llava.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. #include "clip.h"
  2. #include "llava.h"
  3. #include "llama.h"
  4. #include <algorithm>
  5. #include <cerrno>
  6. #include <cstdio>
  7. #include <cstdlib>
  8. #include <cstring>
  9. #include <limits>
  10. #include <vector>
  11. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  12. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  13. #define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  14. #define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  15. #define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  16. #define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  17. // RGB uint8 image
  18. struct clip_image_u8 {
  19. int nx;
  20. int ny;
  21. std::vector<uint8_t> buf;
  22. };
  23. // RGB float32 image (NHWC)
  24. // Memory layout: RGBRGBRGB...
  25. struct clip_image_f32 {
  26. int nx;
  27. int ny;
  28. std::vector<float> buf;
  29. };
  30. struct clip_image_grid_shape {
  31. int first;
  32. int second;
  33. };
  34. /**
  35. * Selects the best resolution from a list of possible resolutions based on the original size.
  36. *
  37. * @param original_size The original size of the image in the format (width, height).
  38. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  39. * @return The best fit resolution in the format (width, height).
  40. */
  41. static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
  42. int original_width = original_size.first;
  43. int original_height = original_size.second;
  44. std::pair<int, int> best_fit;
  45. int max_effective_resolution = 0;
  46. int min_wasted_resolution = std::numeric_limits<int>::max();
  47. for (const auto& resolution : possible_resolutions) {
  48. int width = resolution.first;
  49. int height = resolution.second;
  50. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  51. int downscaled_width = static_cast<int>(original_width * scale);
  52. int downscaled_height = static_cast<int>(original_height * scale);
  53. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  54. int wasted_resolution = (width * height) - effective_resolution;
  55. // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  56. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  57. max_effective_resolution = effective_resolution;
  58. min_wasted_resolution = wasted_resolution;
  59. best_fit = resolution;
  60. }
  61. }
  62. return best_fit;
  63. }
  64. /**
  65. * @brief Get the anyres image grid shape object
  66. *
  67. * @param image_size
  68. * @param grid_pinpoints
  69. * @param image_patch_size
  70. * @return <int, int>
  71. */
  72. static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
  73. /**
  74. Conversion from gguf flat array to vector:
  75. std::vector<std::pair<int, int>> possible_resolutions;
  76. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  77. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  78. }
  79. */
  80. auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
  81. return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
  82. }
  83. // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
  84. static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
  85. struct {
  86. struct ggml_context * ctx;
  87. } model;
  88. const int32_t image_size = clip_image_size(ctx_clip);
  89. const int32_t patch_size = clip_patch_size(ctx_clip);
  90. int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
  91. int num_patches_width = grid_shape.first; // grid 1-4
  92. int num_patches_height = grid_shape.second; // grid 1-4
  93. const size_t num_images = num_patches_width * num_patches_height + 1;
  94. // TODO: size calculation is not calculated - it's only tens of MB
  95. size_t ctx_size = 0;
  96. {
  97. ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
  98. ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
  99. }
  100. struct ggml_init_params params {
  101. /*.mem_size =*/ ctx_size,
  102. /*.mem_buffer =*/ NULL,
  103. /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
  104. };
  105. // Python reference code for full unpad:
  106. /*
  107. base_image_feature = image_feature[0]
  108. image_feature = image_feature[1:]
  109. image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
  110. image_feature = image_feature.flatten(1, 2).flatten(2, 3)
  111. image_feature = unpad_image(image_feature, image_sizes[image_idx])
  112. image_feature = torch.cat((
  113. image_feature,
  114. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
  115. ), dim=-1)
  116. image_feature = image_feature.flatten(1, 2).transpose(0, 1)
  117. image_feature = torch.cat((base_image_feature, image_feature), dim=0)
  118. */
  119. // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
  120. // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
  121. // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
  122. // Once all images are processed to prepended the base_image_features without any changes.
  123. // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
  124. /*
  125. image_feature = image_feature.view(2, 2, 24, 24, 4096)
  126. image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
  127. image_feature = image_feature.view(2, 24, 2, 24, 4096)
  128. image_feature = image_feature.flatten(0, 3)
  129. // Reshape to 4D tensor by merging the last two dimensions
  130. image_feature = image_feature.view(2, 2, 24, 24*4096)
  131. image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
  132. image_feature = image_feature.view(-1, 4096)
  133. */
  134. model.ctx = ggml_init(params);
  135. struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
  136. // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
  137. // fill it with the image embeddings, ignoring the base
  138. for (size_t i = 1; i < num_images; i++) {
  139. size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
  140. memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
  141. }
  142. struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
  143. size_t size_ele = ggml_type_size(GGML_TYPE_F32);
  144. struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
  145. num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  146. num_patches_per_side,
  147. num_patches_width,
  148. num_patches_height,
  149. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  150. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
  151. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
  152. // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
  153. struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
  154. /**
  155. At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
  156. image_feature = torch.cat((
  157. image_feature,
  158. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
  159. ), dim=-1)
  160. *
  161. */
  162. // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
  163. struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
  164. // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
  165. ggml_build_forward_expand(gf, flatten);
  166. ggml_graph_compute_with_ctx(model.ctx, gf, 1);
  167. struct ggml_tensor* result = ggml_graph_node(gf, -1);
  168. memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
  169. // append without newline tokens (default behavior in llava_arch when not using unpad ):
  170. memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
  171. *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
  172. // Debug: Test single segments
  173. // Current findings: sending base image, sending a segment embedding all works similar to python
  174. // However, permuted embeddings do not work yet (stride issue?)
  175. // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
  176. // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
  177. // *n_img_pos_out=576;
  178. ggml_free(model.ctx);
  179. return true;
  180. }
  181. static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
  182. int width = image->nx;
  183. int height = image->ny;
  184. int num_patches = (height / patch_size) * (width / patch_size);
  185. clip_image_f32 * patch = clip_image_f32_init();
  186. patch->nx = patch_size * num_patches;
  187. patch->ny = patch_size;
  188. patch->buf.resize(3 * patch->nx * patch->ny);
  189. int patch_index = 0;
  190. for (int i = 0; i < height; i += patch_size) {
  191. for (int j = 0; j < width; j += patch_size) {
  192. for (int pi = 0; pi < patch_size; ++pi) {
  193. for (int pj = 0; pj < patch_size; ++pj) {
  194. int input_index = ((i + pi) * width + (j + pj)) * 3;
  195. int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
  196. patch->buf[output_index] = image->buf[input_index];
  197. patch->buf[output_index+1] = image->buf[input_index+1];
  198. patch->buf[output_index+2] = image->buf[input_index+2];
  199. }
  200. }
  201. patch_index++;
  202. }
  203. }
  204. return patch;
  205. }
  206. static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
  207. // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
  208. clip_image_f32_batch img_res_v;
  209. img_res_v.size = 0;
  210. img_res_v.data = nullptr;
  211. if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
  212. LOG_ERR("%s: unable to preprocess image\n", __func__);
  213. delete[] img_res_v.data;
  214. return false;
  215. }
  216. const int64_t t_img_enc_start_us = ggml_time_us();
  217. const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
  218. if (clip_is_minicpmv(ctx_clip)) {
  219. std::vector<float *> image_embd_v;
  220. image_embd_v.resize(img_res_v.size);
  221. struct clip_image_size * load_image_size = clip_image_size_init();
  222. for (size_t i = 0; i < img_res_v.size; i++) {
  223. const int64_t t_img_enc_step_start_us = ggml_time_us();
  224. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
  225. int patch_size=14;
  226. load_image_size->width = img_res_v.data[i].nx;
  227. load_image_size->height = img_res_v.data[i].ny;
  228. clip_add_load_image_size(ctx_clip, load_image_size);
  229. bool encoded = false;
  230. int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
  231. if (has_minicpmv_projector == 2) {
  232. encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
  233. }
  234. else if (has_minicpmv_projector == 3) {
  235. encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
  236. }
  237. if (!encoded) {
  238. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  239. return false;
  240. }
  241. const int64_t t_img_enc_steop_batch_us = ggml_time_us();
  242. LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
  243. }
  244. const int64_t t_img_enc_batch_us = ggml_time_us();
  245. LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  246. int n_img_pos_out = 0;
  247. for (size_t i = 0; i < image_embd_v.size(); i++) {
  248. std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
  249. n_img_pos_out += clip_n_patches(ctx_clip);
  250. }
  251. *n_img_pos = n_img_pos_out;
  252. for (size_t i = 0; i < image_embd_v.size(); i++) {
  253. free(image_embd_v[i]);
  254. }
  255. image_embd_v.clear();
  256. load_image_size->width = img->nx;
  257. load_image_size->height = img->ny;
  258. clip_add_load_image_size(ctx_clip, load_image_size);
  259. LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
  260. }
  261. else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
  262. // flat / default llava-1.5 type embedding
  263. *n_img_pos = clip_n_patches(ctx_clip);
  264. bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
  265. delete[] img_res_v.data;
  266. if (!encoded) {
  267. LOG_ERR("Unable to encode image\n");
  268. return false;
  269. }
  270. }
  271. else {
  272. // spatial_unpad llava-1.6 type embedding
  273. // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
  274. std::vector<float *> image_embd_v;
  275. image_embd_v.resize(img_res_v.size);
  276. for (size_t i = 0; i < img_res_v.size; i++) {
  277. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
  278. const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
  279. if (!encoded) {
  280. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  281. return false;
  282. }
  283. }
  284. const int64_t t_img_enc_batch_us = ggml_time_us();
  285. LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  286. const int32_t * image_grid = clip_image_grid(ctx_clip);
  287. std::vector<std::pair<int, int>> grid_pinpoints;
  288. for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
  289. grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
  290. }
  291. // free all img_res_v - not needed anymore
  292. delete[] img_res_v.data;
  293. img_res_v.size = 0;
  294. img_res_v.data = nullptr;
  295. const int32_t image_size = clip_image_size(ctx_clip);
  296. struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
  297. int n_img_pos_out;
  298. clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
  299. *n_img_pos = n_img_pos_out;
  300. for (size_t i = 0; i < image_embd_v.size(); i++) {
  301. free(image_embd_v[i]);
  302. }
  303. image_embd_v.clear();
  304. // debug image/segment/normalization content:
  305. // clip_image_u8 * tmp = clip_image_u8_init();
  306. // clip_image_convert_f32_to_u8(*image_feature, *tmp);
  307. // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
  308. }
  309. LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
  310. const int64_t t_img_enc_end_us = ggml_time_us();
  311. float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
  312. LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
  313. return true;
  314. }
  315. bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
  316. // make sure that the correct mmproj was used, i.e., compare apples to apples
  317. int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
  318. auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
  319. if (n_image_embd != n_llama_embd) {
  320. LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
  321. return false;
  322. }
  323. return true;
  324. }
  325. bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
  326. int num_max_patches = 6;
  327. if (clip_is_minicpmv(ctx_clip)) {
  328. num_max_patches = 10;
  329. }
  330. float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
  331. if (!image_embd) {
  332. LOG_ERR("Unable to allocate memory for image embeddings\n");
  333. return false;
  334. }
  335. int n_img_pos;
  336. if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
  337. LOG_ERR("%s: cannot encode image, aborting\n", __func__);
  338. free(image_embd);
  339. return false;
  340. }
  341. *image_embd_out = image_embd;
  342. *n_img_pos_out = n_img_pos;
  343. return true;
  344. }
  345. struct llava_embd_batch {
  346. std::vector<llama_pos> pos;
  347. std::vector<int32_t> n_seq_id;
  348. std::vector<llama_seq_id> seq_id_0;
  349. std::vector<llama_seq_id *> seq_ids;
  350. std::vector<int8_t> logits;
  351. llama_batch batch;
  352. llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
  353. pos .resize(n_tokens);
  354. n_seq_id.resize(n_tokens);
  355. seq_ids .resize(n_tokens + 1);
  356. logits .resize(n_tokens);
  357. seq_id_0.resize(1);
  358. seq_id_0[0] = seq_id;
  359. seq_ids [n_tokens] = nullptr;
  360. batch = {
  361. /*n_tokens =*/ n_tokens,
  362. /*tokens =*/ nullptr,
  363. /*embd =*/ embd,
  364. /*pos =*/ pos.data(),
  365. /*n_seq_id =*/ n_seq_id.data(),
  366. /*seq_id =*/ seq_ids.data(),
  367. /*logits =*/ logits.data(),
  368. };
  369. for (int i = 0; i < n_tokens; i++) {
  370. batch.pos [i] = pos_0 + i;
  371. batch.n_seq_id[i] = 1;
  372. batch.seq_id [i] = seq_id_0.data();
  373. batch.logits [i] = false;
  374. }
  375. }
  376. };
  377. bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
  378. int n_embd = llama_n_embd(llama_get_model(ctx_llama));
  379. for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
  380. int n_eval = image_embed->n_image_pos - i;
  381. if (n_eval > n_batch) {
  382. n_eval = n_batch;
  383. }
  384. float * embd = image_embed->embed+i*n_embd;
  385. llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
  386. if (llama_decode(ctx_llama, llava_batch.batch)) {
  387. LOG_ERR("%s : failed to eval\n", __func__);
  388. return false;
  389. }
  390. *n_past += n_eval;
  391. }
  392. return true;
  393. }
  394. struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
  395. clip_image_u8 * img = clip_image_u8_init();
  396. if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
  397. clip_image_u8_free(img);
  398. LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
  399. return NULL;
  400. }
  401. float* image_embed = NULL;
  402. int n_image_pos = 0;
  403. bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
  404. if (!image_embed_result) {
  405. clip_image_u8_free(img);
  406. LOG_ERR("%s: couldn't embed the image\n", __func__);
  407. return NULL;
  408. }
  409. clip_image_u8_free(img);
  410. auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
  411. result->embed = image_embed;
  412. result->n_image_pos = n_image_pos;
  413. return result;
  414. }
  415. static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
  416. auto file = fopen(path, "rb");
  417. if (file == NULL) {
  418. LOG_ERR("%s: can't read file %s\n", __func__, path);
  419. return false;
  420. }
  421. fseek(file, 0, SEEK_END);
  422. auto fileSize = ftell(file);
  423. fseek(file, 0, SEEK_SET);
  424. auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
  425. if (buffer == NULL) {
  426. LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
  427. perror("Memory allocation error");
  428. fclose(file);
  429. return false;
  430. }
  431. errno = 0;
  432. size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
  433. if (ferror(file)) {
  434. die_fmt("read error: %s", strerror(errno));
  435. }
  436. if (ret != (size_t) fileSize) {
  437. die("unexpectedly reached end of file");
  438. }
  439. fclose(file); // Close the file
  440. *bytesOut = buffer;
  441. *sizeOut = fileSize;
  442. return true;
  443. }
  444. struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
  445. unsigned char* image_bytes;
  446. long image_bytes_length;
  447. auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
  448. if (!loaded) {
  449. LOG_ERR("%s: failed to load %s\n", __func__, image_path);
  450. return NULL;
  451. }
  452. llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
  453. free(image_bytes);
  454. return embed;
  455. }
  456. void llava_image_embed_free(struct llava_image_embed * embed) {
  457. free(embed->embed);
  458. free(embed);
  459. }