ggml.c 329 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _POSIX_C_SOURCE 199309L
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <time.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <stdint.h>
  15. #include <stdio.h>
  16. #include <float.h>
  17. // if C99 - static_assert is noop
  18. // ref: https://stackoverflow.com/a/53923785/4039976
  19. #ifndef static_assert
  20. #define static_assert(cond, msg) struct global_scope_noop_trick
  21. #endif
  22. #if defined _MSC_VER || defined(__MINGW32__)
  23. #if !defined(__MINGW32__)
  24. #include <Windows.h>
  25. #else
  26. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  27. #include <windows.h>
  28. #include <errno.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. /*#define GGML_PERF*/
  71. #define GGML_DEBUG 0
  72. #define GGML_GELU_FP16
  73. #define GGML_SILU_FP16
  74. #define GGML_SOFT_MAX_UNROLL 4
  75. #define GGML_VEC_DOT_UNROLL 2
  76. #ifdef GGML_USE_ACCELERATE
  77. // uncomment to use vDSP for soft max computation
  78. // note: not sure if it is actually faster
  79. //#define GGML_SOFT_MAX_ACCELERATE
  80. #endif
  81. #if UINTPTR_MAX == 0xFFFFFFFF
  82. #define GGML_MEM_ALIGN 4
  83. #else
  84. #define GGML_MEM_ALIGN 16
  85. #endif
  86. #define UNUSED(x) (void)(x)
  87. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  88. #define GGML_ASSERT(x) \
  89. do { \
  90. if (!(x)) { \
  91. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  92. abort(); \
  93. } \
  94. } while (0)
  95. #ifdef GGML_USE_ACCELERATE
  96. #include <Accelerate/Accelerate.h>
  97. #elif GGML_USE_OPENBLAS
  98. #include <cblas.h>
  99. #endif
  100. #undef MIN
  101. #undef MAX
  102. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  103. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  104. // floating point type used to accumulate sums
  105. typedef double ggml_float;
  106. // 16-bit float
  107. // on Arm, we use __fp16
  108. // on x86, we use uint16_t
  109. #ifdef __ARM_NEON
  110. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  111. //
  112. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  113. //
  114. #include <arm_neon.h>
  115. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  116. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  117. #define GGML_FP16_TO_FP32(x) (x)
  118. #define GGML_FP32_TO_FP16(x) (x)
  119. #else
  120. #ifdef __wasm_simd128__
  121. #include <wasm_simd128.h>
  122. #else
  123. #ifdef __POWER9_VECTOR__
  124. #include <altivec.h>
  125. #undef bool
  126. #define bool _Bool
  127. #else
  128. #include <immintrin.h>
  129. #endif
  130. #endif
  131. #ifdef __F16C__
  132. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  133. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  134. #else
  135. // FP16 <-> FP32
  136. // ref: https://github.com/Maratyszcza/FP16
  137. static inline float fp32_from_bits(uint32_t w) {
  138. union {
  139. uint32_t as_bits;
  140. float as_value;
  141. } fp32;
  142. fp32.as_bits = w;
  143. return fp32.as_value;
  144. }
  145. static inline uint32_t fp32_to_bits(float f) {
  146. union {
  147. float as_value;
  148. uint32_t as_bits;
  149. } fp32;
  150. fp32.as_value = f;
  151. return fp32.as_bits;
  152. }
  153. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  154. const uint32_t w = (uint32_t) h << 16;
  155. const uint32_t sign = w & UINT32_C(0x80000000);
  156. const uint32_t two_w = w + w;
  157. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  158. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  159. const float exp_scale = 0x1.0p-112f;
  160. #else
  161. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  162. #endif
  163. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  164. const uint32_t magic_mask = UINT32_C(126) << 23;
  165. const float magic_bias = 0.5f;
  166. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  167. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  168. const uint32_t result = sign |
  169. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  170. return fp32_from_bits(result);
  171. }
  172. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  173. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  174. const float scale_to_inf = 0x1.0p+112f;
  175. const float scale_to_zero = 0x1.0p-110f;
  176. #else
  177. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  178. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  179. #endif
  180. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  181. const uint32_t w = fp32_to_bits(f);
  182. const uint32_t shl1_w = w + w;
  183. const uint32_t sign = w & UINT32_C(0x80000000);
  184. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  185. if (bias < UINT32_C(0x71000000)) {
  186. bias = UINT32_C(0x71000000);
  187. }
  188. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  189. const uint32_t bits = fp32_to_bits(base);
  190. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  191. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  192. const uint32_t nonsign = exp_bits + mantissa_bits;
  193. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  194. }
  195. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  196. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  197. #endif // __F16C__
  198. #endif // __ARM_NEON
  199. //
  200. // global data
  201. //
  202. // precomputed gelu table for f16 (128 KB)
  203. static ggml_fp16_t table_gelu_f16[1 << 16];
  204. // precomputed silu table for f16 (128 KB)
  205. static ggml_fp16_t table_silu_f16[1 << 16];
  206. // precomputed exp table for f16 (128 KB)
  207. static ggml_fp16_t table_exp_f16[1 << 16];
  208. // precomputed f32 table for f16 (256 KB)
  209. static float table_f32_f16[1 << 16];
  210. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  211. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  212. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  213. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  214. uint16_t s;
  215. memcpy(&s, &f, sizeof(uint16_t));
  216. return table_f32_f16[s];
  217. }
  218. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  219. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  220. #endif
  221. // note: do not use these inside ggml.c
  222. // these are meant to be used via the ggml.h API
  223. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  224. return GGML_FP16_TO_FP32(x);
  225. }
  226. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  227. return GGML_FP32_TO_FP16(x);
  228. }
  229. //
  230. // timing
  231. //
  232. #if defined(_MSC_VER) || defined(__MINGW32__)
  233. static int64_t timer_freq;
  234. void ggml_time_init(void) {
  235. LARGE_INTEGER frequency;
  236. QueryPerformanceFrequency(&frequency);
  237. timer_freq = frequency.QuadPart;
  238. }
  239. int64_t ggml_time_ms(void) {
  240. LARGE_INTEGER t;
  241. QueryPerformanceCounter(&t);
  242. return (t.QuadPart * 1000) / timer_freq;
  243. }
  244. int64_t ggml_time_us(void) {
  245. LARGE_INTEGER t;
  246. QueryPerformanceCounter(&t);
  247. return (t.QuadPart * 1000000) / timer_freq;
  248. }
  249. #else
  250. void ggml_time_init(void) {}
  251. int64_t ggml_time_ms(void) {
  252. struct timespec ts;
  253. clock_gettime(CLOCK_MONOTONIC, &ts);
  254. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  255. }
  256. int64_t ggml_time_us(void) {
  257. struct timespec ts;
  258. clock_gettime(CLOCK_MONOTONIC, &ts);
  259. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  260. }
  261. #endif
  262. int64_t ggml_cycles(void) {
  263. return clock();
  264. }
  265. int64_t ggml_cycles_per_ms(void) {
  266. return CLOCKS_PER_SEC/1000;
  267. }
  268. #ifdef GGML_PERF
  269. #define ggml_perf_time_ms() ggml_time_ms()
  270. #define ggml_perf_time_us() ggml_time_us()
  271. #define ggml_perf_cycles() ggml_cycles()
  272. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  273. #else
  274. #define ggml_perf_time_ms() 0
  275. #define ggml_perf_time_us() 0
  276. #define ggml_perf_cycles() 0
  277. #define ggml_perf_cycles_per_ms() 0
  278. #endif
  279. //
  280. // cache line
  281. //
  282. #if defined(__cpp_lib_hardware_interference_size)
  283. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  284. #else
  285. #if defined(__POWER9_VECTOR__)
  286. #define CACHE_LINE_SIZE 128
  287. #else
  288. #define CACHE_LINE_SIZE 64
  289. #endif
  290. #endif
  291. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  292. //
  293. // quantization
  294. //
  295. #define QK 32
  296. // AVX routines provided by GH user Const-me
  297. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  298. #if __AVX2__ || __AVX512F__
  299. // Unpack 32 4-bit fields into 32 bytes
  300. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  301. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  302. {
  303. // Load 16 bytes from memory
  304. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  305. // Expand bytes into uint16_t values
  306. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  307. // Unpack values into individual bytes
  308. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  309. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  310. __m256i low = _mm256_and_si256( lowMask, bytes );
  311. high = _mm256_slli_epi16( high, 4 );
  312. bytes = _mm256_or_si256( low, high );
  313. return bytes;
  314. }
  315. static inline __m128i packNibbles( __m256i bytes )
  316. {
  317. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  318. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  319. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  320. __m256i low = _mm256_and_si256( lowByte, bytes );
  321. high = _mm256_srli_epi16( high, 4 );
  322. bytes = _mm256_or_si256( low, high );
  323. // Compress uint16_t lanes into bytes
  324. __m128i r0 = _mm256_castsi256_si128( bytes );
  325. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  326. return _mm_packus_epi16( r0, r1 );
  327. }
  328. #endif
  329. // method 5
  330. // blocks of QK elements
  331. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  332. // reference implementation for deterministic creation of model files
  333. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  334. assert(k % QK == 0);
  335. const int nb = k / QK;
  336. const size_t bs = sizeof(float) + QK/2;
  337. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  338. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  339. uint8_t pp[QK/2];
  340. for (int i = 0; i < nb; i++) {
  341. float amax = 0.0f; // absolute max
  342. for (int l = 0; l < QK; l++) {
  343. const float v = x[i*QK + l];
  344. amax = MAX(amax, fabsf(v));
  345. }
  346. const float d = amax / ((1 << 3) - 1);
  347. const float id = d ? 1.0f/d : 0.0f;
  348. *(float *)pd = d;
  349. pd += bs;
  350. for (int l = 0; l < QK; l += 2) {
  351. const float v0 = x[i*QK + l + 0]*id;
  352. const float v1 = x[i*QK + l + 1]*id;
  353. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  354. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  355. assert(vi0 >= 0 && vi0 < 16);
  356. assert(vi1 >= 0 && vi1 < 16);
  357. pp[l/2] = vi0 | (vi1 << 4);
  358. }
  359. memcpy(pb, pp, sizeof(pp));
  360. pb += bs;
  361. }
  362. }
  363. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  364. assert(k % QK == 0);
  365. #if __ARM_NEON || defined(__AVX2__) || defined(__wasm_simd128__)
  366. const int nb = k / QK;
  367. const size_t bs = sizeof(float) + QK/2;
  368. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  369. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  370. uint8_t pp[QK/2];
  371. #endif
  372. #if __ARM_NEON
  373. #if QK == 32
  374. for (int i = 0; i < nb; i++) {
  375. float amax = 0.0f; // absolute max
  376. float32x4_t srcv [8];
  377. float32x4_t asrcv[8];
  378. float32x4_t amaxv[8];
  379. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  380. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  381. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  382. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  383. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  384. amax = MAX(
  385. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  386. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  387. const float d = amax / ((1 << 3) - 1);
  388. const float id = d ? 1.0/d : 0.0;
  389. *(float *)pd = d;
  390. pd += bs;
  391. for (int l = 0; l < 8; l++) {
  392. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  393. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  394. const int32x4_t vi = vcvtq_s32_f32(vf);
  395. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  396. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  397. }
  398. memcpy(pb, pp, sizeof(pp));
  399. pb += bs;
  400. }
  401. #else
  402. #error "not implemented for QK"
  403. #endif
  404. #elif defined(__AVX2__)
  405. #if QK == 32
  406. for (int i = 0; i < nb; i++) {
  407. // Load elements into 4 AVX vectors
  408. __m256 v0 = _mm256_loadu_ps( x );
  409. __m256 v1 = _mm256_loadu_ps( x + 8 );
  410. __m256 v2 = _mm256_loadu_ps( x + 16 );
  411. __m256 v3 = _mm256_loadu_ps( x + 24 );
  412. x += 32;
  413. // Compute max(abs(e)) for the block
  414. const __m256 signBit = _mm256_set1_ps( -0.0f );
  415. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  416. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  417. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  418. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  419. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  420. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  421. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  422. const float maxScalar = _mm_cvtss_f32( max4 );
  423. // Quantize these floats
  424. const float d = maxScalar / 7.0f;
  425. *(float *)pd = d;
  426. pd += bs;
  427. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  428. const __m256 mul = _mm256_set1_ps( id );
  429. // Apply the multiplier
  430. v0 = _mm256_mul_ps( v0, mul );
  431. v1 = _mm256_mul_ps( v1, mul );
  432. v2 = _mm256_mul_ps( v2, mul );
  433. v3 = _mm256_mul_ps( v3, mul );
  434. // Round to nearest integer
  435. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  436. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  437. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  438. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  439. // Convert floats to integers
  440. __m256i i0 = _mm256_cvtps_epi32( v0 );
  441. __m256i i1 = _mm256_cvtps_epi32( v1 );
  442. __m256i i2 = _mm256_cvtps_epi32( v2 );
  443. __m256i i3 = _mm256_cvtps_epi32( v3 );
  444. // Convert int32 to int16
  445. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  446. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  447. // Convert int16 to int8
  448. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  449. // We got our precious signed bytes, but the order is now wrong
  450. // These AVX2 pack instructions process 16-byte pieces independently
  451. // The following instruction is fixing the order
  452. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  453. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  454. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  455. const __m256i off = _mm256_set1_epi8( 8 );
  456. i0 = _mm256_add_epi8( i0, off );
  457. // Compress the vector into 4 bit/value, and store
  458. __m128i res = packNibbles( i0 );
  459. _mm_storeu_si128( ( __m128i* )pb, res );
  460. pb += bs;
  461. }
  462. #else
  463. #error "not implemented for QK"
  464. #endif
  465. #elif defined(__wasm_simd128__)
  466. #if QK == 32
  467. for (int i = 0; i < nb; i++) {
  468. float amax = 0.0f; // absolute max
  469. v128_t srcv [8];
  470. v128_t asrcv[8];
  471. v128_t amaxv[8];
  472. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  473. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  474. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  475. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  476. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  477. amax = MAX(
  478. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  479. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  480. const float d = amax / ((1 << 3) - 1);
  481. const float id = d ? 1.0/d : 0.0;
  482. *(float *)pd = d;
  483. pd += bs;
  484. for (int l = 0; l < 8; l++) {
  485. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  486. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  487. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  488. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  489. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  490. }
  491. memcpy(pb, pp, sizeof(pp));
  492. pb += bs;
  493. }
  494. #else
  495. #error "not implemented for QK"
  496. #endif
  497. #else
  498. // scalar
  499. quantize_row_q4_0_reference(x, y, k);
  500. #endif
  501. }
  502. // method 4
  503. // blocks of QK elements
  504. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  505. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  506. assert(k % QK == 0);
  507. const int nb = k / QK;
  508. const size_t bs = 2*sizeof(float) + QK/2;
  509. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  510. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  511. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  512. uint8_t pp[QK/2];
  513. for (int i = 0; i < nb; i++) {
  514. float min = FLT_MAX;
  515. float max = -FLT_MAX;
  516. for (int l = 0; l < QK; l++) {
  517. const float v = x[i*QK + l];
  518. if (v < min) min = v;
  519. if (v > max) max = v;
  520. }
  521. const float d = (max - min) / ((1 << 4) - 1);
  522. const float id = d ? 1.0f/d : 0.0f;
  523. *(float *)pm = min;
  524. *(float *)pd = d;
  525. pm += bs;
  526. pd += bs;
  527. for (int l = 0; l < QK; l += 2) {
  528. const float v0 = (x[i*QK + l + 0] - min)*id;
  529. const float v1 = (x[i*QK + l + 1] - min)*id;
  530. const uint8_t vi0 = round(v0);
  531. const uint8_t vi1 = round(v1);
  532. assert(vi0 >= 0 && vi0 < 16);
  533. assert(vi1 >= 0 && vi1 < 16);
  534. pp[l/2] = vi0 | (vi1 << 4);
  535. }
  536. memcpy(pb, pp, sizeof(pp));
  537. pb += bs;
  538. }
  539. }
  540. // TODO: vectorize
  541. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  542. assert(k % QK == 0);
  543. const int nb = k / QK;
  544. const size_t bs = sizeof(float) + QK/2;
  545. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  546. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  547. // scalar
  548. for (int i = 0; i < nb; i++) {
  549. const float d = *(const float *) (pd + i*bs);
  550. const uint8_t * restrict pp = pb + i*bs;
  551. for (int l = 0; l < QK; l += 2) {
  552. const uint8_t vi = pp[l/2];
  553. const int8_t vi0 = vi & 0xf;
  554. const int8_t vi1 = vi >> 4;
  555. const float v0 = (vi0 - 8)*d;
  556. const float v1 = (vi1 - 8)*d;
  557. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  558. y[i*QK + l + 0] = v0;
  559. y[i*QK + l + 1] = v1;
  560. assert(!isnan(y[i*QK + l + 0]));
  561. assert(!isnan(y[i*QK + l + 1]));
  562. }
  563. }
  564. }
  565. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  566. assert(k % QK == 0);
  567. const int nb = k / QK;
  568. const size_t bs = 2*sizeof(float) + QK/2;
  569. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  570. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  571. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  572. for (int i = 0; i < nb; i++) {
  573. const float d = *(const float *) (pd + i*bs);
  574. const float m = *(const float *) (pm + i*bs);
  575. const uint8_t * restrict pp = pb + i*bs;
  576. for (int l = 0; l < QK; l += 2) {
  577. const uint8_t vi = pp[l/2];
  578. const int8_t vi0 = vi & 0xf;
  579. const int8_t vi1 = vi >> 4;
  580. const float v0 = vi0*d + m;
  581. const float v1 = vi1*d + m;
  582. y[i*QK + l + 0] = v0;
  583. y[i*QK + l + 1] = v1;
  584. assert(!isnan(y[i*QK + l + 0]));
  585. assert(!isnan(y[i*QK + l + 1]));
  586. }
  587. }
  588. }
  589. //
  590. // simd mappings
  591. //
  592. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  593. // we then implement the fundamental computation operations below using only these macros
  594. // adding support for new architectures requires to define the corresponding SIMD macros
  595. //
  596. // GGML_F32_STEP / GGML_F16_STEP
  597. // number of elements to process in a single step
  598. //
  599. // GGML_F32_EPR / GGML_F16_EPR
  600. // number of elements to fit in a single register
  601. //
  602. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  603. #define GGML_SIMD
  604. // F32 NEON
  605. #define GGML_F32_STEP 16
  606. #define GGML_F32_EPR 4
  607. #define GGML_F32x4 float32x4_t
  608. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  609. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  610. #define GGML_F32x4_LOAD vld1q_f32
  611. #define GGML_F32x4_STORE vst1q_f32
  612. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  613. #define GGML_F32x4_ADD vaddq_f32
  614. #define GGML_F32x4_MUL vmulq_f32
  615. #if defined(__ARM_FEATURE_QRDMX)
  616. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  617. #else
  618. #define GGML_F32x4_REDUCE_ONE(x) \
  619. (vgetq_lane_f32(x, 0) + \
  620. vgetq_lane_f32(x, 1) + \
  621. vgetq_lane_f32(x, 2) + \
  622. vgetq_lane_f32(x, 3))
  623. #endif
  624. #define GGML_F32x4_REDUCE(res, x) \
  625. { \
  626. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  627. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  628. } \
  629. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  630. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  631. } \
  632. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  633. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  634. } \
  635. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  636. }
  637. #define GGML_F32_VEC GGML_F32x4
  638. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  639. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  640. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  641. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  642. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  643. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  644. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  645. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  646. // F16 NEON
  647. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  648. #define GGML_F16_STEP 32
  649. #define GGML_F16_EPR 8
  650. #define GGML_F16x8 float16x8_t
  651. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  652. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  653. #define GGML_F16x8_LOAD vld1q_f16
  654. #define GGML_F16x8_STORE vst1q_f16
  655. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  656. #define GGML_F16x8_ADD vaddq_f16
  657. #define GGML_F16x8_MUL vmulq_f16
  658. #define GGML_F16x8_REDUCE(res, x) \
  659. { \
  660. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  661. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  662. } \
  663. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  664. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  665. } \
  666. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  667. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  668. } \
  669. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  670. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  671. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  672. }
  673. #define GGML_F16_VEC GGML_F16x8
  674. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  675. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  676. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  677. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  678. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  679. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  680. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  681. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  682. #else
  683. // if FP16 vector arithmetic is not supported, we use FP32 instead
  684. // and take advantage of the vcvt_ functions to convert to/from FP16
  685. #define GGML_F16_STEP 16
  686. #define GGML_F16_EPR 4
  687. #define GGML_F32Cx4 float32x4_t
  688. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  689. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  690. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  691. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  692. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  693. #define GGML_F32Cx4_ADD vaddq_f32
  694. #define GGML_F32Cx4_MUL vmulq_f32
  695. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  696. #define GGML_F16_VEC GGML_F32Cx4
  697. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  698. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  699. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  700. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  701. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  702. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  703. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  704. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  705. #endif
  706. #elif defined(__AVX__)
  707. #define GGML_SIMD
  708. // F32 AVX
  709. #define GGML_F32_STEP 32
  710. #define GGML_F32_EPR 8
  711. #define GGML_F32x8 __m256
  712. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  713. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  714. #define GGML_F32x8_LOAD _mm256_loadu_ps
  715. #define GGML_F32x8_STORE _mm256_storeu_ps
  716. #if defined(__FMA__)
  717. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  718. #else
  719. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  720. #endif
  721. #define GGML_F32x8_ADD _mm256_add_ps
  722. #define GGML_F32x8_MUL _mm256_mul_ps
  723. #define GGML_F32x8_REDUCE(res, x) \
  724. { \
  725. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  726. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  727. } \
  728. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  729. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  730. } \
  731. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  732. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  733. } \
  734. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  735. _mm256_extractf128_ps(x[0], 1)); \
  736. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  737. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  738. }
  739. // TODO: is this optimal ?
  740. #define GGML_F32_VEC GGML_F32x8
  741. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  742. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  743. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  744. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  745. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  746. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  747. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  748. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  749. // F16 AVX
  750. #define GGML_F16_STEP 32
  751. #define GGML_F16_EPR 8
  752. // F16 arithmetic is not supported by AVX, so we use F32 instead
  753. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  754. #define GGML_F32Cx8 __m256
  755. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  756. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  757. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  758. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  759. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  760. #define GGML_F32Cx8_ADD _mm256_add_ps
  761. #define GGML_F32Cx8_MUL _mm256_mul_ps
  762. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  763. #define GGML_F16_VEC GGML_F32Cx8
  764. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  765. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  766. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  767. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  768. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  769. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  770. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  771. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  772. #elif defined(__POWER9_VECTOR__)
  773. #define GGML_SIMD
  774. // F32 POWER9
  775. #define GGML_F32_STEP 32
  776. #define GGML_F32_EPR 4
  777. #define GGML_F32x4 vector float
  778. #define GGML_F32x4_ZERO 0.0f
  779. #define GGML_F32x4_SET1 vec_splats
  780. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  781. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  782. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  783. #define GGML_F32x4_ADD vec_add
  784. #define GGML_F32x4_MUL vec_mul
  785. #define GGML_F32x4_REDUCE(res, x) \
  786. { \
  787. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  788. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  789. } \
  790. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  791. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  792. } \
  793. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  794. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  795. } \
  796. res = vec_extract(x[0], 0) + \
  797. vec_extract(x[0], 1) + \
  798. vec_extract(x[0], 2) + \
  799. vec_extract(x[0], 3); \
  800. }
  801. #define GGML_F32_VEC GGML_F32x4
  802. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  803. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  804. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  805. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  806. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  807. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  808. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  809. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  810. // F16 POWER9
  811. #define GGML_F16_STEP GGML_F32_STEP
  812. #define GGML_F16_EPR GGML_F32_EPR
  813. #define GGML_F16_VEC GGML_F32x4
  814. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  815. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  816. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  817. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  818. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  819. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  820. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  821. vec_extract_fp32_from_shortl(vec_xl(0, p))
  822. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  823. #define GGML_F16_VEC_STORE(p, r, i) \
  824. if (i & 0x1) \
  825. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  826. r[i - GGML_ENDIAN_BYTE(0)]), \
  827. 0, p - GGML_F16_EPR)
  828. #elif defined(__wasm_simd128__)
  829. #define GGML_SIMD
  830. // F32 WASM
  831. #define GGML_F32_STEP 16
  832. #define GGML_F32_EPR 4
  833. #define GGML_F32x4 v128_t
  834. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  835. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  836. #define GGML_F32x4_LOAD wasm_v128_load
  837. #define GGML_F32x4_STORE wasm_v128_store
  838. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  839. #define GGML_F32x4_ADD wasm_f32x4_add
  840. #define GGML_F32x4_MUL wasm_f32x4_mul
  841. #define GGML_F32x4_REDUCE(res, x) \
  842. { \
  843. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  844. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  845. } \
  846. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  847. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  848. } \
  849. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  850. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  851. } \
  852. res = wasm_f32x4_extract_lane(x[0], 0) + \
  853. wasm_f32x4_extract_lane(x[0], 1) + \
  854. wasm_f32x4_extract_lane(x[0], 2) + \
  855. wasm_f32x4_extract_lane(x[0], 3); \
  856. }
  857. #define GGML_F32_VEC GGML_F32x4
  858. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  859. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  860. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  861. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  862. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  863. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  864. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  865. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  866. // F16 WASM
  867. #define GGML_F16_STEP 16
  868. #define GGML_F16_EPR 4
  869. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  870. float tmp[4];
  871. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  872. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  873. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  874. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  875. return wasm_v128_load(tmp);
  876. }
  877. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  878. float tmp[4];
  879. wasm_v128_store(tmp, x);
  880. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  881. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  882. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  883. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  884. }
  885. #define GGML_F16x4 v128_t
  886. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  887. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  888. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  889. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  890. #define GGML_F16x4_FMA GGML_F32x4_FMA
  891. #define GGML_F16x4_ADD wasm_f32x4_add
  892. #define GGML_F16x4_MUL wasm_f32x4_mul
  893. #define GGML_F16x4_REDUCE(res, x) \
  894. { \
  895. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  896. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  897. } \
  898. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  899. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  900. } \
  901. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  902. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  903. } \
  904. res = wasm_f32x4_extract_lane(x[0], 0) + \
  905. wasm_f32x4_extract_lane(x[0], 1) + \
  906. wasm_f32x4_extract_lane(x[0], 2) + \
  907. wasm_f32x4_extract_lane(x[0], 3); \
  908. }
  909. #define GGML_F16_VEC GGML_F16x4
  910. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  911. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  912. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  913. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  914. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  915. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  916. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  917. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  918. #elif defined(__SSE3__)
  919. #define GGML_SIMD
  920. // F32 SSE
  921. #define GGML_F32_STEP 32
  922. #define GGML_F32_EPR 4
  923. #define GGML_F32x4 __m128
  924. #define GGML_F32x4_ZERO _mm_setzero_ps()
  925. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  926. #define GGML_F32x4_LOAD _mm_loadu_ps
  927. #define GGML_F32x4_STORE _mm_storeu_ps
  928. #if defined(__FMA__)
  929. // TODO: Does this work?
  930. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  931. #else
  932. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  933. #endif
  934. #define GGML_F32x4_ADD _mm_add_ps
  935. #define GGML_F32x4_MUL _mm_mul_ps
  936. #define GGML_F32x4_REDUCE(res, x) \
  937. { \
  938. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  939. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  940. } \
  941. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  942. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  943. } \
  944. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  945. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  946. } \
  947. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  948. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  949. }
  950. // TODO: is this optimal ?
  951. #define GGML_F32_VEC GGML_F32x4
  952. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  953. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  954. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  955. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  956. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  957. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  958. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  959. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  960. // F16 SSE
  961. #define GGML_F16_STEP 32
  962. #define GGML_F16_EPR 4
  963. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  964. float tmp[4];
  965. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  966. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  967. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  968. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  969. return _mm_loadu_ps(tmp);
  970. }
  971. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  972. float arr[4];
  973. _mm_storeu_ps(arr, y);
  974. x[0] = GGML_FP32_TO_FP16(arr[0]);
  975. x[1] = GGML_FP32_TO_FP16(arr[1]);
  976. x[2] = GGML_FP32_TO_FP16(arr[2]);
  977. x[3] = GGML_FP32_TO_FP16(arr[3]);
  978. }
  979. #define GGML_F32Cx4 __m128
  980. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  981. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  982. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  983. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  984. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  985. #define GGML_F32Cx4_ADD _mm_add_ps
  986. #define GGML_F32Cx4_MUL _mm_mul_ps
  987. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  988. #define GGML_F16_VEC GGML_F32Cx4
  989. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  990. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  991. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  992. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  993. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  994. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  995. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  996. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  997. #endif
  998. // GGML_F32_ARR / GGML_F16_ARR
  999. // number of registers to use per step
  1000. #ifdef GGML_SIMD
  1001. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1002. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1003. #endif
  1004. //
  1005. // fundamental operations
  1006. //
  1007. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1008. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1009. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1010. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1011. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1012. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1013. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1014. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1015. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1016. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1017. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1018. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1019. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1020. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1021. ggml_float sumf = 0.0;
  1022. #ifdef GGML_SIMD
  1023. const int np = (n & ~(GGML_F32_STEP - 1));
  1024. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1025. GGML_F32_VEC ax[GGML_F32_ARR];
  1026. GGML_F32_VEC ay[GGML_F32_ARR];
  1027. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1028. for (int j = 0; j < GGML_F32_ARR; j++) {
  1029. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1030. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1031. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1032. }
  1033. }
  1034. // reduce sum0..sum3 to sum0
  1035. GGML_F32_VEC_REDUCE(sumf, sum);
  1036. // leftovers
  1037. for (int i = np; i < n; ++i) {
  1038. sumf += x[i]*y[i];
  1039. }
  1040. #else
  1041. // scalar
  1042. for (int i = 0; i < n; ++i) {
  1043. sumf += x[i]*y[i];
  1044. }
  1045. #endif
  1046. *s = sumf;
  1047. }
  1048. #if __AVX512F__ && QK == 32
  1049. static inline __m512 dot_q4_0_oneblock_avx512(
  1050. __m512 acc,
  1051. const uint8_t * pd0,
  1052. const uint8_t * pd1,
  1053. const uint8_t * pb0,
  1054. const uint8_t * pb1,
  1055. size_t bs,
  1056. int i
  1057. ) {
  1058. const float * d0_0 = (const float *) (pd0 + i*bs);
  1059. const float * d1_0 = (const float *) (pd1 + i*bs);
  1060. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1061. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1062. // Compute combined scale for the block
  1063. float scaleScalar = d0_0[0] * d1_0[0];
  1064. __m512 scale = _mm512_set1_ps( scaleScalar );
  1065. __m256i bx = bytesFromNibbles( p0 );
  1066. __m256i by = bytesFromNibbles( p1 );
  1067. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1068. const __m256i off = _mm256_set1_epi8( 8 );
  1069. bx = _mm256_sub_epi8( bx, off );
  1070. by = _mm256_sub_epi8( by, off );
  1071. // Sign-extend 16 signed bytes into int16_t
  1072. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1073. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1074. // Compute products of int16_t integers, add pairwise
  1075. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1076. // Convert int32_t to float
  1077. __m512 p = _mm512_cvtepi32_ps( i64 );
  1078. // Apply the scale, and accumulate
  1079. return _mm512_fmadd_ps( scale, p, acc );
  1080. }
  1081. #endif
  1082. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1083. ggml_float sumf = 0.0;
  1084. #if defined(GGML_SIMD)
  1085. const int np = (n & ~(GGML_F16_STEP - 1));
  1086. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1087. GGML_F16_VEC ax[GGML_F16_ARR];
  1088. GGML_F16_VEC ay[GGML_F16_ARR];
  1089. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1090. for (int j = 0; j < GGML_F16_ARR; j++) {
  1091. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1092. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1093. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1094. }
  1095. }
  1096. // reduce sum0..sum3 to sum0
  1097. GGML_F16_VEC_REDUCE(sumf, sum);
  1098. // leftovers
  1099. for (int i = np; i < n; ++i) {
  1100. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1101. }
  1102. #else
  1103. for (int i = 0; i < n; ++i) {
  1104. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1105. }
  1106. #endif
  1107. *s = sumf;
  1108. }
  1109. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1110. const int nb = n / QK;
  1111. assert(n % QK == 0);
  1112. assert(nb % 2 == 0);
  1113. const size_t bs = sizeof(float) + QK/2;
  1114. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1115. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1116. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1117. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1118. float sumf = 0.0;
  1119. #ifdef __ARM_NEON
  1120. #if QK == 32
  1121. float sum0 = 0.0f;
  1122. float sum1 = 0.0f;
  1123. for (int i = 0; i < nb; i += 2) {
  1124. const float d0_0 = *(const float *) (pd0 + i*bs);
  1125. const float d1_0 = *(const float *) (pd1 + i*bs);
  1126. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1127. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1128. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1129. const uint8_t * restrict p0 = pb0 + i*bs;
  1130. const uint8_t * restrict p1 = pb1 + i*bs;
  1131. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1132. const int8x16_t s8b = vdupq_n_s8(0x8);
  1133. const uint8x16_t v0_0 = vld1q_u8(p0);
  1134. const uint8x16_t v1_0 = vld1q_u8(p1);
  1135. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1136. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1137. // 4-bit -> 8-bit
  1138. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1139. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1140. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1141. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1142. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1143. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1144. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1145. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1146. // sub 8
  1147. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1148. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1149. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1150. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1151. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1152. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1153. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1154. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1155. #if defined(__ARM_FEATURE_DOTPROD)
  1156. // dot product into int16x8_t
  1157. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1158. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1159. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1160. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1161. // scalar
  1162. #if defined(__ARM_FEATURE_QRDMX)
  1163. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1164. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1165. #else
  1166. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1167. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1168. #endif
  1169. #else
  1170. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1171. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1172. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1173. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1174. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1175. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1176. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1177. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1178. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1179. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1180. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1181. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1182. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1183. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1184. // scalar
  1185. #if defined(__ARM_FEATURE_QRDMX)
  1186. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1187. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1188. #else
  1189. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1190. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1191. #endif
  1192. #endif
  1193. }
  1194. sumf = sum0 + sum1;
  1195. #else
  1196. #error "not implemented for QK"
  1197. #endif
  1198. #elif defined(__AVX512F__)
  1199. #if QK == 32
  1200. // Initialize accumulator with zeros
  1201. __m512 acc0 = _mm512_setzero_ps();
  1202. __m512 acc1 = _mm512_setzero_ps();
  1203. const int superblock_size = 8;
  1204. const int superblock_count = nb / superblock_size;
  1205. const int remainder = nb % superblock_size;
  1206. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1207. int i = superblock_ix * superblock_size;
  1208. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1209. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1210. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1211. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1212. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1213. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1214. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1215. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1216. }
  1217. // Remainders
  1218. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1219. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1220. }
  1221. // Horizontal sum of all lanes of the accumulator
  1222. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1223. #else
  1224. #error "not implemented for QK"
  1225. #endif
  1226. #elif defined(__AVX2__)
  1227. #if QK == 32
  1228. const size_t countBlocks = nb;
  1229. // Initialize accumulator with zeros
  1230. __m256 acc = _mm256_setzero_ps();
  1231. // Main loop
  1232. for (int i = 0; i < nb; ++i) {
  1233. const float * d0_0 = (const float *) (pd0 + i*bs);
  1234. const float * d1_0 = (const float *) (pd1 + i*bs);
  1235. const uint8_t * restrict p0 = pb0 + i*bs;
  1236. const uint8_t * restrict p1 = pb1 + i*bs;
  1237. // Compute combined scale for the block
  1238. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1239. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1240. __m256i bx = bytesFromNibbles( p0 );
  1241. __m256i by = bytesFromNibbles( p1 );
  1242. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1243. const __m256i off = _mm256_set1_epi8( 8 );
  1244. bx = _mm256_sub_epi8( bx, off );
  1245. by = _mm256_sub_epi8( by, off );
  1246. // Sign-extend first 16 signed bytes into int16_t
  1247. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1248. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1249. // Compute products of int16_t integers, add pairwise
  1250. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1251. // Sign-extend last 16 signed bytes into int16_t vectors
  1252. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1253. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1254. // Accumulate products of int16_t integers
  1255. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1256. // Convert int32_t to float
  1257. __m256 p = _mm256_cvtepi32_ps( i32 );
  1258. // Apply the scale, and accumulate
  1259. acc = _mm256_fmadd_ps( scale, p, acc );
  1260. }
  1261. // Return horizontal sum of the acc vector
  1262. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1263. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1264. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1265. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1266. sumf = _mm_cvtss_f32( res );
  1267. #else
  1268. #error "not implemented for QK"
  1269. #endif
  1270. #elif defined(__wasm_simd128__)
  1271. #if QK == 32
  1272. // wasm simd
  1273. float sum0 = 0.0f;
  1274. float sum1 = 0.0f;
  1275. for (int i = 0; i < nb; i += 2) {
  1276. const float d0_0 = *(const float *) (pd0 + i*bs);
  1277. const float d1_0 = *(const float *) (pd1 + i*bs);
  1278. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1279. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1280. const uint8_t * restrict p0 = pb0 + i*bs;
  1281. const uint8_t * restrict p1 = pb1 + i*bs;
  1282. const v128_t m4b = wasm_u8x16_splat(0xf);
  1283. const v128_t s8b = wasm_i8x16_splat(0x8);
  1284. const v128_t v0_0 = wasm_v128_load(p0);
  1285. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1286. const v128_t v1_0 = wasm_v128_load(p1);
  1287. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1288. // 4-bit -> 8-bit
  1289. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1290. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1291. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1292. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1293. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1294. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1295. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1296. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1297. // sub 8
  1298. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1299. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1300. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1301. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1302. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1303. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1304. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1305. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1306. // dot product into int16x8_t
  1307. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1308. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1309. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1310. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1311. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1312. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1313. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1314. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1315. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1316. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1317. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1318. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1319. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1320. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1321. sum0 += d0_0*d1_0*(
  1322. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1323. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1324. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1325. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1326. sum1 += d0_1*d1_1*(
  1327. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1328. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1329. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1330. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1331. }
  1332. sumf = sum0 + sum1;
  1333. #else
  1334. #error "not implemented for QK"
  1335. #endif
  1336. #else
  1337. // scalar
  1338. for (int i = 0; i < nb; i++) {
  1339. const float d0 = *(const float *) (pd0 + i*bs);
  1340. const float d1 = *(const float *) (pd1 + i*bs);
  1341. const uint8_t * restrict p0 = pb0 + i*bs;
  1342. const uint8_t * restrict p1 = pb1 + i*bs;
  1343. for (int j = 0; j < QK/2; j++) {
  1344. const uint8_t v0 = p0[j];
  1345. const uint8_t v1 = p1[j];
  1346. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1347. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1348. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1349. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1350. sumf += f0*f2 + f1*f3;
  1351. }
  1352. }
  1353. #endif
  1354. *s = sumf;
  1355. }
  1356. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1357. const int nb = n / QK;
  1358. const size_t bs = 2*sizeof(float) + QK/2;
  1359. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1360. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1361. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1362. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1363. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1364. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1365. float sumf = 0.0;
  1366. #if defined(__AVX2__)
  1367. #if QK == 32
  1368. // Initialize accumulator with zeros
  1369. __m256 acc = _mm256_setzero_ps();
  1370. // Accumulator for constant offsets
  1371. float acc_offset = 0.0f;
  1372. // Main loop
  1373. for (int i = 0; i < nb; ++i) {
  1374. const float * m0 = (const float *) (pm0 + i*bs);
  1375. const float * m1 = (const float *) (pm1 + i*bs);
  1376. const float * d0 = (const float *) (pd0 + i*bs);
  1377. const float * d1 = (const float *) (pd1 + i*bs);
  1378. const uint8_t * restrict p0 = pb0 + i*bs;
  1379. const uint8_t * restrict p1 = pb1 + i*bs;
  1380. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1381. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1382. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1383. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1384. // Compute combined scale for the block
  1385. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1386. // Compute cross scales for the block
  1387. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1388. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1389. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1390. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1391. __m256i bx = bytesFromNibbles( p0 );
  1392. __m256i by = bytesFromNibbles( p1 );
  1393. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1394. // Sign-extend first 16 signed bytes into int16_t
  1395. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1396. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1397. // Compute products of int16_t integers, add pairwise
  1398. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1399. // Sign-extend last 16 signed bytes into int16_t vectors
  1400. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1401. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1402. // Accumulate products of int16_t integers
  1403. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1404. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1405. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1406. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1407. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1408. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1409. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1410. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1411. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1412. // Convert int32_t to float
  1413. __m256 p = _mm256_cvtepi32_ps( i32 );
  1414. // Apply the scale, and accumulate
  1415. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1416. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1417. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1418. // acc_offset += m0*m1 (for each entry in the block)
  1419. acc_offset += (*m0)*(*m1);
  1420. }
  1421. // Return horizontal sum of the acc vector
  1422. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1423. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1424. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1425. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1426. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1427. #else
  1428. #error "not implemented for QK"
  1429. #endif
  1430. #else
  1431. // scalar
  1432. for (int i = 0; i < nb; i++) {
  1433. const float m0 = *(const float *) (pm0 + i*bs);
  1434. const float m1 = *(const float *) (pm1 + i*bs);
  1435. const float d0 = *(const float *) (pd0 + i*bs);
  1436. const float d1 = *(const float *) (pd1 + i*bs);
  1437. const uint8_t * restrict p0 = pb0 + i*bs;
  1438. const uint8_t * restrict p1 = pb1 + i*bs;
  1439. for (int j = 0; j < QK/2; j++) {
  1440. const uint8_t v0 = p0[j];
  1441. const uint8_t v1 = p1[j];
  1442. const float f0 = d0*(v0 & 0xf) + m0;
  1443. const float f1 = d0*(v0 >> 4) + m0;
  1444. const float f2 = d1*(v1 & 0xf) + m1;
  1445. const float f3 = d1*(v1 >> 4) + m1;
  1446. sumf += f0*f2 + f1*f3;
  1447. }
  1448. }
  1449. #endif
  1450. *s = sumf;
  1451. }
  1452. // compute GGML_VEC_DOT_UNROLL dot products at once
  1453. // xs - x row stride in bytes
  1454. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1455. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1456. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1457. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1458. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1459. }
  1460. #if defined(GGML_SIMD)
  1461. const int np = (n & ~(GGML_F16_STEP - 1));
  1462. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1463. GGML_F16_VEC ax[GGML_F16_ARR];
  1464. GGML_F16_VEC ay[GGML_F16_ARR];
  1465. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1466. for (int j = 0; j < GGML_F16_ARR; j++) {
  1467. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1468. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1469. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1470. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1471. }
  1472. }
  1473. }
  1474. // reduce sum0..sum3 to sum0
  1475. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1476. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1477. }
  1478. // leftovers
  1479. for (int i = np; i < n; ++i) {
  1480. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1481. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1482. }
  1483. }
  1484. #else
  1485. for (int i = 0; i < n; ++i) {
  1486. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1487. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1488. }
  1489. }
  1490. #endif
  1491. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1492. s[i] = sumf[i];
  1493. }
  1494. }
  1495. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1496. #if defined(GGML_SIMD)
  1497. const int np = (n & ~(GGML_F32_STEP - 1));
  1498. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1499. GGML_F32_VEC ax[GGML_F32_ARR];
  1500. GGML_F32_VEC ay[GGML_F32_ARR];
  1501. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1502. for (int j = 0; j < GGML_F32_ARR; j++) {
  1503. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1504. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1505. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1506. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1507. }
  1508. }
  1509. // leftovers
  1510. for (int i = np; i < n; ++i) {
  1511. y[i] += x[i]*v;
  1512. }
  1513. #else
  1514. // scalar
  1515. for (int i = 0; i < n; ++i) {
  1516. y[i] += x[i]*v;
  1517. }
  1518. #endif
  1519. }
  1520. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1521. #if defined(GGML_SIMD)
  1522. const int np = (n & ~(GGML_F16_STEP - 1));
  1523. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1524. GGML_F16_VEC ax[GGML_F16_ARR];
  1525. GGML_F16_VEC ay[GGML_F16_ARR];
  1526. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1527. for (int j = 0; j < GGML_F16_ARR; j++) {
  1528. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1529. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1530. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1531. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1532. }
  1533. }
  1534. // leftovers
  1535. for (int i = np; i < n; ++i) {
  1536. GGML_ASSERT(false);
  1537. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1538. }
  1539. #else
  1540. for (int i = 0; i < n; ++i) {
  1541. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1542. }
  1543. #endif
  1544. }
  1545. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1546. assert(n % QK == 0);
  1547. const int nb = n / QK;
  1548. const size_t bs = sizeof(float) + QK/2;
  1549. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1550. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1551. #if __ARM_NEON
  1552. #if QK == 32
  1553. for (int i = 0; i < nb; ++i) {
  1554. const float d0 = v*(*(const float *) (pd + i*bs));
  1555. const uint8_t * restrict pp = pb + i*bs;
  1556. const uint8x8_t m4b = vdup_n_u8(0xf);
  1557. const int8x8_t s8b = vdup_n_s8(0x8);
  1558. const float32x4_t vd = vdupq_n_f32(d0);
  1559. for (int j = 0; j < 2; j++) {
  1560. const uint8x8_t vx = vld1_u8(pp + j*8);
  1561. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1562. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1563. // sub 8
  1564. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1565. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1566. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1567. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1568. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1569. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1570. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1571. // convert to 2x int16x8_t
  1572. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1573. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1574. // convert to 4x float32x4_t
  1575. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1576. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1577. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1578. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1579. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1580. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1581. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1582. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1583. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1584. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1585. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1586. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1587. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1588. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1589. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1590. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1591. }
  1592. }
  1593. #endif
  1594. #else
  1595. // scalar
  1596. for (int i = 0; i < nb; i++) {
  1597. const float d = *(const float *) (pd + i*bs);
  1598. const uint8_t * restrict pp = pb + i*bs;
  1599. for (int l = 0; l < QK; l += 2) {
  1600. const uint8_t vi = pp[l/2];
  1601. const int8_t vi0 = vi & 0xf;
  1602. const int8_t vi1 = vi >> 4;
  1603. const float v0 = (vi0 - 8)*d;
  1604. const float v1 = (vi1 - 8)*d;
  1605. y[i*QK + l + 0] += v0*v;
  1606. y[i*QK + l + 1] += v1*v;
  1607. assert(!isnan(y[i*QK + l + 0]));
  1608. assert(!isnan(y[i*QK + l + 1]));
  1609. assert(!isinf(y[i*QK + l + 0]));
  1610. assert(!isinf(y[i*QK + l + 1]));
  1611. }
  1612. }
  1613. #endif
  1614. }
  1615. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1616. assert(n % QK == 0);
  1617. const int nb = n / QK;
  1618. const size_t bs = 2*sizeof(float) + QK/2;
  1619. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1620. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1621. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1622. for (int i = 0; i < nb; i++) {
  1623. const float d = *(const float *) (pd + i*bs);
  1624. const float m = *(const float *) (pm + i*bs);
  1625. const uint8_t * restrict pp = pb + i*bs;
  1626. for (int l = 0; l < QK; l += 2) {
  1627. const uint8_t vi = pp[l/2];
  1628. const uint8_t vi0 = vi & 0xf;
  1629. const uint8_t vi1 = vi >> 4;
  1630. const float v0 = d*vi0 + m;
  1631. const float v1 = d*vi1 + m;
  1632. y[i*QK + l + 0] += v0*v;
  1633. y[i*QK + l + 1] += v1*v;
  1634. assert(!isnan(y[i*QK + l + 0]));
  1635. assert(!isnan(y[i*QK + l + 1]));
  1636. assert(!isinf(y[i*QK + l + 0]));
  1637. assert(!isinf(y[i*QK + l + 1]));
  1638. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1639. }
  1640. }
  1641. }
  1642. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1643. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1644. #if defined(GGML_SIMD)
  1645. const int np = (n & ~(GGML_F32_STEP - 1));
  1646. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1647. GGML_F32_VEC ay[GGML_F32_ARR];
  1648. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1649. for (int j = 0; j < GGML_F32_ARR; j++) {
  1650. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1651. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1652. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1653. }
  1654. }
  1655. // leftovers
  1656. for (int i = np; i < n; ++i) {
  1657. y[i] *= v;
  1658. }
  1659. #else
  1660. // scalar
  1661. for (int i = 0; i < n; ++i) {
  1662. y[i] *= v;
  1663. }
  1664. #endif
  1665. }
  1666. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1667. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1668. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1669. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1670. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1671. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1672. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1673. static const ggml_float GELU_COEF_A = 0.044715;
  1674. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1675. inline static float ggml_gelu_f32(float x) {
  1676. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1677. }
  1678. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1679. const uint16_t * i16 = (const uint16_t *) x;
  1680. for (int i = 0; i < n; ++i) {
  1681. y[i] = table_gelu_f16[i16[i]];
  1682. }
  1683. }
  1684. #ifdef GGML_GELU_FP16
  1685. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1686. uint16_t t;
  1687. for (int i = 0; i < n; ++i) {
  1688. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1689. memcpy(&t, &fp16, sizeof(uint16_t));
  1690. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1691. }
  1692. }
  1693. #else
  1694. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1695. for (int i = 0; i < n; ++i) {
  1696. y[i] = ggml_gelu_f32(x[i]);
  1697. }
  1698. }
  1699. #endif
  1700. // Sigmoid Linear Unit (SiLU) function
  1701. inline static float ggml_silu_f32(float x) {
  1702. return x/(1.0 + exp(-x));
  1703. }
  1704. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1705. const uint16_t * i16 = (const uint16_t *) x;
  1706. for (int i = 0; i < n; ++i) {
  1707. y[i] = table_silu_f16[i16[i]];
  1708. }
  1709. }
  1710. #ifdef GGML_SILU_FP16
  1711. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1712. uint16_t t;
  1713. for (int i = 0; i < n; ++i) {
  1714. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1715. memcpy(&t, &fp16, sizeof(uint16_t));
  1716. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1717. }
  1718. }
  1719. #else
  1720. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1721. for (int i = 0; i < n; ++i) {
  1722. y[i] = ggml_silu_f32(x[i]);
  1723. }
  1724. }
  1725. #endif
  1726. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1727. #ifndef GGML_USE_ACCELERATE
  1728. ggml_float sum = 0.0;
  1729. for (int i = 0; i < n; ++i) {
  1730. sum += x[i];
  1731. }
  1732. *s = sum;
  1733. #else
  1734. vDSP_sve(x, 1, s, n);
  1735. #endif
  1736. }
  1737. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1738. #ifndef GGML_USE_ACCELERATE
  1739. ggml_float max = -INFINITY;
  1740. for (int i = 0; i < n; ++i) {
  1741. max = MAX(max, x[i]);
  1742. }
  1743. *s = max;
  1744. #else
  1745. vDSP_maxv(x, 1, s, n);
  1746. #endif
  1747. }
  1748. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1749. //
  1750. // logging
  1751. //
  1752. #if (GGML_DEBUG >= 1)
  1753. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1754. #else
  1755. #define GGML_PRINT_DEBUG(...)
  1756. #endif
  1757. #if (GGML_DEBUG >= 5)
  1758. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1759. #else
  1760. #define GGML_PRINT_DEBUG_5(...)
  1761. #endif
  1762. #if (GGML_DEBUG >= 10)
  1763. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1764. #else
  1765. #define GGML_PRINT_DEBUG_10(...)
  1766. #endif
  1767. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1768. //
  1769. // data types
  1770. //
  1771. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1772. QK,
  1773. QK,
  1774. 1,
  1775. 1,
  1776. 1,
  1777. 1,
  1778. 1,
  1779. };
  1780. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1781. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1782. sizeof(float ) + QK/2,
  1783. sizeof(float )*2 + QK/2,
  1784. sizeof(int8_t ),
  1785. sizeof(int16_t),
  1786. sizeof(int32_t),
  1787. sizeof(ggml_fp16_t),
  1788. sizeof(float ),
  1789. };
  1790. // don't forget to update the array above when adding new types
  1791. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1792. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1793. "NONE",
  1794. "DUP",
  1795. "ADD",
  1796. "SUB",
  1797. "MUL",
  1798. "DIV",
  1799. "SQR",
  1800. "SQRT",
  1801. "SUM",
  1802. "MEAN",
  1803. "REPEAT",
  1804. "ABS",
  1805. "SGN",
  1806. "NEG",
  1807. "STEP",
  1808. "RELU",
  1809. "GELU",
  1810. "SILU",
  1811. "NORM",
  1812. "RMS_NORM",
  1813. "MUL_MAT",
  1814. "SCALE",
  1815. "CPY",
  1816. "RESHAPE",
  1817. "VIEW",
  1818. "PERMUTE",
  1819. "TRANSPOSE",
  1820. "GET_ROWS",
  1821. "DIAG_MASK_INF",
  1822. "SOFT_MAX",
  1823. "ROPE",
  1824. "CONV_1D_1S",
  1825. "CONV_1D_2S",
  1826. "FLASH_ATTN",
  1827. "FLASH_FF",
  1828. };
  1829. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1830. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1831. "none",
  1832. "x",
  1833. "x+y",
  1834. "x-y",
  1835. "x*y",
  1836. "x/y",
  1837. "x^2",
  1838. "√x",
  1839. "Σx",
  1840. "Σx/n",
  1841. "repeat(x)",
  1842. "abs(x)",
  1843. "sgn(x)",
  1844. "-x",
  1845. "step(x)",
  1846. "relu(x)",
  1847. "gelu(x)",
  1848. "silu(x)",
  1849. "norm(x)",
  1850. "rms_norm(x)",
  1851. "X*Y",
  1852. "x*v",
  1853. "x-\\>y",
  1854. "reshape(x)",
  1855. "view(x)",
  1856. "permute(x)",
  1857. "transpose(x)",
  1858. "get_rows(x)",
  1859. "diag_mask_inf(x)",
  1860. "soft_max(x)",
  1861. "rope(x)",
  1862. "conv_1d_1s(x)",
  1863. "conv_1d_2s(x)",
  1864. "flash_attn(x)",
  1865. "flash_ff(x)",
  1866. };
  1867. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1868. //
  1869. // ggml object
  1870. //
  1871. struct ggml_object {
  1872. size_t offs;
  1873. size_t size;
  1874. struct ggml_object * next;
  1875. char padding[8];
  1876. };
  1877. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1878. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1879. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1880. //
  1881. // ggml context
  1882. //
  1883. struct ggml_context {
  1884. size_t mem_size;
  1885. void * mem_buffer;
  1886. bool mem_buffer_owned;
  1887. int n_objects;
  1888. struct ggml_object * objects_begin;
  1889. struct ggml_object * objects_end;
  1890. struct ggml_scratch scratch;
  1891. struct ggml_scratch scratch_save;
  1892. };
  1893. struct ggml_context_container {
  1894. bool used;
  1895. struct ggml_context context;
  1896. };
  1897. //
  1898. // compute types
  1899. //
  1900. enum ggml_task_type {
  1901. GGML_TASK_INIT = 0,
  1902. GGML_TASK_COMPUTE,
  1903. GGML_TASK_FINALIZE,
  1904. };
  1905. struct ggml_compute_params {
  1906. enum ggml_task_type type;
  1907. int ith, nth;
  1908. // work buffer for all threads
  1909. size_t wsize;
  1910. void * wdata;
  1911. };
  1912. //
  1913. // ggml state
  1914. //
  1915. struct ggml_state {
  1916. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1917. };
  1918. // global state
  1919. static struct ggml_state g_state;
  1920. static atomic_int g_state_barrier = 0;
  1921. // barrier via spin lock
  1922. inline static void ggml_critical_section_start(void) {
  1923. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1924. while (processing > 0) {
  1925. // wait for other threads to finish
  1926. atomic_fetch_sub(&g_state_barrier, 1);
  1927. sched_yield(); // TODO: reconsider this
  1928. processing = atomic_fetch_add(&g_state_barrier, 1);
  1929. }
  1930. }
  1931. // TODO: make this somehow automatically executed
  1932. // some sort of "sentry" mechanism
  1933. inline static void ggml_critical_section_end(void) {
  1934. atomic_fetch_sub(&g_state_barrier, 1);
  1935. }
  1936. ////////////////////////////////////////////////////////////////////////////////
  1937. void ggml_print_object(const struct ggml_object * obj) {
  1938. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1939. obj->offs, obj->size, (const void *) obj->next);
  1940. }
  1941. void ggml_print_objects(const struct ggml_context * ctx) {
  1942. struct ggml_object * obj = ctx->objects_begin;
  1943. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1944. while (obj != NULL) {
  1945. ggml_print_object(obj);
  1946. obj = obj->next;
  1947. }
  1948. GGML_PRINT("%s: --- end ---\n", __func__);
  1949. }
  1950. int ggml_nelements(const struct ggml_tensor * tensor) {
  1951. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1952. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1953. }
  1954. int ggml_nrows(const struct ggml_tensor * tensor) {
  1955. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1956. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1957. }
  1958. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1959. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1960. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1961. }
  1962. int ggml_blck_size(enum ggml_type type) {
  1963. return GGML_BLCK_SIZE[type];
  1964. }
  1965. size_t ggml_type_size(enum ggml_type type) {
  1966. return GGML_TYPE_SIZE[type];
  1967. }
  1968. float ggml_type_sizef(enum ggml_type type) {
  1969. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1970. }
  1971. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1972. return GGML_TYPE_SIZE[tensor->type];
  1973. }
  1974. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1975. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1976. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1977. }
  1978. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1979. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1980. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1981. }
  1982. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1983. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1984. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1985. }
  1986. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1987. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1988. return
  1989. (t0->ne[0] == t1->ne[0]) &&
  1990. (t0->ne[2] == t1->ne[2]) &&
  1991. (t0->ne[3] == t1->ne[3]);
  1992. }
  1993. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1994. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1995. return
  1996. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1997. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1998. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1999. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2000. }
  2001. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2002. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2003. return
  2004. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2005. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2006. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2007. }
  2008. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2009. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2010. return
  2011. (t0->ne[0] == t1->ne[0] ) &&
  2012. (t0->ne[1] == t1->ne[1] ) &&
  2013. (t0->ne[2] == t1->ne[2] ) &&
  2014. (t0->ne[3] == t1->ne[3] );
  2015. }
  2016. // check if t1 can be represented as a repeatition of t0
  2017. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2019. return
  2020. (t1->ne[0]%t0->ne[0] == 0) &&
  2021. (t1->ne[1]%t0->ne[1] == 0) &&
  2022. (t1->ne[2]%t0->ne[2] == 0) &&
  2023. (t1->ne[3]%t0->ne[3] == 0);
  2024. }
  2025. static inline int ggml_up32(int n) {
  2026. return (n + 31) & ~31;
  2027. }
  2028. static inline int ggml_up64(int n) {
  2029. return (n + 63) & ~63;
  2030. }
  2031. static inline int ggml_up(int n, int m) {
  2032. // assert m is a power of 2
  2033. GGML_ASSERT((m & (m - 1)) == 0);
  2034. return (n + m - 1) & ~(m - 1);
  2035. }
  2036. // assert that pointer is aligned to GGML_MEM_ALIGN
  2037. #define ggml_assert_aligned(ptr) \
  2038. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2039. ////////////////////////////////////////////////////////////////////////////////
  2040. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2041. // make this function thread safe
  2042. ggml_critical_section_start();
  2043. static bool is_first_call = true;
  2044. if (is_first_call) {
  2045. // initialize GELU, SILU and EXP F32 tables
  2046. {
  2047. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2048. ggml_fp16_t ii;
  2049. for (int i = 0; i < (1 << 16); ++i) {
  2050. uint16_t ui = i;
  2051. memcpy(&ii, &ui, sizeof(ii));
  2052. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2053. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2054. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2055. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2056. }
  2057. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2058. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2059. }
  2060. // initialize g_state
  2061. {
  2062. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2063. g_state = (struct ggml_state) {
  2064. /*.contexts =*/ { { 0 } },
  2065. };
  2066. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2067. g_state.contexts[i].used = false;
  2068. }
  2069. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2070. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2071. }
  2072. is_first_call = false;
  2073. }
  2074. // find non-used context in g_state
  2075. struct ggml_context * ctx = NULL;
  2076. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2077. if (!g_state.contexts[i].used) {
  2078. g_state.contexts[i].used = true;
  2079. ctx = &g_state.contexts[i].context;
  2080. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2081. break;
  2082. }
  2083. }
  2084. if (ctx == NULL) {
  2085. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2086. ggml_critical_section_end();
  2087. return NULL;
  2088. }
  2089. *ctx = (struct ggml_context) {
  2090. /*.mem_size =*/ params.mem_size,
  2091. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2092. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2093. /*.n_objects =*/ 0,
  2094. /*.objects_begin =*/ NULL,
  2095. /*.objects_end =*/ NULL,
  2096. /*.scratch =*/ { 0, 0, NULL, },
  2097. /*.scratch_save =*/ { 0, 0, NULL, },
  2098. };
  2099. ggml_assert_aligned(ctx->mem_buffer);
  2100. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2101. ggml_critical_section_end();
  2102. return ctx;
  2103. }
  2104. void ggml_free(struct ggml_context * ctx) {
  2105. // make this function thread safe
  2106. ggml_critical_section_start();
  2107. bool found = false;
  2108. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2109. if (&g_state.contexts[i].context == ctx) {
  2110. g_state.contexts[i].used = false;
  2111. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2112. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2113. if (ctx->mem_buffer_owned) {
  2114. free(ctx->mem_buffer);
  2115. }
  2116. found = true;
  2117. break;
  2118. }
  2119. }
  2120. if (!found) {
  2121. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2122. }
  2123. ggml_critical_section_end();
  2124. }
  2125. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2126. return ctx->objects_end->offs + ctx->objects_end->size;
  2127. }
  2128. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2129. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2130. ctx->scratch = scratch;
  2131. return result;
  2132. }
  2133. ////////////////////////////////////////////////////////////////////////////////
  2134. struct ggml_tensor * ggml_new_tensor_impl(
  2135. struct ggml_context * ctx,
  2136. enum ggml_type type,
  2137. int n_dims,
  2138. const int* ne,
  2139. void* data) {
  2140. // always insert objects at the end of the context's memory pool
  2141. struct ggml_object * obj_cur = ctx->objects_end;
  2142. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2143. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2144. const size_t cur_end = cur_offs + cur_size;
  2145. size_t size_needed = 0;
  2146. if (data == NULL) {
  2147. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2148. for (int i = 1; i < n_dims; i++) {
  2149. size_needed *= ne[i];
  2150. }
  2151. // align to GGML_MEM_ALIGN
  2152. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2153. }
  2154. char * const mem_buffer = ctx->mem_buffer;
  2155. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2156. if (ctx->scratch.data == NULL || data != NULL) {
  2157. size_needed += sizeof(struct ggml_tensor);
  2158. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2159. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2160. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2161. assert(false);
  2162. return NULL;
  2163. }
  2164. *obj_new = (struct ggml_object) {
  2165. .offs = cur_end + GGML_OBJECT_SIZE,
  2166. .size = size_needed,
  2167. .next = NULL,
  2168. };
  2169. } else {
  2170. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2171. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2172. assert(false);
  2173. return NULL;
  2174. }
  2175. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2176. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2177. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2178. assert(false);
  2179. return NULL;
  2180. }
  2181. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2182. *obj_new = (struct ggml_object) {
  2183. .offs = cur_end + GGML_OBJECT_SIZE,
  2184. .size = sizeof(struct ggml_tensor),
  2185. .next = NULL,
  2186. };
  2187. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2188. ctx->scratch.offs += size_needed;
  2189. }
  2190. if (obj_cur != NULL) {
  2191. obj_cur->next = obj_new;
  2192. } else {
  2193. // this is the first object in this context
  2194. ctx->objects_begin = obj_new;
  2195. }
  2196. ctx->objects_end = obj_new;
  2197. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2198. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2199. ggml_assert_aligned(result);
  2200. *result = (struct ggml_tensor) {
  2201. /*.type =*/ type,
  2202. /*.n_dims =*/ n_dims,
  2203. /*.ne =*/ { 1, 1, 1, 1 },
  2204. /*.nb =*/ { 0, 0, 0, 0 },
  2205. /*.op =*/ GGML_OP_NONE,
  2206. /*.is_param =*/ false,
  2207. /*.grad =*/ NULL,
  2208. /*.src0 =*/ NULL,
  2209. /*.src1 =*/ NULL,
  2210. /*.opt =*/ { NULL },
  2211. /*.n_tasks =*/ 0,
  2212. /*.perf_runs =*/ 0,
  2213. /*.perf_cycles =*/ 0,
  2214. /*.perf_time_us =*/ 0,
  2215. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2216. /*.pad =*/ { 0 },
  2217. };
  2218. ggml_assert_aligned(result->data);
  2219. for (int i = 0; i < n_dims; i++) {
  2220. result->ne[i] = ne[i];
  2221. }
  2222. result->nb[0] = GGML_TYPE_SIZE[type];
  2223. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2224. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2225. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2226. }
  2227. ctx->n_objects++;
  2228. return result;
  2229. }
  2230. struct ggml_tensor * ggml_new_tensor(
  2231. struct ggml_context * ctx,
  2232. enum ggml_type type,
  2233. int n_dims,
  2234. const int * ne) {
  2235. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2236. }
  2237. struct ggml_tensor * ggml_new_tensor_1d(
  2238. struct ggml_context * ctx,
  2239. enum ggml_type type,
  2240. int ne0) {
  2241. return ggml_new_tensor(ctx, type, 1, &ne0);
  2242. }
  2243. struct ggml_tensor * ggml_new_tensor_2d(
  2244. struct ggml_context * ctx,
  2245. enum ggml_type type,
  2246. int ne0,
  2247. int ne1) {
  2248. const int ne[2] = { ne0, ne1 };
  2249. return ggml_new_tensor(ctx, type, 2, ne);
  2250. }
  2251. struct ggml_tensor * ggml_new_tensor_3d(
  2252. struct ggml_context * ctx,
  2253. enum ggml_type type,
  2254. int ne0,
  2255. int ne1,
  2256. int ne2) {
  2257. const int ne[3] = { ne0, ne1, ne2 };
  2258. return ggml_new_tensor(ctx, type, 3, ne);
  2259. }
  2260. struct ggml_tensor * ggml_new_tensor_4d(
  2261. struct ggml_context * ctx,
  2262. enum ggml_type type,
  2263. int ne0,
  2264. int ne1,
  2265. int ne2,
  2266. int ne3) {
  2267. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2268. return ggml_new_tensor(ctx, type, 4, ne);
  2269. }
  2270. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2271. ctx->scratch_save = ctx->scratch;
  2272. ctx->scratch.data = NULL;
  2273. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2274. ctx->scratch = ctx->scratch_save;
  2275. ggml_set_i32(result, value);
  2276. return result;
  2277. }
  2278. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2279. ctx->scratch_save = ctx->scratch;
  2280. ctx->scratch.data = NULL;
  2281. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2282. ctx->scratch = ctx->scratch_save;
  2283. ggml_set_f32(result, value);
  2284. return result;
  2285. }
  2286. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2287. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2288. }
  2289. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2290. memset(tensor->data, 0, ggml_nbytes(tensor));
  2291. return tensor;
  2292. }
  2293. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2294. const int n = ggml_nrows(tensor);
  2295. const int nc = tensor->ne[0];
  2296. const size_t n1 = tensor->nb[1];
  2297. char * const data = tensor->data;
  2298. switch (tensor->type) {
  2299. case GGML_TYPE_Q4_0:
  2300. {
  2301. GGML_ASSERT(false);
  2302. } break;
  2303. case GGML_TYPE_Q4_1:
  2304. {
  2305. GGML_ASSERT(false);
  2306. } break;
  2307. case GGML_TYPE_I8:
  2308. {
  2309. assert(tensor->nb[0] == sizeof(int8_t));
  2310. for (int i = 0; i < n; i++) {
  2311. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2312. }
  2313. } break;
  2314. case GGML_TYPE_I16:
  2315. {
  2316. assert(tensor->nb[0] == sizeof(int16_t));
  2317. for (int i = 0; i < n; i++) {
  2318. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2319. }
  2320. } break;
  2321. case GGML_TYPE_I32:
  2322. {
  2323. assert(tensor->nb[0] == sizeof(int32_t));
  2324. for (int i = 0; i < n; i++) {
  2325. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2326. }
  2327. } break;
  2328. case GGML_TYPE_F16:
  2329. {
  2330. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2331. for (int i = 0; i < n; i++) {
  2332. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2333. }
  2334. } break;
  2335. case GGML_TYPE_F32:
  2336. {
  2337. assert(tensor->nb[0] == sizeof(float));
  2338. for (int i = 0; i < n; i++) {
  2339. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2340. }
  2341. } break;
  2342. case GGML_TYPE_COUNT:
  2343. {
  2344. GGML_ASSERT(false);
  2345. } break;
  2346. }
  2347. return tensor;
  2348. }
  2349. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2350. const int n = ggml_nrows(tensor);
  2351. const int nc = tensor->ne[0];
  2352. const size_t n1 = tensor->nb[1];
  2353. char * const data = tensor->data;
  2354. switch (tensor->type) {
  2355. case GGML_TYPE_Q4_0:
  2356. {
  2357. GGML_ASSERT(false);
  2358. } break;
  2359. case GGML_TYPE_Q4_1:
  2360. {
  2361. GGML_ASSERT(false);
  2362. } break;
  2363. case GGML_TYPE_I8:
  2364. {
  2365. assert(tensor->nb[0] == sizeof(int8_t));
  2366. for (int i = 0; i < n; i++) {
  2367. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2368. }
  2369. } break;
  2370. case GGML_TYPE_I16:
  2371. {
  2372. assert(tensor->nb[0] == sizeof(int16_t));
  2373. for (int i = 0; i < n; i++) {
  2374. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2375. }
  2376. } break;
  2377. case GGML_TYPE_I32:
  2378. {
  2379. assert(tensor->nb[0] == sizeof(int32_t));
  2380. for (int i = 0; i < n; i++) {
  2381. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2382. }
  2383. } break;
  2384. case GGML_TYPE_F16:
  2385. {
  2386. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2387. for (int i = 0; i < n; i++) {
  2388. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2389. }
  2390. } break;
  2391. case GGML_TYPE_F32:
  2392. {
  2393. assert(tensor->nb[0] == sizeof(float));
  2394. for (int i = 0; i < n; i++) {
  2395. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2396. }
  2397. } break;
  2398. case GGML_TYPE_COUNT:
  2399. {
  2400. GGML_ASSERT(false);
  2401. } break;
  2402. }
  2403. return tensor;
  2404. }
  2405. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2406. switch (tensor->type) {
  2407. case GGML_TYPE_Q4_0:
  2408. {
  2409. GGML_ASSERT(false);
  2410. } break;
  2411. case GGML_TYPE_Q4_1:
  2412. {
  2413. GGML_ASSERT(false);
  2414. } break;
  2415. case GGML_TYPE_I8:
  2416. {
  2417. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2418. return ((int8_t *)(tensor->data))[i];
  2419. } break;
  2420. case GGML_TYPE_I16:
  2421. {
  2422. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2423. return ((int16_t *)(tensor->data))[i];
  2424. } break;
  2425. case GGML_TYPE_I32:
  2426. {
  2427. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2428. return ((int32_t *)(tensor->data))[i];
  2429. } break;
  2430. case GGML_TYPE_F16:
  2431. {
  2432. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2433. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2434. } break;
  2435. case GGML_TYPE_F32:
  2436. {
  2437. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2438. return ((float *)(tensor->data))[i];
  2439. } break;
  2440. case GGML_TYPE_COUNT:
  2441. {
  2442. GGML_ASSERT(false);
  2443. } break;
  2444. }
  2445. return 0.0f;
  2446. }
  2447. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2448. switch (tensor->type) {
  2449. case GGML_TYPE_Q4_0:
  2450. {
  2451. GGML_ASSERT(false);
  2452. } break;
  2453. case GGML_TYPE_Q4_1:
  2454. {
  2455. GGML_ASSERT(false);
  2456. } break;
  2457. case GGML_TYPE_I8:
  2458. {
  2459. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2460. ((int8_t *)(tensor->data))[i] = value;
  2461. } break;
  2462. case GGML_TYPE_I16:
  2463. {
  2464. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2465. ((int16_t *)(tensor->data))[i] = value;
  2466. } break;
  2467. case GGML_TYPE_I32:
  2468. {
  2469. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2470. ((int32_t *)(tensor->data))[i] = value;
  2471. } break;
  2472. case GGML_TYPE_F16:
  2473. {
  2474. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2475. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2476. } break;
  2477. case GGML_TYPE_F32:
  2478. {
  2479. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2480. ((float *)(tensor->data))[i] = value;
  2481. } break;
  2482. case GGML_TYPE_COUNT:
  2483. {
  2484. GGML_ASSERT(false);
  2485. } break;
  2486. }
  2487. }
  2488. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2489. switch (tensor->type) {
  2490. case GGML_TYPE_Q4_0:
  2491. {
  2492. GGML_ASSERT(false);
  2493. } break;
  2494. case GGML_TYPE_Q4_1:
  2495. {
  2496. GGML_ASSERT(false);
  2497. } break;
  2498. case GGML_TYPE_I8:
  2499. {
  2500. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2501. return ((int8_t *)(tensor->data))[i];
  2502. } break;
  2503. case GGML_TYPE_I16:
  2504. {
  2505. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2506. return ((int16_t *)(tensor->data))[i];
  2507. } break;
  2508. case GGML_TYPE_I32:
  2509. {
  2510. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2511. return ((int32_t *)(tensor->data))[i];
  2512. } break;
  2513. case GGML_TYPE_F16:
  2514. {
  2515. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2516. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2517. } break;
  2518. case GGML_TYPE_F32:
  2519. {
  2520. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2521. return ((float *)(tensor->data))[i];
  2522. } break;
  2523. case GGML_TYPE_COUNT:
  2524. {
  2525. GGML_ASSERT(false);
  2526. } break;
  2527. }
  2528. return 0.0f;
  2529. }
  2530. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2531. switch (tensor->type) {
  2532. case GGML_TYPE_Q4_0:
  2533. {
  2534. GGML_ASSERT(false);
  2535. } break;
  2536. case GGML_TYPE_Q4_1:
  2537. {
  2538. GGML_ASSERT(false);
  2539. } break;
  2540. case GGML_TYPE_I8:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2543. ((int8_t *)(tensor->data))[i] = value;
  2544. } break;
  2545. case GGML_TYPE_I16:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2548. ((int16_t *)(tensor->data))[i] = value;
  2549. } break;
  2550. case GGML_TYPE_I32:
  2551. {
  2552. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2553. ((int32_t *)(tensor->data))[i] = value;
  2554. } break;
  2555. case GGML_TYPE_F16:
  2556. {
  2557. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2558. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2559. } break;
  2560. case GGML_TYPE_F32:
  2561. {
  2562. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2563. ((float *)(tensor->data))[i] = value;
  2564. } break;
  2565. case GGML_TYPE_COUNT:
  2566. {
  2567. GGML_ASSERT(false);
  2568. } break;
  2569. }
  2570. }
  2571. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2572. return tensor->data;
  2573. }
  2574. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2575. assert(tensor->type == GGML_TYPE_F32);
  2576. return (float *)(tensor->data);
  2577. }
  2578. struct ggml_tensor * ggml_view_tensor(
  2579. struct ggml_context * ctx,
  2580. const struct ggml_tensor * src) {
  2581. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2582. }
  2583. ////////////////////////////////////////////////////////////////////////////////
  2584. // ggml_dup
  2585. struct ggml_tensor * ggml_dup_impl(
  2586. struct ggml_context * ctx,
  2587. struct ggml_tensor * a,
  2588. bool inplace) {
  2589. bool is_node = false;
  2590. if (!inplace && (a->grad)) {
  2591. is_node = true;
  2592. }
  2593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2594. result->op = GGML_OP_DUP;
  2595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2596. result->src0 = a;
  2597. result->src1 = NULL;
  2598. return result;
  2599. }
  2600. struct ggml_tensor * ggml_dup(
  2601. struct ggml_context * ctx,
  2602. struct ggml_tensor * a) {
  2603. return ggml_dup_impl(ctx, a, false);
  2604. }
  2605. struct ggml_tensor * ggml_dup_inplace(
  2606. struct ggml_context * ctx,
  2607. struct ggml_tensor * a) {
  2608. return ggml_dup_impl(ctx, a, true);
  2609. }
  2610. // ggml_add
  2611. struct ggml_tensor * ggml_add_impl(
  2612. struct ggml_context * ctx,
  2613. struct ggml_tensor * a,
  2614. struct ggml_tensor * b,
  2615. bool inplace) {
  2616. GGML_ASSERT(ggml_are_same_shape(a, b));
  2617. bool is_node = false;
  2618. if (!inplace && (a->grad || b->grad)) {
  2619. is_node = true;
  2620. }
  2621. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2622. result->op = GGML_OP_ADD;
  2623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2624. result->src0 = a;
  2625. result->src1 = b;
  2626. return result;
  2627. }
  2628. struct ggml_tensor * ggml_add(
  2629. struct ggml_context * ctx,
  2630. struct ggml_tensor * a,
  2631. struct ggml_tensor * b) {
  2632. return ggml_add_impl(ctx, a, b, false);
  2633. }
  2634. struct ggml_tensor * ggml_add_inplace(
  2635. struct ggml_context * ctx,
  2636. struct ggml_tensor * a,
  2637. struct ggml_tensor * b) {
  2638. return ggml_add_impl(ctx, a, b, true);
  2639. }
  2640. // ggml_sub
  2641. struct ggml_tensor * ggml_sub_impl(
  2642. struct ggml_context * ctx,
  2643. struct ggml_tensor * a,
  2644. struct ggml_tensor * b,
  2645. bool inplace) {
  2646. GGML_ASSERT(ggml_are_same_shape(a, b));
  2647. bool is_node = false;
  2648. if (!inplace && (a->grad || b->grad)) {
  2649. is_node = true;
  2650. }
  2651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2652. result->op = GGML_OP_SUB;
  2653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2654. result->src0 = a;
  2655. result->src1 = b;
  2656. return result;
  2657. }
  2658. struct ggml_tensor * ggml_sub(
  2659. struct ggml_context * ctx,
  2660. struct ggml_tensor * a,
  2661. struct ggml_tensor * b) {
  2662. return ggml_sub_impl(ctx, a, b, false);
  2663. }
  2664. struct ggml_tensor * ggml_sub_inplace(
  2665. struct ggml_context * ctx,
  2666. struct ggml_tensor * a,
  2667. struct ggml_tensor * b) {
  2668. return ggml_sub_impl(ctx, a, b, true);
  2669. }
  2670. // ggml_mul
  2671. struct ggml_tensor * ggml_mul_impl(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b,
  2675. bool inplace) {
  2676. GGML_ASSERT(ggml_are_same_shape(a, b));
  2677. bool is_node = false;
  2678. if (!inplace && (a->grad || b->grad)) {
  2679. is_node = true;
  2680. }
  2681. if (inplace) {
  2682. GGML_ASSERT(is_node == false);
  2683. }
  2684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2685. result->op = GGML_OP_MUL;
  2686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2687. result->src0 = a;
  2688. result->src1 = b;
  2689. return result;
  2690. }
  2691. struct ggml_tensor * ggml_mul(
  2692. struct ggml_context * ctx,
  2693. struct ggml_tensor * a,
  2694. struct ggml_tensor * b) {
  2695. return ggml_mul_impl(ctx, a, b, false);
  2696. }
  2697. struct ggml_tensor * ggml_mul_inplace(
  2698. struct ggml_context * ctx,
  2699. struct ggml_tensor * a,
  2700. struct ggml_tensor * b) {
  2701. return ggml_mul_impl(ctx, a, b, true);
  2702. }
  2703. // ggml_div
  2704. struct ggml_tensor * ggml_div_impl(
  2705. struct ggml_context * ctx,
  2706. struct ggml_tensor * a,
  2707. struct ggml_tensor * b,
  2708. bool inplace) {
  2709. GGML_ASSERT(ggml_are_same_shape(a, b));
  2710. bool is_node = false;
  2711. if (!inplace && (a->grad || b->grad)) {
  2712. is_node = true;
  2713. }
  2714. if (inplace) {
  2715. GGML_ASSERT(is_node == false);
  2716. }
  2717. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2718. result->op = GGML_OP_DIV;
  2719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2720. result->src0 = a;
  2721. result->src1 = b;
  2722. return result;
  2723. }
  2724. struct ggml_tensor * ggml_div(
  2725. struct ggml_context * ctx,
  2726. struct ggml_tensor * a,
  2727. struct ggml_tensor * b) {
  2728. return ggml_div_impl(ctx, a, b, false);
  2729. }
  2730. struct ggml_tensor * ggml_div_inplace(
  2731. struct ggml_context * ctx,
  2732. struct ggml_tensor * a,
  2733. struct ggml_tensor * b) {
  2734. return ggml_div_impl(ctx, a, b, true);
  2735. }
  2736. // ggml_sqr
  2737. struct ggml_tensor * ggml_sqr_impl(
  2738. struct ggml_context * ctx,
  2739. struct ggml_tensor * a,
  2740. bool inplace) {
  2741. bool is_node = false;
  2742. if (!inplace && (a->grad)) {
  2743. is_node = true;
  2744. }
  2745. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2746. result->op = GGML_OP_SQR;
  2747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2748. result->src0 = a;
  2749. result->src1 = NULL;
  2750. return result;
  2751. }
  2752. struct ggml_tensor * ggml_sqr(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a) {
  2755. return ggml_sqr_impl(ctx, a, false);
  2756. }
  2757. struct ggml_tensor * ggml_sqr_inplace(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a) {
  2760. return ggml_sqr_impl(ctx, a, true);
  2761. }
  2762. // ggml_sqrt
  2763. struct ggml_tensor * ggml_sqrt_impl(
  2764. struct ggml_context * ctx,
  2765. struct ggml_tensor * a,
  2766. bool inplace) {
  2767. bool is_node = false;
  2768. if (!inplace && (a->grad)) {
  2769. is_node = true;
  2770. }
  2771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2772. result->op = GGML_OP_SQRT;
  2773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2774. result->src0 = a;
  2775. result->src1 = NULL;
  2776. return result;
  2777. }
  2778. struct ggml_tensor * ggml_sqrt(
  2779. struct ggml_context * ctx,
  2780. struct ggml_tensor * a) {
  2781. return ggml_sqrt_impl(ctx, a, false);
  2782. }
  2783. struct ggml_tensor * ggml_sqrt_inplace(
  2784. struct ggml_context * ctx,
  2785. struct ggml_tensor * a) {
  2786. return ggml_sqrt_impl(ctx, a, true);
  2787. }
  2788. // ggml_sum
  2789. struct ggml_tensor * ggml_sum(
  2790. struct ggml_context * ctx,
  2791. struct ggml_tensor * a) {
  2792. bool is_node = false;
  2793. if (a->grad) {
  2794. is_node = true;
  2795. }
  2796. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2797. result->op = GGML_OP_SUM;
  2798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2799. result->src0 = a;
  2800. result->src1 = NULL;
  2801. return result;
  2802. }
  2803. // ggml_mean
  2804. struct ggml_tensor * ggml_mean(
  2805. struct ggml_context * ctx,
  2806. struct ggml_tensor * a) {
  2807. bool is_node = false;
  2808. if (a->grad) {
  2809. GGML_ASSERT(false); // TODO: implement
  2810. is_node = true;
  2811. }
  2812. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2813. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2814. result->op = GGML_OP_MEAN;
  2815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2816. result->src0 = a;
  2817. result->src1 = NULL;
  2818. return result;
  2819. }
  2820. // ggml_repeat
  2821. struct ggml_tensor * ggml_repeat(
  2822. struct ggml_context * ctx,
  2823. struct ggml_tensor * a,
  2824. struct ggml_tensor * b) {
  2825. GGML_ASSERT(ggml_can_repeat(a, b));
  2826. bool is_node = false;
  2827. if (a->grad) {
  2828. is_node = true;
  2829. }
  2830. if (ggml_are_same_shape(a, b) && !is_node) {
  2831. return a;
  2832. }
  2833. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2834. result->op = GGML_OP_REPEAT;
  2835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2836. result->src0 = a;
  2837. result->src1 = b;
  2838. return result;
  2839. }
  2840. // ggml_abs
  2841. struct ggml_tensor * ggml_abs_impl(
  2842. struct ggml_context * ctx,
  2843. struct ggml_tensor * a,
  2844. bool inplace) {
  2845. bool is_node = false;
  2846. if (!inplace && (a->grad)) {
  2847. is_node = true;
  2848. }
  2849. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2850. result->op = GGML_OP_ABS;
  2851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2852. result->src0 = a;
  2853. result->src1 = NULL;
  2854. return result;
  2855. }
  2856. struct ggml_tensor * ggml_abs(
  2857. struct ggml_context * ctx,
  2858. struct ggml_tensor * a) {
  2859. return ggml_abs_impl(ctx, a, false);
  2860. }
  2861. struct ggml_tensor * ggml_abs_inplace(
  2862. struct ggml_context * ctx,
  2863. struct ggml_tensor * a) {
  2864. return ggml_abs_impl(ctx, a, true);
  2865. }
  2866. // ggml_sgn
  2867. struct ggml_tensor * ggml_sgn_impl(
  2868. struct ggml_context * ctx,
  2869. struct ggml_tensor * a,
  2870. bool inplace) {
  2871. bool is_node = false;
  2872. if (!inplace && (a->grad)) {
  2873. is_node = true;
  2874. }
  2875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2876. result->op = GGML_OP_SGN;
  2877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2878. result->src0 = a;
  2879. result->src1 = NULL;
  2880. return result;
  2881. }
  2882. struct ggml_tensor * ggml_sgn(
  2883. struct ggml_context * ctx,
  2884. struct ggml_tensor * a) {
  2885. return ggml_sgn_impl(ctx, a, false);
  2886. }
  2887. struct ggml_tensor * ggml_sgn_inplace(
  2888. struct ggml_context * ctx,
  2889. struct ggml_tensor * a) {
  2890. return ggml_sgn_impl(ctx, a, true);
  2891. }
  2892. // ggml_neg
  2893. struct ggml_tensor * ggml_neg_impl(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a,
  2896. bool inplace) {
  2897. bool is_node = false;
  2898. if (!inplace && (a->grad)) {
  2899. is_node = true;
  2900. }
  2901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2902. result->op = GGML_OP_NEG;
  2903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2904. result->src0 = a;
  2905. result->src1 = NULL;
  2906. return result;
  2907. }
  2908. struct ggml_tensor * ggml_neg(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a) {
  2911. return ggml_neg_impl(ctx, a, false);
  2912. }
  2913. struct ggml_tensor * ggml_neg_inplace(
  2914. struct ggml_context * ctx,
  2915. struct ggml_tensor * a) {
  2916. return ggml_neg_impl(ctx, a, true);
  2917. }
  2918. // ggml_step
  2919. struct ggml_tensor * ggml_step_impl(
  2920. struct ggml_context * ctx,
  2921. struct ggml_tensor * a,
  2922. bool inplace) {
  2923. bool is_node = false;
  2924. if (!inplace && (a->grad)) {
  2925. is_node = true;
  2926. }
  2927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2928. result->op = GGML_OP_STEP;
  2929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2930. result->src0 = a;
  2931. result->src1 = NULL;
  2932. return result;
  2933. }
  2934. struct ggml_tensor * ggml_step(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a) {
  2937. return ggml_step_impl(ctx, a, false);
  2938. }
  2939. struct ggml_tensor * ggml_step_inplace(
  2940. struct ggml_context * ctx,
  2941. struct ggml_tensor * a) {
  2942. return ggml_step_impl(ctx, a, true);
  2943. }
  2944. // ggml_relu
  2945. struct ggml_tensor * ggml_relu_impl(
  2946. struct ggml_context * ctx,
  2947. struct ggml_tensor * a,
  2948. bool inplace) {
  2949. bool is_node = false;
  2950. if (!inplace && (a->grad)) {
  2951. is_node = true;
  2952. }
  2953. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2954. result->op = GGML_OP_RELU;
  2955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2956. result->src0 = a;
  2957. result->src1 = NULL;
  2958. return result;
  2959. }
  2960. struct ggml_tensor * ggml_relu(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_relu_impl(ctx, a, false);
  2964. }
  2965. struct ggml_tensor * ggml_relu_inplace(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a) {
  2968. return ggml_relu_impl(ctx, a, true);
  2969. }
  2970. // ggml_gelu
  2971. struct ggml_tensor * ggml_gelu_impl(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. bool inplace) {
  2975. bool is_node = false;
  2976. if (!inplace && (a->grad)) {
  2977. is_node = true;
  2978. }
  2979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2980. result->op = GGML_OP_GELU;
  2981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2982. result->src0 = a;
  2983. result->src1 = NULL;
  2984. return result;
  2985. }
  2986. struct ggml_tensor * ggml_gelu(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a) {
  2989. return ggml_gelu_impl(ctx, a, false);
  2990. }
  2991. struct ggml_tensor * ggml_gelu_inplace(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a) {
  2994. return ggml_gelu_impl(ctx, a, true);
  2995. }
  2996. // ggml_silu
  2997. struct ggml_tensor * ggml_silu_impl(
  2998. struct ggml_context * ctx,
  2999. struct ggml_tensor * a,
  3000. bool inplace) {
  3001. bool is_node = false;
  3002. if (!inplace && (a->grad)) {
  3003. is_node = true;
  3004. }
  3005. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3006. result->op = GGML_OP_SILU;
  3007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3008. result->src0 = a;
  3009. result->src1 = NULL;
  3010. return result;
  3011. }
  3012. struct ggml_tensor * ggml_silu(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a) {
  3015. return ggml_silu_impl(ctx, a, false);
  3016. }
  3017. struct ggml_tensor * ggml_silu_inplace(
  3018. struct ggml_context * ctx,
  3019. struct ggml_tensor * a) {
  3020. return ggml_silu_impl(ctx, a, true);
  3021. }
  3022. // ggml_norm
  3023. struct ggml_tensor * ggml_norm_impl(
  3024. struct ggml_context * ctx,
  3025. struct ggml_tensor * a,
  3026. bool inplace) {
  3027. bool is_node = false;
  3028. if (!inplace && (a->grad)) {
  3029. GGML_ASSERT(false); // TODO: implement backward
  3030. is_node = true;
  3031. }
  3032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3033. result->op = GGML_OP_NORM;
  3034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3035. result->src0 = a;
  3036. result->src1 = NULL; // TODO: maybe store epsilon here?
  3037. return result;
  3038. }
  3039. struct ggml_tensor * ggml_norm(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a) {
  3042. return ggml_norm_impl(ctx, a, false);
  3043. }
  3044. struct ggml_tensor * ggml_norm_inplace(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a) {
  3047. return ggml_norm_impl(ctx, a, true);
  3048. }
  3049. struct ggml_tensor * ggml_rms_norm_impl(
  3050. struct ggml_context * ctx,
  3051. struct ggml_tensor * a,
  3052. bool inplace) {
  3053. bool is_node = false;
  3054. if (!inplace && (a->grad)) {
  3055. GGML_ASSERT(false); // TODO: implement backward
  3056. is_node = true;
  3057. }
  3058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3059. result->op = GGML_OP_RMS_NORM;
  3060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3061. result->src0 = a;
  3062. result->src1 = NULL; // TODO: maybe store epsilon here?
  3063. return result;
  3064. }
  3065. struct ggml_tensor * ggml_rms_norm(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a) {
  3068. return ggml_rms_norm_impl(ctx, a, false);
  3069. }
  3070. struct ggml_tensor * ggml_rms_norm_inplace(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a) {
  3073. return ggml_rms_norm_impl(ctx, a, true);
  3074. }
  3075. // ggml_mul_mat
  3076. struct ggml_tensor * ggml_mul_mat(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3081. bool is_node = false;
  3082. if (a->grad || b->grad) {
  3083. is_node = true;
  3084. }
  3085. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3086. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3087. result->op = GGML_OP_MUL_MAT;
  3088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3089. result->src0 = a;
  3090. result->src1 = b;
  3091. return result;
  3092. }
  3093. // ggml_scale
  3094. struct ggml_tensor * ggml_scale_impl(
  3095. struct ggml_context * ctx,
  3096. struct ggml_tensor * a,
  3097. struct ggml_tensor * b,
  3098. bool inplace) {
  3099. GGML_ASSERT(ggml_is_scalar(b));
  3100. GGML_ASSERT(ggml_is_padded_1d(a));
  3101. bool is_node = false;
  3102. if (!inplace && (a->grad || b->grad)) {
  3103. GGML_ASSERT(false); // TODO: implement backward
  3104. is_node = true;
  3105. }
  3106. // TODO: when implement backward, fix this:
  3107. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3108. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3109. result->op = GGML_OP_SCALE;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src0 = a;
  3112. result->src1 = b;
  3113. return result;
  3114. }
  3115. struct ggml_tensor * ggml_scale(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. struct ggml_tensor * b) {
  3119. return ggml_scale_impl(ctx, a, b, false);
  3120. }
  3121. struct ggml_tensor * ggml_scale_inplace(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b) {
  3125. return ggml_scale_impl(ctx, a, b, true);
  3126. }
  3127. // ggml_cpy
  3128. struct ggml_tensor * ggml_cpy_impl(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a,
  3131. struct ggml_tensor * b,
  3132. bool inplace) {
  3133. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3134. bool is_node = false;
  3135. if (!inplace && (a->grad || b->grad)) {
  3136. GGML_ASSERT(false); // TODO: implement backward
  3137. is_node = true;
  3138. }
  3139. // make a view of the destination
  3140. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3141. result->op = GGML_OP_CPY;
  3142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3143. result->src0 = a;
  3144. result->src1 = b;
  3145. return result;
  3146. }
  3147. struct ggml_tensor * ggml_cpy(
  3148. struct ggml_context * ctx,
  3149. struct ggml_tensor * a,
  3150. struct ggml_tensor * b) {
  3151. return ggml_cpy_impl(ctx, a, b, false);
  3152. }
  3153. struct ggml_tensor * ggml_cpy_inplace(
  3154. struct ggml_context * ctx,
  3155. struct ggml_tensor * a,
  3156. struct ggml_tensor * b) {
  3157. return ggml_cpy_impl(ctx, a, b, true);
  3158. }
  3159. // ggml_reshape
  3160. struct ggml_tensor * ggml_reshape(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a,
  3163. struct ggml_tensor * b) {
  3164. GGML_ASSERT(ggml_is_contiguous(a));
  3165. GGML_ASSERT(ggml_is_contiguous(b));
  3166. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3167. bool is_node = false;
  3168. if (a->grad || b->grad) {
  3169. GGML_ASSERT(false); // TODO: implement backward
  3170. is_node = true;
  3171. }
  3172. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3173. result->op = GGML_OP_RESHAPE;
  3174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3175. result->src0 = a;
  3176. result->src1 = NULL;
  3177. return result;
  3178. }
  3179. struct ggml_tensor * ggml_reshape_2d(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a,
  3182. int ne0,
  3183. int ne1) {
  3184. GGML_ASSERT(ggml_is_contiguous(a));
  3185. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3186. bool is_node = false;
  3187. if (a->grad) {
  3188. GGML_ASSERT(false); // TODO: implement backward
  3189. is_node = true;
  3190. }
  3191. const int ne[2] = { ne0, ne1 };
  3192. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3193. result->op = GGML_OP_RESHAPE;
  3194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3195. result->src0 = a;
  3196. result->src1 = NULL;
  3197. return result;
  3198. }
  3199. struct ggml_tensor * ggml_reshape_3d(
  3200. struct ggml_context * ctx,
  3201. struct ggml_tensor * a,
  3202. int ne0,
  3203. int ne1,
  3204. int ne2) {
  3205. GGML_ASSERT(ggml_is_contiguous(a));
  3206. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3207. bool is_node = false;
  3208. if (a->grad) {
  3209. GGML_ASSERT(false); // TODO: implement backward
  3210. is_node = true;
  3211. }
  3212. const int ne[3] = { ne0, ne1, ne2 };
  3213. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3214. result->op = GGML_OP_RESHAPE;
  3215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3216. result->src0 = a;
  3217. result->src1 = NULL;
  3218. return result;
  3219. }
  3220. // ggml_view_1d
  3221. struct ggml_tensor * ggml_view_1d(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a,
  3224. int ne0,
  3225. size_t offset) {
  3226. if (a->grad) {
  3227. GGML_ASSERT(false); // gradient propagation is not supported
  3228. }
  3229. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3230. result->op = GGML_OP_VIEW;
  3231. result->grad = NULL;
  3232. result->src0 = a;
  3233. result->src1 = NULL; // TODO: maybe store the offset here?
  3234. return result;
  3235. }
  3236. // ggml_view_2d
  3237. struct ggml_tensor * ggml_view_2d(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. int ne0,
  3241. int ne1,
  3242. size_t nb1,
  3243. size_t offset) {
  3244. if (a->grad) {
  3245. GGML_ASSERT(false); // gradient propagation is not supported
  3246. }
  3247. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3248. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3249. result->nb[1] = nb1;
  3250. result->nb[2] = result->nb[1]*ne1;
  3251. result->nb[3] = result->nb[2];
  3252. result->op = GGML_OP_VIEW;
  3253. result->grad = NULL;
  3254. result->src0 = a;
  3255. result->src1 = NULL; // TODO: maybe store the offset here?
  3256. return result;
  3257. }
  3258. // ggml_permute
  3259. struct ggml_tensor * ggml_permute(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. int axis0,
  3263. int axis1,
  3264. int axis2,
  3265. int axis3) {
  3266. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3267. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3268. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3269. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3270. GGML_ASSERT(axis0 != axis1);
  3271. GGML_ASSERT(axis0 != axis2);
  3272. GGML_ASSERT(axis0 != axis3);
  3273. GGML_ASSERT(axis1 != axis2);
  3274. GGML_ASSERT(axis1 != axis3);
  3275. GGML_ASSERT(axis2 != axis3);
  3276. bool is_node = false;
  3277. if (a->grad) {
  3278. GGML_ASSERT(false); // TODO: implement backward
  3279. is_node = true;
  3280. }
  3281. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3282. int ne[GGML_MAX_DIMS];
  3283. int nb[GGML_MAX_DIMS];
  3284. ne[axis0] = a->ne[0];
  3285. ne[axis1] = a->ne[1];
  3286. ne[axis2] = a->ne[2];
  3287. ne[axis3] = a->ne[3];
  3288. nb[axis0] = a->nb[0];
  3289. nb[axis1] = a->nb[1];
  3290. nb[axis2] = a->nb[2];
  3291. nb[axis3] = a->nb[3];
  3292. result->ne[0] = ne[0];
  3293. result->ne[1] = ne[1];
  3294. result->ne[2] = ne[2];
  3295. result->ne[3] = ne[3];
  3296. result->nb[0] = nb[0];
  3297. result->nb[1] = nb[1];
  3298. result->nb[2] = nb[2];
  3299. result->nb[3] = nb[3];
  3300. result->op = GGML_OP_PERMUTE;
  3301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3302. result->src0 = a;
  3303. result->src1 = NULL; // TODO: maybe store the permutation here?
  3304. return result;
  3305. }
  3306. // ggml_transpose
  3307. struct ggml_tensor * ggml_transpose(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. bool is_node = false;
  3311. if (a->grad) {
  3312. GGML_ASSERT(false); // TODO: implement backward
  3313. is_node = true;
  3314. }
  3315. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3316. result->ne[0] = a->ne[1];
  3317. result->ne[1] = a->ne[0];
  3318. result->nb[0] = a->nb[1];
  3319. result->nb[1] = a->nb[0];
  3320. result->op = GGML_OP_TRANSPOSE;
  3321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3322. result->src0 = a;
  3323. result->src1 = NULL;
  3324. return result;
  3325. }
  3326. // ggml_get_rows
  3327. struct ggml_tensor * ggml_get_rows(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. struct ggml_tensor * b) {
  3331. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3332. bool is_node = false;
  3333. if (a->grad || b->grad) {
  3334. GGML_ASSERT(false); // TODO: implement backward
  3335. is_node = true;
  3336. }
  3337. // TODO: implement non F32 return
  3338. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3339. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3340. result->op = GGML_OP_GET_ROWS;
  3341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3342. result->src0 = a;
  3343. result->src1 = b;
  3344. return result;
  3345. }
  3346. // ggml_diag_mask_inf
  3347. struct ggml_tensor * ggml_diag_mask_inf(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a,
  3350. int n_past) {
  3351. bool is_node = false;
  3352. if (a->grad) {
  3353. GGML_ASSERT(false); // TODO: implement backward
  3354. is_node = true;
  3355. }
  3356. // TODO: when implement backward, fix this:
  3357. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3358. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3359. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3360. result->op = GGML_OP_DIAG_MASK_INF;
  3361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3362. result->src0 = a;
  3363. result->src1 = b;
  3364. return result;
  3365. }
  3366. // ggml_soft_max
  3367. struct ggml_tensor * ggml_soft_max(
  3368. struct ggml_context * ctx,
  3369. struct ggml_tensor * a) {
  3370. bool is_node = false;
  3371. if (a->grad) {
  3372. GGML_ASSERT(false); // TODO: implement backward
  3373. is_node = true;
  3374. }
  3375. // TODO: when implement backward, fix this:
  3376. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3377. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3378. result->op = GGML_OP_SOFT_MAX;
  3379. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3380. result->src0 = a;
  3381. result->src1 = NULL;
  3382. return result;
  3383. }
  3384. // ggml_rope
  3385. struct ggml_tensor * ggml_rope(
  3386. struct ggml_context * ctx,
  3387. struct ggml_tensor * a,
  3388. int n_past,
  3389. int n_dims,
  3390. int mode) {
  3391. GGML_ASSERT(n_past >= 0);
  3392. bool is_node = false;
  3393. if (a->grad) {
  3394. GGML_ASSERT(false); // TODO: implement backward
  3395. is_node = true;
  3396. }
  3397. // TODO: when implement backward, fix this:
  3398. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3399. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3400. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3401. ((int32_t *) b->data)[0] = n_past;
  3402. ((int32_t *) b->data)[1] = n_dims;
  3403. ((int32_t *) b->data)[2] = mode;
  3404. result->op = GGML_OP_ROPE;
  3405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3406. result->src0 = a;
  3407. result->src1 = b;
  3408. return result;
  3409. }
  3410. // ggml_conv_1d_1s
  3411. struct ggml_tensor * ggml_conv_1d_1s(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a,
  3414. struct ggml_tensor * b) {
  3415. GGML_ASSERT(ggml_is_matrix(b));
  3416. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3417. GGML_ASSERT(a->ne[3] == 1);
  3418. bool is_node = false;
  3419. if (a->grad || b->grad) {
  3420. GGML_ASSERT(false); // TODO: implement backward
  3421. is_node = true;
  3422. }
  3423. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3424. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3425. result->op = GGML_OP_CONV_1D_1S;
  3426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3427. result->src0 = a;
  3428. result->src1 = b;
  3429. return result;
  3430. }
  3431. // ggml_conv_1d_2s
  3432. struct ggml_tensor * ggml_conv_1d_2s(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a,
  3435. struct ggml_tensor * b) {
  3436. GGML_ASSERT(ggml_is_matrix(b));
  3437. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3438. GGML_ASSERT(a->ne[3] == 1);
  3439. bool is_node = false;
  3440. if (a->grad || b->grad) {
  3441. GGML_ASSERT(false); // TODO: implement backward
  3442. is_node = true;
  3443. }
  3444. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3445. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3446. result->op = GGML_OP_CONV_1D_2S;
  3447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3448. result->src0 = a;
  3449. result->src1 = b;
  3450. return result;
  3451. }
  3452. // ggml_flash_attn
  3453. struct ggml_tensor * ggml_flash_attn(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * q,
  3456. struct ggml_tensor * k,
  3457. struct ggml_tensor * v,
  3458. bool masked) {
  3459. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3460. // TODO: check if vT can be multiplied by (k*qT)
  3461. bool is_node = false;
  3462. if (q->grad || k->grad || v->grad) {
  3463. GGML_ASSERT(false); // TODO: implement backward
  3464. is_node = true;
  3465. }
  3466. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3467. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3468. result->op = GGML_OP_FLASH_ATTN;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src0 = q;
  3471. result->src1 = k;
  3472. result->opt[0] = v;
  3473. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3474. return result;
  3475. }
  3476. // ggml_flash_ff
  3477. struct ggml_tensor * ggml_flash_ff(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. struct ggml_tensor * b0,
  3481. struct ggml_tensor * b1,
  3482. struct ggml_tensor * c0,
  3483. struct ggml_tensor * c1) {
  3484. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3485. // TODO: more checks
  3486. bool is_node = false;
  3487. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3488. GGML_ASSERT(false); // TODO: implement backward
  3489. is_node = true;
  3490. }
  3491. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3492. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3493. result->op = GGML_OP_FLASH_FF;
  3494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3495. result->src0 = a;
  3496. result->src1 = b0;
  3497. result->opt[0] = b1;
  3498. result->opt[1] = c0;
  3499. result->opt[2] = c1;
  3500. return result;
  3501. }
  3502. ////////////////////////////////////////////////////////////////////////////////
  3503. void ggml_set_param(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * tensor) {
  3506. tensor->is_param = true;
  3507. GGML_ASSERT(tensor->grad == NULL);
  3508. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3509. }
  3510. // ggml_compute_forward_dup
  3511. static void ggml_compute_forward_dup_f16(
  3512. const struct ggml_compute_params * params,
  3513. const struct ggml_tensor * src0,
  3514. struct ggml_tensor * dst) {
  3515. GGML_ASSERT(params->ith == 0);
  3516. GGML_ASSERT(ggml_is_contiguous(dst));
  3517. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3519. return;
  3520. }
  3521. const int ne00 = src0->ne[0];
  3522. const int ne01 = src0->ne[1];
  3523. const int ne02 = src0->ne[2];
  3524. const int ne03 = src0->ne[3];
  3525. const size_t nb00 = src0->nb[0];
  3526. const size_t nb01 = src0->nb[1];
  3527. const size_t nb02 = src0->nb[2];
  3528. const size_t nb03 = src0->nb[3];
  3529. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3530. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3531. return;
  3532. }
  3533. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3534. if (dst->type == GGML_TYPE_F16) {
  3535. int id = 0;
  3536. const size_t rs = ne00*nb00;
  3537. for (int i03 = 0; i03 < ne03; i03++) {
  3538. for (int i02 = 0; i02 < ne02; i02++) {
  3539. for (int i01 = 0; i01 < ne01; i01++) {
  3540. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3541. char * dst_ptr = (char *) dst->data + id*rs;
  3542. memcpy(dst_ptr, src0_ptr, rs);
  3543. id++;
  3544. }
  3545. }
  3546. }
  3547. } else if (dst->type == GGML_TYPE_F32) {
  3548. int id = 0;
  3549. float * dst_ptr = (float *) dst->data;
  3550. for (int i03 = 0; i03 < ne03; i03++) {
  3551. for (int i02 = 0; i02 < ne02; i02++) {
  3552. for (int i01 = 0; i01 < ne01; i01++) {
  3553. for (int i00 = 0; i00 < ne00; i00++) {
  3554. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3555. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3556. id++;
  3557. }
  3558. }
  3559. }
  3560. }
  3561. } else {
  3562. GGML_ASSERT(false); // TODO: implement
  3563. }
  3564. } else {
  3565. //printf("%s: this is not optimal - fix me\n", __func__);
  3566. if (dst->type == GGML_TYPE_F32) {
  3567. int id = 0;
  3568. float * dst_ptr = (float *) dst->data;
  3569. for (int i03 = 0; i03 < ne03; i03++) {
  3570. for (int i02 = 0; i02 < ne02; i02++) {
  3571. for (int i01 = 0; i01 < ne01; i01++) {
  3572. for (int i00 = 0; i00 < ne00; i00++) {
  3573. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3574. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3575. id++;
  3576. }
  3577. }
  3578. }
  3579. }
  3580. } else if (dst->type == GGML_TYPE_F16) {
  3581. int id = 0;
  3582. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3583. for (int i03 = 0; i03 < ne03; i03++) {
  3584. for (int i02 = 0; i02 < ne02; i02++) {
  3585. for (int i01 = 0; i01 < ne01; i01++) {
  3586. for (int i00 = 0; i00 < ne00; i00++) {
  3587. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3588. dst_ptr[id] = *src0_ptr;
  3589. id++;
  3590. }
  3591. }
  3592. }
  3593. }
  3594. } else {
  3595. GGML_ASSERT(false); // TODO: implement
  3596. }
  3597. }
  3598. }
  3599. static void ggml_compute_forward_dup_f32(
  3600. const struct ggml_compute_params * params,
  3601. const struct ggml_tensor * src0,
  3602. struct ggml_tensor * dst) {
  3603. GGML_ASSERT(params->ith == 0);
  3604. GGML_ASSERT(ggml_is_contiguous(dst));
  3605. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3607. return;
  3608. }
  3609. const int ne00 = src0->ne[0];
  3610. const int ne01 = src0->ne[1];
  3611. const int ne02 = src0->ne[2];
  3612. const int ne03 = src0->ne[3];
  3613. const size_t nb00 = src0->nb[0];
  3614. const size_t nb01 = src0->nb[1];
  3615. const size_t nb02 = src0->nb[2];
  3616. const size_t nb03 = src0->nb[3];
  3617. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3618. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3619. return;
  3620. }
  3621. if (src0->nb[0] == sizeof(float)) {
  3622. if (dst->type == GGML_TYPE_F32) {
  3623. int id = 0;
  3624. const size_t rs = ne00*nb00;
  3625. for (int i03 = 0; i03 < ne03; i03++) {
  3626. for (int i02 = 0; i02 < ne02; i02++) {
  3627. for (int i01 = 0; i01 < ne01; i01++) {
  3628. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3629. char * dst_ptr = (char *) dst->data + id*rs;
  3630. memcpy(dst_ptr, src0_ptr, rs);
  3631. id++;
  3632. }
  3633. }
  3634. }
  3635. } else if (dst->type == GGML_TYPE_F16) {
  3636. int id = 0;
  3637. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3638. for (int i03 = 0; i03 < ne03; i03++) {
  3639. for (int i02 = 0; i02 < ne02; i02++) {
  3640. for (int i01 = 0; i01 < ne01; i01++) {
  3641. for (int i00 = 0; i00 < ne00; i00++) {
  3642. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3643. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3644. id++;
  3645. }
  3646. }
  3647. }
  3648. }
  3649. } else {
  3650. GGML_ASSERT(false); // TODO: implement
  3651. }
  3652. } else {
  3653. //printf("%s: this is not optimal - fix me\n", __func__);
  3654. if (dst->type == GGML_TYPE_F32) {
  3655. int id = 0;
  3656. float * dst_ptr = (float *) dst->data;
  3657. for (int i03 = 0; i03 < ne03; i03++) {
  3658. for (int i02 = 0; i02 < ne02; i02++) {
  3659. for (int i01 = 0; i01 < ne01; i01++) {
  3660. for (int i00 = 0; i00 < ne00; i00++) {
  3661. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3662. dst_ptr[id] = *src0_ptr;
  3663. id++;
  3664. }
  3665. }
  3666. }
  3667. }
  3668. } else if (dst->type == GGML_TYPE_F16) {
  3669. int id = 0;
  3670. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3671. for (int i03 = 0; i03 < ne03; i03++) {
  3672. for (int i02 = 0; i02 < ne02; i02++) {
  3673. for (int i01 = 0; i01 < ne01; i01++) {
  3674. for (int i00 = 0; i00 < ne00; i00++) {
  3675. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3676. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3677. id++;
  3678. }
  3679. }
  3680. }
  3681. }
  3682. } else {
  3683. GGML_ASSERT(false); // TODO: implement
  3684. }
  3685. }
  3686. }
  3687. static void ggml_compute_forward_dup(
  3688. const struct ggml_compute_params * params,
  3689. const struct ggml_tensor * src0,
  3690. struct ggml_tensor * dst) {
  3691. switch (src0->type) {
  3692. case GGML_TYPE_F16:
  3693. {
  3694. ggml_compute_forward_dup_f16(params, src0, dst);
  3695. } break;
  3696. case GGML_TYPE_F32:
  3697. {
  3698. ggml_compute_forward_dup_f32(params, src0, dst);
  3699. } break;
  3700. case GGML_TYPE_Q4_0:
  3701. case GGML_TYPE_Q4_1:
  3702. case GGML_TYPE_I8:
  3703. case GGML_TYPE_I16:
  3704. case GGML_TYPE_I32:
  3705. case GGML_TYPE_COUNT:
  3706. {
  3707. GGML_ASSERT(false);
  3708. } break;
  3709. }
  3710. }
  3711. // ggml_compute_forward_add
  3712. static void ggml_compute_forward_add_f32(
  3713. const struct ggml_compute_params * params,
  3714. const struct ggml_tensor * src0,
  3715. const struct ggml_tensor * src1,
  3716. struct ggml_tensor * dst) {
  3717. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3719. return;
  3720. }
  3721. const int ith = params->ith;
  3722. const int nth = params->nth;
  3723. const int n = ggml_nrows(src0);
  3724. const int nc = src0->ne[0];
  3725. const size_t nb00 = src0->nb[0];
  3726. const size_t nb01 = src0->nb[1];
  3727. const size_t nb10 = src1->nb[0];
  3728. const size_t nb11 = src1->nb[1];
  3729. const size_t nb0 = dst->nb[0];
  3730. const size_t nb1 = dst->nb[1];
  3731. GGML_ASSERT( nb0 == sizeof(float));
  3732. GGML_ASSERT(nb00 == sizeof(float));
  3733. if (nb10 == sizeof(float)) {
  3734. const int j0 = (n/nth)*ith;
  3735. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3736. for (int j = j0; j < j1; j++) {
  3737. ggml_vec_add_f32(nc,
  3738. (float *) ((char *) dst->data + j*nb1),
  3739. (float *) ((char *) src0->data + j*nb01),
  3740. (float *) ((char *) src1->data + j*nb11));
  3741. }
  3742. } else {
  3743. // src1 is not contiguous
  3744. for (int j = ith; j < n; j += nth) {
  3745. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3746. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3747. for (int i = 0; i < nc; i++) {
  3748. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3749. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3750. }
  3751. }
  3752. }
  3753. }
  3754. static void ggml_compute_forward_add(
  3755. const struct ggml_compute_params * params,
  3756. const struct ggml_tensor * src0,
  3757. const struct ggml_tensor * src1,
  3758. struct ggml_tensor * dst) {
  3759. switch (src0->type) {
  3760. case GGML_TYPE_F32:
  3761. {
  3762. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3763. } break;
  3764. case GGML_TYPE_Q4_0:
  3765. case GGML_TYPE_Q4_1:
  3766. case GGML_TYPE_I8:
  3767. case GGML_TYPE_I16:
  3768. case GGML_TYPE_I32:
  3769. case GGML_TYPE_F16:
  3770. case GGML_TYPE_COUNT:
  3771. {
  3772. GGML_ASSERT(false);
  3773. } break;
  3774. }
  3775. }
  3776. // ggml_compute_forward_sub
  3777. static void ggml_compute_forward_sub_f32(
  3778. const struct ggml_compute_params * params,
  3779. const struct ggml_tensor * src0,
  3780. const struct ggml_tensor * src1,
  3781. struct ggml_tensor * dst) {
  3782. assert(params->ith == 0);
  3783. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3784. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3785. return;
  3786. }
  3787. const int n = ggml_nrows(src0);
  3788. const int nc = src0->ne[0];
  3789. assert( dst->nb[0] == sizeof(float));
  3790. assert(src0->nb[0] == sizeof(float));
  3791. assert(src1->nb[0] == sizeof(float));
  3792. for (int i = 0; i < n; i++) {
  3793. ggml_vec_sub_f32(nc,
  3794. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3795. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3796. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3797. }
  3798. }
  3799. static void ggml_compute_forward_sub(
  3800. const struct ggml_compute_params * params,
  3801. const struct ggml_tensor * src0,
  3802. const struct ggml_tensor * src1,
  3803. struct ggml_tensor * dst) {
  3804. switch (src0->type) {
  3805. case GGML_TYPE_F32:
  3806. {
  3807. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3808. } break;
  3809. case GGML_TYPE_Q4_0:
  3810. case GGML_TYPE_Q4_1:
  3811. case GGML_TYPE_I8:
  3812. case GGML_TYPE_I16:
  3813. case GGML_TYPE_I32:
  3814. case GGML_TYPE_F16:
  3815. case GGML_TYPE_COUNT:
  3816. {
  3817. GGML_ASSERT(false);
  3818. } break;
  3819. }
  3820. }
  3821. // ggml_compute_forward_mul
  3822. static void ggml_compute_forward_mul_f32(
  3823. const struct ggml_compute_params * params,
  3824. const struct ggml_tensor * src0,
  3825. const struct ggml_tensor * src1,
  3826. struct ggml_tensor * dst) {
  3827. assert(params->ith == 0);
  3828. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3830. return;
  3831. }
  3832. const int n = ggml_nrows(src0);
  3833. const int nc = src0->ne[0];
  3834. assert( dst->nb[0] == sizeof(float));
  3835. assert(src0->nb[0] == sizeof(float));
  3836. assert(src1->nb[0] == sizeof(float));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_mul_f32(nc,
  3839. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3840. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3841. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3842. }
  3843. }
  3844. static void ggml_compute_forward_mul(
  3845. const struct ggml_compute_params * params,
  3846. const struct ggml_tensor * src0,
  3847. const struct ggml_tensor * src1,
  3848. struct ggml_tensor * dst) {
  3849. switch (src0->type) {
  3850. case GGML_TYPE_F32:
  3851. {
  3852. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3853. } break;
  3854. case GGML_TYPE_Q4_0:
  3855. case GGML_TYPE_Q4_1:
  3856. case GGML_TYPE_I8:
  3857. case GGML_TYPE_I16:
  3858. case GGML_TYPE_I32:
  3859. case GGML_TYPE_F16:
  3860. case GGML_TYPE_COUNT:
  3861. {
  3862. GGML_ASSERT(false);
  3863. } break;
  3864. }
  3865. }
  3866. // ggml_compute_forward_div
  3867. static void ggml_compute_forward_div_f32(
  3868. const struct ggml_compute_params * params,
  3869. const struct ggml_tensor * src0,
  3870. const struct ggml_tensor * src1,
  3871. struct ggml_tensor * dst) {
  3872. assert(params->ith == 0);
  3873. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3874. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3875. return;
  3876. }
  3877. const int n = ggml_nrows(src0);
  3878. const int nc = src0->ne[0];
  3879. assert( dst->nb[0] == sizeof(float));
  3880. assert(src0->nb[0] == sizeof(float));
  3881. assert(src1->nb[0] == sizeof(float));
  3882. for (int i = 0; i < n; i++) {
  3883. ggml_vec_div_f32(nc,
  3884. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3885. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3886. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3887. }
  3888. }
  3889. static void ggml_compute_forward_div(
  3890. const struct ggml_compute_params * params,
  3891. const struct ggml_tensor * src0,
  3892. const struct ggml_tensor * src1,
  3893. struct ggml_tensor * dst) {
  3894. switch (src0->type) {
  3895. case GGML_TYPE_F32:
  3896. {
  3897. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3898. } break;
  3899. case GGML_TYPE_Q4_0:
  3900. case GGML_TYPE_Q4_1:
  3901. case GGML_TYPE_I8:
  3902. case GGML_TYPE_I16:
  3903. case GGML_TYPE_I32:
  3904. case GGML_TYPE_F16:
  3905. case GGML_TYPE_COUNT:
  3906. {
  3907. GGML_ASSERT(false);
  3908. } break;
  3909. }
  3910. }
  3911. // ggml_compute_forward_sqr
  3912. static void ggml_compute_forward_sqr_f32(
  3913. const struct ggml_compute_params * params,
  3914. const struct ggml_tensor * src0,
  3915. struct ggml_tensor * dst) {
  3916. assert(params->ith == 0);
  3917. assert(ggml_are_same_shape(src0, dst));
  3918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3919. return;
  3920. }
  3921. const int n = ggml_nrows(src0);
  3922. const int nc = src0->ne[0];
  3923. assert( dst->nb[0] == sizeof(float));
  3924. assert(src0->nb[0] == sizeof(float));
  3925. for (int i = 0; i < n; i++) {
  3926. ggml_vec_sqr_f32(nc,
  3927. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3928. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3929. }
  3930. }
  3931. static void ggml_compute_forward_sqr(
  3932. const struct ggml_compute_params * params,
  3933. const struct ggml_tensor * src0,
  3934. struct ggml_tensor * dst) {
  3935. switch (src0->type) {
  3936. case GGML_TYPE_F32:
  3937. {
  3938. ggml_compute_forward_sqr_f32(params, src0, dst);
  3939. } break;
  3940. case GGML_TYPE_Q4_0:
  3941. case GGML_TYPE_Q4_1:
  3942. case GGML_TYPE_I8:
  3943. case GGML_TYPE_I16:
  3944. case GGML_TYPE_I32:
  3945. case GGML_TYPE_F16:
  3946. case GGML_TYPE_COUNT:
  3947. {
  3948. GGML_ASSERT(false);
  3949. } break;
  3950. }
  3951. }
  3952. // ggml_compute_forward_sqrt
  3953. static void ggml_compute_forward_sqrt_f32(
  3954. const struct ggml_compute_params * params,
  3955. const struct ggml_tensor * src0,
  3956. struct ggml_tensor * dst) {
  3957. assert(params->ith == 0);
  3958. assert(ggml_are_same_shape(src0, dst));
  3959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3960. return;
  3961. }
  3962. const int n = ggml_nrows(src0);
  3963. const int nc = src0->ne[0];
  3964. assert( dst->nb[0] == sizeof(float));
  3965. assert(src0->nb[0] == sizeof(float));
  3966. for (int i = 0; i < n; i++) {
  3967. ggml_vec_sqrt_f32(nc,
  3968. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3969. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3970. }
  3971. }
  3972. static void ggml_compute_forward_sqrt(
  3973. const struct ggml_compute_params * params,
  3974. const struct ggml_tensor * src0,
  3975. struct ggml_tensor * dst) {
  3976. switch (src0->type) {
  3977. case GGML_TYPE_F32:
  3978. {
  3979. ggml_compute_forward_sqrt_f32(params, src0, dst);
  3980. } break;
  3981. case GGML_TYPE_Q4_0:
  3982. case GGML_TYPE_Q4_1:
  3983. case GGML_TYPE_I8:
  3984. case GGML_TYPE_I16:
  3985. case GGML_TYPE_I32:
  3986. case GGML_TYPE_F16:
  3987. case GGML_TYPE_COUNT:
  3988. {
  3989. GGML_ASSERT(false);
  3990. } break;
  3991. }
  3992. }
  3993. // ggml_compute_forward_sum
  3994. static void ggml_compute_forward_sum_f32(
  3995. const struct ggml_compute_params * params,
  3996. const struct ggml_tensor * src0,
  3997. struct ggml_tensor * dst) {
  3998. assert(params->ith == 0);
  3999. assert(ggml_is_scalar(dst));
  4000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4001. return;
  4002. }
  4003. assert(ggml_is_scalar(dst));
  4004. assert(src0->nb[0] == sizeof(float));
  4005. const int ne00 = src0->ne[0];
  4006. const int ne01 = src0->ne[1];
  4007. const int ne02 = src0->ne[2];
  4008. const int ne03 = src0->ne[3];
  4009. const size_t nb01 = src0->nb[1];
  4010. const size_t nb02 = src0->nb[2];
  4011. const size_t nb03 = src0->nb[3];
  4012. for (int i03 = 0; i03 < ne03; i03++) {
  4013. for (int i02 = 0; i02 < ne02; i02++) {
  4014. for (int i01 = 0; i01 < ne01; i01++) {
  4015. ggml_vec_sum_f32(ne00,
  4016. (float *) (dst->data),
  4017. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4018. }
  4019. }
  4020. }
  4021. }
  4022. static void ggml_compute_forward_sum(
  4023. const struct ggml_compute_params * params,
  4024. const struct ggml_tensor * src0,
  4025. struct ggml_tensor * dst) {
  4026. switch (src0->type) {
  4027. case GGML_TYPE_F32:
  4028. {
  4029. ggml_compute_forward_sum_f32(params, src0, dst);
  4030. } break;
  4031. case GGML_TYPE_Q4_0:
  4032. case GGML_TYPE_Q4_1:
  4033. case GGML_TYPE_I8:
  4034. case GGML_TYPE_I16:
  4035. case GGML_TYPE_I32:
  4036. case GGML_TYPE_F16:
  4037. case GGML_TYPE_COUNT:
  4038. {
  4039. GGML_ASSERT(false);
  4040. } break;
  4041. }
  4042. }
  4043. // ggml_compute_forward_mean
  4044. static void ggml_compute_forward_mean_f32(
  4045. const struct ggml_compute_params * params,
  4046. const struct ggml_tensor * src0,
  4047. struct ggml_tensor * dst) {
  4048. assert(params->ith == 0);
  4049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4050. return;
  4051. }
  4052. assert(src0->nb[0] == sizeof(float));
  4053. const int ne00 = src0->ne[0];
  4054. const int ne01 = src0->ne[1];
  4055. const int ne02 = src0->ne[2];
  4056. const int ne03 = src0->ne[3];
  4057. const size_t nb01 = src0->nb[1];
  4058. const size_t nb02 = src0->nb[2];
  4059. const size_t nb03 = src0->nb[3];
  4060. const int ne0 = dst->ne[0];
  4061. const int ne1 = dst->ne[1];
  4062. const int ne2 = dst->ne[2];
  4063. const int ne3 = dst->ne[3];
  4064. assert(ne0 == 1);
  4065. assert(ne1 == ne01);
  4066. assert(ne2 == ne02);
  4067. assert(ne3 == ne03);
  4068. UNUSED(ne0);
  4069. UNUSED(ne1);
  4070. UNUSED(ne2);
  4071. UNUSED(ne3);
  4072. const size_t nb1 = dst->nb[1];
  4073. const size_t nb2 = dst->nb[2];
  4074. const size_t nb3 = dst->nb[3];
  4075. for (int i03 = 0; i03 < ne03; i03++) {
  4076. for (int i02 = 0; i02 < ne02; i02++) {
  4077. for (int i01 = 0; i01 < ne01; i01++) {
  4078. ggml_vec_sum_f32(ne00,
  4079. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4080. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4081. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4082. }
  4083. }
  4084. }
  4085. }
  4086. static void ggml_compute_forward_mean(
  4087. const struct ggml_compute_params * params,
  4088. const struct ggml_tensor * src0,
  4089. struct ggml_tensor * dst) {
  4090. switch (src0->type) {
  4091. case GGML_TYPE_F32:
  4092. {
  4093. ggml_compute_forward_mean_f32(params, src0, dst);
  4094. } break;
  4095. case GGML_TYPE_Q4_0:
  4096. case GGML_TYPE_Q4_1:
  4097. case GGML_TYPE_I8:
  4098. case GGML_TYPE_I16:
  4099. case GGML_TYPE_I32:
  4100. case GGML_TYPE_F16:
  4101. case GGML_TYPE_COUNT:
  4102. {
  4103. GGML_ASSERT(false);
  4104. } break;
  4105. }
  4106. }
  4107. // ggml_compute_forward_repeat
  4108. static void ggml_compute_forward_repeat_f32(
  4109. const struct ggml_compute_params * params,
  4110. const struct ggml_tensor * src0,
  4111. struct ggml_tensor * dst) {
  4112. assert(params->ith == 0);
  4113. assert(ggml_can_repeat(src0, dst));
  4114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4115. return;
  4116. }
  4117. // TODO: implement support for rank > 2 tensors
  4118. assert(src0->ne[2] == 1);
  4119. assert(src0->ne[3] == 1);
  4120. assert( dst->ne[2] == 1);
  4121. assert( dst->ne[3] == 1);
  4122. const int nc = dst->ne[0];
  4123. const int nr = dst->ne[1];
  4124. const int nc0 = src0->ne[0];
  4125. const int nr0 = src0->ne[1];
  4126. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4127. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4128. // TODO: support for transposed / permuted tensors
  4129. assert( dst->nb[0] == sizeof(float));
  4130. assert(src0->nb[0] == sizeof(float));
  4131. // TODO: maybe this is not optimal?
  4132. for (int i = 0; i < nrr; i++) {
  4133. for (int j = 0; j < ncr; j++) {
  4134. for (int k = 0; k < nr0; k++) {
  4135. ggml_vec_cpy_f32(nc0,
  4136. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4137. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4138. }
  4139. }
  4140. }
  4141. }
  4142. static void ggml_compute_forward_repeat(
  4143. const struct ggml_compute_params * params,
  4144. const struct ggml_tensor * src0,
  4145. struct ggml_tensor * dst) {
  4146. switch (src0->type) {
  4147. case GGML_TYPE_F32:
  4148. {
  4149. ggml_compute_forward_repeat_f32(params, src0, dst);
  4150. } break;
  4151. case GGML_TYPE_Q4_0:
  4152. case GGML_TYPE_Q4_1:
  4153. case GGML_TYPE_I8:
  4154. case GGML_TYPE_I16:
  4155. case GGML_TYPE_I32:
  4156. case GGML_TYPE_F16:
  4157. case GGML_TYPE_COUNT:
  4158. {
  4159. GGML_ASSERT(false);
  4160. } break;
  4161. }
  4162. }
  4163. // ggml_compute_forward_abs
  4164. static void ggml_compute_forward_abs_f32(
  4165. const struct ggml_compute_params * params,
  4166. const struct ggml_tensor * src0,
  4167. struct ggml_tensor * dst) {
  4168. assert(params->ith == 0);
  4169. assert(ggml_are_same_shape(src0, dst));
  4170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4171. return;
  4172. }
  4173. const int n = ggml_nrows(src0);
  4174. const int nc = src0->ne[0];
  4175. assert(dst->nb[0] == sizeof(float));
  4176. assert(src0->nb[0] == sizeof(float));
  4177. for (int i = 0; i < n; i++) {
  4178. ggml_vec_abs_f32(nc,
  4179. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4180. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4181. }
  4182. }
  4183. static void ggml_compute_forward_abs(
  4184. const struct ggml_compute_params * params,
  4185. const struct ggml_tensor * src0,
  4186. struct ggml_tensor * dst) {
  4187. switch (src0->type) {
  4188. case GGML_TYPE_F32:
  4189. {
  4190. ggml_compute_forward_abs_f32(params, src0, dst);
  4191. } break;
  4192. case GGML_TYPE_Q4_0:
  4193. case GGML_TYPE_Q4_1:
  4194. case GGML_TYPE_I8:
  4195. case GGML_TYPE_I16:
  4196. case GGML_TYPE_I32:
  4197. case GGML_TYPE_F16:
  4198. case GGML_TYPE_COUNT:
  4199. {
  4200. GGML_ASSERT(false);
  4201. } break;
  4202. }
  4203. }
  4204. // ggml_compute_forward_sgn
  4205. static void ggml_compute_forward_sgn_f32(
  4206. const struct ggml_compute_params * params,
  4207. const struct ggml_tensor * src0,
  4208. struct ggml_tensor * dst) {
  4209. assert(params->ith == 0);
  4210. assert(ggml_are_same_shape(src0, dst));
  4211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4212. return;
  4213. }
  4214. const int n = ggml_nrows(src0);
  4215. const int nc = src0->ne[0];
  4216. assert(dst->nb[0] == sizeof(float));
  4217. assert(src0->nb[0] == sizeof(float));
  4218. for (int i = 0; i < n; i++) {
  4219. ggml_vec_sgn_f32(nc,
  4220. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4221. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4222. }
  4223. }
  4224. static void ggml_compute_forward_sgn(
  4225. const struct ggml_compute_params * params,
  4226. const struct ggml_tensor * src0,
  4227. struct ggml_tensor * dst) {
  4228. switch (src0->type) {
  4229. case GGML_TYPE_F32:
  4230. {
  4231. ggml_compute_forward_sgn_f32(params, src0, dst);
  4232. } break;
  4233. case GGML_TYPE_Q4_0:
  4234. case GGML_TYPE_Q4_1:
  4235. case GGML_TYPE_I8:
  4236. case GGML_TYPE_I16:
  4237. case GGML_TYPE_I32:
  4238. case GGML_TYPE_F16:
  4239. case GGML_TYPE_COUNT:
  4240. {
  4241. GGML_ASSERT(false);
  4242. } break;
  4243. }
  4244. }
  4245. // ggml_compute_forward_neg
  4246. static void ggml_compute_forward_neg_f32(
  4247. const struct ggml_compute_params * params,
  4248. const struct ggml_tensor * src0,
  4249. struct ggml_tensor * dst) {
  4250. assert(params->ith == 0);
  4251. assert(ggml_are_same_shape(src0, dst));
  4252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4253. return;
  4254. }
  4255. const int n = ggml_nrows(src0);
  4256. const int nc = src0->ne[0];
  4257. assert(dst->nb[0] == sizeof(float));
  4258. assert(src0->nb[0] == sizeof(float));
  4259. for (int i = 0; i < n; i++) {
  4260. ggml_vec_neg_f32(nc,
  4261. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4262. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4263. }
  4264. }
  4265. static void ggml_compute_forward_neg(
  4266. const struct ggml_compute_params * params,
  4267. const struct ggml_tensor * src0,
  4268. struct ggml_tensor * dst) {
  4269. switch (src0->type) {
  4270. case GGML_TYPE_F32:
  4271. {
  4272. ggml_compute_forward_neg_f32(params, src0, dst);
  4273. } break;
  4274. case GGML_TYPE_Q4_0:
  4275. case GGML_TYPE_Q4_1:
  4276. case GGML_TYPE_I8:
  4277. case GGML_TYPE_I16:
  4278. case GGML_TYPE_I32:
  4279. case GGML_TYPE_F16:
  4280. case GGML_TYPE_COUNT:
  4281. {
  4282. GGML_ASSERT(false);
  4283. } break;
  4284. }
  4285. }
  4286. // ggml_compute_forward_step
  4287. static void ggml_compute_forward_step_f32(
  4288. const struct ggml_compute_params * params,
  4289. const struct ggml_tensor * src0,
  4290. struct ggml_tensor * dst) {
  4291. assert(params->ith == 0);
  4292. assert(ggml_are_same_shape(src0, dst));
  4293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4294. return;
  4295. }
  4296. const int n = ggml_nrows(src0);
  4297. const int nc = src0->ne[0];
  4298. assert(dst->nb[0] == sizeof(float));
  4299. assert(src0->nb[0] == sizeof(float));
  4300. for (int i = 0; i < n; i++) {
  4301. ggml_vec_step_f32(nc,
  4302. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4303. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4304. }
  4305. }
  4306. static void ggml_compute_forward_step(
  4307. const struct ggml_compute_params * params,
  4308. const struct ggml_tensor * src0,
  4309. struct ggml_tensor * dst) {
  4310. switch (src0->type) {
  4311. case GGML_TYPE_F32:
  4312. {
  4313. ggml_compute_forward_step_f32(params, src0, dst);
  4314. } break;
  4315. case GGML_TYPE_Q4_0:
  4316. case GGML_TYPE_Q4_1:
  4317. case GGML_TYPE_I8:
  4318. case GGML_TYPE_I16:
  4319. case GGML_TYPE_I32:
  4320. case GGML_TYPE_F16:
  4321. case GGML_TYPE_COUNT:
  4322. {
  4323. GGML_ASSERT(false);
  4324. } break;
  4325. }
  4326. }
  4327. // ggml_compute_forward_relu
  4328. static void ggml_compute_forward_relu_f32(
  4329. const struct ggml_compute_params * params,
  4330. const struct ggml_tensor * src0,
  4331. struct ggml_tensor * dst) {
  4332. assert(params->ith == 0);
  4333. assert(ggml_are_same_shape(src0, dst));
  4334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4335. return;
  4336. }
  4337. const int n = ggml_nrows(src0);
  4338. const int nc = src0->ne[0];
  4339. assert(dst->nb[0] == sizeof(float));
  4340. assert(src0->nb[0] == sizeof(float));
  4341. for (int i = 0; i < n; i++) {
  4342. ggml_vec_relu_f32(nc,
  4343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4345. }
  4346. }
  4347. static void ggml_compute_forward_relu(
  4348. const struct ggml_compute_params * params,
  4349. const struct ggml_tensor * src0,
  4350. struct ggml_tensor * dst) {
  4351. switch (src0->type) {
  4352. case GGML_TYPE_F32:
  4353. {
  4354. ggml_compute_forward_relu_f32(params, src0, dst);
  4355. } break;
  4356. case GGML_TYPE_Q4_0:
  4357. case GGML_TYPE_Q4_1:
  4358. case GGML_TYPE_I8:
  4359. case GGML_TYPE_I16:
  4360. case GGML_TYPE_I32:
  4361. case GGML_TYPE_F16:
  4362. case GGML_TYPE_COUNT:
  4363. {
  4364. GGML_ASSERT(false);
  4365. } break;
  4366. }
  4367. }
  4368. // ggml_compute_forward_gelu
  4369. static void ggml_compute_forward_gelu_f32(
  4370. const struct ggml_compute_params * params,
  4371. const struct ggml_tensor * src0,
  4372. struct ggml_tensor * dst) {
  4373. GGML_ASSERT(ggml_is_contiguous(src0));
  4374. GGML_ASSERT(ggml_is_contiguous(dst));
  4375. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4377. return;
  4378. }
  4379. const int ith = params->ith;
  4380. const int nth = params->nth;
  4381. const int nc = src0->ne[0];
  4382. const int nr = ggml_nrows(src0);
  4383. // rows per thread
  4384. const int dr = (nr + nth - 1)/nth;
  4385. // row range for this thread
  4386. const int ir0 = dr*ith;
  4387. const int ir1 = MIN(ir0 + dr, nr);
  4388. for (int i1 = ir0; i1 < ir1; i1++) {
  4389. ggml_vec_gelu_f32(nc,
  4390. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4391. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4392. #ifndef NDEBUG
  4393. for (int k = 0; k < nc; k++) {
  4394. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4395. UNUSED(x);
  4396. assert(!isnan(x));
  4397. assert(!isinf(x));
  4398. }
  4399. #endif
  4400. }
  4401. }
  4402. static void ggml_compute_forward_gelu(
  4403. const struct ggml_compute_params * params,
  4404. const struct ggml_tensor * src0,
  4405. struct ggml_tensor * dst) {
  4406. switch (src0->type) {
  4407. case GGML_TYPE_F32:
  4408. {
  4409. ggml_compute_forward_gelu_f32(params, src0, dst);
  4410. } break;
  4411. case GGML_TYPE_Q4_0:
  4412. case GGML_TYPE_Q4_1:
  4413. case GGML_TYPE_I8:
  4414. case GGML_TYPE_I16:
  4415. case GGML_TYPE_I32:
  4416. case GGML_TYPE_F16:
  4417. case GGML_TYPE_COUNT:
  4418. {
  4419. GGML_ASSERT(false);
  4420. } break;
  4421. }
  4422. //printf("XXXXXXXX gelu\n");
  4423. }
  4424. // ggml_compute_forward_silu
  4425. static void ggml_compute_forward_silu_f32(
  4426. const struct ggml_compute_params * params,
  4427. const struct ggml_tensor * src0,
  4428. struct ggml_tensor * dst) {
  4429. GGML_ASSERT(ggml_is_contiguous(src0));
  4430. GGML_ASSERT(ggml_is_contiguous(dst));
  4431. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4433. return;
  4434. }
  4435. const int ith = params->ith;
  4436. const int nth = params->nth;
  4437. const int nc = src0->ne[0];
  4438. const int nr = ggml_nrows(src0);
  4439. // rows per thread
  4440. const int dr = (nr + nth - 1)/nth;
  4441. // row range for this thread
  4442. const int ir0 = dr*ith;
  4443. const int ir1 = MIN(ir0 + dr, nr);
  4444. for (int i1 = ir0; i1 < ir1; i1++) {
  4445. ggml_vec_silu_f32(nc,
  4446. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4447. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4448. #ifndef NDEBUG
  4449. for (int k = 0; k < nc; k++) {
  4450. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4451. UNUSED(x);
  4452. assert(!isnan(x));
  4453. assert(!isinf(x));
  4454. }
  4455. #endif
  4456. }
  4457. }
  4458. static void ggml_compute_forward_silu(
  4459. const struct ggml_compute_params * params,
  4460. const struct ggml_tensor * src0,
  4461. struct ggml_tensor * dst) {
  4462. switch (src0->type) {
  4463. case GGML_TYPE_F32:
  4464. {
  4465. ggml_compute_forward_silu_f32(params, src0, dst);
  4466. } break;
  4467. case GGML_TYPE_Q4_0:
  4468. case GGML_TYPE_Q4_1:
  4469. case GGML_TYPE_I8:
  4470. case GGML_TYPE_I16:
  4471. case GGML_TYPE_I32:
  4472. case GGML_TYPE_F16:
  4473. case GGML_TYPE_COUNT:
  4474. {
  4475. GGML_ASSERT(false);
  4476. } break;
  4477. }
  4478. }
  4479. // ggml_compute_forward_norm
  4480. static void ggml_compute_forward_norm_f32(
  4481. const struct ggml_compute_params * params,
  4482. const struct ggml_tensor * src0,
  4483. struct ggml_tensor * dst) {
  4484. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4486. return;
  4487. }
  4488. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4489. const int ith = params->ith;
  4490. const int nth = params->nth;
  4491. const int ne00 = src0->ne[0];
  4492. const int ne01 = src0->ne[1];
  4493. const int ne02 = src0->ne[2];
  4494. const int ne03 = src0->ne[3];
  4495. const size_t nb01 = src0->nb[1];
  4496. const size_t nb02 = src0->nb[2];
  4497. const size_t nb03 = src0->nb[3];
  4498. const size_t nb1 = dst->nb[1];
  4499. const size_t nb2 = dst->nb[2];
  4500. const size_t nb3 = dst->nb[3];
  4501. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4502. // TODO: optimize
  4503. for (int i03 = 0; i03 < ne03; i03++) {
  4504. for (int i02 = 0; i02 < ne02; i02++) {
  4505. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4506. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4507. ggml_float mean = 0.0;
  4508. for (int i00 = 0; i00 < ne00; i00++) {
  4509. mean += x[i00];
  4510. }
  4511. mean /= ne00;
  4512. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4513. ggml_float sum2 = 0.0;
  4514. for (int i00 = 0; i00 < ne00; i00++) {
  4515. ggml_float v = x[i00] - mean;
  4516. y[i00] = v;
  4517. sum2 += v*v;
  4518. }
  4519. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4520. ggml_vec_scale_f32(ne00, y, scale);
  4521. }
  4522. }
  4523. }
  4524. }
  4525. static void ggml_compute_forward_norm(
  4526. const struct ggml_compute_params * params,
  4527. const struct ggml_tensor * src0,
  4528. struct ggml_tensor * dst) {
  4529. switch (src0->type) {
  4530. case GGML_TYPE_F32:
  4531. {
  4532. ggml_compute_forward_norm_f32(params, src0, dst);
  4533. } break;
  4534. case GGML_TYPE_Q4_0:
  4535. case GGML_TYPE_Q4_1:
  4536. case GGML_TYPE_I8:
  4537. case GGML_TYPE_I16:
  4538. case GGML_TYPE_I32:
  4539. case GGML_TYPE_F16:
  4540. case GGML_TYPE_COUNT:
  4541. {
  4542. GGML_ASSERT(false);
  4543. } break;
  4544. }
  4545. }
  4546. static void ggml_compute_forward_rms_norm_f32(
  4547. const struct ggml_compute_params * params,
  4548. const struct ggml_tensor * src0,
  4549. struct ggml_tensor * dst) {
  4550. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4552. return;
  4553. }
  4554. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4555. const int ith = params->ith;
  4556. const int nth = params->nth;
  4557. const int ne00 = src0->ne[0];
  4558. const int ne01 = src0->ne[1];
  4559. const int ne02 = src0->ne[2];
  4560. const int ne03 = src0->ne[3];
  4561. const size_t nb01 = src0->nb[1];
  4562. const size_t nb02 = src0->nb[2];
  4563. const size_t nb03 = src0->nb[3];
  4564. const size_t nb1 = dst->nb[1];
  4565. const size_t nb2 = dst->nb[2];
  4566. const size_t nb3 = dst->nb[3];
  4567. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4568. // TODO: optimize
  4569. for (int i03 = 0; i03 < ne03; i03++) {
  4570. for (int i02 = 0; i02 < ne02; i02++) {
  4571. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4572. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4573. ggml_float mean = 0.0;
  4574. for (int i00 = 0; i00 < ne00; i00++) {
  4575. mean += x[i00] * x[i00];
  4576. }
  4577. mean /= ne00;
  4578. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4579. memcpy(y, x, ne00 * sizeof(float));
  4580. // for (int i00 = 0; i00 < ne00; i00++) {
  4581. // y[i00] = x[i00];
  4582. // }
  4583. const float scale = 1.0/sqrt(mean + eps);
  4584. ggml_vec_scale_f32(ne00, y, scale);
  4585. }
  4586. }
  4587. }
  4588. }
  4589. static void ggml_compute_forward_rms_norm(
  4590. const struct ggml_compute_params * params,
  4591. const struct ggml_tensor * src0,
  4592. struct ggml_tensor * dst) {
  4593. switch (src0->type) {
  4594. case GGML_TYPE_F32:
  4595. {
  4596. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4597. } break;
  4598. case GGML_TYPE_Q4_0:
  4599. case GGML_TYPE_Q4_1:
  4600. case GGML_TYPE_I8:
  4601. case GGML_TYPE_I16:
  4602. case GGML_TYPE_I32:
  4603. case GGML_TYPE_F16:
  4604. case GGML_TYPE_COUNT:
  4605. {
  4606. GGML_ASSERT(false);
  4607. } break;
  4608. }
  4609. }
  4610. // ggml_compute_forward_mul_mat
  4611. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4612. // helper function to determine if it is better to use BLAS or not
  4613. // for large matrices, BLAS is faster
  4614. static bool ggml_compute_forward_mul_mat_use_blas(
  4615. const struct ggml_tensor * src0,
  4616. const struct ggml_tensor * src1,
  4617. struct ggml_tensor * dst) {
  4618. UNUSED(src0);
  4619. const int ne10 = src1->ne[0];
  4620. const int ne0 = dst->ne[0];
  4621. const int ne1 = dst->ne[1];
  4622. // TODO: find the optimal values for these
  4623. if (ggml_is_contiguous(src0) &&
  4624. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4625. //printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
  4626. return true;
  4627. }
  4628. return false;
  4629. }
  4630. #endif
  4631. static void ggml_compute_forward_mul_mat_f32(
  4632. const struct ggml_compute_params * params,
  4633. const struct ggml_tensor * src0,
  4634. const struct ggml_tensor * src1,
  4635. struct ggml_tensor * dst) {
  4636. int64_t t0 = ggml_perf_time_us();
  4637. UNUSED(t0);
  4638. const int ne00 = src0->ne[0];
  4639. const int ne01 = src0->ne[1];
  4640. const int ne02 = src0->ne[2];
  4641. const int ne03 = src0->ne[3];
  4642. const int ne10 = src1->ne[0];
  4643. const int ne11 = src1->ne[1];
  4644. const int ne12 = src1->ne[2];
  4645. const int ne13 = src1->ne[3];
  4646. const int ne0 = dst->ne[0];
  4647. const int ne1 = dst->ne[1];
  4648. const int ne2 = dst->ne[2];
  4649. const int ne3 = dst->ne[3];
  4650. const int ne = ne0*ne1*ne2*ne3;
  4651. const int nb00 = src0->nb[0];
  4652. const int nb01 = src0->nb[1];
  4653. const int nb02 = src0->nb[2];
  4654. const int nb03 = src0->nb[3];
  4655. const int nb10 = src1->nb[0];
  4656. const int nb11 = src1->nb[1];
  4657. const int nb12 = src1->nb[2];
  4658. const int nb13 = src1->nb[3];
  4659. const int nb0 = dst->nb[0];
  4660. const int nb1 = dst->nb[1];
  4661. const int nb2 = dst->nb[2];
  4662. const int nb3 = dst->nb[3];
  4663. const int ith = params->ith;
  4664. const int nth = params->nth;
  4665. assert(ne02 == ne12);
  4666. assert(ne03 == ne13);
  4667. assert(ne2 == ne12);
  4668. assert(ne3 == ne13);
  4669. // TODO: we don't support permuted src0
  4670. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4671. // dst cannot be transposed or permuted
  4672. assert(nb0 == sizeof(float));
  4673. assert(nb0 <= nb1);
  4674. assert(nb1 <= nb2);
  4675. assert(nb2 <= nb3);
  4676. assert(ne0 == ne01);
  4677. assert(ne1 == ne11);
  4678. assert(ne2 == ne02);
  4679. assert(ne3 == ne03);
  4680. // nb01 >= nb00 - src0 is not transposed
  4681. // compute by src0 rows
  4682. //
  4683. // nb00 < nb01 - src0 is transposed
  4684. // compute by src0 columns
  4685. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4686. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4687. GGML_ASSERT(nb10 == sizeof(float));
  4688. if (params->ith != 0) {
  4689. return;
  4690. }
  4691. if (params->type == GGML_TASK_INIT) {
  4692. return;
  4693. }
  4694. if (params->type == GGML_TASK_FINALIZE) {
  4695. return;
  4696. }
  4697. for (int i03 = 0; i03 < ne03; i03++) {
  4698. for (int i02 = 0; i02 < ne02; i02++) {
  4699. const float * x = (float *) (src0->data);
  4700. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4701. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4702. // zT = y * xT
  4703. {
  4704. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4705. ne11, ne01, ne10,
  4706. 1.0f, y, ne10,
  4707. x, ne10,
  4708. 0.0f, d, ne01);
  4709. }
  4710. }
  4711. }
  4712. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4713. return;
  4714. }
  4715. #endif
  4716. if (params->type == GGML_TASK_INIT) {
  4717. if (nb01 >= nb00) {
  4718. return;
  4719. }
  4720. // TODO: fix this memset (wsize is overestimated)
  4721. memset(params->wdata, 0, params->wsize);
  4722. return;
  4723. }
  4724. if (params->type == GGML_TASK_FINALIZE) {
  4725. if (nb01 >= nb00) {
  4726. return;
  4727. }
  4728. // TODO: fix this memset (wsize is overestimated)
  4729. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4730. float * const wdata = params->wdata;
  4731. // cols per thread
  4732. const int dc = (ne + nth - 1)/nth;
  4733. // col range for this thread
  4734. const int ic0 = dc*ith;
  4735. const int ic1 = MIN(ic0 + dc, ne);
  4736. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4737. for (int k = 1; k < nth; k++) {
  4738. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4739. }
  4740. return;
  4741. }
  4742. if (nb01 >= nb00) {
  4743. // TODO: do not support transposed src1
  4744. assert(nb10 == sizeof(float));
  4745. // parallelize by src0 rows using ggml_vec_dot_f32
  4746. // total rows in src0
  4747. const int nr = ne01*ne02*ne03;
  4748. // rows per thread
  4749. const int dr = (nr + nth - 1)/nth;
  4750. // row range for this thread
  4751. const int ir0 = dr*ith;
  4752. const int ir1 = MIN(ir0 + dr, nr);
  4753. for (int ir = ir0; ir < ir1; ++ir) {
  4754. // src0 indices
  4755. const int i03 = ir/(ne02*ne01);
  4756. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4757. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4758. for (int ic = 0; ic < ne11; ++ic) {
  4759. // src1 indices
  4760. const int i13 = i03;
  4761. const int i12 = i02;
  4762. const int i11 = ic;
  4763. // dst indices
  4764. const int i0 = i01;
  4765. const int i1 = i11;
  4766. const int i2 = i02;
  4767. const int i3 = i03;
  4768. ggml_vec_dot_f32(ne00,
  4769. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4770. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4771. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4772. }
  4773. }
  4774. } else {
  4775. // parallelize by src1 columns using ggml_vec_mad_f32
  4776. // each thread has its own work data
  4777. // during FINALIZE we accumulate all work data into dst
  4778. // total columns in src1
  4779. const int nc = ne10;
  4780. // columns per thread
  4781. const int dc = (nc + nth - 1)/nth;
  4782. // column range for this thread
  4783. const int ic0 = dc*ith;
  4784. const int ic1 = MIN(ic0 + dc, nc);
  4785. // work data for thread
  4786. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4787. float * const wdata = params->wdata;
  4788. for (int i13 = 0; i13 < ne13; ++i13) {
  4789. for (int i12 = 0; i12 < ne12; ++i12) {
  4790. for (int i11 = 0; i11 < ne11; ++i11) {
  4791. for (int ic = ic0; ic < ic1; ++ic) {
  4792. // src1 indices
  4793. const int i10 = ic;
  4794. // src0 indices
  4795. const int i03 = i13;
  4796. const int i02 = i12;
  4797. const int i00 = ic;
  4798. // dst indices
  4799. const int i1 = i11;
  4800. const int i2 = i12;
  4801. const int i3 = i13;
  4802. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4803. ggml_vec_mad_f32(ne01,
  4804. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4805. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4806. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4807. }
  4808. }
  4809. }
  4810. }
  4811. }
  4812. //int64_t t1 = ggml_perf_time_us();
  4813. //static int64_t acc = 0;
  4814. //acc += t1 - t0;
  4815. //if (t1 - t0 > 10) {
  4816. // printf("\n");
  4817. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4818. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4819. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4820. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4821. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4822. //}
  4823. }
  4824. static void ggml_compute_forward_mul_mat_f16_f32(
  4825. const struct ggml_compute_params * params,
  4826. const struct ggml_tensor * src0,
  4827. const struct ggml_tensor * src1,
  4828. struct ggml_tensor * dst) {
  4829. int64_t t0 = ggml_perf_time_us();
  4830. UNUSED(t0);
  4831. const int ne00 = src0->ne[0];
  4832. const int ne01 = src0->ne[1];
  4833. const int ne02 = src0->ne[2];
  4834. const int ne03 = src0->ne[3];
  4835. const int ne10 = src1->ne[0];
  4836. const int ne11 = src1->ne[1];
  4837. const int ne12 = src1->ne[2];
  4838. const int ne13 = src1->ne[3];
  4839. const int ne0 = dst->ne[0];
  4840. const int ne1 = dst->ne[1];
  4841. const int ne2 = dst->ne[2];
  4842. const int ne3 = dst->ne[3];
  4843. const int ne = ne0*ne1*ne2*ne3;
  4844. const int nb00 = src0->nb[0];
  4845. const int nb01 = src0->nb[1];
  4846. const int nb02 = src0->nb[2];
  4847. const int nb03 = src0->nb[3];
  4848. const int nb10 = src1->nb[0];
  4849. const int nb11 = src1->nb[1];
  4850. const int nb12 = src1->nb[2];
  4851. const int nb13 = src1->nb[3];
  4852. const int nb0 = dst->nb[0];
  4853. const int nb1 = dst->nb[1];
  4854. const int nb2 = dst->nb[2];
  4855. const int nb3 = dst->nb[3];
  4856. const int ith = params->ith;
  4857. const int nth = params->nth;
  4858. GGML_ASSERT(ne02 == ne12);
  4859. GGML_ASSERT(ne03 == ne13);
  4860. GGML_ASSERT(ne2 == ne12);
  4861. GGML_ASSERT(ne3 == ne13);
  4862. // TODO: we don't support permuted src0
  4863. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4864. // dst cannot be transposed or permuted
  4865. GGML_ASSERT(nb0 == sizeof(float));
  4866. GGML_ASSERT(nb0 <= nb1);
  4867. GGML_ASSERT(nb1 <= nb2);
  4868. GGML_ASSERT(nb2 <= nb3);
  4869. GGML_ASSERT(ne0 == ne01);
  4870. GGML_ASSERT(ne1 == ne11);
  4871. GGML_ASSERT(ne2 == ne02);
  4872. GGML_ASSERT(ne3 == ne03);
  4873. // nb01 >= nb00 - src0 is not transposed
  4874. // compute by src0 rows
  4875. //
  4876. // nb00 < nb01 - src0 is transposed
  4877. // compute by src0 columns
  4878. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4879. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4880. GGML_ASSERT(nb10 == sizeof(float));
  4881. if (params->ith != 0) {
  4882. return;
  4883. }
  4884. if (params->type == GGML_TASK_INIT) {
  4885. return;
  4886. }
  4887. if (params->type == GGML_TASK_FINALIZE) {
  4888. return;
  4889. }
  4890. float * const wdata = params->wdata;
  4891. for (int i03 = 0; i03 < ne03; i03++) {
  4892. for (int i02 = 0; i02 < ne02; i02++) {
  4893. {
  4894. int id = 0;
  4895. for (int i01 = 0; i01 < ne01; ++i01) {
  4896. for (int i00 = 0; i00 < ne00; ++i00) {
  4897. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4898. }
  4899. }
  4900. }
  4901. const float * x = wdata;
  4902. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4903. // float * z = wdata + ne00*ne01;
  4904. // z = x * yT
  4905. //{
  4906. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4907. // ne01, ne11, ne00,
  4908. // 1.0f, x, ne00,
  4909. // y, ne00,
  4910. // 0.0f, z, ne11);
  4911. //}
  4912. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4913. // transpose z
  4914. //for (int j = 0; j < ne11; ++j) {
  4915. // for (int i = 0; i < ne01; ++i) {
  4916. // d[j*ne01 + i] = z[i*ne11 + j];
  4917. // }
  4918. //}
  4919. {
  4920. #if 1
  4921. // zT = y * xT
  4922. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4923. ne11, ne01, ne10,
  4924. 1.0f, y, ne00,
  4925. x, ne00,
  4926. 0.0f, d, ne01);
  4927. #else
  4928. // zT = (xT * y)T
  4929. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  4930. ne01, ne11, ne10,
  4931. 1.0f, x, ne00,
  4932. y, ne00,
  4933. 0.0f, d, ne01);
  4934. #endif
  4935. }
  4936. }
  4937. }
  4938. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4939. return;
  4940. }
  4941. #endif
  4942. if (params->type == GGML_TASK_INIT) {
  4943. if (nb01 >= nb00) {
  4944. ggml_fp16_t * const wdata = params->wdata;
  4945. int id = 0;
  4946. for (int i13 = 0; i13 < ne13; ++i13) {
  4947. for (int i12 = 0; i12 < ne12; ++i12) {
  4948. for (int i11 = 0; i11 < ne11; ++i11) {
  4949. for (int i10 = 0; i10 < ne10; ++i10) {
  4950. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4951. }
  4952. }
  4953. }
  4954. }
  4955. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4956. return;
  4957. }
  4958. // TODO: fix this memset (wsize is overestimated)
  4959. memset(params->wdata, 0, params->wsize);
  4960. return;
  4961. }
  4962. if (params->type == GGML_TASK_FINALIZE) {
  4963. if (nb01 >= nb00) {
  4964. return;
  4965. }
  4966. // TODO: fix this memset (wsize is overestimated)
  4967. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4968. ggml_fp16_t * const wdata = params->wdata;
  4969. // cols per thread
  4970. const int dc = (ne + nth - 1)/nth;
  4971. // col range for this thread
  4972. const int ic0 = dc*ith;
  4973. const int ic1 = MIN(ic0 + dc, ne);
  4974. for (int i = ic0; i < ic1; ++i) {
  4975. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  4976. }
  4977. for (int k = 1; k < nth; k++) {
  4978. for (int i = ic0; i < ic1; ++i) {
  4979. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  4980. }
  4981. }
  4982. return;
  4983. }
  4984. if (nb01 >= nb00) {
  4985. // fp16 -> half the size, so divide by 2
  4986. // TODO: do not support transposed src1
  4987. assert(nb10/2 == sizeof(ggml_fp16_t));
  4988. // parallelize by src0 rows using ggml_vec_dot_f16
  4989. // total rows in src0
  4990. const int nr = ne01*ne02*ne03;
  4991. // rows per thread
  4992. const int dr = (nr + nth - 1)/nth;
  4993. // row range for this thread
  4994. const int ir0 = dr*ith;
  4995. const int ir1 = MIN(ir0 + dr, nr);
  4996. ggml_fp16_t * wdata = params->wdata;
  4997. for (int ir = ir0; ir < ir1; ++ir) {
  4998. // src0 indices
  4999. const int i03 = ir/(ne02*ne01);
  5000. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5001. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5002. const int i13 = i03;
  5003. const int i12 = i02;
  5004. const int i0 = i01;
  5005. const int i2 = i02;
  5006. const int i3 = i03;
  5007. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5008. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5009. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5010. assert(ne00 % 32 == 0);
  5011. for (int ic = 0; ic < ne11; ++ic) {
  5012. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5013. }
  5014. }
  5015. } else {
  5016. // parallelize by src1 columns using ggml_vec_mad_f16
  5017. // each thread has its own work data
  5018. // during FINALIZE we accumulate all work data into dst
  5019. // total columns in src1
  5020. const int nc = ne10;
  5021. // columns per thread
  5022. const int dc = (nc + nth - 1)/nth;
  5023. // column range for this thread
  5024. const int ic0 = dc*ith;
  5025. const int ic1 = MIN(ic0 + dc, nc);
  5026. // work data for thread
  5027. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5028. ggml_fp16_t * const wdata = params->wdata;
  5029. for (int i13 = 0; i13 < ne13; ++i13) {
  5030. for (int i12 = 0; i12 < ne12; ++i12) {
  5031. for (int i11 = 0; i11 < ne11; ++i11) {
  5032. // dst indices
  5033. const int i1 = i11;
  5034. const int i2 = i12;
  5035. const int i3 = i13;
  5036. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5037. for (int ic = ic0; ic < ic1; ++ic) {
  5038. // src1 indices
  5039. const int i10 = ic;
  5040. // src0 indices
  5041. const int i03 = i13;
  5042. const int i02 = i12;
  5043. const int i00 = ic;
  5044. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5045. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5046. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5047. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5048. }
  5049. }
  5050. }
  5051. }
  5052. }
  5053. //int64_t t1 = ggml_time_us();
  5054. //static int64_t acc = 0;
  5055. //acc += t1 - t0;
  5056. //if (t1 - t0 > 10) {
  5057. // printf("\n");
  5058. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5059. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5060. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5061. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5062. //}
  5063. }
  5064. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5065. const struct ggml_compute_params * params,
  5066. const struct ggml_tensor * src0,
  5067. const struct ggml_tensor * src1,
  5068. struct ggml_tensor * dst) {
  5069. int64_t t0 = ggml_perf_time_us();
  5070. UNUSED(t0);
  5071. const int ne00 = src0->ne[0];
  5072. const int ne01 = src0->ne[1];
  5073. const int ne02 = src0->ne[2];
  5074. const int ne03 = src0->ne[3];
  5075. const int ne10 = src1->ne[0];
  5076. const int ne11 = src1->ne[1];
  5077. const int ne12 = src1->ne[2];
  5078. const int ne13 = src1->ne[3];
  5079. const int ne0 = dst->ne[0];
  5080. const int ne1 = dst->ne[1];
  5081. const int ne2 = dst->ne[2];
  5082. const int ne3 = dst->ne[3];
  5083. const int ne = ne0*ne1*ne2*ne3;
  5084. const int nb00 = src0->nb[0];
  5085. const int nb01 = src0->nb[1];
  5086. const int nb02 = src0->nb[2];
  5087. const int nb03 = src0->nb[3];
  5088. const int nb10 = src1->nb[0];
  5089. const int nb11 = src1->nb[1];
  5090. const int nb12 = src1->nb[2];
  5091. const int nb13 = src1->nb[3];
  5092. const int nb0 = dst->nb[0];
  5093. const int nb1 = dst->nb[1];
  5094. const int nb2 = dst->nb[2];
  5095. const int nb3 = dst->nb[3];
  5096. const int ith = params->ith;
  5097. const int nth = params->nth;
  5098. GGML_ASSERT(ne02 == ne12);
  5099. GGML_ASSERT(ne03 == ne13);
  5100. GGML_ASSERT(ne2 == ne12);
  5101. GGML_ASSERT(ne3 == ne13);
  5102. // TODO: we don't support permuted src0
  5103. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5104. // dst cannot be transposed or permuted
  5105. GGML_ASSERT(nb0 == sizeof(float));
  5106. GGML_ASSERT(nb0 <= nb1);
  5107. GGML_ASSERT(nb1 <= nb2);
  5108. GGML_ASSERT(nb2 <= nb3);
  5109. GGML_ASSERT(ne0 == ne01);
  5110. GGML_ASSERT(ne1 == ne11);
  5111. GGML_ASSERT(ne2 == ne02);
  5112. GGML_ASSERT(ne3 == ne03);
  5113. // nb01 >= nb00 - src0 is not transposed
  5114. // compute by src0 rows
  5115. //
  5116. // nb00 < nb01 - src0 is transposed
  5117. // compute by src0 columns
  5118. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5119. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5120. GGML_ASSERT(nb10 == sizeof(float));
  5121. if (params->ith != 0) {
  5122. return;
  5123. }
  5124. if (params->type == GGML_TASK_INIT) {
  5125. return;
  5126. }
  5127. if (params->type == GGML_TASK_FINALIZE) {
  5128. return;
  5129. }
  5130. float * const wdata = params->wdata;
  5131. for (int i03 = 0; i03 < ne03; i03++) {
  5132. for (int i02 = 0; i02 < ne02; i02++) {
  5133. {
  5134. int id = 0;
  5135. for (int i01 = 0; i01 < ne01; ++i01) {
  5136. //for (int i00 = 0; i00 < ne00; ++i00) {
  5137. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5138. //}
  5139. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5140. id += ne00;
  5141. }
  5142. }
  5143. const float * x = wdata;
  5144. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5145. // float * z = wdata + ne00*ne01;
  5146. // z = x * yT
  5147. //{
  5148. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5149. // ne01, ne11, ne00,
  5150. // 1.0f, x, ne00,
  5151. // y, ne00,
  5152. // 0.0f, z, ne11);
  5153. //}
  5154. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5155. // transpose z
  5156. //for (int j = 0; j < ne11; ++j) {
  5157. // for (int i = 0; i < ne01; ++i) {
  5158. // d[j*ne01 + i] = z[i*ne11 + j];
  5159. // }
  5160. //}
  5161. {
  5162. #if 1
  5163. // zT = y * xT
  5164. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5165. ne11, ne01, ne10,
  5166. 1.0f, y, ne00,
  5167. x, ne00,
  5168. 0.0f, d, ne01);
  5169. #else
  5170. // zT = (xT * y)T
  5171. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5172. ne01, ne11, ne10,
  5173. 1.0f, x, ne00,
  5174. y, ne00,
  5175. 0.0f, d, ne01);
  5176. #endif
  5177. }
  5178. }
  5179. }
  5180. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5181. return;
  5182. }
  5183. #endif
  5184. if (params->type == GGML_TASK_INIT) {
  5185. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5186. if (nb01 >= nb00) {
  5187. char * wdata = params->wdata;
  5188. for (int i13 = 0; i13 < ne13; ++i13) {
  5189. for (int i12 = 0; i12 < ne12; ++i12) {
  5190. for (int i11 = 0; i11 < ne11; ++i11) {
  5191. //for (int i10 = 0; i10 < ne10; ++i10) {
  5192. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5193. //}
  5194. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5195. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5196. }
  5197. }
  5198. }
  5199. return;
  5200. }
  5201. // TODO: fix this memset (wsize is overestimated)
  5202. memset(params->wdata, 0, params->wsize);
  5203. return;
  5204. }
  5205. if (params->type == GGML_TASK_FINALIZE) {
  5206. if (nb01 >= nb00) {
  5207. return;
  5208. }
  5209. float * const wdata = params->wdata;
  5210. // cols per thread
  5211. const int dc = (ne + nth - 1)/nth;
  5212. // col range for this thread
  5213. const int ic0 = dc*ith;
  5214. const int ic1 = MIN(ic0 + dc, ne);
  5215. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5216. for (int k = 1; k < nth; k++) {
  5217. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5218. }
  5219. return;
  5220. }
  5221. if (nb01 >= nb00) {
  5222. // TODO: do not support transposed src1
  5223. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5224. // total rows in src0
  5225. const int nr = ne01*ne02*ne03;
  5226. // rows per thread
  5227. const int dr = (nr + nth - 1)/nth;
  5228. // row range for this thread
  5229. const int ir0 = dr*ith;
  5230. const int ir1 = MIN(ir0 + dr, nr);
  5231. void * wdata = params->wdata;
  5232. for (int ir = ir0; ir < ir1; ++ir) {
  5233. // src0 indices
  5234. const int i03 = ir/(ne02*ne01);
  5235. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5236. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5237. const int i13 = i03;
  5238. const int i12 = i02;
  5239. const int i0 = i01;
  5240. const int i2 = i02;
  5241. const int i3 = i03;
  5242. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5243. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5244. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5245. assert(ne00 % 32 == 0);
  5246. for (int ic = 0; ic < ne11; ++ic) {
  5247. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5248. }
  5249. }
  5250. } else {
  5251. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5252. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5253. // each thread has its own work data
  5254. // during FINALIZE we accumulate all work data into dst
  5255. // total columns in src1
  5256. const int nc = ne10;
  5257. // columns per thread
  5258. const int dc = (nc + nth - 1)/nth;
  5259. // column range for this thread
  5260. const int ic0 = dc*ith;
  5261. const int ic1 = MIN(ic0 + dc, nc);
  5262. // work data for thread
  5263. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5264. float * const wdata = params->wdata;
  5265. for (int i13 = 0; i13 < ne13; ++i13) {
  5266. for (int i12 = 0; i12 < ne12; ++i12) {
  5267. for (int i11 = 0; i11 < ne11; ++i11) {
  5268. // dst indices
  5269. const int i1 = i11;
  5270. const int i2 = i12;
  5271. const int i3 = i13;
  5272. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5273. for (int ic = ic0; ic < ic1; ++ic) {
  5274. // src1 indices
  5275. const int i10 = ic;
  5276. // src0 indices
  5277. const int i03 = i13;
  5278. const int i02 = i12;
  5279. const int i00 = ic;
  5280. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5281. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5282. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5283. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5284. }
  5285. }
  5286. }
  5287. }
  5288. }
  5289. //int64_t t1 = ggml_time_us();
  5290. //static int64_t acc = 0;
  5291. //acc += t1 - t0;
  5292. //if (t1 - t0 > 10) {
  5293. // printf("\n");
  5294. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5295. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5296. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5297. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5298. //}
  5299. }
  5300. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5301. const struct ggml_compute_params * params,
  5302. const struct ggml_tensor * src0,
  5303. const struct ggml_tensor * src1,
  5304. struct ggml_tensor * dst) {
  5305. int64_t t0 = ggml_perf_time_us();
  5306. UNUSED(t0);
  5307. const int ne00 = src0->ne[0];
  5308. const int ne01 = src0->ne[1];
  5309. const int ne02 = src0->ne[2];
  5310. const int ne03 = src0->ne[3];
  5311. const int ne10 = src1->ne[0];
  5312. const int ne11 = src1->ne[1];
  5313. const int ne12 = src1->ne[2];
  5314. const int ne13 = src1->ne[3];
  5315. const int ne0 = dst->ne[0];
  5316. const int ne1 = dst->ne[1];
  5317. const int ne2 = dst->ne[2];
  5318. const int ne3 = dst->ne[3];
  5319. const int ne = ne0*ne1*ne2*ne3;
  5320. const int nb00 = src0->nb[0];
  5321. const int nb01 = src0->nb[1];
  5322. const int nb02 = src0->nb[2];
  5323. const int nb03 = src0->nb[3];
  5324. const int nb10 = src1->nb[0];
  5325. const int nb11 = src1->nb[1];
  5326. const int nb12 = src1->nb[2];
  5327. const int nb13 = src1->nb[3];
  5328. const int nb0 = dst->nb[0];
  5329. const int nb1 = dst->nb[1];
  5330. const int nb2 = dst->nb[2];
  5331. const int nb3 = dst->nb[3];
  5332. const int ith = params->ith;
  5333. const int nth = params->nth;
  5334. GGML_ASSERT(ne02 == ne12);
  5335. GGML_ASSERT(ne03 == ne13);
  5336. GGML_ASSERT(ne2 == ne12);
  5337. GGML_ASSERT(ne3 == ne13);
  5338. // TODO: we don't support permuted src0
  5339. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5340. // dst cannot be transposed or permuted
  5341. GGML_ASSERT(nb0 == sizeof(float));
  5342. GGML_ASSERT(nb0 <= nb1);
  5343. GGML_ASSERT(nb1 <= nb2);
  5344. GGML_ASSERT(nb2 <= nb3);
  5345. GGML_ASSERT(ne0 == ne01);
  5346. GGML_ASSERT(ne1 == ne11);
  5347. GGML_ASSERT(ne2 == ne02);
  5348. GGML_ASSERT(ne3 == ne03);
  5349. // nb01 >= nb00 - src0 is not transposed
  5350. // compute by src0 rows
  5351. //
  5352. // nb00 < nb01 - src0 is transposed
  5353. // compute by src0 columns
  5354. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5355. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5356. GGML_ASSERT(nb10 == sizeof(float));
  5357. if (params->ith != 0) {
  5358. return;
  5359. }
  5360. if (params->type == GGML_TASK_INIT) {
  5361. return;
  5362. }
  5363. if (params->type == GGML_TASK_FINALIZE) {
  5364. return;
  5365. }
  5366. float * const wdata = params->wdata;
  5367. for (int i03 = 0; i03 < ne03; i03++) {
  5368. for (int i02 = 0; i02 < ne02; i02++) {
  5369. {
  5370. int id = 0;
  5371. for (int i01 = 0; i01 < ne01; ++i01) {
  5372. //for (int i00 = 0; i00 < ne00; ++i00) {
  5373. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5374. //}
  5375. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5376. id += ne00;
  5377. }
  5378. }
  5379. const float * x = wdata;
  5380. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5381. // float * z = wdata + ne00*ne01;
  5382. // z = x * yT
  5383. //{
  5384. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5385. // ne01, ne11, ne00,
  5386. // 1.0f, x, ne00,
  5387. // y, ne00,
  5388. // 0.0f, z, ne11);
  5389. //}
  5390. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5391. // transpose z
  5392. //for (int j = 0; j < ne11; ++j) {
  5393. // for (int i = 0; i < ne01; ++i) {
  5394. // d[j*ne01 + i] = z[i*ne11 + j];
  5395. // }
  5396. //}
  5397. {
  5398. #if 1
  5399. // zT = y * xT
  5400. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5401. ne11, ne01, ne10,
  5402. 1.0f, y, ne00,
  5403. x, ne00,
  5404. 0.0f, d, ne01);
  5405. #else
  5406. // zT = (xT * y)T
  5407. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5408. ne01, ne11, ne10,
  5409. 1.0f, x, ne00,
  5410. y, ne00,
  5411. 0.0f, d, ne01);
  5412. #endif
  5413. }
  5414. }
  5415. }
  5416. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5417. return;
  5418. }
  5419. #endif
  5420. if (params->type == GGML_TASK_INIT) {
  5421. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5422. if (nb01 >= nb00) {
  5423. char * wdata = params->wdata;
  5424. for (int i13 = 0; i13 < ne13; ++i13) {
  5425. for (int i12 = 0; i12 < ne12; ++i12) {
  5426. for (int i11 = 0; i11 < ne11; ++i11) {
  5427. //for (int i10 = 0; i10 < ne10; ++i10) {
  5428. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5429. //}
  5430. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5431. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5432. }
  5433. }
  5434. }
  5435. return;
  5436. }
  5437. // TODO: fix this memset (wsize is overestimated)
  5438. memset(params->wdata, 0, params->wsize);
  5439. return;
  5440. }
  5441. if (params->type == GGML_TASK_FINALIZE) {
  5442. if (nb01 >= nb00) {
  5443. return;
  5444. }
  5445. float * const wdata = params->wdata;
  5446. // cols per thread
  5447. const int dc = (ne + nth - 1)/nth;
  5448. // col range for this thread
  5449. const int ic0 = dc*ith;
  5450. const int ic1 = MIN(ic0 + dc, ne);
  5451. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5452. for (int k = 1; k < nth; k++) {
  5453. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5454. }
  5455. return;
  5456. }
  5457. if (nb01 >= nb00) {
  5458. // TODO: do not support transposed src1
  5459. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5460. // total rows in src0
  5461. const int nr = ne01*ne02*ne03;
  5462. // rows per thread
  5463. const int dr = (nr + nth - 1)/nth;
  5464. // row range for this thread
  5465. const int ir0 = dr*ith;
  5466. const int ir1 = MIN(ir0 + dr, nr);
  5467. void * wdata = params->wdata;
  5468. for (int ir = ir0; ir < ir1; ++ir) {
  5469. // src0 indices
  5470. const int i03 = ir/(ne02*ne01);
  5471. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5472. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5473. const int i13 = i03;
  5474. const int i12 = i02;
  5475. const int i0 = i01;
  5476. const int i2 = i02;
  5477. const int i3 = i03;
  5478. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5479. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5480. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5481. assert(ne00 % 32 == 0);
  5482. for (int ic = 0; ic < ne11; ++ic) {
  5483. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5484. }
  5485. }
  5486. } else {
  5487. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5488. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5489. // each thread has its own work data
  5490. // during FINALIZE we accumulate all work data into dst
  5491. // total columns in src1
  5492. const int nc = ne10;
  5493. // columns per thread
  5494. const int dc = (nc + nth - 1)/nth;
  5495. // column range for this thread
  5496. const int ic0 = dc*ith;
  5497. const int ic1 = MIN(ic0 + dc, nc);
  5498. // work data for thread
  5499. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5500. float * const wdata = params->wdata;
  5501. for (int i13 = 0; i13 < ne13; ++i13) {
  5502. for (int i12 = 0; i12 < ne12; ++i12) {
  5503. for (int i11 = 0; i11 < ne11; ++i11) {
  5504. // dst indices
  5505. const int i1 = i11;
  5506. const int i2 = i12;
  5507. const int i3 = i13;
  5508. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5509. for (int ic = ic0; ic < ic1; ++ic) {
  5510. // src1 indices
  5511. const int i10 = ic;
  5512. // src0 indices
  5513. const int i03 = i13;
  5514. const int i02 = i12;
  5515. const int i00 = ic;
  5516. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5517. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5518. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5519. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5520. }
  5521. }
  5522. }
  5523. }
  5524. }
  5525. //int64_t t1 = ggml_time_us();
  5526. //static int64_t acc = 0;
  5527. //acc += t1 - t0;
  5528. //if (t1 - t0 > 10) {
  5529. // printf("\n");
  5530. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5531. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5532. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5533. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5534. //}
  5535. }
  5536. static void ggml_compute_forward_mul_mat(
  5537. const struct ggml_compute_params * params,
  5538. const struct ggml_tensor * src0,
  5539. const struct ggml_tensor * src1,
  5540. struct ggml_tensor * dst) {
  5541. switch (src0->type) {
  5542. case GGML_TYPE_Q4_0:
  5543. {
  5544. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5545. } break;
  5546. case GGML_TYPE_Q4_1:
  5547. {
  5548. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5549. } break;
  5550. case GGML_TYPE_F16:
  5551. {
  5552. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5553. } break;
  5554. case GGML_TYPE_F32:
  5555. {
  5556. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5557. } break;
  5558. case GGML_TYPE_I8:
  5559. case GGML_TYPE_I16:
  5560. case GGML_TYPE_I32:
  5561. case GGML_TYPE_COUNT:
  5562. {
  5563. GGML_ASSERT(false);
  5564. } break;
  5565. }
  5566. #if 0
  5567. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5568. static int first = 8;
  5569. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5570. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5571. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5572. if (first) {
  5573. --first;
  5574. } else {
  5575. for (int k = 0; k < dst->ne[1]; ++k) {
  5576. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5577. for (int i = 0; i < 16; ++i) {
  5578. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5579. }
  5580. printf("\n");
  5581. }
  5582. printf("\n");
  5583. }
  5584. printf("\n");
  5585. exit(0);
  5586. }
  5587. } else {
  5588. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5589. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5590. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5591. }
  5592. #endif
  5593. }
  5594. // ggml_compute_forward_scale
  5595. static void ggml_compute_forward_scale_f32(
  5596. const struct ggml_compute_params * params,
  5597. const struct ggml_tensor * src0,
  5598. const struct ggml_tensor * src1,
  5599. struct ggml_tensor * dst) {
  5600. GGML_ASSERT(ggml_is_contiguous(src0));
  5601. GGML_ASSERT(ggml_is_contiguous(dst));
  5602. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5603. GGML_ASSERT(ggml_is_scalar(src1));
  5604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5605. return;
  5606. }
  5607. // scale factor
  5608. const float v = *(float *) src1->data;
  5609. const int ith = params->ith;
  5610. const int nth = params->nth;
  5611. const int nc = src0->ne[0];
  5612. const int nr = ggml_nrows(src0);
  5613. // rows per thread
  5614. const int dr = (nr + nth - 1)/nth;
  5615. // row range for this thread
  5616. const int ir0 = dr*ith;
  5617. const int ir1 = MIN(ir0 + dr, nr);
  5618. for (int i1 = ir0; i1 < ir1; i1++) {
  5619. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5620. }
  5621. }
  5622. static void ggml_compute_forward_scale(
  5623. const struct ggml_compute_params * params,
  5624. const struct ggml_tensor * src0,
  5625. const struct ggml_tensor * src1,
  5626. struct ggml_tensor * dst) {
  5627. switch (src0->type) {
  5628. case GGML_TYPE_F32:
  5629. {
  5630. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5631. } break;
  5632. case GGML_TYPE_Q4_0:
  5633. case GGML_TYPE_Q4_1:
  5634. case GGML_TYPE_I8:
  5635. case GGML_TYPE_I16:
  5636. case GGML_TYPE_I32:
  5637. case GGML_TYPE_F16:
  5638. case GGML_TYPE_COUNT:
  5639. {
  5640. GGML_ASSERT(false);
  5641. } break;
  5642. }
  5643. }
  5644. // ggml_compute_forward_cpy
  5645. static void ggml_compute_forward_cpy(
  5646. const struct ggml_compute_params * params,
  5647. const struct ggml_tensor * src0,
  5648. struct ggml_tensor * dst) {
  5649. ggml_compute_forward_dup(params, src0, dst);
  5650. }
  5651. // ggml_compute_forward_reshape
  5652. static void ggml_compute_forward_reshape(
  5653. const struct ggml_compute_params * params,
  5654. const struct ggml_tensor * src0,
  5655. struct ggml_tensor * dst) {
  5656. // NOP
  5657. UNUSED(params);
  5658. UNUSED(src0);
  5659. UNUSED(dst);
  5660. }
  5661. // ggml_compute_forward_view
  5662. static void ggml_compute_forward_view(
  5663. const struct ggml_compute_params * params,
  5664. const struct ggml_tensor * src0) {
  5665. // NOP
  5666. UNUSED(params);
  5667. UNUSED(src0);
  5668. }
  5669. // ggml_compute_forward_permute
  5670. static void ggml_compute_forward_permute(
  5671. const struct ggml_compute_params * params,
  5672. const struct ggml_tensor * src0) {
  5673. // NOP
  5674. UNUSED(params);
  5675. UNUSED(src0);
  5676. }
  5677. // ggml_compute_forward_transpose
  5678. static void ggml_compute_forward_transpose(
  5679. const struct ggml_compute_params * params,
  5680. const struct ggml_tensor * src0) {
  5681. // NOP
  5682. UNUSED(params);
  5683. UNUSED(src0);
  5684. }
  5685. // ggml_compute_forward_get_rows
  5686. static void ggml_compute_forward_get_rows_q4_0(
  5687. const struct ggml_compute_params * params,
  5688. const struct ggml_tensor * src0,
  5689. const struct ggml_tensor * src1,
  5690. struct ggml_tensor * dst) {
  5691. assert(params->ith == 0);
  5692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5693. return;
  5694. }
  5695. const int nc = src0->ne[0];
  5696. const int nr = ggml_nelements(src1);
  5697. assert( dst->ne[0] == nc);
  5698. assert( dst->ne[1] == nr);
  5699. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5700. for (int i = 0; i < nr; ++i) {
  5701. const int r = ((int32_t *) src1->data)[i];
  5702. dequantize_row_q4_0(
  5703. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5704. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5705. }
  5706. }
  5707. static void ggml_compute_forward_get_rows_q4_1(
  5708. const struct ggml_compute_params * params,
  5709. const struct ggml_tensor * src0,
  5710. const struct ggml_tensor * src1,
  5711. struct ggml_tensor * dst) {
  5712. assert(params->ith == 0);
  5713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5714. return;
  5715. }
  5716. const int nc = src0->ne[0];
  5717. const int nr = ggml_nelements(src1);
  5718. assert( dst->ne[0] == nc);
  5719. assert( dst->ne[1] == nr);
  5720. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5721. for (int i = 0; i < nr; ++i) {
  5722. const int r = ((int32_t *) src1->data)[i];
  5723. dequantize_row_q4_1(
  5724. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5725. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5726. }
  5727. }
  5728. static void ggml_compute_forward_get_rows_f16(
  5729. const struct ggml_compute_params * params,
  5730. const struct ggml_tensor * src0,
  5731. const struct ggml_tensor * src1,
  5732. struct ggml_tensor * dst) {
  5733. assert(params->ith == 0);
  5734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5735. return;
  5736. }
  5737. const int nc = src0->ne[0];
  5738. const int nr = ggml_nelements(src1);
  5739. assert( dst->ne[0] == nc);
  5740. assert( dst->ne[1] == nr);
  5741. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5742. for (int i = 0; i < nr; ++i) {
  5743. const int r = ((int32_t *) src1->data)[i];
  5744. for (int j = 0; j < nc; ++j) {
  5745. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5746. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5747. }
  5748. }
  5749. }
  5750. static void ggml_compute_forward_get_rows_f32(
  5751. const struct ggml_compute_params * params,
  5752. const struct ggml_tensor * src0,
  5753. const struct ggml_tensor * src1,
  5754. struct ggml_tensor * dst) {
  5755. assert(params->ith == 0);
  5756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5757. return;
  5758. }
  5759. const int nc = src0->ne[0];
  5760. const int nr = ggml_nelements(src1);
  5761. assert( dst->ne[0] == nc);
  5762. assert( dst->ne[1] == nr);
  5763. assert(src0->nb[0] == sizeof(float));
  5764. for (int i = 0; i < nr; ++i) {
  5765. const int r = ((int32_t *) src1->data)[i];
  5766. ggml_vec_cpy_f32(nc,
  5767. (float *) ((char *) dst->data + i*dst->nb[1]),
  5768. (float *) ((char *) src0->data + r*src0->nb[1]));
  5769. }
  5770. }
  5771. static void ggml_compute_forward_get_rows(
  5772. const struct ggml_compute_params * params,
  5773. const struct ggml_tensor * src0,
  5774. const struct ggml_tensor * src1,
  5775. struct ggml_tensor * dst) {
  5776. switch (src0->type) {
  5777. case GGML_TYPE_Q4_0:
  5778. {
  5779. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5780. } break;
  5781. case GGML_TYPE_Q4_1:
  5782. {
  5783. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5784. } break;
  5785. case GGML_TYPE_F16:
  5786. {
  5787. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5788. } break;
  5789. case GGML_TYPE_F32:
  5790. {
  5791. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5792. } break;
  5793. case GGML_TYPE_I8:
  5794. case GGML_TYPE_I16:
  5795. case GGML_TYPE_I32:
  5796. case GGML_TYPE_COUNT:
  5797. {
  5798. GGML_ASSERT(false);
  5799. } break;
  5800. }
  5801. //static bool first = true;
  5802. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5803. //if (first) {
  5804. // first = false;
  5805. //} else {
  5806. // for (int k = 0; k < dst->ne[1]; ++k) {
  5807. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5808. // for (int i = 0; i < 16; ++i) {
  5809. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5810. // }
  5811. // printf("\n");
  5812. // }
  5813. // printf("\n");
  5814. // }
  5815. // printf("\n");
  5816. // exit(0);
  5817. //}
  5818. }
  5819. // ggml_compute_forward_diag_mask_inf
  5820. static void ggml_compute_forward_diag_mask_inf_f32(
  5821. const struct ggml_compute_params * params,
  5822. const struct ggml_tensor * src0,
  5823. const struct ggml_tensor * src1,
  5824. struct ggml_tensor * dst) {
  5825. assert(params->ith == 0);
  5826. assert(src1->type == GGML_TYPE_I32);
  5827. assert(ggml_nelements(src1) == 1);
  5828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5829. return;
  5830. }
  5831. const int n_past = ((int32_t *) src1->data)[0];
  5832. // TODO: handle transposed/permuted matrices
  5833. const int n = ggml_nrows(src0);
  5834. const int nc = src0->ne[0];
  5835. const int nr = src0->ne[1];
  5836. const int nz = n/nr;
  5837. assert( dst->nb[0] == sizeof(float));
  5838. assert(src0->nb[0] == sizeof(float));
  5839. for (int k = 0; k < nz; k++) {
  5840. for (int j = 0; j < nr; j++) {
  5841. for (int i = n_past; i < nc; i++) {
  5842. if (i > n_past + j) {
  5843. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5844. }
  5845. }
  5846. }
  5847. }
  5848. }
  5849. static void ggml_compute_forward_diag_mask_inf(
  5850. const struct ggml_compute_params * params,
  5851. const struct ggml_tensor * src0,
  5852. const struct ggml_tensor * src1,
  5853. struct ggml_tensor * dst) {
  5854. switch (src0->type) {
  5855. case GGML_TYPE_F32:
  5856. {
  5857. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5858. } break;
  5859. case GGML_TYPE_Q4_0:
  5860. case GGML_TYPE_Q4_1:
  5861. case GGML_TYPE_I8:
  5862. case GGML_TYPE_I16:
  5863. case GGML_TYPE_I32:
  5864. case GGML_TYPE_F16:
  5865. case GGML_TYPE_COUNT:
  5866. {
  5867. GGML_ASSERT(false);
  5868. } break;
  5869. }
  5870. }
  5871. // ggml_compute_forward_soft_max
  5872. static void ggml_compute_forward_soft_max_f32(
  5873. const struct ggml_compute_params * params,
  5874. const struct ggml_tensor * src0,
  5875. struct ggml_tensor * dst) {
  5876. GGML_ASSERT(ggml_is_contiguous(src0));
  5877. GGML_ASSERT(ggml_is_contiguous(dst));
  5878. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5880. return;
  5881. }
  5882. // TODO: handle transposed/permuted matrices
  5883. const int ith = params->ith;
  5884. const int nth = params->nth;
  5885. const int nc = src0->ne[0];
  5886. const int nr = ggml_nrows(src0);
  5887. // rows per thread
  5888. const int dr = (nr + nth - 1)/nth;
  5889. // row range for this thread
  5890. const int ir0 = dr*ith;
  5891. const int ir1 = MIN(ir0 + dr, nr);
  5892. for (int i1 = ir0; i1 < ir1; i1++) {
  5893. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5894. #ifndef NDEBUG
  5895. for (int i = 0; i < nc; ++i) {
  5896. //printf("p[%d] = %f\n", i, p[i]);
  5897. assert(!isnan(p[i]));
  5898. }
  5899. #endif
  5900. float max = -INFINITY;
  5901. ggml_vec_max_f32(nc, &max, p);
  5902. ggml_float sum = 0.0;
  5903. uint16_t scvt;
  5904. for (int i = 0; i < nc; i++) {
  5905. if (p[i] == -INFINITY) {
  5906. p[i] = 0.0f;
  5907. } else {
  5908. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5909. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5910. memcpy(&scvt, &s, sizeof(scvt));
  5911. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5912. sum += val;
  5913. p[i] = val;
  5914. }
  5915. }
  5916. assert(sum > 0.0f);
  5917. sum = 1.0/sum;
  5918. ggml_vec_scale_f32(nc, p, sum);
  5919. #ifndef NDEBUG
  5920. for (int i = 0; i < nc; ++i) {
  5921. assert(!isnan(p[i]));
  5922. assert(!isinf(p[i]));
  5923. }
  5924. #endif
  5925. }
  5926. }
  5927. static void ggml_compute_forward_soft_max(
  5928. const struct ggml_compute_params * params,
  5929. const struct ggml_tensor * src0,
  5930. struct ggml_tensor * dst) {
  5931. switch (src0->type) {
  5932. case GGML_TYPE_F32:
  5933. {
  5934. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5935. } break;
  5936. case GGML_TYPE_Q4_0:
  5937. case GGML_TYPE_Q4_1:
  5938. case GGML_TYPE_I8:
  5939. case GGML_TYPE_I16:
  5940. case GGML_TYPE_I32:
  5941. case GGML_TYPE_F16:
  5942. case GGML_TYPE_COUNT:
  5943. {
  5944. GGML_ASSERT(false);
  5945. } break;
  5946. }
  5947. }
  5948. // ggml_compute_forward_rope
  5949. static void ggml_compute_forward_rope_f32(
  5950. const struct ggml_compute_params * params,
  5951. const struct ggml_tensor * src0,
  5952. const struct ggml_tensor * src1,
  5953. struct ggml_tensor * dst) {
  5954. assert(params->ith == 0);
  5955. assert(src1->type == GGML_TYPE_I32);
  5956. assert(ggml_nelements(src1) == 3);
  5957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5958. return;
  5959. }
  5960. const int n_past = ((int32_t *) src1->data)[0];
  5961. const int n_dims = ((int32_t *) src1->data)[1];
  5962. const int mode = ((int32_t *) src1->data)[2];
  5963. //const int ne0 = src0->ne[0];
  5964. const int ne1 = src0->ne[1];
  5965. const int ne2 = src0->ne[2];
  5966. const int ne3 = src0->ne[3];
  5967. const int nb0 = src0->nb[0];
  5968. const int nb1 = src0->nb[1];
  5969. const int nb2 = src0->nb[2];
  5970. const int nb3 = src0->nb[3];
  5971. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5972. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5973. assert(nb0 == sizeof(float));
  5974. // TODO: optimize
  5975. for (int i3 = 0; i3 < ne3; i3++) {
  5976. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5977. const int p = (mode == 0 ? n_past + i2 : i2);
  5978. for (int i1 = 0; i1 < ne1; i1++) {
  5979. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5980. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5981. const double cos_theta = cos(p*theta);
  5982. const double sin_theta = sin(p*theta);
  5983. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5984. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5985. double x0 = src[0];
  5986. double x1 = src[1];
  5987. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5988. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5989. }
  5990. }
  5991. }
  5992. }
  5993. }
  5994. static void ggml_compute_forward_rope_f16(
  5995. const struct ggml_compute_params * params,
  5996. const struct ggml_tensor * src0,
  5997. const struct ggml_tensor * src1,
  5998. struct ggml_tensor * dst) {
  5999. assert(params->ith == 0);
  6000. assert(src1->type == GGML_TYPE_I32);
  6001. assert(ggml_nelements(src1) == 3);
  6002. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6003. return;
  6004. }
  6005. const int n_past = ((int32_t *) src1->data)[0];
  6006. const int n_dims = ((int32_t *) src1->data)[1];
  6007. const int mode = ((int32_t *) src1->data)[2];
  6008. //const int ne0 = src0->ne[0];
  6009. const int ne1 = src0->ne[1];
  6010. const int ne2 = src0->ne[2];
  6011. const int ne3 = src0->ne[3];
  6012. const int nb0 = src0->nb[0];
  6013. const int nb1 = src0->nb[1];
  6014. const int nb2 = src0->nb[2];
  6015. const int nb3 = src0->nb[3];
  6016. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6017. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6018. assert(nb0 == sizeof(ggml_fp16_t));
  6019. for (int i3 = 0; i3 < ne3; i3++) {
  6020. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6021. const int p = (mode == 0 ? n_past + i2 : i2);
  6022. for (int i1 = 0; i1 < ne1; i1++) {
  6023. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6024. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6025. const double cos_theta = cos(p*theta);
  6026. const double sin_theta = sin(p*theta);
  6027. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6028. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6029. double x0 = ggml_fp16_to_fp32(src[0]);
  6030. double x1 = ggml_fp16_to_fp32(src[1]);
  6031. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6032. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6033. }
  6034. }
  6035. }
  6036. }
  6037. }
  6038. static void ggml_compute_forward_rope(
  6039. const struct ggml_compute_params * params,
  6040. const struct ggml_tensor * src0,
  6041. const struct ggml_tensor * src1,
  6042. struct ggml_tensor * dst) {
  6043. switch (src0->type) {
  6044. case GGML_TYPE_F16:
  6045. {
  6046. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6047. } break;
  6048. case GGML_TYPE_F32:
  6049. {
  6050. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6051. } break;
  6052. case GGML_TYPE_Q4_0:
  6053. case GGML_TYPE_Q4_1:
  6054. case GGML_TYPE_I8:
  6055. case GGML_TYPE_I16:
  6056. case GGML_TYPE_I32:
  6057. case GGML_TYPE_COUNT:
  6058. {
  6059. GGML_ASSERT(false);
  6060. } break;
  6061. }
  6062. }
  6063. // ggml_compute_forward_conv_1d_1s
  6064. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6065. const struct ggml_compute_params * params,
  6066. const struct ggml_tensor * src0,
  6067. const struct ggml_tensor * src1,
  6068. struct ggml_tensor * dst) {
  6069. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6070. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6071. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6072. int64_t t0 = ggml_perf_time_us();
  6073. UNUSED(t0);
  6074. const int ne00 = src0->ne[0];
  6075. const int ne01 = src0->ne[1];
  6076. const int ne02 = src0->ne[2];
  6077. //const int ne03 = src0->ne[3];
  6078. const int ne10 = src1->ne[0];
  6079. const int ne11 = src1->ne[1];
  6080. //const int ne12 = src1->ne[2];
  6081. //const int ne13 = src1->ne[3];
  6082. //const int ne0 = dst->ne[0];
  6083. //const int ne1 = dst->ne[1];
  6084. //const int ne2 = dst->ne[2];
  6085. //const int ne3 = dst->ne[3];
  6086. //const int ne = ne0*ne1*ne2*ne3;
  6087. const int nb00 = src0->nb[0];
  6088. const int nb01 = src0->nb[1];
  6089. const int nb02 = src0->nb[2];
  6090. //const int nb03 = src0->nb[3];
  6091. const int nb10 = src1->nb[0];
  6092. const int nb11 = src1->nb[1];
  6093. //const int nb12 = src1->nb[2];
  6094. //const int nb13 = src1->nb[3];
  6095. //const int nb0 = dst->nb[0];
  6096. const int nb1 = dst->nb[1];
  6097. //const int nb2 = dst->nb[2];
  6098. //const int nb3 = dst->nb[3];
  6099. const int ith = params->ith;
  6100. const int nth = params->nth;
  6101. const int nk = ne00;
  6102. const int nh = nk/2;
  6103. const int ew0 = ggml_up32(ne01);
  6104. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6105. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6106. GGML_ASSERT(nb10 == sizeof(float));
  6107. if (params->type == GGML_TASK_INIT) {
  6108. // TODO: fix this memset (wsize is overestimated)
  6109. memset(params->wdata, 0, params->wsize);
  6110. // prepare kernel data (src0)
  6111. {
  6112. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6113. for (int i02 = 0; i02 < ne02; i02++) {
  6114. for (int i01 = 0; i01 < ne01; i01++) {
  6115. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6116. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6117. for (int i00 = 0; i00 < ne00; i00++) {
  6118. dst_data[i00*ew0 + i01] = src[i00];
  6119. }
  6120. }
  6121. }
  6122. }
  6123. // prepare source data (src1)
  6124. {
  6125. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6126. for (int i11 = 0; i11 < ne11; i11++) {
  6127. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6128. ggml_fp16_t * dst_data = wdata;
  6129. for (int i10 = 0; i10 < ne10; i10++) {
  6130. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6131. }
  6132. }
  6133. }
  6134. return;
  6135. }
  6136. if (params->type == GGML_TASK_FINALIZE) {
  6137. return;
  6138. }
  6139. // total rows in dst
  6140. const int nr = ne02;
  6141. // rows per thread
  6142. const int dr = (nr + nth - 1)/nth;
  6143. // row range for this thread
  6144. const int ir0 = dr*ith;
  6145. const int ir1 = MIN(ir0 + dr, nr);
  6146. for (int i1 = ir0; i1 < ir1; i1++) {
  6147. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6148. for (int i0 = 0; i0 < ne10; ++i0) {
  6149. dst_data[i0] = 0;
  6150. for (int k = -nh; k <= nh; k++) {
  6151. float v = 0.0f;
  6152. ggml_vec_dot_f16(ew0, &v,
  6153. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6154. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6155. dst_data[i0] += v;
  6156. }
  6157. }
  6158. }
  6159. }
  6160. static void ggml_compute_forward_conv_1d_1s_f32(
  6161. const struct ggml_compute_params * params,
  6162. const struct ggml_tensor * src0,
  6163. const struct ggml_tensor * src1,
  6164. struct ggml_tensor * dst) {
  6165. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6166. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6167. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6168. int64_t t0 = ggml_perf_time_us();
  6169. UNUSED(t0);
  6170. const int ne00 = src0->ne[0];
  6171. const int ne01 = src0->ne[1];
  6172. const int ne02 = src0->ne[2];
  6173. //const int ne03 = src0->ne[3];
  6174. const int ne10 = src1->ne[0];
  6175. const int ne11 = src1->ne[1];
  6176. //const int ne12 = src1->ne[2];
  6177. //const int ne13 = src1->ne[3];
  6178. //const int ne0 = dst->ne[0];
  6179. //const int ne1 = dst->ne[1];
  6180. //const int ne2 = dst->ne[2];
  6181. //const int ne3 = dst->ne[3];
  6182. //const int ne = ne0*ne1*ne2*ne3;
  6183. const int nb00 = src0->nb[0];
  6184. const int nb01 = src0->nb[1];
  6185. const int nb02 = src0->nb[2];
  6186. //const int nb03 = src0->nb[3];
  6187. const int nb10 = src1->nb[0];
  6188. const int nb11 = src1->nb[1];
  6189. //const int nb12 = src1->nb[2];
  6190. //const int nb13 = src1->nb[3];
  6191. //const int nb0 = dst->nb[0];
  6192. const int nb1 = dst->nb[1];
  6193. //const int nb2 = dst->nb[2];
  6194. //const int nb3 = dst->nb[3];
  6195. const int ith = params->ith;
  6196. const int nth = params->nth;
  6197. const int nk = ne00;
  6198. const int nh = nk/2;
  6199. const int ew0 = ggml_up32(ne01);
  6200. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6201. GGML_ASSERT(nb00 == sizeof(float));
  6202. GGML_ASSERT(nb10 == sizeof(float));
  6203. if (params->type == GGML_TASK_INIT) {
  6204. // TODO: fix this memset (wsize is overestimated)
  6205. memset(params->wdata, 0, params->wsize);
  6206. // prepare kernel data (src0)
  6207. {
  6208. float * const wdata = (float *) params->wdata + 0;
  6209. for (int i02 = 0; i02 < ne02; i02++) {
  6210. for (int i01 = 0; i01 < ne01; i01++) {
  6211. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6212. float * dst_data = wdata + i02*ew0*ne00;
  6213. for (int i00 = 0; i00 < ne00; i00++) {
  6214. dst_data[i00*ew0 + i01] = src[i00];
  6215. }
  6216. }
  6217. }
  6218. }
  6219. // prepare source data (src1)
  6220. {
  6221. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6222. for (int i11 = 0; i11 < ne11; i11++) {
  6223. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6224. float * dst_data = wdata;
  6225. for (int i10 = 0; i10 < ne10; i10++) {
  6226. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6227. }
  6228. }
  6229. }
  6230. return;
  6231. }
  6232. if (params->type == GGML_TASK_FINALIZE) {
  6233. return;
  6234. }
  6235. // total rows in dst
  6236. const int nr = ne02;
  6237. // rows per thread
  6238. const int dr = (nr + nth - 1)/nth;
  6239. // row range for this thread
  6240. const int ir0 = dr*ith;
  6241. const int ir1 = MIN(ir0 + dr, nr);
  6242. for (int i1 = ir0; i1 < ir1; i1++) {
  6243. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6244. for (int i0 = 0; i0 < ne10; ++i0) {
  6245. dst_data[i0] = 0;
  6246. for (int k = -nh; k <= nh; k++) {
  6247. float v = 0.0f;
  6248. ggml_vec_dot_f32(ew0, &v,
  6249. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6250. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6251. dst_data[i0] += v;
  6252. }
  6253. }
  6254. }
  6255. }
  6256. static void ggml_compute_forward_conv_1d_1s(
  6257. const struct ggml_compute_params * params,
  6258. const struct ggml_tensor * src0,
  6259. const struct ggml_tensor * src1,
  6260. struct ggml_tensor * dst) {
  6261. switch (src0->type) {
  6262. case GGML_TYPE_F16:
  6263. {
  6264. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6265. } break;
  6266. case GGML_TYPE_F32:
  6267. {
  6268. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6269. } break;
  6270. case GGML_TYPE_Q4_0:
  6271. case GGML_TYPE_Q4_1:
  6272. case GGML_TYPE_I8:
  6273. case GGML_TYPE_I16:
  6274. case GGML_TYPE_I32:
  6275. case GGML_TYPE_COUNT:
  6276. {
  6277. GGML_ASSERT(false);
  6278. } break;
  6279. }
  6280. }
  6281. // ggml_compute_forward_conv_1d_2s
  6282. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6283. const struct ggml_compute_params * params,
  6284. const struct ggml_tensor * src0,
  6285. const struct ggml_tensor * src1,
  6286. struct ggml_tensor * dst) {
  6287. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6288. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6289. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6290. int64_t t0 = ggml_perf_time_us();
  6291. UNUSED(t0);
  6292. const int ne00 = src0->ne[0];
  6293. const int ne01 = src0->ne[1];
  6294. const int ne02 = src0->ne[2];
  6295. //const int ne03 = src0->ne[3];
  6296. const int ne10 = src1->ne[0];
  6297. const int ne11 = src1->ne[1];
  6298. //const int ne12 = src1->ne[2];
  6299. //const int ne13 = src1->ne[3];
  6300. //const int ne0 = dst->ne[0];
  6301. //const int ne1 = dst->ne[1];
  6302. //const int ne2 = dst->ne[2];
  6303. //const int ne3 = dst->ne[3];
  6304. //const int ne = ne0*ne1*ne2*ne3;
  6305. const int nb00 = src0->nb[0];
  6306. const int nb01 = src0->nb[1];
  6307. const int nb02 = src0->nb[2];
  6308. //const int nb03 = src0->nb[3];
  6309. const int nb10 = src1->nb[0];
  6310. const int nb11 = src1->nb[1];
  6311. //const int nb12 = src1->nb[2];
  6312. //const int nb13 = src1->nb[3];
  6313. //const int nb0 = dst->nb[0];
  6314. const int nb1 = dst->nb[1];
  6315. //const int nb2 = dst->nb[2];
  6316. //const int nb3 = dst->nb[3];
  6317. const int ith = params->ith;
  6318. const int nth = params->nth;
  6319. const int nk = ne00;
  6320. const int nh = nk/2;
  6321. const int ew0 = ggml_up32(ne01);
  6322. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6323. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6324. GGML_ASSERT(nb10 == sizeof(float));
  6325. if (params->type == GGML_TASK_INIT) {
  6326. // TODO: fix this memset (wsize is overestimated)
  6327. memset(params->wdata, 0, params->wsize);
  6328. // prepare kernel data (src0)
  6329. {
  6330. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6331. for (int i02 = 0; i02 < ne02; i02++) {
  6332. for (int i01 = 0; i01 < ne01; i01++) {
  6333. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6334. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6335. for (int i00 = 0; i00 < ne00; i00++) {
  6336. dst_data[i00*ew0 + i01] = src[i00];
  6337. }
  6338. }
  6339. }
  6340. }
  6341. // prepare source data (src1)
  6342. {
  6343. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6344. for (int i11 = 0; i11 < ne11; i11++) {
  6345. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6346. ggml_fp16_t * dst_data = wdata;
  6347. for (int i10 = 0; i10 < ne10; i10++) {
  6348. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6349. }
  6350. }
  6351. }
  6352. return;
  6353. }
  6354. if (params->type == GGML_TASK_FINALIZE) {
  6355. return;
  6356. }
  6357. // total rows in dst
  6358. const int nr = ne02;
  6359. // rows per thread
  6360. const int dr = (nr + nth - 1)/nth;
  6361. // row range for this thread
  6362. const int ir0 = dr*ith;
  6363. const int ir1 = MIN(ir0 + dr, nr);
  6364. for (int i1 = ir0; i1 < ir1; i1++) {
  6365. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6366. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6367. dst_data[i0/2] = 0;
  6368. for (int k = -nh; k <= nh; k++) {
  6369. float v = 0.0f;
  6370. ggml_vec_dot_f16(ew0, &v,
  6371. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6372. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6373. dst_data[i0/2] += v;
  6374. }
  6375. }
  6376. }
  6377. }
  6378. static void ggml_compute_forward_conv_1d_2s_f32(
  6379. const struct ggml_compute_params * params,
  6380. const struct ggml_tensor * src0,
  6381. const struct ggml_tensor * src1,
  6382. struct ggml_tensor * dst) {
  6383. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6384. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6385. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6386. int64_t t0 = ggml_perf_time_us();
  6387. UNUSED(t0);
  6388. const int ne00 = src0->ne[0];
  6389. const int ne01 = src0->ne[1];
  6390. const int ne02 = src0->ne[2];
  6391. //const int ne03 = src0->ne[3];
  6392. const int ne10 = src1->ne[0];
  6393. const int ne11 = src1->ne[1];
  6394. //const int ne12 = src1->ne[2];
  6395. //const int ne13 = src1->ne[3];
  6396. //const int ne0 = dst->ne[0];
  6397. //const int ne1 = dst->ne[1];
  6398. //const int ne2 = dst->ne[2];
  6399. //const int ne3 = dst->ne[3];
  6400. //const int ne = ne0*ne1*ne2*ne3;
  6401. const int nb00 = src0->nb[0];
  6402. const int nb01 = src0->nb[1];
  6403. const int nb02 = src0->nb[2];
  6404. //const int nb03 = src0->nb[3];
  6405. const int nb10 = src1->nb[0];
  6406. const int nb11 = src1->nb[1];
  6407. //const int nb12 = src1->nb[2];
  6408. //const int nb13 = src1->nb[3];
  6409. //const int nb0 = dst->nb[0];
  6410. const int nb1 = dst->nb[1];
  6411. //const int nb2 = dst->nb[2];
  6412. //const int nb3 = dst->nb[3];
  6413. const int ith = params->ith;
  6414. const int nth = params->nth;
  6415. const int nk = ne00;
  6416. const int nh = nk/2;
  6417. const int ew0 = ggml_up32(ne01);
  6418. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6419. GGML_ASSERT(nb00 == sizeof(float));
  6420. GGML_ASSERT(nb10 == sizeof(float));
  6421. if (params->type == GGML_TASK_INIT) {
  6422. // TODO: fix this memset (wsize is overestimated)
  6423. memset(params->wdata, 0, params->wsize);
  6424. // prepare kernel data (src0)
  6425. {
  6426. float * const wdata = (float *) params->wdata + 0;
  6427. for (int i02 = 0; i02 < ne02; i02++) {
  6428. for (int i01 = 0; i01 < ne01; i01++) {
  6429. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6430. float * dst_data = wdata + i02*ew0*ne00;
  6431. for (int i00 = 0; i00 < ne00; i00++) {
  6432. dst_data[i00*ew0 + i01] = src[i00];
  6433. }
  6434. }
  6435. }
  6436. }
  6437. // prepare source data (src1)
  6438. {
  6439. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6440. for (int i11 = 0; i11 < ne11; i11++) {
  6441. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6442. float * dst_data = wdata;
  6443. for (int i10 = 0; i10 < ne10; i10++) {
  6444. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6445. }
  6446. }
  6447. }
  6448. return;
  6449. }
  6450. if (params->type == GGML_TASK_FINALIZE) {
  6451. return;
  6452. }
  6453. // total rows in dst
  6454. const int nr = ne02;
  6455. // rows per thread
  6456. const int dr = (nr + nth - 1)/nth;
  6457. // row range for this thread
  6458. const int ir0 = dr*ith;
  6459. const int ir1 = MIN(ir0 + dr, nr);
  6460. for (int i1 = ir0; i1 < ir1; i1++) {
  6461. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6462. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6463. dst_data[i0/2] = 0;
  6464. for (int k = -nh; k <= nh; k++) {
  6465. float v = 0.0f;
  6466. ggml_vec_dot_f32(ew0, &v,
  6467. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6468. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6469. dst_data[i0/2] += v;
  6470. }
  6471. }
  6472. }
  6473. }
  6474. static void ggml_compute_forward_conv_1d_2s(
  6475. const struct ggml_compute_params * params,
  6476. const struct ggml_tensor * src0,
  6477. const struct ggml_tensor * src1,
  6478. struct ggml_tensor * dst) {
  6479. switch (src0->type) {
  6480. case GGML_TYPE_F16:
  6481. {
  6482. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6483. } break;
  6484. case GGML_TYPE_F32:
  6485. {
  6486. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6487. } break;
  6488. case GGML_TYPE_Q4_0:
  6489. case GGML_TYPE_Q4_1:
  6490. case GGML_TYPE_I8:
  6491. case GGML_TYPE_I16:
  6492. case GGML_TYPE_I32:
  6493. case GGML_TYPE_COUNT:
  6494. {
  6495. GGML_ASSERT(false);
  6496. } break;
  6497. }
  6498. }
  6499. // ggml_compute_forward_flash_attn
  6500. static void ggml_compute_forward_flash_attn_f32(
  6501. const struct ggml_compute_params * params,
  6502. const struct ggml_tensor * q,
  6503. const struct ggml_tensor * k,
  6504. const struct ggml_tensor * v,
  6505. const bool masked,
  6506. struct ggml_tensor * dst) {
  6507. int64_t t0 = ggml_perf_time_us();
  6508. UNUSED(t0);
  6509. const int neq0 = q->ne[0];
  6510. const int neq1 = q->ne[1];
  6511. const int neq2 = q->ne[2];
  6512. const int neq3 = q->ne[3];
  6513. const int nek0 = k->ne[0];
  6514. const int nek1 = k->ne[1];
  6515. //const int nek2 = k->ne[2];
  6516. //const int nek3 = k->ne[3];
  6517. //const int nev0 = v->ne[0];
  6518. const int nev1 = v->ne[1];
  6519. //const int nev2 = v->ne[2];
  6520. //const int nev3 = v->ne[3];
  6521. const int ne0 = dst->ne[0];
  6522. const int ne1 = dst->ne[1];
  6523. //const int ne2 = dst->ne[2];
  6524. //const int ne3 = dst->ne[3];
  6525. const int nbk0 = k->nb[0];
  6526. const int nbk1 = k->nb[1];
  6527. const int nbk2 = k->nb[2];
  6528. const int nbk3 = k->nb[3];
  6529. const int nbq0 = q->nb[0];
  6530. const int nbq1 = q->nb[1];
  6531. const int nbq2 = q->nb[2];
  6532. const int nbq3 = q->nb[3];
  6533. const int nbv0 = v->nb[0];
  6534. const int nbv1 = v->nb[1];
  6535. const int nbv2 = v->nb[2];
  6536. const int nbv3 = v->nb[3];
  6537. const int nb0 = dst->nb[0];
  6538. const int nb1 = dst->nb[1];
  6539. const int nb2 = dst->nb[2];
  6540. const int nb3 = dst->nb[3];
  6541. const int ith = params->ith;
  6542. const int nth = params->nth;
  6543. const int D = neq0;
  6544. const int N = neq1;
  6545. const int P = nek1 - N;
  6546. const int M = P + N;
  6547. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6548. GGML_ASSERT(ne0 == D);
  6549. GGML_ASSERT(ne1 == N);
  6550. GGML_ASSERT(P >= 0);
  6551. GGML_ASSERT(nbq0 == sizeof(float));
  6552. GGML_ASSERT(nbk0 == sizeof(float));
  6553. GGML_ASSERT(nbv0 == sizeof(float));
  6554. GGML_ASSERT(neq0 == D);
  6555. GGML_ASSERT(nek0 == D);
  6556. GGML_ASSERT(nev1 == D);
  6557. GGML_ASSERT(neq1 == N);
  6558. GGML_ASSERT(nek1 == N + P);
  6559. GGML_ASSERT(nev1 == D);
  6560. // dst cannot be transposed or permuted
  6561. GGML_ASSERT(nb0 == sizeof(float));
  6562. GGML_ASSERT(nb0 <= nb1);
  6563. GGML_ASSERT(nb1 <= nb2);
  6564. GGML_ASSERT(nb2 <= nb3);
  6565. if (params->type == GGML_TASK_INIT) {
  6566. return;
  6567. }
  6568. if (params->type == GGML_TASK_FINALIZE) {
  6569. return;
  6570. }
  6571. // parallelize by q rows using ggml_vec_dot_f32
  6572. // total rows in q
  6573. const int nr = neq1*neq2*neq3;
  6574. // rows per thread
  6575. const int dr = (nr + nth - 1)/nth;
  6576. // row range for this thread
  6577. const int ir0 = dr*ith;
  6578. const int ir1 = MIN(ir0 + dr, nr);
  6579. const float scale = 1.0/sqrt((double) D);
  6580. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6581. for (int ir = ir0; ir < ir1; ++ir) {
  6582. // q indices
  6583. const int iq3 = ir/(neq2*neq1);
  6584. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6585. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6586. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6587. for (int i = M; i < Mup; ++i) {
  6588. S[i] = -INFINITY;
  6589. }
  6590. for (int ic = 0; ic < nek1; ++ic) {
  6591. // k indices
  6592. const int ik3 = iq3;
  6593. const int ik2 = iq2;
  6594. const int ik1 = ic;
  6595. // S indices
  6596. const int i1 = ik1;
  6597. ggml_vec_dot_f32(neq0,
  6598. S + i1,
  6599. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6600. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6601. }
  6602. // scale
  6603. ggml_vec_scale_f32(nek1, S, scale);
  6604. if (masked) {
  6605. for (int i = P; i < M; i++) {
  6606. if (i > P + iq1) {
  6607. S[i] = -INFINITY;
  6608. }
  6609. }
  6610. }
  6611. // softmax
  6612. {
  6613. float max = -INFINITY;
  6614. ggml_vec_max_f32(M, &max, S);
  6615. float sum = 0.0f;
  6616. {
  6617. #ifdef GGML_SOFT_MAX_ACCELERATE
  6618. max = -max;
  6619. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6620. vvexpf(S, S, &Mup);
  6621. ggml_vec_sum_f32(Mup, &sum, S);
  6622. #else
  6623. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6624. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6625. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6626. float * SS = S + i;
  6627. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6628. if (SS[j] == -INFINITY) {
  6629. SS[j] = 0.0f;
  6630. } else {
  6631. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6632. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6633. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6634. sump[j] += val;
  6635. SS[j] = val;
  6636. }
  6637. }
  6638. }
  6639. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6640. sum += sump[i];
  6641. }
  6642. #endif
  6643. }
  6644. assert(sum > 0.0f);
  6645. sum = 1.0/sum;
  6646. ggml_vec_scale_f32(M, S, sum);
  6647. #ifndef NDEBUG
  6648. for (int i = 0; i < M; ++i) {
  6649. assert(!isnan(S[i]));
  6650. assert(!isinf(S[i]));
  6651. }
  6652. #endif
  6653. }
  6654. for (int ic = 0; ic < nev1; ++ic) {
  6655. // dst indices
  6656. const int i1 = iq1;
  6657. const int i2 = iq2;
  6658. const int i3 = iq3;
  6659. ggml_vec_dot_f32(nek1,
  6660. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6661. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6662. S);
  6663. }
  6664. }
  6665. }
  6666. static void ggml_compute_forward_flash_attn_f16(
  6667. const struct ggml_compute_params * params,
  6668. const struct ggml_tensor * q,
  6669. const struct ggml_tensor * k,
  6670. const struct ggml_tensor * v,
  6671. const bool masked,
  6672. struct ggml_tensor * dst) {
  6673. int64_t t0 = ggml_perf_time_us();
  6674. UNUSED(t0);
  6675. const int neq0 = q->ne[0];
  6676. const int neq1 = q->ne[1];
  6677. const int neq2 = q->ne[2];
  6678. const int neq3 = q->ne[3];
  6679. const int nek0 = k->ne[0];
  6680. const int nek1 = k->ne[1];
  6681. //const int nek2 = k->ne[2];
  6682. //const int nek3 = k->ne[3];
  6683. //const int nev0 = v->ne[0];
  6684. const int nev1 = v->ne[1];
  6685. //const int nev2 = v->ne[2];
  6686. //const int nev3 = v->ne[3];
  6687. const int ne0 = dst->ne[0];
  6688. const int ne1 = dst->ne[1];
  6689. //const int ne2 = dst->ne[2];
  6690. //const int ne3 = dst->ne[3];
  6691. const int nbk0 = k->nb[0];
  6692. const int nbk1 = k->nb[1];
  6693. const int nbk2 = k->nb[2];
  6694. const int nbk3 = k->nb[3];
  6695. const int nbq0 = q->nb[0];
  6696. const int nbq1 = q->nb[1];
  6697. const int nbq2 = q->nb[2];
  6698. const int nbq3 = q->nb[3];
  6699. const int nbv0 = v->nb[0];
  6700. const int nbv1 = v->nb[1];
  6701. const int nbv2 = v->nb[2];
  6702. const int nbv3 = v->nb[3];
  6703. const int nb0 = dst->nb[0];
  6704. const int nb1 = dst->nb[1];
  6705. const int nb2 = dst->nb[2];
  6706. const int nb3 = dst->nb[3];
  6707. const int ith = params->ith;
  6708. const int nth = params->nth;
  6709. const int D = neq0;
  6710. const int N = neq1;
  6711. const int P = nek1 - N;
  6712. const int M = P + N;
  6713. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6714. GGML_ASSERT(ne0 == D);
  6715. GGML_ASSERT(ne1 == N);
  6716. GGML_ASSERT(P >= 0);
  6717. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6718. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6719. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6720. GGML_ASSERT(neq0 == D);
  6721. GGML_ASSERT(nek0 == D);
  6722. GGML_ASSERT(nev1 == D);
  6723. GGML_ASSERT(neq1 == N);
  6724. GGML_ASSERT(nek1 == N + P);
  6725. GGML_ASSERT(nev1 == D);
  6726. // dst cannot be transposed or permuted
  6727. GGML_ASSERT(nb0 == sizeof(float));
  6728. GGML_ASSERT(nb0 <= nb1);
  6729. GGML_ASSERT(nb1 <= nb2);
  6730. GGML_ASSERT(nb2 <= nb3);
  6731. if (params->type == GGML_TASK_INIT) {
  6732. return;
  6733. }
  6734. if (params->type == GGML_TASK_FINALIZE) {
  6735. return;
  6736. }
  6737. // parallelize by q rows using ggml_vec_dot_f32
  6738. // total rows in q
  6739. const int nr = neq1*neq2*neq3;
  6740. // rows per thread
  6741. const int dr = (nr + nth - 1)/nth;
  6742. // row range for this thread
  6743. const int ir0 = dr*ith;
  6744. const int ir1 = MIN(ir0 + dr, nr);
  6745. const float scale = 1.0/sqrt((double) D);
  6746. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6747. for (int ir = ir0; ir < ir1; ++ir) {
  6748. // q indices
  6749. const int iq3 = ir/(neq2*neq1);
  6750. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6751. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6752. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6753. for (int i = M; i < Mup; ++i) {
  6754. S[i] = -INFINITY;
  6755. }
  6756. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6757. for (int ic = 0; ic < nek1; ++ic) {
  6758. // k indices
  6759. const int ik3 = iq3;
  6760. const int ik2 = iq2;
  6761. const int ik1 = ic;
  6762. // S indices
  6763. const int i1 = ik1;
  6764. ggml_vec_dot_f16(neq0,
  6765. S + i1,
  6766. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6767. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6768. }
  6769. } else {
  6770. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6771. // k indices
  6772. const int ik3 = iq3;
  6773. const int ik2 = iq2;
  6774. const int ik1 = ic;
  6775. // S indices
  6776. const int i1 = ik1;
  6777. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6778. S + i1,
  6779. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6780. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6781. }
  6782. }
  6783. // scale
  6784. ggml_vec_scale_f32(nek1, S, scale);
  6785. if (masked) {
  6786. for (int i = P; i < M; i++) {
  6787. if (i > P + iq1) {
  6788. S[i] = -INFINITY;
  6789. }
  6790. }
  6791. }
  6792. // softmax
  6793. {
  6794. float max = -INFINITY;
  6795. ggml_vec_max_f32(M, &max, S);
  6796. float sum = 0.0f;
  6797. {
  6798. #ifdef GGML_SOFT_MAX_ACCELERATE
  6799. max = -max;
  6800. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6801. vvexpf(S, S, &Mup);
  6802. ggml_vec_sum_f32(Mup, &sum, S);
  6803. #else
  6804. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6805. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6806. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6807. float * SS = S + i;
  6808. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6809. if (SS[j] == -INFINITY) {
  6810. SS[j] = 0.0f;
  6811. } else {
  6812. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6813. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6814. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6815. sump[j] += val;
  6816. SS[j] = val;
  6817. }
  6818. }
  6819. }
  6820. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6821. sum += sump[i];
  6822. }
  6823. #endif
  6824. }
  6825. assert(sum > 0.0f);
  6826. sum = 1.0/sum;
  6827. ggml_vec_scale_f32(M, S, sum);
  6828. #ifndef NDEBUG
  6829. for (int i = 0; i < M; ++i) {
  6830. assert(!isnan(S[i]));
  6831. assert(!isinf(S[i]));
  6832. }
  6833. #endif
  6834. }
  6835. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6836. for (int i = 0; i < M; i++) {
  6837. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6838. }
  6839. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6840. for (int ic = 0; ic < nev1; ++ic) {
  6841. // dst indices
  6842. const int i1 = iq1;
  6843. const int i2 = iq2;
  6844. const int i3 = iq3;
  6845. ggml_vec_dot_f16(nek1,
  6846. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6847. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6848. S16);
  6849. }
  6850. } else {
  6851. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6852. // dst indices
  6853. const int i1 = iq1;
  6854. const int i2 = iq2;
  6855. const int i3 = iq3;
  6856. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6857. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6858. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6859. S16);
  6860. }
  6861. }
  6862. }
  6863. }
  6864. static void ggml_compute_forward_flash_attn(
  6865. const struct ggml_compute_params * params,
  6866. const struct ggml_tensor * q,
  6867. const struct ggml_tensor * k,
  6868. const struct ggml_tensor * v,
  6869. const bool masked,
  6870. struct ggml_tensor * dst) {
  6871. switch (q->type) {
  6872. case GGML_TYPE_F16:
  6873. {
  6874. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6875. } break;
  6876. case GGML_TYPE_F32:
  6877. {
  6878. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6879. } break;
  6880. case GGML_TYPE_Q4_0:
  6881. case GGML_TYPE_Q4_1:
  6882. case GGML_TYPE_I8:
  6883. case GGML_TYPE_I16:
  6884. case GGML_TYPE_I32:
  6885. case GGML_TYPE_COUNT:
  6886. {
  6887. GGML_ASSERT(false);
  6888. } break;
  6889. }
  6890. }
  6891. // ggml_compute_forward_flash_ff
  6892. static void ggml_compute_forward_flash_ff_f16(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * a, // F16
  6895. const struct ggml_tensor * b0, // F16 fc_w
  6896. const struct ggml_tensor * b1, // F32 fc_b
  6897. const struct ggml_tensor * c0, // F16 proj_w
  6898. const struct ggml_tensor * c1, // F32 proj_b
  6899. struct ggml_tensor * dst) {
  6900. int64_t t0 = ggml_perf_time_us();
  6901. UNUSED(t0);
  6902. const int nea0 = a->ne[0];
  6903. const int nea1 = a->ne[1];
  6904. const int nea2 = a->ne[2];
  6905. const int nea3 = a->ne[3];
  6906. const int neb00 = b0->ne[0];
  6907. const int neb01 = b0->ne[1];
  6908. //const int neb02 = b0->ne[2];
  6909. //const int neb03 = b0->ne[3];
  6910. const int neb10 = b1->ne[0];
  6911. const int neb11 = b1->ne[1];
  6912. //const int neb12 = b1->ne[2];
  6913. //const int neb13 = b1->ne[3];
  6914. const int nec00 = c0->ne[0];
  6915. const int nec01 = c0->ne[1];
  6916. //const int nec02 = c0->ne[2];
  6917. //const int nec03 = c0->ne[3];
  6918. const int nec10 = c1->ne[0];
  6919. const int nec11 = c1->ne[1];
  6920. //const int nec12 = c1->ne[2];
  6921. //const int nec13 = c1->ne[3];
  6922. const int ne0 = dst->ne[0];
  6923. const int ne1 = dst->ne[1];
  6924. const int ne2 = dst->ne[2];
  6925. //const int ne3 = dst->ne[3];
  6926. const int nba0 = a->nb[0];
  6927. const int nba1 = a->nb[1];
  6928. const int nba2 = a->nb[2];
  6929. const int nba3 = a->nb[3];
  6930. const int nbb00 = b0->nb[0];
  6931. const int nbb01 = b0->nb[1];
  6932. const int nbb02 = b0->nb[2];
  6933. const int nbb03 = b0->nb[3];
  6934. const int nbb10 = b1->nb[0];
  6935. //const int nbb11 = b1->nb[1];
  6936. //const int nbb12 = b1->nb[2];
  6937. //const int nbb13 = b1->nb[3];
  6938. const int nbc00 = c0->nb[0];
  6939. const int nbc01 = c0->nb[1];
  6940. const int nbc02 = c0->nb[2];
  6941. const int nbc03 = c0->nb[3];
  6942. const int nbc10 = c1->nb[0];
  6943. //const int nbc11 = c1->nb[1];
  6944. //const int nbc12 = c1->nb[2];
  6945. //const int nbc13 = c1->nb[3];
  6946. const int nb0 = dst->nb[0];
  6947. const int nb1 = dst->nb[1];
  6948. const int nb2 = dst->nb[2];
  6949. const int nb3 = dst->nb[3];
  6950. const int ith = params->ith;
  6951. const int nth = params->nth;
  6952. const int D = nea0;
  6953. //const int N = nea1;
  6954. const int M = neb01;
  6955. GGML_ASSERT(ne0 == nea0);
  6956. GGML_ASSERT(ne1 == nea1);
  6957. GGML_ASSERT(ne2 == nea2);
  6958. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6959. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6960. GGML_ASSERT(nbb10 == sizeof(float));
  6961. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6962. GGML_ASSERT(nbc10 == sizeof(float));
  6963. GGML_ASSERT(neb00 == D);
  6964. GGML_ASSERT(neb01 == M);
  6965. GGML_ASSERT(neb10 == M);
  6966. GGML_ASSERT(neb11 == 1);
  6967. GGML_ASSERT(nec00 == M);
  6968. GGML_ASSERT(nec01 == D);
  6969. GGML_ASSERT(nec10 == D);
  6970. GGML_ASSERT(nec11 == 1);
  6971. // dst cannot be transposed or permuted
  6972. GGML_ASSERT(nb0 == sizeof(float));
  6973. GGML_ASSERT(nb0 <= nb1);
  6974. GGML_ASSERT(nb1 <= nb2);
  6975. GGML_ASSERT(nb2 <= nb3);
  6976. if (params->type == GGML_TASK_INIT) {
  6977. return;
  6978. }
  6979. if (params->type == GGML_TASK_FINALIZE) {
  6980. return;
  6981. }
  6982. // parallelize by a rows using ggml_vec_dot_f32
  6983. // total rows in a
  6984. const int nr = nea1*nea2*nea3;
  6985. // rows per thread
  6986. const int dr = (nr + nth - 1)/nth;
  6987. // row range for this thread
  6988. const int ir0 = dr*ith;
  6989. const int ir1 = MIN(ir0 + dr, nr);
  6990. for (int ir = ir0; ir < ir1; ++ir) {
  6991. // a indices
  6992. const int ia3 = ir/(nea2*nea1);
  6993. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6994. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6995. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6996. for (int ic = 0; ic < neb01; ++ic) {
  6997. // b0 indices
  6998. const int ib03 = ia3;
  6999. const int ib02 = ia2;
  7000. const int ib01 = ic;
  7001. // S indices
  7002. const int i1 = ib01;
  7003. ggml_vec_dot_f16(nea0,
  7004. S + i1,
  7005. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7006. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7007. }
  7008. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7009. //ggml_vec_gelu_f32(neb01, S, S);
  7010. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7011. for (int i = 0; i < M; i++) {
  7012. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7013. }
  7014. ggml_vec_gelu_f16(neb01, S16, S16);
  7015. {
  7016. // dst indices
  7017. const int i1 = ia1;
  7018. const int i2 = ia2;
  7019. const int i3 = ia3;
  7020. for (int ic = 0; ic < nec01; ++ic) {
  7021. ggml_vec_dot_f16(neb01,
  7022. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7023. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7024. S16);
  7025. }
  7026. ggml_vec_add_f32(nec01,
  7027. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7028. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7029. (float *) c1->data);
  7030. }
  7031. }
  7032. }
  7033. static void ggml_compute_forward_flash_ff(
  7034. const struct ggml_compute_params * params,
  7035. const struct ggml_tensor * a,
  7036. const struct ggml_tensor * b0,
  7037. const struct ggml_tensor * b1,
  7038. const struct ggml_tensor * c0,
  7039. const struct ggml_tensor * c1,
  7040. struct ggml_tensor * dst) {
  7041. switch (b0->type) {
  7042. case GGML_TYPE_F16:
  7043. {
  7044. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7045. } break;
  7046. case GGML_TYPE_F32:
  7047. {
  7048. GGML_ASSERT(false); // TODO
  7049. } break;
  7050. case GGML_TYPE_Q4_0:
  7051. case GGML_TYPE_Q4_1:
  7052. case GGML_TYPE_I8:
  7053. case GGML_TYPE_I16:
  7054. case GGML_TYPE_I32:
  7055. case GGML_TYPE_COUNT:
  7056. {
  7057. GGML_ASSERT(false);
  7058. } break;
  7059. }
  7060. }
  7061. /////////////////////////////////
  7062. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7063. GGML_ASSERT(params);
  7064. switch (tensor->op) {
  7065. case GGML_OP_DUP:
  7066. {
  7067. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7068. } break;
  7069. case GGML_OP_ADD:
  7070. {
  7071. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7072. } break;
  7073. case GGML_OP_SUB:
  7074. {
  7075. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7076. } break;
  7077. case GGML_OP_MUL:
  7078. {
  7079. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7080. } break;
  7081. case GGML_OP_DIV:
  7082. {
  7083. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7084. } break;
  7085. case GGML_OP_SQR:
  7086. {
  7087. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7088. } break;
  7089. case GGML_OP_SQRT:
  7090. {
  7091. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7092. } break;
  7093. case GGML_OP_SUM:
  7094. {
  7095. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7096. } break;
  7097. case GGML_OP_MEAN:
  7098. {
  7099. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7100. } break;
  7101. case GGML_OP_REPEAT:
  7102. {
  7103. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7104. } break;
  7105. case GGML_OP_ABS:
  7106. {
  7107. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7108. } break;
  7109. case GGML_OP_SGN:
  7110. {
  7111. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7112. } break;
  7113. case GGML_OP_NEG:
  7114. {
  7115. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7116. } break;
  7117. case GGML_OP_STEP:
  7118. {
  7119. ggml_compute_forward_step(params, tensor->src0, tensor);
  7120. } break;
  7121. case GGML_OP_RELU:
  7122. {
  7123. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7124. } break;
  7125. case GGML_OP_GELU:
  7126. {
  7127. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7128. } break;
  7129. case GGML_OP_SILU:
  7130. {
  7131. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7132. } break;
  7133. case GGML_OP_NORM:
  7134. {
  7135. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7136. } break;
  7137. case GGML_OP_RMS_NORM:
  7138. {
  7139. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7140. } break;
  7141. case GGML_OP_MUL_MAT:
  7142. {
  7143. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7144. } break;
  7145. case GGML_OP_SCALE:
  7146. {
  7147. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7148. } break;
  7149. case GGML_OP_CPY:
  7150. {
  7151. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7152. } break;
  7153. case GGML_OP_RESHAPE:
  7154. {
  7155. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7156. } break;
  7157. case GGML_OP_VIEW:
  7158. {
  7159. ggml_compute_forward_view(params, tensor->src0);
  7160. } break;
  7161. case GGML_OP_PERMUTE:
  7162. {
  7163. ggml_compute_forward_permute(params, tensor->src0);
  7164. } break;
  7165. case GGML_OP_TRANSPOSE:
  7166. {
  7167. ggml_compute_forward_transpose(params, tensor->src0);
  7168. } break;
  7169. case GGML_OP_GET_ROWS:
  7170. {
  7171. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7172. } break;
  7173. case GGML_OP_DIAG_MASK_INF:
  7174. {
  7175. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7176. } break;
  7177. case GGML_OP_SOFT_MAX:
  7178. {
  7179. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7180. } break;
  7181. case GGML_OP_ROPE:
  7182. {
  7183. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7184. } break;
  7185. case GGML_OP_CONV_1D_1S:
  7186. {
  7187. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7188. } break;
  7189. case GGML_OP_CONV_1D_2S:
  7190. {
  7191. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7192. } break;
  7193. case GGML_OP_FLASH_ATTN:
  7194. {
  7195. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7196. GGML_ASSERT(t == 0 || t == 1);
  7197. bool masked = t != 0;
  7198. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7199. } break;
  7200. case GGML_OP_FLASH_FF:
  7201. {
  7202. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7203. } break;
  7204. case GGML_OP_NONE:
  7205. {
  7206. // nop
  7207. } break;
  7208. case GGML_OP_COUNT:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. ////////////////////////////////////////////////////////////////////////////////
  7215. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7216. struct ggml_tensor * src0 = tensor->src0;
  7217. struct ggml_tensor * src1 = tensor->src1;
  7218. switch (tensor->op) {
  7219. case GGML_OP_DUP:
  7220. {
  7221. if (src0->grad) {
  7222. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7223. }
  7224. } break;
  7225. case GGML_OP_ADD:
  7226. {
  7227. if (src0->grad) {
  7228. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7229. }
  7230. if (src1->grad) {
  7231. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7232. }
  7233. } break;
  7234. case GGML_OP_SUB:
  7235. {
  7236. if (src0->grad) {
  7237. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7238. }
  7239. if (src1->grad) {
  7240. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7241. }
  7242. } break;
  7243. case GGML_OP_MUL:
  7244. {
  7245. if (src0->grad) {
  7246. src0->grad =
  7247. ggml_add_impl(ctx,
  7248. src0->grad,
  7249. ggml_mul(ctx, src1, tensor->grad),
  7250. inplace);
  7251. }
  7252. if (src1->grad) {
  7253. src1->grad =
  7254. ggml_add_impl(ctx,
  7255. src1->grad,
  7256. ggml_mul(ctx, src0, tensor->grad),
  7257. inplace);
  7258. }
  7259. } break;
  7260. case GGML_OP_DIV:
  7261. {
  7262. if (src0->grad) {
  7263. src0->grad =
  7264. ggml_add_impl(ctx,
  7265. src0->grad,
  7266. ggml_div(ctx, tensor->grad, src1),
  7267. inplace);
  7268. }
  7269. if (src1->grad) {
  7270. src1->grad =
  7271. ggml_sub_impl(ctx,
  7272. src1->grad,
  7273. ggml_mul(ctx,
  7274. tensor->grad,
  7275. ggml_div(ctx, tensor, src1)),
  7276. inplace);
  7277. }
  7278. } break;
  7279. case GGML_OP_SQR:
  7280. {
  7281. if (src0->grad) {
  7282. src0->grad =
  7283. ggml_add_impl(ctx,
  7284. src0->grad,
  7285. ggml_mul(ctx,
  7286. ggml_mul(ctx, src0, tensor->grad),
  7287. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7288. inplace);
  7289. }
  7290. } break;
  7291. case GGML_OP_SQRT:
  7292. {
  7293. if (src0->grad) {
  7294. src0->grad =
  7295. ggml_add_impl(ctx,
  7296. src0->grad,
  7297. ggml_div(ctx,
  7298. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7299. tensor),
  7300. inplace);
  7301. }
  7302. } break;
  7303. case GGML_OP_SUM:
  7304. {
  7305. if (src0->grad) {
  7306. src0->grad =
  7307. ggml_add_impl(ctx,
  7308. src0->grad,
  7309. ggml_repeat(ctx, tensor->grad, src0->grad),
  7310. inplace);
  7311. }
  7312. } break;
  7313. case GGML_OP_MEAN:
  7314. {
  7315. GGML_ASSERT(false); // TODO: implement
  7316. } break;
  7317. case GGML_OP_REPEAT:
  7318. {
  7319. if (src0->grad) {
  7320. src0->grad =
  7321. ggml_add_impl(ctx,
  7322. src0->grad,
  7323. ggml_sum(ctx, tensor->grad),
  7324. inplace);
  7325. }
  7326. } break;
  7327. case GGML_OP_ABS:
  7328. {
  7329. if (src0->grad) {
  7330. src0->grad =
  7331. ggml_add_impl(ctx,
  7332. src0->grad,
  7333. ggml_mul(ctx,
  7334. ggml_sgn(ctx, src0),
  7335. tensor->grad),
  7336. inplace);
  7337. }
  7338. } break;
  7339. case GGML_OP_SGN:
  7340. {
  7341. if (src0->grad) {
  7342. // noop
  7343. }
  7344. } break;
  7345. case GGML_OP_NEG:
  7346. {
  7347. if (src0->grad) {
  7348. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7349. }
  7350. } break;
  7351. case GGML_OP_STEP:
  7352. {
  7353. if (src0->grad) {
  7354. // noop
  7355. }
  7356. } break;
  7357. case GGML_OP_RELU:
  7358. {
  7359. if (src0->grad) {
  7360. src0->grad = ggml_sub_impl(ctx,
  7361. src0->grad,
  7362. ggml_mul(ctx,
  7363. ggml_step(ctx, src0),
  7364. tensor->grad),
  7365. inplace);
  7366. }
  7367. } break;
  7368. case GGML_OP_GELU:
  7369. {
  7370. GGML_ASSERT(false); // TODO: not implemented
  7371. } break;
  7372. case GGML_OP_SILU:
  7373. {
  7374. GGML_ASSERT(false); // TODO: not implemented
  7375. } break;
  7376. case GGML_OP_NORM:
  7377. {
  7378. GGML_ASSERT(false); // TODO: not implemented
  7379. } break;
  7380. case GGML_OP_RMS_NORM:
  7381. {
  7382. GGML_ASSERT(false); // TODO: not implemented
  7383. } break;
  7384. case GGML_OP_MUL_MAT:
  7385. {
  7386. if (src0->grad) {
  7387. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7388. GGML_ASSERT(false);
  7389. }
  7390. if (src1->grad) {
  7391. src1->grad =
  7392. ggml_add_impl(ctx,
  7393. src1->grad,
  7394. // TODO: fix transpose, the node will break the graph connections
  7395. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7396. inplace);
  7397. }
  7398. } break;
  7399. case GGML_OP_SCALE:
  7400. {
  7401. GGML_ASSERT(false); // TODO: not implemented
  7402. } break;
  7403. case GGML_OP_CPY:
  7404. {
  7405. GGML_ASSERT(false); // TODO: not implemented
  7406. } break;
  7407. case GGML_OP_RESHAPE:
  7408. {
  7409. GGML_ASSERT(false); // TODO: not implemented
  7410. } break;
  7411. case GGML_OP_VIEW:
  7412. {
  7413. GGML_ASSERT(false); // not supported
  7414. } break;
  7415. case GGML_OP_PERMUTE:
  7416. {
  7417. GGML_ASSERT(false); // TODO: not implemented
  7418. } break;
  7419. case GGML_OP_TRANSPOSE:
  7420. {
  7421. GGML_ASSERT(false); // TODO: not implemented
  7422. } break;
  7423. case GGML_OP_GET_ROWS:
  7424. {
  7425. GGML_ASSERT(false); // TODO: not implemented
  7426. } break;
  7427. case GGML_OP_DIAG_MASK_INF:
  7428. {
  7429. GGML_ASSERT(false); // TODO: not implemented
  7430. } break;
  7431. case GGML_OP_SOFT_MAX:
  7432. {
  7433. GGML_ASSERT(false); // TODO: not implemented
  7434. } break;
  7435. case GGML_OP_ROPE:
  7436. {
  7437. GGML_ASSERT(false); // TODO: not implemented
  7438. } break;
  7439. case GGML_OP_CONV_1D_1S:
  7440. {
  7441. GGML_ASSERT(false); // TODO: not implemented
  7442. } break;
  7443. case GGML_OP_CONV_1D_2S:
  7444. {
  7445. GGML_ASSERT(false); // TODO: not implemented
  7446. } break;
  7447. case GGML_OP_FLASH_ATTN:
  7448. {
  7449. GGML_ASSERT(false); // not supported
  7450. } break;
  7451. case GGML_OP_FLASH_FF:
  7452. {
  7453. GGML_ASSERT(false); // not supported
  7454. } break;
  7455. case GGML_OP_NONE:
  7456. {
  7457. // nop
  7458. } break;
  7459. case GGML_OP_COUNT:
  7460. {
  7461. GGML_ASSERT(false);
  7462. } break;
  7463. }
  7464. }
  7465. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7466. if (node->grad == NULL) {
  7467. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7468. // it can also happen during forward pass, if the user performs computations with constants
  7469. if (node->op != GGML_OP_NONE) {
  7470. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7471. }
  7472. }
  7473. // check if already visited
  7474. for (int i = 0; i < cgraph->n_nodes; i++) {
  7475. if (cgraph->nodes[i] == node) {
  7476. return;
  7477. }
  7478. }
  7479. for (int i = 0; i < cgraph->n_leafs; i++) {
  7480. if (cgraph->leafs[i] == node) {
  7481. return;
  7482. }
  7483. }
  7484. if (node->src0) {
  7485. ggml_visit_parents(cgraph, node->src0);
  7486. }
  7487. if (node->src1) {
  7488. ggml_visit_parents(cgraph, node->src1);
  7489. }
  7490. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7491. if (node->opt[i]) {
  7492. ggml_visit_parents(cgraph, node->opt[i]);
  7493. }
  7494. }
  7495. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7496. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7497. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7498. cgraph->leafs[cgraph->n_leafs] = node;
  7499. cgraph->n_leafs++;
  7500. } else {
  7501. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7502. cgraph->nodes[cgraph->n_nodes] = node;
  7503. cgraph->grads[cgraph->n_nodes] = node->grad;
  7504. cgraph->n_nodes++;
  7505. }
  7506. }
  7507. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7508. if (!expand) {
  7509. cgraph->n_nodes = 0;
  7510. cgraph->n_leafs = 0;
  7511. }
  7512. const int n0 = cgraph->n_nodes;
  7513. UNUSED(n0);
  7514. ggml_visit_parents(cgraph, tensor);
  7515. const int n_new = cgraph->n_nodes - n0;
  7516. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7517. if (n_new > 0) {
  7518. // the last added node should always be starting point
  7519. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7520. }
  7521. }
  7522. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7523. ggml_build_forward_impl(cgraph, tensor, true);
  7524. }
  7525. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7526. struct ggml_cgraph result = {
  7527. /*.n_nodes =*/ 0,
  7528. /*.n_leafs =*/ 0,
  7529. /*.n_threads =*/ 0,
  7530. /*.work_size =*/ 0,
  7531. /*.work =*/ NULL,
  7532. /*.nodes =*/ { NULL },
  7533. /*.grads =*/ { NULL },
  7534. /*.leafs =*/ { NULL },
  7535. /*.perf_runs =*/ 0,
  7536. /*.perf_cycles =*/ 0,
  7537. /*.perf_time_us =*/ 0,
  7538. };
  7539. ggml_build_forward_impl(&result, tensor, false);
  7540. return result;
  7541. }
  7542. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7543. struct ggml_cgraph result = *gf;
  7544. GGML_ASSERT(gf->n_nodes > 0);
  7545. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7546. if (keep) {
  7547. for (int i = 0; i < gf->n_nodes; i++) {
  7548. struct ggml_tensor * node = gf->nodes[i];
  7549. if (node->grad) {
  7550. node->grad = ggml_dup_tensor(ctx, node);
  7551. gf->grads[i] = node->grad;
  7552. }
  7553. }
  7554. }
  7555. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7556. struct ggml_tensor * node = gf->nodes[i];
  7557. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7558. if (node->grad) {
  7559. ggml_compute_backward(ctx, node, keep);
  7560. }
  7561. }
  7562. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7563. struct ggml_tensor * node = gf->nodes[i];
  7564. if (node->is_param) {
  7565. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7566. ggml_build_forward_impl(&result, node->grad, true);
  7567. }
  7568. }
  7569. return result;
  7570. }
  7571. //
  7572. // thread data
  7573. //
  7574. // synchronization is done via busy loops
  7575. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7576. //
  7577. #ifdef __APPLE__
  7578. //#include <os/lock.h>
  7579. //
  7580. //typedef os_unfair_lock ggml_lock_t;
  7581. //
  7582. //#define ggml_lock_init(x) UNUSED(x)
  7583. //#define ggml_lock_destroy(x) UNUSED(x)
  7584. //#define ggml_lock_lock os_unfair_lock_lock
  7585. //#define ggml_lock_unlock os_unfair_lock_unlock
  7586. //
  7587. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7588. typedef int ggml_lock_t;
  7589. #define ggml_lock_init(x) UNUSED(x)
  7590. #define ggml_lock_destroy(x) UNUSED(x)
  7591. #define ggml_lock_lock(x) UNUSED(x)
  7592. #define ggml_lock_unlock(x) UNUSED(x)
  7593. #define GGML_LOCK_INITIALIZER 0
  7594. typedef pthread_t ggml_thread_t;
  7595. #define ggml_thread_create pthread_create
  7596. #define ggml_thread_join pthread_join
  7597. #else
  7598. //typedef pthread_spinlock_t ggml_lock_t;
  7599. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7600. //#define ggml_lock_destroy pthread_spin_destroy
  7601. //#define ggml_lock_lock pthread_spin_lock
  7602. //#define ggml_lock_unlock pthread_spin_unlock
  7603. typedef int ggml_lock_t;
  7604. #define ggml_lock_init(x) UNUSED(x)
  7605. #define ggml_lock_destroy(x) UNUSED(x)
  7606. #define ggml_lock_lock(x) UNUSED(x)
  7607. #define ggml_lock_unlock(x) UNUSED(x)
  7608. #define GGML_LOCK_INITIALIZER 0
  7609. typedef pthread_t ggml_thread_t;
  7610. #define ggml_thread_create pthread_create
  7611. #define ggml_thread_join pthread_join
  7612. #endif
  7613. struct ggml_compute_state_shared {
  7614. ggml_lock_t spin;
  7615. int n_threads;
  7616. // synchronization primitives
  7617. atomic_int n_ready;
  7618. atomic_bool has_work;
  7619. atomic_bool stop; // stop all threads
  7620. };
  7621. struct ggml_compute_state {
  7622. ggml_thread_t thrd;
  7623. struct ggml_compute_params params;
  7624. struct ggml_tensor * node;
  7625. struct ggml_compute_state_shared * shared;
  7626. };
  7627. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7628. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7629. const int n_threads = state->shared->n_threads;
  7630. while (true) {
  7631. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7632. atomic_store(&state->shared->has_work, false);
  7633. } else {
  7634. while (atomic_load(&state->shared->has_work)) {
  7635. if (atomic_load(&state->shared->stop)) {
  7636. return 0;
  7637. }
  7638. ggml_lock_lock (&state->shared->spin);
  7639. ggml_lock_unlock(&state->shared->spin);
  7640. }
  7641. }
  7642. atomic_fetch_sub(&state->shared->n_ready, 1);
  7643. // wait for work
  7644. while (!atomic_load(&state->shared->has_work)) {
  7645. if (atomic_load(&state->shared->stop)) {
  7646. return 0;
  7647. }
  7648. ggml_lock_lock (&state->shared->spin);
  7649. ggml_lock_unlock(&state->shared->spin);
  7650. }
  7651. // check if we should stop
  7652. if (atomic_load(&state->shared->stop)) {
  7653. break;
  7654. }
  7655. if (state->node) {
  7656. if (state->params.ith < state->params.nth) {
  7657. ggml_compute_forward(&state->params, state->node);
  7658. }
  7659. state->node = NULL;
  7660. } else {
  7661. break;
  7662. }
  7663. }
  7664. return 0;
  7665. }
  7666. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7667. const int n_threads = cgraph->n_threads;
  7668. struct ggml_compute_state_shared state_shared = {
  7669. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7670. /*.n_threads =*/ n_threads,
  7671. /*.n_ready =*/ 0,
  7672. /*.has_work =*/ false,
  7673. /*.stop =*/ false,
  7674. };
  7675. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7676. // create thread pool
  7677. if (n_threads > 1) {
  7678. ggml_lock_init(&state_shared.spin);
  7679. atomic_store(&state_shared.has_work, true);
  7680. for (int j = 0; j < n_threads - 1; j++) {
  7681. workers[j] = (struct ggml_compute_state) {
  7682. .thrd = 0,
  7683. .params = {
  7684. .type = GGML_TASK_COMPUTE,
  7685. .ith = j + 1,
  7686. .nth = n_threads,
  7687. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7688. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7689. },
  7690. .node = NULL,
  7691. .shared = &state_shared,
  7692. };
  7693. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7694. GGML_ASSERT(rc == 0);
  7695. UNUSED(rc);
  7696. }
  7697. }
  7698. // initialize tasks + work buffer
  7699. {
  7700. size_t work_size = 0;
  7701. // thread scheduling for the different operations
  7702. for (int i = 0; i < cgraph->n_nodes; i++) {
  7703. struct ggml_tensor * node = cgraph->nodes[i];
  7704. switch (node->op) {
  7705. case GGML_OP_DUP:
  7706. {
  7707. node->n_tasks = 1;
  7708. } break;
  7709. case GGML_OP_ADD:
  7710. {
  7711. node->n_tasks = n_threads;
  7712. } break;
  7713. case GGML_OP_SUB:
  7714. case GGML_OP_MUL:
  7715. case GGML_OP_DIV:
  7716. case GGML_OP_SQR:
  7717. case GGML_OP_SQRT:
  7718. case GGML_OP_SUM:
  7719. case GGML_OP_MEAN:
  7720. case GGML_OP_REPEAT:
  7721. case GGML_OP_ABS:
  7722. case GGML_OP_SGN:
  7723. case GGML_OP_NEG:
  7724. case GGML_OP_STEP:
  7725. case GGML_OP_RELU:
  7726. {
  7727. node->n_tasks = 1;
  7728. } break;
  7729. case GGML_OP_GELU:
  7730. {
  7731. node->n_tasks = n_threads;
  7732. } break;
  7733. case GGML_OP_SILU:
  7734. {
  7735. node->n_tasks = n_threads;
  7736. } break;
  7737. case GGML_OP_NORM:
  7738. case GGML_OP_RMS_NORM:
  7739. {
  7740. node->n_tasks = n_threads;
  7741. } break;
  7742. case GGML_OP_MUL_MAT:
  7743. {
  7744. node->n_tasks = n_threads;
  7745. // TODO: use different scheduling for different matrix sizes
  7746. //const int nr0 = ggml_nrows(node->src0);
  7747. //const int nr1 = ggml_nrows(node->src1);
  7748. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7749. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7750. size_t cur = 0;
  7751. // TODO: better way to determine if the matrix is transposed
  7752. if (node->src0->nb[1] < node->src0->nb[0]) {
  7753. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7754. // TODO: overestimated by factor of x2 for FP16
  7755. } else {
  7756. if (node->src0->type == GGML_TYPE_F16 &&
  7757. node->src1->type == GGML_TYPE_F32) {
  7758. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7759. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7760. node->n_tasks = 1; // TODO: this actually is doing nothing
  7761. // the threads are still spinning
  7762. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7763. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7764. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7765. //printf("cur = %zu\n", cur);
  7766. } else {
  7767. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7768. }
  7769. #else
  7770. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7771. #endif
  7772. } else if (node->src0->type == GGML_TYPE_F32 &&
  7773. node->src1->type == GGML_TYPE_F32) {
  7774. cur = 0;
  7775. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7776. node->src1->type == GGML_TYPE_F32) {
  7777. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7778. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7779. node->n_tasks = 1;
  7780. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7781. } else {
  7782. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7783. }
  7784. #else
  7785. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7786. #endif
  7787. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7788. node->src1->type == GGML_TYPE_F32) {
  7789. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7790. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7791. node->n_tasks = 1;
  7792. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7793. } else {
  7794. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7795. }
  7796. #else
  7797. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7798. #endif
  7799. } else {
  7800. GGML_ASSERT(false);
  7801. }
  7802. }
  7803. work_size = MAX(work_size, cur);
  7804. } break;
  7805. case GGML_OP_SCALE:
  7806. {
  7807. node->n_tasks = n_threads;
  7808. } break;
  7809. case GGML_OP_CPY:
  7810. case GGML_OP_RESHAPE:
  7811. case GGML_OP_VIEW:
  7812. case GGML_OP_PERMUTE:
  7813. case GGML_OP_TRANSPOSE:
  7814. case GGML_OP_GET_ROWS:
  7815. case GGML_OP_DIAG_MASK_INF:
  7816. {
  7817. node->n_tasks = 1;
  7818. } break;
  7819. case GGML_OP_SOFT_MAX:
  7820. {
  7821. node->n_tasks = n_threads;
  7822. } break;
  7823. case GGML_OP_ROPE:
  7824. {
  7825. node->n_tasks = 1;
  7826. } break;
  7827. case GGML_OP_CONV_1D_1S:
  7828. case GGML_OP_CONV_1D_2S:
  7829. {
  7830. node->n_tasks = n_threads;
  7831. GGML_ASSERT(node->src0->ne[3] == 1);
  7832. GGML_ASSERT(node->src1->ne[2] == 1);
  7833. GGML_ASSERT(node->src1->ne[3] == 1);
  7834. size_t cur = 0;
  7835. const int nk = node->src0->ne[0];
  7836. if (node->src0->type == GGML_TYPE_F16 &&
  7837. node->src1->type == GGML_TYPE_F32) {
  7838. cur = sizeof(ggml_fp16_t)*(
  7839. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7840. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7841. );
  7842. } else if (node->src0->type == GGML_TYPE_F32 &&
  7843. node->src1->type == GGML_TYPE_F32) {
  7844. cur = sizeof(float)*(
  7845. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7846. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7847. );
  7848. } else {
  7849. GGML_ASSERT(false);
  7850. }
  7851. work_size = MAX(work_size, cur);
  7852. } break;
  7853. case GGML_OP_FLASH_ATTN:
  7854. {
  7855. node->n_tasks = n_threads;
  7856. size_t cur = 0;
  7857. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7858. if (node->src1->type == GGML_TYPE_F32) {
  7859. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7860. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7861. }
  7862. if (node->src1->type == GGML_TYPE_F16) {
  7863. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7864. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7865. }
  7866. work_size = MAX(work_size, cur);
  7867. } break;
  7868. case GGML_OP_FLASH_FF:
  7869. {
  7870. node->n_tasks = n_threads;
  7871. size_t cur = 0;
  7872. if (node->src1->type == GGML_TYPE_F32) {
  7873. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7874. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7875. }
  7876. if (node->src1->type == GGML_TYPE_F16) {
  7877. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7878. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7879. }
  7880. work_size = MAX(work_size, cur);
  7881. } break;
  7882. case GGML_OP_NONE:
  7883. {
  7884. node->n_tasks = 1;
  7885. } break;
  7886. case GGML_OP_COUNT:
  7887. {
  7888. GGML_ASSERT(false);
  7889. } break;
  7890. }
  7891. }
  7892. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7893. GGML_ASSERT(false); // TODO: better handling
  7894. }
  7895. if (work_size > 0 && cgraph->work == NULL) {
  7896. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7897. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7898. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7899. }
  7900. }
  7901. const int64_t perf_start_cycles = ggml_perf_cycles();
  7902. const int64_t perf_start_time_us = ggml_perf_time_us();
  7903. for (int i = 0; i < cgraph->n_nodes; i++) {
  7904. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7905. struct ggml_tensor * node = cgraph->nodes[i];
  7906. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7907. //if (node->grad == NULL && node->perf_runs > 0) {
  7908. // continue;
  7909. //}
  7910. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7911. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7912. // INIT
  7913. struct ggml_compute_params params = {
  7914. /*.type =*/ GGML_TASK_INIT,
  7915. /*.ith =*/ 0,
  7916. /*.nth =*/ node->n_tasks,
  7917. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7918. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7919. };
  7920. ggml_compute_forward(&params, node);
  7921. // COMPUTE
  7922. if (node->n_tasks > 1) {
  7923. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7924. atomic_store(&state_shared.has_work, false);
  7925. }
  7926. while (atomic_load(&state_shared.has_work)) {
  7927. ggml_lock_lock (&state_shared.spin);
  7928. ggml_lock_unlock(&state_shared.spin);
  7929. }
  7930. // launch thread pool
  7931. for (int j = 0; j < n_threads - 1; j++) {
  7932. workers[j].params = (struct ggml_compute_params) {
  7933. .type = GGML_TASK_COMPUTE,
  7934. .ith = j + 1,
  7935. .nth = node->n_tasks,
  7936. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7937. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7938. };
  7939. workers[j].node = node;
  7940. }
  7941. atomic_fetch_sub(&state_shared.n_ready, 1);
  7942. while (atomic_load(&state_shared.n_ready) > 0) {
  7943. ggml_lock_lock (&state_shared.spin);
  7944. ggml_lock_unlock(&state_shared.spin);
  7945. }
  7946. atomic_store(&state_shared.has_work, true);
  7947. }
  7948. params.type = GGML_TASK_COMPUTE;
  7949. ggml_compute_forward(&params, node);
  7950. // wait for thread pool
  7951. if (node->n_tasks > 1) {
  7952. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7953. atomic_store(&state_shared.has_work, false);
  7954. }
  7955. while (atomic_load(&state_shared.has_work)) {
  7956. ggml_lock_lock (&state_shared.spin);
  7957. ggml_lock_unlock(&state_shared.spin);
  7958. }
  7959. atomic_fetch_sub(&state_shared.n_ready, 1);
  7960. while (atomic_load(&state_shared.n_ready) != 0) {
  7961. ggml_lock_lock (&state_shared.spin);
  7962. ggml_lock_unlock(&state_shared.spin);
  7963. }
  7964. }
  7965. // FINALIZE
  7966. if (node->n_tasks > 1) {
  7967. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7968. atomic_store(&state_shared.has_work, false);
  7969. }
  7970. while (atomic_load(&state_shared.has_work)) {
  7971. ggml_lock_lock (&state_shared.spin);
  7972. ggml_lock_unlock(&state_shared.spin);
  7973. }
  7974. // launch thread pool
  7975. for (int j = 0; j < n_threads - 1; j++) {
  7976. workers[j].params = (struct ggml_compute_params) {
  7977. .type = GGML_TASK_FINALIZE,
  7978. .ith = j + 1,
  7979. .nth = node->n_tasks,
  7980. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7981. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7982. };
  7983. workers[j].node = node;
  7984. }
  7985. atomic_fetch_sub(&state_shared.n_ready, 1);
  7986. while (atomic_load(&state_shared.n_ready) > 0) {
  7987. ggml_lock_lock (&state_shared.spin);
  7988. ggml_lock_unlock(&state_shared.spin);
  7989. }
  7990. atomic_store(&state_shared.has_work, true);
  7991. }
  7992. params.type = GGML_TASK_FINALIZE;
  7993. ggml_compute_forward(&params, node);
  7994. // wait for thread pool
  7995. if (node->n_tasks > 1) {
  7996. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7997. atomic_store(&state_shared.has_work, false);
  7998. }
  7999. while (atomic_load(&state_shared.has_work)) {
  8000. ggml_lock_lock (&state_shared.spin);
  8001. ggml_lock_unlock(&state_shared.spin);
  8002. }
  8003. atomic_fetch_sub(&state_shared.n_ready, 1);
  8004. while (atomic_load(&state_shared.n_ready) != 0) {
  8005. ggml_lock_lock (&state_shared.spin);
  8006. ggml_lock_unlock(&state_shared.spin);
  8007. }
  8008. }
  8009. // performance stats (node)
  8010. {
  8011. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8012. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8013. node->perf_runs++;
  8014. node->perf_cycles += perf_cycles_cur;
  8015. node->perf_time_us += perf_time_us_cur;
  8016. }
  8017. }
  8018. // join thread pool
  8019. if (n_threads > 1) {
  8020. atomic_store(&state_shared.stop, true);
  8021. atomic_store(&state_shared.has_work, true);
  8022. for (int j = 0; j < n_threads - 1; j++) {
  8023. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8024. GGML_ASSERT(rc == 0);
  8025. UNUSED(rc);
  8026. }
  8027. ggml_lock_destroy(&state_shared.spin);
  8028. }
  8029. // performance stats (graph)
  8030. {
  8031. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8032. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8033. cgraph->perf_runs++;
  8034. cgraph->perf_cycles += perf_cycles_cur;
  8035. cgraph->perf_time_us += perf_time_us_cur;
  8036. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8037. __func__, cgraph->perf_runs,
  8038. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8039. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8040. (double) perf_time_us_cur / 1000.0,
  8041. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8042. }
  8043. }
  8044. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8045. for (int i = 0; i < cgraph->n_nodes; i++) {
  8046. struct ggml_tensor * grad = cgraph->grads[i];
  8047. if (grad) {
  8048. ggml_set_zero(grad);
  8049. }
  8050. }
  8051. }
  8052. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8053. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8054. GGML_PRINT("=== GRAPH ===\n");
  8055. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8056. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8057. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8058. for (int i = 0; i < cgraph->n_nodes; i++) {
  8059. struct ggml_tensor * node = cgraph->nodes[i];
  8060. perf_total_per_op_us[node->op] += node->perf_time_us;
  8061. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8062. i,
  8063. node->ne[0], node->ne[1], node->ne[2],
  8064. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8065. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8066. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8067. (double) node->perf_time_us / 1000.0,
  8068. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8069. }
  8070. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8071. for (int i = 0; i < cgraph->n_leafs; i++) {
  8072. struct ggml_tensor * node = cgraph->leafs[i];
  8073. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8074. i,
  8075. node->ne[0], node->ne[1],
  8076. GGML_OP_LABEL[node->op]);
  8077. }
  8078. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8079. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8080. }
  8081. GGML_PRINT("========================================\n");
  8082. }
  8083. // check if node is part of the graph
  8084. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8085. if (cgraph == NULL) {
  8086. return true;
  8087. }
  8088. for (int i = 0; i < cgraph->n_nodes; i++) {
  8089. if (cgraph->nodes[i] == node) {
  8090. return true;
  8091. }
  8092. }
  8093. return false;
  8094. }
  8095. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8096. for (int i = 0; i < cgraph->n_nodes; i++) {
  8097. struct ggml_tensor * parent = cgraph->nodes[i];
  8098. if (parent->grad == node) {
  8099. return parent;
  8100. }
  8101. }
  8102. return NULL;
  8103. }
  8104. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8105. char color[16];
  8106. FILE * fp = fopen(filename, "w");
  8107. GGML_ASSERT(fp);
  8108. fprintf(fp, "digraph G {\n");
  8109. fprintf(fp, " newrank = true;\n");
  8110. fprintf(fp, " rankdir = LR;\n");
  8111. for (int i = 0; i < gb->n_nodes; i++) {
  8112. struct ggml_tensor * node = gb->nodes[i];
  8113. if (ggml_graph_get_parent(gb, node) != NULL) {
  8114. continue;
  8115. }
  8116. if (node->is_param) {
  8117. snprintf(color, sizeof(color), "yellow");
  8118. } else if (node->grad) {
  8119. if (ggml_graph_find(gf, node)) {
  8120. snprintf(color, sizeof(color), "green");
  8121. } else {
  8122. snprintf(color, sizeof(color), "lightblue");
  8123. }
  8124. } else {
  8125. snprintf(color, sizeof(color), "white");
  8126. }
  8127. fprintf(fp, " \"%p\" [ \
  8128. style = filled; fillcolor = %s; shape = record; \
  8129. label=\"%d [%d, %d] | <x>%s",
  8130. (void *) node, color,
  8131. i, node->ne[0], node->ne[1],
  8132. GGML_OP_SYMBOL[node->op]);
  8133. if (node->grad) {
  8134. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8135. } else {
  8136. fprintf(fp, "\"; ]\n");
  8137. }
  8138. }
  8139. for (int i = 0; i < gb->n_leafs; i++) {
  8140. struct ggml_tensor * node = gb->leafs[i];
  8141. snprintf(color, sizeof(color), "pink");
  8142. if (ggml_nelements(node) == 1) {
  8143. fprintf(fp, " \"%p\" [ \
  8144. style = filled; fillcolor = %s; shape = record; \
  8145. label=\"<x>%.1e\"; ]\n",
  8146. (void *) node, color, ggml_get_f32_1d(node, 0));
  8147. } else {
  8148. fprintf(fp, " \"%p\" [ \
  8149. style = filled; fillcolor = %s; shape = record; \
  8150. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8151. (void *) node, color,
  8152. i, node->ne[0], node->ne[1]);
  8153. }
  8154. }
  8155. for (int i = 0; i < gb->n_nodes; i++) {
  8156. struct ggml_tensor * node = gb->nodes[i];
  8157. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8158. if (node->src0) {
  8159. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8160. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8161. parent0 ? (void *) parent0 : (void *) node->src0,
  8162. parent0 ? "g" : "x",
  8163. parent ? (void *) parent : (void *) node,
  8164. parent ? "g" : "x",
  8165. parent ? "empty" : "vee",
  8166. parent ? "dashed" : "solid");
  8167. }
  8168. if (node->src1) {
  8169. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8170. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8171. parent1 ? (void *) parent1 : (void *) node->src1,
  8172. parent1 ? "g" : "x",
  8173. parent ? (void *) parent : (void *) node,
  8174. parent ? "g" : "x",
  8175. parent ? "empty" : "vee",
  8176. parent ? "dashed" : "solid");
  8177. }
  8178. }
  8179. for (int i = 0; i < gb->n_leafs; i++) {
  8180. struct ggml_tensor * node = gb->leafs[i];
  8181. if (node->src0) {
  8182. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8183. (void *) node->src0, "x",
  8184. (void *) node, "x");
  8185. }
  8186. if (node->src1) {
  8187. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8188. (void *) node->src1, "x",
  8189. (void *) node, "x");
  8190. }
  8191. }
  8192. fprintf(fp, "}\n");
  8193. fclose(fp);
  8194. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8195. }
  8196. ////////////////////////////////////////////////////////////////////////////////
  8197. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8198. int i = 0;
  8199. for (int p = 0; p < np; ++p) {
  8200. const int ne = ggml_nelements(ps[p]) ;
  8201. // TODO: add function to set tensor from array
  8202. for (int j = 0; j < ne; ++j) {
  8203. ggml_set_f32_1d(ps[p], j, x[i++]);
  8204. }
  8205. }
  8206. }
  8207. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8208. int i = 0;
  8209. for (int p = 0; p < np; ++p) {
  8210. const int ne = ggml_nelements(ps[p]) ;
  8211. // TODO: add function to get all elements at once
  8212. for (int j = 0; j < ne; ++j) {
  8213. x[i++] = ggml_get_f32_1d(ps[p], j);
  8214. }
  8215. }
  8216. }
  8217. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8218. int i = 0;
  8219. for (int p = 0; p < np; ++p) {
  8220. const int ne = ggml_nelements(ps[p]) ;
  8221. // TODO: add function to get all elements at once
  8222. for (int j = 0; j < ne; ++j) {
  8223. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8224. }
  8225. }
  8226. }
  8227. //
  8228. // ADAM
  8229. //
  8230. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8231. //
  8232. static enum ggml_opt_result ggml_opt_adam(
  8233. struct ggml_context * ctx,
  8234. struct ggml_opt_params params,
  8235. struct ggml_tensor * f,
  8236. struct ggml_cgraph * gf,
  8237. struct ggml_cgraph * gb) {
  8238. GGML_ASSERT(ggml_is_scalar(f));
  8239. gf->n_threads = params.n_threads;
  8240. gb->n_threads = params.n_threads;
  8241. // these will store the parameters we want to optimize
  8242. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8243. int np = 0;
  8244. int nx = 0;
  8245. for (int i = 0; i < gf->n_nodes; ++i) {
  8246. if (gf->nodes[i]->is_param) {
  8247. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8248. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8249. ps[np++] = gf->nodes[i];
  8250. nx += ggml_nelements(gf->nodes[i]);
  8251. }
  8252. }
  8253. // constants
  8254. const float alpha = params.adam.alpha;
  8255. const float beta1 = params.adam.beta1;
  8256. const float beta2 = params.adam.beta2;
  8257. const float eps = params.adam.eps;
  8258. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8259. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8260. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8261. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8262. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8263. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8264. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8265. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8266. // initialize
  8267. ggml_vec_set_f32(nx, m, 0.0f);
  8268. ggml_vec_set_f32(nx, v, 0.0f);
  8269. // update view
  8270. ggml_opt_get_params(np, ps, x);
  8271. // compute the function value
  8272. ggml_graph_reset (gf);
  8273. ggml_set_f32 (f->grad, 1.0f);
  8274. ggml_graph_compute(ctx, gb);
  8275. float fx_prev = ggml_get_f32_1d(f, 0);
  8276. if (pf) {
  8277. pf[0] = fx_prev;
  8278. }
  8279. int n_no_improvement = 0;
  8280. float fx_best = fx_prev;
  8281. // run the optimizer
  8282. for (int t = 0; t < params.adam.n_iter; ++t) {
  8283. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8284. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8285. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8286. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8287. for (int i = 0; i < np; ++i) {
  8288. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8289. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8290. }
  8291. const int64_t t_start_wall = ggml_time_us();
  8292. const int64_t t_start_cpu = ggml_cycles();
  8293. UNUSED(t_start_wall);
  8294. UNUSED(t_start_cpu);
  8295. {
  8296. // update the gradient
  8297. ggml_opt_get_grad(np, ps, g1);
  8298. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8299. ggml_vec_scale_f32(nx, m, beta1);
  8300. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8301. // g2 = g1^2
  8302. ggml_vec_sqr_f32 (nx, g2, g1);
  8303. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8304. ggml_vec_scale_f32(nx, v, beta2);
  8305. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8306. // m^hat = m_t / (1 - beta1^t)
  8307. // v^hat = v_t / (1 - beta2^t)
  8308. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8309. ggml_vec_cpy_f32 (nx, mh, m);
  8310. ggml_vec_cpy_f32 (nx, vh, v);
  8311. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8312. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8313. ggml_vec_sqrt_f32 (nx, vh, vh);
  8314. ggml_vec_acc1_f32 (nx, vh, eps);
  8315. ggml_vec_div_f32 (nx, mh, mh, vh);
  8316. ggml_vec_sub_f32 (nx, x, x, mh);
  8317. // update the parameters
  8318. ggml_opt_set_params(np, ps, x);
  8319. }
  8320. ggml_graph_reset (gf);
  8321. ggml_set_f32 (f->grad, 1.0f);
  8322. ggml_graph_compute(ctx, gb);
  8323. const float fx = ggml_get_f32_1d(f, 0);
  8324. // check convergence
  8325. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8326. GGML_PRINT_DEBUG("converged\n");
  8327. return GGML_OPT_OK;
  8328. }
  8329. // delta-based convergence test
  8330. if (pf != NULL) {
  8331. // need at least params.past iterations to start checking for convergence
  8332. if (params.past <= t) {
  8333. const float rate = (pf[t%params.past] - fx)/fx;
  8334. if (fabs(rate) < params.delta) {
  8335. return GGML_OPT_OK;
  8336. }
  8337. }
  8338. pf[t%params.past] = fx;
  8339. }
  8340. // check for improvement
  8341. if (params.max_no_improvement > 0) {
  8342. if (fx_best > fx) {
  8343. fx_best = fx;
  8344. n_no_improvement = 0;
  8345. } else {
  8346. ++n_no_improvement;
  8347. if (n_no_improvement >= params.max_no_improvement) {
  8348. return GGML_OPT_OK;
  8349. }
  8350. }
  8351. }
  8352. fx_prev = fx;
  8353. {
  8354. const int64_t t_end_cpu = ggml_cycles();
  8355. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8356. UNUSED(t_end_cpu);
  8357. const int64_t t_end_wall = ggml_time_us();
  8358. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8359. UNUSED(t_end_wall);
  8360. }
  8361. }
  8362. return GGML_OPT_DID_NOT_CONVERGE;
  8363. }
  8364. //
  8365. // L-BFGS
  8366. //
  8367. // the L-BFGS implementation below is based on the following implementation:
  8368. //
  8369. // https://github.com/chokkan/liblbfgs
  8370. //
  8371. struct ggml_lbfgs_iteration_data {
  8372. float alpha;
  8373. float ys;
  8374. float * s;
  8375. float * y;
  8376. };
  8377. static enum ggml_opt_result linesearch_backtracking(
  8378. struct ggml_context * ctx,
  8379. const struct ggml_opt_params * params,
  8380. int nx,
  8381. float * x,
  8382. float * fx,
  8383. float * g,
  8384. float * d,
  8385. float * step,
  8386. const float * xp,
  8387. struct ggml_tensor * f,
  8388. struct ggml_cgraph * gf,
  8389. struct ggml_cgraph * gb,
  8390. const int np,
  8391. struct ggml_tensor * ps[]) {
  8392. int count = 0;
  8393. float width = 0.0f;
  8394. float dg = 0.0f;
  8395. float finit = 0.0f;
  8396. float dginit = 0.0f;
  8397. float dgtest = 0.0f;
  8398. const float dec = 0.5f;
  8399. const float inc = 2.1f;
  8400. if (*step <= 0.) {
  8401. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8402. }
  8403. // compute the initial gradient in the search direction
  8404. ggml_vec_dot_f32(nx, &dginit, g, d);
  8405. // make sure that d points to a descent direction
  8406. if (0 < dginit) {
  8407. return GGML_LINESEARCH_FAIL;
  8408. }
  8409. // initialize local variables
  8410. finit = *fx;
  8411. dgtest = params->lbfgs.ftol*dginit;
  8412. while (true) {
  8413. ggml_vec_cpy_f32(nx, x, xp);
  8414. ggml_vec_mad_f32(nx, x, d, *step);
  8415. // evaluate the function and gradient values
  8416. {
  8417. ggml_opt_set_params(np, ps, x);
  8418. ggml_graph_reset (gf);
  8419. ggml_set_f32 (f->grad, 1.0f);
  8420. ggml_graph_compute(ctx, gb);
  8421. ggml_opt_get_grad(np, ps, g);
  8422. *fx = ggml_get_f32_1d(f, 0);
  8423. }
  8424. ++count;
  8425. if (*fx > finit + (*step)*dgtest) {
  8426. width = dec;
  8427. } else {
  8428. // Armijo condition is satisfied
  8429. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8430. return count;
  8431. }
  8432. ggml_vec_dot_f32(nx, &dg, g, d);
  8433. // check the Wolfe condition
  8434. if (dg < params->lbfgs.wolfe * dginit) {
  8435. width = inc;
  8436. } else {
  8437. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8438. // regular Wolfe conditions
  8439. return count;
  8440. }
  8441. if(dg > -params->lbfgs.wolfe*dginit) {
  8442. width = dec;
  8443. } else {
  8444. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8445. return count;
  8446. }
  8447. return count;
  8448. }
  8449. }
  8450. if (*step < params->lbfgs.min_step) {
  8451. return GGML_LINESEARCH_MINIMUM_STEP;
  8452. }
  8453. if (*step > params->lbfgs.max_step) {
  8454. return GGML_LINESEARCH_MAXIMUM_STEP;
  8455. }
  8456. if (params->lbfgs.max_linesearch <= count) {
  8457. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8458. }
  8459. (*step) *= width;
  8460. }
  8461. return GGML_LINESEARCH_FAIL;
  8462. }
  8463. static enum ggml_opt_result ggml_opt_lbfgs(
  8464. struct ggml_context * ctx,
  8465. struct ggml_opt_params params,
  8466. struct ggml_tensor * f,
  8467. struct ggml_cgraph * gf,
  8468. struct ggml_cgraph * gb) {
  8469. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8470. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8471. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8472. return GGML_OPT_INVALID_WOLFE;
  8473. }
  8474. }
  8475. gf->n_threads = params.n_threads;
  8476. gb->n_threads = params.n_threads;
  8477. const int m = params.lbfgs.m;
  8478. // these will store the parameters we want to optimize
  8479. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8480. int np = 0;
  8481. int nx = 0;
  8482. for (int i = 0; i < gf->n_nodes; ++i) {
  8483. if (gf->nodes[i]->is_param) {
  8484. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8485. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8486. ps[np++] = gf->nodes[i];
  8487. nx += ggml_nelements(gf->nodes[i]);
  8488. }
  8489. }
  8490. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8491. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8492. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8493. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8494. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8495. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8496. float fx = 0.0f; // cost function value
  8497. float xnorm = 0.0f; // ||x||
  8498. float gnorm = 0.0f; // ||g||
  8499. float step = 0.0f;
  8500. // initialize x from the graph nodes
  8501. ggml_opt_get_params(np, ps, x);
  8502. // the L-BFGS memory
  8503. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8504. for (int i = 0; i < m; ++i) {
  8505. lm[i].alpha = 0.0f;
  8506. lm[i].ys = 0.0f;
  8507. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8508. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8509. }
  8510. // evaluate the function value and its gradient
  8511. {
  8512. ggml_opt_set_params(np, ps, x);
  8513. ggml_graph_reset (gf);
  8514. ggml_set_f32 (f->grad, 1.0f);
  8515. ggml_graph_compute(ctx, gb);
  8516. ggml_opt_get_grad(np, ps, g);
  8517. fx = ggml_get_f32_1d(f, 0);
  8518. }
  8519. if (pf) {
  8520. pf[0] = fx;
  8521. }
  8522. float fx_best = fx;
  8523. // search direction = -gradient
  8524. ggml_vec_neg_f32(nx, d, g);
  8525. // ||x||, ||g||
  8526. ggml_vec_norm_f32(nx, &xnorm, x);
  8527. ggml_vec_norm_f32(nx, &gnorm, g);
  8528. if (xnorm < 1.0f) {
  8529. xnorm = 1.0f;
  8530. }
  8531. // already optimized
  8532. if (gnorm/xnorm <= params.lbfgs.eps) {
  8533. return GGML_OPT_OK;
  8534. }
  8535. // initial step
  8536. ggml_vec_norm_inv_f32(nx, &step, d);
  8537. int j = 0;
  8538. int k = 1;
  8539. int ls = 0;
  8540. int end = 0;
  8541. int bound = 0;
  8542. int n_no_improvement = 0;
  8543. float ys = 0.0f;
  8544. float yy = 0.0f;
  8545. float beta = 0.0f;
  8546. while (true) {
  8547. // store the current position and gradient vectors
  8548. ggml_vec_cpy_f32(nx, xp, x);
  8549. ggml_vec_cpy_f32(nx, gp, g);
  8550. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8551. if (ls < 0) {
  8552. // linesearch failed - go back to the previous point and return
  8553. ggml_vec_cpy_f32(nx, x, xp);
  8554. ggml_vec_cpy_f32(nx, g, gp);
  8555. return ls;
  8556. }
  8557. ggml_vec_norm_f32(nx, &xnorm, x);
  8558. ggml_vec_norm_f32(nx, &gnorm, g);
  8559. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8560. if (xnorm < 1.0) {
  8561. xnorm = 1.0;
  8562. }
  8563. if (gnorm/xnorm <= params.lbfgs.eps) {
  8564. // converged
  8565. return GGML_OPT_OK;
  8566. }
  8567. // delta-based convergence test
  8568. if (pf != NULL) {
  8569. // need at least params.past iterations to start checking for convergence
  8570. if (params.past <= k) {
  8571. const float rate = (pf[k%params.past] - fx)/fx;
  8572. if (fabs(rate) < params.delta) {
  8573. return GGML_OPT_OK;
  8574. }
  8575. }
  8576. pf[k%params.past] = fx;
  8577. }
  8578. // check for improvement
  8579. if (params.max_no_improvement > 0) {
  8580. if (fx < fx_best) {
  8581. fx_best = fx;
  8582. n_no_improvement = 0;
  8583. } else {
  8584. n_no_improvement++;
  8585. if (n_no_improvement >= params.max_no_improvement) {
  8586. return GGML_OPT_OK;
  8587. }
  8588. }
  8589. }
  8590. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8591. // reached the maximum number of iterations
  8592. return GGML_OPT_DID_NOT_CONVERGE;
  8593. }
  8594. // update vectors s and y:
  8595. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8596. // y_{k+1} = g_{k+1} - g_{k}.
  8597. //
  8598. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8599. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8600. // compute scalars ys and yy:
  8601. // ys = y^t \cdot s -> 1 / \rho.
  8602. // yy = y^t \cdot y.
  8603. //
  8604. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8605. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8606. lm[end].ys = ys;
  8607. // find new search direction
  8608. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8609. bound = (m <= k) ? m : k;
  8610. k++;
  8611. end = (end + 1)%m;
  8612. // initialize search direction with -g
  8613. ggml_vec_neg_f32(nx, d, g);
  8614. j = end;
  8615. for (int i = 0; i < bound; ++i) {
  8616. j = (j + m - 1) % m;
  8617. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8618. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8619. lm[j].alpha /= lm[j].ys;
  8620. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8621. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8622. }
  8623. ggml_vec_scale_f32(nx, d, ys/yy);
  8624. for (int i = 0; i < bound; ++i) {
  8625. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8626. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8627. beta /= lm[j].ys;
  8628. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8629. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8630. j = (j + 1)%m;
  8631. }
  8632. step = 1.0;
  8633. }
  8634. return GGML_OPT_DID_NOT_CONVERGE;
  8635. }
  8636. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8637. struct ggml_opt_params result;
  8638. switch (type) {
  8639. case GGML_OPT_ADAM:
  8640. {
  8641. result = (struct ggml_opt_params) {
  8642. .type = GGML_OPT_ADAM,
  8643. .n_threads = 1,
  8644. .past = 0,
  8645. .delta = 1e-5f,
  8646. .max_no_improvement = 100,
  8647. .print_forward_graph = true,
  8648. .print_backward_graph = true,
  8649. .adam = {
  8650. .n_iter = 10000,
  8651. .alpha = 0.001f,
  8652. .beta1 = 0.9f,
  8653. .beta2 = 0.999f,
  8654. .eps = 1e-8f,
  8655. .eps_f = 1e-5f,
  8656. .eps_g = 1e-3f,
  8657. },
  8658. };
  8659. } break;
  8660. case GGML_OPT_LBFGS:
  8661. {
  8662. result = (struct ggml_opt_params) {
  8663. .type = GGML_OPT_LBFGS,
  8664. .n_threads = 1,
  8665. .past = 0,
  8666. .delta = 1e-5f,
  8667. .max_no_improvement = 0,
  8668. .print_forward_graph = true,
  8669. .print_backward_graph = true,
  8670. .lbfgs = {
  8671. .m = 6,
  8672. .n_iter = 100,
  8673. .max_linesearch = 20,
  8674. .eps = 1e-5f,
  8675. .ftol = 1e-4f,
  8676. .wolfe = 0.9f,
  8677. .min_step = 1e-20f,
  8678. .max_step = 1e+20f,
  8679. .linesearch = GGML_LINESEARCH_DEFAULT,
  8680. },
  8681. };
  8682. } break;
  8683. }
  8684. return result;
  8685. }
  8686. enum ggml_opt_result ggml_opt(
  8687. struct ggml_context * ctx,
  8688. struct ggml_opt_params params,
  8689. struct ggml_tensor * f) {
  8690. bool free_ctx = false;
  8691. if (ctx == NULL) {
  8692. struct ggml_init_params params_ctx = {
  8693. .mem_size = 16*1024*1024,
  8694. .mem_buffer = NULL,
  8695. };
  8696. ctx = ggml_init(params_ctx);
  8697. if (ctx == NULL) {
  8698. return GGML_OPT_NO_CONTEXT;
  8699. }
  8700. free_ctx = true;
  8701. }
  8702. enum ggml_opt_result result = GGML_OPT_OK;
  8703. // build forward + backward compute graphs
  8704. struct ggml_cgraph gf = ggml_build_forward (f);
  8705. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8706. switch (params.type) {
  8707. case GGML_OPT_ADAM:
  8708. {
  8709. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8710. } break;
  8711. case GGML_OPT_LBFGS:
  8712. {
  8713. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8714. } break;
  8715. }
  8716. if (params.print_forward_graph) {
  8717. ggml_graph_print (&gf);
  8718. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8719. }
  8720. if (params.print_backward_graph) {
  8721. ggml_graph_print (&gb);
  8722. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8723. }
  8724. if (free_ctx) {
  8725. ggml_free(ctx);
  8726. }
  8727. return result;
  8728. }
  8729. ////////////////////////////////////////////////////////////////////////////////
  8730. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8731. const int nb = k / qk;
  8732. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8733. const size_t row_size = nb*bs;
  8734. assert(k % qk == 0);
  8735. char * pdst = (char *) dst;
  8736. for (int j = 0; j < n; j += k) {
  8737. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8738. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8739. quantize_row_q4_0_reference(src + j, pd, k);
  8740. for (int i = 0; i < nb; i++) {
  8741. for (int l = 0; l < qk; l += 2) {
  8742. const uint8_t vi0 = pb[l/2] & 0xF;
  8743. const uint8_t vi1 = pb[l/2] >> 4;
  8744. hist[vi0]++;
  8745. hist[vi1]++;
  8746. }
  8747. pb += bs;
  8748. }
  8749. }
  8750. return (n/k)*row_size;
  8751. }
  8752. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8753. const int nb = k / qk;
  8754. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8755. const size_t row_size = nb*bs;
  8756. assert(k % qk == 0);
  8757. char * pdst = (char *) dst;
  8758. for (int j = 0; j < n; j += k) {
  8759. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8760. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8761. quantize_row_q4_1(src + j, pd, k);
  8762. for (int i = 0; i < nb; i++) {
  8763. for (int l = 0; l < qk; l += 2) {
  8764. const uint8_t vi0 = pb[l/2] & 0xF;
  8765. const uint8_t vi1 = pb[l/2] >> 4;
  8766. hist[vi0]++;
  8767. hist[vi1]++;
  8768. }
  8769. pb += bs;
  8770. }
  8771. }
  8772. return (n/k)*row_size;
  8773. }
  8774. ////////////////////////////////////////////////////////////////////////////////
  8775. int ggml_cpu_has_avx(void) {
  8776. #if defined(__AVX__)
  8777. return 1;
  8778. #else
  8779. return 0;
  8780. #endif
  8781. }
  8782. int ggml_cpu_has_avx2(void) {
  8783. #if defined(__AVX2__)
  8784. return 1;
  8785. #else
  8786. return 0;
  8787. #endif
  8788. }
  8789. int ggml_cpu_has_avx512(void) {
  8790. #if defined(__AVX512F__)
  8791. return 1;
  8792. #else
  8793. return 0;
  8794. #endif
  8795. }
  8796. int ggml_cpu_has_fma(void) {
  8797. #if defined(__FMA__)
  8798. return 1;
  8799. #else
  8800. return 0;
  8801. #endif
  8802. }
  8803. int ggml_cpu_has_neon(void) {
  8804. #if defined(__ARM_NEON)
  8805. return 1;
  8806. #else
  8807. return 0;
  8808. #endif
  8809. }
  8810. int ggml_cpu_has_arm_fma(void) {
  8811. #if defined(__ARM_FEATURE_FMA)
  8812. return 1;
  8813. #else
  8814. return 0;
  8815. #endif
  8816. }
  8817. int ggml_cpu_has_f16c(void) {
  8818. #if defined(__F16C__)
  8819. return 1;
  8820. #else
  8821. return 0;
  8822. #endif
  8823. }
  8824. int ggml_cpu_has_fp16_va(void) {
  8825. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8826. return 1;
  8827. #else
  8828. return 0;
  8829. #endif
  8830. }
  8831. int ggml_cpu_has_wasm_simd(void) {
  8832. #if defined(__wasm_simd128__)
  8833. return 1;
  8834. #else
  8835. return 0;
  8836. #endif
  8837. }
  8838. int ggml_cpu_has_blas(void) {
  8839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8840. return 1;
  8841. #else
  8842. return 0;
  8843. #endif
  8844. }
  8845. int ggml_cpu_has_sse3(void) {
  8846. #if defined(__SSE3__)
  8847. return 1;
  8848. #else
  8849. return 0;
  8850. #endif
  8851. }
  8852. int ggml_cpu_has_vsx(void) {
  8853. #if defined(__POWER9_VECTOR__)
  8854. return 1;
  8855. #else
  8856. return 0;
  8857. #endif
  8858. }
  8859. ////////////////////////////////////////////////////////////////////////////////