tensor_mapping.py 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. ),
  32. # Token type embeddings
  33. MODEL_TENSOR.TOKEN_TYPES: (
  34. "embeddings.token_type_embeddings", # bert nomic-bert
  35. ),
  36. # Normalization of token embeddings
  37. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  38. "word_embeddings_layernorm", # bloom
  39. "embeddings.LayerNorm", # bert
  40. "emb_ln", # nomic-bert
  41. "transformer.norm", # openelm
  42. "rwkv.blocks.0.pre_ln", # rwkv
  43. "rwkv.blocks.0.pre_ln", # rwkv6
  44. "model.pre_ln", # rwkv7
  45. "model.layers.0.pre_norm", # rwkv7
  46. "backbone.norm", # wavtokenizer
  47. ),
  48. # Position embeddings
  49. MODEL_TENSOR.POS_EMBD: (
  50. "transformer.wpe", # gpt2
  51. "embeddings.position_embeddings", # bert
  52. "wpe", # gpt2
  53. ),
  54. # Output
  55. MODEL_TENSOR.OUTPUT: (
  56. "embed_out", # gptneox
  57. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  58. "output", # llama-pth bloom internlm2
  59. "word_embeddings_for_head", # persimmon
  60. "lm_head.linear", # phi2
  61. "output_layer", # chatglm
  62. "head", # rwkv
  63. "head.out", # wavtokenizer
  64. "lm_head", # llama4
  65. ),
  66. # Output norm
  67. MODEL_TENSOR.OUTPUT_NORM: (
  68. "gpt_neox.final_layer_norm", # gptneox
  69. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  70. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  71. "norm", # llama-pth
  72. "transformer.norm_f", # mpt dbrx
  73. "ln_f", # refact bloom qwen gpt2
  74. "language_model.encoder.final_layernorm", # persimmon
  75. "model.final_layernorm", # persimmon
  76. "lm_head.ln", # phi2
  77. "model.norm_f", # mamba-qbert
  78. "backbone.norm_f", # mamba
  79. "transformer.rms_norm", # Grok
  80. "encoder.final_layernorm", # chatglm
  81. "transformer.norm", # openelm
  82. "model.norm", # nemotron
  83. "rwkv.ln_out", # rwkv6
  84. "model.ln_out", # rwkv7
  85. "backbone.final_layer_norm", # wavtokenizer
  86. "model.norm", # llama4
  87. ),
  88. # Rope frequencies
  89. MODEL_TENSOR.ROPE_FREQS: (
  90. "rope.freqs", # llama-pth
  91. "rotary_pos_emb.inv_freq", # chatglm
  92. ),
  93. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  94. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  95. MODEL_TENSOR.CONV1D: (
  96. "backbone.embed", # roberta
  97. ),
  98. }
  99. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  100. # Attention norm
  101. MODEL_TENSOR.ATTN_NORM: (
  102. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  103. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  104. "transformer.blocks.{bid}.norm_1", # mpt
  105. "transformer.h.{bid}.input_layernorm", # falcon7b
  106. "h.{bid}.input_layernorm", # bloom
  107. "transformer.h.{bid}.ln_mlp", # falcon40b
  108. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  109. "layers.{bid}.attention_norm", # llama-pth
  110. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  111. "model.layers.{bid}.ln1", # yi
  112. "h.{bid}.ln_1", # gpt2
  113. "transformer.h.{bid}.ln", # phi2
  114. "model.layers.layers.{bid}.norm", # plamo
  115. "model.layers.{bid}.attention_norm", # internlm2
  116. "model.layers.{bid}.norm", # mamba-qbert
  117. "backbone.layers.{bid}.norm", # mamba
  118. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  119. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  120. "encoder.layers.{bid}.input_layernorm", # chatglm
  121. "transformer.layers.{bid}.attn_norm", # openelm
  122. "rwkv.blocks.{bid}.ln1", # rwkv6
  123. "model.layers.{bid}.ln1", # rwkv7
  124. "model.layers.{bid}.input_layernorm", # llama4
  125. "transformer_encoder.{bid}.attention_norm", # neobert
  126. ),
  127. # Attention norm 2
  128. MODEL_TENSOR.ATTN_NORM_2: (
  129. "transformer.h.{bid}.ln_attn", # falcon40b
  130. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  131. "rwkv.blocks.{bid}.ln2", # rwkv6
  132. "model.layers.{bid}.ln2", # rwkv7
  133. ),
  134. # Attention query-key-value
  135. MODEL_TENSOR.ATTN_QKV: (
  136. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  137. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  138. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  139. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  140. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  141. "h.{bid}.self_attention.query_key_value", # bloom
  142. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  143. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  144. "h.{bid}.attn.c_attn", # gpt2
  145. "transformer.h.{bid}.mixer.Wqkv", # phi2
  146. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  147. "encoder.layers.{bid}.mixer.Wqkv", # jina
  148. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  149. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  150. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  151. "transformer_encoder.{bid}.qkv", # neobert
  152. ),
  153. # Attention query
  154. MODEL_TENSOR.ATTN_Q: (
  155. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  156. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  157. "layers.{bid}.attention.wq", # llama-pth
  158. "encoder.layer.{bid}.attention.self.query", # bert
  159. "transformer.layer.{bid}.attention.q_lin", # distillbert
  160. "transformer.h.{bid}.attn.q_proj", # gpt-j
  161. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  162. "model.layers.{bid}.attention.wq", # internlm2
  163. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  164. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  165. "model.layers.{bid}.self_attn.q_proj", # llama4
  166. ),
  167. # Attention key
  168. MODEL_TENSOR.ATTN_K: (
  169. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  170. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  171. "layers.{bid}.attention.wk", # llama-pth
  172. "encoder.layer.{bid}.attention.self.key", # bert
  173. "transformer.layer.{bid}.attention.k_lin", # distillbert
  174. "transformer.h.{bid}.attn.k_proj", # gpt-j
  175. "transformer.h.{bid}.attn.k", # refact
  176. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  177. "model.layers.{bid}.attention.wk", # internlm2
  178. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  179. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  180. "model.layers.{bid}.self_attn.k_proj", # llama4
  181. ),
  182. # Attention value
  183. MODEL_TENSOR.ATTN_V: (
  184. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  185. "layers.{bid}.attention.wv", # llama-pth
  186. "encoder.layer.{bid}.attention.self.value", # bert
  187. "transformer.layer.{bid}.attention.v_lin", # distillbert
  188. "transformer.h.{bid}.attn.v_proj", # gpt-j
  189. "transformer.h.{bid}.attn.v", # refact
  190. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  191. "model.layers.{bid}.attention.wv", # internlm2
  192. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  193. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  194. "model.layers.{bid}.self_attn.v_proj", # llama4
  195. ),
  196. # Attention output
  197. MODEL_TENSOR.ATTN_OUT: (
  198. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  199. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  200. "transformer.blocks.{bid}.attn.out_proj", # mpt
  201. "transformer.h.{bid}.self_attention.dense", # falcon
  202. "h.{bid}.self_attention.dense", # bloom
  203. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  204. "model.layers.{bid}.self_attn.linear_attn", # deci
  205. "layers.{bid}.attention.wo", # llama-pth
  206. "encoder.layer.{bid}.attention.output.dense", # bert
  207. "transformer.layer.{bid}.attention.out_lin", # distillbert
  208. "transformer.h.{bid}.attn.out_proj", # gpt-j
  209. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  210. "model.layers.{bid}.self_attn.dense", # persimmon
  211. "h.{bid}.attn.c_proj", # gpt2
  212. "transformer.h.{bid}.mixer.out_proj", # phi2
  213. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  214. "model.layers.{bid}.attention.wo", # internlm2
  215. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  216. "encoder.layers.{bid}.mixer.out_proj", # jina
  217. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  218. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  219. "encoder.layers.{bid}.self_attention.dense", # chatglm
  220. "transformer.layers.{bid}.attn.out_proj", # openelm
  221. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  222. "model.layers.{bid}.self_attn.o_proj", # llama4
  223. "transformer_encoder.{bid}.wo", # neobert
  224. ),
  225. # Attention output norm
  226. MODEL_TENSOR.ATTN_OUT_NORM: (
  227. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  228. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  229. "encoder.layers.{bid}.norm1", # nomic-bert
  230. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  231. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  232. ),
  233. MODEL_TENSOR.ATTN_POST_NORM: (
  234. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  235. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  236. ),
  237. # Rotary embeddings
  238. MODEL_TENSOR.ATTN_ROT_EMBD: (
  239. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  240. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  241. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  242. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  243. ),
  244. # Feed-forward norm
  245. MODEL_TENSOR.FFN_NORM: (
  246. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  247. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  248. "h.{bid}.post_attention_layernorm", # bloom
  249. "transformer.blocks.{bid}.norm_2", # mpt
  250. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  251. "layers.{bid}.ffn_norm", # llama-pth
  252. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  253. "model.layers.{bid}.ln2", # yi
  254. "h.{bid}.ln_2", # gpt2
  255. "model.layers.{bid}.ffn_norm", # internlm2
  256. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  257. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  258. "transformer.layers.{bid}.ffn_norm", # openelm
  259. "model.layers.{bid}.post_attention_layernorm", # llama4
  260. "transformer_encoder.{bid}.ffn_norm", # neobert
  261. ),
  262. # Post feed-forward norm
  263. MODEL_TENSOR.FFN_PRE_NORM: (
  264. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  265. ),
  266. # Post feed-forward norm
  267. MODEL_TENSOR.FFN_POST_NORM: (
  268. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  269. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  270. ),
  271. MODEL_TENSOR.FFN_GATE_INP: (
  272. "layers.{bid}.feed_forward.gate", # mixtral
  273. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  274. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  275. "transformer.decoder_layer.{bid}.router", # Grok
  276. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  277. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  278. "model.layers.{bid}.feed_forward.router", # llama4
  279. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  280. ),
  281. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  282. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  283. ),
  284. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  285. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  286. ),
  287. # Feed-forward up
  288. MODEL_TENSOR.FFN_UP: (
  289. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  290. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  291. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  292. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  293. "h.{bid}.mlp.dense_h_to_4h", # bloom
  294. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  295. "layers.{bid}.feed_forward.w3", # llama-pth
  296. "encoder.layer.{bid}.intermediate.dense", # bert
  297. "transformer.layer.{bid}.ffn.lin1", # distillbert
  298. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  299. "transformer.h.{bid}.mlp.linear_3", # refact
  300. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  301. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  302. "transformer.h.{bid}.mlp.w1", # qwen
  303. "h.{bid}.mlp.c_fc", # gpt2
  304. "transformer.h.{bid}.mlp.fc1", # phi2
  305. "model.layers.{bid}.mlp.fc1", # phi2
  306. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  307. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  308. "model.layers.{bid}.feed_forward.w3", # internlm2
  309. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  310. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  311. "model.layers.{bid}.mlp.c_fc", # starcoder2
  312. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  313. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  314. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  315. "model.layers.{bid}.residual_mlp.w3", # arctic
  316. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  317. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  318. "model.layers.{bid}.feed_forward.up_proj", # llama4
  319. "transformer_encoder.{bid}.ffn.w12", # neobert
  320. ),
  321. MODEL_TENSOR.FFN_UP_EXP: (
  322. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  323. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  324. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  325. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  326. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  327. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  328. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  329. ),
  330. MODEL_TENSOR.FFN_UP_SHEXP: (
  331. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  332. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  333. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  334. ),
  335. # AWQ-activation gate
  336. MODEL_TENSOR.FFN_ACT: (
  337. "transformer.blocks.{bid}.ffn.act", # mpt
  338. ),
  339. # Feed-forward gate
  340. MODEL_TENSOR.FFN_GATE: (
  341. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  342. "layers.{bid}.feed_forward.w1", # llama-pth
  343. "transformer.h.{bid}.mlp.w2", # qwen
  344. "transformer.h.{bid}.mlp.c_fc2", # jais
  345. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  346. "model.layers.{bid}.feed_forward.w1", # internlm2
  347. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  348. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  349. "transformer.h.{bid}.mlp.linear_1", # refact
  350. "model.layers.{bid}.residual_mlp.w1", # arctic
  351. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  352. "model.layers.{bid}.feed_forward.gate_proj", # llama4
  353. ),
  354. MODEL_TENSOR.FFN_GATE_EXP: (
  355. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  356. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  357. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  358. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  359. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  360. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  361. ),
  362. MODEL_TENSOR.FFN_GATE_SHEXP: (
  363. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  364. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  365. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  366. ),
  367. # Feed-forward down
  368. MODEL_TENSOR.FFN_DOWN: (
  369. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  370. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  371. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  372. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  373. "h.{bid}.mlp.dense_4h_to_h", # bloom
  374. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  375. "layers.{bid}.feed_forward.w2", # llama-pth
  376. "encoder.layer.{bid}.output.dense", # bert
  377. "transformer.layer.{bid}.ffn.lin2", # distillbert
  378. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  379. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  380. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  381. "h.{bid}.mlp.c_proj", # gpt2
  382. "transformer.h.{bid}.mlp.fc2", # phi2
  383. "model.layers.{bid}.mlp.fc2", # phi2
  384. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  385. "model.layers.{bid}.feed_forward.w2", # internlm2
  386. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  387. "model.layers.{bid}.mlp.c_proj", # starcoder2
  388. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  389. "transformer.layers.{bid}.ffn.proj_2", # openelm
  390. "model.layers.{bid}.residual_mlp.w2", # arctic
  391. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  392. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  393. "model.layers.h.{bid}.mlp.c_proj", # exaone
  394. "model.layers.{bid}.feed_forward.down_proj", # llama4
  395. "transformer_encoder.{bid}.ffn.w3", # neobert
  396. ),
  397. MODEL_TENSOR.FFN_DOWN_EXP: (
  398. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  399. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  400. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  401. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  402. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  403. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  404. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  405. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  406. ),
  407. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  408. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  409. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  410. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  411. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  412. ),
  413. MODEL_TENSOR.ATTN_Q_NORM: (
  414. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  415. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  416. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  417. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  418. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  419. "transformer.layers.{bid}.attn.q_norm", # openelm
  420. ),
  421. MODEL_TENSOR.ATTN_K_NORM: (
  422. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  423. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  424. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  425. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  426. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  427. "transformer.layers.{bid}.attn.k_norm", # openelm
  428. ),
  429. MODEL_TENSOR.ROPE_FREQS: (
  430. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  431. ),
  432. MODEL_TENSOR.LAYER_OUT_NORM: (
  433. "encoder.layer.{bid}.output.LayerNorm", # bert
  434. "transformer.layer.{bid}.output_layer_norm", # distillbert
  435. "encoder.layers.{bid}.norm2", # nomic-bert
  436. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  437. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  438. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  439. ),
  440. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  441. "model.embed_tokens_per_layer", # gemma3n
  442. ),
  443. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  444. "model.per_layer_model_projection", # gemma3n
  445. ),
  446. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  447. "model.per_layer_projection_norm", # gemma3n
  448. ),
  449. MODEL_TENSOR.ALTUP_PROJ: (
  450. "model.altup_projections", # gemma3n
  451. ),
  452. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  453. "model.altup_unembed_projections", # gemma3n
  454. ),
  455. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  456. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  457. ),
  458. MODEL_TENSOR.PER_LAYER_PROJ: (
  459. "model.layers.{bid}.per_layer_projection", # gemma3n
  460. ),
  461. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  462. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  463. ),
  464. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  465. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  466. ),
  467. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  468. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  469. ),
  470. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  471. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  472. ),
  473. MODEL_TENSOR.ALTUP_ROUTER: (
  474. "model.layers.{bid}.altup.modality_router", # gemma3n
  475. ),
  476. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  477. "model.layers.{bid}.altup.router_norm", # gemma3n
  478. ),
  479. MODEL_TENSOR.LAUREL_L: (
  480. "model.layers.{bid}.laurel.linear_left", # gemma3n
  481. ),
  482. MODEL_TENSOR.LAUREL_R: (
  483. "model.layers.{bid}.laurel.linear_right", # gemma3n
  484. ),
  485. MODEL_TENSOR.LAUREL_POST_NORM: (
  486. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  487. ),
  488. MODEL_TENSOR.SSM_IN: (
  489. "model.layers.{bid}.in_proj",
  490. "backbone.layers.{bid}.mixer.in_proj",
  491. ),
  492. MODEL_TENSOR.SSM_CONV1D: (
  493. "model.layers.{bid}.conv1d",
  494. "backbone.layers.{bid}.mixer.conv1d",
  495. ),
  496. MODEL_TENSOR.SSM_X: (
  497. "model.layers.{bid}.x_proj",
  498. "backbone.layers.{bid}.mixer.x_proj",
  499. ),
  500. MODEL_TENSOR.SSM_DT: (
  501. "model.layers.{bid}.dt_proj",
  502. "backbone.layers.{bid}.mixer.dt_proj",
  503. ),
  504. MODEL_TENSOR.SSM_A: (
  505. "model.layers.{bid}.A_log",
  506. "backbone.layers.{bid}.mixer.A_log",
  507. ),
  508. MODEL_TENSOR.SSM_D: (
  509. "model.layers.{bid}.D",
  510. "backbone.layers.{bid}.mixer.D",
  511. ),
  512. MODEL_TENSOR.SSM_NORM: (
  513. "backbone.layers.{bid}.mixer.norm", # mamba2
  514. ),
  515. MODEL_TENSOR.SSM_OUT: (
  516. "model.layers.{bid}.out_proj",
  517. "backbone.layers.{bid}.mixer.out_proj",
  518. ),
  519. MODEL_TENSOR.TIME_MIX_W0: (
  520. "model.layers.{bid}.attention.w0", # rwkv7
  521. ),
  522. MODEL_TENSOR.TIME_MIX_W1: (
  523. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  524. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  525. "model.layers.{bid}.attention.w1", # rwkv7
  526. ),
  527. MODEL_TENSOR.TIME_MIX_W2: (
  528. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  529. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  530. "model.layers.{bid}.attention.w2", # rwkv7
  531. ),
  532. MODEL_TENSOR.TIME_MIX_A0: (
  533. "model.layers.{bid}.attention.a0", # rwkv7
  534. ),
  535. MODEL_TENSOR.TIME_MIX_A1: (
  536. "model.layers.{bid}.attention.a1", # rwkv7
  537. ),
  538. MODEL_TENSOR.TIME_MIX_A2: (
  539. "model.layers.{bid}.attention.a2", # rwkv7
  540. ),
  541. MODEL_TENSOR.TIME_MIX_V0: (
  542. "model.layers.{bid}.attention.v0", # rwkv7
  543. ),
  544. MODEL_TENSOR.TIME_MIX_V1: (
  545. "model.layers.{bid}.attention.v1", # rwkv7
  546. ),
  547. MODEL_TENSOR.TIME_MIX_V2: (
  548. "model.layers.{bid}.attention.v2", # rwkv7
  549. ),
  550. MODEL_TENSOR.TIME_MIX_G1: (
  551. "model.layers.{bid}.attention.g1", # rwkv7
  552. ),
  553. MODEL_TENSOR.TIME_MIX_G2: (
  554. "model.layers.{bid}.attention.g2", # rwkv7
  555. ),
  556. MODEL_TENSOR.TIME_MIX_K_K: (
  557. "model.layers.{bid}.attention.k_k", # rwkv7
  558. ),
  559. MODEL_TENSOR.TIME_MIX_K_A: (
  560. "model.layers.{bid}.attention.k_a", # rwkv7
  561. ),
  562. MODEL_TENSOR.TIME_MIX_R_K: (
  563. "model.layers.{bid}.attention.r_k", # rwkv7
  564. ),
  565. MODEL_TENSOR.TIME_MIX_LERP_X: (
  566. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  567. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  568. ),
  569. MODEL_TENSOR.TIME_MIX_LERP_K: (
  570. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  571. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  572. ),
  573. MODEL_TENSOR.TIME_MIX_LERP_V: (
  574. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  575. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  576. ),
  577. MODEL_TENSOR.TIME_MIX_LERP_R: (
  578. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  579. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  580. ),
  581. MODEL_TENSOR.TIME_MIX_LERP_G: (
  582. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  583. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  584. ),
  585. MODEL_TENSOR.TIME_MIX_LERP_W: (
  586. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  587. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  588. ),
  589. MODEL_TENSOR.TIME_MIX_FIRST: (
  590. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  591. ),
  592. MODEL_TENSOR.TIME_MIX_DECAY: (
  593. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  594. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  595. ),
  596. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  597. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  598. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  599. ),
  600. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  601. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  602. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  603. ),
  604. MODEL_TENSOR.TIME_MIX_KEY: (
  605. "rwkv.blocks.{bid}.attention.key", # rwkv6
  606. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  607. "model.layers.{bid}.attention.key", # rwkv7
  608. "model.layers.{bid}.attention.k_proj", # rwkv7
  609. ),
  610. MODEL_TENSOR.TIME_MIX_VALUE: (
  611. "rwkv.blocks.{bid}.attention.value", # rwkv6
  612. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  613. "model.layers.{bid}.attention.value", # rwkv7
  614. "model.layers.{bid}.attention.v_proj", # rwkv7
  615. ),
  616. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  617. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  618. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  619. "model.layers.{bid}.attention.receptance", # rwkv7
  620. "model.layers.{bid}.attention.r_proj", # rwkv7
  621. ),
  622. MODEL_TENSOR.TIME_MIX_GATE: (
  623. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  624. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  625. ),
  626. MODEL_TENSOR.TIME_MIX_LN: (
  627. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  628. "model.layers.{bid}.attention.ln_x" # rwkv7
  629. ),
  630. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  631. "rwkv.blocks.{bid}.attention.output", # rwkv6
  632. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  633. "model.layers.{bid}.attention.output", # rwkv7
  634. "model.layers.{bid}.attention.o_proj", # rwkv7
  635. ),
  636. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  637. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  638. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  639. ),
  640. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  641. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  642. ),
  643. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  644. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  645. "model.layers.{bid}.feed_forward.key", # rwkv7
  646. ),
  647. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  648. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  649. ),
  650. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  651. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  652. "model.layers.{bid}.feed_forward.value", # rwkv7
  653. ),
  654. MODEL_TENSOR.ATTN_Q_A: (
  655. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  656. ),
  657. MODEL_TENSOR.ATTN_Q_B: (
  658. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  659. ),
  660. MODEL_TENSOR.ATTN_KV_A_MQA: (
  661. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  662. ),
  663. MODEL_TENSOR.ATTN_KV_B: (
  664. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  665. ),
  666. MODEL_TENSOR.ATTN_K_B: (
  667. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  668. ),
  669. MODEL_TENSOR.ATTN_V_B: (
  670. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  671. ),
  672. MODEL_TENSOR.ATTN_Q_A_NORM: (
  673. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  674. ),
  675. MODEL_TENSOR.ATTN_KV_A_NORM: (
  676. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  677. ),
  678. MODEL_TENSOR.ATTN_SUB_NORM: (
  679. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  680. ),
  681. MODEL_TENSOR.FFN_SUB_NORM: (
  682. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  683. ),
  684. MODEL_TENSOR.DEC_ATTN_NORM: (
  685. "decoder.block.{bid}.layer.0.layer_norm", # t5
  686. ),
  687. MODEL_TENSOR.DEC_ATTN_Q: (
  688. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  689. ),
  690. MODEL_TENSOR.DEC_ATTN_K: (
  691. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  692. ),
  693. MODEL_TENSOR.DEC_ATTN_V: (
  694. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  695. ),
  696. MODEL_TENSOR.DEC_ATTN_OUT: (
  697. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  698. ),
  699. MODEL_TENSOR.DEC_ATTN_REL_B: (
  700. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  701. ),
  702. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  703. "decoder.block.{bid}.layer.1.layer_norm", # t5
  704. ),
  705. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  706. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  707. ),
  708. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  709. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  710. ),
  711. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  712. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  713. ),
  714. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  715. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  716. ),
  717. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  718. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  719. ),
  720. MODEL_TENSOR.DEC_FFN_NORM: (
  721. "decoder.block.{bid}.layer.2.layer_norm", # t5
  722. ),
  723. MODEL_TENSOR.DEC_FFN_GATE: (
  724. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  725. ),
  726. MODEL_TENSOR.DEC_FFN_UP: (
  727. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  728. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  729. ),
  730. MODEL_TENSOR.DEC_FFN_DOWN: (
  731. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  732. ),
  733. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  734. "decoder.final_layer_norm", # t5
  735. ),
  736. MODEL_TENSOR.ENC_ATTN_NORM: (
  737. "encoder.block.{bid}.layer.0.layer_norm", # t5
  738. ),
  739. MODEL_TENSOR.ENC_ATTN_Q: (
  740. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  741. ),
  742. MODEL_TENSOR.ENC_ATTN_K: (
  743. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  744. ),
  745. MODEL_TENSOR.ENC_ATTN_V: (
  746. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  747. ),
  748. MODEL_TENSOR.ENC_ATTN_OUT: (
  749. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  750. ),
  751. MODEL_TENSOR.ENC_ATTN_REL_B: (
  752. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  753. ),
  754. MODEL_TENSOR.ENC_FFN_NORM: (
  755. "encoder.block.{bid}.layer.1.layer_norm", # t5
  756. ),
  757. MODEL_TENSOR.ENC_FFN_GATE: (
  758. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  759. ),
  760. MODEL_TENSOR.ENC_FFN_UP: (
  761. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  762. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  763. ),
  764. MODEL_TENSOR.ENC_FFN_DOWN: (
  765. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  766. ),
  767. ############################################################################
  768. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  769. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  770. "encoder.final_layer_norm", # t5
  771. "layer_norm", # neobert
  772. ),
  773. MODEL_TENSOR.CLS: (
  774. "classifier", # jina
  775. "classifier.dense", # roberta
  776. "pre_classifier", # distillbert
  777. "dense", # neobert
  778. ),
  779. MODEL_TENSOR.CLS_OUT: (
  780. "classifier.out_proj", # roberta
  781. ),
  782. #############################################################################
  783. MODEL_TENSOR.CONVNEXT_DW: (
  784. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  785. ),
  786. MODEL_TENSOR.CONVNEXT_NORM: (
  787. "backbone.convnext.{bid}.norm", # wavtokenizer
  788. ),
  789. MODEL_TENSOR.CONVNEXT_PW1: (
  790. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  791. ),
  792. MODEL_TENSOR.CONVNEXT_PW2: (
  793. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  794. ),
  795. MODEL_TENSOR.CONVNEXT_GAMMA: (
  796. "backbone.convnext.{bid}.gamma", # wavtokenizer
  797. ),
  798. MODEL_TENSOR.POSNET_CONV1: (
  799. "backbone.posnet.{bid}.conv1", # wavtokenizer
  800. ),
  801. MODEL_TENSOR.POSNET_CONV2: (
  802. "backbone.posnet.{bid}.conv2", # wavtokenizer
  803. ),
  804. MODEL_TENSOR.POSNET_NORM: (
  805. "backbone.posnet.{bid}.norm", # wavtokenizer
  806. ),
  807. MODEL_TENSOR.POSNET_NORM1: (
  808. "backbone.posnet.{bid}.norm1", # wavtokenizer
  809. ),
  810. MODEL_TENSOR.POSNET_NORM2: (
  811. "backbone.posnet.{bid}.norm2", # wavtokenizer
  812. ),
  813. MODEL_TENSOR.POSNET_ATTN_NORM: (
  814. "backbone.posnet.{bid}.norm", # wavtokenizer
  815. ),
  816. MODEL_TENSOR.POSNET_ATTN_Q: (
  817. "backbone.posnet.{bid}.q", # wavtokenizer
  818. ),
  819. MODEL_TENSOR.POSNET_ATTN_K: (
  820. "backbone.posnet.{bid}.k", # wavtokenizer
  821. ),
  822. MODEL_TENSOR.POSNET_ATTN_V: (
  823. "backbone.posnet.{bid}.v", # wavtokenizer
  824. ),
  825. MODEL_TENSOR.POSNET_ATTN_OUT: (
  826. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  827. ),
  828. #############################################################################
  829. ## Vision encoder
  830. MODEL_TENSOR.V_MMPROJ: (
  831. "multi_modal_projector.linear_{bid}",
  832. "visual.merger.mlp.{bid}", # qwen2vl
  833. ),
  834. MODEL_TENSOR.V_MMPROJ_FC: (
  835. "model.connector.modality_projection.proj", # SmolVLM
  836. ),
  837. MODEL_TENSOR.V_MMPROJ_MLP: (
  838. "model.mm_projector.mlp.mlp.{bid}",
  839. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  840. "mlp1.{bid}", # InternVL
  841. ),
  842. MODEL_TENSOR.V_MMPROJ_PEG: (
  843. "model.mm_projector.peg.peg.{bid}",
  844. ),
  845. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  846. "vision_tower.vision_model.embeddings.class_embedding",
  847. "vision_model.class_embedding", # llama 4
  848. ),
  849. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  850. "vision_tower.vision_model.embeddings.patch_embedding",
  851. "vpm.embeddings.patch_embedding",
  852. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  853. "vision_tower.patch_conv", # pixtral
  854. "vision_model.patch_embedding.linear", # llama 4
  855. "visual.patch_embed.proj", # qwen2vl
  856. ),
  857. MODEL_TENSOR.V_ENC_EMBD_POS: (
  858. "vision_tower.vision_model.embeddings.position_embedding",
  859. "vpm.embeddings.position_embedding",
  860. "model.vision_model.embeddings.position_embedding", # SmolVLM
  861. "vision_model.positional_embedding_vlm", # llama 4
  862. ),
  863. MODEL_TENSOR.V_ENC_ATTN_Q: (
  864. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  865. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  866. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  867. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  868. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  869. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  870. ),
  871. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  872. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  873. ),
  874. MODEL_TENSOR.V_ENC_ATTN_K: (
  875. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  876. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  877. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  878. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  879. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  880. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  881. ),
  882. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  883. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  884. ),
  885. MODEL_TENSOR.V_ENC_ATTN_V: (
  886. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  887. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  888. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  889. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  890. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  891. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  892. ),
  893. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  894. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  895. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  896. "vpm.encoder.layers.{bid}.layer_norm1",
  897. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  898. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  899. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  900. "visual.blocks.{bid}.norm1", # qwen2vl
  901. ),
  902. MODEL_TENSOR.V_ENC_ATTN_O: (
  903. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  904. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  905. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  906. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  907. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  908. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  909. "visual.blocks.{bid}.attn.proj", # qwen2vl
  910. ),
  911. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  912. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  913. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  914. "vpm.encoder.layers.{bid}.layer_norm2",
  915. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  916. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  917. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  918. "visual.blocks.{bid}.norm2", # qwen2vl
  919. ),
  920. MODEL_TENSOR.V_ENC_FFN_UP: (
  921. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  922. "vpm.encoder.layers.{bid}.mlp.fc1",
  923. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  924. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  925. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  926. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  927. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  928. ),
  929. MODEL_TENSOR.V_ENC_FFN_GATE: (
  930. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  931. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  932. ),
  933. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  934. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  935. "vpm.encoder.layers.{bid}.mlp.fc2",
  936. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  937. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  938. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  939. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  940. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  941. ),
  942. MODEL_TENSOR.V_LAYER_SCALE_1: (
  943. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  944. ),
  945. MODEL_TENSOR.V_LAYER_SCALE_2: (
  946. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  947. ),
  948. MODEL_TENSOR.V_PRE_NORM: (
  949. "vision_tower.vision_model.pre_layrnorm",
  950. "vision_tower.ln_pre", # pixtral
  951. "vision_model.layernorm_pre", # llama4
  952. ),
  953. MODEL_TENSOR.V_POST_NORM: (
  954. "vision_tower.vision_model.post_layernorm",
  955. "model.vision_model.post_layernorm", # SmolVLM
  956. "vision_model.layernorm_post", # llama4
  957. "visual.merger.ln_q", # qwen2vl
  958. ),
  959. MODEL_TENSOR.V_MM_INP_PROJ: (
  960. "multi_modal_projector.mm_input_projection",
  961. ),
  962. MODEL_TENSOR.V_MM_INP_NORM: (
  963. "multi_modal_projector.norm",
  964. ),
  965. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  966. "multi_modal_projector.mm_soft_emb_norm",
  967. ),
  968. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  969. "resampler.pos_embed_k",
  970. ),
  971. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  972. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  973. ),
  974. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  975. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  976. ),
  977. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  978. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  979. ),
  980. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  981. "resampler.attn.out_proj",
  982. ),
  983. MODEL_TENSOR.V_RESMPL_KV: (
  984. "resampler.kv_proj",
  985. ),
  986. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  987. "resampler.ln_post",
  988. ),
  989. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  990. "resampler.ln_kv",
  991. ),
  992. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  993. "resampler.ln_q",
  994. ),
  995. MODEL_TENSOR.V_RESMPL_PROJ: (
  996. "resampler.proj",
  997. ),
  998. MODEL_TENSOR.V_RESMPL_QUERY: (
  999. "resampler.query",
  1000. ),
  1001. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1002. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1003. ),
  1004. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1005. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1006. ),
  1007. # audio (mtmd)
  1008. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1009. "audio_tower.embed_positions", # ultravox
  1010. ),
  1011. MODEL_TENSOR.A_ENC_CONV1D: (
  1012. "audio_tower.conv{bid}", # ultravox
  1013. ),
  1014. MODEL_TENSOR.A_PRE_NORM: (),
  1015. MODEL_TENSOR.A_POST_NORM: (
  1016. "audio_tower.layer_norm", # ultravox
  1017. "audio_tower.ln_post", # qwen2omni
  1018. ),
  1019. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1020. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1021. ),
  1022. MODEL_TENSOR.A_ENC_ATTN_K: (
  1023. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1024. ),
  1025. MODEL_TENSOR.A_ENC_ATTN_V: (
  1026. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1027. ),
  1028. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1029. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1030. ),
  1031. MODEL_TENSOR.A_ENC_OUTPUT: (
  1032. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1033. ),
  1034. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1035. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1036. ),
  1037. MODEL_TENSOR.A_ENC_FFN_UP: (
  1038. "audio_tower.layers.{bid}.fc1", # ultravox
  1039. ),
  1040. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1041. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1042. "audio_tower.layers.{bid}.fc2", # ultravox
  1043. ),
  1044. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1045. # this prefix is added in the conversion code in modify_tensors()
  1046. MODEL_TENSOR.A_MMPROJ: (
  1047. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1048. ),
  1049. MODEL_TENSOR.A_MMPROJ_FC: (
  1050. "audio.multi_modal_projector.linear", # qwen2audio
  1051. "audio_tower.proj", # qwen2omni
  1052. ),
  1053. MODEL_TENSOR.A_MM_NORM_PRE: (
  1054. "audio.multi_modal_projector.ln_pre", # ultravox
  1055. ),
  1056. MODEL_TENSOR.A_MM_NORM_MID: (
  1057. "audio.multi_modal_projector.ln_mid", # ultravox
  1058. ),
  1059. }
  1060. # architecture-specific block mappings
  1061. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1062. MODEL_ARCH.ARCTIC: {
  1063. MODEL_TENSOR.FFN_NORM: (
  1064. "model.layers.{bid}.residual_layernorm",
  1065. ),
  1066. MODEL_TENSOR.FFN_NORM_EXP: (
  1067. "model.layers.{bid}.post_attention_layernorm",
  1068. ),
  1069. },
  1070. }
  1071. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1072. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1073. self.mapping = {}
  1074. for tensor, keys in self.mappings_cfg.items():
  1075. if tensor not in MODEL_TENSORS[arch]:
  1076. continue
  1077. tensor_name = TENSOR_NAMES[tensor]
  1078. self.mapping[tensor_name] = (tensor, tensor_name)
  1079. for key in keys:
  1080. self.mapping[key] = (tensor, tensor_name)
  1081. if arch in self.arch_block_mappings_cfg:
  1082. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1083. for bid in range(n_blocks):
  1084. for tensor, keys in self.block_mappings_cfg.items():
  1085. if tensor not in MODEL_TENSORS[arch]:
  1086. continue
  1087. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1088. self.mapping[tensor_name] = (tensor, tensor_name)
  1089. for key in keys:
  1090. key = key.format(bid = bid)
  1091. self.mapping[key] = (tensor, tensor_name)
  1092. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1093. result = self.mapping.get(key)
  1094. if result is not None:
  1095. return result
  1096. for suffix in try_suffixes:
  1097. if key.endswith(suffix):
  1098. result = self.mapping.get(key[:-len(suffix)])
  1099. if result is not None:
  1100. return result[0], result[1] + suffix
  1101. return None
  1102. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1103. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1104. if result is None:
  1105. return None
  1106. return result[1]
  1107. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1108. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1109. if result is None:
  1110. return None
  1111. return result[0]
  1112. def __getitem__(self, key: str) -> str:
  1113. try:
  1114. return self.mapping[key][1]
  1115. except KeyError:
  1116. raise KeyError(key)
  1117. def __contains__(self, key: str) -> bool:
  1118. return key in self.mapping
  1119. def __repr__(self) -> str:
  1120. return repr(self.mapping)
  1121. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1122. return TensorNameMap(arch, n_blocks)