test-sampling.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. #include "ggml.h"
  2. #include "llama.h"
  3. #ifdef NDEBUG
  4. #undef NDEBUG
  5. #endif
  6. #include <algorithm>
  7. #include <cmath>
  8. #include <string>
  9. #include <vector>
  10. extern struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers);
  11. static void dump(const llama_token_data_array * cur_p) {
  12. for (size_t i = 0; i < cur_p->size; i++) {
  13. printf("%d: %f (%f)\n", cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
  14. }
  15. }
  16. #define DUMP(__cur_p) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__cur_p)); printf("-\n"); } while(0)
  17. struct sampler_tester {
  18. sampler_tester(size_t n_vocab) {
  19. cur.reserve(n_vocab);
  20. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  21. const float logit = logf(token_id);
  22. cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
  23. }
  24. cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
  25. }
  26. sampler_tester(const std::vector<float> & probs, const std::vector<float> & probs_expected) : probs_expected(probs_expected) {
  27. cur.reserve(probs.size());
  28. for (llama_token token_id = 0; token_id < (llama_token)probs.size(); token_id++) {
  29. const float logit = logf(probs[token_id]);
  30. cur.emplace_back(llama_token_data{token_id, logit, probs[token_id]});
  31. }
  32. cur_p = llama_token_data_array { cur.data(), cur.size(), -1, false };
  33. }
  34. void apply(llama_sampler * sampler) {
  35. llama_sampler_apply(sampler, &cur_p);
  36. llama_sampler_free(sampler);
  37. }
  38. void check() {
  39. GGML_ASSERT(cur_p.size == probs_expected.size());
  40. for (size_t i = 0; i < cur_p.size; i++) {
  41. GGML_ASSERT(fabs(cur_p.data[i].p - probs_expected[i]) < 1e-5);
  42. }
  43. }
  44. llama_token_data_array cur_p;
  45. private:
  46. const std::vector<float> probs_expected;
  47. std::vector<llama_token_data> cur;
  48. };
  49. static void test_temp(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp) {
  50. sampler_tester tester(probs, probs_expected);
  51. DUMP(&tester.cur_p);
  52. tester.apply(llama_sampler_init_temp(temp));
  53. tester.apply(llama_sampler_init_dist(0));
  54. DUMP(&tester.cur_p);
  55. tester.check();
  56. }
  57. static void test_temp_ext(const std::vector<float> & probs, const std::vector<float> & probs_expected, float temp, float delta, float exponent) {
  58. sampler_tester tester(probs, probs_expected);
  59. DUMP(&tester.cur_p);
  60. tester.apply(llama_sampler_init_temp_ext(temp, delta, exponent));
  61. tester.apply(llama_sampler_init_dist (0));
  62. DUMP(&tester.cur_p);
  63. tester.check();
  64. }
  65. static void test_top_k(const std::vector<float> & probs, const std::vector<float> & probs_expected, int k) {
  66. sampler_tester tester(probs, probs_expected);
  67. DUMP(&tester.cur_p);
  68. tester.apply(llama_sampler_init_top_k(k));
  69. tester.apply(llama_sampler_init_dist (0));
  70. DUMP(&tester.cur_p);
  71. tester.check();
  72. }
  73. static void test_top_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
  74. sampler_tester tester(probs, probs_expected);
  75. DUMP(&tester.cur_p);
  76. tester.apply(llama_sampler_init_top_p(p, 1));
  77. tester.apply(llama_sampler_init_dist (0));
  78. DUMP(&tester.cur_p);
  79. tester.check();
  80. }
  81. static void test_min_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
  82. sampler_tester tester(probs, probs_expected);
  83. DUMP(&tester.cur_p);
  84. tester.apply(llama_sampler_init_min_p(p, 1));
  85. tester.apply(llama_sampler_init_dist (0));
  86. DUMP(&tester.cur_p);
  87. tester.check();
  88. }
  89. static void test_xtc(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p, float t) {
  90. sampler_tester tester(probs, probs_expected);
  91. DUMP(&tester.cur_p);
  92. tester.apply(llama_sampler_init_xtc(p, t, 0, 0));
  93. DUMP(&tester.cur_p);
  94. tester.check();
  95. }
  96. static void test_typical(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
  97. sampler_tester tester(probs, probs_expected);
  98. DUMP(&tester.cur_p);
  99. tester.apply(llama_sampler_init_typical(p, 1));
  100. DUMP(&tester.cur_p);
  101. tester.check();
  102. }
  103. static void test_penalties(
  104. const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
  105. const std::vector<float> & probs_expected, float repeat_penalty, float alpha_frequency, float alpha_presence
  106. ) {
  107. GGML_ASSERT(probs.size() == probs_expected.size());
  108. sampler_tester tester(probs, probs_expected);
  109. auto * sampler = llama_sampler_init_penalties(last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
  110. for (size_t i = 0; i < last_tokens.size(); i++) {
  111. llama_sampler_accept(sampler, last_tokens[i]);
  112. }
  113. DUMP(&tester.cur_p);
  114. tester.apply(sampler);
  115. tester.apply(llama_sampler_init_dist(0));
  116. DUMP(&tester.cur_p);
  117. tester.check();
  118. }
  119. static void test_dry(
  120. const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
  121. const std::vector<float> & expected_probs, float dry_multiplier, float dry_base,
  122. int dry_allowed_length, int dry_penalty_last_n,
  123. const std::vector<std::vector<llama_token>> & seq_breakers
  124. ) {
  125. GGML_ASSERT(probs.size() == expected_probs.size());
  126. sampler_tester tester(probs, expected_probs);
  127. auto * sampler = llama_sampler_init_dry_testing(1024, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, seq_breakers);
  128. for (size_t i = 0; i < last_tokens.size(); i++) {
  129. llama_sampler_accept(sampler, last_tokens[i]);
  130. }
  131. DUMP(&tester.cur_p);
  132. tester.apply(sampler);
  133. tester.apply(llama_sampler_init_dist(0));
  134. DUMP(&tester.cur_p);
  135. tester.check();
  136. }
  137. static void test_top_n_sigma(const std::vector<float> & probs, const std::vector<float> & probs_expected, int n) {
  138. sampler_tester tester(probs, probs_expected);
  139. DUMP(&tester.cur_p);
  140. tester.apply(llama_sampler_init_top_n_sigma(n));
  141. tester.apply(llama_sampler_init_dist (0));
  142. DUMP(&tester.cur_p);
  143. tester.check();
  144. }
  145. static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
  146. ) {
  147. sampler_tester tester(n_vocab);
  148. llama_token min_token_id = 0;
  149. const llama_token max_token_id = n_vocab-1;
  150. for (auto s : samplers_sequence) {
  151. switch (s){
  152. case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break;
  153. case 'y': GGML_ABORT("typical test not implemented");
  154. case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break;
  155. case 'm': tester.apply(llama_sampler_init_min_p(min_p, 1)); break;
  156. case 't': GGML_ABORT("temperature test not implemented");
  157. default : GGML_ABORT("Unknown sampler");
  158. }
  159. tester.apply(llama_sampler_init_dist(0));
  160. auto & cur_p = tester.cur_p;
  161. const int size = cur_p.size;
  162. if (s == 'k') {
  163. const int expected_size = std::min(size, top_k);
  164. min_token_id = std::max(min_token_id, (llama_token)(n_vocab - top_k));
  165. GGML_ASSERT(size == expected_size);
  166. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  167. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  168. } else if (s == 'p') {
  169. const int softmax_divisor = n_vocab * (n_vocab-1) / 2 - min_token_id * (min_token_id-1) / 2;
  170. const int softmax_numerator_target = ceilf(top_p * softmax_divisor);
  171. min_token_id = n_vocab;
  172. int expected_size = 0;
  173. int cumsum = 0;
  174. do { // do-while because always at least one token is sampled
  175. min_token_id--;
  176. expected_size++;
  177. cumsum += min_token_id;
  178. } while (cumsum < softmax_numerator_target);
  179. // token 0 has p == 0, need special consideration for cumsum because top_p immediately returns
  180. if (min_token_id == 1) {
  181. min_token_id--;
  182. expected_size += 1;
  183. }
  184. GGML_ASSERT(size == expected_size);
  185. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  186. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  187. } else if (s == 'm') {
  188. int expected_size = ceilf((1.0f-min_p) * n_vocab);
  189. expected_size = std::max(expected_size, 1);
  190. expected_size = std::min(expected_size, size);
  191. min_token_id = floorf(min_p * n_vocab);
  192. min_token_id = std::max(min_token_id, 1);
  193. min_token_id = std::max(min_token_id, (llama_token)(n_vocab - size));
  194. min_token_id = std::min(min_token_id, (llama_token)(n_vocab - 1));
  195. GGML_ASSERT(size == expected_size);
  196. GGML_ASSERT(cur_p.data[0].id == max_token_id);
  197. GGML_ASSERT(cur_p.data[expected_size-1].id == min_token_id);
  198. } else {
  199. GGML_ABORT("fatal error");
  200. }
  201. }
  202. printf("Sampler queue %3s OK with n_vocab=%05zu top_k=%05d top_p=%f min_p=%f\n",
  203. samplers_sequence.c_str(), n_vocab, top_k, top_p, min_p);
  204. }
  205. static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vector<llama_token_data> & data, int n_iter) {
  206. std::vector<llama_token_data> cur(data.size());
  207. std::copy(data.begin(), data.end(), cur.begin());
  208. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  209. llama_sampler_apply(cnstr, &cur_p);
  210. llama_sampler_reset(cnstr);
  211. const int64_t t_start = ggml_time_us();
  212. for (int i = 0; i < n_iter; i++) {
  213. std::copy(data.begin(), data.end(), cur.begin());
  214. llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
  215. llama_sampler_apply(cnstr, &cur_p);
  216. llama_sampler_reset(cnstr);
  217. }
  218. const int64_t t_end = ggml_time_us();
  219. llama_sampler_free(cnstr);
  220. printf("%-43s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
  221. }
  222. #define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))
  223. static void test_perf() {
  224. const int n_vocab = 1 << 17;
  225. std::vector<llama_token_data> data;
  226. data.reserve(n_vocab);
  227. for (int i = 0; i < n_vocab; i++) {
  228. const float logit = 2.0f*((double)(rand())/RAND_MAX - 0.5);
  229. data.emplace_back(llama_token_data{i, logit, 0.0f});
  230. }
  231. BENCH(llama_sampler_init_top_k (40), data, 32);
  232. BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
  233. BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
  234. BENCH(llama_sampler_init_typical(0.5f, 1), data, 32);
  235. BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
  236. }
  237. int main(void) {
  238. ggml_time_init();
  239. test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
  240. test_temp({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f);
  241. test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f, 0.0f, 1.0f);
  242. test_temp_ext({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0.0f, 0.0f, 1.0f);
  243. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 1);
  244. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3);
  245. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
  246. test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
  247. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f}, 0);
  248. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f}, 0.7f);
  249. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 0.8f);
  250. test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1.0f);
  251. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.00f);
  252. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/1.0f, 0.3f/1.0f, 0.2f/1.0f, 0.1f/1.0f}, 0.24f);
  253. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.26f);
  254. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.9f, 0.3f/0.9f, 0.2f/0.9f}, 0.49f);
  255. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.51f);
  256. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.7f, 0.3f/0.7f}, 0.74f);
  257. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
  258. test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
  259. printf("XTC should:\n");
  260. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.1f}, 0.99f, 0.09f);
  261. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.2f, 0.1f}, 0.99f, 0.19f);
  262. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.3f, 0.2f, 0.1f}, 0.99f, 0.29f);
  263. printf("XTC should not:\n");
  264. test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.39f);
  265. test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
  266. test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
  267. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
  268. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
  269. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
  270. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
  271. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
  272. test_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
  273. test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1}, {0.25f, 0.25f, 0.25f, 0.25f}, 1.0f, 1.1f, 2, 4, {});
  274. test_dry({0.25f, 0.25f, 0.25f, 0.25f}, {0, 1, 2, 0, 1}, {0.296923f, 0.296923f, 0.296923f, 0.109232f}, 1.0f, 1.1f, 2, 5, {});
  275. test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 2, 6, {{3}});
  276. test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 1}, {0.241818f, 0.241818f, 0.241818f, 0.241818f, 0.032727f}, 2.0f, 1.1f, 2, 5, {});
  277. test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 4, 7, {});
  278. test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f, 0.0f, 0.0f}, 1.00f);
  279. test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.00f); // top_n_sigma == 0 now represents a no-op rather than greedy decoding as of PR#13345
  280. test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 3.00f);
  281. test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
  282. test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
  283. test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);
  284. test_sampler_queue(10000, "p", 10000, 0.0f, 1.0f);
  285. test_sampler_queue(10000, "m", 10000, 1.0f, 1.0f);
  286. test_sampler_queue(10000, "m", 10000, 1.0f, 1e-12);
  287. test_sampler_queue(10000, "k", 100, 1.0000f, 1.0f);
  288. test_sampler_queue(10000, "p", 10000, 0.0002f, 1.0f);
  289. test_sampler_queue(10000, "p", 10000, 0.8000f, 1.0f);
  290. test_sampler_queue(10000, "m", 10000, 1.0000f, 9997.9f/9999.0f);
  291. test_sampler_queue(10000, "m", 10000, 1.0000f, 0.1f);
  292. test_sampler_queue(10000, "kp", 100, 0.8f, 0.1f);
  293. test_sampler_queue(10000, "km", 100, 0.8f, 0.1f);
  294. test_sampler_queue(10000, "pk", 100, 0.8f, 0.1f);
  295. test_sampler_queue(10000, "pm", 100, 0.8f, 0.1f);
  296. test_sampler_queue(10000, "mk", 100, 0.8f, 0.1f);
  297. test_sampler_queue(10000, "mp", 100, 0.8f, 9997.9f/9999.0f);
  298. test_sampler_queue(10000, "mp", 100, 0.8f, 0.1f);
  299. test_sampler_queue(10000, "kpm", 100, 0.8f, 0.1f);
  300. test_sampler_queue(10000, "kmp", 100, 0.8f, 0.1f);
  301. test_sampler_queue(10000, "pkm", 100, 0.8f, 0.1f);
  302. test_sampler_queue(10000, "pmk", 100, 0.8f, 0.1f);
  303. test_sampler_queue(10000, "mkp", 100, 0.8f, 0.1f);
  304. test_sampler_queue(10000, "mpk", 100, 0.8f, 0.1f);
  305. printf("OK\n");
  306. test_perf();
  307. return 0;
  308. }