metadata.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. from __future__ import annotations
  2. import re
  3. import json
  4. import yaml
  5. import logging
  6. from pathlib import Path
  7. from typing import Any, Literal, Optional
  8. from dataclasses import dataclass
  9. from .constants import Keys
  10. import gguf
  11. logger = logging.getLogger("metadata")
  12. @dataclass
  13. class Metadata:
  14. # Authorship Metadata to be written to GGUF KV Store
  15. name: Optional[str] = None
  16. author: Optional[str] = None
  17. version: Optional[str] = None
  18. organization: Optional[str] = None
  19. finetune: Optional[str] = None
  20. basename: Optional[str] = None
  21. description: Optional[str] = None
  22. quantized_by: Optional[str] = None
  23. size_label: Optional[str] = None
  24. url: Optional[str] = None
  25. doi: Optional[str] = None
  26. uuid: Optional[str] = None
  27. repo_url: Optional[str] = None
  28. source_url: Optional[str] = None
  29. source_doi: Optional[str] = None
  30. source_uuid: Optional[str] = None
  31. source_repo_url: Optional[str] = None
  32. license: Optional[str] = None
  33. license_name: Optional[str] = None
  34. license_link: Optional[str] = None
  35. base_models: Optional[list[dict]] = None
  36. tags: Optional[list[str]] = None
  37. languages: Optional[list[str]] = None
  38. datasets: Optional[list[dict]] = None
  39. @staticmethod
  40. def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
  41. # This grabs as many contextual authorship metadata as possible from the model repository
  42. # making any conversion as required to match the gguf kv store metadata format
  43. # as well as giving users the ability to override any authorship metadata that may be incorrect
  44. # Create a new Metadata instance
  45. metadata = Metadata()
  46. model_card = Metadata.load_model_card(model_path)
  47. hf_params = Metadata.load_hf_parameters(model_path)
  48. # TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
  49. # heuristics
  50. metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
  51. # Metadata Override File Provided
  52. # This is based on LLM_KV_NAMES mapping in llama.cpp
  53. metadata_override = Metadata.load_metadata_override(metadata_override_path)
  54. metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
  55. metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
  56. metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
  57. metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization)
  58. metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune)
  59. metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename)
  60. metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description)
  61. metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by)
  62. metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label)
  63. metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name)
  64. metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link)
  65. metadata.url = metadata_override.get(Keys.General.URL, metadata.url)
  66. metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi)
  67. metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid)
  68. metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url)
  69. metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url)
  70. metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi)
  71. metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid)
  72. metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url)
  73. # Base Models is received here as an array of models
  74. metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
  75. # Datasets is received here as an array of datasets
  76. metadata.datasets = metadata_override.get("general.datasets", metadata.datasets)
  77. metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
  78. metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
  79. # Direct Metadata Override (via direct cli argument)
  80. if model_name is not None:
  81. metadata.name = model_name
  82. return metadata
  83. @staticmethod
  84. def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]:
  85. if metadata_override_path is None or not metadata_override_path.is_file():
  86. return {}
  87. with open(metadata_override_path, "r", encoding="utf-8") as f:
  88. return json.load(f)
  89. @staticmethod
  90. def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
  91. if model_path is None or not model_path.is_dir():
  92. return {}
  93. model_card_path = model_path / "README.md"
  94. if not model_card_path.is_file():
  95. return {}
  96. # The model card metadata is assumed to always be in YAML
  97. # ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
  98. with open(model_card_path, "r", encoding="utf-8") as f:
  99. if f.readline() == "---\n":
  100. raw = f.read().partition("---\n")[0]
  101. data = yaml.safe_load(raw)
  102. if isinstance(data, dict):
  103. return data
  104. else:
  105. logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict")
  106. return {}
  107. else:
  108. return {}
  109. @staticmethod
  110. def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:
  111. if model_path is None or not model_path.is_dir():
  112. return {}
  113. config_path = model_path / "config.json"
  114. if not config_path.is_file():
  115. return {}
  116. with open(config_path, "r", encoding="utf-8") as f:
  117. return json.load(f)
  118. @staticmethod
  119. def id_to_title(string):
  120. # Convert capitalization into title form unless acronym or version number
  121. return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()])
  122. @staticmethod
  123. def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]:
  124. # Huggingface often store model id as '<org>/<model name>'
  125. # so let's parse it and apply some heuristics if possible for model name components
  126. if model_id is None:
  127. # model ID missing
  128. return None, None, None, None, None, None
  129. if ' ' in model_id:
  130. # model ID is actually a normal human sentence
  131. # which means its most likely a normal model name only
  132. # not part of the hugging face naming standard, but whatever
  133. return model_id, None, None, None, None, None
  134. if '/' in model_id:
  135. # model ID (huggingface style)
  136. org_component, model_full_name_component = model_id.split('/', 1)
  137. else:
  138. # model ID but missing org components
  139. org_component, model_full_name_component = None, model_id
  140. # Check if we erroneously matched against './' or '../' etc...
  141. if org_component is not None and len(org_component) > 0 and org_component[0] == '.':
  142. org_component = None
  143. name_parts: list[str] = model_full_name_component.split('-')
  144. # Remove empty parts
  145. for i in reversed(range(len(name_parts))):
  146. if len(name_parts[i]) == 0:
  147. del name_parts[i]
  148. name_types: list[
  149. set[Literal["basename", "size_label", "finetune", "version", "type"]]
  150. ] = [set() for _ in name_parts]
  151. # Annotate the name
  152. for i, part in enumerate(name_parts):
  153. # Version
  154. if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE):
  155. name_types[i].add("version")
  156. # Quant type (should not be there for base models, but still annotated)
  157. elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE):
  158. name_types[i].add("type")
  159. name_parts[i] = part.upper()
  160. # Model size
  161. elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE):
  162. part = part.replace("_", ".")
  163. # Handle weird bloom-7b1 notation
  164. if part[-1].isdecimal():
  165. part = part[:-2] + "." + part[-1] + part[-2]
  166. # Normalize the size suffixes
  167. if len(part) > 1 and part[-2].isdecimal():
  168. if part[-1] in "kmbt":
  169. part = part[:-1] + part[-1].upper()
  170. if total_params != 0:
  171. try:
  172. label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1]))
  173. # Only use it as a size label if it's close or bigger than the model size
  174. # Note that LoRA adapters don't necessarily include all layers,
  175. # so this is why bigger label sizes are accepted.
  176. # Do not use the size label when it's smaller than 1/8 of the model size
  177. if (total_params < 0 and label_params < abs(total_params) // 8) or (
  178. # Check both directions when the current model isn't a LoRA adapter
  179. total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8
  180. ):
  181. # Likely a context length
  182. name_types[i].add("finetune")
  183. # Lowercase the size when it's a context length
  184. part = part[:-1] + part[-1].lower()
  185. except ValueError:
  186. # Failed to convert the size label to float, use it anyway
  187. pass
  188. if len(name_types[i]) == 0:
  189. name_types[i].add("size_label")
  190. name_parts[i] = part
  191. # Some easy to recognize finetune names
  192. elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
  193. if total_params < 0 and part.lower() == "lora":
  194. # ignore redundant "lora" in the finetune part when the output is a lora adapter
  195. name_types[i].add("type")
  196. else:
  197. name_types[i].add("finetune")
  198. # Ignore word-based size labels when there is at least a number-based one present
  199. # TODO: should word-based size labels always be removed instead?
  200. if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n):
  201. for n, t in zip(name_parts, name_types):
  202. if "size_label" in t:
  203. if all(c.isalpha() for c in n):
  204. t.remove("size_label")
  205. at_start = True
  206. # Find the basename through the annotated name
  207. for part, t in zip(name_parts, name_types):
  208. if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t):
  209. t.add("basename")
  210. else:
  211. if at_start:
  212. at_start = False
  213. if len(t) == 0:
  214. t.add("finetune")
  215. # Remove the basename annotation from trailing version
  216. for part, t in zip(reversed(name_parts), reversed(name_types)):
  217. if "basename" in t and len(t) > 1:
  218. t.remove("basename")
  219. else:
  220. break
  221. basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
  222. # Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys)
  223. size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None
  224. finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
  225. # TODO: should the basename version always be excluded?
  226. # NOTE: multiple finetune versions are joined together
  227. version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None
  228. if size_label is None and finetune is None and version is None:
  229. # Too ambiguous, output nothing
  230. basename = None
  231. return model_full_name_component, org_component, basename, finetune, version, size_label
  232. @staticmethod
  233. def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata:
  234. # Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
  235. # Model Card Heuristics
  236. ########################
  237. if model_card is not None:
  238. def use_model_card_metadata(metadata_key: str, model_card_key: str):
  239. if model_card_key in model_card and getattr(metadata, metadata_key, None) is None:
  240. setattr(metadata, metadata_key, model_card.get(model_card_key))
  241. def use_array_model_card_metadata(metadata_key: str, model_card_key: str):
  242. # Note: Will append rather than replace if already exist
  243. tags_value = model_card.get(model_card_key, None)
  244. if tags_value is None:
  245. return
  246. current_value = getattr(metadata, metadata_key, None)
  247. if current_value is None:
  248. current_value = []
  249. if isinstance(tags_value, str):
  250. current_value.append(tags_value)
  251. elif isinstance(tags_value, list):
  252. current_value.extend(tags_value)
  253. setattr(metadata, metadata_key, current_value)
  254. # LLAMA.cpp's direct internal convention
  255. # (Definitely not part of hugging face formal/informal standard)
  256. #########################################
  257. use_model_card_metadata("name", "name")
  258. use_model_card_metadata("author", "author")
  259. use_model_card_metadata("version", "version")
  260. use_model_card_metadata("organization", "organization")
  261. use_model_card_metadata("description", "description")
  262. use_model_card_metadata("finetune", "finetune")
  263. use_model_card_metadata("basename", "basename")
  264. use_model_card_metadata("size_label", "size_label")
  265. use_model_card_metadata("source_url", "url")
  266. use_model_card_metadata("source_doi", "doi")
  267. use_model_card_metadata("source_uuid", "uuid")
  268. use_model_card_metadata("source_repo_url", "repo_url")
  269. # LLAMA.cpp's huggingface style convention
  270. # (Definitely not part of hugging face formal/informal standard... but with model_ appended to match their style)
  271. ###########################################
  272. use_model_card_metadata("name", "model_name")
  273. use_model_card_metadata("author", "model_author")
  274. use_model_card_metadata("version", "model_version")
  275. use_model_card_metadata("organization", "model_organization")
  276. use_model_card_metadata("description", "model_description")
  277. use_model_card_metadata("finetune", "model_finetune")
  278. use_model_card_metadata("basename", "model_basename")
  279. use_model_card_metadata("size_label", "model_size_label")
  280. use_model_card_metadata("source_url", "model_url")
  281. use_model_card_metadata("source_doi", "model_doi")
  282. use_model_card_metadata("source_uuid", "model_uuid")
  283. use_model_card_metadata("source_repo_url", "model_repo_url")
  284. # Hugging Face Direct Convention
  285. #################################
  286. # Not part of huggingface model card standard but notice some model creator using it
  287. # such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
  288. use_model_card_metadata("name", "model_name")
  289. use_model_card_metadata("author", "model_creator")
  290. use_model_card_metadata("basename", "model_type")
  291. if "base_model" in model_card or "base_models" in model_card or "base_model_sources" in model_card:
  292. # This represents the parent models that this is based on
  293. # Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
  294. # Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
  295. metadata_base_models = []
  296. base_model_value = model_card.get("base_model", model_card.get("base_models", model_card.get("base_model_sources", None)))
  297. if base_model_value is not None:
  298. if isinstance(base_model_value, str):
  299. metadata_base_models.append(base_model_value)
  300. elif isinstance(base_model_value, list):
  301. metadata_base_models.extend(base_model_value)
  302. if metadata.base_models is None:
  303. metadata.base_models = []
  304. for model_id in metadata_base_models:
  305. # NOTE: model size of base model is assumed to be similar to the size of the current model
  306. base_model = {}
  307. if isinstance(model_id, str):
  308. if model_id.startswith("http://") or model_id.startswith("https://") or model_id.startswith("ssh://"):
  309. base_model["repo_url"] = model_id
  310. # Check if Hugging Face ID is present in URL
  311. if "huggingface.co" in model_id:
  312. match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", model_id)
  313. if match:
  314. model_id_component = match.group(1)
  315. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id_component, total_params)
  316. # Populate model dictionary with extracted components
  317. if model_full_name_component is not None:
  318. base_model["name"] = Metadata.id_to_title(model_full_name_component)
  319. if org_component is not None:
  320. base_model["organization"] = Metadata.id_to_title(org_component)
  321. if version is not None:
  322. base_model["version"] = version
  323. else:
  324. # Likely a Hugging Face ID
  325. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
  326. # Populate model dictionary with extracted components
  327. if model_full_name_component is not None:
  328. base_model["name"] = Metadata.id_to_title(model_full_name_component)
  329. if org_component is not None:
  330. base_model["organization"] = Metadata.id_to_title(org_component)
  331. if version is not None:
  332. base_model["version"] = version
  333. if org_component is not None and model_full_name_component is not None:
  334. base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
  335. elif isinstance(model_id, dict):
  336. base_model = model_id
  337. else:
  338. logger.error(f"base model entry '{str(model_id)}' not in a known format")
  339. metadata.base_models.append(base_model)
  340. if "datasets" in model_card or "dataset" in model_card or "dataset_sources" in model_card:
  341. # This represents the datasets that this was trained from
  342. metadata_datasets = []
  343. dataset_value = model_card.get("datasets", model_card.get("dataset", model_card.get("dataset_sources", None)))
  344. if dataset_value is not None:
  345. if isinstance(dataset_value, str):
  346. metadata_datasets.append(dataset_value)
  347. elif isinstance(dataset_value, list):
  348. metadata_datasets.extend(dataset_value)
  349. if metadata.datasets is None:
  350. metadata.datasets = []
  351. for dataset_id in metadata_datasets:
  352. # NOTE: model size of base model is assumed to be similar to the size of the current model
  353. dataset = {}
  354. if isinstance(dataset_id, str):
  355. if dataset_id.startswith(("http://", "https://", "ssh://")):
  356. dataset["repo_url"] = dataset_id
  357. # Check if Hugging Face ID is present in URL
  358. if "huggingface.co" in dataset_id:
  359. match = re.match(r"https?://huggingface.co/([^/]+/[^/]+)$", dataset_id)
  360. if match:
  361. dataset_id_component = match.group(1)
  362. dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id_component, total_params)
  363. # Populate dataset dictionary with extracted components
  364. if dataset_name_component is not None:
  365. dataset["name"] = Metadata.id_to_title(dataset_name_component)
  366. if org_component is not None:
  367. dataset["organization"] = Metadata.id_to_title(org_component)
  368. if version is not None:
  369. dataset["version"] = version
  370. else:
  371. # Likely a Hugging Face ID
  372. dataset_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(dataset_id, total_params)
  373. # Populate dataset dictionary with extracted components
  374. if dataset_name_component is not None:
  375. dataset["name"] = Metadata.id_to_title(dataset_name_component)
  376. if org_component is not None:
  377. dataset["organization"] = Metadata.id_to_title(org_component)
  378. if version is not None:
  379. dataset["version"] = version
  380. if org_component is not None and dataset_name_component is not None:
  381. dataset["repo_url"] = f"https://huggingface.co/{org_component}/{dataset_name_component}"
  382. elif isinstance(dataset_id, dict):
  383. dataset = dataset_id
  384. else:
  385. logger.error(f"dataset entry '{str(dataset_id)}' not in a known format")
  386. metadata.datasets.append(dataset)
  387. use_model_card_metadata("license", "license")
  388. use_model_card_metadata("license_name", "license_name")
  389. use_model_card_metadata("license_link", "license_link")
  390. use_array_model_card_metadata("tags", "tags")
  391. use_array_model_card_metadata("tags", "pipeline_tag")
  392. use_array_model_card_metadata("languages", "languages")
  393. use_array_model_card_metadata("languages", "language")
  394. # Hugging Face Parameter Heuristics
  395. ####################################
  396. if hf_params is not None:
  397. hf_name_or_path = hf_params.get("_name_or_path")
  398. if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1:
  399. # Use _name_or_path only if its actually a model name and not some computer path
  400. # e.g. 'meta-llama/Llama-2-7b-hf'
  401. model_id = hf_name_or_path
  402. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
  403. if metadata.name is None and model_full_name_component is not None:
  404. metadata.name = Metadata.id_to_title(model_full_name_component)
  405. if metadata.organization is None and org_component is not None:
  406. metadata.organization = Metadata.id_to_title(org_component)
  407. if metadata.basename is None and basename is not None:
  408. metadata.basename = basename
  409. if metadata.finetune is None and finetune is not None:
  410. metadata.finetune = finetune
  411. if metadata.version is None and version is not None:
  412. metadata.version = version
  413. if metadata.size_label is None and size_label is not None:
  414. metadata.size_label = size_label
  415. # Directory Folder Name Fallback Heuristics
  416. ############################################
  417. if model_path is not None:
  418. model_id = model_path.name
  419. model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
  420. if metadata.name is None and model_full_name_component is not None:
  421. metadata.name = Metadata.id_to_title(model_full_name_component)
  422. if metadata.organization is None and org_component is not None:
  423. metadata.organization = Metadata.id_to_title(org_component)
  424. if metadata.basename is None and basename is not None:
  425. metadata.basename = basename
  426. if metadata.finetune is None and finetune is not None:
  427. metadata.finetune = finetune
  428. if metadata.version is None and version is not None:
  429. metadata.version = version
  430. if metadata.size_label is None and size_label is not None:
  431. metadata.size_label = size_label
  432. return metadata
  433. def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
  434. assert self.name is not None
  435. gguf_writer.add_name(self.name)
  436. if self.author is not None:
  437. gguf_writer.add_author(self.author)
  438. if self.version is not None:
  439. gguf_writer.add_version(self.version)
  440. if self.organization is not None:
  441. gguf_writer.add_organization(self.organization)
  442. if self.finetune is not None:
  443. gguf_writer.add_finetune(self.finetune)
  444. if self.basename is not None:
  445. gguf_writer.add_basename(self.basename)
  446. if self.description is not None:
  447. gguf_writer.add_description(self.description)
  448. if self.quantized_by is not None:
  449. gguf_writer.add_quantized_by(self.quantized_by)
  450. if self.size_label is not None:
  451. gguf_writer.add_size_label(self.size_label)
  452. if self.license is not None:
  453. gguf_writer.add_license(self.license)
  454. if self.license_name is not None:
  455. gguf_writer.add_license_name(self.license_name)
  456. if self.license_link is not None:
  457. gguf_writer.add_license_link(self.license_link)
  458. if self.url is not None:
  459. gguf_writer.add_url(self.url)
  460. if self.doi is not None:
  461. gguf_writer.add_doi(self.doi)
  462. if self.uuid is not None:
  463. gguf_writer.add_uuid(self.uuid)
  464. if self.repo_url is not None:
  465. gguf_writer.add_repo_url(self.repo_url)
  466. if self.source_url is not None:
  467. gguf_writer.add_source_url(self.source_url)
  468. if self.source_doi is not None:
  469. gguf_writer.add_source_doi(self.source_doi)
  470. if self.source_uuid is not None:
  471. gguf_writer.add_source_uuid(self.source_uuid)
  472. if self.source_repo_url is not None:
  473. gguf_writer.add_source_repo_url(self.source_repo_url)
  474. if self.base_models is not None:
  475. gguf_writer.add_base_model_count(len(self.base_models))
  476. for key, base_model_entry in enumerate(self.base_models):
  477. if "name" in base_model_entry:
  478. gguf_writer.add_base_model_name(key, base_model_entry["name"])
  479. if "author" in base_model_entry:
  480. gguf_writer.add_base_model_author(key, base_model_entry["author"])
  481. if "version" in base_model_entry:
  482. gguf_writer.add_base_model_version(key, base_model_entry["version"])
  483. if "organization" in base_model_entry:
  484. gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
  485. if "description" in base_model_entry:
  486. gguf_writer.add_base_model_description(key, base_model_entry["description"])
  487. if "url" in base_model_entry:
  488. gguf_writer.add_base_model_url(key, base_model_entry["url"])
  489. if "doi" in base_model_entry:
  490. gguf_writer.add_base_model_doi(key, base_model_entry["doi"])
  491. if "uuid" in base_model_entry:
  492. gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"])
  493. if "repo_url" in base_model_entry:
  494. gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
  495. if self.datasets is not None:
  496. gguf_writer.add_dataset_count(len(self.datasets))
  497. for key, dataset_entry in enumerate(self.datasets):
  498. if "name" in dataset_entry:
  499. gguf_writer.add_dataset_name(key, dataset_entry["name"])
  500. if "author" in dataset_entry:
  501. gguf_writer.add_dataset_author(key, dataset_entry["author"])
  502. if "version" in dataset_entry:
  503. gguf_writer.add_dataset_version(key, dataset_entry["version"])
  504. if "organization" in dataset_entry:
  505. gguf_writer.add_dataset_organization(key, dataset_entry["organization"])
  506. if "description" in dataset_entry:
  507. gguf_writer.add_dataset_description(key, dataset_entry["description"])
  508. if "url" in dataset_entry:
  509. gguf_writer.add_dataset_url(key, dataset_entry["url"])
  510. if "doi" in dataset_entry:
  511. gguf_writer.add_dataset_doi(key, dataset_entry["doi"])
  512. if "uuid" in dataset_entry:
  513. gguf_writer.add_dataset_uuid(key, dataset_entry["uuid"])
  514. if "repo_url" in dataset_entry:
  515. gguf_writer.add_dataset_repo_url(key, dataset_entry["repo_url"])
  516. if self.tags is not None:
  517. gguf_writer.add_tags(self.tags)
  518. if self.languages is not None:
  519. gguf_writer.add_languages(self.languages)