1
0

server.cpp 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "grammar-parser.h"
  4. #include "utils.hpp"
  5. #include "oai.hpp"
  6. #include "../llava/clip.h"
  7. #include "stb_image.h"
  8. #ifndef NDEBUG
  9. // crash the server in debug mode, otherwise send an http 500 error
  10. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  11. #endif
  12. // increase max payload length to allow use of larger context size
  13. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  14. #include "httplib.h"
  15. #include "json.hpp"
  16. // auto generated files (update with ./deps.sh)
  17. #include "index.html.hpp"
  18. #include "index.js.hpp"
  19. #include "completion.js.hpp"
  20. #include "json-schema-to-grammar.mjs.hpp"
  21. #include <cstddef>
  22. #include <thread>
  23. #include <chrono>
  24. #include <condition_variable>
  25. #include <atomic>
  26. using json = nlohmann::json;
  27. struct server_params
  28. {
  29. std::string hostname = "127.0.0.1";
  30. std::vector<std::string> api_keys;
  31. std::string public_path = "examples/server/public";
  32. int32_t port = 8080;
  33. int32_t read_timeout = 600;
  34. int32_t write_timeout = 600;
  35. };
  36. bool server_verbose = false;
  37. static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
  38. {
  39. size_t i;
  40. for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
  41. {
  42. }
  43. return i;
  44. }
  45. enum stop_type
  46. {
  47. STOP_FULL,
  48. STOP_PARTIAL,
  49. };
  50. static bool ends_with(const std::string &str, const std::string &suffix)
  51. {
  52. return str.size() >= suffix.size() &&
  53. 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  54. }
  55. static size_t find_partial_stop_string(const std::string &stop,
  56. const std::string &text)
  57. {
  58. if (!text.empty() && !stop.empty())
  59. {
  60. const char text_last_char = text.back();
  61. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
  62. {
  63. if (stop[char_index] == text_last_char)
  64. {
  65. const std::string current_partial = stop.substr(0, char_index + 1);
  66. if (ends_with(text, current_partial))
  67. {
  68. return text.size() - char_index - 1;
  69. }
  70. }
  71. }
  72. }
  73. return std::string::npos;
  74. }
  75. // TODO: reuse llama_detokenize
  76. template <class Iter>
  77. static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
  78. {
  79. std::string ret;
  80. for (; begin != end; ++begin)
  81. {
  82. ret += llama_token_to_piece(ctx, *begin);
  83. }
  84. return ret;
  85. }
  86. // format incomplete utf-8 multibyte character for output
  87. static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
  88. {
  89. std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
  90. // if the size is 1 and first bit is 1, meaning it's a partial character
  91. // (size > 1 meaning it's already a known token)
  92. if (out.size() == 1 && (out[0] & 0x80) == 0x80)
  93. {
  94. std::stringstream ss;
  95. ss << std::hex << (out[0] & 0xff);
  96. std::string res(ss.str());
  97. out = "byte: \\x" + res;
  98. }
  99. return out;
  100. }
  101. // convert a vector of completion_token_output to json
  102. static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
  103. {
  104. json out = json::array();
  105. for (const auto &prob : probs)
  106. {
  107. json probs_for_token = json::array();
  108. for (const auto &p : prob.probs)
  109. {
  110. std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
  111. probs_for_token.push_back(json
  112. {
  113. {"tok_str", tok_str},
  114. {"prob", p.prob},
  115. });
  116. }
  117. std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
  118. out.push_back(json{
  119. {"content", tok_str},
  120. {"probs", probs_for_token},
  121. });
  122. }
  123. return out;
  124. }
  125. struct llama_client_slot
  126. {
  127. int id;
  128. int task_id = -1;
  129. struct slot_params params;
  130. slot_state state = IDLE;
  131. slot_command command = NONE;
  132. // used to determine the slot that has been used the longest
  133. int64_t t_last_used = -1;
  134. // generation props
  135. int32_t n_ctx = 0; // context size per slot
  136. int32_t n_past = 0;
  137. int32_t n_decoded = 0;
  138. int32_t n_remaining = -1;
  139. int32_t i_batch = -1;
  140. int32_t num_prompt_tokens = 0;
  141. int32_t num_prompt_tokens_processed = 0;
  142. json prompt;
  143. std::string generated_text;
  144. llama_token sampled;
  145. std::vector<llama_token> cache_tokens;
  146. std::vector<completion_token_output> generated_token_probs;
  147. bool infill = false;
  148. bool embedding = false;
  149. bool has_next_token = true;
  150. bool truncated = false;
  151. bool stopped_eos = false;
  152. bool stopped_word = false;
  153. bool stopped_limit = false;
  154. bool oaicompat = false;
  155. std::string oaicompat_model;
  156. std::string stopping_word;
  157. // sampling
  158. struct llama_sampling_params sparams;
  159. llama_sampling_context *ctx_sampling = nullptr;
  160. // multimodal
  161. std::vector<slot_image> images;
  162. // stats
  163. size_t sent_count = 0;
  164. size_t sent_token_probs_index = 0;
  165. int64_t t_start_process_prompt;
  166. int64_t t_start_genereration;
  167. double t_prompt_processing; // ms
  168. double t_token_generation; // ms
  169. // multitasks
  170. int multitask_id = -1;
  171. void reset() {
  172. num_prompt_tokens = 0;
  173. generated_text = "";
  174. truncated = false;
  175. stopped_eos = false;
  176. stopped_word = false;
  177. stopped_limit = false;
  178. stopping_word = "";
  179. n_past = 0;
  180. sent_count = 0;
  181. sent_token_probs_index = 0;
  182. infill = false;
  183. generated_token_probs.clear();
  184. for (slot_image & img : images)
  185. {
  186. free(img.image_embedding);
  187. if (img.img_data) {
  188. clip_image_u8_free(img.img_data);
  189. }
  190. img.prefix_prompt = "";
  191. }
  192. images.clear();
  193. }
  194. bool has_budget(gpt_params &global_params) {
  195. if (params.n_predict == -1 && global_params.n_predict == -1)
  196. {
  197. return true; // limitless
  198. }
  199. n_remaining = -1;
  200. if (params.n_predict != -1)
  201. {
  202. n_remaining = params.n_predict - n_decoded;
  203. }
  204. else if (global_params.n_predict != -1)
  205. {
  206. n_remaining = global_params.n_predict - n_decoded;
  207. }
  208. return n_remaining > 0; // no budget
  209. }
  210. bool available() const {
  211. return state == IDLE && command == NONE;
  212. }
  213. bool is_processing() const {
  214. return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
  215. }
  216. void add_token_string(const completion_token_output &token) {
  217. if (command == RELEASE)
  218. {
  219. return;
  220. }
  221. cache_tokens.push_back(token.tok);
  222. generated_token_probs.push_back(token);
  223. }
  224. void release() {
  225. if (state == PROCESSING)
  226. {
  227. t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
  228. command = RELEASE;
  229. }
  230. }
  231. json get_formated_timings() {
  232. return json
  233. {
  234. {"prompt_n", num_prompt_tokens_processed},
  235. {"prompt_ms", t_prompt_processing},
  236. {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
  237. {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
  238. {"predicted_n", n_decoded},
  239. {"predicted_ms", t_token_generation},
  240. {"predicted_per_token_ms", t_token_generation / n_decoded},
  241. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  242. };
  243. }
  244. void print_timings() const {
  245. LOG_TEE("\n");
  246. LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  247. __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
  248. LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  249. __func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
  250. LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
  251. }
  252. };
  253. struct llama_server_context
  254. {
  255. llama_model *model = nullptr;
  256. llama_context *ctx = nullptr;
  257. clip_ctx *clp_ctx = nullptr;
  258. gpt_params params;
  259. llama_batch batch;
  260. bool multimodal = false;
  261. bool clean_kv_cache = true;
  262. bool all_slots_are_idle = false;
  263. bool add_bos_token = true;
  264. int32_t n_ctx; // total context for all clients / slots
  265. // system prompt
  266. bool system_need_update = false;
  267. std::string system_prompt;
  268. std::vector<llama_token> system_tokens;
  269. std::string name_user; // this should be the antiprompt
  270. std::string name_assistant;
  271. // slots / clients
  272. std::vector<llama_client_slot> slots;
  273. llama_server_queue queue_tasks;
  274. llama_server_response queue_results;
  275. ~llama_server_context()
  276. {
  277. if (ctx)
  278. {
  279. llama_free(ctx);
  280. ctx = nullptr;
  281. }
  282. if (model)
  283. {
  284. llama_free_model(model);
  285. model = nullptr;
  286. }
  287. }
  288. bool load_model(const gpt_params &params_)
  289. {
  290. params = params_;
  291. if (!params.mmproj.empty()) {
  292. multimodal = true;
  293. LOG_TEE("Multi Modal Mode Enabled");
  294. clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
  295. if(clp_ctx == nullptr) {
  296. LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
  297. return false;
  298. }
  299. if (params.n_ctx < 2048) { // request larger context for the image embedding
  300. params.n_ctx = 2048;
  301. }
  302. }
  303. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  304. if (model == nullptr)
  305. {
  306. LOG_ERROR("unable to load model", {{"model", params.model}});
  307. return false;
  308. }
  309. if (multimodal) {
  310. const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
  311. const int n_embd_llm = llama_n_embd(model);
  312. if (n_embd_clip != n_embd_llm) {
  313. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
  314. llama_free(ctx);
  315. llama_free_model(model);
  316. return false;
  317. }
  318. }
  319. n_ctx = llama_n_ctx(ctx);
  320. add_bos_token = llama_should_add_bos_token(model);
  321. return true;
  322. }
  323. void initialize() {
  324. // create slots
  325. all_slots_are_idle = true;
  326. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  327. LOG_TEE("Available slots:\n");
  328. for (int i = 0; i < params.n_parallel; i++)
  329. {
  330. llama_client_slot slot;
  331. slot.id = i;
  332. slot.n_ctx = n_ctx_slot;
  333. slot.reset();
  334. LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
  335. slots.push_back(slot);
  336. }
  337. batch = llama_batch_init(n_ctx, 0, params.n_parallel);
  338. // empty system prompt
  339. system_prompt = "";
  340. system_tokens.clear();
  341. }
  342. std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
  343. {
  344. // TODO: currently, we tokenize using special tokens by default
  345. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  346. // but it's better compared to completely ignoring ChatML and other chat templates
  347. const bool TMP_FORCE_SPECIAL = true;
  348. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  349. // or the first element of the json_prompt array is a string.
  350. std::vector<llama_token> prompt_tokens;
  351. if (json_prompt.is_array())
  352. {
  353. bool first = true;
  354. for (const auto& p : json_prompt)
  355. {
  356. if (p.is_string())
  357. {
  358. auto s = p.template get<std::string>();
  359. std::vector<llama_token> p;
  360. if (first)
  361. {
  362. p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  363. first = false;
  364. }
  365. else
  366. {
  367. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  368. }
  369. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  370. }
  371. else
  372. {
  373. if (first)
  374. {
  375. first = false;
  376. }
  377. prompt_tokens.push_back(p.template get<llama_token>());
  378. }
  379. }
  380. }
  381. else
  382. {
  383. auto s = json_prompt.template get<std::string>();
  384. prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  385. }
  386. return prompt_tokens;
  387. }
  388. llama_client_slot* get_slot(int id) {
  389. int64_t t_last = ggml_time_us();
  390. llama_client_slot *last_used = nullptr;
  391. for (llama_client_slot & slot : slots)
  392. {
  393. if (slot.id == id && slot.available())
  394. {
  395. return &slot;
  396. }
  397. if (slot.available() && slot.t_last_used < t_last)
  398. {
  399. last_used = &slot;
  400. t_last = slot.t_last_used;
  401. }
  402. }
  403. return last_used;
  404. }
  405. bool launch_slot_with_data(llama_client_slot* &slot, json data) {
  406. slot_params default_params;
  407. llama_sampling_params default_sparams;
  408. if (data.count("__oaicompat") != 0) {
  409. slot->oaicompat = true;
  410. slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  411. } else {
  412. slot->oaicompat = false;
  413. slot->oaicompat_model = "";
  414. }
  415. slot->params.stream = json_value(data, "stream", false);
  416. slot->params.cache_prompt = json_value(data, "cache_prompt", false);
  417. slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  418. slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  419. slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  420. slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  421. slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  422. slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  423. slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
  424. slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  425. slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  426. slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  427. slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  428. slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  429. slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  430. slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  431. slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  432. slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
  433. slot->params.seed = json_value(data, "seed", default_params.seed);
  434. slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  435. slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  436. // infill
  437. if (data.count("input_prefix") != 0)
  438. {
  439. slot->params.input_prefix = data["input_prefix"];
  440. }
  441. else
  442. {
  443. slot->params.input_prefix = "";
  444. }
  445. if (data.count("input_suffix") != 0)
  446. {
  447. slot->params.input_suffix = data["input_suffix"];
  448. }
  449. else
  450. {
  451. slot->params.input_suffix = "";
  452. }
  453. if (data.count("prompt") != 0)
  454. {
  455. slot->prompt = data["prompt"];
  456. }
  457. else
  458. {
  459. slot->prompt = "";
  460. }
  461. slot->sparams.penalty_prompt_tokens.clear();
  462. slot->sparams.use_penalty_prompt_tokens = false;
  463. const auto &penalty_prompt = data.find("penalty_prompt");
  464. if (penalty_prompt != data.end())
  465. {
  466. if (penalty_prompt->is_string())
  467. {
  468. const auto penalty_prompt_string = penalty_prompt->get<std::string>();
  469. auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
  470. slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
  471. if (slot->params.n_predict > 0)
  472. {
  473. slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
  474. }
  475. slot->sparams.use_penalty_prompt_tokens = true;
  476. }
  477. else if (penalty_prompt->is_array())
  478. {
  479. const auto n_tokens = penalty_prompt->size();
  480. slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
  481. const int n_vocab = llama_n_vocab(model);
  482. for (const auto &penalty_token : *penalty_prompt)
  483. {
  484. if (penalty_token.is_number_integer())
  485. {
  486. const auto tok = penalty_token.get<llama_token>();
  487. if (tok >= 0 && tok < n_vocab)
  488. {
  489. slot->sparams.penalty_prompt_tokens.push_back(tok);
  490. }
  491. }
  492. }
  493. slot->sparams.use_penalty_prompt_tokens = true;
  494. }
  495. }
  496. slot->sparams.logit_bias.clear();
  497. if (json_value(data, "ignore_eos", false))
  498. {
  499. slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  500. }
  501. const auto &logit_bias = data.find("logit_bias");
  502. if (logit_bias != data.end() && logit_bias->is_array())
  503. {
  504. const int n_vocab = llama_n_vocab(model);
  505. for (const auto &el : *logit_bias)
  506. {
  507. if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
  508. {
  509. llama_token tok = el[0].get<llama_token>();
  510. if (tok >= 0 && tok < n_vocab)
  511. {
  512. if (el[1].is_number())
  513. {
  514. slot->sparams.logit_bias[tok] = el[1].get<float>();
  515. }
  516. else if (el[1].is_boolean() && !el[1].get<bool>())
  517. {
  518. slot->sparams.logit_bias[tok] = -INFINITY;
  519. }
  520. }
  521. }
  522. }
  523. }
  524. slot->params.antiprompt.clear();
  525. const auto &stop = data.find("stop");
  526. if (stop != data.end() && stop->is_array())
  527. {
  528. for (const auto &word : *stop)
  529. {
  530. if (!word.empty())
  531. {
  532. slot->params.antiprompt.push_back(word);
  533. }
  534. }
  535. }
  536. if (multimodal)
  537. {
  538. const auto &images_data = data.find("image_data");
  539. if (images_data != data.end() && images_data->is_array())
  540. {
  541. for (const auto &img : *images_data)
  542. {
  543. const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
  544. slot_image img_sl;
  545. img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
  546. img_sl.img_data = clip_image_u8_init();
  547. if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
  548. {
  549. LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
  550. return false;
  551. }
  552. LOG_TEE("slot %i - loaded image\n", slot->id);
  553. img_sl.request_encode_image = true;
  554. slot->images.push_back(img_sl);
  555. }
  556. // process prompt
  557. // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
  558. if (slot->images.size() > 0 && !slot->prompt.is_array())
  559. {
  560. std::string prompt = slot->prompt.get<std::string>();
  561. size_t pos = 0, begin_prefix = 0;
  562. std::string pattern = "[img-";
  563. while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
  564. size_t end_prefix = pos;
  565. pos += pattern.length();
  566. size_t end_pos = prompt.find("]", pos);
  567. if (end_pos != std::string::npos)
  568. {
  569. std::string image_id = prompt.substr(pos, end_pos - pos);
  570. try
  571. {
  572. int img_id = std::stoi(image_id);
  573. bool found = false;
  574. for (slot_image &img : slot->images)
  575. {
  576. if (img.id == img_id) {
  577. found = true;
  578. img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
  579. begin_prefix = end_pos + 1;
  580. break;
  581. }
  582. }
  583. if (!found) {
  584. LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
  585. slot->images.clear();
  586. return false;
  587. }
  588. } catch (const std::invalid_argument& e) {
  589. LOG_TEE("Invalid image number id in prompt\n");
  590. slot->images.clear();
  591. return false;
  592. }
  593. }
  594. }
  595. slot->prompt = "";
  596. slot->params.input_suffix = prompt.substr(begin_prefix);
  597. slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
  598. }
  599. }
  600. }
  601. if (slot->ctx_sampling != nullptr)
  602. {
  603. llama_sampling_free(slot->ctx_sampling);
  604. }
  605. slot->ctx_sampling = llama_sampling_init(slot->sparams);
  606. llama_set_rng_seed(ctx, slot->params.seed);
  607. slot->command = LOAD_PROMPT;
  608. all_slots_are_idle = false;
  609. LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
  610. return true;
  611. }
  612. void kv_cache_clear() {
  613. // clear the entire KV cache
  614. llama_kv_cache_clear(ctx);
  615. clean_kv_cache = false;
  616. }
  617. void update_system_prompt() {
  618. system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
  619. llama_batch_clear(batch);
  620. kv_cache_clear();
  621. for (int i = 0; i < (int) system_tokens.size(); ++i)
  622. {
  623. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  624. }
  625. if (llama_decode(ctx, batch) != 0)
  626. {
  627. LOG_TEE("%s: llama_decode() failed\n", __func__);
  628. return;
  629. }
  630. // assign the system KV cache to all parallel sequences
  631. for (int32_t i = 1; i < params.n_parallel; ++i)
  632. {
  633. llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
  634. }
  635. LOG_TEE("system prompt updated\n");
  636. system_need_update = false;
  637. }
  638. void notify_system_prompt_changed() {
  639. // release all slots
  640. for (llama_client_slot &slot : slots)
  641. {
  642. slot.release();
  643. }
  644. system_need_update = true;
  645. }
  646. void process_system_prompt_data(const json &sys_props) {
  647. system_prompt = sys_props.value("prompt", "");
  648. name_user = sys_props.value("anti_prompt", "");
  649. name_assistant = sys_props.value("assistant_name", "");
  650. if (slots.size() > 0)
  651. {
  652. notify_system_prompt_changed();
  653. }
  654. }
  655. static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
  656. const stop_type type, llama_client_slot &slot)
  657. {
  658. size_t stop_pos = std::string::npos;
  659. for (const std::string &word : slot.params.antiprompt)
  660. {
  661. size_t pos;
  662. if (type == STOP_FULL)
  663. {
  664. const size_t tmp = word.size() + last_token_size;
  665. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  666. pos = text.find(word, from_pos);
  667. }
  668. else
  669. {
  670. pos = find_partial_stop_string(word, text);
  671. }
  672. if (pos != std::string::npos &&
  673. (stop_pos == std::string::npos || pos < stop_pos))
  674. {
  675. if (type == STOP_FULL)
  676. {
  677. slot.stopped_word = true;
  678. slot.stopping_word = word;
  679. slot.has_next_token = false;
  680. }
  681. stop_pos = pos;
  682. }
  683. }
  684. return stop_pos;
  685. }
  686. bool process_token(completion_token_output &result, llama_client_slot &slot) {
  687. // remember which tokens were sampled - used for repetition penalties during sampling
  688. const std::string token_str = llama_token_to_piece(ctx, result.tok);
  689. slot.sampled = result.tok;
  690. // search stop word and delete it
  691. slot.generated_text += token_str;
  692. slot.has_next_token = true;
  693. if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
  694. {
  695. // we can change penalty_prompt_tokens because it is always created from scratch each request
  696. slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
  697. }
  698. // check if there is incomplete UTF-8 character at the end
  699. bool incomplete = false;
  700. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
  701. {
  702. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  703. if ((c & 0xC0) == 0x80)
  704. {
  705. // continuation byte: 10xxxxxx
  706. continue;
  707. }
  708. if ((c & 0xE0) == 0xC0)
  709. {
  710. // 2-byte character: 110xxxxx ...
  711. incomplete = i < 2;
  712. }
  713. else if ((c & 0xF0) == 0xE0)
  714. {
  715. // 3-byte character: 1110xxxx ...
  716. incomplete = i < 3;
  717. }
  718. else if ((c & 0xF8) == 0xF0)
  719. {
  720. // 4-byte character: 11110xxx ...
  721. incomplete = i < 4;
  722. }
  723. // else 1-byte character or invalid byte
  724. break;
  725. }
  726. if (!incomplete)
  727. {
  728. size_t pos = std::min(slot.sent_count, slot.generated_text.size());
  729. const std::string str_test = slot.generated_text.substr(pos);
  730. bool is_stop_full = false;
  731. size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
  732. if (stop_pos != std::string::npos)
  733. {
  734. is_stop_full = true;
  735. slot.generated_text.erase(
  736. slot.generated_text.begin() + pos + stop_pos,
  737. slot.generated_text.end());
  738. pos = std::min(slot.sent_count, slot.generated_text.size());
  739. }
  740. else
  741. {
  742. is_stop_full = false;
  743. stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
  744. }
  745. // check if there is any token to predict
  746. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
  747. {
  748. // no send the stop word in the response
  749. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  750. slot.sent_count += result.text_to_send.size();
  751. // add the token to slot queue and cache
  752. }
  753. slot.add_token_string(result);
  754. if (slot.params.stream)
  755. {
  756. send_partial_response(slot, result);
  757. }
  758. }
  759. if (incomplete)
  760. {
  761. slot.has_next_token = true;
  762. }
  763. // check the limits
  764. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
  765. {
  766. slot.stopped_limit = true;
  767. slot.has_next_token = false;
  768. }
  769. if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
  770. {
  771. slot.stopped_eos = true;
  772. slot.has_next_token = false;
  773. LOG_VERBOSE("eos token found", {});
  774. }
  775. LOG_VERBOSE("next token", {
  776. {"token", result.tok},
  777. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  778. {"has_next_token", slot.has_next_token},
  779. {"n_remain", slot.n_remaining},
  780. {"num_tokens_predicted", slot.n_decoded},
  781. {"stopped_eos", slot.stopped_eos},
  782. {"stopped_word", slot.stopped_word},
  783. {"stopped_limit", slot.stopped_limit},
  784. {"stopping_word", slot.stopping_word},
  785. });
  786. return slot.has_next_token; // continue
  787. }
  788. bool process_images(llama_client_slot &slot) const
  789. {
  790. for (slot_image &img : slot.images)
  791. {
  792. if (!img.request_encode_image)
  793. {
  794. continue;
  795. }
  796. clip_image_f32 * img_res = clip_image_f32_init();
  797. if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
  798. {
  799. LOG_TEE("Error processing the given image");
  800. clip_free(clp_ctx);
  801. return false;
  802. }
  803. img.image_tokens = clip_n_patches(clp_ctx);
  804. img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
  805. if (!img.image_embedding)
  806. {
  807. LOG_TEE("Unable to allocate memory for image embeddings\n");
  808. clip_free(clp_ctx);
  809. return false;
  810. }
  811. LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
  812. if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
  813. {
  814. LOG_TEE("Unable to encode image\n");
  815. return false;
  816. }
  817. clip_image_f32_free(img_res);
  818. img.request_encode_image = false;
  819. }
  820. return slot.images.size() > 0;
  821. }
  822. void send_error(task_server& task, const std::string &error)
  823. {
  824. LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
  825. task_result res;
  826. res.id = task.id;
  827. res.multitask_id = task.multitask_id;
  828. res.stop = false;
  829. res.error = true;
  830. res.result_json = { { "content", error } };
  831. queue_results.send(res);
  832. }
  833. json get_model_props()
  834. {
  835. return get_formated_generation(slots[0]);
  836. }
  837. json get_formated_generation(llama_client_slot &slot)
  838. {
  839. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  840. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
  841. eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  842. return json {
  843. {"n_ctx", slot.n_ctx},
  844. {"model", params.model_alias},
  845. {"seed", slot.params.seed},
  846. {"temperature", slot.sparams.temp},
  847. {"top_k", slot.sparams.top_k},
  848. {"top_p", slot.sparams.top_p},
  849. {"min_p", slot.sparams.min_p},
  850. {"tfs_z", slot.sparams.tfs_z},
  851. {"typical_p", slot.sparams.typical_p},
  852. {"repeat_last_n", slot.sparams.penalty_last_n},
  853. {"repeat_penalty", slot.sparams.penalty_repeat},
  854. {"presence_penalty", slot.sparams.penalty_present},
  855. {"frequency_penalty", slot.sparams.penalty_freq},
  856. {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
  857. {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
  858. {"mirostat", slot.sparams.mirostat},
  859. {"mirostat_tau", slot.sparams.mirostat_tau},
  860. {"mirostat_eta", slot.sparams.mirostat_eta},
  861. {"penalize_nl", slot.sparams.penalize_nl},
  862. {"stop", slot.params.antiprompt},
  863. {"n_predict", slot.params.n_predict},
  864. {"n_keep", params.n_keep},
  865. {"ignore_eos", ignore_eos},
  866. {"stream", slot.params.stream},
  867. {"logit_bias", slot.sparams.logit_bias},
  868. {"n_probs", slot.sparams.n_probs},
  869. {"grammar", slot.sparams.grammar},
  870. };
  871. }
  872. void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
  873. {
  874. task_result res;
  875. res.id = slot.task_id;
  876. res.multitask_id = slot.multitask_id;
  877. res.error = false;
  878. res.stop = false;
  879. res.result_json = json
  880. {
  881. {"content", tkn.text_to_send},
  882. {"stop", false},
  883. {"slot_id", slot.id},
  884. {"multimodal", multimodal}
  885. };
  886. if (slot.sparams.n_probs > 0)
  887. {
  888. std::vector<completion_token_output> probs_output = {};
  889. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  890. size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
  891. size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
  892. if (probs_pos < probs_stop_pos)
  893. {
  894. probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
  895. }
  896. slot.sent_token_probs_index = probs_stop_pos;
  897. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  898. }
  899. if (slot.oaicompat)
  900. {
  901. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  902. res.result_json["model"] = slot.oaicompat_model;
  903. }
  904. queue_results.send(res);
  905. }
  906. void send_final_response(llama_client_slot &slot)
  907. {
  908. task_result res;
  909. res.id = slot.task_id;
  910. res.multitask_id = slot.multitask_id;
  911. res.error = false;
  912. res.stop = true;
  913. res.result_json = json
  914. {
  915. {"content", !slot.params.stream ? slot.generated_text : ""},
  916. {"slot_id", slot.id},
  917. {"stop", true},
  918. {"model", params.model_alias},
  919. {"tokens_predicted", slot.n_decoded},
  920. {"tokens_evaluated", slot.num_prompt_tokens},
  921. {"generation_settings", get_formated_generation(slot)},
  922. {"prompt", slot.prompt},
  923. {"truncated", slot.truncated},
  924. {"stopped_eos", slot.stopped_eos},
  925. {"stopped_word", slot.stopped_word},
  926. {"stopped_limit", slot.stopped_limit},
  927. {"stopping_word", slot.stopping_word},
  928. {"tokens_cached", slot.n_past},
  929. {"timings", slot.get_formated_timings()}
  930. };
  931. if (slot.sparams.n_probs > 0)
  932. {
  933. std::vector<completion_token_output> probs = {};
  934. if (!slot.params.stream && slot.stopped_word)
  935. {
  936. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  937. probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
  938. }
  939. else
  940. {
  941. probs = std::vector<completion_token_output>(
  942. slot.generated_token_probs.begin(),
  943. slot.generated_token_probs.end());
  944. }
  945. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  946. }
  947. if (slot.oaicompat)
  948. {
  949. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  950. res.result_json["model"] = slot.oaicompat_model;
  951. }
  952. queue_results.send(res);
  953. }
  954. void send_embedding(llama_client_slot &slot)
  955. {
  956. task_result res;
  957. res.id = slot.task_id;
  958. res.multitask_id = slot.multitask_id;
  959. res.error = false;
  960. res.stop = true;
  961. const int n_embd = llama_n_embd(model);
  962. if (!params.embedding)
  963. {
  964. LOG_WARNING("embedding disabled", {
  965. {"params.embedding", params.embedding},
  966. });
  967. res.result_json = json
  968. {
  969. {"embedding", std::vector<float>(n_embd, 0.0f)},
  970. };
  971. }
  972. else
  973. {
  974. const float *data = llama_get_embeddings(ctx);
  975. std::vector<float> embedding(data, data + n_embd);
  976. res.result_json = json
  977. {
  978. {"embedding", embedding },
  979. };
  980. }
  981. queue_results.send(res);
  982. }
  983. void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
  984. {
  985. task_server task;
  986. task.id = task_id;
  987. task.target_id = 0;
  988. task.data = std::move(data);
  989. task.infill_mode = infill;
  990. task.embedding_mode = embedding;
  991. task.type = TASK_TYPE_COMPLETION;
  992. task.multitask_id = multitask_id;
  993. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  994. if (task.data.count("prompt") && task.data.at("prompt").size() > 1)
  995. {
  996. split_multiprompt_task(task_id, task);
  997. }
  998. // otherwise, it's a single-prompt task, we actually queue it
  999. queue_tasks.post(task);
  1000. }
  1001. // for multiple images processing
  1002. bool ingest_images(llama_client_slot &slot, int n_batch)
  1003. {
  1004. int image_idx = 0;
  1005. while (image_idx < (int) slot.images.size())
  1006. {
  1007. slot_image &img = slot.images[image_idx];
  1008. // process prefix prompt
  1009. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1010. {
  1011. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1012. llama_batch batch_view = {
  1013. n_tokens,
  1014. batch.token + i,
  1015. nullptr,
  1016. batch.pos + i,
  1017. batch.n_seq_id + i,
  1018. batch.seq_id + i,
  1019. batch.logits + i,
  1020. 0, 0, 0, // unused
  1021. };
  1022. if (llama_decode(ctx, batch_view))
  1023. {
  1024. LOG_TEE("%s : failed to eval\n", __func__);
  1025. return false;
  1026. }
  1027. }
  1028. // process image with llm
  1029. for (int i = 0; i < img.image_tokens; i += n_batch)
  1030. {
  1031. int n_eval = img.image_tokens - i;
  1032. if (n_eval > n_batch)
  1033. {
  1034. n_eval = n_batch;
  1035. }
  1036. const int n_embd = llama_n_embd(model);
  1037. llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
  1038. if (llama_decode(ctx, batch_img))
  1039. {
  1040. LOG_TEE("%s : failed to eval image\n", __func__);
  1041. return false;
  1042. }
  1043. slot.n_past += n_eval;
  1044. }
  1045. image_idx++;
  1046. llama_batch_clear(batch);
  1047. // append prefix of next image
  1048. const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
  1049. slot.params.input_suffix : // no more images, then process suffix prompt
  1050. (json)(slot.images[image_idx].prefix_prompt);
  1051. std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
  1052. for (int i = 0; i < (int) append_tokens.size(); ++i)
  1053. {
  1054. llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
  1055. slot.n_past += 1;
  1056. }
  1057. }
  1058. return true;
  1059. }
  1060. void request_cancel(int task_id)
  1061. {
  1062. task_server task;
  1063. task.type = TASK_TYPE_CANCEL;
  1064. task.target_id = task_id;
  1065. queue_tasks.post(task);
  1066. }
  1067. void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
  1068. {
  1069. int prompt_count = multiprompt_task.data.at("prompt").size();
  1070. assert(prompt_count > 1);
  1071. // generate all the ID for subtask
  1072. std::vector<int> subtask_ids(prompt_count);
  1073. for (int i = 0; i < prompt_count; i++)
  1074. {
  1075. subtask_ids[i] = queue_tasks.get_new_id();
  1076. }
  1077. // queue up the multitask so we can track its subtask progression
  1078. queue_tasks.add_multitask(multitask_id, subtask_ids);
  1079. // add subtasks
  1080. for (int i = 0; i < prompt_count; i++)
  1081. {
  1082. json subtask_data = multiprompt_task.data;
  1083. subtask_data["prompt"] = subtask_data["prompt"][i];
  1084. // subtasks inherit everything else (infill mode, embedding mode, etc.)
  1085. request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
  1086. }
  1087. }
  1088. void process_single_task(task_server& task)
  1089. {
  1090. switch (task.type)
  1091. {
  1092. case TASK_TYPE_COMPLETION: {
  1093. llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
  1094. if (slot == nullptr)
  1095. {
  1096. // if no slot is available, we defer this task for processing later
  1097. LOG_VERBOSE("no slot is available", {});
  1098. queue_tasks.defer(task);
  1099. break;
  1100. }
  1101. if (task.data.contains("system_prompt"))
  1102. {
  1103. if (!all_slots_are_idle) {
  1104. send_error(task, "system prompt can only be updated when all slots are idle");
  1105. break;
  1106. }
  1107. process_system_prompt_data(task.data["system_prompt"]);
  1108. // reset cache_tokens for all slots
  1109. for (llama_client_slot &slot : slots)
  1110. {
  1111. slot.cache_tokens.clear();
  1112. }
  1113. }
  1114. slot->reset();
  1115. slot->infill = task.infill_mode;
  1116. slot->embedding = task.embedding_mode;
  1117. slot->task_id = task.id;
  1118. slot->multitask_id = task.multitask_id;
  1119. if (!launch_slot_with_data(slot, task.data))
  1120. {
  1121. // send error result
  1122. send_error(task, "internal_error");
  1123. break;
  1124. }
  1125. } break;
  1126. case TASK_TYPE_CANCEL: { // release slot linked with the task id
  1127. for (auto & slot : slots)
  1128. {
  1129. if (slot.task_id == task.target_id)
  1130. {
  1131. slot.release();
  1132. break;
  1133. }
  1134. }
  1135. } break;
  1136. case TASK_TYPE_NEXT_RESPONSE: {
  1137. // do nothing
  1138. } break;
  1139. }
  1140. }
  1141. void on_finish_multitask(task_multi& multitask)
  1142. {
  1143. // all subtasks done == multitask is done
  1144. task_result result;
  1145. result.id = multitask.id;
  1146. result.stop = true;
  1147. result.error = false;
  1148. // collect json results into one json result
  1149. std::vector<json> result_jsons;
  1150. for (auto& subres : multitask.results)
  1151. {
  1152. result_jsons.push_back(subres.result_json);
  1153. result.error = result.error && subres.error;
  1154. }
  1155. result.result_json = json{ { "results", result_jsons } };
  1156. queue_results.send(result);
  1157. }
  1158. bool update_slots() {
  1159. if (system_need_update)
  1160. {
  1161. LOG_TEE("updating system prompt\n");
  1162. update_system_prompt();
  1163. }
  1164. llama_batch_clear(batch);
  1165. if (all_slots_are_idle)
  1166. {
  1167. if (system_prompt.empty() && clean_kv_cache)
  1168. {
  1169. LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
  1170. kv_cache_clear();
  1171. }
  1172. return true;
  1173. } else {
  1174. task_server task;
  1175. task.type = TASK_TYPE_NEXT_RESPONSE;
  1176. task.target_id = -1;
  1177. queue_tasks.post(task);
  1178. }
  1179. for (llama_client_slot &slot : slots)
  1180. {
  1181. if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
  1182. {
  1183. // Shift context
  1184. const int n_left = slot.n_past - slot.params.n_keep - 1;
  1185. const int n_discard = n_left / 2;
  1186. LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
  1187. llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
  1188. llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
  1189. for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
  1190. {
  1191. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1192. }
  1193. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1194. slot.n_past -= n_discard;
  1195. slot.truncated = true;
  1196. LOG_VERBOSE("context shift", {
  1197. {"n_ctx", n_ctx},
  1198. {"n_keep", params.n_keep},
  1199. {"n_left", n_left},
  1200. });
  1201. }
  1202. }
  1203. // decode any currently ongoing sequences
  1204. for (auto & slot : slots)
  1205. {
  1206. // release the slot
  1207. if (slot.command == RELEASE)
  1208. {
  1209. slot.state = IDLE;
  1210. slot.command = NONE;
  1211. slot.t_last_used = ggml_time_us();
  1212. LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
  1213. queue_tasks.notify_slot_changed();
  1214. continue;
  1215. }
  1216. if (slot.state == IDLE)
  1217. {
  1218. continue;
  1219. }
  1220. slot.i_batch = batch.n_tokens;
  1221. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
  1222. slot.n_past += 1;
  1223. }
  1224. // process in chunks of params.n_batch
  1225. int32_t n_batch = params.n_batch;
  1226. // assign workload to the slots
  1227. if (params.cont_batching || batch.n_tokens == 0)
  1228. {
  1229. for (auto & slot : slots)
  1230. {
  1231. const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
  1232. // empty prompt passed -> release the slot and send empty response
  1233. // note: infill mode allows empty prompt
  1234. if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
  1235. {
  1236. slot.release();
  1237. slot.print_timings();
  1238. send_final_response(slot);
  1239. continue;
  1240. }
  1241. // need process the prompt
  1242. if (slot.state == IDLE && slot.command == LOAD_PROMPT)
  1243. {
  1244. slot.state = PROCESSING;
  1245. slot.command = NONE;
  1246. std::vector<llama_token> prompt_tokens;
  1247. slot.t_start_process_prompt = ggml_time_us();
  1248. slot.t_start_genereration = 0;
  1249. if (slot.infill)
  1250. {
  1251. bool suff_rm_leading_spc = true;
  1252. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
  1253. {
  1254. params.input_suffix.erase(0, 1);
  1255. suff_rm_leading_spc = false;
  1256. }
  1257. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1258. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1259. const int space_token = 29871; // TODO: this should not be hardcoded
  1260. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1261. suffix_tokens.erase(suffix_tokens.begin());
  1262. }
  1263. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1264. prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
  1265. prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
  1266. prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
  1267. prefix_tokens.push_back(llama_token_middle(model));
  1268. prompt_tokens = prefix_tokens;
  1269. }
  1270. else
  1271. {
  1272. prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
  1273. }
  1274. slot.num_prompt_tokens = prompt_tokens.size();
  1275. if (slot.params.n_keep < 0)
  1276. {
  1277. slot.params.n_keep = slot.num_prompt_tokens;
  1278. }
  1279. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1280. // if input prompt is too big, truncate it
  1281. if (slot.num_prompt_tokens >= slot.n_ctx)
  1282. {
  1283. const int n_left = slot.n_ctx - slot.params.n_keep;
  1284. const int n_block_size = n_left / 2;
  1285. const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1286. std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
  1287. new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
  1288. LOG_VERBOSE("input truncated", {
  1289. {"n_ctx", slot.n_ctx},
  1290. {"n_keep", slot.params.n_keep},
  1291. {"n_left", n_left},
  1292. {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
  1293. });
  1294. slot.truncated = true;
  1295. prompt_tokens = new_tokens;
  1296. slot.num_prompt_tokens = prompt_tokens.size();
  1297. GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
  1298. }
  1299. if (!slot.params.cache_prompt)
  1300. {
  1301. llama_sampling_reset(slot.ctx_sampling);
  1302. slot.n_past = 0;
  1303. slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
  1304. }
  1305. else
  1306. {
  1307. // push the prompt into the sampling context (do not apply grammar)
  1308. for (auto &token : prompt_tokens)
  1309. {
  1310. llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
  1311. }
  1312. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1313. slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
  1314. LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
  1315. }
  1316. LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
  1317. llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
  1318. slot.cache_tokens = prompt_tokens;
  1319. if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
  1320. {
  1321. // we have to evaluate at least 1 token to generate logits.
  1322. LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
  1323. slot.n_past--;
  1324. }
  1325. LOG_VERBOSE("prompt ingested", {
  1326. {"n_past", slot.n_past},
  1327. {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
  1328. {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
  1329. });
  1330. const bool has_images = process_images(slot);
  1331. // process the prefix of first image
  1332. std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
  1333. for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
  1334. {
  1335. llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
  1336. }
  1337. if (has_images && !ingest_images(slot, n_batch))
  1338. {
  1339. LOG_TEE("failed processing images\n");
  1340. return false;
  1341. }
  1342. // extract the logits only for the last token
  1343. if (batch.n_tokens > 0)
  1344. {
  1345. batch.logits[batch.n_tokens - 1] = true;
  1346. }
  1347. slot.n_decoded = 0;
  1348. slot.i_batch = batch.n_tokens - 1;
  1349. }
  1350. }
  1351. }
  1352. if (batch.n_tokens == 0)
  1353. {
  1354. all_slots_are_idle = true;
  1355. return true;
  1356. }
  1357. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1358. {
  1359. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1360. llama_batch batch_view =
  1361. {
  1362. n_tokens,
  1363. batch.token + i,
  1364. nullptr,
  1365. batch.pos + i,
  1366. batch.n_seq_id + i,
  1367. batch.seq_id + i,
  1368. batch.logits + i,
  1369. 0, 0, 0, // unused
  1370. };
  1371. const int ret = llama_decode(ctx, batch_view);
  1372. if (ret != 0)
  1373. {
  1374. if (n_batch == 1 || ret < 0)
  1375. {
  1376. // if you get here, it means the KV cache is full - try increasing it via the context size
  1377. LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
  1378. return false;
  1379. }
  1380. LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
  1381. // retry with half the batch size to try to find a free slot in the KV cache
  1382. n_batch /= 2;
  1383. i -= n_batch;
  1384. continue;
  1385. }
  1386. for (auto & slot : slots)
  1387. {
  1388. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
  1389. {
  1390. continue;
  1391. }
  1392. // prompt evaluated for embedding
  1393. if (slot.embedding)
  1394. {
  1395. send_embedding(slot);
  1396. slot.release();
  1397. slot.i_batch = -1;
  1398. return true;
  1399. }
  1400. completion_token_output result;
  1401. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1402. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1403. slot.n_decoded += 1;
  1404. if (slot.n_decoded == 1)
  1405. {
  1406. slot.t_start_genereration = ggml_time_us();
  1407. slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
  1408. }
  1409. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1410. result.tok = id;
  1411. const int32_t n_probs = slot.sparams.n_probs;
  1412. if (slot.sparams.temp <= 0 && n_probs > 0)
  1413. {
  1414. // for llama_sample_token_greedy we need to sort candidates
  1415. llama_sample_softmax(ctx, &cur_p);
  1416. }
  1417. for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
  1418. {
  1419. result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
  1420. }
  1421. if (!process_token(result, slot))
  1422. {
  1423. slot.release();
  1424. slot.print_timings();
  1425. send_final_response(slot);
  1426. }
  1427. slot.i_batch = -1;
  1428. }
  1429. }
  1430. return true;
  1431. }
  1432. void run_on_all_tasks_finished() {
  1433. update_slots();
  1434. }
  1435. };
  1436. static void server_print_usage(const char *argv0, const gpt_params &params,
  1437. const server_params &sparams)
  1438. {
  1439. printf("usage: %s [options]\n", argv0);
  1440. printf("\n");
  1441. printf("options:\n");
  1442. printf(" -h, --help show this help message and exit\n");
  1443. printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
  1444. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  1445. printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1446. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  1447. printf(" --rope-scaling {none,linear,yarn}\n");
  1448. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1449. printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
  1450. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1451. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1452. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1453. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1454. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1455. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  1456. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  1457. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  1458. if (llama_mlock_supported())
  1459. {
  1460. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1461. }
  1462. if (llama_mmap_supported())
  1463. {
  1464. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1465. }
  1466. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  1467. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  1468. printf(" -ngl N, --n-gpu-layers N\n");
  1469. printf(" number of layers to store in VRAM\n");
  1470. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1471. printf(" how to split the model across multiple GPUs, one of:\n");
  1472. printf(" - none: use one GPU only\n");
  1473. printf(" - layer (default): split layers and KV across GPUs\n");
  1474. printf(" - row: split rows across GPUs\n");
  1475. printf(" -ts SPLIT --tensor-split SPLIT\n");
  1476. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1477. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1478. printf(" or for intermediate results and KV (with split-mode = row)\n");
  1479. #endif
  1480. printf(" -m FNAME, --model FNAME\n");
  1481. printf(" model path (default: %s)\n", params.model.c_str());
  1482. printf(" -a ALIAS, --alias ALIAS\n");
  1483. printf(" set an alias for the model, will be added as `model` field in completion response\n");
  1484. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1485. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1486. printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
  1487. printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
  1488. printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
  1489. printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
  1490. printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
  1491. printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
  1492. printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
  1493. printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
  1494. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1495. printf(" -spf FNAME, --system-prompt-file FNAME\n");
  1496. printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
  1497. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
  1498. printf(" --log-disable disables logging to a file.\n");
  1499. printf("\n");
  1500. printf(" --override-kv KEY=TYPE:VALUE\n");
  1501. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1502. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1503. printf("\n");
  1504. }
  1505. static void server_params_parse(int argc, char **argv, server_params &sparams,
  1506. gpt_params &params, llama_server_context& llama)
  1507. {
  1508. gpt_params default_params;
  1509. server_params default_sparams;
  1510. std::string arg;
  1511. bool invalid_param = false;
  1512. for (int i = 1; i < argc; i++)
  1513. {
  1514. arg = argv[i];
  1515. if (arg == "--port")
  1516. {
  1517. if (++i >= argc)
  1518. {
  1519. invalid_param = true;
  1520. break;
  1521. }
  1522. sparams.port = std::stoi(argv[i]);
  1523. }
  1524. else if (arg == "--host")
  1525. {
  1526. if (++i >= argc)
  1527. {
  1528. invalid_param = true;
  1529. break;
  1530. }
  1531. sparams.hostname = argv[i];
  1532. }
  1533. else if (arg == "--path")
  1534. {
  1535. if (++i >= argc)
  1536. {
  1537. invalid_param = true;
  1538. break;
  1539. }
  1540. sparams.public_path = argv[i];
  1541. }
  1542. else if (arg == "--api-key")
  1543. {
  1544. if (++i >= argc)
  1545. {
  1546. invalid_param = true;
  1547. break;
  1548. }
  1549. sparams.api_keys.push_back(argv[i]);
  1550. }
  1551. else if (arg == "--api-key-file")
  1552. {
  1553. if (++i >= argc)
  1554. {
  1555. invalid_param = true;
  1556. break;
  1557. }
  1558. std::ifstream key_file(argv[i]);
  1559. if (!key_file) {
  1560. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1561. invalid_param = true;
  1562. break;
  1563. }
  1564. std::string key;
  1565. while (std::getline(key_file, key)) {
  1566. if (key.size() > 0) {
  1567. sparams.api_keys.push_back(key);
  1568. }
  1569. }
  1570. key_file.close();
  1571. }
  1572. else if (arg == "--timeout" || arg == "-to")
  1573. {
  1574. if (++i >= argc)
  1575. {
  1576. invalid_param = true;
  1577. break;
  1578. }
  1579. sparams.read_timeout = std::stoi(argv[i]);
  1580. sparams.write_timeout = std::stoi(argv[i]);
  1581. }
  1582. else if (arg == "-m" || arg == "--model")
  1583. {
  1584. if (++i >= argc)
  1585. {
  1586. invalid_param = true;
  1587. break;
  1588. }
  1589. params.model = argv[i];
  1590. }
  1591. else if (arg == "-a" || arg == "--alias")
  1592. {
  1593. if (++i >= argc)
  1594. {
  1595. invalid_param = true;
  1596. break;
  1597. }
  1598. params.model_alias = argv[i];
  1599. }
  1600. else if (arg == "-h" || arg == "--help")
  1601. {
  1602. server_print_usage(argv[0], default_params, default_sparams);
  1603. exit(0);
  1604. }
  1605. else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
  1606. {
  1607. if (++i >= argc)
  1608. {
  1609. invalid_param = true;
  1610. break;
  1611. }
  1612. params.n_ctx = std::stoi(argv[i]);
  1613. }
  1614. else if (arg == "--rope-scaling")
  1615. {
  1616. if (++i >= argc)
  1617. {
  1618. invalid_param = true;
  1619. break;
  1620. }
  1621. std::string value(argv[i]);
  1622. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  1623. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  1624. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  1625. else { invalid_param = true; break; }
  1626. }
  1627. else if (arg == "--rope-freq-base")
  1628. {
  1629. if (++i >= argc)
  1630. {
  1631. invalid_param = true;
  1632. break;
  1633. }
  1634. params.rope_freq_base = std::stof(argv[i]);
  1635. }
  1636. else if (arg == "--rope-freq-scale")
  1637. {
  1638. if (++i >= argc)
  1639. {
  1640. invalid_param = true;
  1641. break;
  1642. }
  1643. params.rope_freq_scale = std::stof(argv[i]);
  1644. }
  1645. else if (arg == "--yarn-ext-factor")
  1646. {
  1647. if (++i >= argc) {
  1648. invalid_param = true;
  1649. break;
  1650. }
  1651. params.yarn_ext_factor = std::stof(argv[i]);
  1652. }
  1653. else if (arg == "--yarn-attn-factor")
  1654. {
  1655. if (++i >= argc) {
  1656. invalid_param = true;
  1657. break;
  1658. }
  1659. params.yarn_attn_factor = std::stof(argv[i]);
  1660. }
  1661. else if (arg == "--yarn-beta-fast")
  1662. {
  1663. if (++i >= argc) {
  1664. invalid_param = true;
  1665. break;
  1666. }
  1667. params.yarn_beta_fast = std::stof(argv[i]);
  1668. }
  1669. else if (arg == "--yarn-beta-slow")
  1670. {
  1671. if (++i >= argc) {
  1672. invalid_param = true;
  1673. break;
  1674. }
  1675. params.yarn_beta_slow = std::stof(argv[i]);
  1676. }
  1677. else if (arg == "--threads" || arg == "-t")
  1678. {
  1679. if (++i >= argc)
  1680. {
  1681. invalid_param = true;
  1682. break;
  1683. }
  1684. params.n_threads = std::stoi(argv[i]);
  1685. }
  1686. else if (arg == "--threads-batch" || arg == "-tb")
  1687. {
  1688. if (++i >= argc)
  1689. {
  1690. invalid_param = true;
  1691. break;
  1692. }
  1693. params.n_threads_batch = std::stoi(argv[i]);
  1694. }
  1695. else if (arg == "-b" || arg == "--batch-size")
  1696. {
  1697. if (++i >= argc)
  1698. {
  1699. invalid_param = true;
  1700. break;
  1701. }
  1702. params.n_batch = std::stoi(argv[i]);
  1703. params.n_batch = std::min(512, params.n_batch);
  1704. }
  1705. else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
  1706. {
  1707. if (++i >= argc)
  1708. {
  1709. invalid_param = true;
  1710. break;
  1711. }
  1712. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  1713. params.n_gpu_layers = std::stoi(argv[i]);
  1714. #else
  1715. LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
  1716. "See main README.md for information on enabling GPU BLAS support",
  1717. {{"n_gpu_layers", params.n_gpu_layers}});
  1718. #endif
  1719. }
  1720. else if (arg == "--split-mode" || arg == "-sm")
  1721. {
  1722. if (++i >= argc) {
  1723. invalid_param = true;
  1724. break;
  1725. }
  1726. std::string arg_next = argv[i];
  1727. if (arg_next == "none")
  1728. {
  1729. params.split_mode = LLAMA_SPLIT_NONE;
  1730. }
  1731. else if (arg_next == "layer")
  1732. {
  1733. params.split_mode = LLAMA_SPLIT_LAYER;
  1734. }
  1735. else if (arg_next == "row")
  1736. {
  1737. params.split_mode = LLAMA_SPLIT_ROW;
  1738. }
  1739. else {
  1740. invalid_param = true;
  1741. break;
  1742. }
  1743. #ifndef GGML_USE_CUBLAS
  1744. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
  1745. #endif // GGML_USE_CUBLAS
  1746. }
  1747. else if (arg == "--tensor-split" || arg == "-ts")
  1748. {
  1749. if (++i >= argc)
  1750. {
  1751. invalid_param = true;
  1752. break;
  1753. }
  1754. #ifdef GGML_USE_CUBLAS
  1755. std::string arg_next = argv[i];
  1756. // split string by , and /
  1757. const std::regex regex{R"([,/]+)"};
  1758. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  1759. std::vector<std::string> split_arg{it, {}};
  1760. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  1761. for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
  1762. {
  1763. if (i_device < split_arg.size())
  1764. {
  1765. params.tensor_split[i_device] = std::stof(split_arg[i_device]);
  1766. }
  1767. else
  1768. {
  1769. params.tensor_split[i_device] = 0.0f;
  1770. }
  1771. }
  1772. #else
  1773. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
  1774. #endif // GGML_USE_CUBLAS
  1775. }
  1776. else if (arg == "--no-mul-mat-q" || arg == "-nommq")
  1777. {
  1778. #ifdef GGML_USE_CUBLAS
  1779. params.mul_mat_q = false;
  1780. #else
  1781. LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
  1782. #endif // GGML_USE_CUBLAS
  1783. }
  1784. else if (arg == "--main-gpu" || arg == "-mg")
  1785. {
  1786. if (++i >= argc)
  1787. {
  1788. invalid_param = true;
  1789. break;
  1790. }
  1791. #ifdef GGML_USE_CUBLAS
  1792. params.main_gpu = std::stoi(argv[i]);
  1793. #else
  1794. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
  1795. #endif
  1796. }
  1797. else if (arg == "--lora")
  1798. {
  1799. if (++i >= argc)
  1800. {
  1801. invalid_param = true;
  1802. break;
  1803. }
  1804. params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
  1805. params.use_mmap = false;
  1806. }
  1807. else if (arg == "--lora-scaled")
  1808. {
  1809. if (++i >= argc)
  1810. {
  1811. invalid_param = true;
  1812. break;
  1813. }
  1814. const char * lora_adapter = argv[i];
  1815. if (++i >= argc)
  1816. {
  1817. invalid_param = true;
  1818. break;
  1819. }
  1820. params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
  1821. params.use_mmap = false;
  1822. }
  1823. else if (arg == "--lora-base")
  1824. {
  1825. if (++i >= argc)
  1826. {
  1827. invalid_param = true;
  1828. break;
  1829. }
  1830. params.lora_base = argv[i];
  1831. }
  1832. else if (arg == "-v" || arg == "--verbose")
  1833. {
  1834. #if SERVER_VERBOSE != 1
  1835. LOG_WARNING("server.cpp is not built with verbose logging.", {});
  1836. #else
  1837. server_verbose = true;
  1838. #endif
  1839. }
  1840. else if (arg == "--mlock")
  1841. {
  1842. params.use_mlock = true;
  1843. }
  1844. else if (arg == "--no-mmap")
  1845. {
  1846. params.use_mmap = false;
  1847. }
  1848. else if (arg == "--numa")
  1849. {
  1850. params.numa = true;
  1851. }
  1852. else if (arg == "--embedding")
  1853. {
  1854. params.embedding = true;
  1855. }
  1856. else if (arg == "-cb" || arg == "--cont-batching")
  1857. {
  1858. params.cont_batching = true;
  1859. }
  1860. else if (arg == "-np" || arg == "--parallel")
  1861. {
  1862. if (++i >= argc)
  1863. {
  1864. invalid_param = true;
  1865. break;
  1866. }
  1867. params.n_parallel = std::stoi(argv[i]);
  1868. } else if (arg == "-n" || arg == "--n-predict")
  1869. {
  1870. if (++i >= argc)
  1871. {
  1872. invalid_param = true;
  1873. break;
  1874. }
  1875. params.n_predict = std::stoi(argv[i]);
  1876. } else if (arg == "-spf" || arg == "--system-prompt-file")
  1877. {
  1878. if (++i >= argc)
  1879. {
  1880. invalid_param = true;
  1881. break;
  1882. }
  1883. std::ifstream file(argv[i]);
  1884. if (!file) {
  1885. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1886. invalid_param = true;
  1887. break;
  1888. }
  1889. std::string systm_content;
  1890. std::copy(
  1891. std::istreambuf_iterator<char>(file),
  1892. std::istreambuf_iterator<char>(),
  1893. std::back_inserter(systm_content)
  1894. );
  1895. llama.process_system_prompt_data(json::parse(systm_content));
  1896. }
  1897. else if(arg == "--mmproj")
  1898. {
  1899. if (++i >= argc)
  1900. {
  1901. invalid_param = true;
  1902. break;
  1903. }
  1904. params.mmproj = argv[i];
  1905. }
  1906. else if (arg == "--log-disable")
  1907. {
  1908. log_set_target(stdout);
  1909. LOG_INFO("logging to file is disabled.", {});
  1910. }
  1911. else if (arg == "--override-kv")
  1912. {
  1913. if (++i >= argc) {
  1914. invalid_param = true;
  1915. break;
  1916. }
  1917. char * sep = strchr(argv[i], '=');
  1918. if (sep == nullptr || sep - argv[i] >= 128) {
  1919. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  1920. invalid_param = true;
  1921. break;
  1922. }
  1923. struct llama_model_kv_override kvo;
  1924. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  1925. kvo.key[sep - argv[i]] = 0;
  1926. sep++;
  1927. if (strncmp(sep, "int:", 4) == 0) {
  1928. sep += 4;
  1929. kvo.tag = LLAMA_KV_OVERRIDE_INT;
  1930. kvo.int_value = std::atol(sep);
  1931. } else if (strncmp(sep, "float:", 6) == 0) {
  1932. sep += 6;
  1933. kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
  1934. kvo.float_value = std::atof(sep);
  1935. } else if (strncmp(sep, "bool:", 5) == 0) {
  1936. sep += 5;
  1937. kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
  1938. if (std::strcmp(sep, "true") == 0) {
  1939. kvo.bool_value = true;
  1940. } else if (std::strcmp(sep, "false") == 0) {
  1941. kvo.bool_value = false;
  1942. } else {
  1943. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  1944. invalid_param = true;
  1945. break;
  1946. }
  1947. } else {
  1948. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  1949. invalid_param = true;
  1950. break;
  1951. }
  1952. params.kv_overrides.push_back(kvo);
  1953. }
  1954. else
  1955. {
  1956. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  1957. server_print_usage(argv[0], default_params, default_sparams);
  1958. exit(1);
  1959. }
  1960. }
  1961. if (!params.kv_overrides.empty()) {
  1962. params.kv_overrides.emplace_back(llama_model_kv_override());
  1963. params.kv_overrides.back().key[0] = 0;
  1964. }
  1965. if (invalid_param)
  1966. {
  1967. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  1968. server_print_usage(argv[0], default_params, default_sparams);
  1969. exit(1);
  1970. }
  1971. }
  1972. /* llama.cpp completion api semantics */
  1973. static json format_partial_response(
  1974. llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
  1975. ) {
  1976. json res = json
  1977. {
  1978. {"content", content },
  1979. {"stop", false},
  1980. {"slot_id", slot->id },
  1981. {"multimodal", llama.multimodal }
  1982. };
  1983. if (slot->sparams.n_probs > 0)
  1984. {
  1985. res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
  1986. }
  1987. return res;
  1988. }
  1989. static json format_tokenizer_response(const std::vector<llama_token> &tokens)
  1990. {
  1991. return json{
  1992. {"tokens", tokens}};
  1993. }
  1994. static json format_detokenized_response(std::string content)
  1995. {
  1996. return json{
  1997. {"content", content}};
  1998. }
  1999. static void log_server_request(const httplib::Request &req, const httplib::Response &res)
  2000. {
  2001. LOG_INFO("request", {
  2002. {"remote_addr", req.remote_addr},
  2003. {"remote_port", req.remote_port},
  2004. {"status", res.status},
  2005. {"method", req.method},
  2006. {"path", req.path},
  2007. {"params", req.params},
  2008. });
  2009. LOG_VERBOSE("request", {
  2010. {"request", req.body},
  2011. {"response", res.body},
  2012. });
  2013. }
  2014. struct token_translator
  2015. {
  2016. llama_context * ctx;
  2017. std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
  2018. std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
  2019. };
  2020. static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
  2021. {
  2022. auto & gtps = slot->generated_token_probs;
  2023. auto translator = token_translator{llama.ctx};
  2024. auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
  2025. const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
  2026. if (slot->generated_text.capacity() < slot->generated_text.size() + len)
  2027. {
  2028. slot->generated_text.reserve(slot->generated_text.size() + len);
  2029. }
  2030. for (const completion_token_output & cto : gtps)
  2031. {
  2032. slot->generated_text += translator(cto);
  2033. }
  2034. }
  2035. int main(int argc, char **argv)
  2036. {
  2037. #if SERVER_VERBOSE != 1
  2038. log_disable();
  2039. #endif
  2040. // own arguments required by this example
  2041. gpt_params params;
  2042. server_params sparams;
  2043. // struct that contains llama context and inference
  2044. llama_server_context llama;
  2045. server_params_parse(argc, argv, sparams, params, llama);
  2046. if (params.model_alias == "unknown")
  2047. {
  2048. params.model_alias = params.model;
  2049. }
  2050. llama_backend_init(params.numa);
  2051. LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
  2052. {"commit", LLAMA_COMMIT}});
  2053. LOG_INFO("system info", {
  2054. {"n_threads", params.n_threads},
  2055. {"n_threads_batch", params.n_threads_batch},
  2056. {"total_threads", std::thread::hardware_concurrency()},
  2057. {"system_info", llama_print_system_info()},
  2058. });
  2059. httplib::Server svr;
  2060. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2061. svr.set_default_headers({{"Server", "llama.cpp"}});
  2062. // CORS preflight
  2063. svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
  2064. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2065. res.set_header("Access-Control-Allow-Credentials", "true");
  2066. res.set_header("Access-Control-Allow-Methods", "POST");
  2067. res.set_header("Access-Control-Allow-Headers", "*");
  2068. });
  2069. svr.Get("/health", [&](const httplib::Request&, httplib::Response& res) {
  2070. server_state current_state = state.load();
  2071. switch(current_state) {
  2072. case SERVER_STATE_READY:
  2073. res.set_content(R"({"status": "ok"})", "application/json");
  2074. res.status = 200; // HTTP OK
  2075. break;
  2076. case SERVER_STATE_LOADING_MODEL:
  2077. res.set_content(R"({"status": "loading model"})", "application/json");
  2078. res.status = 503; // HTTP Service Unavailable
  2079. break;
  2080. case SERVER_STATE_ERROR:
  2081. res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
  2082. res.status = 500; // HTTP Internal Server Error
  2083. break;
  2084. }
  2085. });
  2086. svr.set_logger(log_server_request);
  2087. svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
  2088. {
  2089. const char fmt[] = "500 Internal Server Error\n%s";
  2090. char buf[BUFSIZ];
  2091. try
  2092. {
  2093. std::rethrow_exception(std::move(ep));
  2094. }
  2095. catch (std::exception &e)
  2096. {
  2097. snprintf(buf, sizeof(buf), fmt, e.what());
  2098. }
  2099. catch (...)
  2100. {
  2101. snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
  2102. }
  2103. res.set_content(buf, "text/plain; charset=utf-8");
  2104. res.status = 500;
  2105. });
  2106. svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
  2107. {
  2108. if (res.status == 401)
  2109. {
  2110. res.set_content("Unauthorized", "text/plain; charset=utf-8");
  2111. }
  2112. if (res.status == 400)
  2113. {
  2114. res.set_content("Invalid request", "text/plain; charset=utf-8");
  2115. }
  2116. else if (res.status == 404)
  2117. {
  2118. res.set_content("File Not Found", "text/plain; charset=utf-8");
  2119. res.status = 404;
  2120. }
  2121. });
  2122. // set timeouts and change hostname and port
  2123. svr.set_read_timeout (sparams.read_timeout);
  2124. svr.set_write_timeout(sparams.write_timeout);
  2125. if (!svr.bind_to_port(sparams.hostname, sparams.port))
  2126. {
  2127. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
  2128. return 1;
  2129. }
  2130. // Set the base directory for serving static files
  2131. svr.set_base_dir(sparams.public_path);
  2132. // to make it ctrl+clickable:
  2133. LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
  2134. std::unordered_map<std::string, std::string> log_data;
  2135. log_data["hostname"] = sparams.hostname;
  2136. log_data["port"] = std::to_string(sparams.port);
  2137. if (sparams.api_keys.size() == 1) {
  2138. log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
  2139. } else if (sparams.api_keys.size() > 1) {
  2140. log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
  2141. }
  2142. LOG_INFO("HTTP server listening", log_data);
  2143. // run the HTTP server in a thread - see comment below
  2144. std::thread t([&]()
  2145. {
  2146. if (!svr.listen_after_bind())
  2147. {
  2148. state.store(SERVER_STATE_ERROR);
  2149. return 1;
  2150. }
  2151. return 0;
  2152. });
  2153. // load the model
  2154. if (!llama.load_model(params))
  2155. {
  2156. state.store(SERVER_STATE_ERROR);
  2157. return 1;
  2158. } else {
  2159. llama.initialize();
  2160. state.store(SERVER_STATE_READY);
  2161. LOG_INFO("model loaded", {});
  2162. }
  2163. // Middleware for API key validation
  2164. auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
  2165. // If API key is not set, skip validation
  2166. if (sparams.api_keys.empty()) {
  2167. return true;
  2168. }
  2169. // Check for API key in the header
  2170. auto auth_header = req.get_header_value("Authorization");
  2171. std::string prefix = "Bearer ";
  2172. if (auth_header.substr(0, prefix.size()) == prefix) {
  2173. std::string received_api_key = auth_header.substr(prefix.size());
  2174. if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
  2175. return true; // API key is valid
  2176. }
  2177. }
  2178. // API key is invalid or not provided
  2179. res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
  2180. res.status = 401; // Unauthorized
  2181. LOG_WARNING("Unauthorized: Invalid API Key", {});
  2182. return false;
  2183. };
  2184. // this is only called if no index.html is found in the public --path
  2185. svr.Get("/", [](const httplib::Request &, httplib::Response &res)
  2186. {
  2187. res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
  2188. return false;
  2189. });
  2190. // this is only called if no index.js is found in the public --path
  2191. svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
  2192. {
  2193. res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
  2194. return false;
  2195. });
  2196. // this is only called if no index.html is found in the public --path
  2197. svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
  2198. {
  2199. res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
  2200. return false;
  2201. });
  2202. // this is only called if no index.html is found in the public --path
  2203. svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
  2204. {
  2205. res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
  2206. return false;
  2207. });
  2208. svr.Get("/props", [&llama](const httplib::Request & req, httplib::Response &res)
  2209. {
  2210. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2211. json data = {
  2212. { "user_name", llama.name_user.c_str() },
  2213. { "assistant_name", llama.name_assistant.c_str() }
  2214. };
  2215. res.set_content(data.dump(), "application/json; charset=utf-8");
  2216. });
  2217. svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2218. {
  2219. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2220. if (!validate_api_key(req, res)) {
  2221. return;
  2222. }
  2223. json data = json::parse(req.body);
  2224. const int task_id = llama.queue_tasks.get_new_id();
  2225. llama.queue_results.add_waiting_task_id(task_id);
  2226. llama.request_completion(task_id, data, false, false, -1);
  2227. if (!json_value(data, "stream", false)) {
  2228. std::string completion_text;
  2229. task_result result = llama.queue_results.recv(task_id);
  2230. if (!result.error && result.stop) {
  2231. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2232. }
  2233. else
  2234. {
  2235. res.status = 404;
  2236. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2237. }
  2238. llama.queue_results.remove_waiting_task_id(task_id);
  2239. } else {
  2240. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
  2241. {
  2242. while (true)
  2243. {
  2244. task_result result = llama.queue_results.recv(task_id);
  2245. if (!result.error) {
  2246. const std::string str =
  2247. "data: " +
  2248. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2249. "\n\n";
  2250. LOG_VERBOSE("data stream", {
  2251. { "to_send", str }
  2252. });
  2253. if (!sink.write(str.c_str(), str.size()))
  2254. {
  2255. llama.queue_results.remove_waiting_task_id(task_id);
  2256. return false;
  2257. }
  2258. if (result.stop) {
  2259. break;
  2260. }
  2261. } else {
  2262. const std::string str =
  2263. "error: " +
  2264. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2265. "\n\n";
  2266. LOG_VERBOSE("data stream", {
  2267. { "to_send", str }
  2268. });
  2269. if (!sink.write(str.c_str(), str.size()))
  2270. {
  2271. llama.queue_results.remove_waiting_task_id(task_id);
  2272. return false;
  2273. }
  2274. break;
  2275. }
  2276. }
  2277. llama.queue_results.remove_waiting_task_id(task_id);
  2278. sink.done();
  2279. return true;
  2280. };
  2281. auto on_complete = [task_id, &llama] (bool)
  2282. {
  2283. // cancel
  2284. llama.request_cancel(task_id);
  2285. llama.queue_results.remove_waiting_task_id(task_id);
  2286. };
  2287. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2288. }
  2289. });
  2290. svr.Get("/v1/models", [&params](const httplib::Request& req, httplib::Response& res)
  2291. {
  2292. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2293. std::time_t t = std::time(0);
  2294. json models = {
  2295. {"object", "list"},
  2296. {"data", {
  2297. {
  2298. {"id", params.model_alias},
  2299. {"object", "model"},
  2300. {"created", t},
  2301. {"owned_by", "llamacpp"}
  2302. },
  2303. }}
  2304. };
  2305. res.set_content(models.dump(), "application/json; charset=utf-8");
  2306. });
  2307. // TODO: add mount point without "/v1" prefix -- how?
  2308. svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2309. {
  2310. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2311. if (!validate_api_key(req, res)) {
  2312. return;
  2313. }
  2314. json data = oaicompat_completion_params_parse(json::parse(req.body));
  2315. const int task_id = llama.queue_tasks.get_new_id();
  2316. llama.queue_results.add_waiting_task_id(task_id);
  2317. llama.request_completion(task_id, data, false, false, -1);
  2318. if (!json_value(data, "stream", false)) {
  2319. std::string completion_text;
  2320. task_result result = llama.queue_results.recv(task_id);
  2321. if (!result.error && result.stop) {
  2322. json oaicompat_result = format_final_response_oaicompat(data, result);
  2323. res.set_content(oaicompat_result.dump(-1, ' ', false,
  2324. json::error_handler_t::replace),
  2325. "application/json; charset=utf-8");
  2326. } else {
  2327. res.status = 500;
  2328. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2329. }
  2330. llama.queue_results.remove_waiting_task_id(task_id);
  2331. } else {
  2332. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
  2333. while (true) {
  2334. task_result llama_result = llama.queue_results.recv(task_id);
  2335. if (!llama_result.error) {
  2336. std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
  2337. for (auto it = result_array.begin(); it != result_array.end(); ++it)
  2338. {
  2339. if (!it->empty()) {
  2340. const std::string str =
  2341. "data: " +
  2342. it->dump(-1, ' ', false, json::error_handler_t::replace) +
  2343. "\n\n";
  2344. LOG_VERBOSE("data stream", {{"to_send", str}});
  2345. if (!sink.write(str.c_str(), str.size())) {
  2346. llama.queue_results.remove_waiting_task_id(task_id);
  2347. return false;
  2348. }
  2349. }
  2350. }
  2351. if (llama_result.stop) {
  2352. break;
  2353. }
  2354. } else {
  2355. const std::string str =
  2356. "error: " +
  2357. llama_result.result_json.dump(-1, ' ', false,
  2358. json::error_handler_t::replace) +
  2359. "\n\n";
  2360. LOG_VERBOSE("data stream", {{"to_send", str}});
  2361. if (!sink.write(str.c_str(), str.size())) {
  2362. llama.queue_results.remove_waiting_task_id(task_id);
  2363. return false;
  2364. }
  2365. break;
  2366. }
  2367. }
  2368. sink.done();
  2369. llama.queue_results.remove_waiting_task_id(task_id);
  2370. return true;
  2371. };
  2372. auto on_complete = [task_id, &llama](bool) {
  2373. // cancel request
  2374. llama.request_cancel(task_id);
  2375. llama.queue_results.remove_waiting_task_id(task_id);
  2376. };
  2377. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2378. }
  2379. });
  2380. svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2381. {
  2382. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2383. if (!validate_api_key(req, res)) {
  2384. return;
  2385. }
  2386. json data = json::parse(req.body);
  2387. const int task_id = llama.queue_tasks.get_new_id();
  2388. llama.queue_results.add_waiting_task_id(task_id);
  2389. llama.request_completion(task_id, data, true, false, -1);
  2390. if (!json_value(data, "stream", false)) {
  2391. std::string completion_text;
  2392. task_result result = llama.queue_results.recv(task_id);
  2393. if (!result.error && result.stop)
  2394. {
  2395. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2396. }
  2397. else
  2398. {
  2399. res.status = 404;
  2400. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2401. }
  2402. llama.queue_results.remove_waiting_task_id(task_id);
  2403. } else {
  2404. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
  2405. while (true)
  2406. {
  2407. task_result result = llama.queue_results.recv(task_id);
  2408. if (!result.error) {
  2409. const std::string str =
  2410. "data: " +
  2411. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2412. "\n\n";
  2413. LOG_VERBOSE("data stream", {
  2414. { "to_send", str }
  2415. });
  2416. if (!sink.write(str.c_str(), str.size()))
  2417. {
  2418. llama.queue_results.remove_waiting_task_id(task_id);
  2419. return false;
  2420. }
  2421. if (result.stop)
  2422. {
  2423. break;
  2424. }
  2425. }
  2426. else
  2427. {
  2428. break;
  2429. }
  2430. }
  2431. llama.queue_results.remove_waiting_task_id(task_id);
  2432. sink.done();
  2433. return true;
  2434. };
  2435. auto on_complete = [task_id, &llama] (bool)
  2436. {
  2437. // cancel
  2438. llama.request_cancel(task_id);
  2439. };
  2440. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2441. }
  2442. });
  2443. svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
  2444. {
  2445. const json data = llama.get_model_props();
  2446. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2447. });
  2448. svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
  2449. { return res.set_content("", "application/json; charset=utf-8"); });
  2450. svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2451. {
  2452. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2453. const json body = json::parse(req.body);
  2454. std::vector<llama_token> tokens;
  2455. if (body.count("content") != 0)
  2456. {
  2457. tokens = llama.tokenize(body["content"], false);
  2458. }
  2459. const json data = format_tokenizer_response(tokens);
  2460. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2461. });
  2462. svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2463. {
  2464. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2465. const json body = json::parse(req.body);
  2466. std::string content;
  2467. if (body.count("tokens") != 0)
  2468. {
  2469. const std::vector<llama_token> tokens = body["tokens"];
  2470. content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
  2471. }
  2472. const json data = format_detokenized_response(content);
  2473. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2474. });
  2475. svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
  2476. {
  2477. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2478. const json body = json::parse(req.body);
  2479. json prompt;
  2480. if (body.count("content") != 0)
  2481. {
  2482. prompt = body["content"];
  2483. }
  2484. else
  2485. {
  2486. prompt = "";
  2487. }
  2488. json image_data;
  2489. if (body.count("image_data") != 0) {
  2490. image_data = body["image_data"];
  2491. }
  2492. else
  2493. {
  2494. image_data = "";
  2495. }
  2496. // create and queue the task
  2497. const int task_id = llama.queue_tasks.get_new_id();
  2498. llama.queue_results.add_waiting_task_id(task_id);
  2499. llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
  2500. // get the result
  2501. task_result result = llama.queue_results.recv(task_id);
  2502. llama.queue_results.remove_waiting_task_id(task_id);
  2503. // send the result
  2504. return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
  2505. });
  2506. // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
  2507. // "Bus error: 10" - this is on macOS, it does not crash on Linux
  2508. //std::thread t2([&]()
  2509. /*{
  2510. bool running = true;
  2511. while (running)
  2512. {
  2513. running = llama.update_slots();
  2514. }
  2515. }*/
  2516. //);
  2517. llama.queue_tasks.on_new_task(std::bind(
  2518. &llama_server_context::process_single_task, &llama, std::placeholders::_1));
  2519. llama.queue_tasks.on_finish_multitask(std::bind(
  2520. &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
  2521. llama.queue_tasks.on_all_tasks_finished(std::bind(
  2522. &llama_server_context::run_on_all_tasks_finished, &llama));
  2523. llama.queue_results.on_multitask_update(std::bind(
  2524. &llama_server_queue::update_multitask,
  2525. &llama.queue_tasks,
  2526. std::placeholders::_1,
  2527. std::placeholders::_2,
  2528. std::placeholders::_3
  2529. ));
  2530. llama.queue_tasks.start_loop();
  2531. t.join();
  2532. llama_backend_free();
  2533. return 0;
  2534. }