n_head_kv
  5165. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5166. .swapaxes(1, 2)
  5167. .reshape(weights.shape))
  5168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5169. n_head = self.hparams["num_attention_heads"]
  5170. n_kv_head = self.hparams.get("num_key_value_heads")
  5171. n_embd = self.hparams["hidden_size"]
  5172. if (head_dim := self.hparams.get("head_dim")) is None:
  5173. head_dim = n_embd // n_head
  5174. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5175. if name.endswith("attention.dense.weight"):
  5176. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5177. elif name.endswith("query_key_value.weight"):
  5178. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5179. return [
  5180. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5181. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5182. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5183. ]
  5184. elif name.find("mlp.experts") != -1:
  5185. n_experts = self.hparams["num_experts"]
  5186. assert bid is not None
  5187. tensors: list[tuple[str, Tensor]] = []
  5188. if self._experts is None:
  5189. self._experts = [{} for _ in range(self.block_count)]
  5190. self._experts[bid][name] = data_torch
  5191. if len(self._experts[bid]) >= n_experts * 3:
  5192. # merge the experts into a single 3d tensor
  5193. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5194. datas: list[Tensor] = []
  5195. for xid in range(n_experts):
  5196. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5197. datas.append(self._experts[bid][ename])
  5198. del self._experts[bid][ename]
  5199. data_torch = torch.stack(datas, dim=0)
  5200. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5201. new_name = self.map_tensor_name(merged_name)
  5202. tensors.append((new_name, data_torch))
  5203. return tensors
  5204. new_name = self.map_tensor_name(name)
  5205. if new_name == output_name and self.hparams.get("norm_head"):
  5206. data_torch = data_torch.float()
  5207. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5208. return [(new_name, data_torch)]
  5209. def prepare_tensors(self):
  5210. super().prepare_tensors()
  5211. if self._experts is not None:
  5212. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5213. experts = [k for d in self._experts for k in d.keys()]
  5214. if len(experts) > 0:
  5215. raise ValueError(f"Unprocessed experts: {experts}")
  5216. @ModelBase.register("ChameleonForConditionalGeneration")
  5217. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5218. class ChameleonModel(TextModel):
  5219. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5220. def set_gguf_parameters(self):
  5221. super().set_gguf_parameters()
  5222. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5223. def set_vocab(self):
  5224. self._set_vocab_gpt2()
  5225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5226. # ignore image tokenizer for now
  5227. # TODO: remove this once image support is implemented for Chameleon
  5228. if name.startswith("model.vqmodel"):
  5229. return []
  5230. n_head = self.hparams["num_attention_heads"]
  5231. n_kv_head = self.hparams.get("num_key_value_heads")
  5232. hidden_dim = self.hparams.get("hidden_size")
  5233. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5234. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5235. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5236. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5237. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5238. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5239. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5240. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5241. return [(self.map_tensor_name(name), data_torch)]
  5242. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5243. @staticmethod
  5244. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5245. head_dim = hidden_dim // n_heads
  5246. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5247. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5248. return data_torch
  5249. @ModelBase.register("UltravoxModel")
  5250. class UltravoxModel(TextModel):
  5251. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5252. def __init__(self, *args, **kwargs):
  5253. super().__init__(*args, **kwargs)
  5254. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5255. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5256. class WhisperEncoderModel(MmprojModel):
  5257. has_vision_encoder = False # no vision encoder
  5258. has_audio_encoder = True
  5259. def __init__(self, *args, **kwargs):
  5260. super().__init__(*args, **kwargs)
  5261. self.hparams["hidden_size"] = self.hparams["d_model"]
  5262. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5263. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5264. def set_gguf_parameters(self):
  5265. super().set_gguf_parameters()
  5266. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5267. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5268. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5269. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5270. del bid, new_name, n_dims # unused
  5271. if ".conv" in name and ".weight" in name:
  5272. return gguf.GGMLQuantizationType.F16
  5273. return False
  5274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5275. del bid # unused
  5276. if name.startswith("language_model."):
  5277. # skip language model tensors
  5278. return []
  5279. # prevent clash naming with vision tensors
  5280. if name.startswith("multi_modal_projector"):
  5281. name = "audio." + name
  5282. if "conv1.bias" in name or "conv2.bias" in name:
  5283. # transpose conv1 and conv2 bias
  5284. data_torch = data_torch.unsqueeze(-1)
  5285. return [(self.map_tensor_name(name), data_torch)]
  5286. @ModelBase.register("UltravoxModel")
  5287. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5288. has_vision_encoder = False # no vision encoder
  5289. has_audio_encoder = True
  5290. def set_gguf_parameters(self):
  5291. super().set_gguf_parameters()
  5292. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5293. ###### CONVERSION LOGIC ######
  5294. # tree of lazy tensors
  5295. class LazyTorchTensor(gguf.LazyBase):
  5296. _tensor_type = torch.Tensor
  5297. # to keep the type-checker happy
  5298. dtype: torch.dtype
  5299. shape: torch.Size
  5300. # only used when converting a torch.Tensor to a np.ndarray
  5301. _dtype_map: dict[torch.dtype, type] = {
  5302. torch.float16: np.float16,
  5303. torch.float32: np.float32,
  5304. }
  5305. # used for safetensors slices
  5306. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5307. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5308. _dtype_str_map: dict[str, torch.dtype] = {
  5309. "F64": torch.float64,
  5310. "F32": torch.float32,
  5311. "BF16": torch.bfloat16,
  5312. "F16": torch.float16,
  5313. # "U64": torch.uint64,
  5314. "I64": torch.int64,
  5315. # "U32": torch.uint32,
  5316. "I32": torch.int32,
  5317. # "U16": torch.uint16,
  5318. "I16": torch.int16,
  5319. "U8": torch.uint8,
  5320. "I8": torch.int8,
  5321. "BOOL": torch.bool,
  5322. "F8_E4M3": torch.float8_e4m3fn,
  5323. "F8_E5M2": torch.float8_e5m2,
  5324. }
  5325. def numpy(self) -> gguf.LazyNumpyTensor:
  5326. dtype = self._dtype_map[self.dtype]
  5327. return gguf.LazyNumpyTensor(
  5328. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5329. args=(self,),
  5330. func=(lambda s: s.numpy())
  5331. )
  5332. @classmethod
  5333. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5334. return torch.empty(size=shape, dtype=dtype, device="meta")
  5335. @classmethod
  5336. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5337. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5338. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5339. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5340. return cast(torch.Tensor, lazy)
  5341. @classmethod
  5342. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5343. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5344. shape = remote_tensor.shape
  5345. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5346. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5347. return cast(torch.Tensor, lazy)
  5348. @classmethod
  5349. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5350. del types # unused
  5351. if kwargs is None:
  5352. kwargs = {}
  5353. if func is torch.Tensor.numpy:
  5354. return args[0].numpy()
  5355. return cls._wrap_fn(func)(*args, **kwargs)
  5356. def parse_args() -> argparse.Namespace:
  5357. parser = argparse.ArgumentParser(
  5358. description="Convert a huggingface model to a GGML compatible file")
  5359. parser.add_argument(
  5360. "--vocab-only", action="store_true",
  5361. help="extract only the vocab",
  5362. )
  5363. parser.add_argument(
  5364. "--outfile", type=Path,
  5365. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5366. )
  5367. parser.add_argument(
  5368. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5369. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5370. )
  5371. parser.add_argument(
  5372. "--bigendian", action="store_true",
  5373. help="model is executed on big endian machine",
  5374. )
  5375. parser.add_argument(
  5376. "model", type=str,
  5377. help="directory containing model file or huggingface repository ID (if --remote)",
  5378. nargs="?",
  5379. )
  5380. parser.add_argument(
  5381. "--use-temp-file", action="store_true",
  5382. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5383. )
  5384. parser.add_argument(
  5385. "--no-lazy", action="store_true",
  5386. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5387. )
  5388. parser.add_argument(
  5389. "--model-name", type=str, default=None,
  5390. help="name of the model",
  5391. )
  5392. parser.add_argument(
  5393. "--verbose", action="store_true",
  5394. help="increase output verbosity",
  5395. )
  5396. parser.add_argument(
  5397. "--split-max-tensors", type=int, default=0,
  5398. help="max tensors in each split",
  5399. )
  5400. parser.add_argument(
  5401. "--split-max-size", type=str, default="0",
  5402. help="max size per split N(M|G)",
  5403. )
  5404. parser.add_argument(
  5405. "--dry-run", action="store_true",
  5406. help="only print out a split plan and exit, without writing any new files",
  5407. )
  5408. parser.add_argument(
  5409. "--no-tensor-first-split", action="store_true",
  5410. help="do not add tensors to the first split (disabled by default)"
  5411. )
  5412. parser.add_argument(
  5413. "--metadata", type=Path,
  5414. help="Specify the path for an authorship metadata override file"
  5415. )
  5416. parser.add_argument(
  5417. "--print-supported-models", action="store_true",
  5418. help="Print the supported models"
  5419. )
  5420. parser.add_argument(
  5421. "--remote", action="store_true",
  5422. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5423. )
  5424. parser.add_argument(
  5425. "--mmproj", action="store_true",
  5426. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5427. )
  5428. args = parser.parse_args()
  5429. if not args.print_supported_models and args.model is None:
  5430. parser.error("the following arguments are required: model")
  5431. return args
  5432. def split_str_to_n_bytes(split_str: str) -> int:
  5433. if split_str.endswith("K"):
  5434. n = int(split_str[:-1]) * 1000
  5435. elif split_str.endswith("M"):
  5436. n = int(split_str[:-1]) * 1000 * 1000
  5437. elif split_str.endswith("G"):
  5438. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5439. elif split_str.isnumeric():
  5440. n = int(split_str)
  5441. else:
  5442. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5443. if n < 0:
  5444. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5445. return n
  5446. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5447. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5448. # maybe we should fallback to text model's arch in that case, since not many models have both
  5449. text_config = hparams.get("text_config", {})
  5450. vision_config = hparams.get("vision_config", {})
  5451. arch = None
  5452. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  5453. arch = arches[0]
  5454. elif "ssm_cfg" in hparams:
  5455. # For non-hf Mamba and Mamba2 models
  5456. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  5457. # if "architectures" is found in the sub-config, use that instead
  5458. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5459. arch = text_config["architectures"][0]
  5460. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5461. arch = vision_config["architectures"][0]
  5462. if arch is None:
  5463. raise ValueError("Failed to detect model architecture")
  5464. return arch
  5465. def main() -> None:
  5466. args = parse_args()
  5467. if args.print_supported_models:
  5468. logger.error("Supported models:")
  5469. ModelBase.print_registered_models()
  5470. sys.exit(0)
  5471. if args.verbose:
  5472. logging.basicConfig(level=logging.DEBUG)
  5473. else:
  5474. logging.basicConfig(level=logging.INFO)
  5475. if args.remote:
  5476. hf_repo_id = args.model
  5477. from huggingface_hub import snapshot_download
  5478. local_dir = snapshot_download(
  5479. repo_id=hf_repo_id,
  5480. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5481. dir_model = Path(local_dir)
  5482. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5483. else:
  5484. hf_repo_id = None
  5485. dir_model = Path(args.model)
  5486. if not dir_model.is_dir():
  5487. logger.error(f'Error: {dir_model} is not a directory')
  5488. sys.exit(1)
  5489. ftype_map: dict[str, gguf.LlamaFileType] = {
  5490. "f32": gguf.LlamaFileType.ALL_F32,
  5491. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5492. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5493. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5494. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5495. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5496. "auto": gguf.LlamaFileType.GUESSED,
  5497. }
  5498. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5499. if args.use_temp_file and is_split:
  5500. logger.error("Error: Cannot use temp file when splitting")
  5501. sys.exit(1)
  5502. if args.outfile is not None:
  5503. fname_out = args.outfile
  5504. elif hf_repo_id:
  5505. # if remote, use the model ID as the output file name
  5506. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  5507. else:
  5508. fname_out = dir_model
  5509. logger.info(f"Loading model: {dir_model.name}")
  5510. if args.mmproj:
  5511. if "mmproj" not in fname_out.name:
  5512. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5513. with torch.inference_mode():
  5514. output_type = ftype_map[args.outtype]
  5515. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5516. hparams = ModelBase.load_hparams(dir_model)
  5517. model_architecture = get_model_architecture(hparams, model_type)
  5518. logger.info(f"Model architecture: {model_architecture}")
  5519. try:
  5520. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5521. except NotImplementedError:
  5522. logger.error(f"Model {model_architecture} is not supported")
  5523. sys.exit(1)
  5524. model_instance = model_class(dir_model, output_type, fname_out,
  5525. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5526. eager=args.no_lazy,
  5527. metadata_override=args.metadata, model_name=args.model_name,
  5528. split_max_tensors=args.split_max_tensors,
  5529. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5530. small_first_shard=args.no_tensor_first_split,
  5531. remote_hf_model_id=hf_repo_id)
  5532. if args.vocab_only:
  5533. logger.info("Exporting model vocab...")
  5534. model_instance.write_vocab()
  5535. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5536. else:
  5537. logger.info("Exporting model...")
  5538. model_instance.write()
  5539. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5540. logger.info(f"Model successfully exported to {out_path}")
  5541. if __name__ == '__main__':
  5542. main()