1
0

perplexity.cpp 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <algorithm>
  6. #include <array>
  7. #include <atomic>
  8. #include <cmath>
  9. #include <cstdio>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <fstream>
  13. #include <mutex>
  14. #include <random>
  15. #include <sstream>
  16. #include <thread>
  17. #include <vector>
  18. #if defined(_MSC_VER)
  19. #pragma warning(disable: 4244 4267) // possible loss of data
  20. #endif
  21. struct results_perplexity {
  22. std::vector<llama_token> tokens;
  23. double ppl_value;
  24. std::vector<float> logits;
  25. std::vector<float> probs;
  26. };
  27. struct results_log_softmax {
  28. double log_softmax;
  29. float logit;
  30. float prob;
  31. };
  32. static void write_logfile(
  33. const llama_context * ctx, const common_params & params, const llama_model * model,
  34. const struct results_perplexity & results
  35. ) {
  36. if (params.logdir.empty()) {
  37. return;
  38. }
  39. if (params.hellaswag) {
  40. LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  41. return;
  42. }
  43. const std::string timestamp = string_get_sortable_timestamp();
  44. const bool success = fs_create_directory_with_parents(params.logdir);
  45. if (!success) {
  46. LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
  47. __func__, params.logdir.c_str());
  48. return;
  49. }
  50. const std::string logfile_path = params.logdir + timestamp + ".yml";
  51. FILE * logfile = fopen(logfile_path.c_str(), "w");
  52. if (logfile == NULL) {
  53. LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  54. return;
  55. }
  56. fprintf(logfile, "binary: main\n");
  57. char model_desc[128];
  58. llama_model_desc(model, model_desc, sizeof(model_desc));
  59. yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
  60. fprintf(logfile, "\n");
  61. fprintf(logfile, "######################\n");
  62. fprintf(logfile, "# Perplexity Results #\n");
  63. fprintf(logfile, "######################\n");
  64. fprintf(logfile, "\n");
  65. yaml_dump_vector_float(logfile, "logits", results.logits);
  66. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  67. yaml_dump_vector_float(logfile, "probs", results.probs);
  68. llama_perf_dump_yaml(logfile, ctx);
  69. fclose(logfile);
  70. }
  71. static std::vector<float> softmax(const std::vector<float>& logits) {
  72. std::vector<float> probs(logits.size());
  73. float max_logit = logits[0];
  74. for (float v : logits) {
  75. max_logit = std::max(max_logit, v);
  76. }
  77. double sum_exp = 0.0;
  78. for (size_t i = 0; i < logits.size(); i++) {
  79. // Subtract the maximum logit value from the current logit value for numerical stability
  80. const float logit = logits[i] - max_logit;
  81. const float exp_logit = expf(logit);
  82. sum_exp += exp_logit;
  83. probs[i] = exp_logit;
  84. }
  85. for (size_t i = 0; i < probs.size(); i++) {
  86. probs[i] /= sum_exp;
  87. }
  88. return probs;
  89. }
  90. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  91. float max_logit = logits[0];
  92. for (int i = 1; i < n_vocab; ++i) {
  93. max_logit = std::max(max_logit, logits[i]);
  94. }
  95. double sum_exp = 0.0;
  96. for (int i = 0; i < n_vocab; ++i) {
  97. sum_exp += expf(logits[i] - max_logit);
  98. }
  99. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  100. }
  101. static inline int nearest_int(float fval) {
  102. //assert(fval <= 4194303.f);
  103. float val = fval + 12582912.f;
  104. int i; memcpy(&i, &val, sizeof(int));
  105. return (i & 0x007fffff) - 0x00400000;
  106. }
  107. static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
  108. float max_logit = logits[0];
  109. float min_logit = logits[0];
  110. for (int i = 1; i < n_vocab; ++i) {
  111. max_logit = std::max(max_logit, logits[i]);
  112. min_logit = std::min(min_logit, logits[i]);
  113. }
  114. min_logit = std::max(min_logit, max_logit - 16);
  115. double sum_exp = 0.0;
  116. for (int i = 0; i < n_vocab; ++i) {
  117. sum_exp += expf(logits[i] - max_logit);
  118. }
  119. const float log_sum_exp = log(sum_exp);
  120. const float min_log_prob = min_logit - max_logit - log_sum_exp;
  121. const float scale = (max_logit - min_logit)/65535.f;
  122. float * d = (float *)log_prob;
  123. d[0] = scale;
  124. d[1] = min_log_prob;
  125. log_prob += 4;
  126. if (scale) {
  127. const float inv_scale = 1/scale;
  128. for (int i = 0; i < n_vocab; ++i) {
  129. log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0;
  130. }
  131. } else {
  132. std::memset(log_prob, 0, n_vocab*sizeof(uint16_t));
  133. }
  134. return max_logit + log_sum_exp - logits[tok];
  135. }
  136. static void process_logits(
  137. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  138. double & nll, double & nll2, float * logit_history, float * prob_history
  139. ) {
  140. std::mutex mutex;
  141. int counter = 0;
  142. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  143. double local_nll = 0;
  144. double local_nll2 = 0;
  145. while (true) {
  146. std::unique_lock<std::mutex> lock(mutex);
  147. int i = counter++;
  148. if (i >= n_token) {
  149. nll += local_nll; nll2 += local_nll2;
  150. break;
  151. }
  152. lock.unlock();
  153. const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
  154. const double v = -results.log_softmax;
  155. local_nll += v;
  156. local_nll2 += v*v;
  157. logit_history[i] = results.logit;
  158. prob_history[i] = results.prob;
  159. }
  160. };
  161. for (auto & w : workers) {
  162. w = std::thread(compute);
  163. }
  164. compute();
  165. for (auto & w : workers) {
  166. w.join();
  167. }
  168. }
  169. static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
  170. std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
  171. std::mutex mutex;
  172. const int nv = 2*((n_vocab + 1)/2) + 4;
  173. int counter = 0;
  174. auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () {
  175. double local_nll = 0;
  176. double local_nll2 = 0;
  177. while (true) {
  178. std::unique_lock<std::mutex> lock(mutex);
  179. int i = counter++;
  180. if (i >= n_token) {
  181. nll += local_nll; nll2 += local_nll2;
  182. break;
  183. }
  184. lock.unlock();
  185. const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
  186. local_nll += v;
  187. local_nll2 += v*v;
  188. }
  189. };
  190. for (auto & w : workers) {
  191. w = std::thread(compute);
  192. }
  193. compute();
  194. for (auto & w : workers) {
  195. w.join();
  196. }
  197. out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t));
  198. }
  199. struct kl_divergence_result {
  200. double sum_nll = 0.0;
  201. double sum_nll2 = 0.0;
  202. double sum_nll_base = 0.0;
  203. double sum_nll_base2 = 0.0;
  204. double sum_nll_nll_base = 0.0;
  205. double sum_kld = 0.0;
  206. double sum_kld2 = 0.0;
  207. double sum_p_diff = 0.0;
  208. double sum_p_diff2 = 0.0;
  209. double sum_p_diff4 = 0.0;
  210. float max_p_diff = 0.0f;
  211. size_t n_same_top = 0.0;
  212. size_t count = 0.0;
  213. };
  214. static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
  215. float max_logit = logits[0];
  216. int imax = 0;
  217. for (int i = 1; i < n_vocab; ++i) {
  218. if (logits[i] > max_logit) {
  219. max_logit = logits[i];
  220. imax = i;
  221. }
  222. }
  223. double sum_exp = 0.0;
  224. for (int i = 0; i < n_vocab; ++i) {
  225. sum_exp += expf(logits[i] - max_logit);
  226. }
  227. const float log_sum_exp = log(sum_exp);
  228. const float * d = (const float *)base_log_prob;
  229. const float scale = d[0];
  230. const float min_log_prob = d[1];
  231. base_log_prob += 4;
  232. const float nll = max_logit + log_sum_exp - logits[tok];
  233. kld.sum_nll += nll;
  234. kld.sum_nll2 += nll*nll;
  235. const float nll_base = -(scale*base_log_prob[tok] + min_log_prob);
  236. kld.sum_nll_base += nll_base;
  237. kld.sum_nll_base2 += nll_base*nll_base;
  238. kld.sum_nll_nll_base += nll*nll_base;
  239. max_logit += log_sum_exp;
  240. double sum = 0;
  241. int imax_base = -1;
  242. float p_log_base_max = 0;
  243. for (int i = 0; i < n_vocab; ++i) {
  244. const float p_log_base = scale*base_log_prob[i] + min_log_prob;
  245. if (i == 0 || p_log_base > p_log_base_max) {
  246. p_log_base_max = p_log_base;
  247. imax_base = i;
  248. }
  249. if (p_log_base > -16.f) {
  250. const float p_base = expf(p_log_base);
  251. sum += p_base * (p_log_base - logits[i] + max_logit);
  252. }
  253. }
  254. kld.sum_kld += sum;
  255. kld.sum_kld2 += sum*sum;
  256. ++kld.count;
  257. if (imax == imax_base) {
  258. ++kld.n_same_top;
  259. }
  260. const float p_base = expf(-nll_base);
  261. const float p = expf(-nll);
  262. const float p_diff = p - p_base;
  263. kld.sum_p_diff += p_diff;
  264. const double p_diff2 = p_diff*p_diff;
  265. kld.sum_p_diff2 += p_diff2;
  266. kld.sum_p_diff4 += p_diff2*p_diff2;
  267. kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff));
  268. return std::make_pair(sum, p_diff);
  269. }
  270. static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
  271. std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
  272. float * kld_values, float * p_diff_values) {
  273. std::mutex mutex;
  274. const int nv = 2*((n_vocab + 1)/2) + 4;
  275. int counter = 0;
  276. auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () {
  277. kl_divergence_result local_kld;
  278. while (true) {
  279. std::unique_lock<std::mutex> lock(mutex);
  280. int i = counter++;
  281. if (i >= n_token) {
  282. kld.sum_nll += local_kld.sum_nll;
  283. kld.sum_nll2 += local_kld.sum_nll2;
  284. kld.sum_nll_base += local_kld.sum_nll_base;
  285. kld.sum_nll_base2 += local_kld.sum_nll_base2;
  286. kld.sum_nll_nll_base += local_kld.sum_nll_nll_base;
  287. kld.sum_kld += local_kld.sum_kld;
  288. kld.sum_kld2 += local_kld.sum_kld2;
  289. kld.sum_p_diff += local_kld.sum_p_diff;
  290. kld.sum_p_diff2 += local_kld.sum_p_diff2;
  291. kld.sum_p_diff4 += local_kld.sum_p_diff4;
  292. kld.n_same_top += local_kld.n_same_top;
  293. kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff);
  294. kld.count += local_kld.count;
  295. break;
  296. }
  297. lock.unlock();
  298. std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
  299. kld_values[i] = (float)v.first;
  300. p_diff_values[i] = v.second;
  301. }
  302. };
  303. for (auto & w : workers) {
  304. w = std::thread(compute);
  305. }
  306. compute();
  307. for (auto & w : workers) {
  308. w.join();
  309. }
  310. }
  311. static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
  312. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  313. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  314. // Output: `perplexity: 13.5106 [114/114]`
  315. // BOS tokens will be added for each chunk before eval
  316. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  317. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  318. LOG_INF("%s: tokenizing the input ..\n", __func__);
  319. std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
  320. const int n_ctx = llama_n_ctx(ctx);
  321. if (int(tokens.size()) < 2*n_ctx) {
  322. LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  323. n_ctx);
  324. LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  325. return {std::move(tokens), 0., {}, {}};
  326. }
  327. std::vector<float> logit_history;
  328. std::vector<float> prob_history;
  329. logit_history.resize(tokens.size());
  330. prob_history.resize(tokens.size());
  331. if (params.ppl_stride <= 0) {
  332. LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  333. return {tokens, -1, logit_history, prob_history};
  334. }
  335. const int calc_chunk = n_ctx;
  336. LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  337. if (int(tokens.size()) <= calc_chunk) {
  338. LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  339. tokens.size(), n_ctx, params.ppl_stride);
  340. return {tokens, -1, logit_history, prob_history};
  341. }
  342. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  343. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  344. const int n_batch = params.n_batch;
  345. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  346. int count = 0;
  347. double nll = 0.0;
  348. LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  349. for (int i = 0; i < n_chunk; ++i) {
  350. const int start = i * params.ppl_stride;
  351. const int end = start + calc_chunk;
  352. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  353. //LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  354. std::vector<float> logits;
  355. const auto t_start = std::chrono::high_resolution_clock::now();
  356. // clear the KV cache
  357. llama_kv_cache_clear(ctx);
  358. llama_batch batch = llama_batch_init(n_batch, 0, 1);
  359. for (int j = 0; j < num_batches; ++j) {
  360. const int batch_start = start + j * n_batch;
  361. const int batch_size = std::min(end - batch_start, n_batch);
  362. common_batch_clear(batch);
  363. for (int i = 0; i < batch_size; i++) {
  364. common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
  365. }
  366. //LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  367. if (llama_decode(ctx, batch)) {
  368. //LOG_ERR("%s : failed to eval\n", __func__);
  369. llama_batch_free(batch);
  370. return {tokens, -1, logit_history, prob_history};
  371. }
  372. // save original token and restore it after eval
  373. const auto token_org = tokens[batch_start];
  374. // add BOS token for the first batch of each chunk
  375. if (add_bos && j == 0) {
  376. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  377. }
  378. const auto * batch_logits = llama_get_logits(ctx);
  379. logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
  380. if (j == 0) {
  381. tokens[batch_start] = token_org;
  382. }
  383. }
  384. llama_batch_free(batch);
  385. const auto t_end = std::chrono::high_resolution_clock::now();
  386. if (i == 0) {
  387. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  388. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  389. int total_seconds = (int)(t_total * n_chunk);
  390. if (total_seconds >= 60*60) {
  391. LOG("%d hours ", total_seconds / (60*60));
  392. total_seconds = total_seconds % (60*60);
  393. }
  394. LOG("%.2f minutes\n", total_seconds / 60.0);
  395. }
  396. //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  397. for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
  398. // Calculate probability of next token, given the previous ones.
  399. const std::vector<float> tok_logits(
  400. logits.begin() + size_t(j + 0) * n_vocab,
  401. logits.begin() + size_t(j + 1) * n_vocab);
  402. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  403. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  404. prob_history[start + j + 1] = prob;
  405. nll += -std::log(prob);
  406. ++count;
  407. }
  408. // perplexity is e^(average negative log-likelihood)
  409. if (params.ppl_output_type == 0) {
  410. LOG("[%d]%.4lf,", i + 1, std::exp(nll / count));
  411. } else {
  412. LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  413. }
  414. }
  415. LOG("\n");
  416. return {tokens, std::exp(nll / count), logit_history, prob_history};
  417. }
  418. static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
  419. if (params.ppl_stride > 0) {
  420. return perplexity_v2(ctx, params);
  421. }
  422. // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
  423. // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  424. // Output: `perplexity: 13.5106 [114/114]`
  425. // BOS tokens will be added for each chunk before eval
  426. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  427. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  428. std::ofstream logits_stream;
  429. if (!params.logits_file.empty()) {
  430. logits_stream.open(params.logits_file.c_str(), std::ios::binary);
  431. if (!logits_stream.is_open()) {
  432. LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
  433. return {};
  434. }
  435. LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
  436. logits_stream.write("_logits_", 8);
  437. logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
  438. }
  439. auto tim1 = std::chrono::high_resolution_clock::now();
  440. LOG_INF("%s: tokenizing the input ..\n", __func__);
  441. std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
  442. auto tim2 = std::chrono::high_resolution_clock::now();
  443. LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  444. if (int(tokens.size()) < 2*n_ctx) {
  445. LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  446. n_ctx);
  447. LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  448. return {std::move(tokens), 0., {}, {}};
  449. }
  450. std::vector<float> logit_history;
  451. logit_history.resize(tokens.size());
  452. std::vector<float> prob_history;
  453. prob_history.resize(tokens.size());
  454. const int n_chunk_max = tokens.size() / n_ctx;
  455. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  456. const int n_batch = params.n_batch;
  457. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  458. int count = 0;
  459. double nll = 0.0;
  460. double nll2 = 0.0;
  461. const int num_batches = (n_ctx + n_batch - 1) / n_batch;
  462. const int n_seq = std::max(1, n_batch / n_ctx);
  463. GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
  464. GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
  465. llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
  466. std::vector<float> logits;
  467. if (num_batches > 1) {
  468. logits.reserve(size_t(n_ctx) * n_vocab);
  469. }
  470. LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
  471. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  472. std::vector<uint16_t> log_probs;
  473. if (!params.logits_file.empty()) {
  474. logits_stream.write((const char *)&n_vocab, sizeof(n_vocab));
  475. logits_stream.write((const char *)&n_chunk, sizeof(n_chunk));
  476. logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0]));
  477. const int nv = 2*((n_vocab + 1)/2) + 4;
  478. log_probs.resize(n_ctx * nv);
  479. }
  480. // We get the logits for all the tokens in the context window (params.n_ctx)
  481. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  482. // calculate the perplexity over the last half of the window (so the model always has
  483. // some context to predict the token).
  484. //
  485. // We rely on the fact that attention in the forward pass only looks at previous
  486. // tokens here, so the logits returned for each token are an accurate representation
  487. // of what the model would have predicted at that point.
  488. //
  489. // Example, we have a context window of 512, we will compute perplexity for each of the
  490. // last 256 tokens. Then, we split the input up into context window size chunks to
  491. // process the entire prompt.
  492. const int first = n_ctx/2;
  493. for (int i = 0; i < n_chunk; i += n_seq) {
  494. const int start = i * n_ctx;
  495. const int end = start + n_ctx;
  496. const int n_seq_batch = std::min(n_seq, n_chunk - i);
  497. const auto t_start = std::chrono::high_resolution_clock::now();
  498. // clear the KV cache
  499. llama_kv_cache_clear(ctx);
  500. for (int j = 0; j < num_batches; ++j) {
  501. const int batch_start = start + j * n_batch;
  502. const int batch_size = std::min(end - batch_start, n_batch);
  503. int n_outputs = 0;
  504. batch.n_tokens = 0;
  505. for (int seq = 0; seq < n_seq_batch; seq++) {
  506. int seq_start = batch_start + seq*n_ctx;
  507. // save original token and restore it after eval
  508. const auto token_org = tokens[seq_start];
  509. // add BOS token for the first batch of each chunk
  510. if (add_bos && j == 0) {
  511. tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
  512. }
  513. for (int k = 0; k < batch_size; ++k) {
  514. const int idx = seq*n_ctx + k;
  515. batch.token [idx] = tokens[seq_start + k];
  516. batch.pos [idx] = j*n_batch + k;
  517. batch.n_seq_id[idx] = 1;
  518. batch.seq_id [idx][0] = seq;
  519. batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
  520. n_outputs += batch.logits[idx] != 0;
  521. }
  522. batch.n_tokens += batch_size;
  523. // restore the original token in case it was set to BOS
  524. tokens[seq_start] = token_org;
  525. }
  526. if (llama_decode(ctx, batch)) {
  527. LOG_INF("%s : failed to eval\n", __func__);
  528. return {tokens, -1, logit_history, prob_history};
  529. }
  530. if (num_batches > 1 && n_outputs > 0) {
  531. const auto * batch_logits = llama_get_logits(ctx);
  532. logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
  533. }
  534. }
  535. if (i == 0) {
  536. llama_synchronize(ctx);
  537. const auto t_end = std::chrono::high_resolution_clock::now();
  538. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  539. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  540. int total_seconds = (int)(t_total*n_chunk/n_seq);
  541. if (total_seconds >= 60*60) {
  542. LOG("%d hours ", total_seconds / (60*60));
  543. total_seconds = total_seconds % (60*60);
  544. }
  545. LOG("%.2f minutes\n", total_seconds / 60.0);
  546. }
  547. for (int seq = 0; seq < n_seq_batch; seq++) {
  548. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
  549. llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
  550. if (!params.logits_file.empty()) {
  551. process_logits(logits_stream, n_vocab, all_logits,
  552. tokens_data, n_ctx - 1 - first,
  553. workers, log_probs, nll, nll2);
  554. } else {
  555. process_logits(n_vocab, all_logits,
  556. tokens_data, n_ctx - 1 - first,
  557. workers, nll, nll2,
  558. logit_history.data() + start + seq*n_ctx + first,
  559. prob_history.data() + start + seq*n_ctx + first);
  560. }
  561. count += n_ctx - first - 1;
  562. // perplexity is e^(average negative log-likelihood)
  563. if (params.ppl_output_type == 0) {
  564. LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
  565. } else {
  566. double av = nll/count;
  567. double av2 = nll2/count - av*av;
  568. if (av2 > 0) {
  569. av2 = sqrt(av2/(count-1));
  570. }
  571. LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
  572. }
  573. }
  574. logits.clear();
  575. }
  576. LOG("\n");
  577. nll2 /= count;
  578. nll /= count;
  579. const double ppl = exp(nll);
  580. nll2 -= nll * nll;
  581. if (nll2 > 0) {
  582. nll2 = sqrt(nll2/(count-1));
  583. LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  584. } else {
  585. LOG_ERR("Unexpected negative standard deviation of log(prob)\n");
  586. }
  587. llama_batch_free(batch);
  588. return {tokens, ppl, logit_history, prob_history};
  589. }
  590. static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
  591. int prev_outputs = 0;
  592. for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
  593. const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
  594. llama_batch batch_view = {
  595. n_tokens,
  596. batch.token + i,
  597. nullptr,
  598. batch.pos + i,
  599. batch.n_seq_id + i,
  600. batch.seq_id + i,
  601. batch.logits + i,
  602. };
  603. const int ret = llama_decode(ctx, batch_view);
  604. if (ret != 0) {
  605. LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
  606. return false;
  607. }
  608. int n_outputs = 0;
  609. for (int i = 0; i < n_tokens; ++i) {
  610. n_outputs += batch_view.logits[i] != 0;
  611. }
  612. memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
  613. prev_outputs += n_outputs;
  614. }
  615. return true;
  616. }
  617. #define K_TOKEN_CHUNK 4
  618. static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
  619. const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
  620. if (eval_results.size() != eval_pairs.size()) {
  621. eval_results.resize(eval_pairs.size());
  622. }
  623. if (eval_pairs.empty()) {
  624. return;
  625. }
  626. size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
  627. std::atomic<int> counter(0);
  628. auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
  629. float local_logprobs[K_TOKEN_CHUNK];
  630. while (true) {
  631. const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
  632. if (first >= eval_results.size()) {
  633. break;
  634. }
  635. const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
  636. for (size_t i = first; i < last; ++i) {
  637. const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
  638. float max_logit = logits[0];
  639. for (int j = 1; j < n_vocab; ++j) {
  640. max_logit = std::max(max_logit, logits[j]);
  641. }
  642. float sum_p = 0.f;
  643. for (int j = 0; j < n_vocab; ++j) {
  644. sum_p += expf(logits[j] - max_logit);
  645. }
  646. local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
  647. }
  648. std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
  649. }
  650. };
  651. for (size_t it = 0; it < max_threads; ++it) {
  652. workers[it] = std::thread(compute);
  653. }
  654. for (size_t it = 0; it < max_threads; ++it) {
  655. workers[it].join();
  656. }
  657. }
  658. static void hellaswag_score(llama_context * ctx, const common_params & params) {
  659. // Calculates hellaswag score (acc_norm) from prompt
  660. //
  661. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  662. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  663. //
  664. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  665. //
  666. // Datafile layout:
  667. // ['??'] denotes json fields
  668. // 6 lines per task:
  669. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  670. // ['label'] - The index the best common sense ending aka gold ending
  671. // ['endings'][0] - Endings added to the first part of the query
  672. // ['endings'][1]
  673. // ['endings'][2]
  674. // ['endings'][3]
  675. std::vector<std::string> prompt_lines;
  676. std::istringstream strstream(params.prompt);
  677. std::string line;
  678. while (std::getline(strstream,line,'\n')) {
  679. prompt_lines.push_back(line);
  680. }
  681. if (prompt_lines.size() % 6 != 0) {
  682. LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__);
  683. return;
  684. }
  685. size_t hs_task_count = prompt_lines.size()/6;
  686. LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  687. const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
  688. LOG_INF("================================= is_spm = %d\n", is_spm);
  689. // The tasks should be randomized so the score stabilizes quickly.
  690. bool randomize_tasks = true;
  691. // Number of tasks to use when computing the score
  692. if (params.hellaswag_tasks < hs_task_count) {
  693. hs_task_count = params.hellaswag_tasks;
  694. }
  695. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  696. std::mt19937 rng(1);
  697. // Dataholder for hellaswag tasks
  698. struct hs_data_t {
  699. std::string context;
  700. size_t gold_ending_idx;
  701. std::string ending[4];
  702. size_t ending_logprob_count[4];
  703. double ending_logprob[4];
  704. size_t i_logits; // starting index of logits in the llama_batch
  705. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  706. size_t required_tokens; // needed number of tokens to evaluate all 4 endings
  707. std::vector<llama_token> seq_tokens[4];
  708. };
  709. LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  710. // Select and read data from prompt lines
  711. std::vector<hs_data_t> hs_data(hs_task_count);
  712. for (size_t i = 0; i < hs_task_count; i++) {
  713. size_t idx = i;
  714. auto & hs_cur = hs_data[i];
  715. // Select a random example of those left in the prompt
  716. if (randomize_tasks) {
  717. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  718. idx = dist(rng);
  719. }
  720. hs_cur.context = prompt_lines[idx*6];
  721. hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  722. for (size_t j = 0; j < 4; j++) {
  723. hs_cur.ending[j] = prompt_lines[idx*6+2+j];
  724. hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
  725. }
  726. // determine the common prefix of the endings
  727. hs_cur.common_prefix = 0;
  728. for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) {
  729. if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] ||
  730. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] ||
  731. hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) {
  732. break;
  733. }
  734. hs_cur.common_prefix++;
  735. }
  736. hs_cur.required_tokens = hs_cur.common_prefix +
  737. hs_cur.seq_tokens[0].size() - hs_cur.common_prefix +
  738. hs_cur.seq_tokens[1].size() - hs_cur.common_prefix +
  739. hs_cur.seq_tokens[2].size() - hs_cur.common_prefix +
  740. hs_cur.seq_tokens[3].size() - hs_cur.common_prefix;
  741. //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size());
  742. // Delete the selected random example from the prompt
  743. if (randomize_tasks) {
  744. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  745. }
  746. }
  747. LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
  748. LOG("\ntask\tacc_norm\n");
  749. double acc = 0.0f;
  750. const int n_ctx = llama_n_ctx(ctx);
  751. const int n_batch = params.n_batch;
  752. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  753. const int max_tasks_per_batch = 32;
  754. const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  755. llama_batch batch = llama_batch_init(n_ctx, 0, 4);
  756. std::vector<float> tok_logits(n_vocab);
  757. // TODO: this could be made smaller; it's currently the worst-case size
  758. std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
  759. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  760. std::vector<float> eval_results;
  761. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  762. for (size_t i0 = 0; i0 < hs_task_count; i0++) {
  763. int n_cur = 0;
  764. size_t i1 = i0;
  765. size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
  766. common_batch_clear(batch);
  767. // batch as much tasks as possible into the available context
  768. // each task has 4 unique sequence ids - one for each ending
  769. // the common prefix is shared among the 4 sequences to save tokens
  770. // we extract logits only from the last common token and from all ending tokens of each sequence
  771. while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
  772. auto & hs_cur = hs_data[i1];
  773. int n_logits = 0;
  774. const int s0 = 4*(i1 - i0);
  775. if (s0 + 4 > max_seq) {
  776. break;
  777. }
  778. for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
  779. common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
  780. }
  781. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  782. n_logits += 1;
  783. for (int s = 0; s < 4; ++s) {
  784. const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
  785. // TODO: don't evaluate the last token of each sequence
  786. for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
  787. const bool needs_logits = i < seq_tokens_size - 1;
  788. common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
  789. n_logits += needs_logits;
  790. }
  791. }
  792. hs_cur.i_logits = i_logits;
  793. i_logits += n_logits;
  794. n_cur += hs_data[i1].required_tokens;
  795. if (++i1 == hs_task_count) {
  796. break;
  797. }
  798. }
  799. if (i0 == i1) {
  800. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  801. return;
  802. }
  803. llama_kv_cache_clear(ctx);
  804. // decode all tasks [i0, i1)
  805. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  806. LOG_ERR("%s: llama_decode() failed\n", __func__);
  807. return;
  808. }
  809. // Compute log-probs in parallel
  810. // First we collect all tasks
  811. eval_pairs.clear();
  812. for (size_t i = i0; i < i1; ++i) {
  813. auto & hs_cur = hs_data[i];
  814. size_t li = 1; // skip the last logit of the common prefix (computed separately below)
  815. for (int s = 0; s < 4; ++s) {
  816. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  817. eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
  818. }
  819. }
  820. }
  821. // Then we do the actual calculation
  822. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  823. size_t ir = 0;
  824. // compute the logprobs for each ending of the decoded tasks
  825. for (size_t i = i0; i < i1; ++i) {
  826. auto & hs_cur = hs_data[i];
  827. // get the logits of the last token of the common prefix
  828. std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
  829. const auto first_probs = softmax(tok_logits);
  830. for (int s = 0; s < 4; ++s) {
  831. hs_cur.ending_logprob_count[s] = 1;
  832. hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);
  833. for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
  834. hs_cur.ending_logprob[s] += eval_results[ir++];
  835. hs_cur.ending_logprob_count[s]++;
  836. }
  837. hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
  838. }
  839. // Find the ending with maximum logprob
  840. size_t ending_logprob_max_idx = 0;
  841. double ending_logprob_max_val = hs_cur.ending_logprob[0];
  842. for (size_t s = 1; s < 4; s++) {
  843. if (hs_cur.ending_logprob[s] > ending_logprob_max_val) {
  844. ending_logprob_max_idx = s;
  845. ending_logprob_max_val = hs_cur.ending_logprob[s];
  846. }
  847. }
  848. //LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx);
  849. // If the gold ending got the maximum logprobe add one accuracy point
  850. if (ending_logprob_max_idx == hs_cur.gold_ending_idx) {
  851. acc += 1.0;
  852. }
  853. // Print the accumulated accuracy mean x 100
  854. LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
  855. }
  856. i0 = i1 - 1;
  857. }
  858. llama_batch_free(batch);
  859. LOG("\n");
  860. }
  861. struct winogrande_entry {
  862. std::string first;
  863. std::string second;
  864. std::array<std::string, 2> choices;
  865. int answer;
  866. size_t i_logits;
  867. size_t common_prefix;
  868. size_t required_tokens;
  869. size_t n_base1; // number of tokens for context + choice 1
  870. size_t n_base2; // number of tokens for context + choice 2
  871. std::vector<llama_token> seq_tokens[2];
  872. };
  873. static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string & prompt) {
  874. std::vector<winogrande_entry> result;
  875. std::istringstream in(prompt);
  876. std::string line;
  877. std::array<int, 4> comma_pos;
  878. while (true) {
  879. std::getline(in, line);
  880. if (in.fail() || in.eof()) break;
  881. int ipos = 0;
  882. bool quote_open = false;
  883. for (int i = 0; i < int(line.size()); ++i) {
  884. if (!quote_open) {
  885. if (line[i] == ',') {
  886. comma_pos[ipos++] = i;
  887. if (ipos == 4) break;
  888. }
  889. else if (line[i] == '"') {
  890. quote_open = true;
  891. }
  892. }
  893. else {
  894. if (line[i] == '"') {
  895. quote_open = false;
  896. }
  897. }
  898. }
  899. if (ipos != 4) {
  900. LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
  901. continue;
  902. }
  903. auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
  904. : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
  905. auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
  906. auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
  907. auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
  908. auto index = line.substr(0, comma_pos[0]);
  909. int where = 0;
  910. for ( ; where < int(sentence.size()); ++where) {
  911. if (sentence[where] == '_') break;
  912. }
  913. if (where == int(sentence.size())) {
  914. LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str());
  915. continue;
  916. }
  917. std::istringstream stream(answer.c_str());
  918. int i_answer; stream >> i_answer;
  919. if (stream.fail() || i_answer < 1 || i_answer > 2) {
  920. LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
  921. continue;
  922. }
  923. result.emplace_back();
  924. auto& wg = result.back();
  925. wg.first = sentence.substr(0, where);
  926. wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
  927. wg.choices[0] = std::move(choice1);
  928. wg.choices[1] = std::move(choice2);
  929. wg.answer = i_answer;
  930. }
  931. return result;
  932. }
  933. /*
  934. * Evaluates the Winogrande score.
  935. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
  936. * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
  937. * As an example, the 1st row in the above dataset is
  938. *
  939. * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
  940. *
  941. */
  942. static void winogrande_score(llama_context * ctx, const common_params & params) {
  943. constexpr int k_min_trailing_ctx = 3;
  944. auto data = load_winogrande_from_csv(params.prompt);
  945. if (data.empty()) {
  946. LOG_ERR("%s: no tasks\n", __func__);
  947. return;
  948. }
  949. LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size());
  950. if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
  951. LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
  952. std::mt19937 rng(1);
  953. std::vector<int> aux(data.size());
  954. for (int i = 0; i < int(data.size()); ++i) {
  955. aux[i] = i;
  956. }
  957. float scale = 1/(1.f + (float)rng.max());
  958. std::vector<winogrande_entry> selected;
  959. selected.resize(params.winogrande_tasks);
  960. for (int i = 0; i < int(params.winogrande_tasks); ++i) {
  961. int j = int(scale*rng()*aux.size());
  962. selected[i] = std::move(data[aux[j]]);
  963. aux[j] = aux.back();
  964. aux.pop_back();
  965. }
  966. data = std::move(selected);
  967. }
  968. LOG_INF("%s : tokenizing selected tasks\n", __func__);
  969. for (auto & task : data) {
  970. task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true);
  971. task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true);
  972. task.common_prefix = 0;
  973. for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
  974. if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) {
  975. break;
  976. }
  977. task.common_prefix++;
  978. }
  979. // TODO: the last token of each of the sequences don't need to be evaluated
  980. task.required_tokens = task.common_prefix +
  981. task.seq_tokens[0].size() - task.common_prefix +
  982. task.seq_tokens[1].size() - task.common_prefix;
  983. task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size();
  984. task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size();
  985. }
  986. LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
  987. const int n_ctx = llama_n_ctx(ctx);
  988. const int n_batch = params.n_batch;
  989. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  990. const int max_tasks_per_batch = 128;
  991. const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  992. llama_batch batch = llama_batch_init(n_ctx, 0, 2);
  993. std::vector<float> tok_logits(n_vocab);
  994. // TODO: this could be made smaller; it's currently the worst-case size
  995. std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
  996. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  997. std::vector<float> eval_results;
  998. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  999. int n_correct = 0;
  1000. int n_done = 0;
  1001. for (size_t i0 = 0; i0 < data.size(); i0++) {
  1002. int n_cur = 0;
  1003. size_t i1 = i0;
  1004. size_t i_logits = 0;
  1005. common_batch_clear(batch);
  1006. while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
  1007. int n_logits = 0;
  1008. const int s0 = 2*(i1 - i0);
  1009. if (s0 + 2 > max_seq) {
  1010. break;
  1011. }
  1012. for (size_t i = 0; i < data[i1].common_prefix; ++i) {
  1013. common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
  1014. }
  1015. batch.logits[batch.n_tokens - 1] = true;
  1016. n_logits += 1;
  1017. for (int s = 0; s < 2; ++s) {
  1018. // TODO: end before the last token, no need to predict past the end of the sequences
  1019. for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
  1020. common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
  1021. n_logits += 1;
  1022. }
  1023. }
  1024. data[i1].i_logits = i_logits;
  1025. i_logits += n_logits;
  1026. n_cur += data[i1].required_tokens;
  1027. if (++i1 == data.size()) {
  1028. break;
  1029. }
  1030. }
  1031. if (i0 == i1) {
  1032. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  1033. return;
  1034. }
  1035. llama_kv_cache_clear(ctx);
  1036. // decode all tasks [i0, i1)
  1037. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1038. LOG_ERR("%s: llama_decode() failed\n", __func__);
  1039. return;
  1040. }
  1041. eval_pairs.clear();
  1042. for (size_t i = i0; i < i1; ++i) {
  1043. auto & task = data[i];
  1044. const bool skip_choice =
  1045. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  1046. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  1047. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  1048. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  1049. size_t li = n_base1 - task.common_prefix;
  1050. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  1051. eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
  1052. }
  1053. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  1054. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  1055. // FIXME: this uses the wrong first logits when not skipping the choice word
  1056. li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
  1057. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  1058. eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
  1059. }
  1060. }
  1061. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1062. size_t ir = 0;
  1063. for (size_t i = i0; i < i1; ++i) {
  1064. auto & task = data[i];
  1065. const bool skip_choice =
  1066. task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx &&
  1067. task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx;
  1068. float score_1st = 0;
  1069. const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
  1070. const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
  1071. for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
  1072. score_1st += eval_results[ir++];
  1073. }
  1074. score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st);
  1075. float score_2nd = 0;
  1076. const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
  1077. const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
  1078. for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
  1079. score_2nd += eval_results[ir++];
  1080. }
  1081. score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd);
  1082. int result = score_1st > score_2nd ? 1 : 2;
  1083. if (result == task.answer) {
  1084. ++n_correct;
  1085. }
  1086. ++n_done;
  1087. // print the accumulated accuracy mean x 100
  1088. LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer);
  1089. }
  1090. i0 = i1 - 1;
  1091. }
  1092. LOG("\n");
  1093. if (n_done < 100) return;
  1094. const float p = 1.f*n_correct/n_done;
  1095. const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
  1096. LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
  1097. }
  1098. static bool deserialize_string(std::istream & in, std::string & str) {
  1099. uint32_t size;
  1100. if (!in.read((char *)&size, sizeof(size)).fail()) {
  1101. str.resize(size);
  1102. if (!in.read((char *)&str[0], size).fail()) return true;
  1103. }
  1104. return false;
  1105. }
  1106. struct multiple_choice_answers {
  1107. std::vector<std::string> answers;
  1108. std::vector<int> labels;
  1109. bool deserialize(std::istream& in) {
  1110. uint32_t n;
  1111. in.read((char *)&n, sizeof(n));
  1112. if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose
  1113. answers.resize(n);
  1114. labels.resize(n);
  1115. for (auto& a : answers) {
  1116. if (!deserialize_string(in, a)) return false;
  1117. }
  1118. in.read((char *)labels.data(), n*sizeof(int));
  1119. return !in.fail();
  1120. }
  1121. };
  1122. struct multiple_choice_task {
  1123. std::string question; // the question (or context that needs to be continued)
  1124. multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer
  1125. multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet
  1126. bool deserialize(std::istream& in) {
  1127. if (!deserialize_string(in, question)) return false;
  1128. return mc1.deserialize(in) && mc2.deserialize(in);
  1129. }
  1130. // For evaluation
  1131. size_t i_logits; // starting index of logits in the llama_batch
  1132. size_t common_prefix; // max number of initial tokens that are the same in all sentences
  1133. size_t required_tokens; // needed number of tokens to evaluate all answers
  1134. std::vector<std::vector<llama_token>> seq_tokens;
  1135. std::vector<float> log_probs;
  1136. };
  1137. static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) {
  1138. if (task.question.empty() || task.mc1.answers.empty()) {
  1139. if (log_error) {
  1140. LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__);
  1141. }
  1142. return false;
  1143. }
  1144. task.seq_tokens.reserve(task.mc1.answers.size());
  1145. for (auto& answer : task.mc1.answers) {
  1146. if (answer.empty()) {
  1147. if (log_error) {
  1148. LOG_ERR("%s: found empty answer\n", __func__);
  1149. }
  1150. return false;
  1151. }
  1152. task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true));
  1153. }
  1154. auto min_len = task.seq_tokens.front().size();
  1155. for (auto& seq : task.seq_tokens) {
  1156. min_len = std::min(min_len, seq.size());
  1157. }
  1158. task.common_prefix = 0;
  1159. for (size_t k = 0; k < min_len; ++k) {
  1160. auto token = task.seq_tokens[0][k];
  1161. bool all_same = true;
  1162. for (size_t i = 1; i < task.seq_tokens.size(); ++i) {
  1163. if (task.seq_tokens[i][k] != token) {
  1164. all_same = false;
  1165. break;
  1166. }
  1167. }
  1168. if (!all_same) {
  1169. break;
  1170. }
  1171. ++task.common_prefix;
  1172. }
  1173. task.required_tokens = task.common_prefix;
  1174. for (auto& seq : task.seq_tokens) {
  1175. task.required_tokens += seq.size() - task.common_prefix;
  1176. }
  1177. return true;
  1178. }
  1179. //
  1180. // Calculates score for multiple choice tasks with single correct answer from prompt.
  1181. // Commonly used LLM evaluation metrics of this type are
  1182. // * ARC
  1183. // * HellaSwag
  1184. // * MMLU
  1185. // * TruthfulQA
  1186. //
  1187. // Validation datasets for these 4 tests can be found at
  1188. // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp
  1189. // The data for these datasets was extracted from
  1190. // git@hf.co:datasets/allenai/ai2_arc
  1191. // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  1192. // git@hf.co:datasets/Stevross/mmlu
  1193. // https://huggingface.co/datasets/truthful_qa
  1194. //
  1195. static void multiple_choice_score(llama_context * ctx, const common_params & params) {
  1196. std::istringstream strstream(params.prompt);
  1197. uint32_t n_task;
  1198. strstream.read((char *)&n_task, sizeof(n_task));
  1199. if (strstream.fail() || n_task == 0) {
  1200. LOG_ERR("%s: no tasks\n", __func__);
  1201. return;
  1202. }
  1203. LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task);
  1204. std::vector<uint32_t> task_pos(n_task);
  1205. strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
  1206. if (strstream.fail()) {
  1207. LOG_ERR("%s: failed to read task positions from prompt\n", __func__);
  1208. return;
  1209. }
  1210. std::vector<multiple_choice_task> tasks;
  1211. if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) {
  1212. // Use all tasks
  1213. tasks.resize(n_task);
  1214. LOG_INF("%s: reading tasks", __func__);
  1215. int n_dot = std::max((int) n_task/100, 1);
  1216. int i = 0;
  1217. for (auto& task : tasks) {
  1218. ++i;
  1219. if (!task.deserialize(strstream)) {
  1220. LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task);
  1221. return;
  1222. }
  1223. if (i%n_dot == 0) LOG(".");
  1224. }
  1225. LOG("done\n");
  1226. }
  1227. else {
  1228. LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task);
  1229. std::mt19937 rng(1);
  1230. std::vector<int> aux(n_task);
  1231. for (uint32_t i = 0; i < n_task; ++i) aux[i] = i;
  1232. float scale = 1.f/(1.f + (float)std::mt19937::max());
  1233. tasks.resize(params.multiple_choice_tasks);
  1234. for (auto& task : tasks) {
  1235. int j = (int)(scale * rng() * aux.size());
  1236. int idx = aux[j];
  1237. aux[j] = aux.back();
  1238. aux.pop_back();
  1239. strstream.seekg(task_pos[idx], std::ios::beg);
  1240. if (!task.deserialize(strstream)) {
  1241. LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]);
  1242. return;
  1243. }
  1244. }
  1245. n_task = params.multiple_choice_tasks;
  1246. }
  1247. LOG_INF("%s: preparing task data", __func__);
  1248. if (n_task > 500) {
  1249. LOG("...");
  1250. std::atomic<int> counter(0);
  1251. std::atomic<int> n_bad(0);
  1252. auto prepare = [&counter, &n_bad, &tasks, ctx] () {
  1253. int num_tasks = tasks.size();
  1254. int n_bad_local = 0;
  1255. while (true) {
  1256. int first = counter.fetch_add(K_TOKEN_CHUNK);
  1257. if (first >= num_tasks) {
  1258. if (n_bad_local > 0) n_bad += n_bad_local;
  1259. break;
  1260. }
  1261. int last = std::min(first + K_TOKEN_CHUNK, num_tasks);
  1262. for (int i = first; i < last; ++i) {
  1263. if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local;
  1264. }
  1265. }
  1266. };
  1267. size_t max_thread = std::thread::hardware_concurrency();
  1268. max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK);
  1269. std::vector<std::thread> workers(max_thread-1);
  1270. for (auto& w : workers) w = std::thread(prepare);
  1271. prepare();
  1272. for (auto& w : workers) w.join();
  1273. LOG("done\n");
  1274. int nbad = n_bad;
  1275. if (nbad > 0) {
  1276. LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad);
  1277. return;
  1278. }
  1279. } else {
  1280. int n_dot = std::max((int) n_task/100, 1);
  1281. int i_task = 0;
  1282. for (auto& task : tasks) {
  1283. ++i_task;
  1284. if (!multiple_choice_prepare_one_task(ctx, task, true)) {
  1285. return;
  1286. }
  1287. if (i_task%n_dot == 0) {
  1288. LOG(".");
  1289. }
  1290. }
  1291. LOG("done\n");
  1292. }
  1293. LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size());
  1294. LOG("\ntask\tacc_norm\n");
  1295. const int n_ctx = llama_n_ctx(ctx);
  1296. const int n_batch = params.n_batch;
  1297. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  1298. const int max_tasks_per_batch = 32;
  1299. const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
  1300. llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
  1301. std::vector<float> tok_logits(n_vocab);
  1302. std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
  1303. std::vector<std::pair<size_t, llama_token>> eval_pairs;
  1304. std::vector<float> eval_results;
  1305. std::vector<std::thread> workers(std::thread::hardware_concurrency());
  1306. std::vector<int> batch_indeces;
  1307. int n_done = 0;
  1308. int n_correct = 0;
  1309. int n_tot_answers = 0;
  1310. for (size_t i0 = 0; i0 < tasks.size(); i0++) {
  1311. int n_cur = 0;
  1312. size_t i1 = i0;
  1313. size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
  1314. common_batch_clear(batch);
  1315. // batch as much tasks as possible into the available context
  1316. // each task has 4 unique sequence ids - one for each ending
  1317. // the common prefix is shared among the 4 sequences to save tokens
  1318. // we extract logits only from the last common token and from all ending tokens of each sequence
  1319. int s0 = 0;
  1320. while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
  1321. auto& cur_task = tasks[i1];
  1322. int n_logits = 0;
  1323. int num_answers = cur_task.seq_tokens.size();
  1324. if (s0 + num_answers > max_seq) {
  1325. break;
  1326. }
  1327. if (int(batch_indeces.size()) != num_answers) {
  1328. batch_indeces.resize(num_answers);
  1329. }
  1330. for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s;
  1331. for (size_t i = 0; i < cur_task.common_prefix; ++i) {
  1332. //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
  1333. common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
  1334. }
  1335. batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
  1336. n_logits += 1;
  1337. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1338. const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
  1339. // TODO: don't evaluate the last token of each sequence
  1340. for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
  1341. const bool needs_logits = i < seq_tokens_size - 1;
  1342. common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
  1343. n_logits += needs_logits;
  1344. }
  1345. }
  1346. s0 += num_answers;
  1347. cur_task.i_logits = i_logits;
  1348. i_logits += n_logits;
  1349. n_cur += cur_task.required_tokens;
  1350. if (++i1 == tasks.size()) {
  1351. break;
  1352. }
  1353. }
  1354. if (i0 == i1) {
  1355. LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0);
  1356. return;
  1357. }
  1358. llama_kv_cache_clear(ctx);
  1359. // decode all tasks [i0, i1)
  1360. if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
  1361. LOG_ERR("%s: llama_decode() failed\n", __func__);
  1362. return;
  1363. }
  1364. // Compute log-probs in parallel
  1365. // First we collect all tasks
  1366. eval_pairs.clear();
  1367. for (size_t i = i0; i < i1; ++i) {
  1368. auto& cur_task = tasks[i];
  1369. size_t li = 1; // skip the last logit of the common prefix (computed separately below)
  1370. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1371. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1372. eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
  1373. }
  1374. }
  1375. }
  1376. // Then we do the actual calculation
  1377. compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
  1378. size_t ir = 0;
  1379. // compute the logprobs for each ending of the decoded tasks
  1380. for (size_t i = i0; i < i1; ++i) {
  1381. auto & cur_task = tasks[i];
  1382. //LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str());
  1383. //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) {
  1384. // if (cur_task.mc1.labels[j] == 1) {
  1385. // LOG("%d", j+1);
  1386. // }
  1387. //}
  1388. //LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
  1389. // get the logits of the last token of the common prefix
  1390. std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float));
  1391. const auto first_probs = softmax(tok_logits);
  1392. cur_task.log_probs.resize(cur_task.seq_tokens.size());
  1393. for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
  1394. size_t count = 1;
  1395. float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]);
  1396. for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
  1397. //LOG(" %zu %g\n", ir, eval_results[ir]);
  1398. ++count;
  1399. log_prob += eval_results[ir++];
  1400. }
  1401. cur_task.log_probs[s] = log_prob / count;
  1402. //LOG(" Final: %g\n", log_prob / count);
  1403. //LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count);
  1404. }
  1405. // Find the ending with maximum logprob
  1406. size_t logprob_max_idx = 0;
  1407. float logprob_max_val = cur_task.log_probs[0];
  1408. for (size_t s = 1; s < cur_task.log_probs.size(); s++) {
  1409. if (cur_task.log_probs[s] > logprob_max_val) {
  1410. logprob_max_val = cur_task.log_probs[s];
  1411. logprob_max_idx = s;
  1412. }
  1413. }
  1414. n_tot_answers += cur_task.log_probs.size();
  1415. if (cur_task.mc1.labels[logprob_max_idx] == 1) {
  1416. ++n_correct;
  1417. }
  1418. ++n_done;
  1419. // Print the accumulated accuracy mean x 100
  1420. LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done);
  1421. }
  1422. i0 = i1 - 1;
  1423. }
  1424. llama_batch_free(batch);
  1425. if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
  1426. float p = 1.f*n_correct/n_done;
  1427. float sigma = sqrt(p*(1-p)/(n_done-1));
  1428. LOG("\n");
  1429. LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1430. p = 1.f*n_done/n_tot_answers;
  1431. sigma = sqrt(p*(1-p)/(n_done-1));
  1432. LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma);
  1433. LOG_INF("\n");
  1434. }
  1435. static void kl_divergence(llama_context * ctx, const common_params & params) {
  1436. if (params.logits_file.empty()) {
  1437. LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
  1438. return;
  1439. }
  1440. std::ifstream in(params.logits_file.c_str(), std::ios::binary);
  1441. if (!in) {
  1442. LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str());
  1443. return;
  1444. }
  1445. {
  1446. char check[9]; check[8] = 0;
  1447. in.read(check, 8);
  1448. if (in.fail() || strncmp("_logits_", check, 8) != 0) {
  1449. LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str());
  1450. return;
  1451. }
  1452. }
  1453. uint32_t n_ctx;
  1454. in.read((char *)&n_ctx, sizeof(n_ctx));
  1455. if (n_ctx > llama_n_ctx(ctx)) {
  1456. LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
  1457. __func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
  1458. }
  1459. int n_vocab;
  1460. int n_chunk;
  1461. in.read((char *)&n_vocab, sizeof(n_vocab));
  1462. in.read((char *)&n_chunk, sizeof(n_chunk));
  1463. if (in.fail()) {
  1464. LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
  1465. return;
  1466. }
  1467. if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
  1468. LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
  1469. }
  1470. std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
  1471. if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
  1472. LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
  1473. return;
  1474. }
  1475. const int n_batch = params.n_batch;
  1476. const int num_batches = (n_ctx + n_batch - 1)/n_batch;
  1477. const int nv = 2*((n_vocab + 1)/2) + 4;
  1478. const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
  1479. GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
  1480. std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
  1481. std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1482. std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
  1483. std::vector<float> logits;
  1484. if (num_batches > 1) {
  1485. logits.reserve(size_t(n_ctx) * n_vocab);
  1486. }
  1487. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  1488. auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
  1489. if (count < 1) {
  1490. return std::make_pair(0., 0.);
  1491. }
  1492. double f = sum/count;
  1493. double df = sum2/count - f*f;
  1494. df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.;
  1495. return std::make_pair(f, df);
  1496. };
  1497. auto covariance = [] (double suma, double sumb, double sumab, size_t count) {
  1498. if (count < 10) {
  1499. return 0.0;
  1500. }
  1501. double var = sumab/count - (suma/count)*(sumb/count);
  1502. var /= count - 1;
  1503. return var;
  1504. };
  1505. kl_divergence_result kld;
  1506. auto kld_ptr = kld_values.data();
  1507. auto p_diff_ptr = p_diff_values.data();
  1508. for (int i = 0; i < n_chunk; ++i) {
  1509. const int start = i * n_ctx;
  1510. const int end = start + n_ctx;
  1511. const auto t_start = std::chrono::high_resolution_clock::now();
  1512. if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
  1513. LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
  1514. return;
  1515. }
  1516. // clear the KV cache
  1517. llama_kv_cache_clear(ctx);
  1518. llama_batch batch = llama_batch_init(n_batch, 0, 1);
  1519. for (int j = 0; j < num_batches; ++j) {
  1520. const int batch_start = start + j * n_batch;
  1521. const int batch_size = std::min(end - batch_start, n_batch);
  1522. // save original token and restore it after eval
  1523. const auto token_org = tokens[batch_start];
  1524. // add BOS token for the first batch of each chunk
  1525. if (add_bos && j == 0) {
  1526. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  1527. }
  1528. common_batch_clear(batch);
  1529. for (int i = 0; i < batch_size; i++) {
  1530. common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
  1531. }
  1532. if (llama_decode(ctx, batch)) {
  1533. LOG_ERR("%s : failed to eval\n", __func__);
  1534. llama_batch_free(batch);
  1535. return;
  1536. }
  1537. // restore the original token in case it was set to BOS
  1538. tokens[batch_start] = token_org;
  1539. if (num_batches > 1) {
  1540. const auto * batch_logits = llama_get_logits(ctx);
  1541. logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
  1542. }
  1543. }
  1544. llama_batch_free(batch);
  1545. const auto t_end = std::chrono::high_resolution_clock::now();
  1546. if (i == 0) {
  1547. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  1548. LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
  1549. int total_seconds = (int)(t_total * n_chunk);
  1550. if (total_seconds >= 60*60) {
  1551. LOG("%d hours ", total_seconds / (60*60));
  1552. total_seconds = total_seconds % (60*60);
  1553. }
  1554. LOG("%.2f minutes\n", total_seconds / 60.0);
  1555. }
  1556. LOG("\n");
  1557. LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
  1558. const int first = n_ctx/2;
  1559. const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
  1560. process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  1561. workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
  1562. p_diff_ptr += n_ctx - 1 - first;
  1563. kld_ptr += n_ctx - 1 - first;
  1564. LOG("%4d", i+1);
  1565. auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1566. const double ppl_val = exp(log_ppl.first);
  1567. const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
  1568. LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
  1569. auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
  1570. const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
  1571. const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
  1572. const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
  1573. LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
  1574. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1575. LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
  1576. auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
  1577. const double p_diff_rms_val = sqrt(p_diff_mse.first);
  1578. const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
  1579. LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
  1580. double p_top_val = 1.*kld.n_same_top/kld.count;
  1581. double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
  1582. LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
  1583. LOG("\n");
  1584. logits.clear();
  1585. }
  1586. LOG("\n");
  1587. if (kld.count < 100) return; // we do not wish to do statistics on so few values
  1588. std::sort(kld_values.begin(), kld_values.end());
  1589. std::sort(p_diff_values.begin(), p_diff_values.end());
  1590. LOG("====== Perplexity statistics ======\n");
  1591. auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
  1592. const double ppl_val = exp(log_ppl.first);
  1593. const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
  1594. LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc);
  1595. auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
  1596. const double ppl_base_val = exp(log_ppl_base.first);
  1597. const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 )
  1598. LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc);
  1599. const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
  1600. // LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov);
  1601. const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second);
  1602. LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor);
  1603. const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
  1604. const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
  1605. LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc);
  1606. const double ppl_ratio_val = exp(log_ppl_ratio_val);
  1607. const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 )
  1608. LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc);
  1609. const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov;
  1610. const double ppl_diff_val = ppl_val - ppl_base_val;
  1611. const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov);
  1612. LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc);
  1613. LOG("\n");
  1614. LOG("====== KL divergence statistics ======\n");
  1615. auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
  1616. LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second);
  1617. auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1])
  1618. : kld_values[kld_values.size()/2];
  1619. auto percentile = [] (std::vector<float> values, float fraction) {
  1620. if (fraction <= 0) return values.front();
  1621. if (fraction >= 1) return values.back();
  1622. float p = fraction*(values.size() - 1);
  1623. size_t ip = size_t(p); p -= ip;
  1624. return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)];
  1625. };
  1626. LOG("Maximum KLD: %10.6f\n", kld_values.back());
  1627. LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f));
  1628. LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
  1629. LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f));
  1630. LOG("Median KLD: %10.6f\n", kld_median);
  1631. LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f));
  1632. LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f));
  1633. LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f));
  1634. LOG("Minimum KLD: %10.6f\n", kld_values.front());
  1635. LOG("\n");
  1636. LOG("====== Token probability statistics ======\n");
  1637. auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count);
  1638. LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second);
  1639. auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1])
  1640. : p_diff_values[p_diff_values.size()/2];
  1641. LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back());
  1642. LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f));
  1643. LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f));
  1644. LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f));
  1645. LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f));
  1646. LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f));
  1647. LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median);
  1648. LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f));
  1649. LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f));
  1650. LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f));
  1651. LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f));
  1652. LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f));
  1653. LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front());
  1654. auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
  1655. // LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second);
  1656. const double p_diff_rms_val = sqrt(p_diff_mse.first);
  1657. const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
  1658. LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
  1659. const double same_top_p = 1.0*kld.n_same_top/kld.count;
  1660. LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1)));
  1661. }
  1662. int main(int argc, char ** argv) {
  1663. common_params params;
  1664. params.n_ctx = 512;
  1665. params.logits_all = true;
  1666. params.escape = false;
  1667. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
  1668. return 1;
  1669. }
  1670. common_init();
  1671. const int32_t n_ctx = params.n_ctx;
  1672. if (n_ctx <= 0) {
  1673. LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__);
  1674. return 1;
  1675. }
  1676. const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
  1677. if (ppl) {
  1678. const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
  1679. const int32_t n_kv = n_seq * n_ctx;
  1680. params.n_parallel = n_seq;
  1681. params.n_ctx = n_kv;
  1682. params.n_batch = std::min(params.n_batch, n_kv);
  1683. } else {
  1684. params.n_batch = std::min(params.n_batch, params.n_ctx);
  1685. if (params.kl_divergence) {
  1686. params.n_parallel = 1;
  1687. } else {
  1688. // ensure there's at least enough seq_ids for HellaSwag
  1689. params.n_parallel = std::max(4, params.n_parallel);
  1690. }
  1691. }
  1692. if (params.ppl_stride > 0) {
  1693. LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  1694. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  1695. params.n_ctx += params.ppl_stride/2;
  1696. }
  1697. llama_backend_init();
  1698. llama_numa_init(params.numa);
  1699. // load the model and apply lora adapter, if any
  1700. common_init_result llama_init = common_init_from_params(params);
  1701. llama_model * model = llama_init.model;
  1702. llama_context * ctx = llama_init.context;
  1703. if (model == NULL) {
  1704. LOG_ERR("%s: unable to load model\n", __func__);
  1705. return 1;
  1706. }
  1707. const int n_ctx_train = llama_n_ctx_train(model);
  1708. if (params.n_ctx > n_ctx_train) {
  1709. LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n",
  1710. __func__, n_ctx_train, params.n_ctx);
  1711. }
  1712. // print system information
  1713. {
  1714. LOG_INF("\n");
  1715. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  1716. }
  1717. struct results_perplexity results;
  1718. if (params.hellaswag) {
  1719. hellaswag_score(ctx, params);
  1720. } else if (params.winogrande) {
  1721. winogrande_score(ctx, params);
  1722. } else if (params.multiple_choice) {
  1723. multiple_choice_score(ctx, params);
  1724. } else if (params.kl_divergence) {
  1725. kl_divergence(ctx, params);
  1726. } else {
  1727. results = perplexity(ctx, params, n_ctx);
  1728. }
  1729. LOG("\n");
  1730. llama_perf_context_print(ctx);
  1731. write_logfile(ctx, params, model, results);
  1732. llama_free(ctx);
  1733. llama_free_model(model);
  1734. llama_backend_free();
  1735. return 0;
  1736. }