test-backend-ops.cpp 298 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  38. size_t nels = ggml_nelements(tensor);
  39. std::vector<float> data(nels);
  40. {
  41. // parallel initialization
  42. static const size_t n_threads = std::thread::hardware_concurrency();
  43. // static RNG initialization (revisit if n_threads stops being constant)
  44. static std::vector<std::default_random_engine> generators = []() {
  45. std::random_device rd;
  46. std::vector<std::default_random_engine> vec;
  47. vec.reserve(n_threads);
  48. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  49. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  50. return vec;
  51. }();
  52. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  53. std::uniform_real_distribution<float> distribution(min, max);
  54. auto & gen = generators[ith];
  55. for (size_t i = start; i < end; i++) {
  56. data[i] = distribution(gen);
  57. }
  58. };
  59. std::vector<std::future<void>> tasks;
  60. tasks.reserve(n_threads);
  61. for (size_t i = 0; i < n_threads; i++) {
  62. size_t start = i*nels/n_threads;
  63. size_t end = (i+1)*nels/n_threads;
  64. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  65. }
  66. for (auto & t : tasks) {
  67. t.get();
  68. }
  69. }
  70. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  71. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  72. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  73. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  74. // dummy importance matrix
  75. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  76. const float * im = imatrix.data();
  77. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  78. // when the imatrix is optional, we want to test both quantization with and without imatrix
  79. // use one of the random numbers to decide
  80. if (data[0] > 0.5f*(min + max)) {
  81. im = nullptr;
  82. }
  83. }
  84. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  85. {
  86. // parallel quantization by block
  87. size_t blck_size = ggml_blck_size(tensor->type);
  88. size_t n_blocks = nels / blck_size;
  89. auto quantize_thread = [&](size_t start, size_t end) {
  90. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  91. start * blck_size, end - start, blck_size, im);
  92. };
  93. const size_t min_blocks_per_thread = 1;
  94. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  95. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  96. std::vector<std::future<void>> tasks;
  97. tasks.reserve(n_threads);
  98. for (size_t i = 0; i < n_threads; i++) {
  99. size_t start = i*n_blocks/n_threads;
  100. size_t end = (i+1)*n_blocks/n_threads;
  101. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  102. }
  103. for (auto & t : tasks) {
  104. t.get();
  105. }
  106. }
  107. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  108. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  109. // This is going to create some weird integers though.
  110. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  111. } else if (tensor->type == GGML_TYPE_I64) {
  112. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  113. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  114. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  115. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  116. } else {
  117. GGML_ABORT("fatal error");
  118. }
  119. }
  120. // generate an F16 mask where certain blocks are randomly masked with -INF value
  121. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  122. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  123. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  124. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  125. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  126. std::random_device rd;
  127. std::mt19937 gen(rd());
  128. std::uniform_real_distribution<float> dis(min, max);
  129. for (size_t i = 0; i < data_f32.size(); i++) {
  130. data_f32[i] = dis(gen);
  131. }
  132. // block size
  133. const int blck0 = 128;
  134. const int blck1 = 64;
  135. // number of INF blocks
  136. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  137. for (int b = 0; b < n_inf_blocks; b++) {
  138. const int p3 = (rd() % ne3);
  139. const int p2 = (rd() % ne2);
  140. const int p1 = (rd() % ne1);
  141. const int p0 = (rd() % ne0);
  142. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  143. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  144. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  145. data_f32[idx + i0] = -INFINITY;
  146. }
  147. }
  148. }
  149. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  150. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  151. }
  152. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  153. std::vector<float> tv;
  154. tv.reserve(ggml_nelements(t));
  155. std::vector<uint8_t> buf(ggml_nbytes(t));
  156. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  157. const auto * tt = ggml_get_type_traits(t->type);
  158. size_t bs = ggml_blck_size(t->type);
  159. std::vector<float> vq(ggml_blck_size(t->type));
  160. bool quantized = ggml_is_quantized(t->type);
  161. // access elements by index to avoid gaps in views
  162. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  163. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  164. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  165. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  166. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  167. if (t->type == GGML_TYPE_F16) {
  168. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  169. } else if (t->type == GGML_TYPE_BF16) {
  170. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  171. } else if (t->type == GGML_TYPE_F32) {
  172. tv.push_back(*(float *) &buf[i]);
  173. } else if (t->type == GGML_TYPE_I64) {
  174. tv.push_back((float)*(int64_t *) &buf[i]);
  175. } else if (t->type == GGML_TYPE_I32) {
  176. tv.push_back((float)*(int32_t *) &buf[i]);
  177. } else if (t->type == GGML_TYPE_I16) {
  178. tv.push_back((float)*(int16_t *) &buf[i]);
  179. } else if (t->type == GGML_TYPE_I8) {
  180. tv.push_back((float)*(int8_t *) &buf[i]);
  181. } else if (quantized) {
  182. tt->to_float(&buf[i], vq.data(), bs);
  183. tv.insert(tv.end(), vq.begin(), vq.end());
  184. } else {
  185. GGML_ABORT("fatal error");
  186. }
  187. }
  188. }
  189. }
  190. }
  191. return tv;
  192. }
  193. // normalized mean squared error = mse(a, b) / mse(a, 0)
  194. static double nmse(const float * a, const float * b, size_t n) {
  195. double mse_a_b = 0.0;
  196. double mse_a_0 = 0.0;
  197. for (size_t i = 0; i < n; i++) {
  198. float a_i = a[i];
  199. float b_i = b[i];
  200. mse_a_b += (a_i - b_i) * (a_i - b_i);
  201. mse_a_0 += a_i * a_i;
  202. }
  203. return mse_a_b / mse_a_0;
  204. }
  205. // maximum absolute asymmetry between a and b
  206. // asymmetry: (a - b) / (a + b)
  207. // This is more stable than relative error if one of the values fluctuates towards zero.
  208. // n: number of values to compare.
  209. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  210. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  211. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  212. double sum = 0.0f;
  213. size_t nvalid = 0;
  214. for (size_t i = 0; i < n; i++) {
  215. if (!expected_vals.empty()) {
  216. bool matches_any = false;
  217. for (const float & ev : expected_vals) {
  218. if (fabsf(a[i] - ev) < 1e-3f) {
  219. matches_any = true;
  220. break;
  221. }
  222. }
  223. if (!matches_any) {
  224. continue;
  225. }
  226. }
  227. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  228. sum += fabsf(asymm);
  229. nvalid++;
  230. }
  231. return sum/nvalid;
  232. }
  233. // utils for printing the variables of the test cases
  234. template<typename T>
  235. static std::string var_to_str(const T & x) {
  236. return std::to_string(x);
  237. }
  238. template<typename T, size_t N>
  239. static std::string var_to_str(const T (&x)[N]) {
  240. std::string s = "[";
  241. for (size_t i = 0; i < N; i++) {
  242. if (i > 0) {
  243. s += ",";
  244. }
  245. s += var_to_str(x[i]);
  246. }
  247. s += "]";
  248. return s;
  249. }
  250. template<typename T, size_t N>
  251. static std::string var_to_str(const std::array<T, N> & x) {
  252. std::string s = "[";
  253. for (size_t i = 0; i < N; i++) {
  254. if (i > 0) {
  255. s += ",";
  256. }
  257. s += var_to_str(x[i]);
  258. }
  259. s += "]";
  260. return s;
  261. }
  262. static std::string var_to_str(ggml_type type) {
  263. return ggml_type_name(type);
  264. }
  265. static std::string var_to_str(ggml_prec prec) {
  266. return prec == GGML_PREC_F32 ? "f32" : "def";
  267. }
  268. static std::string var_to_str(ggml_op_pool pool) {
  269. switch (pool) {
  270. case GGML_OP_POOL_AVG: return "avg";
  271. case GGML_OP_POOL_MAX: return "max";
  272. default: return std::to_string(pool);
  273. }
  274. }
  275. static std::string var_to_str(ggml_scale_mode mode) {
  276. switch (mode) {
  277. case GGML_SCALE_MODE_NEAREST: return "nearest";
  278. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  279. default: return std::to_string(mode);
  280. }
  281. }
  282. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  283. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  284. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  285. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  286. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  287. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  288. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  289. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  290. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  291. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  292. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  293. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  294. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  295. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  296. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  297. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  298. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  299. #ifdef GGML_USE_SYCL
  300. static bool inline _isinf(float f) {
  301. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  302. }
  303. #else
  304. static bool inline _isinf(float f) { return std::isinf(f); }
  305. #endif
  306. // accept FLT_MAX as infinity
  307. static bool isinf_or_max(float f) {
  308. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  309. }
  310. static bool ggml_is_view_op(enum ggml_op op) {
  311. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  312. }
  313. enum test_mode {
  314. MODE_TEST,
  315. MODE_PERF,
  316. MODE_GRAD,
  317. MODE_SUPPORT,
  318. };
  319. // Output format support similar to llama-bench
  320. enum output_formats { CONSOLE, SQL, CSV };
  321. static const char * output_format_str(output_formats format) {
  322. switch (format) {
  323. case CONSOLE:
  324. return "console";
  325. case SQL:
  326. return "sql";
  327. case CSV:
  328. return "csv";
  329. default:
  330. GGML_ABORT("invalid output format");
  331. }
  332. }
  333. static bool output_format_from_str(const std::string & s, output_formats & format) {
  334. if (s == "console") {
  335. format = CONSOLE;
  336. } else if (s == "sql") {
  337. format = SQL;
  338. } else if (s == "csv") {
  339. format = CSV;
  340. } else {
  341. return false;
  342. }
  343. return true;
  344. }
  345. // Test result structure for SQL output
  346. struct test_result {
  347. std::string test_time;
  348. std::string build_commit;
  349. std::string backend_name;
  350. std::string op_name;
  351. std::string op_params;
  352. std::string test_mode;
  353. bool supported;
  354. bool passed;
  355. std::string error_message;
  356. double time_us;
  357. double flops;
  358. double bandwidth_gb_s;
  359. size_t memory_kb;
  360. int n_runs;
  361. std::string device_description;
  362. std::string backend_reg_name;
  363. test_result() {
  364. // Initialize with default values
  365. time_us = 0.0;
  366. flops = 0.0;
  367. bandwidth_gb_s = 0.0;
  368. memory_kb = 0;
  369. n_runs = 0;
  370. supported = false;
  371. passed = false;
  372. // Set test time
  373. time_t t = time(NULL);
  374. char buf[32];
  375. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  376. test_time = buf;
  377. // Set build info
  378. build_commit = ggml_commit();
  379. }
  380. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  381. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  382. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  383. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  384. backend_name(backend_name),
  385. op_name(op_name),
  386. op_params(op_params),
  387. test_mode(test_mode),
  388. supported(supported),
  389. passed(passed),
  390. error_message(error_message),
  391. time_us(time_us),
  392. flops(flops),
  393. bandwidth_gb_s(bandwidth_gb_s),
  394. memory_kb(memory_kb),
  395. n_runs(n_runs),
  396. device_description(device_description),
  397. backend_reg_name(backend_reg_name) {
  398. // Set test time
  399. time_t t = time(NULL);
  400. char buf[32];
  401. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  402. test_time = buf;
  403. // Set build info
  404. build_commit = ggml_commit();
  405. }
  406. static const std::vector<std::string> & get_fields() {
  407. static const std::vector<std::string> fields = {
  408. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  409. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  410. "device_description", "backend_reg_name"
  411. };
  412. return fields;
  413. }
  414. enum field_type { STRING, BOOL, INT, FLOAT };
  415. static field_type get_field_type(const std::string & field) {
  416. if (field == "supported" || field == "passed") {
  417. return BOOL;
  418. }
  419. if (field == "memory_kb" || field == "n_runs") {
  420. return INT;
  421. }
  422. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  423. return FLOAT;
  424. }
  425. return STRING;
  426. }
  427. std::vector<std::string> get_values() const {
  428. return { test_time,
  429. build_commit,
  430. backend_name,
  431. op_name,
  432. op_params,
  433. test_mode,
  434. std::to_string(supported),
  435. std::to_string(passed),
  436. error_message,
  437. std::to_string(time_us),
  438. std::to_string(flops),
  439. std::to_string(bandwidth_gb_s),
  440. std::to_string(memory_kb),
  441. std::to_string(n_runs),
  442. device_description,
  443. backend_reg_name };
  444. }
  445. };
  446. // Printer classes for different output formats
  447. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  448. struct test_operation_info {
  449. std::string op_name;
  450. std::string op_params;
  451. std::string backend_name;
  452. test_status_t status = test_status_t::OK;
  453. std::string failure_reason;
  454. // Additional information fields that were previously in separate structs
  455. std::string error_component;
  456. std::string error_details;
  457. // Gradient info
  458. int64_t gradient_index = -1;
  459. std::string gradient_param_name;
  460. float gradient_value = 0.0f;
  461. // MAA error info
  462. double maa_error = 0.0;
  463. double maa_threshold = 0.0;
  464. // Flags for different types of information
  465. bool has_error = false;
  466. bool has_gradient_info = false;
  467. bool has_maa_error = false;
  468. bool is_compare_failure = false;
  469. bool is_large_tensor_skip = false;
  470. test_operation_info() = default;
  471. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  472. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  473. op_name(op_name),
  474. op_params(op_params),
  475. backend_name(backend_name),
  476. status(status),
  477. failure_reason(failure_reason) {}
  478. // Set error information
  479. void set_error(const std::string & component, const std::string & details) {
  480. has_error = true;
  481. error_component = component;
  482. error_details = details;
  483. if (status == test_status_t::OK) {
  484. status = test_status_t::FAIL;
  485. }
  486. }
  487. // Set gradient information
  488. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  489. has_gradient_info = true;
  490. gradient_index = index;
  491. gradient_param_name = param_name;
  492. gradient_value = value;
  493. if (status == test_status_t::OK) {
  494. status = test_status_t::FAIL;
  495. }
  496. }
  497. // Set MAA error information
  498. void set_maa_error(double error, double threshold) {
  499. has_maa_error = true;
  500. maa_error = error;
  501. maa_threshold = threshold;
  502. if (status == test_status_t::OK) {
  503. status = test_status_t::FAIL;
  504. }
  505. }
  506. // Set compare failure
  507. void set_compare_failure() {
  508. is_compare_failure = true;
  509. if (status == test_status_t::OK) {
  510. status = test_status_t::FAIL;
  511. }
  512. }
  513. // Set large tensor skip
  514. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  515. };
  516. struct test_summary_info {
  517. size_t tests_passed;
  518. size_t tests_total;
  519. bool is_backend_summary = false; // true for backend summary, false for test summary
  520. test_summary_info() = default;
  521. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  522. tests_passed(tests_passed),
  523. tests_total(tests_total),
  524. is_backend_summary(is_backend_summary) {}
  525. };
  526. struct testing_start_info {
  527. size_t device_count;
  528. testing_start_info() = default;
  529. testing_start_info(size_t device_count) : device_count(device_count) {}
  530. };
  531. struct backend_init_info {
  532. size_t device_index;
  533. size_t total_devices;
  534. std::string device_name;
  535. bool skipped = false;
  536. std::string skip_reason;
  537. std::string description;
  538. size_t memory_total_mb = 0;
  539. size_t memory_free_mb = 0;
  540. bool has_memory_info = false;
  541. backend_init_info() = default;
  542. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  543. const std::string & skip_reason = "", const std::string & description = "",
  544. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  545. device_index(device_index),
  546. total_devices(total_devices),
  547. device_name(device_name),
  548. skipped(skipped),
  549. skip_reason(skip_reason),
  550. description(description),
  551. memory_total_mb(memory_total_mb),
  552. memory_free_mb(memory_free_mb),
  553. has_memory_info(has_memory_info) {}
  554. };
  555. struct backend_status_info {
  556. std::string backend_name;
  557. test_status_t status;
  558. backend_status_info() = default;
  559. backend_status_info(const std::string & backend_name, test_status_t status) :
  560. backend_name(backend_name),
  561. status(status) {}
  562. };
  563. struct overall_summary_info {
  564. size_t backends_passed;
  565. size_t backends_total;
  566. bool all_passed;
  567. overall_summary_info() = default;
  568. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  569. backends_passed(backends_passed),
  570. backends_total(backends_total),
  571. all_passed(all_passed) {}
  572. };
  573. struct printer {
  574. virtual ~printer() {}
  575. FILE * fout = stdout;
  576. virtual void print_header() {}
  577. virtual void print_test_result(const test_result & result) = 0;
  578. virtual void print_footer() {}
  579. virtual void print_operation(const test_operation_info & info) { (void) info; }
  580. virtual void print_summary(const test_summary_info & info) { (void) info; }
  581. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  582. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  583. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  584. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  585. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  586. };
  587. struct console_printer : public printer {
  588. void print_test_result(const test_result & result) override {
  589. if (result.test_mode == "test") {
  590. print_test_console(result);
  591. } else if (result.test_mode == "perf") {
  592. print_perf_console(result);
  593. } else if (result.test_mode == "support") {
  594. print_support_console(result);
  595. }
  596. }
  597. void print_operation(const test_operation_info & info) override {
  598. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  599. fflush(stdout);
  600. // Handle large tensor skip first
  601. if (info.is_large_tensor_skip) {
  602. printf("skipping large tensors for speed \n");
  603. return;
  604. }
  605. // Handle not supported status
  606. if (info.status == test_status_t::NOT_SUPPORTED) {
  607. if (!info.failure_reason.empty()) {
  608. printf("not supported [%s]\n", info.failure_reason.c_str());
  609. } else {
  610. printf("not supported [%s]\n", info.backend_name.c_str());
  611. }
  612. return;
  613. }
  614. // Handle errors and additional information
  615. if (info.has_error) {
  616. if (info.error_component == "allocation") {
  617. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  618. } else if (info.error_component == "backend") {
  619. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  620. } else {
  621. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  622. }
  623. }
  624. // Handle gradient info
  625. if (info.has_gradient_info) {
  626. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  627. info.gradient_param_name.c_str(), info.gradient_value);
  628. }
  629. // Handle MAA error
  630. if (info.has_maa_error) {
  631. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  632. }
  633. // Handle compare failure
  634. if (info.is_compare_failure) {
  635. printf("compare failed ");
  636. }
  637. // Print final status
  638. if (info.status == test_status_t::OK) {
  639. printf("\033[1;32mOK\033[0m\n");
  640. } else {
  641. printf("\033[1;31mFAIL\033[0m\n");
  642. }
  643. }
  644. void print_summary(const test_summary_info & info) override {
  645. if (info.is_backend_summary) {
  646. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  647. } else {
  648. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  649. }
  650. }
  651. void print_backend_status(const backend_status_info & info) override {
  652. printf(" Backend %s: ", info.backend_name.c_str());
  653. if (info.status == test_status_t::OK) {
  654. printf("\033[1;32mOK\033[0m\n");
  655. } else {
  656. printf("\033[1;31mFAIL\033[0m\n");
  657. }
  658. }
  659. void print_testing_start(const testing_start_info & info) override {
  660. printf("Testing %zu devices\n\n", info.device_count);
  661. }
  662. void print_backend_init(const backend_init_info & info) override {
  663. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  664. if (info.skipped) {
  665. printf(" %s\n", info.skip_reason.c_str());
  666. return;
  667. }
  668. if (!info.description.empty()) {
  669. printf(" Device description: %s\n", info.description.c_str());
  670. }
  671. if (info.has_memory_info) {
  672. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  673. }
  674. printf("\n");
  675. }
  676. void print_overall_summary(const overall_summary_info & info) override {
  677. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  678. if (info.all_passed) {
  679. printf("\033[1;32mOK\033[0m\n");
  680. } else {
  681. printf("\033[1;31mFAIL\033[0m\n");
  682. }
  683. }
  684. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  685. if (failed_tests.empty()) {
  686. return;
  687. }
  688. printf("\nFailing tests:\n");
  689. for (const auto & test_name : failed_tests) {
  690. printf(" %s\n", test_name.c_str());
  691. }
  692. }
  693. private:
  694. void print_test_console(const test_result & result) {
  695. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  696. fflush(stdout);
  697. if (!result.supported) {
  698. printf("not supported [%s] ", result.backend_name.c_str());
  699. printf("\n");
  700. return;
  701. }
  702. if (result.passed) {
  703. printf("\033[1;32mOK\033[0m\n");
  704. } else {
  705. printf("\033[1;31mFAIL\033[0m\n");
  706. }
  707. }
  708. void print_perf_console(const test_result & result) {
  709. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  710. fflush(stdout);
  711. if (!result.supported) {
  712. printf("not supported\n");
  713. return;
  714. }
  715. // align while also leaving some margin for variations in parameters
  716. int align = 8;
  717. int last = (len + align - 1) / align * align;
  718. if (last - len < 5) {
  719. last += align;
  720. }
  721. printf("%*s", last - len, "");
  722. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  723. if (result.flops > 0) {
  724. auto format_flops = [](double flops) -> std::string {
  725. char buf[256];
  726. if (flops >= 1e12) {
  727. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  728. } else if (flops >= 1e9) {
  729. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  730. } else if (flops >= 1e6) {
  731. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  732. } else {
  733. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  734. }
  735. return buf;
  736. };
  737. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  738. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  739. format_flops(result.flops).c_str());
  740. } else {
  741. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  742. }
  743. printf("\n");
  744. }
  745. void print_support_console(const test_result & result) {
  746. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  747. fflush(stdout);
  748. if (result.supported) {
  749. printf("\033[1;32mSUPPORTED\033[0m\n");
  750. } else {
  751. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  752. }
  753. }
  754. };
  755. struct sql_printer : public printer {
  756. static std::string get_sql_field_type(const std::string & field) {
  757. switch (test_result::get_field_type(field)) {
  758. case test_result::STRING:
  759. return "TEXT";
  760. case test_result::BOOL:
  761. case test_result::INT:
  762. return "INTEGER";
  763. case test_result::FLOAT:
  764. return "REAL";
  765. default:
  766. GGML_ABORT("invalid field type");
  767. }
  768. }
  769. void print_header() override {
  770. std::vector<std::string> fields = test_result::get_fields();
  771. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  772. for (size_t i = 0; i < fields.size(); i++) {
  773. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  774. i < fields.size() - 1 ? "," : "");
  775. }
  776. fprintf(fout, ");\n\n");
  777. }
  778. void print_test_result(const test_result & result) override {
  779. fprintf(fout, "INSERT INTO test_backend_ops (");
  780. std::vector<std::string> fields = test_result::get_fields();
  781. for (size_t i = 0; i < fields.size(); i++) {
  782. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  783. }
  784. fprintf(fout, ") VALUES (");
  785. std::vector<std::string> values = result.get_values();
  786. for (size_t i = 0; i < values.size(); i++) {
  787. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  788. }
  789. fprintf(fout, ");\n");
  790. }
  791. };
  792. struct csv_printer : public printer {
  793. void print_header() override {
  794. std::vector<std::string> fields = test_result::get_fields();
  795. std::vector<std::string> fields_csv = get_fields_csv();
  796. for (size_t i = 0; i < fields.size(); i++) {
  797. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  798. continue;
  799. }
  800. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  801. }
  802. printf("\n");
  803. }
  804. void print_test_result(const test_result & result) override {
  805. std::vector<std::string> values = result.get_values();
  806. std::vector<std::string> fields = test_result::get_fields();
  807. std::vector<std::string> fields_csv = get_fields_csv();
  808. for (size_t i = 0; i < values.size(); i++) {
  809. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  810. continue;
  811. }
  812. // Escape quotes and wrap in quotes for CSV
  813. std::string escaped_value = values[i];
  814. size_t pos = 0;
  815. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  816. escaped_value.replace(pos, 1, "\"\"");
  817. pos += 2;
  818. }
  819. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  820. }
  821. printf("\n");
  822. }
  823. static std::vector<std::string> get_fields_csv() {
  824. return {
  825. "op_name",
  826. "op_params",
  827. "supported",
  828. "error_message",
  829. "test_mode",
  830. "backend_reg_name",
  831. "backend_name",
  832. };
  833. }
  834. };
  835. static std::unique_ptr<printer> create_printer(output_formats format) {
  836. switch (format) {
  837. case CONSOLE:
  838. return std::make_unique<console_printer>();
  839. case SQL:
  840. return std::make_unique<sql_printer>();
  841. case CSV:
  842. return std::make_unique<csv_printer>();
  843. }
  844. GGML_ABORT("invalid output format");
  845. }
  846. struct test_case {
  847. virtual ~test_case() {}
  848. virtual std::string op_desc(ggml_tensor * t) {
  849. return ggml_op_desc(t);
  850. }
  851. virtual std::string vars() {
  852. return "";
  853. }
  854. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  855. virtual double max_nmse_err() {
  856. return 1e-7;
  857. }
  858. virtual double max_maa_err() {
  859. return 1e-4;
  860. }
  861. virtual float grad_eps() {
  862. return 1e-1f;
  863. }
  864. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  865. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  866. virtual bool grad_precise() {
  867. return false;
  868. }
  869. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  870. virtual int64_t grad_nmax() {
  871. return 10000;
  872. }
  873. // No effect if empty.
  874. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  875. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  876. virtual std::vector<float> grad_expect() {
  877. return {};
  878. }
  879. virtual void initialize_tensors(ggml_context * ctx) {
  880. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  881. init_tensor_uniform(t);
  882. }
  883. }
  884. virtual size_t op_size(ggml_tensor * t) {
  885. size_t size = ggml_nbytes(t);
  886. // add source tensors
  887. for (int i = 0; i < GGML_MAX_SRC; i++) {
  888. if (t->src[i] != NULL) {
  889. size += ggml_nbytes(t->src[i]);
  890. }
  891. }
  892. return size;
  893. }
  894. virtual uint64_t op_flops(ggml_tensor * t) {
  895. GGML_UNUSED(t);
  896. return 0;
  897. }
  898. virtual bool run_whole_graph() { return false; }
  899. ggml_cgraph * gf = nullptr;
  900. ggml_cgraph * gb = nullptr;
  901. static const int sentinel_size = 1024;
  902. test_mode mode;
  903. std::vector<ggml_tensor *> sentinels;
  904. std::string current_op_name;
  905. void add_sentinel(ggml_context * ctx) {
  906. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  907. return;
  908. }
  909. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  910. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  911. sentinels.push_back(sentinel);
  912. }
  913. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  914. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  915. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  916. add_sentinel(ctx);
  917. return t;
  918. }
  919. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  920. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  921. add_sentinel(ctx);
  922. return t;
  923. }
  924. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  925. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  926. add_sentinel(ctx);
  927. return t;
  928. }
  929. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  930. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  931. add_sentinel(ctx);
  932. return t;
  933. }
  934. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  935. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  936. add_sentinel(ctx);
  937. return t;
  938. }
  939. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  940. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  941. if (op_names_filter) {
  942. const auto op_name = op_desc(op);
  943. const auto op_full_name = op_name + "(" + vars() + ")";
  944. std::string_view filter(op_names_filter);
  945. while (!filter.empty()) {
  946. auto comma_pos = filter.find_first_of(',');
  947. const auto lparen_pos = filter.find_first_of('(');
  948. if (lparen_pos < comma_pos) {
  949. auto rparen_pos = filter.find_first_of(')');
  950. comma_pos = filter.find_first_of(',', rparen_pos);
  951. const auto op_filter = filter.substr(0, comma_pos);
  952. if (op_filter == op_full_name) {
  953. return true;
  954. }
  955. } else {
  956. const auto op_filter = filter.substr(0, comma_pos);
  957. if (op_filter == op_name) {
  958. return true;
  959. }
  960. }
  961. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  962. }
  963. return false;
  964. } else {
  965. return true;
  966. }
  967. }
  968. test_status_t eval(ggml_backend_t backend1,
  969. ggml_backend_t backend2,
  970. const char * op_names_filter,
  971. printer * output_printer) {
  972. mode = MODE_TEST;
  973. ggml_init_params params = {
  974. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  975. /* .mem_base = */ NULL,
  976. /* .no_alloc = */ true,
  977. };
  978. ggml_context * ctx = ggml_init(params);
  979. GGML_ASSERT(ctx);
  980. gf = ggml_new_graph(ctx);
  981. // pre-graph sentinel
  982. add_sentinel(ctx);
  983. ggml_tensor * out = build_graph(ctx);
  984. current_op_name = op_desc(out);
  985. if (!matches_filter(out, op_names_filter)) {
  986. //printf(" %s: skipping\n", op_desc(out).c_str());
  987. ggml_free(ctx);
  988. return test_status_t::SKIPPED;
  989. }
  990. // check if the backends support the ops
  991. bool supported = true;
  992. for (ggml_backend_t backend : {backend1, backend2}) {
  993. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  994. if (!ggml_backend_supports_op(backend, t)) {
  995. supported = false;
  996. break;
  997. }
  998. }
  999. }
  1000. if (!supported) {
  1001. // Create test result for unsupported operation
  1002. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1003. false, false, "not supported");
  1004. if (output_printer) {
  1005. output_printer->print_test_result(result);
  1006. }
  1007. ggml_free(ctx);
  1008. return test_status_t::NOT_SUPPORTED;
  1009. }
  1010. // post-graph sentinel
  1011. add_sentinel(ctx);
  1012. // allocate
  1013. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1014. if (buf == NULL) {
  1015. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1016. ggml_free(ctx);
  1017. return test_status_t::FAIL;
  1018. }
  1019. // build graph
  1020. ggml_build_forward_expand(gf, out);
  1021. // add sentinels as graph nodes so that they are checked in the callback
  1022. for (ggml_tensor * sentinel : sentinels) {
  1023. ggml_graph_add_node(gf, sentinel);
  1024. }
  1025. // randomize tensors
  1026. initialize_tensors(ctx);
  1027. // compare
  1028. struct callback_userdata {
  1029. bool ok;
  1030. double max_err;
  1031. ggml_backend_t backend1;
  1032. ggml_backend_t backend2;
  1033. };
  1034. callback_userdata ud {
  1035. true,
  1036. max_nmse_err(),
  1037. backend1,
  1038. backend2
  1039. };
  1040. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1041. callback_userdata * ud = (callback_userdata *) user_data;
  1042. const char * bn1 = ggml_backend_name(ud->backend1);
  1043. const char * bn2 = ggml_backend_name(ud->backend2);
  1044. if (t1->op == GGML_OP_NONE) {
  1045. // sentinels must be unchanged
  1046. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1047. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1048. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1049. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1050. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1051. printf("sentinel mismatch: %s ", t1->name);
  1052. ud->ok = false;
  1053. return true;
  1054. }
  1055. }
  1056. std::vector<float> f1 = tensor_to_float(t1);
  1057. std::vector<float> f2 = tensor_to_float(t2);
  1058. for (size_t i = 0; i < f1.size(); i++) {
  1059. // check for nans
  1060. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1061. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1062. ud->ok = false;
  1063. return true;
  1064. }
  1065. // check for infs: both must be inf of the same sign, or both must be finite
  1066. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1067. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1068. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1069. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1070. ud->ok = false;
  1071. return true;
  1072. }
  1073. } else {
  1074. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1075. ud->ok = false;
  1076. return true;
  1077. }
  1078. }
  1079. }
  1080. double err = nmse(f1.data(), f2.data(), f1.size());
  1081. if (err > ud->max_err) {
  1082. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1083. //for (int i = 0; i < (int) f1.size(); i++) {
  1084. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1085. //}
  1086. //printf("\n");
  1087. //exit(1);
  1088. ud->ok = false;
  1089. }
  1090. return true;
  1091. GGML_UNUSED(index);
  1092. };
  1093. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1094. ggml_backend_buffer_free(buf);
  1095. ggml_free(ctx);
  1096. // Create test result
  1097. bool test_passed = ud.ok && cmp_ok;
  1098. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1099. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1100. error_msg);
  1101. if (output_printer) {
  1102. output_printer->print_test_result(result);
  1103. }
  1104. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1105. }
  1106. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1107. mode = MODE_PERF;
  1108. static const size_t graph_nodes = 8192;
  1109. ggml_init_params params = {
  1110. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1111. /* .mem_base = */ NULL,
  1112. /* .no_alloc = */ true,
  1113. };
  1114. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1115. GGML_ASSERT(ctx);
  1116. ggml_tensor * out = build_graph(ctx.get());
  1117. current_op_name = op_desc(out);
  1118. if (!matches_filter(out, op_names_filter)) {
  1119. //printf(" %s: skipping\n", op_desc(out).c_str());
  1120. return true;
  1121. }
  1122. if (!ggml_backend_supports_op(backend, out)) {
  1123. // Create test result for unsupported performance test
  1124. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1125. "not supported");
  1126. output_printer->print_test_result(result);
  1127. return true;
  1128. }
  1129. // allocate
  1130. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1131. if (buf == NULL) {
  1132. printf("failed to allocate tensors\n");
  1133. return false;
  1134. }
  1135. // randomize tensors
  1136. initialize_tensors(ctx.get());
  1137. // build graph
  1138. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1139. ggml_build_forward_expand(gf, out);
  1140. // warmup run
  1141. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1142. if (status != GGML_STATUS_SUCCESS) {
  1143. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1144. return false;
  1145. }
  1146. // determine number of runs
  1147. int n_runs;
  1148. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1149. if (op_flops(out) > 0) {
  1150. // based on flops
  1151. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1152. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1153. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1154. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1155. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1156. } else {
  1157. // based on memory size
  1158. const size_t GB = 1ULL << 30;
  1159. const size_t target_size_cpu = 8 * GB;
  1160. const size_t target_size_gpu = 32 * GB;
  1161. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1162. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1163. }
  1164. // duplicate the op
  1165. for (int i = 1; i < n_runs; i++) {
  1166. ggml_graph_add_node(gf, out);
  1167. }
  1168. // calculate memory
  1169. size_t mem = n_runs * op_size(out);
  1170. auto tensor_op_size = [](ggml_tensor * t) {
  1171. size_t size = ggml_nbytes(t);
  1172. // add source tensors
  1173. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1174. if (t->src[i] != NULL) {
  1175. size += ggml_nbytes(t->src[i]);
  1176. }
  1177. }
  1178. return size;
  1179. };
  1180. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1181. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1182. continue;
  1183. }
  1184. mem += tensor_op_size(ggml_graph_node(gf, i));
  1185. }
  1186. // run
  1187. int64_t total_time_us = 0;
  1188. int64_t total_mem = 0;
  1189. int total_runs = 0;
  1190. do {
  1191. int64_t start_time = ggml_time_us();
  1192. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1193. if (status != GGML_STATUS_SUCCESS) {
  1194. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1195. return false;
  1196. }
  1197. int64_t end_time = ggml_time_us();
  1198. total_time_us += end_time - start_time;
  1199. total_mem += mem;
  1200. total_runs += n_runs;
  1201. } while (total_time_us < 1000*1000); // run for at least 1 second
  1202. // Create test result
  1203. double avg_time_us = (double) total_time_us / total_runs;
  1204. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1205. double calculated_bandwidth =
  1206. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1207. size_t calculated_memory_kb = op_size(out) / 1024;
  1208. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1209. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1210. if (output_printer) {
  1211. output_printer->print_test_result(result);
  1212. }
  1213. return true;
  1214. }
  1215. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1216. mode = MODE_SUPPORT;
  1217. static const size_t graph_nodes = 8192;
  1218. ggml_init_params params = {
  1219. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1220. /* .mem_base = */ NULL,
  1221. /* .no_alloc = */ true,
  1222. };
  1223. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1224. GGML_ASSERT(ctx);
  1225. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1226. ggml_tensor * out = build_graph(ctx.get());
  1227. current_op_name = op_desc(out);
  1228. if (!matches_filter(out, op_names_filter)) {
  1229. return true;
  1230. }
  1231. bool supported = ggml_backend_supports_op(backend, out);
  1232. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1233. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1234. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1235. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1236. output_printer->print_test_result(result);
  1237. return true;
  1238. }
  1239. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1240. mode = MODE_GRAD;
  1241. const std::vector<float> expect = grad_expect();
  1242. ggml_init_params params = {
  1243. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1244. /* .mem_base = */ NULL,
  1245. /* .no_alloc = */ true,
  1246. };
  1247. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1248. GGML_ASSERT(ctx);
  1249. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1250. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1251. ggml_tensor * out = build_graph(ctx.get());
  1252. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1253. return true;
  1254. }
  1255. if (out->type != GGML_TYPE_F32) {
  1256. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1257. test_status_t::NOT_SUPPORTED,
  1258. out->name + std::string("->type != FP32")));
  1259. return true;
  1260. }
  1261. // Print operation info first
  1262. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1263. // check if the backend supports the ops
  1264. bool supported = true;
  1265. bool any_params = false;
  1266. std::string failure_reason;
  1267. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1268. if (!ggml_backend_supports_op(backend, t)) {
  1269. supported = false;
  1270. failure_reason = ggml_backend_name(backend);
  1271. break;
  1272. }
  1273. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1274. any_params = true;
  1275. if (t->type != GGML_TYPE_F32) {
  1276. supported = false;
  1277. failure_reason = std::string(t->name) + "->type != FP32";
  1278. break;
  1279. }
  1280. }
  1281. }
  1282. if (!any_params) {
  1283. supported = false;
  1284. failure_reason = op_desc(out);
  1285. }
  1286. if (!supported) {
  1287. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1288. test_status_t::NOT_SUPPORTED, failure_reason));
  1289. return true;
  1290. }
  1291. int64_t ngrads = 0;
  1292. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1293. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1294. ngrads += ggml_nelements(t);
  1295. }
  1296. }
  1297. if (ngrads > grad_nmax()) {
  1298. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1299. info.set_large_tensor_skip();
  1300. output_printer->print_operation(info);
  1301. return true;
  1302. }
  1303. if (!ggml_is_scalar(out)) {
  1304. out = ggml_sum(ctx.get(), out);
  1305. ggml_set_name(out, "sum_of_out");
  1306. }
  1307. ggml_set_loss(out);
  1308. ggml_build_forward_expand(gf, out);
  1309. ggml_graph_cpy(gf, gb);
  1310. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1311. if (expect.size() != 1 || expect[0] != 0.0f) {
  1312. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1313. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1314. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1315. }
  1316. }
  1317. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1318. if (!ggml_backend_supports_op(backend, t)) {
  1319. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1320. test_status_t::NOT_SUPPORTED,
  1321. ggml_backend_name(backend)));
  1322. supported = false;
  1323. break;
  1324. }
  1325. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1326. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1327. test_status_t::NOT_SUPPORTED,
  1328. std::string(t->name) + "->type != FP32"));
  1329. supported = false;
  1330. break;
  1331. }
  1332. }
  1333. if (!supported) {
  1334. return true;
  1335. }
  1336. // allocate
  1337. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1338. if (buf == NULL) {
  1339. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1340. info.set_error("allocation", "");
  1341. output_printer->print_operation(info);
  1342. return false;
  1343. }
  1344. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1345. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1346. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1347. if (status != GGML_STATUS_SUCCESS) {
  1348. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1349. return false;
  1350. }
  1351. status = ggml_backend_graph_compute(backend, gb);
  1352. if (status != GGML_STATUS_SUCCESS) {
  1353. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1354. return false;
  1355. }
  1356. bool ok = true;
  1357. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1358. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1359. continue;
  1360. }
  1361. const char * bn = ggml_backend_name(backend);
  1362. const int64_t ne = ggml_nelements(t);
  1363. std::vector<float> ga;
  1364. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1365. if (grad) {
  1366. ga = tensor_to_float(grad);
  1367. } else {
  1368. ga.resize(ne); // default value is 0.0f
  1369. }
  1370. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1371. // check for nans
  1372. if (!std::isfinite(ga[i])) {
  1373. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1374. info.set_gradient_info(i, bn, ga[i]);
  1375. output_printer->print_operation(info);
  1376. ok = false;
  1377. break;
  1378. }
  1379. }
  1380. if (!ok) {
  1381. break;
  1382. }
  1383. std::vector<float> gn(ne); // gradient numeric
  1384. GGML_ASSERT(ga.size() == gn.size());
  1385. std::vector<float> x0 = tensor_to_float(t); // original t data
  1386. GGML_ASSERT(ggml_is_scalar(out));
  1387. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1388. const float eps = grad_eps();
  1389. for (int64_t i = 0; i < ne; ++i) {
  1390. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1391. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1392. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1393. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1394. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1395. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1396. status = ggml_backend_graph_compute(backend, gf);
  1397. if (status != GGML_STATUS_SUCCESS) {
  1398. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1399. return false;
  1400. }
  1401. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1402. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1403. status = ggml_backend_graph_compute(backend, gf);
  1404. if (status != GGML_STATUS_SUCCESS) {
  1405. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1406. return false;
  1407. }
  1408. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1409. if (grad_precise()) {
  1410. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1411. status = ggml_backend_graph_compute(backend, gf);
  1412. if (status != GGML_STATUS_SUCCESS) {
  1413. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1414. return false;
  1415. }
  1416. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1417. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1418. status = ggml_backend_graph_compute(backend, gf);
  1419. if (status != GGML_STATUS_SUCCESS) {
  1420. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1421. return false;
  1422. }
  1423. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1424. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1425. } else {
  1426. gn[i] = (fu - fd) / (2.0f*eps);
  1427. }
  1428. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1429. }
  1430. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1431. if (err > max_maa_err()) {
  1432. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1433. info.set_maa_error(err, max_maa_err());
  1434. output_printer->print_operation(info);
  1435. ok = false;
  1436. break;
  1437. }
  1438. if (!ok) {
  1439. break;
  1440. }
  1441. }
  1442. // Create final test result
  1443. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1444. if (!ok) {
  1445. final_info.set_compare_failure();
  1446. }
  1447. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1448. output_printer->print_operation(final_info);
  1449. if (ok) {
  1450. return true;
  1451. }
  1452. return false;
  1453. }
  1454. };
  1455. // ###################################
  1456. // ## Section 2: GGML Op Defintions ##
  1457. // ###################################
  1458. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1459. // GGML_OP_EXAMPLE
  1460. struct test_example : public test_case {
  1461. // Always define these 2 or variants thereof:
  1462. const ggml_type type; // The type of the input tensors.
  1463. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1464. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1465. // Or they may need additional parameters.
  1466. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1467. // In most cases these are just the properties of the struct that you defined above.
  1468. // This is needed for info prints.
  1469. std::string vars() override {
  1470. return VARS_TO_STR2(type, ne);
  1471. }
  1472. // Define a constructor for the struct.
  1473. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1474. // and just use initializer lists.
  1475. test_example(ggml_type type = GGML_TYPE_F32,
  1476. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1477. : type(type), ne(ne) {}
  1478. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1479. ggml_tensor * build_graph(ggml_context * ctx) override {
  1480. // Step 1: create input tensors that don't depend on any other tensors:
  1481. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1482. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1483. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1484. ggml_set_name(b, "b");
  1485. // Step 2: use the op that you want to test in the GGML compute graph.
  1486. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1487. ggml_set_name(out, "out");
  1488. // Step 3: return the output tensor.
  1489. return out;
  1490. }
  1491. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1492. // immediately after you create the tensors.
  1493. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1494. };
  1495. // GGML_OP_UNARY
  1496. struct test_unary : public test_case {
  1497. const ggml_unary_op op;
  1498. const ggml_type type;
  1499. const std::array<int64_t, 4> ne_a;
  1500. int v; // view (1 : non-contiguous a)
  1501. std::string vars() override {
  1502. return VARS_TO_STR3(type, ne_a, v);
  1503. }
  1504. test_unary(ggml_unary_op op,
  1505. ggml_type type = GGML_TYPE_F32,
  1506. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1507. int v = 0)
  1508. : op(op), type(type), ne_a(ne_a), v(v) {}
  1509. ggml_tensor * build_graph(ggml_context * ctx) override {
  1510. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1511. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1512. ggml_tensor * a;
  1513. if (v & 1) {
  1514. auto ne = ne_a; ne[0] *= 3;
  1515. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1516. if (grad_supported) {
  1517. ggml_set_param(a);
  1518. }
  1519. ggml_set_name(a, "a");
  1520. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1521. ggml_set_name(a, "view_of_a");
  1522. } else {
  1523. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1524. if (grad_supported) {
  1525. ggml_set_param(a);
  1526. }
  1527. ggml_set_name(a, "a");
  1528. }
  1529. ggml_tensor * out = ggml_unary(ctx, a, op);
  1530. ggml_set_name(out, "out");
  1531. return out;
  1532. }
  1533. void initialize_tensors(ggml_context * ctx) override {
  1534. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1535. // test extended range of values to check for NaNs in GELU
  1536. init_tensor_uniform(t, -150.f, 150.f);
  1537. }
  1538. }
  1539. float grad_eps() override {
  1540. return 15.0f;
  1541. }
  1542. std::vector<float> grad_expect() override {
  1543. if (op == GGML_UNARY_OP_ABS) {
  1544. return {-1.0f, 1.0f};
  1545. }
  1546. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1547. return {0.0f};
  1548. }
  1549. if (op == GGML_UNARY_OP_RELU) {
  1550. return {0.0f, 1.0f};
  1551. }
  1552. return {};
  1553. }
  1554. };
  1555. // GGML_OP_GLU
  1556. struct test_glu : public test_case {
  1557. const ggml_glu_op op;
  1558. const ggml_type type;
  1559. const std::array<int64_t, 4> ne_a;
  1560. int v; // view (1 : non-contiguous a)
  1561. bool swapped;
  1562. std::string vars() override {
  1563. return VARS_TO_STR4(type, ne_a, v, swapped);
  1564. }
  1565. test_glu(ggml_glu_op op,
  1566. ggml_type type = GGML_TYPE_F32,
  1567. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1568. int v = 0,
  1569. bool swapped = false)
  1570. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1571. ggml_tensor * build_graph(ggml_context * ctx) override {
  1572. ggml_tensor * a;
  1573. if (v & 1) {
  1574. auto ne = ne_a; ne[0] *= 3;
  1575. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1576. ggml_set_name(a, "a");
  1577. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1578. ggml_set_name(a, "view_of_a");
  1579. } else {
  1580. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1581. ggml_set_name(a, "a");
  1582. }
  1583. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1584. ggml_set_name(out, "out");
  1585. return out;
  1586. }
  1587. void initialize_tensors(ggml_context * ctx) override {
  1588. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1589. // test extended range of values to check for NaNs in GELU
  1590. init_tensor_uniform(t, -150.f, 150.f);
  1591. }
  1592. }
  1593. };
  1594. struct test_glu_split : public test_case {
  1595. const ggml_glu_op op;
  1596. const ggml_type type;
  1597. const std::array<int64_t, 4> ne_a;
  1598. int v; // view (1 : non-contiguous a)
  1599. std::string vars() override {
  1600. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1601. }
  1602. test_glu_split(ggml_glu_op op,
  1603. ggml_type type = GGML_TYPE_F32,
  1604. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1605. int v = 0)
  1606. : op(op), type(type), ne_a(ne_a), v(v) {}
  1607. ggml_tensor * build_graph(ggml_context * ctx) override {
  1608. ggml_tensor * a;
  1609. ggml_tensor * b;
  1610. if (v & 1) {
  1611. auto ne = ne_a; ne[0] *= 3;
  1612. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1613. ggml_set_param(a);
  1614. ggml_set_name(a, "a");
  1615. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1616. ggml_set_name(a, "view_of_a");
  1617. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1618. ggml_set_param(b);
  1619. ggml_set_name(b, "b");
  1620. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1621. ggml_set_name(a, "view_of_b");
  1622. } else {
  1623. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1624. ggml_set_param(a);
  1625. ggml_set_name(a, "a");
  1626. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1627. ggml_set_param(b);
  1628. ggml_set_name(b, "b");
  1629. }
  1630. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1631. ggml_set_name(out, "out");
  1632. return out;
  1633. }
  1634. void initialize_tensors(ggml_context * ctx) override {
  1635. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1636. // test extended range of values to check for NaNs in GELU
  1637. init_tensor_uniform(t, -150.f, 150.f);
  1638. }
  1639. }
  1640. };
  1641. struct test_swiglu_oai : public test_case {
  1642. const ggml_type type;
  1643. const std::array<int64_t, 4> ne_a;
  1644. int v; // view (1 : non-contiguous a)
  1645. float alpha;
  1646. float limit;
  1647. std::string vars() override {
  1648. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1649. }
  1650. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1651. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1652. int v = 0,
  1653. float alpha = 1.702f,
  1654. float limit = 7.0f)
  1655. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1656. ggml_tensor * build_graph(ggml_context * ctx) override {
  1657. ggml_tensor * a;
  1658. ggml_tensor * b;
  1659. if (v & 1) {
  1660. auto ne = ne_a; ne[0] *= 3;
  1661. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1662. ggml_set_param(a);
  1663. ggml_set_name(a, "a");
  1664. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1665. ggml_set_name(a, "view_of_a");
  1666. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1667. ggml_set_param(b);
  1668. ggml_set_name(b, "b");
  1669. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1670. ggml_set_name(a, "view_of_b");
  1671. } else {
  1672. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1673. ggml_set_param(a);
  1674. ggml_set_name(a, "a");
  1675. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1676. ggml_set_param(b);
  1677. ggml_set_name(b, "b");
  1678. }
  1679. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1680. ggml_set_name(out, "out");
  1681. return out;
  1682. }
  1683. void initialize_tensors(ggml_context * ctx) override {
  1684. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1685. // test extended range of values to check for NaNs in GELU
  1686. init_tensor_uniform(t, -150.f, 150.f);
  1687. }
  1688. }
  1689. };
  1690. // GGML_OP_GET_ROWS
  1691. struct test_get_rows : public test_case {
  1692. const ggml_type type;
  1693. const int n; // cols
  1694. const int m; // rows
  1695. const int r; // rows to get
  1696. const int be1; // batch size
  1697. const int be2; // batch size
  1698. const bool v; // view (non-contiguous src1)
  1699. std::string vars() override {
  1700. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1701. }
  1702. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1703. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1704. ggml_tensor * build_graph(ggml_context * ctx) override {
  1705. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1706. ggml_set_name(in, "in");
  1707. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1708. ggml_set_name(rows, "rows");
  1709. if (v) {
  1710. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1711. ggml_set_name(rows, "view_of_rows");
  1712. }
  1713. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1714. if (grad_supported) {
  1715. ggml_set_param(in);
  1716. // rows is a constant input -> no gradients
  1717. }
  1718. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1719. ggml_set_name(out, "out");
  1720. return out;
  1721. }
  1722. void initialize_tensors(ggml_context * ctx) override {
  1723. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1724. if (t->type == GGML_TYPE_I32) {
  1725. if (ggml_is_view_op(t->op)) { continue; }
  1726. // rows
  1727. std::vector<int> data(r*be1*be2);
  1728. for (int i = 0; i < r*be1*be2; i++) {
  1729. data[i] = rand() % m;
  1730. }
  1731. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1732. } else {
  1733. init_tensor_uniform(t);
  1734. }
  1735. }
  1736. }
  1737. };
  1738. // GGML_OP_GET_ROWS_BACK
  1739. struct test_get_rows_back : public test_case {
  1740. const ggml_type type;
  1741. const int n; // cols
  1742. const int m; // rows
  1743. const int r; // rows to get
  1744. const int b; // batch size
  1745. const bool v; // view (non-contiguous src1)
  1746. std::string vars() override {
  1747. return VARS_TO_STR6(type, n, m, r, b, v);
  1748. }
  1749. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1750. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1751. ggml_tensor * build_graph(ggml_context * ctx) override {
  1752. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1753. ggml_set_name(in_forward, "in_forward");
  1754. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1755. ggml_set_name(rows, "rows");
  1756. if (v) {
  1757. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1758. ggml_set_name(rows, "view_of_rows");
  1759. }
  1760. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1761. ggml_set_name(grad, "grad");
  1762. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1763. ggml_set_name(out, "out");
  1764. return out;
  1765. }
  1766. void initialize_tensors(ggml_context * ctx) override {
  1767. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1768. if (t->type == GGML_TYPE_I32) {
  1769. if (ggml_is_view_op(t->op)) { continue; }
  1770. // rows
  1771. std::vector<int> data(r*b);
  1772. for (int i = 0; i < r*b; i++) {
  1773. data[i] = rand() % m;
  1774. }
  1775. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1776. } else {
  1777. init_tensor_uniform(t);
  1778. }
  1779. }
  1780. }
  1781. };
  1782. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1783. std::random_device rd;
  1784. std::default_random_engine rng(rd());
  1785. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1786. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1787. // generate a shuffled subset of row indices
  1788. std::vector<int64_t> data(num_rows);
  1789. for (int i = 0; i < num_rows; i++) {
  1790. data[i] = i;
  1791. }
  1792. std::shuffle(data.begin(), data.end(), rng);
  1793. data.resize(t->ne[0]);
  1794. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1795. if (t->type == GGML_TYPE_I32) {
  1796. // TODO: Make a template or something
  1797. std::vector<int32_t> data_i32(t->ne[0]);
  1798. for (int i = 0; i < t->ne[0]; i++) {
  1799. data_i32[i] = static_cast<int32_t>(data[i]);
  1800. }
  1801. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1802. } else {
  1803. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1804. }
  1805. }
  1806. }
  1807. }
  1808. // GGML_OP_SET_ROWS
  1809. struct test_set_rows : public test_case {
  1810. const ggml_type type;
  1811. const ggml_type type_idx;
  1812. const std::array<int64_t, 4> ne;
  1813. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1814. const int r; // rows to set
  1815. const bool v; // view (non-contiguous src1)
  1816. std::string vars() override {
  1817. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1818. }
  1819. test_set_rows(ggml_type type,
  1820. ggml_type type_idx,
  1821. std::array<int64_t, 4> ne,
  1822. std::array<int, 2> nr23,
  1823. int r, bool v = false)
  1824. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1825. ggml_tensor * build_graph(ggml_context * ctx) override {
  1826. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1827. ggml_set_name(dst, "dst");
  1828. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1829. ggml_set_name(src, "src");
  1830. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1831. ggml_set_name(row_idxs, "row_idxs");
  1832. if (v) {
  1833. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1834. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1835. ggml_set_name(row_idxs, "view_of_rows");
  1836. }
  1837. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1838. ggml_set_name(out, "out");
  1839. return out;
  1840. }
  1841. void initialize_tensors(ggml_context * ctx) override {
  1842. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1843. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1844. if (ggml_is_view_op(t->op)) {
  1845. continue;
  1846. }
  1847. init_set_rows_row_ids(t, ne[1]);
  1848. } else {
  1849. init_tensor_uniform(t);
  1850. }
  1851. }
  1852. }
  1853. double max_nmse_err() override {
  1854. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1855. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1856. // estimate what the max nmse error would be if one quantized value is
  1857. // off by one. The test values are distributed in [-1,1], so it'll be
  1858. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1859. // which is roughly 0.25 times the number of elements.
  1860. double err_estimate = 1.0f/8.0f;
  1861. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1862. err_estimate /= 2.0f;
  1863. }
  1864. if (type == GGML_TYPE_Q8_0) {
  1865. err_estimate /= 8.0f;
  1866. }
  1867. err_estimate *= err_estimate;
  1868. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1869. return err_estimate;
  1870. }
  1871. return 1e-7;
  1872. }
  1873. };
  1874. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1875. struct test_rope_set_rows : public test_case {
  1876. const ggml_type type;
  1877. const ggml_type type_idx;
  1878. const std::array<int64_t, 4> ne;
  1879. int mode;
  1880. std::string vars() override {
  1881. return VARS_TO_STR4(type, type_idx, ne, mode);
  1882. }
  1883. std::string op_desc(ggml_tensor * t) override {
  1884. GGML_UNUSED(t);
  1885. return "ROPE_SET_ROWS";
  1886. }
  1887. bool run_whole_graph() override { return true; }
  1888. test_rope_set_rows(ggml_type type,
  1889. ggml_type type_idx,
  1890. std::array<int64_t, 4> ne,
  1891. int mode)
  1892. : type(type), type_idx(type_idx), ne(ne), mode(mode) {}
  1893. ggml_tensor * build_graph(ggml_context * ctx) override {
  1894. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  1895. ggml_set_name(src, "src");
  1896. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  1897. ggml_tensor * rope = ggml_rope(ctx, src, pos, ne[0], mode);
  1898. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  1899. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  1900. ggml_set_name(dst, "dst");
  1901. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne[2], 1, 1);
  1902. ggml_set_name(row_idxs, "row_idxs");
  1903. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  1904. ggml_set_name(out, "out");
  1905. return out;
  1906. }
  1907. void initialize_tensors(ggml_context * ctx) override {
  1908. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1909. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1910. if (ggml_is_view_op(t->op)) {
  1911. continue;
  1912. }
  1913. init_set_rows_row_ids(t, ne[2]);
  1914. } else {
  1915. init_tensor_uniform(t);
  1916. }
  1917. }
  1918. }
  1919. };
  1920. // GGML_OP_ARGMAX
  1921. struct test_argmax : public test_case {
  1922. const ggml_type type;
  1923. const std::array<int64_t, 4> ne;
  1924. std::string vars() override {
  1925. return VARS_TO_STR2(type, ne);
  1926. }
  1927. test_argmax(ggml_type type = GGML_TYPE_F32,
  1928. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1929. : type(type), ne(ne) {}
  1930. ggml_tensor * build_graph(ggml_context * ctx) override {
  1931. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1932. ggml_set_name(a, "a");
  1933. ggml_tensor * out = ggml_argmax(ctx, a);
  1934. ggml_set_name(out, "out");
  1935. return out;
  1936. }
  1937. void initialize_tensors(ggml_context * ctx) override {
  1938. std::random_device rd;
  1939. std::default_random_engine rng(rd());
  1940. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1941. if (t->type == GGML_TYPE_F32) {
  1942. // initialize with unique values to avoid ties
  1943. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1944. std::vector<float> data(t->ne[0]);
  1945. for (int i = 0; i < t->ne[0]; i++) {
  1946. data[i] = i;
  1947. }
  1948. std::shuffle(data.begin(), data.end(), rng);
  1949. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1950. }
  1951. } else {
  1952. init_tensor_uniform(t);
  1953. }
  1954. }
  1955. }
  1956. double max_nmse_err() override {
  1957. return 0.0;
  1958. }
  1959. };
  1960. // GGML_OP_COUNT_EQUAL
  1961. struct test_count_equal : public test_case {
  1962. const ggml_type type;
  1963. const std::array<int64_t, 4> ne;
  1964. std::string vars() override {
  1965. return VARS_TO_STR2(type, ne);
  1966. }
  1967. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1968. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1969. : type(type), ne(ne) {}
  1970. ggml_tensor * build_graph(ggml_context * ctx) override {
  1971. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1972. ggml_set_name(a, "a");
  1973. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1974. ggml_set_name(a_argmax, "a_argmax");
  1975. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1976. ggml_set_name(b, "b");
  1977. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1978. ggml_set_name(b_argmax, "b_argmax");
  1979. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1980. ggml_set_name(out, "out");
  1981. return out;
  1982. }
  1983. double max_nmse_err() override {
  1984. return 0.0;
  1985. }
  1986. void initialize_tensors(ggml_context * ctx) override {
  1987. std::random_device rd;
  1988. std::default_random_engine rng(rd());
  1989. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1990. if (t->type == GGML_TYPE_F32) {
  1991. // initialize with unique values to avoid ties
  1992. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1993. std::vector<float> data(t->ne[0]);
  1994. for (int i = 0; i < t->ne[0]; i++) {
  1995. data[i] = i;
  1996. }
  1997. std::shuffle(data.begin(), data.end(), rng);
  1998. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1999. }
  2000. } else {
  2001. init_tensor_uniform(t);
  2002. }
  2003. }
  2004. }
  2005. };
  2006. // GGML_OP_REPEAT
  2007. struct test_repeat : public test_case {
  2008. const ggml_type type;
  2009. const std::array<int64_t, 4> ne;
  2010. const std::array<int, 4> nr;
  2011. std::string vars() override {
  2012. return VARS_TO_STR3(type, ne, nr);
  2013. }
  2014. size_t op_size(ggml_tensor * t) override {
  2015. return ggml_nbytes(t) * 2;
  2016. }
  2017. test_repeat(ggml_type type = GGML_TYPE_F32,
  2018. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2019. std::array<int, 4> nr = {2, 2, 2, 2})
  2020. : type(type), ne(ne), nr(nr) {}
  2021. ggml_tensor * build_graph(ggml_context * ctx) override {
  2022. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2023. ggml_set_name(target, "target");
  2024. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2025. ggml_set_param(src);
  2026. ggml_set_name(src, "src");
  2027. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2028. ggml_set_name(out, "out");
  2029. return out;
  2030. }
  2031. };
  2032. // GGML_OP_REPEAT_BACK
  2033. struct test_repeat_back : public test_case {
  2034. const ggml_type type;
  2035. const std::array<int64_t, 4> ne;
  2036. const std::array<int, 4> nr;
  2037. const bool v; // whether src is a noncontiguous view
  2038. std::string vars() override {
  2039. return VARS_TO_STR4(type, ne, nr, v);
  2040. }
  2041. size_t op_size(ggml_tensor * t) override {
  2042. return ggml_nbytes(t) * 2;
  2043. }
  2044. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2045. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2046. std::array<int, 4> nr = {2, 2, 2, 2},
  2047. bool v = false)
  2048. : type(type), ne(ne), nr(nr), v(v) {}
  2049. ggml_tensor * build_graph(ggml_context * ctx) override {
  2050. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2051. ggml_set_name(src, "src");
  2052. if (v) {
  2053. GGML_ASSERT(ne[0] % 2 == 0);
  2054. GGML_ASSERT(ne[1] % 2 == 0);
  2055. GGML_ASSERT(ne[2] % 2 == 0);
  2056. GGML_ASSERT(ne[3] % 2 == 0);
  2057. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2058. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2059. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2060. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2061. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2062. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2063. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2064. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2065. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2066. }
  2067. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2068. ggml_set_name(target, "target");
  2069. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2070. ggml_set_name(out, "out");
  2071. return out;
  2072. }
  2073. };
  2074. // GGML_OP_DUP
  2075. struct test_dup : public test_case {
  2076. const ggml_type type;
  2077. const std::array<int64_t, 4> ne;
  2078. const std::array<int64_t, 4> permute;
  2079. bool _use_permute;
  2080. std::string vars() override {
  2081. std::string v = VARS_TO_STR2(type, ne);
  2082. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2083. return v;
  2084. }
  2085. test_dup(ggml_type type = GGML_TYPE_F32,
  2086. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2087. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2088. : type(type), ne(ne), permute(permute),
  2089. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2090. ggml_tensor * build_graph(ggml_context * ctx) override {
  2091. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2092. ggml_set_param(src);
  2093. ggml_set_name(src, "src");
  2094. if (_use_permute) {
  2095. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2096. ggml_set_name(src, "src_permuted");
  2097. }
  2098. ggml_tensor * out = ggml_dup(ctx, src);
  2099. ggml_set_name(out, "out");
  2100. return out;
  2101. }
  2102. };
  2103. // GGML_OP_SET
  2104. struct test_set : public test_case {
  2105. const ggml_type type_src;
  2106. const ggml_type type_dst;
  2107. const std::array<int64_t, 4> ne;
  2108. const int dim;
  2109. std::string vars() override {
  2110. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2111. }
  2112. size_t op_size(ggml_tensor * t) override {
  2113. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2114. }
  2115. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2116. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2117. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2118. ggml_tensor * build_graph(ggml_context * ctx) override {
  2119. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2120. ggml_set_param(src);
  2121. ggml_set_name(src, "src");
  2122. auto ne_dst = ne;
  2123. for (int i = 0; i < dim; ++i) {
  2124. ne_dst[i] *= 2;
  2125. }
  2126. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2127. ggml_set_param(dst);
  2128. ggml_set_name(dst, "dst");
  2129. size_t offset = 0;
  2130. for (int i = 0; i < dim; ++i) {
  2131. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2132. }
  2133. ggml_tensor * out = ggml_set(ctx, dst, src,
  2134. // The backward pass requires setting a contiguous region:
  2135. src->nb[1], src->nb[2], src->nb[3], offset);
  2136. ggml_set_name(out, "out");
  2137. return out;
  2138. }
  2139. };
  2140. // GGML_OP_CPY
  2141. struct test_cpy : public test_case {
  2142. const ggml_type type_src;
  2143. const ggml_type type_dst;
  2144. const std::array<int64_t, 4> ne;
  2145. const std::array<int64_t, 4> permute_src;
  2146. const std::array<int64_t, 4> permute_dst;
  2147. bool _src_use_permute;
  2148. bool _dst_use_permute;
  2149. std::string vars() override {
  2150. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  2151. }
  2152. double max_nmse_err() override {
  2153. if (type_src == type_dst) {
  2154. return 0.0;
  2155. }
  2156. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2157. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2158. // estimate what the max nmse error would be if one quantized value is
  2159. // off by one. The test values are distributed in [-150,150], so it'll be
  2160. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2161. // which is roughly 0.25*150^2 times the number of elements.
  2162. double err_estimate = 1.0f/8.0f * 150.0f;
  2163. if (type_dst == GGML_TYPE_IQ4_NL) {
  2164. // iq4_nl values are a bit more spread out
  2165. err_estimate *= 2.0f;
  2166. }
  2167. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2168. err_estimate /= 2.0f;
  2169. }
  2170. if (type_dst == GGML_TYPE_Q8_0) {
  2171. err_estimate /= 8.0f;
  2172. }
  2173. err_estimate *= err_estimate;
  2174. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2175. return err_estimate;
  2176. }
  2177. return 1e-6;
  2178. }
  2179. size_t op_size(ggml_tensor * t) override {
  2180. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2181. }
  2182. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2183. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2184. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2185. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  2186. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2187. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2188. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  2189. ggml_tensor * build_graph(ggml_context * ctx) override {
  2190. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2191. ggml_set_param(src);
  2192. ggml_set_name(src, "src");
  2193. if (_src_use_permute) {
  2194. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2195. ggml_set_name(src, "src_permuted");
  2196. }
  2197. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2198. ggml_set_name(dst, "dst");
  2199. if (_dst_use_permute) {
  2200. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2201. ggml_set_name(dst, "dst_permuted");
  2202. }
  2203. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2204. ggml_set_name(out, "out");
  2205. return out;
  2206. }
  2207. void initialize_tensors(ggml_context * ctx) override {
  2208. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2209. // test extended range of values to check if casting between f32 and i32 is consistent
  2210. init_tensor_uniform(t, -150.f, 150.f);
  2211. }
  2212. }
  2213. };
  2214. // GGML_OP_CONT
  2215. struct test_cont : public test_case {
  2216. const ggml_type type;
  2217. const std::array<int64_t, 4> ne;
  2218. std::string vars() override {
  2219. return VARS_TO_STR2(type, ne);
  2220. }
  2221. test_cont(ggml_type type = GGML_TYPE_F32,
  2222. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2223. : type(type), ne(ne) {}
  2224. ggml_tensor * build_graph(ggml_context * ctx) override {
  2225. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2226. ggml_set_param(src);
  2227. ggml_set_name(src, "src");
  2228. src = ggml_transpose(ctx, src);
  2229. ggml_set_name(src, "src_transposed");
  2230. ggml_tensor * out = ggml_cont(ctx, src);
  2231. ggml_set_name(out, "out");
  2232. return out;
  2233. }
  2234. };
  2235. // GGML_OP_ADD
  2236. // GGML_OP_SUB
  2237. // GGML_OP_MUL
  2238. // GGML_OP_DIV
  2239. struct test_bin_bcast : public test_case {
  2240. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2241. op_t op;
  2242. const ggml_type type;
  2243. const std::array<int64_t, 4> ne;
  2244. const std::array<int, 4> nr;
  2245. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2246. bool run_whole_graph() override { return true; }
  2247. std::string vars() override {
  2248. return VARS_TO_STR4(type, ne, nr, nf);
  2249. }
  2250. size_t op_size(ggml_tensor * t) override {
  2251. return ggml_nbytes(t) * 3;
  2252. }
  2253. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2254. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2255. std::array<int, 4> nr = {1, 2, 1, 1},
  2256. int nf = 1)
  2257. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2258. ggml_tensor * build_graph(ggml_context * ctx) override {
  2259. GGML_ASSERT(nf <= 16);
  2260. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2261. ggml_set_name(a, "a");
  2262. ggml_tensor * b[16];
  2263. for (int i = 0; i < nf; ++i) {
  2264. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2265. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2266. }
  2267. // The backward pass supports broadcasting only for GGML_ADD:
  2268. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2269. if (grad_supported) {
  2270. ggml_set_param(a);
  2271. ggml_set_param(b[0]);
  2272. }
  2273. ggml_tensor * out = a;
  2274. for (int i = 0; i < nf; ++i) {
  2275. out = op(ctx, out, b[i]);
  2276. }
  2277. ggml_set_name(out, "out");
  2278. return out;
  2279. }
  2280. void initialize_tensors(ggml_context * ctx) override {
  2281. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2282. if (op == ggml_mul || op == ggml_div) {
  2283. // MUL and DIV have numerical issues around zero:
  2284. init_tensor_uniform(t, 0.9f, 1.1f);
  2285. } else {
  2286. init_tensor_uniform(t);
  2287. }
  2288. }
  2289. }
  2290. float grad_eps() override {
  2291. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2292. }
  2293. bool grad_precise() override {
  2294. return op == ggml_div;
  2295. }
  2296. double max_maa_err() override {
  2297. return op == ggml_add ? 1e-4 : 1e-3;
  2298. }
  2299. };
  2300. // GGML_OP_ADD_ID
  2301. struct test_add_id : public test_case {
  2302. const ggml_type type_a;
  2303. const ggml_type type_b;
  2304. const int64_t n_embd;
  2305. const int64_t n_experts;
  2306. const int64_t n_experts_used;
  2307. const int64_t n_token;
  2308. std::string vars() override {
  2309. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2310. }
  2311. size_t op_size(ggml_tensor * t) override {
  2312. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2313. }
  2314. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2315. ggml_type type_b = GGML_TYPE_F32,
  2316. int64_t n_embd = 128,
  2317. int64_t n_experts = 16,
  2318. int64_t n_experts_used = 8,
  2319. int64_t n_token = 10)
  2320. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2321. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2322. ggml_tensor * build_graph(ggml_context * ctx) override {
  2323. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2324. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2325. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2326. if (n_experts_used != n_experts) {
  2327. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2328. ggml_set_name(ids, "view_of_ids");
  2329. }
  2330. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2331. ggml_set_name(out, "out");
  2332. return out;
  2333. }
  2334. void initialize_tensors(ggml_context * ctx) override {
  2335. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2336. if (t->type == GGML_TYPE_I32) {
  2337. if (ggml_is_view_op(t->op)) { continue; }
  2338. std::random_device rd;
  2339. std::default_random_engine rng(rd());
  2340. // ids
  2341. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2342. std::vector<int32_t> data(t->ne[0]);
  2343. for (int i = 0; i < t->ne[0]; i++) {
  2344. data[i] = i % n_experts;
  2345. }
  2346. std::shuffle(data.begin(), data.end(), rng);
  2347. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2348. }
  2349. } else {
  2350. init_tensor_uniform(t);
  2351. }
  2352. }
  2353. }
  2354. };
  2355. // GGML_OP_ADD1
  2356. struct test_add1 : public test_case {
  2357. const ggml_type type;
  2358. const std::array<int64_t, 4> ne;
  2359. std::string vars() override {
  2360. return VARS_TO_STR2(type, ne);
  2361. }
  2362. test_add1(ggml_type type = GGML_TYPE_F32,
  2363. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2364. : type(type), ne(ne) {}
  2365. ggml_tensor * build_graph(ggml_context * ctx) override {
  2366. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2367. ggml_set_param(a);
  2368. ggml_set_name(a, "a");
  2369. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2370. // ggml_set_param(b); // TODO: implement
  2371. ggml_set_name(b, "b");
  2372. ggml_tensor * out = ggml_add1(ctx, a, b);
  2373. ggml_set_name(out, "out");
  2374. return out;
  2375. }
  2376. float grad_eps() override {
  2377. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2378. }
  2379. };
  2380. // GGML_OP_SCALE
  2381. struct test_scale : public test_case {
  2382. const ggml_type type;
  2383. const std::array<int64_t, 4> ne;
  2384. float scale;
  2385. float bias;
  2386. bool inplace;
  2387. std::string vars() override {
  2388. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2389. }
  2390. test_scale(ggml_type type = GGML_TYPE_F32,
  2391. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2392. float scale = 2.0f,
  2393. float bias = 0.0f,
  2394. bool inplace = false)
  2395. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2396. ggml_tensor * build_graph(ggml_context * ctx) override {
  2397. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2398. ggml_set_param(a);
  2399. ggml_set_name(a, "a");
  2400. ggml_tensor * out;
  2401. if (inplace) {
  2402. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2403. } else {
  2404. out = ggml_scale_bias(ctx, a, scale, bias);
  2405. }
  2406. ggml_set_name(out, "out");
  2407. return out;
  2408. }
  2409. };
  2410. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2411. struct test_softcap : public test_case {
  2412. const ggml_type type;
  2413. const std::array<int64_t, 4> ne;
  2414. float softcap;
  2415. std::string op_desc(ggml_tensor * t) override {
  2416. GGML_UNUSED(t);
  2417. return "SOFTCAP";
  2418. }
  2419. bool run_whole_graph() override { return true; }
  2420. std::string vars() override {
  2421. return VARS_TO_STR3(type, ne, softcap);
  2422. }
  2423. test_softcap(ggml_type type = GGML_TYPE_F32,
  2424. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2425. float softcap = 30.0f)
  2426. : type(type), ne(ne), softcap(softcap) {}
  2427. ggml_tensor * build_graph(ggml_context * ctx) override {
  2428. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2429. ggml_set_param(a);
  2430. ggml_set_name(a, "a");
  2431. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2432. ggml_set_name(out, "out");
  2433. return out;
  2434. }
  2435. };
  2436. // GGML_OP_SILU_BACK
  2437. struct test_silu_back : public test_case {
  2438. const ggml_type type;
  2439. const std::array<int64_t, 4> ne;
  2440. float eps;
  2441. std::string vars() override {
  2442. return VARS_TO_STR3(type, ne, eps);
  2443. }
  2444. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2445. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2446. float eps = 1e-6f)
  2447. : type(type), ne(ne), eps(eps) {}
  2448. ggml_tensor * build_graph(ggml_context * ctx) override {
  2449. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2450. ggml_set_name(a, "a");
  2451. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2452. ggml_set_name(grad, "grad");
  2453. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2454. ggml_set_name(out, "out");
  2455. return out;
  2456. }
  2457. bool grad_precise() override {
  2458. return true;
  2459. }
  2460. };
  2461. // GGML_OP_NORM
  2462. struct test_norm : public test_case {
  2463. const ggml_type type;
  2464. const std::array<int64_t, 4> ne;
  2465. const bool v; // whether a is a non-contiguous view
  2466. const float eps;
  2467. std::string vars() override {
  2468. return VARS_TO_STR4(type, ne, v, eps);
  2469. }
  2470. test_norm(ggml_type type = GGML_TYPE_F32,
  2471. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2472. bool v = false,
  2473. float eps = 1e-6f)
  2474. : type(type), ne(ne), v(v), eps(eps) {}
  2475. ggml_tensor * build_graph(ggml_context * ctx) override {
  2476. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2477. ggml_set_name(a, "a");
  2478. if (v) {
  2479. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2480. ggml_set_name(a, "view of a");
  2481. }
  2482. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2483. ggml_set_name(out, "out");
  2484. return out;
  2485. }
  2486. };
  2487. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2488. struct test_norm_mul_add : public test_case {
  2489. const ggml_type type;
  2490. const std::array<int64_t, 4> ne;
  2491. float eps;
  2492. const bool broadcast;
  2493. std::string op_desc(ggml_tensor * t) override {
  2494. GGML_UNUSED(t);
  2495. return "NORM_MUL_ADD";
  2496. }
  2497. bool run_whole_graph() override { return true; }
  2498. std::string vars() override {
  2499. return VARS_TO_STR4(type, ne, eps, broadcast);
  2500. }
  2501. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2502. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2503. float eps = 1e-5f,
  2504. bool broadcast = false)
  2505. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2506. ggml_tensor * build_graph(ggml_context * ctx) override {
  2507. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2508. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2509. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2510. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2511. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2512. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2513. // Use a, w and b early to avoid OP_NONE in graph
  2514. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2515. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2516. ggml_tensor * m = ggml_mul(ctx, n, w);
  2517. ggml_tensor * out = ggml_add(ctx, m, b);
  2518. ggml_set_name(out, "out");
  2519. return out;
  2520. }
  2521. };
  2522. // GGML_OP_RMS_NORM
  2523. struct test_rms_norm : public test_case {
  2524. const ggml_type type;
  2525. const std::array<int64_t, 4> ne;
  2526. const bool v; // whether a is a non-contiguous view
  2527. const float eps;
  2528. const bool inplace; // whether to do the operation inplace
  2529. std::string vars() override {
  2530. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2531. }
  2532. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2533. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2534. bool v = false,
  2535. float eps = 1e-6f,
  2536. bool inplace = false)
  2537. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2538. ggml_tensor * build_graph(ggml_context * ctx) override {
  2539. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2540. ggml_set_param(a);
  2541. ggml_set_name(a, "a");
  2542. if (v) {
  2543. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2544. ggml_set_name(a, "view of a");
  2545. }
  2546. ggml_tensor * out;
  2547. if (inplace) {
  2548. out = ggml_rms_norm_inplace(ctx, a, eps);
  2549. } else {
  2550. out = ggml_rms_norm(ctx, a, eps);
  2551. }
  2552. ggml_set_name(out, "out");
  2553. return out;
  2554. }
  2555. void initialize_tensors(ggml_context * ctx) override {
  2556. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2557. init_tensor_uniform(t, -10.f, 10.f);
  2558. }
  2559. }
  2560. float grad_eps() override {
  2561. return 1.0f;
  2562. }
  2563. bool grad_precise() override {
  2564. return true;
  2565. }
  2566. };
  2567. // GGML_OP_RMS_NORM_BACK
  2568. struct test_rms_norm_back : public test_case {
  2569. const ggml_type type;
  2570. const std::array<int64_t, 4> ne;
  2571. const float eps;
  2572. std::string vars() override {
  2573. return VARS_TO_STR3(type, ne, eps);
  2574. }
  2575. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2576. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2577. float eps = 1e-6f)
  2578. : type(type), ne(ne), eps(eps) {}
  2579. ggml_tensor * build_graph(ggml_context * ctx) override {
  2580. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2581. ggml_set_name(a, "a");
  2582. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2583. ggml_set_name(b, "b");
  2584. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2585. ggml_set_name(out, "out");
  2586. return out;
  2587. }
  2588. void initialize_tensors(ggml_context * ctx) override {
  2589. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2590. init_tensor_uniform(t, -10.f, 10.f);
  2591. }
  2592. }
  2593. };
  2594. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2595. struct test_rms_norm_mul_add : public test_case {
  2596. const ggml_type type;
  2597. const std::array<int64_t, 4> ne;
  2598. const float eps;
  2599. const bool broadcast;
  2600. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2601. std::string op_desc(ggml_tensor * t) override {
  2602. GGML_UNUSED(t);
  2603. return "RMS_NORM_MUL_ADD";
  2604. }
  2605. bool run_whole_graph() override { return true; }
  2606. std::string vars() override {
  2607. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2608. }
  2609. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2610. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2611. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2612. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2613. ggml_tensor * build_graph(ggml_context * ctx) override {
  2614. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2615. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2616. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2617. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2618. ggml_set_param(a);
  2619. ggml_set_name(a, "a");
  2620. ggml_set_param(b);
  2621. ggml_set_name(b, "b");
  2622. ggml_set_param(c);
  2623. ggml_set_name(c, "c");
  2624. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2625. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2626. if (multi_add) {
  2627. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2628. }
  2629. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2630. ggml_set_name(out, "out");
  2631. return out;
  2632. }
  2633. void initialize_tensors(ggml_context * ctx) override {
  2634. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2635. init_tensor_uniform(t, -10.f, 10.f);
  2636. }
  2637. }
  2638. float grad_eps() override {
  2639. return 1.0f;
  2640. }
  2641. bool grad_precise() override {
  2642. return true;
  2643. }
  2644. };
  2645. // GGML_OP_SSM_CONV
  2646. struct test_ssm_conv : public test_case {
  2647. const ggml_type type;
  2648. const std::array<int64_t, 4> ne_a;
  2649. const std::array<int64_t, 4> ne_b;
  2650. std::string vars() override {
  2651. return VARS_TO_STR3(type, ne_a, ne_b);
  2652. }
  2653. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2654. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2655. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2656. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2657. ggml_tensor * build_graph(ggml_context * ctx) override {
  2658. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2659. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2660. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2661. return out;
  2662. }
  2663. };
  2664. // GGML_OP_SSM_SCAN
  2665. struct test_ssm_scan : public test_case {
  2666. const ggml_type type;
  2667. const int64_t d_state;
  2668. const int64_t head_dim;
  2669. const int64_t n_head;
  2670. const int64_t n_group;
  2671. const int64_t n_seq_tokens;
  2672. const int64_t n_seqs;
  2673. std::string vars() override {
  2674. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2675. }
  2676. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2677. int64_t d_state = 32,
  2678. int64_t head_dim = 1, // non-zero for Mamba-2
  2679. int64_t n_head = 32,
  2680. int64_t n_group = 1,
  2681. int64_t n_seq_tokens = 32,
  2682. int64_t n_seqs = 32)
  2683. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2684. ggml_tensor * build_graph(ggml_context * ctx) override {
  2685. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2686. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2687. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2688. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2689. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2690. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2691. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2692. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2693. return out;
  2694. }
  2695. // similar to test_mul_mat_id
  2696. void initialize_tensors(ggml_context * ctx) override {
  2697. std::random_device rd;
  2698. std::default_random_engine rng(rd());
  2699. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2700. if (t->type == GGML_TYPE_I32) {
  2701. if (ggml_is_view_op(t->op)) { continue; }
  2702. // ids
  2703. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2704. std::vector<int32_t> data(t->ne[0]);
  2705. for (int i = 0; i < t->ne[0]; i++) {
  2706. data[i] = i;
  2707. }
  2708. std::shuffle(data.begin(), data.end(), rng);
  2709. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2710. }
  2711. } else {
  2712. init_tensor_uniform(t);
  2713. }
  2714. }
  2715. }
  2716. };
  2717. // GGML_OP_RWKV_WKV6
  2718. struct test_rwkv_wkv6 : public test_case {
  2719. const ggml_type type;
  2720. const int64_t head_count;
  2721. const int64_t head_size;
  2722. const int64_t n_seq_tokens;
  2723. const int64_t n_seqs;
  2724. std::string vars() override {
  2725. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2726. }
  2727. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2728. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2729. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2730. ggml_tensor * build_graph(ggml_context * ctx) override {
  2731. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2732. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2733. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2734. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2735. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2736. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2737. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2738. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2739. return out;
  2740. }
  2741. };
  2742. // GGML_OP_GATED_LINEAR_ATTN
  2743. struct test_gla : public test_case {
  2744. const ggml_type type;
  2745. const int64_t head_count;
  2746. const int64_t head_size;
  2747. const int64_t n_seq_tokens;
  2748. const int64_t n_seqs;
  2749. std::string vars() override {
  2750. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2751. }
  2752. test_gla(ggml_type type = GGML_TYPE_F32,
  2753. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2754. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2755. ggml_tensor * build_graph(ggml_context * ctx) override {
  2756. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2757. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2758. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2759. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2760. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2761. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2762. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2763. return out;
  2764. }
  2765. };
  2766. // GGML_OP_RWKV_WKV7
  2767. struct test_rwkv_wkv7 : public test_case {
  2768. const ggml_type type;
  2769. const int64_t head_count;
  2770. const int64_t head_size;
  2771. const int64_t n_seq_tokens;
  2772. const int64_t n_seqs;
  2773. std::string vars() override {
  2774. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2775. }
  2776. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2777. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2778. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2779. ggml_tensor * build_graph(ggml_context * ctx) override {
  2780. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2781. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2782. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2783. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2784. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2785. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2786. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2787. // Outputs may become NaN with long seqlen without these normalization
  2788. a = ggml_l2_norm(ctx, a, 1e-7F);
  2789. b = ggml_l2_norm(ctx, b, 1e-7F);
  2790. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2791. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2792. return out;
  2793. }
  2794. };
  2795. // GGML_OP_MUL_MAT
  2796. struct test_mul_mat : public test_case {
  2797. const ggml_type type_a;
  2798. const ggml_type type_b;
  2799. const int64_t m;
  2800. const int64_t n;
  2801. const int64_t k;
  2802. const std::array<int64_t, 2> bs; // dims 3 and 4
  2803. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2804. const std::array<int64_t, 4> per; // permutation of dimensions
  2805. const bool v; // whether a and b are non-contiguous views
  2806. const uint32_t o; // number of outputs
  2807. std::string vars() override {
  2808. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, v, o);
  2809. }
  2810. double max_nmse_err() override {
  2811. return 5e-4;
  2812. }
  2813. int64_t grad_nmax() override {
  2814. return 20000;
  2815. }
  2816. uint64_t op_flops(ggml_tensor * t) override {
  2817. GGML_UNUSED(t);
  2818. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2819. }
  2820. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2821. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2822. std::array<int64_t, 2> bs = {10, 10},
  2823. std::array<int64_t, 2> nr = {2, 2},
  2824. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2825. bool v = false, uint32_t o = 1)
  2826. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v), o(o) {}
  2827. ggml_tensor * build_graph(ggml_context * ctx) override {
  2828. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2829. ggml_tensor * a;
  2830. ggml_tensor * b;
  2831. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2832. if (npermuted > 0) {
  2833. GGML_ASSERT(npermuted == 2);
  2834. GGML_ASSERT(!v); // not handled
  2835. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2836. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2837. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2838. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2839. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2840. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2841. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2842. if (!ggml_is_quantized(type_a)) {
  2843. if (bs[1] == 1 && nr[1] == 1) {
  2844. ggml_set_param(a);
  2845. }
  2846. ggml_set_param(b);
  2847. }
  2848. ggml_set_name(a, "a");
  2849. ggml_set_name(b, "b");
  2850. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2851. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2852. ggml_set_name(a, "a_permuted");
  2853. ggml_set_name(b, "b_permuted");
  2854. } else {
  2855. if (v) {
  2856. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2857. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2858. if (!ggml_is_quantized(type_a)) {
  2859. if (bs[1] == 1 && nr[1] == 1) {
  2860. ggml_set_param(a);
  2861. }
  2862. ggml_set_param(b);
  2863. }
  2864. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2865. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2866. } else {
  2867. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2868. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2869. if (!ggml_is_quantized(type_a)) {
  2870. if (bs[1] == 1 && nr[1] == 1) {
  2871. ggml_set_param(a);
  2872. }
  2873. ggml_set_param(b);
  2874. }
  2875. }
  2876. ggml_set_name(a, "a");
  2877. ggml_set_name(b, "b");
  2878. }
  2879. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2880. ggml_set_name(out, "out");
  2881. for (uint32_t i = 1; i < o; ++i) {
  2882. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  2883. ggml_set_name(out2, "out2");
  2884. out = ggml_add(ctx, out, out2);
  2885. }
  2886. return out;
  2887. }
  2888. bool run_whole_graph() override { return o > 1; }
  2889. std::string op_desc(ggml_tensor * t) override {
  2890. GGML_UNUSED(t);
  2891. return ggml_op_name(GGML_OP_MUL_MAT);
  2892. }
  2893. };
  2894. // GGML_OP_MUL_MAT_ID
  2895. struct test_mul_mat_id : public test_case {
  2896. const ggml_type type_a;
  2897. const ggml_type type_b;
  2898. const int n_mats;
  2899. const int n_used;
  2900. const bool b; // broadcast b matrix
  2901. const int64_t m;
  2902. const int64_t n;
  2903. const int64_t k;
  2904. const uint32_t o; // number of outputs
  2905. std::string vars() override {
  2906. return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o);
  2907. }
  2908. double max_nmse_err() override {
  2909. return 5e-4;
  2910. }
  2911. uint64_t op_flops(ggml_tensor * t) override {
  2912. GGML_UNUSED(t);
  2913. return 2 * m * k * n * n_used;
  2914. }
  2915. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2916. int n_mats = 8, int n_used = 2, bool b = false,
  2917. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1)
  2918. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2919. m(m), n(n), k(k), o(o) {
  2920. GGML_ASSERT(n_used <= n_mats);
  2921. }
  2922. ggml_tensor * build_graph(ggml_context * ctx) override {
  2923. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2924. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2925. ggml_set_name(as, "as");
  2926. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2927. ggml_set_name(ids, "ids");
  2928. if (n_used != n_mats) {
  2929. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2930. ggml_set_name(ids, "view_of_ids");
  2931. }
  2932. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2933. ggml_set_name(b, "b");
  2934. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2935. ggml_set_name(out, "out");
  2936. for (uint32_t i = 1; i < o; ++i) {
  2937. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2938. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  2939. ggml_set_name(out2, "out2");
  2940. out = ggml_add(ctx, out, out2);
  2941. }
  2942. return out;
  2943. }
  2944. void initialize_tensors(ggml_context * ctx) override {
  2945. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2946. if (t->type == GGML_TYPE_I32) {
  2947. if (ggml_is_view_op(t->op)) { continue; }
  2948. std::random_device rd;
  2949. std::default_random_engine rng(rd());
  2950. // ids
  2951. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2952. std::vector<int32_t> data(t->ne[0]);
  2953. for (int i = 0; i < t->ne[0]; i++) {
  2954. data[i] = i % n_mats;
  2955. }
  2956. std::shuffle(data.begin(), data.end(), rng);
  2957. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2958. }
  2959. } else {
  2960. init_tensor_uniform(t);
  2961. }
  2962. }
  2963. }
  2964. bool run_whole_graph() override { return o > 1; }
  2965. std::string op_desc(ggml_tensor * t) override {
  2966. GGML_UNUSED(t);
  2967. return ggml_op_name(GGML_OP_MUL_MAT_ID);
  2968. }
  2969. };
  2970. // GGML_OP_OUT_PROD
  2971. struct test_out_prod : public test_case {
  2972. const ggml_type type_a;
  2973. const ggml_type type_b;
  2974. const int64_t m;
  2975. const int64_t n;
  2976. const int64_t k;
  2977. const std::array<int64_t, 2> bs; // dims 3 and 4
  2978. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2979. const bool trans_b;
  2980. std::string vars() override {
  2981. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2982. }
  2983. double max_nmse_err() override {
  2984. return 5e-4;
  2985. }
  2986. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2987. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2988. std::array<int64_t, 2> bs = {10, 10},
  2989. std::array<int64_t, 2> nr = {2, 2},
  2990. bool trans_b = false)
  2991. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2992. ggml_tensor * build_graph(ggml_context * ctx) override {
  2993. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2994. ggml_set_name(a, "a");
  2995. ggml_tensor * b;
  2996. if (trans_b) {
  2997. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2998. b = ggml_transpose(ctx, b);
  2999. } else {
  3000. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3001. }
  3002. ggml_set_name(b, "b");
  3003. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3004. ggml_set_name(out, "out");
  3005. return out;
  3006. }
  3007. };
  3008. // GGML_OP_SQR
  3009. struct test_sqr : public test_case {
  3010. const ggml_type type;
  3011. const std::array<int64_t, 4> ne;
  3012. std::string vars() override {
  3013. return VARS_TO_STR2(type, ne);
  3014. }
  3015. test_sqr(ggml_type type = GGML_TYPE_F32,
  3016. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3017. : type(type), ne(ne) {}
  3018. ggml_tensor * build_graph(ggml_context * ctx) override {
  3019. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3020. ggml_set_param(a);
  3021. ggml_set_name(a, "a");
  3022. ggml_tensor * out = ggml_sqr(ctx, a);
  3023. ggml_set_name(out, "out");
  3024. return out;
  3025. }
  3026. float grad_eps() override {
  3027. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3028. }
  3029. };
  3030. // GGML_OP_SQRT
  3031. struct test_sqrt : public test_case {
  3032. const ggml_type type;
  3033. const std::array<int64_t, 4> ne;
  3034. std::string vars() override {
  3035. return VARS_TO_STR2(type, ne);
  3036. }
  3037. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3038. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3039. : type(type), ne(ne) {}
  3040. ggml_tensor * build_graph(ggml_context * ctx) override {
  3041. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3042. ggml_set_param(a);
  3043. ggml_set_name(a, "a");
  3044. ggml_tensor * out = ggml_sqrt(ctx, a);
  3045. ggml_set_name(out, "out");
  3046. return out;
  3047. }
  3048. void initialize_tensors(ggml_context * ctx) override {
  3049. // fill with positive values
  3050. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3051. init_tensor_uniform(t, 50.0f, 100.0f);
  3052. }
  3053. }
  3054. float grad_eps() override {
  3055. return 20.0f;
  3056. }
  3057. bool grad_precise() override {
  3058. return true;
  3059. }
  3060. };
  3061. // GGML_OP_LOG
  3062. struct test_log : public test_case {
  3063. const ggml_type type;
  3064. const std::array<int64_t, 4> ne;
  3065. std::string vars() override {
  3066. return VARS_TO_STR2(type, ne);
  3067. }
  3068. test_log(ggml_type type = GGML_TYPE_F32,
  3069. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3070. : type(type), ne(ne) {}
  3071. ggml_tensor * build_graph(ggml_context * ctx) override {
  3072. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3073. ggml_set_param(a);
  3074. ggml_set_name(a, "a");
  3075. ggml_tensor * out = ggml_log(ctx, a);
  3076. ggml_set_name(out, "out");
  3077. return out;
  3078. }
  3079. void initialize_tensors(ggml_context * ctx) override {
  3080. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3081. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3082. init_tensor_uniform(t, 0.9f, 1.1f);
  3083. }
  3084. }
  3085. bool grad_precise() override {
  3086. return true;
  3087. }
  3088. };
  3089. // GGML_OP_SIN
  3090. struct test_sin : public test_case {
  3091. const ggml_type type;
  3092. const std::array<int64_t, 4> ne;
  3093. std::string vars() override {
  3094. return VARS_TO_STR2(type, ne);
  3095. }
  3096. test_sin(ggml_type type = GGML_TYPE_F32,
  3097. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3098. : type(type), ne(ne) {}
  3099. ggml_tensor * build_graph(ggml_context * ctx) override {
  3100. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3101. ggml_set_param(a);
  3102. ggml_set_name(a, "a");
  3103. ggml_tensor * out = ggml_sin(ctx, a);
  3104. ggml_set_name(out, "out");
  3105. return out;
  3106. }
  3107. void initialize_tensors(ggml_context * ctx) override {
  3108. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3109. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3110. }
  3111. }
  3112. double max_maa_err() override {
  3113. return 1e-3;
  3114. }
  3115. float grad_eps() override {
  3116. return 0.2f;
  3117. }
  3118. bool grad_precise() override {
  3119. return true;
  3120. }
  3121. };
  3122. // GGML_OP_COS
  3123. struct test_cos : public test_case {
  3124. const ggml_type type;
  3125. const std::array<int64_t, 4> ne;
  3126. std::string vars() override {
  3127. return VARS_TO_STR2(type, ne);
  3128. }
  3129. test_cos(ggml_type type = GGML_TYPE_F32,
  3130. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3131. : type(type), ne(ne) {}
  3132. ggml_tensor * build_graph(ggml_context * ctx) override {
  3133. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3134. ggml_set_param(a);
  3135. ggml_set_name(a, "a");
  3136. ggml_tensor * out = ggml_cos(ctx, a);
  3137. ggml_set_name(out, "out");
  3138. return out;
  3139. }
  3140. void initialize_tensors(ggml_context * ctx) override {
  3141. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3142. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3143. }
  3144. }
  3145. double max_maa_err() override {
  3146. return 1e-3;
  3147. }
  3148. float grad_eps() override {
  3149. return 0.2f;
  3150. }
  3151. bool grad_precise() override {
  3152. return true;
  3153. }
  3154. };
  3155. // GGML_OP_CLAMP
  3156. struct test_clamp : public test_case {
  3157. const ggml_type type;
  3158. const std::array<int64_t, 4> ne;
  3159. float min;
  3160. float max;
  3161. std::string vars() override {
  3162. return VARS_TO_STR4(type, ne, min, max);
  3163. }
  3164. test_clamp(ggml_type type = GGML_TYPE_F32,
  3165. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3166. float min = -0.5f, float max = 0.5f)
  3167. : type(type), ne(ne), min(min), max(max) {}
  3168. ggml_tensor * build_graph(ggml_context * ctx) override {
  3169. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3170. ggml_set_name(a, "a");
  3171. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3172. ggml_set_name(out, "out");
  3173. return out;
  3174. }
  3175. float grad_eps() override {
  3176. return 1e-2f;
  3177. }
  3178. std::vector<float> grad_expect() override {
  3179. return {0.0f, 1.0f};
  3180. }
  3181. };
  3182. // GGML_OP_FLOOR
  3183. struct test_floor : public test_case {
  3184. const ggml_type type;
  3185. const std::array<int64_t, 4> ne;
  3186. std::string vars() override {
  3187. return VARS_TO_STR2(type, ne);
  3188. }
  3189. test_floor(ggml_type type = GGML_TYPE_F32,
  3190. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3191. : type(type), ne(ne) {}
  3192. ggml_tensor * build_graph(ggml_context * ctx) override {
  3193. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3194. ggml_set_param(a);
  3195. ggml_set_name(a, "a");
  3196. ggml_tensor * out = ggml_floor(ctx, a);
  3197. ggml_set_name(out, "out");
  3198. return out;
  3199. }
  3200. void initialize_tensors(ggml_context * ctx) override {
  3201. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3202. init_tensor_uniform(t, -10.0f, 10.0f);
  3203. }
  3204. }
  3205. };
  3206. // GGML_OP_CEIL
  3207. struct test_ceil : public test_case {
  3208. const ggml_type type;
  3209. const std::array<int64_t, 4> ne;
  3210. std::string vars() override {
  3211. return VARS_TO_STR2(type, ne);
  3212. }
  3213. test_ceil(ggml_type type = GGML_TYPE_F32,
  3214. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3215. : type(type), ne(ne) {}
  3216. ggml_tensor * build_graph(ggml_context * ctx) override {
  3217. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3218. ggml_set_param(a);
  3219. ggml_set_name(a, "a");
  3220. ggml_tensor * out = ggml_ceil(ctx, a);
  3221. ggml_set_name(out, "out");
  3222. return out;
  3223. }
  3224. void initialize_tensors(ggml_context * ctx) override {
  3225. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3226. init_tensor_uniform(t, -10.0f, 10.0f);
  3227. }
  3228. }
  3229. };
  3230. // GGML_OP_ROUND
  3231. struct test_round : public test_case {
  3232. const ggml_type type;
  3233. const std::array<int64_t, 4> ne;
  3234. std::string vars() override {
  3235. return VARS_TO_STR2(type, ne);
  3236. }
  3237. test_round(ggml_type type = GGML_TYPE_F32,
  3238. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3239. : type(type), ne(ne) {}
  3240. ggml_tensor * build_graph(ggml_context * ctx) override {
  3241. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3242. ggml_set_param(a);
  3243. ggml_set_name(a, "a");
  3244. ggml_tensor * out = ggml_round(ctx, a);
  3245. ggml_set_name(out, "out");
  3246. return out;
  3247. }
  3248. void initialize_tensors(ggml_context * ctx) override {
  3249. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3250. init_tensor_uniform(t, -10.0f, 10.0f);
  3251. }
  3252. }
  3253. };
  3254. // GGML_OP_TRUNC
  3255. struct test_trunc : public test_case {
  3256. const ggml_type type;
  3257. const std::array<int64_t, 4> ne;
  3258. std::string vars() override {
  3259. return VARS_TO_STR2(type, ne);
  3260. }
  3261. test_trunc(ggml_type type = GGML_TYPE_F32,
  3262. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3263. : type(type), ne(ne) {}
  3264. ggml_tensor * build_graph(ggml_context * ctx) override {
  3265. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3266. ggml_set_param(a);
  3267. ggml_set_name(a, "a");
  3268. ggml_tensor * out = ggml_trunc(ctx, a);
  3269. ggml_set_name(out, "out");
  3270. return out;
  3271. }
  3272. void initialize_tensors(ggml_context * ctx) override {
  3273. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3274. init_tensor_uniform(t, -10.0f, 10.0f);
  3275. }
  3276. }
  3277. };
  3278. // GGML_OP_DIAG_MASK_INF
  3279. struct test_diag_mask_inf : public test_case {
  3280. const ggml_type type;
  3281. const std::array<int64_t, 4> ne;
  3282. const int n_past;
  3283. std::string vars() override {
  3284. return VARS_TO_STR3(type, ne, n_past);
  3285. }
  3286. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3287. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3288. int n_past = 5)
  3289. : type(type), ne(ne), n_past(n_past) {}
  3290. ggml_tensor * build_graph(ggml_context * ctx) override {
  3291. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3292. ggml_set_param(a);
  3293. ggml_set_name(a, "a");
  3294. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3295. ggml_set_name(out, "out");
  3296. return out;
  3297. }
  3298. };
  3299. // GGML_OP_SOFT_MAX
  3300. struct test_soft_max : public test_case {
  3301. const ggml_type type;
  3302. const std::array<int64_t, 4> ne;
  3303. const bool mask;
  3304. const bool sinks;
  3305. const ggml_type m_prec;
  3306. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3307. const float scale;
  3308. const float max_bias;
  3309. const bool inplace;
  3310. std::string vars() override {
  3311. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3312. }
  3313. // the 1024 test with bias occasionally fails:
  3314. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3315. virtual double max_nmse_err() override {
  3316. return 1e-6;
  3317. }
  3318. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3319. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3320. bool mask = false,
  3321. bool sinks = false,
  3322. ggml_type m_prec = GGML_TYPE_F32,
  3323. std::array<int64_t, 2> nr23 = {1, 1},
  3324. float scale = 1.0f,
  3325. float max_bias = 0.0f,
  3326. bool inplace = false)
  3327. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3328. ggml_tensor * build_graph(ggml_context * ctx) override {
  3329. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3330. ggml_set_param(a);
  3331. ggml_set_name(a, "a");
  3332. ggml_tensor * mask = nullptr;
  3333. if (this->mask) {
  3334. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3335. ggml_set_name(mask, "mask");
  3336. }
  3337. ggml_tensor * sinks = nullptr;
  3338. if (this->sinks) {
  3339. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3340. ggml_set_name(sinks, "sinks");
  3341. }
  3342. ggml_tensor * out;
  3343. if (inplace) {
  3344. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3345. } else {
  3346. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3347. }
  3348. ggml_soft_max_add_sinks(out, sinks);
  3349. ggml_set_name(out, "out");
  3350. return out;
  3351. }
  3352. bool grad_precise() override {
  3353. return true;
  3354. }
  3355. };
  3356. // GGML_OP_SOFT_MAX_BACK
  3357. struct test_soft_max_back : public test_case {
  3358. const ggml_type type;
  3359. const std::array<int64_t, 4> ne;
  3360. const float scale;
  3361. const float max_bias;
  3362. std::string vars() override {
  3363. return VARS_TO_STR4(type, ne, scale, max_bias);
  3364. }
  3365. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3366. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3367. float scale = 1.0f,
  3368. float max_bias = 0.0f)
  3369. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3370. ggml_tensor * build_graph(ggml_context * ctx) override {
  3371. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3372. ggml_set_name(a, "a");
  3373. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3374. ggml_set_name(a, "a");
  3375. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3376. ggml_set_name(out, "out");
  3377. return out;
  3378. }
  3379. };
  3380. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3381. struct test_rope : public test_case {
  3382. const ggml_type type;
  3383. const std::array<int64_t, 4> ne_a;
  3384. int n_dims;
  3385. int mode;
  3386. int n_ctx; // used to generate positions
  3387. float fs; // freq_scale
  3388. float ef; // ext_factor
  3389. float af; // attn_factor
  3390. bool ff;
  3391. int v; // view (1 : non-contiguous a)
  3392. bool forward;
  3393. bool inplace;
  3394. std::string vars() override {
  3395. // forward can be inferred from the op, does not need to be printed
  3396. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3397. }
  3398. test_rope(ggml_type type = GGML_TYPE_F32,
  3399. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3400. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3401. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3402. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3403. ggml_tensor * build_graph(ggml_context * ctx) override {
  3404. ggml_tensor * a;
  3405. if (v & 1) {
  3406. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3407. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3408. if (forward) {
  3409. ggml_set_param(a);
  3410. }
  3411. ggml_set_name(a, "a");
  3412. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3413. ggml_set_name(a, "view_of_a");
  3414. } else {
  3415. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3416. if (forward) {
  3417. ggml_set_param(a);
  3418. }
  3419. ggml_set_name(a, "a");
  3420. }
  3421. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3422. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3423. ggml_tensor * pos;
  3424. if (is_mrope || is_vision) {
  3425. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3426. } else {
  3427. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3428. }
  3429. ggml_set_name(pos, "pos");
  3430. ggml_tensor * freq = nullptr;
  3431. if (ff) {
  3432. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3433. ggml_set_name(freq, "freq");
  3434. }
  3435. ggml_tensor * out;
  3436. if (is_mrope) {
  3437. if (is_vision) {
  3438. GGML_ASSERT(n_dims/4 > 0);
  3439. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3440. if (forward) {
  3441. if (inplace) {
  3442. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3443. } else {
  3444. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3445. }
  3446. } else {
  3447. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3448. }
  3449. } else {
  3450. GGML_ASSERT(n_dims/3 > 0);
  3451. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3452. if (forward) {
  3453. if (inplace) {
  3454. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3455. } else {
  3456. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3457. }
  3458. } else {
  3459. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3460. }
  3461. }
  3462. } else {
  3463. if (forward) {
  3464. if (inplace) {
  3465. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3466. } else {
  3467. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3468. }
  3469. } else {
  3470. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3471. }
  3472. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3473. }
  3474. ggml_set_name(out, "out");
  3475. return out;
  3476. }
  3477. void initialize_tensors(ggml_context * ctx) override {
  3478. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3479. if (t->type == GGML_TYPE_I32) {
  3480. // pos
  3481. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3482. std::vector<int> data(num_pos_ids);
  3483. for (int i = 0; i < num_pos_ids; i++) {
  3484. data[i] = rand() % n_ctx;
  3485. }
  3486. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3487. } else {
  3488. if (t->ne[0] == n_dims/2) {
  3489. // frequency factors in the range [0.9f, 1.1f]
  3490. init_tensor_uniform(t, 0.9f, 1.1f);
  3491. } else {
  3492. init_tensor_uniform(t);
  3493. }
  3494. }
  3495. }
  3496. }
  3497. double max_maa_err() override {
  3498. return 1e-3;
  3499. }
  3500. bool grad_precise() override {
  3501. return true;
  3502. }
  3503. };
  3504. // GGML_OP_POOL2D
  3505. struct test_pool2d : public test_case {
  3506. enum ggml_op_pool pool_type;
  3507. const ggml_type type_input;
  3508. const std::array<int64_t, 4> ne_input;
  3509. // kernel size
  3510. const int k0;
  3511. const int k1;
  3512. // stride
  3513. const int s0;
  3514. const int s1;
  3515. // padding
  3516. const int p0;
  3517. const int p1;
  3518. std::string vars() override {
  3519. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3520. }
  3521. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3522. ggml_type type_input = GGML_TYPE_F32,
  3523. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3524. int k0 = 3, int k1 = 3,
  3525. int s0 = 1, int s1 = 1,
  3526. int p0 = 1, int p1 = 1)
  3527. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3528. ggml_tensor * build_graph(ggml_context * ctx) override {
  3529. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3530. ggml_set_param(input);
  3531. ggml_set_name(input, "input");
  3532. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3533. ggml_set_name(out, "out");
  3534. return out;
  3535. }
  3536. };
  3537. // GGML_OP_CONV_TRANSPOSE_1D
  3538. struct test_conv_transpose_1d : public test_case {
  3539. const std::array<int64_t, 4> ne_input;
  3540. const std::array<int64_t, 4> ne_kernel;
  3541. const int s0; // stride
  3542. const int p0; // padding
  3543. const int d0; // dilation
  3544. std::string vars() override {
  3545. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3546. }
  3547. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3548. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3549. int s0 = 1, int p0 = 0, int d0 = 1)
  3550. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3551. ggml_tensor * build_graph(ggml_context * ctx) override {
  3552. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3553. ggml_set_name(input, "input");
  3554. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3555. ggml_set_name(kernel, "kernel");
  3556. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3557. ggml_set_name(out, "out");
  3558. return out;
  3559. }
  3560. };
  3561. // GGML_OP_CONV_TRANSPOSE_2D
  3562. struct test_conv_transpose_2d : public test_case {
  3563. const std::array<int64_t, 4> ne_input;
  3564. const std::array<int64_t, 4> ne_kernel;
  3565. const int stride;
  3566. std::string vars() override {
  3567. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3568. }
  3569. double max_nmse_err() override {
  3570. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3571. }
  3572. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3573. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3574. int stride = 1)
  3575. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3576. ggml_tensor * build_graph(ggml_context * ctx) override {
  3577. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3578. ggml_set_name(input, "input");
  3579. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3580. ggml_set_name(kernel, "kernel");
  3581. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3582. ggml_set_name(out, "out");
  3583. return out;
  3584. }
  3585. };
  3586. // GGML_OP_IM2COL
  3587. struct test_im2col : public test_case {
  3588. const ggml_type type_input;
  3589. const ggml_type type_kernel;
  3590. const ggml_type dst_type;
  3591. const std::array<int64_t, 4> ne_input;
  3592. const std::array<int64_t, 4> ne_kernel;
  3593. // stride
  3594. const int s0;
  3595. const int s1;
  3596. // padding
  3597. const int p0;
  3598. const int p1;
  3599. // dilation
  3600. const int d0;
  3601. const int d1;
  3602. // mode
  3603. const bool is_2D;
  3604. std::string vars() override {
  3605. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3606. }
  3607. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3608. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3609. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3610. int s0 = 1, int s1 = 1,
  3611. int p0 = 1, int p1 = 1,
  3612. int d0 = 1, int d1 = 1,
  3613. bool is_2D = true)
  3614. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3615. ggml_tensor * build_graph(ggml_context * ctx) override {
  3616. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3617. ggml_set_param(input);
  3618. ggml_set_name(input, "input");
  3619. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3620. ggml_set_name(kernel, "kernel");
  3621. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3622. ggml_set_name(out, "out");
  3623. return out;
  3624. }
  3625. };
  3626. // GGML_OP_IM2COL_3D
  3627. struct test_im2col_3d : public test_case {
  3628. const ggml_type type_input;
  3629. const ggml_type type_kernel;
  3630. const ggml_type dst_type;
  3631. const std::array<int64_t, 4> ne_input;
  3632. const std::array<int64_t, 4> ne_kernel;
  3633. // stride
  3634. const int s0;
  3635. const int s1;
  3636. const int s2;
  3637. // padding
  3638. const int p0;
  3639. const int p1;
  3640. const int p2;
  3641. // dilation
  3642. const int d0;
  3643. const int d1;
  3644. const int d2;
  3645. const int64_t IC;
  3646. const bool v;
  3647. std::string vars() override {
  3648. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3649. }
  3650. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3651. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3652. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3653. int64_t IC = 3,
  3654. int s0 = 1, int s1 = 1, int s2 = 1,
  3655. int p0 = 1, int p1 = 1, int p2 = 1,
  3656. int d0 = 1, int d1 = 1, int d2 = 1,
  3657. bool v = false)
  3658. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3659. ggml_tensor * build_graph(ggml_context * ctx) override {
  3660. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3661. ggml_set_param(input);
  3662. ggml_set_name(input, "input");
  3663. if (v) {
  3664. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3665. ggml_set_name(input, "view_of_input");
  3666. }
  3667. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3668. ggml_set_name(kernel, "kernel");
  3669. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  3670. ggml_set_name(out, "out");
  3671. return out;
  3672. }
  3673. };
  3674. // CONV_2D
  3675. struct test_conv_2d : public test_case {
  3676. const std::array<int64_t, 4> ne_input;
  3677. const std::array<int64_t, 4> ne_kernel;
  3678. const ggml_type type_kernel;
  3679. const int stride0;
  3680. const int stride1;
  3681. const int padding0;
  3682. const int padding1;
  3683. const int dilation0;
  3684. const int dilation1;
  3685. // Whether the inputs are contiguous in the channel dim or the width dim
  3686. const bool cwhn;
  3687. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3688. // uses ggml_conv_2d:
  3689. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3690. // CONV_2D graph will be built, while
  3691. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3692. // IM2COL -> MUL_MM graph will be built.
  3693. std::string vars() override {
  3694. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3695. }
  3696. double max_nmse_err() override {
  3697. return 5e-4;
  3698. }
  3699. uint64_t op_flops(ggml_tensor * t) override {
  3700. GGML_UNUSED(t);
  3701. // Just counting matmul costs:
  3702. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3703. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3704. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3705. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3706. };
  3707. int64_t W = ne_input[0];
  3708. int64_t H = ne_input[1];
  3709. int64_t KW = ne_kernel[0];
  3710. int64_t KH = ne_kernel[1];
  3711. int64_t Cin = ne_kernel[2];
  3712. int64_t Cout = ne_kernel[3];
  3713. int64_t N = ne_input[3];
  3714. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3715. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3716. int64_t K = Cout;
  3717. int64_t CRS = Cin * KH * KW;
  3718. int64_t NPQ = N * OH * OW;
  3719. return K * NPQ * (2 * CRS - 1);
  3720. }
  3721. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3722. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3723. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3724. ne_input(ne_input),
  3725. ne_kernel(ne_kernel),
  3726. type_kernel(type_kernel),
  3727. stride0(stride0),
  3728. stride1(stride1),
  3729. padding0(padding0),
  3730. padding1(padding1),
  3731. dilation0(dilation0),
  3732. dilation1(dilation1),
  3733. cwhn(cwhn) {}
  3734. ggml_tensor * build_graph(ggml_context * ctx) override {
  3735. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3736. ggml_set_name(input, "input");
  3737. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3738. ggml_set_name(kernel, "kernel");
  3739. if (cwhn) {
  3740. // change memory layout to channel-most-contiguous (CWHN),
  3741. // then permute it back so NE matches the original input
  3742. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3743. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3744. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3745. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3746. }
  3747. ggml_tensor * out =
  3748. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3749. ggml_set_name(out, "out");
  3750. return out;
  3751. }
  3752. };
  3753. // GGML_OP_CONV_2D_DW
  3754. struct test_conv_2d_dw : public test_case {
  3755. const std::array<int64_t, 4> ne_input;
  3756. const std::array<int64_t, 4> ne_kernel;
  3757. const int stride;
  3758. const int padding;
  3759. const int dilation;
  3760. const bool cwhn;
  3761. std::string vars() override {
  3762. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3763. }
  3764. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3765. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3766. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3767. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3768. ggml_tensor * build_graph(ggml_context * ctx) override {
  3769. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3770. ggml_set_name(input, "input");
  3771. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3772. ggml_set_name(kernel, "kernel");
  3773. if (cwhn) {
  3774. // change memory layout to channel-most-contiguous (CWHN),
  3775. // then permute it back so NE matches the original input
  3776. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3777. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3778. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3779. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3780. }
  3781. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3782. ctx, kernel, input,
  3783. stride, stride, padding, padding, dilation, dilation);
  3784. ggml_set_name(out, "out");
  3785. return out;
  3786. }
  3787. };
  3788. // GGML_OP_CONV_3D
  3789. struct test_conv_3d : public test_case {
  3790. // Logical 5D dimensions
  3791. const int64_t N, IC, ID, IH, IW;
  3792. const int64_t OC, KD, KH, KW;
  3793. // Conv params
  3794. const int s0, s1, s2;
  3795. const int p0, p1, p2;
  3796. const int d0, d1, d2;
  3797. // Types
  3798. const ggml_type type_kernel;
  3799. std::string op_desc(ggml_tensor * t) override {
  3800. GGML_UNUSED(t);
  3801. return "CONV_3D";
  3802. }
  3803. std::string vars() override {
  3804. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  3805. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  3806. }
  3807. double max_nmse_err() override {
  3808. return 5e-4;
  3809. }
  3810. uint64_t op_flops(ggml_tensor * t) override {
  3811. GGML_UNUSED(t);
  3812. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3813. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3814. };
  3815. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  3816. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  3817. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  3818. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  3819. }
  3820. test_conv_3d(
  3821. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  3822. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  3823. int s0, int s1, int s2,
  3824. int p0, int p1, int p2,
  3825. int d0, int d1, int d2,
  3826. ggml_type type_kernel
  3827. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  3828. OC(OC), KD(KD), KH(KH), KW(KW),
  3829. s0(s0), s1(s1), s2(s2),
  3830. p0(p0), p1(p1), p2(p2),
  3831. d0(d0), d1(d1), d2(d2),
  3832. type_kernel(type_kernel) {}
  3833. ggml_tensor * build_graph(ggml_context * ctx) override {
  3834. // GGML input tensor is packed as [W, H, D, C*N]
  3835. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  3836. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  3837. ggml_set_name(input, "input");
  3838. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  3839. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  3840. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  3841. ggml_set_name(kernel, "kernel");
  3842. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  3843. ggml_set_name(out, "out");
  3844. return out;
  3845. }
  3846. };
  3847. // GGML_OP_CONCAT
  3848. struct test_concat : public test_case {
  3849. const ggml_type type;
  3850. const std::array<int64_t, 4> ne_a;
  3851. const int64_t ne_b_d;
  3852. const int dim;
  3853. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3854. std::string vars() override {
  3855. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3856. }
  3857. test_concat(ggml_type type = GGML_TYPE_F32,
  3858. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3859. int64_t ne_b_d = 5,
  3860. int dim = 2, int v = 0)
  3861. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3862. ggml_tensor * build_graph(ggml_context * ctx) override {
  3863. auto ne_b = ne_a;
  3864. ne_b[dim] = ne_b_d;
  3865. ggml_tensor * a;
  3866. if (v & 1) {
  3867. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3868. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3869. ggml_set_name(a, "a");
  3870. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3871. ggml_set_name(a, "view_of_a");
  3872. } else {
  3873. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3874. ggml_set_name(a, "a");
  3875. }
  3876. ggml_tensor * b;
  3877. if (v & 2) {
  3878. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3879. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3880. ggml_set_name(b, "b");
  3881. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3882. ggml_set_name(b, "view_of_b");
  3883. } else {
  3884. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3885. ggml_set_name(b, "b");
  3886. }
  3887. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3888. ggml_set_name(out, "out");
  3889. return out;
  3890. }
  3891. };
  3892. // GGML_OP_ARGSORT
  3893. struct test_argsort : public test_case {
  3894. const ggml_type type;
  3895. const std::array<int64_t, 4> ne;
  3896. ggml_sort_order order;
  3897. std::string vars() override {
  3898. return VARS_TO_STR3(type, ne, order);
  3899. }
  3900. test_argsort(ggml_type type = GGML_TYPE_F32,
  3901. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3902. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3903. : type(type), ne(ne), order(order) {}
  3904. ggml_tensor * build_graph(ggml_context * ctx) override {
  3905. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3906. ggml_set_name(a, "a");
  3907. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3908. ggml_set_name(out, "out");
  3909. return out;
  3910. }
  3911. void initialize_tensors(ggml_context * ctx) override {
  3912. std::random_device rd;
  3913. std::default_random_engine rng(rd());
  3914. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3915. if (t->type == GGML_TYPE_I32) {
  3916. // indices
  3917. std::vector<int> data(ggml_nelements(t));
  3918. for (int i = 0; i < ggml_nelements(t); i++) {
  3919. data[i] = rand();
  3920. }
  3921. std::shuffle(data.begin(), data.end(), rng);
  3922. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3923. } else if (t->type == GGML_TYPE_F32) {
  3924. // initialize with unique values to avoid ties
  3925. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3926. std::vector<float> data(t->ne[0]);
  3927. for (int i = 0; i < t->ne[0]; i++) {
  3928. data[i] = i;
  3929. }
  3930. std::shuffle(data.begin(), data.end(), rng);
  3931. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3932. }
  3933. } else {
  3934. GGML_ABORT("fatal error");
  3935. }
  3936. }
  3937. }
  3938. };
  3939. struct test_topk_moe: public test_case {
  3940. const std::array<int64_t, 4> ne;
  3941. const int n_expert_used;
  3942. const bool with_norm;
  3943. const bool delayed_softmax;
  3944. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  3945. int n_expert_used = 1,
  3946. bool with_norm = false,
  3947. bool delayed_softmax = false) :
  3948. ne(ne),
  3949. n_expert_used(n_expert_used),
  3950. with_norm(with_norm),
  3951. delayed_softmax(delayed_softmax) {
  3952. GGML_ASSERT(n_expert_used <= ne[0]);
  3953. GGML_ASSERT(!(with_norm && delayed_softmax));
  3954. }
  3955. std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); }
  3956. std::string op_desc(ggml_tensor * t) override {
  3957. GGML_UNUSED(t);
  3958. return "TOPK_MOE";
  3959. }
  3960. bool run_whole_graph() override { return true; }
  3961. ggml_tensor * build_graph(ggml_context * ctx) override {
  3962. const int n_expert = ne[0];
  3963. const int n_tokens = ne[1];
  3964. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  3965. ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, logits);
  3966. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  3967. ggml_tensor * out = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  3968. if (delayed_softmax) {
  3969. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3970. out = ggml_soft_max(ctx, out); // [n_expert_used, n_tokens]
  3971. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3972. }
  3973. if (with_norm) {
  3974. out = ggml_reshape_2d(ctx, out, n_expert_used, n_tokens);
  3975. ggml_tensor * weights_sum = ggml_sum_rows(ctx, out); // [1, n_tokens]
  3976. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  3977. out = ggml_div(ctx, out, weights_sum); // [n_expert_used, n_tokens]
  3978. out = ggml_reshape_3d(ctx, out, 1, n_expert_used, n_tokens);
  3979. }
  3980. ggml_set_name(out, "out");
  3981. return out;
  3982. }
  3983. };
  3984. struct test_moe_expert_reduce : public test_case {
  3985. const int64_t n_embd;
  3986. const int64_t n_tokens;
  3987. const int64_t n_expert_used;
  3988. test_moe_expert_reduce(int64_t n_embd = 64, int64_t n_tokens = 5, int64_t n_expert_used = 4)
  3989. : n_embd(n_embd), n_tokens(n_tokens), n_expert_used(n_expert_used) {
  3990. GGML_ASSERT(n_expert_used > 1);
  3991. }
  3992. std::string vars() override {
  3993. return VARS_TO_STR3(n_embd, n_tokens, n_expert_used);
  3994. }
  3995. std::string op_desc(ggml_tensor * t) override {
  3996. GGML_UNUSED(t);
  3997. return "MOE_EXPERT_REDUCE";
  3998. }
  3999. bool run_whole_graph() override { return true; }
  4000. ggml_tensor * build_graph(ggml_context * ctx) override {
  4001. ggml_tensor * experts = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, n_expert_used, n_tokens);
  4002. ggml_set_name(experts, "experts");
  4003. ggml_tensor * weights = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 1, n_expert_used, n_tokens);
  4004. ggml_set_name(weights, "weights");
  4005. ggml_tensor * weighted = ggml_mul(ctx, experts, weights);
  4006. ggml_set_name(weighted, "weighted_experts");
  4007. std::vector<ggml_tensor *> expert_views(n_expert_used);
  4008. for (int64_t i = 0; i < n_expert_used; ++i) {
  4009. expert_views[i] = ggml_view_2d(ctx, weighted, n_embd, n_tokens, weighted->nb[2], i * weighted->nb[1]);
  4010. std::string name = "expert_view_" + std::to_string(i);
  4011. ggml_set_name(expert_views[i], name.c_str());
  4012. ggml_build_forward_expand(gf, expert_views[i]);
  4013. }
  4014. ggml_tensor * moe_out = expert_views[0];
  4015. for (int64_t i = 1; i < n_expert_used; ++i) {
  4016. moe_out = ggml_add(ctx, moe_out, expert_views[i]);
  4017. std::string name = "expert_add_" + std::to_string(i - 1);
  4018. ggml_set_name(moe_out, name.c_str());
  4019. }
  4020. ggml_set_name(moe_out, "moe_out");
  4021. return moe_out;
  4022. }
  4023. };
  4024. struct test_mul_mat_vec_fusion : public test_case {
  4025. const ggml_type type;
  4026. const ggml_glu_op glu_op;
  4027. const int64_t m;
  4028. const int64_t n;
  4029. const int64_t k;
  4030. const bool use_id;
  4031. const int n_mats;
  4032. const int n_used;
  4033. const bool b; // broadcast b matrix (only for use_id)
  4034. const bool with_bias;
  4035. const bool with_gate;
  4036. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4037. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
  4038. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
  4039. if (use_id) {
  4040. GGML_ASSERT(n_used <= n_mats);
  4041. }
  4042. }
  4043. std::string vars() override {
  4044. return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
  4045. }
  4046. std::string op_desc(ggml_tensor * t) override {
  4047. GGML_UNUSED(t);
  4048. return "MUL_MAT_VEC_FUSION";
  4049. }
  4050. bool run_whole_graph() override { return true; }
  4051. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4052. ggml_tensor * out = nullptr;
  4053. if (with_gate) {
  4054. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4055. constexpr float alpha = 1.702f;
  4056. constexpr float limit = 7.0f;
  4057. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4058. } else {
  4059. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4060. }
  4061. }
  4062. return out;
  4063. }
  4064. ggml_tensor * build_graph(ggml_context * ctx) override {
  4065. if (!use_id) {
  4066. std::array<int64_t, 4> ne = {k, m, 1, 1};
  4067. std::array<int64_t, 4> ne0 = {k, n, 1, 1};
  4068. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4069. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4070. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4071. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4072. if (with_bias) {
  4073. std::array<int64_t, 4> bias_ne = {ffn_up->ne[0], 1, 1, 1};
  4074. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4075. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4076. }
  4077. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4078. if (with_bias && with_gate) {
  4079. std::array<int64_t, 4> bias_ne = {ffn_gate->ne[0], 1, 1, 1};
  4080. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4081. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4082. }
  4083. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4084. ggml_set_name(out, "out");
  4085. return out;
  4086. } else {
  4087. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4088. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4089. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4090. if (n_used != n_mats) {
  4091. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4092. }
  4093. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4094. ggml_set_name(cur, "cur");
  4095. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4096. if (with_bias) {
  4097. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4098. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4099. }
  4100. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4101. if (with_bias && with_gate) {
  4102. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4103. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4104. }
  4105. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4106. ggml_set_name(out, "out");
  4107. return out;
  4108. }
  4109. }
  4110. void initialize_tensors(ggml_context * ctx) override {
  4111. if (!use_id) {
  4112. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4113. init_tensor_uniform(t);
  4114. }
  4115. } else {
  4116. std::random_device rd;
  4117. std::default_random_engine rng(rd());
  4118. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4119. if (t->type == GGML_TYPE_I32) {
  4120. if (ggml_is_view_op(t->op)) { continue; }
  4121. // ids
  4122. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4123. std::vector<int32_t> data(t->ne[0]);
  4124. for (int i = 0; i < t->ne[0]; i++) {
  4125. data[i] = i % n_mats;
  4126. }
  4127. std::shuffle(data.begin(), data.end(), rng);
  4128. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  4129. }
  4130. } else {
  4131. init_tensor_uniform(t);
  4132. }
  4133. }
  4134. }
  4135. }
  4136. double max_nmse_err() override {
  4137. return 5e-3;
  4138. }
  4139. };
  4140. // GGML_OP_SUM
  4141. struct test_sum : public test_case {
  4142. const ggml_type type;
  4143. const std::array<int64_t, 4> ne;
  4144. const std::array<int64_t, 4> permute;
  4145. bool _use_permute;
  4146. std::string vars() override {
  4147. std::string v = VARS_TO_STR2(type, ne);
  4148. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4149. return v;
  4150. }
  4151. test_sum(ggml_type type = GGML_TYPE_F32,
  4152. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4153. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4154. : type(type), ne(ne), permute(permute),
  4155. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4156. ggml_tensor * build_graph(ggml_context * ctx) override {
  4157. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4158. ggml_set_param(a);
  4159. ggml_set_name(a, "a");
  4160. if (_use_permute) {
  4161. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4162. ggml_set_name(a, "a_permuted");
  4163. }
  4164. ggml_tensor * out = ggml_sum(ctx, a);
  4165. ggml_set_name(out, "out");
  4166. return out;
  4167. }
  4168. float grad_eps() override {
  4169. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4170. }
  4171. };
  4172. // GGML_OP_SUM_ROWS
  4173. struct test_sum_rows : public test_case {
  4174. const ggml_type type;
  4175. const std::array<int64_t, 4> ne;
  4176. const bool permute;
  4177. const bool slice;
  4178. std::string vars() override {
  4179. return VARS_TO_STR4(type, ne, permute, slice);
  4180. }
  4181. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4182. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4183. bool permute = false, bool slice = false)
  4184. : type(type), ne(ne), permute(permute), slice(slice) {}
  4185. ggml_tensor * build_graph(ggml_context * ctx) override {
  4186. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4187. ggml_set_param(a);
  4188. ggml_set_name(a, "a");
  4189. if (slice) {
  4190. a = ggml_view_4d(ctx, a,
  4191. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4192. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4193. }
  4194. if (permute) {
  4195. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4196. }
  4197. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4198. ggml_set_name(out, "out");
  4199. return out;
  4200. }
  4201. };
  4202. // GGML_OP_MEAN
  4203. struct test_mean : public test_case {
  4204. const ggml_type type;
  4205. const std::array<int64_t, 4> ne;
  4206. std::string vars() override {
  4207. return VARS_TO_STR2(type, ne);
  4208. }
  4209. test_mean(ggml_type type = GGML_TYPE_F32,
  4210. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4211. : type(type), ne(ne) {}
  4212. ggml_tensor * build_graph(ggml_context * ctx) override {
  4213. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4214. ggml_set_param(a);
  4215. ggml_set_name(a, "a");
  4216. ggml_tensor * out = ggml_mean(ctx, a);
  4217. ggml_set_name(out, "out");
  4218. return out;
  4219. }
  4220. float grad_eps() override {
  4221. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4222. }
  4223. };
  4224. // GGML_OP_UPSCALE
  4225. struct test_upscale : public test_case {
  4226. const ggml_type type;
  4227. const std::array<int64_t, 4> ne;
  4228. const int32_t scale_factor;
  4229. const bool transpose;
  4230. const ggml_scale_mode mode;
  4231. std::string vars() override {
  4232. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4233. }
  4234. test_upscale(ggml_type type = GGML_TYPE_F32,
  4235. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4236. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4237. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4238. ggml_tensor * build_graph(ggml_context * ctx) override {
  4239. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4240. ggml_set_name(a, "a");
  4241. if (transpose) {
  4242. a = ggml_transpose(ctx, a);
  4243. ggml_set_name(a, "a_transposed");
  4244. }
  4245. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4246. ggml_set_name(out, "out");
  4247. return out;
  4248. }
  4249. };
  4250. // GGML_OP_UPSCALE (via ggml_interpolate)
  4251. struct test_interpolate : public test_case {
  4252. const ggml_type type;
  4253. const std::array<int64_t, 4> ne;
  4254. const std::array<int64_t, 4> ne_tgt;
  4255. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  4256. std::string vars() override {
  4257. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  4258. }
  4259. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4260. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4261. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4262. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  4263. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4264. ggml_tensor * build_graph(ggml_context * ctx) override {
  4265. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4266. ggml_set_name(a, "a");
  4267. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4268. ggml_set_name(out, "out");
  4269. return out;
  4270. }
  4271. };
  4272. // GGML_OP_GROUP_NORM
  4273. struct test_group_norm : public test_case {
  4274. const ggml_type type;
  4275. const std::array<int64_t, 4> ne;
  4276. const int32_t num_groups;
  4277. const float eps;
  4278. std::string vars() override {
  4279. return VARS_TO_STR4(type, ne, num_groups, eps);
  4280. }
  4281. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4282. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4283. int32_t num_groups = 32,
  4284. float eps = 1e-6f)
  4285. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4286. ggml_tensor * build_graph(ggml_context * ctx) override {
  4287. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4288. ggml_set_name(a, "a");
  4289. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4290. ggml_set_name(out, "out");
  4291. return out;
  4292. }
  4293. };
  4294. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4295. struct test_group_norm_mul_add : public test_case {
  4296. const ggml_type type;
  4297. const std::array<int64_t, 4> ne;
  4298. int num_groups;
  4299. float eps;
  4300. std::string op_desc(ggml_tensor * t) override {
  4301. GGML_UNUSED(t);
  4302. return "GROUP_NORM_MUL_ADD";
  4303. }
  4304. bool run_whole_graph() override { return true; }
  4305. std::string vars() override {
  4306. return VARS_TO_STR4(type, ne, num_groups, eps);
  4307. }
  4308. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4309. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4310. int num_groups = 4,
  4311. float eps = 1e-5f)
  4312. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4313. ggml_tensor * build_graph(ggml_context * ctx) override {
  4314. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4315. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4316. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4317. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4318. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4319. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4320. ggml_tensor * m = ggml_mul(ctx, n, w);
  4321. ggml_tensor * out = ggml_add(ctx, m, b);
  4322. ggml_set_name(out, "out");
  4323. return out;
  4324. }
  4325. };
  4326. // GGML_OP_L2_NORM
  4327. struct test_l2_norm : public test_case {
  4328. const ggml_type type;
  4329. const std::array<int64_t, 4> ne;
  4330. const float eps;
  4331. std::string vars() override {
  4332. return VARS_TO_STR2(type, ne);
  4333. }
  4334. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4335. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4336. float eps = 1e-12f)
  4337. : type(type), ne(ne), eps(eps) {}
  4338. ggml_tensor * build_graph(ggml_context * ctx) override {
  4339. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4340. ggml_set_name(a, "a");
  4341. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4342. ggml_set_name(out, "out");
  4343. return out;
  4344. }
  4345. };
  4346. // GGML_OP_ACC
  4347. struct test_acc : public test_case {
  4348. const ggml_type type;
  4349. const std::array<int64_t, 4> ne_a;
  4350. const std::array<int64_t, 4> ne_b;
  4351. std::string vars() override {
  4352. return VARS_TO_STR3(type, ne_a, ne_b);
  4353. }
  4354. test_acc(ggml_type type = GGML_TYPE_F32,
  4355. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4356. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4357. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4358. ggml_tensor * build_graph(ggml_context * ctx) override {
  4359. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4360. ggml_set_param(a);
  4361. ggml_set_name(a, "a");
  4362. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4363. ggml_set_param(b);
  4364. ggml_set_name(b, "b");
  4365. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4366. ggml_set_name(out, "out");
  4367. return out;
  4368. }
  4369. };
  4370. // GGML_OP_PAD
  4371. struct test_pad : public test_case {
  4372. const ggml_type type;
  4373. const std::array<int64_t, 4> ne_a;
  4374. const int pad_0;
  4375. const int pad_1;
  4376. std::string vars() override {
  4377. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4378. }
  4379. test_pad(ggml_type type = GGML_TYPE_F32,
  4380. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4381. int pad_0 = 1, int pad_1 = 1)
  4382. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4383. ggml_tensor * build_graph(ggml_context * ctx) override {
  4384. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4385. ggml_set_name(a, "a");
  4386. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4387. ggml_set_name(out, "out");
  4388. return out;
  4389. }
  4390. };
  4391. struct test_pad_ext : public test_case {
  4392. const ggml_type type;
  4393. const std::array<int64_t, 4> ne_a;
  4394. const int lp0;
  4395. const int rp0;
  4396. const int lp1;
  4397. const int rp1;
  4398. const int lp2;
  4399. const int rp2;
  4400. const int lp3;
  4401. const int rp3;
  4402. const bool v;
  4403. std::string vars() override {
  4404. return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v);
  4405. }
  4406. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4407. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4408. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4409. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4410. bool v = false)
  4411. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {}
  4412. ggml_tensor * build_graph(ggml_context * ctx) override {
  4413. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4414. ggml_set_name(a, "a");
  4415. if (v) {
  4416. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4417. ggml_set_name(a, "view of a");
  4418. }
  4419. ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4420. ggml_set_name(out, "out");
  4421. return out;
  4422. }
  4423. };
  4424. // GGML_OP_PAD_REFLECT_1D
  4425. struct test_pad_reflect_1d : public test_case {
  4426. const ggml_type type;
  4427. const std::array<int64_t, 4> ne_a;
  4428. const int pad_0;
  4429. const int pad_1;
  4430. std::string vars() override {
  4431. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4432. }
  4433. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4434. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4435. int pad_0 = 10, int pad_1 = 9)
  4436. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4437. ggml_tensor * build_graph(ggml_context * ctx) override {
  4438. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4439. ggml_set_name(a, "a");
  4440. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4441. ggml_set_name(out, "out");
  4442. return out;
  4443. }
  4444. };
  4445. // GGML_OP_ROLL
  4446. struct test_roll : public test_case {
  4447. const int shift0;
  4448. const int shift1;
  4449. const int shift3;
  4450. const int shift4;
  4451. std::string vars() override {
  4452. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4453. }
  4454. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4455. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4456. ggml_tensor * build_graph(ggml_context * ctx) override {
  4457. int64_t ne[4] = {10, 5, 4, 3};
  4458. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4459. ggml_set_name(a, "a");
  4460. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4461. ggml_set_name(out, "out");
  4462. return out;
  4463. }
  4464. };
  4465. // GGML_OP_ARANGE
  4466. struct test_arange : public test_case {
  4467. const ggml_type type;
  4468. const float start;
  4469. const float stop;
  4470. const float step;
  4471. std::string vars() override {
  4472. return VARS_TO_STR4(type, start, stop, step);
  4473. }
  4474. test_arange(ggml_type type = GGML_TYPE_F32,
  4475. float start = 0.f, float stop = 10.f, float step = 1.f)
  4476. : type(type), start(start), stop(stop), step(step) {}
  4477. ggml_tensor * build_graph(ggml_context * ctx) override {
  4478. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4479. ggml_set_name(out, "out");
  4480. return out;
  4481. }
  4482. };
  4483. // GGML_OP_TIMESTEP_EMBEDDING
  4484. struct test_timestep_embedding : public test_case {
  4485. const ggml_type type;
  4486. const std::array<int64_t, 4> ne_a;
  4487. const int dim;
  4488. const int max_period;
  4489. std::string vars() override {
  4490. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4491. }
  4492. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4493. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4494. int dim = 320, int max_period=10000)
  4495. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4496. ggml_tensor * build_graph(ggml_context * ctx) override {
  4497. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4498. ggml_set_name(a, "a");
  4499. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4500. ggml_set_name(out, "out");
  4501. return out;
  4502. }
  4503. };
  4504. // GGML_OP_LEAKY_RELU
  4505. struct test_leaky_relu : public test_case {
  4506. const ggml_type type;
  4507. const std::array<int64_t, 4> ne_a;
  4508. const float negative_slope;
  4509. std::string vars() override {
  4510. return VARS_TO_STR3(type, ne_a, negative_slope);
  4511. }
  4512. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4513. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4514. float negative_slope = 0.1f)
  4515. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4516. ggml_tensor * build_graph(ggml_context * ctx) override {
  4517. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4518. ggml_set_name(a, "a");
  4519. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4520. ggml_set_name(out, "out");
  4521. return out;
  4522. }
  4523. };
  4524. // GGML_OP_FLASH_ATTN_EXT
  4525. struct test_flash_attn_ext : public test_case {
  4526. const int64_t hsk; // K head size
  4527. const int64_t hsv; // V head size
  4528. const int64_t nh; // num heads
  4529. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4530. const int64_t kv; // kv size
  4531. const int64_t nb; // batch size
  4532. const bool mask; // use mask
  4533. const bool sinks; // use sinks
  4534. const float max_bias; // ALiBi
  4535. const float logit_softcap; // Gemma 2
  4536. const ggml_prec prec;
  4537. const ggml_type type_KV;
  4538. std::array<int32_t, 4> permute;
  4539. std::string vars() override {
  4540. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4541. }
  4542. double max_nmse_err() override {
  4543. return 5e-4;
  4544. }
  4545. uint64_t op_flops(ggml_tensor * t) override {
  4546. GGML_UNUSED(t);
  4547. // Just counting matmul costs:
  4548. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  4549. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  4550. }
  4551. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  4552. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  4553. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  4554. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  4555. ggml_tensor * build_graph(ggml_context * ctx) override {
  4556. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  4557. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  4558. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  4559. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  4560. int64_t ne_perm[4];
  4561. for (int i = 0; i < 4; ++i) {
  4562. ne_perm[permute[i]] = ne[i];
  4563. }
  4564. ggml_tensor * t;
  4565. if (is_view) {
  4566. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  4567. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  4568. } else {
  4569. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  4570. }
  4571. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  4572. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  4573. }
  4574. return t;
  4575. };
  4576. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  4577. ggml_set_name(q, "q");
  4578. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  4579. ggml_set_name(k, "k");
  4580. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  4581. ggml_set_name(v, "v");
  4582. ggml_tensor * m = nullptr;
  4583. if (mask) {
  4584. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  4585. ggml_set_name(m, "m");
  4586. }
  4587. ggml_tensor * s = nullptr;
  4588. if (sinks) {
  4589. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  4590. ggml_set_name(s, "s");
  4591. }
  4592. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  4593. ggml_flash_attn_ext_add_sinks(out, s);
  4594. ggml_flash_attn_ext_set_prec (out, prec);
  4595. ggml_set_name(out, "out");
  4596. return out;
  4597. }
  4598. void initialize_tensors(ggml_context * ctx) override {
  4599. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4600. if (strcmp(t->name, "s") == 0) {
  4601. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  4602. init_tensor_uniform(t, -10.0f, 10.0f);
  4603. } else if (strcmp(t->name, "m") == 0) {
  4604. init_tensor_kq_mask(t);
  4605. } else {
  4606. init_tensor_uniform(t);
  4607. }
  4608. }
  4609. }
  4610. bool grad_precise() override {
  4611. return true;
  4612. }
  4613. };
  4614. // GGML_OP_CROSS_ENTROPY_LOSS
  4615. struct test_cross_entropy_loss : public test_case {
  4616. const ggml_type type;
  4617. const std::array<int64_t, 4> ne;
  4618. std::string vars() override {
  4619. return VARS_TO_STR2(type, ne);
  4620. }
  4621. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  4622. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4623. : type(type), ne(ne) {}
  4624. ggml_tensor * build_graph(ggml_context * ctx) override {
  4625. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4626. ggml_set_param(logits);
  4627. ggml_set_name(logits, "logits");
  4628. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4629. // The labels are assumed to be constant -> no gradients.
  4630. ggml_set_name(labels, "labels");
  4631. // Ensure labels add up to 1:
  4632. labels = ggml_soft_max(ctx, labels);
  4633. ggml_set_name(labels, "labels_normalized");
  4634. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  4635. ggml_set_name(out, "out");
  4636. return out;
  4637. }
  4638. void initialize_tensors(ggml_context * ctx) override {
  4639. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  4640. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4641. init_tensor_uniform(t, -100.0f, 100.0f);
  4642. }
  4643. }
  4644. float grad_eps() override {
  4645. return 1.0f;
  4646. }
  4647. bool grad_precise() override {
  4648. return true;
  4649. }
  4650. };
  4651. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  4652. struct test_cross_entropy_loss_back : public test_case {
  4653. const ggml_type type;
  4654. const std::array<int64_t, 4> ne;
  4655. std::string vars() override {
  4656. return VARS_TO_STR2(type, ne);
  4657. }
  4658. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  4659. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4660. : type(type), ne(ne) {}
  4661. ggml_tensor * build_graph(ggml_context * ctx) override {
  4662. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4663. ggml_set_name(grad, "grad");
  4664. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  4665. ggml_set_name(logits, "logits");
  4666. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  4667. ggml_set_name(labels, "labels");
  4668. // Ensure labels add up to 1:
  4669. labels = ggml_soft_max(ctx, labels);
  4670. ggml_set_name(labels, "labels_normalized");
  4671. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  4672. ggml_set_name(out, "out");
  4673. return out;
  4674. }
  4675. };
  4676. // GGML_OP_OPT_STEP_ADAMW
  4677. struct test_opt_step_adamw : public test_case {
  4678. const ggml_type type;
  4679. const std::array<int64_t, 4> ne;
  4680. std::string vars() override {
  4681. return VARS_TO_STR2(type, ne);
  4682. }
  4683. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  4684. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4685. : type(type), ne(ne) {}
  4686. ggml_tensor * build_graph(ggml_context * ctx) override {
  4687. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4688. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4689. ggml_set_name(a, "a");
  4690. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4691. ggml_set_name(grad, "grad");
  4692. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4693. ggml_set_name(grad_m, "grad_m");
  4694. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4695. ggml_set_name(grad_v, "grad_v");
  4696. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  4697. ggml_set_name(adamw_params, "adamw_params");
  4698. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  4699. ggml_set_name(out, "out");
  4700. return out;
  4701. }
  4702. void initialize_tensors(ggml_context * ctx) override {
  4703. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4704. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  4705. }
  4706. }
  4707. bool grad_precise() override {
  4708. return true;
  4709. }
  4710. };
  4711. struct test_opt_step_sgd : public test_case {
  4712. const ggml_type type;
  4713. const std::array<int64_t, 4> ne;
  4714. std::string vars() override { return VARS_TO_STR2(type, ne); }
  4715. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  4716. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  4717. : type(type), ne(ne) {}
  4718. ggml_tensor * build_graph(ggml_context * ctx) override {
  4719. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4720. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  4721. ggml_set_name(a, "a");
  4722. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  4723. ggml_set_name(grad, "grad");
  4724. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  4725. ggml_set_name(sgd_params, "sgd_params");
  4726. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  4727. ggml_set_name(out, "out");
  4728. return out;
  4729. }
  4730. void initialize_tensors(ggml_context * ctx) override {
  4731. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4732. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  4733. }
  4734. }
  4735. bool grad_precise() override {
  4736. return true;
  4737. }
  4738. };
  4739. enum llm_norm_type {
  4740. LLM_NORM,
  4741. LLM_NORM_RMS,
  4742. };
  4743. struct llama_hparams {
  4744. uint32_t n_vocab;
  4745. uint32_t n_embd;
  4746. uint32_t n_head;
  4747. uint32_t n_head_kv;
  4748. static constexpr uint32_t n_layer = 1;
  4749. uint32_t n_rot;
  4750. uint32_t n_embd_head; // dimension of values (d_v)
  4751. uint32_t n_ff;
  4752. float f_norm_eps;
  4753. float f_norm_rms_eps;
  4754. // cparams
  4755. static constexpr uint32_t n_ctx = 512; // user-specified context size
  4756. static constexpr uint32_t n_ctx_orig = n_ctx;
  4757. // batch
  4758. int32_t n_tokens;
  4759. // llm_build_context
  4760. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  4761. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  4762. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  4763. return n_embd_head * n_head_kv;
  4764. }
  4765. };
  4766. // LLM base class
  4767. struct test_llm : public test_case {
  4768. llama_hparams hp;
  4769. protected:
  4770. test_llm(llama_hparams hp)
  4771. : hp(std::move(hp)) {
  4772. }
  4773. public:
  4774. struct ggml_tensor * llm_build_norm(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * cur,
  4777. struct ggml_tensor * mw,
  4778. struct ggml_tensor * mb,
  4779. llm_norm_type type) {
  4780. switch (type) {
  4781. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4782. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4783. }
  4784. cur = ggml_mul(ctx, cur, mw);
  4785. if (mb) {
  4786. cur = ggml_add(ctx, cur, mb);
  4787. }
  4788. return cur;
  4789. }
  4790. void llm_build_kv_store(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * k_l,
  4793. struct ggml_tensor * v_l,
  4794. struct ggml_tensor * k_cur,
  4795. struct ggml_tensor * v_cur) {
  4796. // compute the transposed [n_tokens, n_embd] V matrix
  4797. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4798. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4799. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4800. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4801. ( hp.n_ctx)*ggml_element_size(v_l),
  4802. (hp.kv_head)*ggml_element_size(v_l));
  4803. // important: storing RoPE-ed version of K in the KV cache!
  4804. ggml_cpy(ctx, k_cur, k_cache_view);
  4805. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4806. }
  4807. struct ggml_tensor * llm_build_kqv(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * k_l,
  4810. struct ggml_tensor * v_l,
  4811. struct ggml_tensor * q_cur,
  4812. struct ggml_tensor * kq_mask,
  4813. float kq_scale) {
  4814. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4815. struct ggml_tensor * k =
  4816. ggml_view_3d(ctx, k_l,
  4817. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4818. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4819. ggml_row_size(k_l->type, hp.n_embd_head),
  4820. 0);
  4821. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4822. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4823. // split cached v into n_head heads
  4824. struct ggml_tensor * v =
  4825. ggml_view_3d(ctx, v_l,
  4826. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4827. ggml_element_size(v_l)*hp.n_ctx,
  4828. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4829. 0);
  4830. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4831. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4832. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4833. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4834. cur = ggml_mul_mat(ctx, wo, cur);
  4835. return cur;
  4836. }
  4837. void initialize_tensors(ggml_context * ctx) override {
  4838. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4839. if (t->type == GGML_TYPE_I32) {
  4840. // pos
  4841. std::vector<int> data(hp.n_tokens);
  4842. for (int i = 0; i < hp.n_tokens; i++) {
  4843. data[i] = rand() % hp.n_ctx;
  4844. }
  4845. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4846. } else {
  4847. init_tensor_uniform(t);
  4848. }
  4849. }
  4850. }
  4851. };
  4852. // Llama
  4853. struct test_llama : public test_llm {
  4854. static constexpr float freq_base = 10000.0f;
  4855. static constexpr float freq_scale = 1.0f;
  4856. static constexpr float ext_factor = 0.0f;
  4857. static constexpr float attn_factor = 1.0f;
  4858. static constexpr float beta_fast = 32.0f;
  4859. static constexpr float beta_slow = 1.0f;
  4860. bool fused;
  4861. std::string op_desc(ggml_tensor * t) override {
  4862. GGML_UNUSED(t);
  4863. return "LLAMA";
  4864. }
  4865. std::string vars() override {
  4866. auto n_tokens = hp.n_tokens;
  4867. return VARS_TO_STR1(n_tokens);
  4868. }
  4869. double max_nmse_err() override {
  4870. return 2e-3;
  4871. }
  4872. bool run_whole_graph() override { return fused; }
  4873. test_llama(int n_tokens = 1, bool fused = false)
  4874. : test_llm({
  4875. /*n_vocab =*/ 32000,
  4876. /*n_embd =*/ 3200,
  4877. /*n_head =*/ 32,
  4878. /*n_head_kv =*/ 32,
  4879. /*n_rot =*/ 100,
  4880. /*n_embd_head =*/ 100,
  4881. /*n_ff =*/ 8640,
  4882. /*f_norm_eps =*/ 0.f,
  4883. /*f_norm_rms_eps =*/ 1e-5f,
  4884. /*n_tokens =*/ n_tokens,
  4885. })
  4886. , fused(fused)
  4887. {
  4888. }
  4889. ggml_tensor * build_graph(ggml_context * ctx) override {
  4890. struct ggml_tensor * cur;
  4891. struct ggml_tensor * inpL;
  4892. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4893. // inp_pos - contains the positions
  4894. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4895. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4896. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4897. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4898. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4899. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4900. struct ggml_tensor * inpSA = inpL;
  4901. // norm
  4902. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4903. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4904. // self-attention
  4905. {
  4906. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4907. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4908. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4909. // compute Q and K and RoPE them
  4910. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4911. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4912. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4913. Qcur = ggml_rope_ext(
  4914. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4915. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4916. ext_factor, attn_factor, beta_fast, beta_slow
  4917. );
  4918. Kcur = ggml_rope_ext(
  4919. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4920. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4921. ext_factor, attn_factor, beta_fast, beta_slow
  4922. );
  4923. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4924. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4925. }
  4926. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4927. // feed-forward network
  4928. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4929. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4930. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4931. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4932. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4933. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4934. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4935. cur = ggml_silu(ctx, cur);
  4936. cur = ggml_mul(ctx, cur, tmp);
  4937. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4938. cur = ggml_add(ctx, cur, ffn_inp);
  4939. // input for next layer
  4940. inpL = cur;
  4941. }
  4942. cur = inpL;
  4943. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4944. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4945. // lm_head
  4946. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4947. cur = ggml_mul_mat(ctx, output, cur);
  4948. return cur;
  4949. }
  4950. };
  4951. // Falcon
  4952. struct test_falcon : public test_llm {
  4953. static constexpr float freq_base = 10000.0f;
  4954. static constexpr float freq_scale = 1.0f;
  4955. static constexpr float ext_factor = 0.0f;
  4956. static constexpr float attn_factor = 1.0f;
  4957. static constexpr float beta_fast = 32.0f;
  4958. static constexpr float beta_slow = 1.0f;
  4959. std::string op_desc(ggml_tensor * t) override {
  4960. GGML_UNUSED(t);
  4961. return "FALCON";
  4962. }
  4963. std::string vars() override {
  4964. auto n_tokens = hp.n_tokens;
  4965. return VARS_TO_STR1(n_tokens);
  4966. }
  4967. double max_nmse_err() override {
  4968. return 2e-3;
  4969. }
  4970. test_falcon(int n_tokens = 1)
  4971. : test_llm({
  4972. /*n_vocab =*/ 32000,
  4973. /*n_embd =*/ 3200,
  4974. /*n_head =*/ 50,
  4975. /*n_head_kv =*/ 1,
  4976. /*n_rot =*/ 64,
  4977. /*n_embd_head =*/ 64,
  4978. /*n_ff =*/ 8640,
  4979. /*f_norm_eps =*/ 1e-5f,
  4980. /*f_norm_rms_eps =*/ 0.f,
  4981. /*n_tokens =*/ n_tokens,
  4982. }) {
  4983. }
  4984. ggml_tensor * build_graph(ggml_context * ctx) override {
  4985. struct ggml_tensor * cur;
  4986. struct ggml_tensor * inpL;
  4987. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4988. // inp_pos - contains the positions
  4989. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4990. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4991. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4992. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4993. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4994. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4995. // norm
  4996. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4997. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4998. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4999. // self-attention
  5000. {
  5001. cur = attn_norm;
  5002. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5003. cur = ggml_mul_mat(ctx, wqkv, cur);
  5004. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5005. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5006. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5007. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5008. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5009. // using mode = 2 for neox mode
  5010. Qcur = ggml_rope_ext(
  5011. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5012. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5013. );
  5014. Kcur = ggml_rope_ext(
  5015. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5016. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5017. );
  5018. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5019. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5020. }
  5021. struct ggml_tensor * ffn_inp = cur;
  5022. // feed forward
  5023. {
  5024. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5025. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5026. cur = attn_norm;
  5027. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5028. cur = ggml_gelu(ctx, cur);
  5029. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5030. }
  5031. cur = ggml_add(ctx, cur, ffn_inp);
  5032. cur = ggml_add(ctx, cur, inpL);
  5033. // input for next layer
  5034. inpL = cur;
  5035. }
  5036. cur = inpL;
  5037. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5038. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5039. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5040. // lm_head
  5041. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5042. cur = ggml_mul_mat(ctx, output, cur);
  5043. return cur;
  5044. }
  5045. };
  5046. // ###########################################
  5047. // ## Section 3: GGML Op Test Instantiation ##
  5048. // ###########################################
  5049. static const ggml_type all_types[] = {
  5050. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5051. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5052. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5053. GGML_TYPE_Q8_0,
  5054. GGML_TYPE_MXFP4,
  5055. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5056. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5057. GGML_TYPE_Q6_K,
  5058. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5059. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5060. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5061. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5062. };
  5063. static const ggml_type base_types[] = {
  5064. GGML_TYPE_F32, GGML_TYPE_F16,
  5065. GGML_TYPE_Q8_0, // for I8MM tests
  5066. GGML_TYPE_Q4_0,
  5067. GGML_TYPE_Q4_1, // for I8MM tests
  5068. GGML_TYPE_Q4_K,
  5069. GGML_TYPE_MXFP4, // TODO: or "other"
  5070. GGML_TYPE_IQ2_XXS
  5071. };
  5072. static const ggml_type other_types[] = {
  5073. GGML_TYPE_Q4_1,
  5074. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5075. GGML_TYPE_Q8_0,
  5076. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5077. GGML_TYPE_Q5_K,
  5078. GGML_TYPE_Q6_K,
  5079. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5080. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5081. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5082. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5083. GGML_TYPE_BF16,
  5084. };
  5085. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5086. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5087. std::vector<std::unique_ptr<test_case>> test_cases;
  5088. std::default_random_engine rng(0);
  5089. // unary ops
  5090. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5091. for (int v : {0, 1}) {
  5092. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5093. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5094. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5095. }
  5096. }
  5097. }
  5098. // glu ops
  5099. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5100. for (int v : {0, 1}) {
  5101. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5102. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5103. // SWIGLU_OAI is handled separately
  5104. continue;
  5105. }
  5106. for (bool swapped : {false, true}) {
  5107. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5108. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5109. }
  5110. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5111. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5112. }
  5113. }
  5114. }
  5115. for (int v : {0, 1}) {
  5116. for (float alpha : {.5f, 1.702f}) {
  5117. for (float limit : {2.0f, 7.0f}) {
  5118. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5119. }
  5120. }
  5121. }
  5122. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5123. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5124. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5125. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5126. }
  5127. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5128. for (ggml_type type : all_types) {
  5129. for (int b : {1, 7}) {
  5130. for (bool v : {false, true}) {
  5131. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5132. }
  5133. }
  5134. }
  5135. for (int b : {1, 7}) {
  5136. for (bool v : {false, true}) {
  5137. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5138. }
  5139. }
  5140. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5141. for (ggml_type type : all_types) {
  5142. for (bool v : {false, true}) {
  5143. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5144. }
  5145. }
  5146. for (bool v : {false, true}) {
  5147. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5148. }
  5149. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5150. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5151. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5152. for (ggml_type type : all_types) {
  5153. for (int b : {1, 7}) {
  5154. for (bool v : {false, true}) {
  5155. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5156. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5157. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5158. if (ggml_blck_size(type) == 1) {
  5159. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5160. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5161. }
  5162. }
  5163. }
  5164. }
  5165. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) {
  5166. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5167. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode));
  5168. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode));
  5169. }
  5170. }
  5171. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5172. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5173. for (int k0 : {1, 3}) {
  5174. for (int k1 : {1, 3}) {
  5175. for (int s0 : {1, 2}) {
  5176. for (int s1 : {1, 2}) {
  5177. for (int p0 : {0, 1}) {
  5178. for (int p1 : {0, 1}) {
  5179. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5180. }
  5181. }
  5182. }
  5183. }
  5184. }
  5185. }
  5186. }
  5187. }
  5188. #if 0
  5189. // >4GB im2col destination. Too slow to run by default.
  5190. // Test cases taken from Wan2.1 T2V 1.3B.
  5191. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5192. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5193. #endif
  5194. // im2col 1D
  5195. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5196. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5197. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5198. for (int s0 : {1, 3}) {
  5199. for (int p0 : {0, 3}) {
  5200. for (int d0 : {1, 3}) {
  5201. test_cases.emplace_back(new test_im2col(
  5202. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5203. s0, 0, p0, 0, d0, 0, false));
  5204. }
  5205. }
  5206. }
  5207. // im2col 2D
  5208. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5209. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5210. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5211. for (int s0 : {1, 3}) {
  5212. for (int s1 : {1, 3}) {
  5213. for (int p0 : {0, 3}) {
  5214. for (int p1 : {0, 3}) {
  5215. for (int d0 : {1, 3}) {
  5216. for (int d1 : {1, 3}) {
  5217. test_cases.emplace_back(new test_im2col(
  5218. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5219. s0, s1, p0, p1, d0, d1, true));
  5220. }
  5221. }
  5222. }
  5223. }
  5224. }
  5225. }
  5226. // extra tests for im2col 2D
  5227. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5228. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5229. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5230. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5231. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5232. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5233. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5234. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5235. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5236. // im2col 3D
  5237. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5238. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5239. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5240. for (int s0 : {1, 3}) {
  5241. for (int s1 : {1, 3}) {
  5242. for (int s2 : {1, 3}) {
  5243. for (int p0 : {0, 3}) {
  5244. for (int p1 : {0, 3}) {
  5245. for (int p2 : {0, 3}) {
  5246. for (int d0 : {1, 3}) {
  5247. for (int d1 : {1, 3}) {
  5248. for (int d2 : {1, 3}) {
  5249. for (int IC : {1, 3}) {
  5250. for (bool v : {false, true}) {
  5251. test_cases.emplace_back(new test_im2col_3d(
  5252. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5253. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5254. }
  5255. }
  5256. }
  5257. }
  5258. }
  5259. }
  5260. }
  5261. }
  5262. }
  5263. }
  5264. }
  5265. // Conv_2D test cases
  5266. #ifdef DETAILED_TESTS
  5267. // Probably we do not have enough time to execute these in the pipeline.
  5268. uint32_t iwh_idx = 0;
  5269. uint32_t kwh_idx = 1;
  5270. uint32_t Cout_idx = 2;
  5271. uint32_t Cin_idx = 3;
  5272. uint32_t B_idx = 4;
  5273. std::vector<std::array<int, 5>> cases = {
  5274. //{IWH, KWH, Cout, Cin, B}
  5275. // K=CRS=NPQ=4096 conv_2d matmul performance
  5276. {19, 4, 4096, 256, 16},
  5277. // K=128, CRS=128, NPQ=4096
  5278. { 19, 4, 128, 8, 16},
  5279. // K=130, CRS=128, NPQ=4096
  5280. { 19, 4, 130, 8, 16},
  5281. // Edge case: K x CRS is small
  5282. { 19, 2, 4, 4, 16},
  5283. // A ConvNet's first layer
  5284. { 224, 3, 8, 3, 1 },
  5285. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5286. { 224, 2, 8, 1, 1 },
  5287. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5288. { 224, 2, 8, 1, 8 },
  5289. // A middle layer of a ConvNet
  5290. { 58, 3, 64, 32, 1 },
  5291. // A middle layer of a ConvNet, several images in the batch
  5292. { 58, 3, 64, 32, 8 },
  5293. // A deep layer of a ConvNet, several images in the batch
  5294. { 16, 3, 256, 128, 8 }
  5295. };
  5296. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5297. for (auto act_case : cases) {
  5298. test_cases.emplace_back(new test_conv_2d(
  5299. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5300. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5301. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5302. }
  5303. }
  5304. #endif
  5305. // CONV_2D:
  5306. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5307. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5308. };
  5309. //uint32_t s0 = 3;
  5310. uint32_t s1 = 5;
  5311. uint32_t p0 = 5;
  5312. //uint32_t p1 = 2;
  5313. uint32_t d0 = 2;
  5314. uint32_t d1 = 4;
  5315. for (uint32_t s0 : { 1, 3 }) {
  5316. for (uint32_t p1 : { 2, 5 }) {
  5317. for (uint32_t Cin : { 1, 25 }) {
  5318. for (uint32_t Cout : { 1, 12 }) {
  5319. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5320. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5321. for (uint32_t H : { 1, 133 }) {
  5322. for (uint32_t W : { 1, 141 }) {
  5323. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5324. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5325. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5326. test_cases.emplace_back(new test_conv_2d(
  5327. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5328. }
  5329. }
  5330. }
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. }
  5337. }
  5338. // sycl backend will limit task global_range < MAX_INT
  5339. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5340. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5341. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5342. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5343. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5344. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5345. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5346. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5347. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5348. // CONV_3D
  5349. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5350. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5351. };
  5352. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5353. for (int N : {1, 2}) {
  5354. for (int IC : {1, 3}) {
  5355. for (int OC : {1, 4}) {
  5356. for (int s0 : {1, 2}) {
  5357. for (int p1 : {0, 1}) {
  5358. for (int d2 : {1, 2}) {
  5359. int64_t IW = 20, IH = 22, ID = 18;
  5360. int64_t KW = 3, KH = 3, KD = 3;
  5361. int s1 = s0, s2 = s0;
  5362. int p0 = p1, p2 = p1;
  5363. int d0 = d2, d1 = d2;
  5364. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5365. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5366. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5367. continue;
  5368. }
  5369. test_cases.emplace_back(new test_conv_3d(
  5370. N, IC, ID, IH, IW,
  5371. OC, KD, KH, KW,
  5372. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5373. kernel_type));
  5374. // Asymmetric kernel and params
  5375. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5376. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5377. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5378. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5379. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5380. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5381. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5382. continue;
  5383. }
  5384. test_cases.emplace_back(new test_conv_3d(
  5385. N, IC, ID, IH, IW,
  5386. OC, asym_KD, asym_KH, asym_KW,
  5387. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  5388. kernel_type));
  5389. }
  5390. }
  5391. }
  5392. }
  5393. }
  5394. }
  5395. // Case with kernel size 1
  5396. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  5397. }
  5398. for(uint32_t Cout : {1, 9}){
  5399. for(uint32_t Cin : {1, 7}){
  5400. for(uint32_t K : {1, 3, 1337}){
  5401. for(uint32_t L : {1, 2, 13}){
  5402. for(uint32_t s0: {1, 2, 3}){
  5403. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  5404. }
  5405. }
  5406. }
  5407. }
  5408. }
  5409. test_cases.emplace_back(new test_conv_transpose_1d());
  5410. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  5411. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  5412. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  5413. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  5414. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  5415. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  5416. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  5417. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  5418. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  5419. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  5420. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  5421. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  5422. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  5423. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  5424. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5425. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  5426. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  5427. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  5428. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  5429. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  5430. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5431. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  5432. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  5433. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5434. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  5435. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  5436. }
  5437. for (bool view : {false, true}) {
  5438. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  5439. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  5440. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  5441. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  5442. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  5443. }
  5444. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  5445. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  5446. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  5447. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  5448. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  5449. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  5450. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  5451. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  5452. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  5453. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  5454. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5455. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  5456. }
  5457. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  5458. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  5459. }
  5460. // same-type copy
  5461. for (ggml_type type : all_types) {
  5462. const auto nk = ggml_blck_size(type);
  5463. for (int k = 1; k < 4; ++k) {
  5464. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  5465. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  5466. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  5467. }
  5468. }
  5469. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5470. for (ggml_type type_dst : all_types) {
  5471. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5472. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5473. }
  5474. }
  5475. for (ggml_type type_src : all_types) {
  5476. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  5477. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  5478. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  5479. }
  5480. }
  5481. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5482. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5483. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  5484. }
  5485. }
  5486. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  5487. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5488. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  5489. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  5490. test_cases.emplace_back(new test_cont());
  5491. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  5492. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  5493. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  5494. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  5495. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  5496. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  5497. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  5498. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  5499. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  5500. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  5501. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  5502. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  5503. }
  5504. };
  5505. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5506. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  5507. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  5508. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  5509. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  5510. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  5511. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  5512. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  5513. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  5514. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  5515. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  5516. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  5517. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  5518. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  5519. // test case for k_bin_bcast_unravel in CUDA backend
  5520. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  5521. // stable diffusion
  5522. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  5523. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  5524. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  5525. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  5526. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  5527. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  5528. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  5529. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  5530. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  5531. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  5532. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  5533. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  5534. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  5535. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  5536. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  5537. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  5538. }
  5539. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  5540. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5541. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5542. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5543. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5544. // fusion
  5545. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  5546. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  5547. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  5548. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  5549. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  5550. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  5551. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  5552. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  5553. test_cases.emplace_back(new test_add1());
  5554. test_cases.emplace_back(new test_scale());
  5555. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  5556. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  5557. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  5558. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  5559. test_cases.emplace_back(new test_silu_back());
  5560. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  5561. for (bool v : {false, true}) {
  5562. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5563. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  5564. }
  5565. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5566. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  5567. }
  5568. // in-place tests
  5569. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  5570. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  5571. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5572. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5573. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  5574. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  5575. }
  5576. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  5577. for (bool multi_add : {false, true}) {
  5578. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  5579. }
  5580. }
  5581. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  5582. for (int64_t d_conv : {3, 4}) {
  5583. for (int64_t d_inner: {1024, 1536, 2048}) {
  5584. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5585. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  5586. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  5587. }
  5588. }
  5589. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  5590. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  5591. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  5592. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  5593. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  5594. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  5595. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  5596. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  5597. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  5598. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  5599. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  5600. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  5601. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  5602. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  5603. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  5604. #if 0
  5605. // > 4GB A matrix. Too slow to be enabled by default.
  5606. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  5607. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  5608. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  5609. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  5610. #endif
  5611. for (ggml_type type_a : all_types) {
  5612. for (int i = 1; i < 10; ++i) {
  5613. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  5614. }
  5615. }
  5616. #if 0
  5617. {
  5618. // Test paths in OpenCL
  5619. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  5620. std::vector<int> ks = {896, 1536, 4096};
  5621. for (auto n : ns) {
  5622. for (auto k : ks) {
  5623. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  5624. }
  5625. }
  5626. }
  5627. #endif
  5628. #if 1
  5629. for (ggml_type type_a : base_types) {
  5630. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5631. std::vector<int> ks = { 256 };
  5632. if (ggml_blck_size(type_a) == 1) {
  5633. ks.push_back(4);
  5634. }
  5635. for (auto k : ks) {
  5636. // test cases without permutation
  5637. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  5638. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  5639. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  5640. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  5641. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  5642. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  5643. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  5644. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  5645. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  5646. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  5647. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  5648. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  5649. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  5650. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  5651. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  5652. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  5653. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  5654. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  5655. // test cases with permutation
  5656. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5657. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5658. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5659. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5660. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5661. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5662. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  5663. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  5664. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  5665. }
  5666. // test cases with large ne00/ne10 to cover stream-k fixup
  5667. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  5668. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  5669. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  5670. // test cases with large batch size
  5671. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  5672. }
  5673. }
  5674. for (ggml_type type_a : other_types) {
  5675. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5676. if (ggml_blck_size(type_a) != 256) {
  5677. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  5678. }
  5679. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  5680. }
  5681. }
  5682. #else
  5683. // m = a rows
  5684. // n = b rows
  5685. // k = cols
  5686. std::uniform_int_distribution<> dist_m(1, 128);
  5687. std::uniform_int_distribution<> dist_n(16, 128);
  5688. std::uniform_int_distribution<> dist_k(1, 16);
  5689. for (int i = 0; i < 1000; i++) {
  5690. for (ggml_type type_a : all_types) {
  5691. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5692. int m = dist_m(rng);
  5693. int n = dist_n(rng);
  5694. int k = dist_k(rng) * ggml_blck_size(type_a);
  5695. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  5696. }
  5697. }
  5698. }
  5699. #endif
  5700. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  5701. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  5702. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  5703. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  5704. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  5705. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  5706. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5707. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  5708. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, true, 3));
  5709. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  5710. #if 0
  5711. // test the mat-mat path for Metal
  5712. for (int k = 1; k < 512; ++k) {
  5713. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5714. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  5715. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5716. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  5717. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5718. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  5719. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5720. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5721. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  5722. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  5723. }
  5724. #endif
  5725. for (auto bs2 : {1,3}) {
  5726. for (auto bs : {1,2,4,8}) {
  5727. for (auto nr : {1,4}) {
  5728. for (uint32_t m = 0; m < 2; ++m) {
  5729. for (uint32_t k = 0; k < 2; ++k) {
  5730. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  5731. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  5732. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  5733. }
  5734. }
  5735. }
  5736. }
  5737. }
  5738. }
  5739. // sycl backend will limit task global_range < MAX_INT
  5740. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  5741. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5742. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5743. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  5744. // test large experts*tokens
  5745. for (bool b : {false, true}) {
  5746. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  5747. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  5748. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  5749. }
  5750. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  5751. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  5752. // gpt-oss issue with Vulkan mmq_id
  5753. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  5754. for (ggml_type type_a : base_types) {
  5755. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5756. for (int n_mats : {4, 8}) {
  5757. for (int n_used : {1, 2, 4}) {
  5758. for (bool b : {false, true}) {
  5759. for (int n : {1, 4, 5, 17, 32, 129}) {
  5760. int m = 512;
  5761. int k = 256;
  5762. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5763. }
  5764. }
  5765. }
  5766. }
  5767. }
  5768. }
  5769. for (ggml_type type_a : other_types) {
  5770. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  5771. for (int n_mats : {4}) {
  5772. for (int n_used : {2}) {
  5773. for (bool b : {false}) {
  5774. for (int n : {1, 32}) {
  5775. int m = 512;
  5776. int k = 256;
  5777. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  5778. }
  5779. }
  5780. }
  5781. }
  5782. }
  5783. }
  5784. for (ggml_type type_a : base_types) {
  5785. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5786. for (int n : {1, 16}) {
  5787. for (int k : {1, 16}) {
  5788. for (int bs2 : {1, 3}) {
  5789. for (int bs3 : {1, 3}) {
  5790. for (int nr2 : {1, 2}) {
  5791. for (int nr3 : {1, 2}) {
  5792. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  5793. }
  5794. }
  5795. }
  5796. }
  5797. }
  5798. }
  5799. }
  5800. }
  5801. // add_id
  5802. for (ggml_type type_a : {GGML_TYPE_F32}) {
  5803. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5804. for (int n_mats : {4, 8}) {
  5805. for (int n_used : {1, 2, 4}) {
  5806. for (int n_embd : {32, 129}) {
  5807. for (int n_token : {1, 32, 129}) {
  5808. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  5809. }
  5810. }
  5811. }
  5812. }
  5813. }
  5814. }
  5815. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5816. test_cases.emplace_back(new test_sqr (type));
  5817. test_cases.emplace_back(new test_sqrt (type));
  5818. test_cases.emplace_back(new test_log (type));
  5819. test_cases.emplace_back(new test_sin (type));
  5820. test_cases.emplace_back(new test_cos (type));
  5821. test_cases.emplace_back(new test_clamp (type));
  5822. test_cases.emplace_back(new test_leaky_relu(type));
  5823. test_cases.emplace_back(new test_floor (type));
  5824. test_cases.emplace_back(new test_ceil (type));
  5825. test_cases.emplace_back(new test_round (type));
  5826. test_cases.emplace_back(new test_trunc (type));
  5827. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  5828. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  5829. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  5830. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  5831. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  5832. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  5833. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  5834. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  5835. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  5836. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  5837. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  5838. }
  5839. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  5840. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  5841. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  5842. #if 0
  5843. std::uniform_int_distribution<> dist_ne1(1, 50);
  5844. int exponent = 1;
  5845. while (exponent < (1 << 17)) {
  5846. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  5847. for (int n = 0; n < 10; ++n) {
  5848. int64_t ne0 = dist_ne0(rng);
  5849. int64_t ne1 = dist_ne1(rng);
  5850. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  5851. }
  5852. exponent <<= 1;
  5853. }
  5854. #endif
  5855. for (bool mask : {false, true}) {
  5856. for (bool sinks : {false, true}) {
  5857. for (float max_bias : {0.0f, 8.0f}) {
  5858. if (!mask && max_bias > 0.0f) continue;
  5859. for (float scale : {1.0f, 0.1f}) {
  5860. for (int64_t ne0 : {16, 1024}) {
  5861. for (int64_t ne1 : {16, 1024}) {
  5862. if (mask) {
  5863. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5864. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5865. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  5866. if (ne0 <= 32 && ne1 <= 32) {
  5867. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  5868. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  5869. }
  5870. }
  5871. } else {
  5872. /* The precision of mask here doesn't matter as boolean mask is false */
  5873. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5874. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  5875. }
  5876. }
  5877. }
  5878. }
  5879. }
  5880. // inplace tests
  5881. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  5882. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  5883. }
  5884. }
  5885. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5886. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5887. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5888. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  5889. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  5890. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  5891. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  5892. for (float max_bias : {0.0f, 8.0f}) {
  5893. for (float scale : {1.0f, 0.1f}) {
  5894. for (int64_t ne0 : {16, 1024}) {
  5895. for (int64_t ne1 : {16, 1024}) {
  5896. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  5897. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  5898. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  5899. }
  5900. }
  5901. }
  5902. }
  5903. for (bool fw : {true, false}) { // fw == forward
  5904. bool all = true;
  5905. for (float fs : { 1.0f, 1.4245f }) {
  5906. for (float ef : { 0.0f, 0.7465f }) {
  5907. for (float af : { 1.0f, 1.4245f }) {
  5908. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5909. for (bool ff : {false, true}) { // freq_factors
  5910. for (float v : { 0, 1 }) {
  5911. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  5912. if (all) {
  5913. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  5914. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  5915. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  5916. }
  5917. if (all) {
  5918. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5919. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  5920. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5921. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5922. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5923. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  5924. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  5925. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5926. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  5927. }
  5928. if (all) {
  5929. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  5930. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  5931. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5932. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  5933. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  5934. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  5935. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  5936. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  5937. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  5938. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  5939. }
  5940. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  5941. }
  5942. }
  5943. all = false;
  5944. }
  5945. }
  5946. }
  5947. }
  5948. }
  5949. // single inplace test per type/mode/ff
  5950. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5951. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  5952. for (bool ff : {false, true}) {
  5953. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  5954. }
  5955. }
  5956. }
  5957. for (int v : { 0, 1, 2, 3 }) {
  5958. for (int dim : { 0, 1, 2, 3, }) {
  5959. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  5960. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  5961. }
  5962. }
  5963. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  5964. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  5965. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  5966. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  5967. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order));
  5968. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // many backends only handle up to 1024
  5969. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  5970. }
  5971. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  5972. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  5973. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  5974. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5975. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5976. }
  5977. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5978. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5979. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5980. test_cases.emplace_back(new test_sum());
  5981. test_cases.emplace_back(new test_sum_rows());
  5982. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  5983. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  5984. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  5985. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  5986. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  5987. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  5988. test_cases.emplace_back(new test_mean());
  5989. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5990. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5991. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5992. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5993. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5994. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5995. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  5996. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5997. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5998. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  5999. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6000. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6001. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6002. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6003. test_cases.emplace_back(new test_acc());
  6004. test_cases.emplace_back(new test_pad());
  6005. test_cases.emplace_back(new test_pad_ext());
  6006. test_cases.emplace_back(new test_pad_reflect_1d());
  6007. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6008. test_cases.emplace_back(new test_roll());
  6009. test_cases.emplace_back(new test_arange());
  6010. test_cases.emplace_back(new test_timestep_embedding());
  6011. test_cases.emplace_back(new test_leaky_relu());
  6012. for (bool v : {false, true}) {
  6013. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
  6014. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v));
  6015. }
  6016. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6017. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6018. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6019. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6020. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6021. for (bool mask : { true, false } ) {
  6022. for (bool sinks : { true, false } ) {
  6023. for (float max_bias : { 0.0f, 8.0f }) {
  6024. if (!mask && max_bias > 0.0f) continue;
  6025. for (float logit_softcap : {0.0f, 10.0f}) {
  6026. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6027. for (int nh : { 4, }) {
  6028. for (int nr3 : { 1, 3, }) {
  6029. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6030. for (int nr2 : { 1, 4, 16 }) {
  6031. if (nr2 == 16 && hsk != 128) continue;
  6032. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6033. for (int kv : { 113, 512, 1024, }) {
  6034. if (nr2 != 1 && kv != 512) continue;
  6035. for (int nb : { 1, 3, 32, 35, }) {
  6036. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6037. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6038. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6039. test_cases.emplace_back(new test_flash_attn_ext(
  6040. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6041. // run fewer test cases permuted
  6042. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6043. test_cases.emplace_back(new test_flash_attn_ext(
  6044. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6045. }
  6046. }
  6047. }
  6048. }
  6049. }
  6050. }
  6051. }
  6052. }
  6053. }
  6054. }
  6055. }
  6056. }
  6057. }
  6058. }
  6059. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6060. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6061. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6062. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6063. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6064. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6065. for (ggml_type type : base_types) {
  6066. for (bool with_gate : {false, true}) {
  6067. for (bool use_id : {false, true}) {
  6068. for (bool b : {false, true}) {
  6069. if (!use_id && b) {
  6070. continue;
  6071. }
  6072. for (bool with_bias : {false, true}) {
  6073. if (!with_gate && !with_bias) {
  6074. continue;
  6075. }
  6076. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6077. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6078. continue;
  6079. }
  6080. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6081. continue;
  6082. }
  6083. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6084. use_id, 16, 8, b, with_bias, with_gate));
  6085. }
  6086. }
  6087. }
  6088. }
  6089. }
  6090. }
  6091. for (bool with_norm : {false, true}) {
  6092. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
  6093. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
  6094. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
  6095. }
  6096. test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));
  6097. test_cases.emplace_back(new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true));
  6098. test_cases.emplace_back(new test_moe_expert_reduce(1024, 5, 4));
  6099. test_cases.emplace_back(new test_moe_expert_reduce(80, 3, 6));
  6100. test_cases.emplace_back(new test_moe_expert_reduce(80, 3, 7));
  6101. #if 0
  6102. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6103. test_cases.emplace_back(new test_llama(2, true));
  6104. test_cases.emplace_back(new test_llama(1));
  6105. test_cases.emplace_back(new test_llama(2));
  6106. test_cases.emplace_back(new test_falcon(1));
  6107. test_cases.emplace_back(new test_falcon(2));
  6108. #endif
  6109. return test_cases;
  6110. }
  6111. // Test cases for performance evaluation: should be representative of real-world use cases
  6112. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6113. std::vector<std::unique_ptr<test_case>> test_cases;
  6114. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6115. uint32_t iwh_idx = 0;
  6116. uint32_t kwh_idx = 1;
  6117. uint32_t Cout_idx = 2;
  6118. uint32_t Cin_idx = 3;
  6119. uint32_t B_idx = 4;
  6120. std::vector<std::array<int, 5>> cases = {
  6121. //{IWH, KWH, Cout, Cin, B}
  6122. // K=CRS=NPQ=4096 conv2d matmul performance
  6123. {19, 4, 4096, 256, 16},
  6124. // K=128, CRS=128, NPQ=4096
  6125. { 19, 4, 128, 8, 16},
  6126. // K=130, CRS=128, NPQ=4096
  6127. { 19, 4, 130, 8, 16},
  6128. // Edge case: K x CRS is small
  6129. { 19, 2, 4, 4, 16},
  6130. // A ConvNet's first layer
  6131. { 224, 3, 8, 3, 1 },
  6132. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6133. { 224, 2, 8, 1, 1 },
  6134. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6135. { 224, 2, 8, 1, 8 },
  6136. // A middle layer of a ConvNet
  6137. { 58, 3, 64, 32, 1 },
  6138. // A middle layer of a ConvNet, several images in the batch
  6139. { 58, 3, 64, 32, 8 },
  6140. // A deep layer of a ConvNet, several images in the batch
  6141. { 16, 3, 512, 128, 8 },
  6142. };
  6143. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6144. for (auto act_case : cases) {
  6145. // Direct CONV_2D
  6146. test_cases.emplace_back(new test_conv_2d(
  6147. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6148. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6149. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6150. }
  6151. }
  6152. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6153. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6154. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6155. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6156. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6157. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6158. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6159. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6160. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6161. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6162. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6163. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6164. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6165. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6166. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6167. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6168. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6169. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6170. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6171. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6172. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6173. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6174. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6175. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6176. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  6177. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6178. for (ggml_type type_a : all_types) {
  6179. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6180. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6181. }
  6182. }
  6183. }
  6184. // qwen3-30b-a3b
  6185. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6186. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6187. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6188. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6189. }
  6190. }
  6191. }
  6192. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6193. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6194. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6195. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6196. }
  6197. }
  6198. }
  6199. // gpt-oss-20b
  6200. for (int bs : {1, 4, 8, 512}) {
  6201. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  6202. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6203. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  6204. }
  6205. }
  6206. }
  6207. for (int K : {3, 5}) {
  6208. for (int IC : {256, 2560}) {
  6209. for (int IW_IH : {32, 64, 256}) {
  6210. if (IC == 2560 && IW_IH == 256) {
  6211. // too big
  6212. continue;
  6213. }
  6214. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  6215. }
  6216. }
  6217. }
  6218. for (int kv : { 4096, 8192, 16384, }) {
  6219. for (int hs : { 64, 128, }) {
  6220. for (int nr : { 1, 4, }) {
  6221. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  6222. }
  6223. }
  6224. }
  6225. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  6226. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  6227. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  6228. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  6229. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6230. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  6231. for (int n_token : {1, 512}) {
  6232. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  6233. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  6234. }
  6235. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  6236. { 8192, 1, 1, 1 },
  6237. { 8192, 8192, 1, 1 },
  6238. { 128, 8192, 1, 1 },
  6239. };
  6240. for (auto it: reduce_rows_cases){
  6241. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  6242. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  6243. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  6244. }
  6245. return test_cases;
  6246. }
  6247. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  6248. printer * output_printer) {
  6249. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  6250. if (params_filter == nullptr) {
  6251. return;
  6252. }
  6253. std::regex params_filter_regex(params_filter);
  6254. for (auto it = test_cases.begin(); it != test_cases.end();) {
  6255. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  6256. it = test_cases.erase(it);
  6257. continue;
  6258. }
  6259. it++;
  6260. }
  6261. };
  6262. if (mode == MODE_TEST) {
  6263. auto test_cases = make_test_cases_eval();
  6264. filter_test_cases(test_cases, params_filter);
  6265. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  6266. if (backend_cpu == NULL) {
  6267. test_operation_info info("", "", "CPU");
  6268. info.set_error("backend", "Failed to initialize CPU backend");
  6269. output_printer->print_operation(info);
  6270. return false;
  6271. }
  6272. size_t n_ok = 0;
  6273. size_t tests_run = 0;
  6274. std::vector<std::string> failed_tests;
  6275. for (auto & test : test_cases) {
  6276. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  6277. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  6278. continue;
  6279. }
  6280. tests_run++;
  6281. if (status == test_status_t::OK) {
  6282. n_ok++;
  6283. } else if (status == test_status_t::FAIL) {
  6284. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  6285. }
  6286. }
  6287. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  6288. output_printer->print_failed_tests(failed_tests);
  6289. ggml_backend_free(backend_cpu);
  6290. return n_ok == tests_run;
  6291. }
  6292. if (mode == MODE_GRAD) {
  6293. auto test_cases = make_test_cases_eval();
  6294. filter_test_cases(test_cases, params_filter);
  6295. size_t n_ok = 0;
  6296. for (auto & test : test_cases) {
  6297. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  6298. n_ok++;
  6299. }
  6300. }
  6301. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  6302. return n_ok == test_cases.size();
  6303. }
  6304. if (mode == MODE_PERF) {
  6305. auto test_cases = make_test_cases_perf();
  6306. filter_test_cases(test_cases, params_filter);
  6307. for (auto & test : test_cases) {
  6308. test->eval_perf(backend, op_names_filter, output_printer);
  6309. }
  6310. return true;
  6311. }
  6312. if (mode == MODE_SUPPORT) {
  6313. auto test_cases = make_test_cases_eval();
  6314. filter_test_cases(test_cases, params_filter);
  6315. // Filter out fusion cases
  6316. test_cases.erase(
  6317. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6318. return tc->run_whole_graph();
  6319. }),
  6320. test_cases.end()
  6321. );
  6322. for (auto & test : test_cases) {
  6323. test->eval_support(backend, op_names_filter, output_printer);
  6324. }
  6325. return true;
  6326. }
  6327. GGML_ABORT("fatal error");
  6328. }
  6329. static void list_all_ops() {
  6330. printf("GGML operations:\n");
  6331. std::set<std::string> all_ops;
  6332. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6333. all_ops.insert(ggml_op_name((enum ggml_op)i));
  6334. }
  6335. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6336. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6337. }
  6338. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6339. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6340. }
  6341. for (const auto & op : all_ops) {
  6342. printf(" %s\n", op.c_str());
  6343. }
  6344. printf("\nTotal: %zu operations\n", all_ops.size());
  6345. }
  6346. static void show_test_coverage() {
  6347. std::set<std::string> all_ops;
  6348. for (int i = 1; i < GGML_OP_COUNT; i++) {
  6349. auto op = (enum ggml_op)i;
  6350. if (op == GGML_OP_VIEW ||
  6351. op == GGML_OP_RESHAPE ||
  6352. op == GGML_OP_PERMUTE ||
  6353. op == GGML_OP_TRANSPOSE ||
  6354. op == GGML_OP_CONT ||
  6355. op == GGML_OP_GLU ||
  6356. op == GGML_OP_UNARY) {
  6357. continue;
  6358. }
  6359. all_ops.insert(ggml_op_name(op));
  6360. }
  6361. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  6362. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  6363. }
  6364. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  6365. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  6366. }
  6367. auto test_cases = make_test_cases_eval();
  6368. // Filter out fusion cases
  6369. test_cases.erase(
  6370. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  6371. return tc->run_whole_graph();
  6372. }),
  6373. test_cases.end()
  6374. );
  6375. std::set<std::string> tested_ops;
  6376. ggml_init_params params = {
  6377. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  6378. /* .mem_base = */ NULL,
  6379. /* .no_alloc = */ true,
  6380. };
  6381. for (auto & test_case : test_cases) {
  6382. ggml_context * ctx = ggml_init(params);
  6383. if (ctx) {
  6384. test_case->mode = MODE_TEST;
  6385. ggml_tensor * out = test_case->build_graph(ctx);
  6386. if (out && out->op != GGML_OP_NONE) {
  6387. if (out->op == GGML_OP_UNARY) {
  6388. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  6389. } else if (out->op == GGML_OP_GLU) {
  6390. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  6391. } else {
  6392. tested_ops.insert(ggml_op_name(out->op));
  6393. }
  6394. }
  6395. ggml_free(ctx);
  6396. }
  6397. }
  6398. std::set<std::string> covered_ops;
  6399. std::set<std::string> uncovered_ops;
  6400. for (const auto & op : all_ops) {
  6401. if (tested_ops.count(op) > 0) {
  6402. covered_ops.insert(op);
  6403. } else {
  6404. uncovered_ops.insert(op);
  6405. }
  6406. }
  6407. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  6408. for (const auto & op : covered_ops) {
  6409. printf(" ✓ %s\n", op.c_str());
  6410. }
  6411. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  6412. for (const auto & op : uncovered_ops) {
  6413. printf(" ✗ %s\n", op.c_str());
  6414. }
  6415. printf("\nCoverage Summary:\n");
  6416. printf(" Total operations: %zu\n", all_ops.size());
  6417. printf(" Tested operations: %zu\n", covered_ops.size());
  6418. printf(" Untested operations: %zu\n", uncovered_ops.size());
  6419. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  6420. }
  6421. static void usage(char ** argv) {
  6422. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  6423. printf(" valid modes:\n");
  6424. printf(" - test (default, compare with CPU backend for correctness)\n");
  6425. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  6426. printf(" - perf (performance evaluation)\n");
  6427. printf(" - support (probe backend operation support)\n");
  6428. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  6429. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  6430. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  6431. printf(" --list-ops lists all available GGML operations\n");
  6432. printf(" --show-coverage shows test coverage\n");
  6433. }
  6434. int main(int argc, char ** argv) {
  6435. test_mode mode = MODE_TEST;
  6436. output_formats output_format = CONSOLE;
  6437. const char * op_names_filter = nullptr;
  6438. const char * backend_filter = nullptr;
  6439. const char * params_filter = nullptr;
  6440. for (int i = 1; i < argc; i++) {
  6441. if (strcmp(argv[i], "test") == 0) {
  6442. mode = MODE_TEST;
  6443. } else if (strcmp(argv[i], "perf") == 0) {
  6444. mode = MODE_PERF;
  6445. } else if (strcmp(argv[i], "grad") == 0) {
  6446. mode = MODE_GRAD;
  6447. } else if (strcmp(argv[i], "support") == 0) {
  6448. mode = MODE_SUPPORT;
  6449. } else if (strcmp(argv[i], "-o") == 0) {
  6450. if (i + 1 < argc) {
  6451. op_names_filter = argv[++i];
  6452. } else {
  6453. usage(argv);
  6454. return 1;
  6455. }
  6456. } else if (strcmp(argv[i], "-b") == 0) {
  6457. if (i + 1 < argc) {
  6458. backend_filter = argv[++i];
  6459. } else {
  6460. usage(argv);
  6461. return 1;
  6462. }
  6463. } else if (strcmp(argv[i], "-p") == 0) {
  6464. if (i + 1 < argc) {
  6465. params_filter = argv[++i];
  6466. } else {
  6467. usage(argv);
  6468. return 1;
  6469. }
  6470. } else if (strcmp(argv[i], "--output") == 0) {
  6471. if (i + 1 < argc) {
  6472. if (!output_format_from_str(argv[++i], output_format)) {
  6473. usage(argv);
  6474. return 1;
  6475. }
  6476. } else {
  6477. usage(argv);
  6478. return 1;
  6479. }
  6480. } else if (strcmp(argv[i], "--list-ops") == 0) {
  6481. list_all_ops();
  6482. return 0;
  6483. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  6484. show_test_coverage();
  6485. return 0;
  6486. } else {
  6487. usage(argv);
  6488. return 1;
  6489. }
  6490. }
  6491. // load and enumerate backends
  6492. ggml_backend_load_all();
  6493. // Create printer for output format
  6494. std::unique_ptr<printer> output_printer = create_printer(output_format);
  6495. if (output_printer) {
  6496. output_printer->print_header();
  6497. }
  6498. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  6499. size_t n_ok = 0;
  6500. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  6501. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  6502. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  6503. output_printer->print_backend_init(
  6504. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  6505. n_ok++;
  6506. continue;
  6507. }
  6508. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  6509. output_printer->print_backend_init(backend_init_info(
  6510. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  6511. n_ok++;
  6512. continue;
  6513. }
  6514. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  6515. GGML_ASSERT(backend != NULL);
  6516. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  6517. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  6518. if (ggml_backend_set_n_threads_fn) {
  6519. // TODO: better value for n_threads
  6520. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  6521. }
  6522. size_t free, total; // NOLINT
  6523. ggml_backend_dev_memory(dev, &free, &total);
  6524. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  6525. false, "", ggml_backend_dev_description(dev),
  6526. total / 1024 / 1024, free / 1024 / 1024, true));
  6527. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  6528. if (ok) {
  6529. n_ok++;
  6530. }
  6531. output_printer->print_backend_status(
  6532. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  6533. ggml_backend_free(backend);
  6534. }
  6535. ggml_quantize_free();
  6536. if (output_printer) {
  6537. output_printer->print_footer();
  6538. }
  6539. output_printer->print_overall_summary(
  6540. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  6541. if (n_ok != ggml_backend_dev_count()) {
  6542. return 1;
  6543. }
  6544. return 0;
  6545. }