| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825 |
- #if defined(_MSC_VER)
- #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
- #endif
- #include "common.h"
- // Change JSON_ASSERT from assert() to GGML_ASSERT:
- #define JSON_ASSERT GGML_ASSERT
- #include "json.hpp"
- #include "json-schema-to-grammar.h"
- #include "llama.h"
- #include <algorithm>
- #include <cinttypes>
- #include <cmath>
- #include <codecvt>
- #include <cstdarg>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <iostream>
- #include <iterator>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <unordered_map>
- #include <unordered_set>
- #include <vector>
- #include <climits>
- #if defined(__APPLE__) && defined(__MACH__)
- #include <sys/types.h>
- #include <sys/sysctl.h>
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- # define NOMINMAX
- #endif
- #include <locale>
- #include <windows.h>
- #include <fcntl.h>
- #include <io.h>
- #else
- #include <sys/ioctl.h>
- #include <sys/stat.h>
- #include <unistd.h>
- #endif
- #if defined(LLAMA_USE_CURL)
- #include <curl/curl.h>
- #include <curl/easy.h>
- #include <thread>
- #include <future>
- #endif
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
- #define GGML_USE_CUDA_SYCL
- #endif
- #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
- #define GGML_USE_CUDA_SYCL_VULKAN
- #endif
- #if defined(LLAMA_USE_CURL)
- #ifdef __linux__
- #include <linux/limits.h>
- #elif defined(_WIN32)
- #define PATH_MAX MAX_PATH
- #else
- #include <sys/syslimits.h>
- #endif
- #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
- #endif // LLAMA_USE_CURL
- using json = nlohmann::ordered_json;
- //
- // CPU utils
- //
- int32_t cpu_get_num_physical_cores() {
- #ifdef __linux__
- // enumerate the set of thread siblings, num entries is num cores
- std::unordered_set<std::string> siblings;
- for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
- std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
- + std::to_string(cpu) + "/topology/thread_siblings");
- if (!thread_siblings.is_open()) {
- break; // no more cpus
- }
- std::string line;
- if (std::getline(thread_siblings, line)) {
- siblings.insert(line);
- }
- }
- if (!siblings.empty()) {
- return static_cast<int32_t>(siblings.size());
- }
- #elif defined(__APPLE__) && defined(__MACH__)
- int32_t num_physical_cores;
- size_t len = sizeof(num_physical_cores);
- int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
- if (result == 0) {
- return num_physical_cores;
- }
- result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
- if (result == 0) {
- return num_physical_cores;
- }
- #elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
- // TODO: windows + arm64 + mingw64
- unsigned int n_threads_win = std::thread::hardware_concurrency();
- unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;
- DWORD buffer_size = 0;
- if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
- if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
- return default_threads;
- }
- }
- std::vector<char> buffer(buffer_size);
- if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
- return default_threads;
- }
- int32_t num_physical_cores = 0;
- PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
- while (buffer_size > 0) {
- if (info->Relationship == RelationProcessorCore) {
- num_physical_cores += info->Processor.GroupCount;
- }
- buffer_size -= info->Size;
- info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
- }
- return num_physical_cores > 0 ? num_physical_cores : default_threads;
- #endif
- unsigned int n_threads = std::thread::hardware_concurrency();
- return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
- }
- #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
- #include <pthread.h>
- static void cpuid(unsigned leaf, unsigned subleaf,
- unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
- __asm__("movq\t%%rbx,%%rsi\n\t"
- "cpuid\n\t"
- "xchgq\t%%rbx,%%rsi"
- : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
- : "0"(leaf), "2"(subleaf));
- }
- static int pin_cpu(int cpu) {
- cpu_set_t mask;
- CPU_ZERO(&mask);
- CPU_SET(cpu, &mask);
- return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
- }
- static bool is_hybrid_cpu(void) {
- unsigned eax, ebx, ecx, edx;
- cpuid(7, 0, &eax, &ebx, &ecx, &edx);
- return !!(edx & (1u << 15));
- }
- static bool is_running_on_efficiency_core(void) {
- unsigned eax, ebx, ecx, edx;
- cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
- int intel_atom = 0x20;
- int core_type = (eax & 0xff000000u) >> 24;
- return core_type == intel_atom;
- }
- static int cpu_count_math_cpus(int n_cpu) {
- int result = 0;
- for (int cpu = 0; cpu < n_cpu; ++cpu) {
- if (pin_cpu(cpu)) {
- return -1;
- }
- if (is_running_on_efficiency_core()) {
- continue; // efficiency cores harm lockstep threading
- }
- ++cpu; // hyperthreading isn't useful for linear algebra
- ++result;
- }
- return result;
- }
- #endif // __x86_64__ && __linux__
- /**
- * Returns number of CPUs on system that are useful for math.
- */
- int32_t cpu_get_num_math() {
- #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
- int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
- if (n_cpu < 1) {
- return cpu_get_num_physical_cores();
- }
- if (is_hybrid_cpu()) {
- cpu_set_t affinity;
- if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
- int result = cpu_count_math_cpus(n_cpu);
- pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
- if (result > 0) {
- return result;
- }
- }
- }
- #endif
- return cpu_get_num_physical_cores();
- }
- // Helper for setting process priority
- #if defined(_WIN32)
- bool set_process_priority(enum ggml_sched_priority prio) {
- if (prio == GGML_SCHED_PRIO_NORMAL) {
- return true;
- }
- DWORD p = NORMAL_PRIORITY_CLASS;
- switch (prio) {
- case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
- case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
- case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
- case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break;
- }
- if (!SetPriorityClass(GetCurrentProcess(), p)) {
- fprintf(stderr, "warn: failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
- return false;
- }
- return true;
- }
- #else // MacOS and POSIX
- #include <sys/types.h>
- #include <sys/resource.h>
- bool set_process_priority(enum ggml_sched_priority prio) {
- if (prio == GGML_SCHED_PRIO_NORMAL) {
- return true;
- }
- int p = 0;
- switch (prio) {
- case GGML_SCHED_PRIO_NORMAL: p = 0; break;
- case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
- case GGML_SCHED_PRIO_HIGH: p = -10; break;
- case GGML_SCHED_PRIO_REALTIME: p = -20; break;
- }
- if (!setpriority(PRIO_PROCESS, 0, p)) {
- fprintf(stderr, "warn: failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
- return false;
- }
- return true;
- }
- #endif
- //
- // CLI argument parsing
- //
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
- #endif
- LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- static void gpt_params_handle_model_default(gpt_params & params) {
- if (!params.hf_repo.empty()) {
- // short-hand to avoid specifying --hf-file -> default it to --model
- if (params.hf_file.empty()) {
- if (params.model.empty()) {
- throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
- }
- params.hf_file = params.model;
- } else if (params.model.empty()) {
- params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
- }
- } else if (!params.model_url.empty()) {
- if (params.model.empty()) {
- auto f = string_split(params.model_url, '#').front();
- f = string_split(f, '?').front();
- params.model = fs_get_cache_file(string_split(f, '/').back());
- }
- } else if (params.model.empty()) {
- params.model = DEFAULT_MODEL_PATH;
- }
- }
- void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
- int32_t n_set = 0;
- if (cpuparams.n_threads < 0) {
- // Assuming everything about cpuparams is invalid
- if (role_model != nullptr) {
- cpuparams = *role_model;
- } else {
- cpuparams.n_threads = cpu_get_num_math();
- }
- }
- for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
- if (cpuparams.cpumask[i]) {
- n_set++;
- }
- }
- if (n_set && n_set < cpuparams.n_threads) {
- // Not enough set bits, may experience performance issues.
- fprintf(stderr, "warn: Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
- }
- }
- bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params, std::vector<llama_arg> & options) {
- std::string arg;
- const std::string arg_prefix = "--";
- gpt_sampler_params & sparams = params.sparams;
- std::unordered_map<std::string, llama_arg *> arg_to_options;
- for (auto & opt : options) {
- for (const auto & arg : opt.args) {
- arg_to_options[arg] = &opt;
- }
- }
- // handle environment variables
- for (auto & opt : options) {
- std::string value;
- if (opt.get_value_from_env(value)) {
- try {
- if (opt.handler_void && (value == "1" || value == "true")) {
- opt.handler_void(params);
- }
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(value));
- }
- if (opt.handler_string) {
- opt.handler_string(params, value);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(format(
- "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
- }
- }
- }
- // handle command line arguments
- auto check_arg = [&](int i) {
- if (i+1 >= argc) {
- throw std::invalid_argument("expected value for argument");
- }
- };
- for (int i = 1; i < argc; i++) {
- const std::string arg_prefix = "--";
- std::string arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg_to_options.find(arg) == arg_to_options.end()) {
- throw std::invalid_argument(format("error: invalid argument: %s", arg.c_str()));
- }
- auto opt = *arg_to_options[arg];
- if (opt.has_value_from_env()) {
- fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
- }
- try {
- if (opt.handler_void) {
- opt.handler_void(params);
- continue;
- }
- // arg with single value
- check_arg(i);
- std::string val = argv[++i];
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(val));
- continue;
- }
- if (opt.handler_string) {
- opt.handler_string(params, val);
- continue;
- }
- // arg with 2 values
- check_arg(i);
- std::string val2 = argv[++i];
- if (opt.handler_str_str) {
- opt.handler_str_str(params, val, val2);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(format(
- "error while handling argument \"%s\": %s\n\n"
- "usage:\n%s\n\nto show complete usage, run with -h",
- arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
- }
- }
- postprocess_cpu_params(params.cpuparams, nullptr);
- postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
- postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams);
- postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch);
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
- }
- gpt_params_handle_model_default(params);
- if (params.escape) {
- string_process_escapes(params.prompt);
- string_process_escapes(params.input_prefix);
- string_process_escapes(params.input_suffix);
- for (auto & antiprompt : params.antiprompt) {
- string_process_escapes(antiprompt);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- if (sparams.seed == LLAMA_DEFAULT_SEED) {
- sparams.seed = time(NULL);
- }
- return true;
- }
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params, std::vector<llama_arg> & options) {
- const auto params_org = params; // the example can modify the default params
- try {
- if (!gpt_params_parse_ex(argc, argv, params, options)) {
- params = params_org;
- return false;
- }
- if (params.usage) {
- gpt_params_print_usage(params, options);
- if (params.print_usage) {
- params.print_usage(argc, argv);
- }
- exit(0);
- }
- } catch (const std::invalid_argument & ex) {
- fprintf(stderr, "%s\n", ex.what());
- params = params_org;
- return false;
- }
- return true;
- }
- bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
- size_t dash_loc = range.find('-');
- if (dash_loc == std::string::npos) {
- fprintf(stderr, "Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
- return false;
- }
- size_t start_i;
- size_t end_i;
- if (dash_loc == 0) {
- start_i = 0;
- } else {
- start_i = std::stoull(range.substr(0, dash_loc));
- if (start_i >= GGML_MAX_N_THREADS) {
- fprintf(stderr, "Start index out of bounds!\n");
- return false;
- }
- }
- if (dash_loc == range.length() - 1) {
- end_i = GGML_MAX_N_THREADS - 1;
- } else {
- end_i = std::stoull(range.substr(dash_loc + 1));
- if (end_i >= GGML_MAX_N_THREADS) {
- fprintf(stderr, "End index out of bounds!\n");
- return false;
- }
- }
- for (size_t i = start_i; i <= end_i; i++) {
- boolmask[i] = true;
- }
- return true;
- }
- bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
- // Discard potential 0x prefix
- size_t start_i = 0;
- if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
- start_i = 2;
- }
- size_t num_digits = mask.length() - start_i;
- if (num_digits > 128) num_digits = 128;
- size_t end_i = num_digits + start_i;
- for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
- char c = mask.at(i);
- int8_t id = c;
- if ((c >= '0' && c <= '9')) {
- id -= '0';
- } else if (c >= 'a' && c <= 'f') {
- id -= 'a' - 10;
- } else if (c >= 'A' && c <= 'F') {
- id -= 'A' - 10;
- } else {
- fprintf(stderr, "Invalid hex character '%c' at position %d\n", c, int32_t(i));
- return false;
- }
- boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
- boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
- boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
- boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
- }
- return true;
- }
- static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
- std::vector<std::string> result;
- std::istringstream iss(input);
- std::string line;
- auto add_line = [&](const std::string& l) {
- if (l.length() <= max_char_per_line) {
- result.push_back(l);
- } else {
- std::istringstream line_stream(l);
- std::string word, current_line;
- while (line_stream >> word) {
- if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
- if (!current_line.empty()) result.push_back(current_line);
- current_line = word;
- } else {
- current_line += (!current_line.empty() ? " " : "") + word;
- }
- }
- if (!current_line.empty()) result.push_back(current_line);
- }
- };
- while (std::getline(iss, line)) {
- add_line(line);
- }
- return result;
- }
- std::string llama_arg::to_string() {
- // params for printing to console
- const static int n_leading_spaces = 40;
- const static int n_char_per_line_help = 70; // TODO: detect this based on current console
- std::string leading_spaces(n_leading_spaces, ' ');
- std::ostringstream ss;
- for (const auto arg : args) {
- if (arg == args.front()) {
- if (args.size() == 1) {
- ss << arg;
- } else {
- // first arg is usually abbreviation, we need padding to make it more beautiful
- auto tmp = std::string(arg) + ", ";
- ss << format("%-7s", tmp.c_str());
- }
- } else {
- ss << arg << (arg != args.back() ? ", " : "");
- }
- }
- if (value_hint) ss << " " << value_hint;
- if (value_hint_2) ss << " " << value_hint_2;
- if (ss.tellp() > n_leading_spaces - 3) {
- // current line is too long, add new line
- ss << "\n" << leading_spaces;
- } else {
- // padding between arg and help, same line
- ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
- }
- const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
- for (const auto & line : help_lines) {
- ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
- }
- return ss.str();
- }
- void gpt_params_print_usage(gpt_params & params, std::vector<llama_arg> & options) {
- auto print_options = [](std::vector<llama_arg *> & options) {
- for (llama_arg * opt : options) {
- printf("%s", opt->to_string().c_str());
- }
- };
- std::vector<llama_arg *> common_options;
- std::vector<llama_arg *> specific_options;
- for (auto & opt : options) {
- // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
- if (opt.in_example(params.curr_ex)) {
- specific_options.push_back(&opt);
- } else {
- common_options.push_back(&opt);
- }
- }
- printf("----- common options -----\n\n");
- print_options(common_options);
- // TODO: maybe convert enum llama_example to string
- printf("\n\n----- example-specific options -----\n\n");
- print_options(specific_options);
- }
- std::vector<llama_arg> gpt_params_parser_init(gpt_params & params, llama_example ex) {
- return gpt_params_parser_init(params, ex, nullptr);
- }
- std::vector<llama_arg> gpt_params_parser_init(gpt_params & params, llama_example ex, std::function<void(int, char **)> print_usage) {
- std::vector<llama_arg> options;
- params.print_usage = print_usage;
- params.curr_ex = ex;
- std::string sampler_type_chars;
- std::string sampler_type_names;
- for (const auto & sampler : params.sparams.samplers) {
- sampler_type_chars += gpt_sampler_type_to_chr(sampler);
- sampler_type_names += gpt_sampler_type_to_str(sampler) + ";";
- }
- sampler_type_names.pop_back();
- /**
- * filter options by example
- * rules:
- * - all examples inherit options from LLAMA_EXAMPLE_COMMON
- * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
- * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
- */
- std::unordered_set<std::string> seen_args;
- auto add_opt = [&](llama_arg arg) {
- if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) {
- // make sure there is no argument duplications
- for (const auto & a : arg.args) {
- if (seen_args.find(a) == seen_args.end()) {
- seen_args.insert(a);
- } else {
- throw std::runtime_error(format("found duplicated argument in source code: %s", a));
- }
- }
- options.push_back(std::move(arg));
- }
- };
- add_opt(llama_arg(
- {"-h", "--help", "--usage"},
- "print usage and exit",
- [](gpt_params & params) {
- params.usage = true;
- }
- ));
- add_opt(llama_arg(
- {"--version"},
- "show version and build info",
- [](gpt_params &) {
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
- exit(0);
- }
- ));
- add_opt(llama_arg(
- {"-v", "--verbose"},
- "print verbose information",
- [](gpt_params & params) {
- params.verbosity = 1;
- }
- ));
- add_opt(llama_arg(
- {"--verbosity"}, "N",
- format("set specific verbosity level (default: %d)", params.verbosity),
- [](gpt_params & params, int value) {
- params.verbosity = value;
- }
- ));
- add_opt(llama_arg(
- {"--verbose-prompt"},
- format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
- [](gpt_params & params) {
- params.verbose_prompt = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--no-display-prompt"},
- format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
- [](gpt_params & params) {
- params.display_prompt = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-co", "--color"},
- format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
- [](gpt_params & params) {
- params.use_color = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"-s", "--seed"}, "SEED",
- format("RNG seed (default: %d, use random seed for < 0)", params.sparams.seed),
- [](gpt_params & params, const std::string & value) {
- params.sparams.seed = std::stoul(value);
- }
- ));
- add_opt(llama_arg(
- {"-t", "--threads"}, "N",
- format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
- [](gpt_params & params, int value) {
- params.cpuparams.n_threads = value;
- if (params.cpuparams.n_threads <= 0) {
- params.cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_env("LLAMA_ARG_THREADS"));
- add_opt(llama_arg(
- {"-tb", "--threads-batch"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads)",
- [](gpt_params & params, int value) {
- params.cpuparams_batch.n_threads = value;
- if (params.cpuparams_batch.n_threads <= 0) {
- params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ));
- add_opt(llama_arg(
- {"-td", "--threads-draft"}, "N",
- "number of threads to use during generation (default: same as --threads)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams.n_threads = value;
- if (params.draft_cpuparams.n_threads <= 0) {
- params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-tbd", "--threads-batch-draft"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams_batch.n_threads = value;
- if (params.draft_cpuparams_batch.n_threads <= 0) {
- params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-C", "--cpu-mask"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
- [](gpt_params & params, const std::string & value) {
- std::string mask = value;
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(llama_arg(
- {"-Cr", "--cpu-range"}, "lo-hi",
- "range of CPUs for affinity. Complements --cpu-mask",
- [](gpt_params & params, const std::string & value) {
- std::string range = value;
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(llama_arg(
- {"--cpu-strict"}, "<0|1>",
- format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
- [](gpt_params & params, const std::string & value) {
- params.cpuparams.strict_cpu = std::stoul(value);
- }
- ));
- add_opt(llama_arg(
- {"--poll"}, "<0...100>",
- format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
- [](gpt_params & params, const std::string & value) {
- params.cpuparams.poll = std::stoul(value);
- }
- ));
- add_opt(llama_arg(
- {"-Cb", "--cpu-mask-batch"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
- [](gpt_params & params, const std::string & value) {
- std::string mask = value;
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(llama_arg(
- {"-Crb", "--cpu-range-batch"}, "lo-hi",
- "ranges of CPUs for affinity. Complements --cpu-mask-batch",
- [](gpt_params & params, const std::string & value) {
- std::string range = value;
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(llama_arg(
- {"--cpu-strict-batch"}, "<0|1>",
- "use strict CPU placement (default: same as --cpu-strict)",
- [](gpt_params & params, int value) {
- params.cpuparams_batch.strict_cpu = value;
- }
- ));
- add_opt(llama_arg(
- {"--poll-batch"}, "<0|1>",
- "use polling to wait for work (default: same as --poll)",
- [](gpt_params & params, int value) {
- params.cpuparams_batch.poll = value;
- }
- ));
- add_opt(llama_arg(
- {"-Cd", "--cpu-mask-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](gpt_params & params, const std::string & value) {
- std::string mask = value;
- params.draft_cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-Crd", "--cpu-range-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
- [](gpt_params & params, const std::string & value) {
- std::string range = value;
- params.draft_cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--cpu-strict-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: same as --cpu-strict)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--poll-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: same as --poll])",
- [](gpt_params & params, int value) {
- params.draft_cpuparams.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
- [](gpt_params & params, const std::string & value) {
- std::string range = value;
- params.draft_cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--cpu-strict-batch-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams_batch.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--poll-batch-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: --poll-draft)",
- [](gpt_params & params, int value) {
- params.draft_cpuparams_batch.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"--draft"}, "N",
- format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft),
- [](gpt_params & params, int value) {
- params.n_draft = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-ps", "--p-split"}, "N",
- format("speculative decoding split probability (default: %.1f)", (double)params.p_split),
- [](gpt_params & params, const std::string & value) {
- params.p_split = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-lcs", "--lookup-cache-static"}, "FNAME",
- "path to static lookup cache to use for lookup decoding (not updated by generation)",
- [](gpt_params & params, const std::string & value) {
- params.lookup_cache_static = value;
- }
- ));
- add_opt(llama_arg(
- {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
- [](gpt_params & params, const std::string & value) {
- params.lookup_cache_dynamic = value;
- }
- ));
- add_opt(llama_arg(
- {"-c", "--ctx-size"}, "N",
- format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
- [](gpt_params & params, int value) {
- params.n_ctx = value;
- }
- ).set_env("LLAMA_ARG_CTX_SIZE"));
- add_opt(llama_arg(
- {"-n", "--predict", "--n-predict"}, "N",
- format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict),
- [](gpt_params & params, int value) {
- params.n_predict = value;
- }
- ).set_env("LLAMA_ARG_N_PREDICT"));
- add_opt(llama_arg(
- {"-b", "--batch-size"}, "N",
- format("logical maximum batch size (default: %d)", params.n_batch),
- [](gpt_params & params, int value) {
- params.n_batch = value;
- }
- ).set_env("LLAMA_ARG_BATCH"));
- add_opt(llama_arg(
- {"-ub", "--ubatch-size"}, "N",
- format("physical maximum batch size (default: %d)", params.n_ubatch),
- [](gpt_params & params, int value) {
- params.n_ubatch = value;
- }
- ).set_env("LLAMA_ARG_UBATCH"));
- add_opt(llama_arg(
- {"--keep"}, "N",
- format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
- [](gpt_params & params, int value) {
- params.n_keep = value;
- }
- ));
- add_opt(llama_arg(
- {"--chunks"}, "N",
- format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
- [](gpt_params & params, int value) {
- params.n_chunks = value;
- }
- ));
- add_opt(llama_arg(
- {"-fa", "--flash-attn"},
- format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.flash_attn = true;
- }
- ).set_env("LLAMA_ARG_FLASH_ATTN"));
- add_opt(llama_arg(
- {"-p", "--prompt"}, "PROMPT",
- ex == LLAMA_EXAMPLE_MAIN
- ? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
- : "prompt to start generation with",
- [](gpt_params & params, const std::string & value) {
- params.prompt = value;
- }
- ));
- add_opt(llama_arg(
- {"-f", "--file"}, "FNAME",
- "a file containing the prompt (default: none)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- // store the external file name in params
- params.prompt_file = value;
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- }
- ));
- add_opt(llama_arg(
- {"--in-file"}, "FNAME",
- "an input file (repeat to specify multiple files)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.in_files.push_back(value);
- }
- ));
- add_opt(llama_arg(
- {"-bf", "--binary-file"}, "FNAME",
- "binary file containing the prompt (default: none)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- // store the external file name in params
- params.prompt_file = value;
- std::ostringstream ss;
- ss << file.rdbuf();
- params.prompt = ss.str();
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
- }
- ));
- add_opt(llama_arg(
- {"-e", "--escape"},
- format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
- [](gpt_params & params) {
- params.escape = true;
- }
- ));
- add_opt(llama_arg(
- {"--no-escape"},
- "do not process escape sequences",
- [](gpt_params & params) {
- params.escape = false;
- }
- ));
- add_opt(llama_arg(
- {"-ptc", "--print-token-count"}, "N",
- format("print token count every N tokens (default: %d)", params.n_print),
- [](gpt_params & params, int value) {
- params.n_print = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--prompt-cache"}, "FNAME",
- "file to cache prompt state for faster startup (default: none)",
- [](gpt_params & params, const std::string & value) {
- params.path_prompt_cache = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--prompt-cache-all"},
- "if specified, saves user input and generations to cache as well\n",
- [](gpt_params & params) {
- params.prompt_cache_all = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--prompt-cache-ro"},
- "if specified, uses the prompt cache but does not update it",
- [](gpt_params & params) {
- params.prompt_cache_ro = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-r", "--reverse-prompt"}, "PROMPT",
- "halt generation at PROMPT, return control in interactive mode\n",
- [](gpt_params & params, const std::string & value) {
- params.antiprompt.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-sp", "--special"},
- format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
- [](gpt_params & params) {
- params.special = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-cnv", "--conversation"},
- format(
- "run in conversation mode:\n"
- "- does not print special tokens and suffix/prefix\n"
- "- interactive mode is also enabled\n"
- "(default: %s)",
- params.conversation ? "true" : "false"
- ),
- [](gpt_params & params) {
- params.conversation = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"-i", "--interactive"},
- format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
- [](gpt_params & params) {
- params.interactive = true;
- }
- ).set_examples({LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"-if", "--interactive-first"},
- format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
- [](gpt_params & params) {
- params.interactive_first = true;
- }
- ).set_examples({LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"-mli", "--multiline-input"},
- "allows you to write or paste multiple lines without ending each in '\\'",
- [](gpt_params & params) {
- params.multiline_input = true;
- }
- ).set_examples({LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--in-prefix-bos"},
- "prefix BOS to user inputs, preceding the `--in-prefix` string",
- [](gpt_params & params) {
- params.input_prefix_bos = true;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--in-prefix"}, "STRING",
- "string to prefix user inputs with (default: empty)",
- [](gpt_params & params, const std::string & value) {
- params.input_prefix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--in-suffix"}, "STRING",
- "string to suffix after user inputs with (default: empty)",
- [](gpt_params & params, const std::string & value) {
- params.input_suffix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--no-warmup"},
- "skip warming up the model with an empty run",
- [](gpt_params & params) {
- params.warmup = false;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN}));
- add_opt(llama_arg(
- {"--spm-infill"},
- format(
- "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
- params.spm_infill ? "enabled" : "disabled"
- ),
- [](gpt_params & params) {
- params.spm_infill = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"--samplers"}, "SAMPLERS",
- format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
- [](gpt_params & params, const std::string & value) {
- const auto sampler_names = string_split(value, ';');
- params.sparams.samplers = gpt_sampler_types_from_names(sampler_names, true);
- }
- ));
- add_opt(llama_arg(
- {"--sampling-seq"}, "SEQUENCE",
- format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.sparams.samplers = gpt_sampler_types_from_chars(value);
- }
- ));
- add_opt(llama_arg(
- {"--ignore-eos"},
- "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
- [](gpt_params & params) {
- params.sparams.ignore_eos = true;
- }
- ));
- add_opt(llama_arg(
- {"--penalize-nl"},
- format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"),
- [](gpt_params & params) {
- params.sparams.penalize_nl = true;
- }
- ));
- add_opt(llama_arg(
- {"--temp"}, "N",
- format("temperature (default: %.1f)", (double)params.sparams.temp),
- [](gpt_params & params, const std::string & value) {
- params.sparams.temp = std::stof(value);
- params.sparams.temp = std::max(params.sparams.temp, 0.0f);
- }
- ));
- add_opt(llama_arg(
- {"--top-k"}, "N",
- format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k),
- [](gpt_params & params, int value) {
- params.sparams.top_k = value;
- }
- ));
- add_opt(llama_arg(
- {"--top-p"}, "N",
- format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p),
- [](gpt_params & params, const std::string & value) {
- params.sparams.top_p = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--min-p"}, "N",
- format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p),
- [](gpt_params & params, const std::string & value) {
- params.sparams.min_p = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--tfs"}, "N",
- format("tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)params.sparams.tfs_z),
- [](gpt_params & params, const std::string & value) {
- params.sparams.tfs_z = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--typical"}, "N",
- format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
- [](gpt_params & params, const std::string & value) {
- params.sparams.typ_p = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--repeat-last-n"}, "N",
- format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n),
- [](gpt_params & params, int value) {
- params.sparams.penalty_last_n = value;
- params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n);
- }
- ));
- add_opt(llama_arg(
- {"--repeat-penalty"}, "N",
- format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat),
- [](gpt_params & params, const std::string & value) {
- params.sparams.penalty_repeat = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--presence-penalty"}, "N",
- format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present),
- [](gpt_params & params, const std::string & value) {
- params.sparams.penalty_present = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--frequency-penalty"}, "N",
- format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq),
- [](gpt_params & params, const std::string & value) {
- params.sparams.penalty_freq = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--dynatemp-range"}, "N",
- format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range),
- [](gpt_params & params, const std::string & value) {
- params.sparams.dynatemp_range = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--dynatemp-exp"}, "N",
- format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent),
- [](gpt_params & params, const std::string & value) {
- params.sparams.dynatemp_exponent = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--mirostat"}, "N",
- format("use Mirostat sampling.\nTop K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
- [](gpt_params & params, int value) {
- params.sparams.mirostat = value;
- }
- ));
- add_opt(llama_arg(
- {"--mirostat-lr"}, "N",
- format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta),
- [](gpt_params & params, const std::string & value) {
- params.sparams.mirostat_eta = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--mirostat-ent"}, "N",
- format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau),
- [](gpt_params & params, const std::string & value) {
- params.sparams.mirostat_tau = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
- "modifies the likelihood of token appearing in the completion,\n"
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
- [](gpt_params & params, const std::string & value) {
- std::stringstream ss(value);
- llama_token key;
- char sign;
- std::string value_str;
- try {
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- params.sparams.logit_bias.push_back({key, bias});
- } else {
- throw std::invalid_argument("invalid input format");
- }
- } catch (const std::exception&) {
- throw std::invalid_argument("invalid input format");
- }
- }
- ));
- add_opt(llama_arg(
- {"--grammar"}, "GRAMMAR",
- format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.sparams.grammar = value;
- }
- ));
- add_opt(llama_arg(
- {"--grammar-file"}, "FNAME",
- "file to read grammar from",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(params.sparams.grammar)
- );
- }
- ));
- add_opt(llama_arg(
- {"-j", "--json-schema"}, "SCHEMA",
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
- [](gpt_params & params, const std::string & value) {
- params.sparams.grammar = json_schema_to_grammar(json::parse(value));
- }
- ));
- add_opt(llama_arg(
- {"--pooling"}, "{none,mean,cls,last}",
- "pooling type for embeddings, use model default if unspecified",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--attention"}, "{causal,non,causal}",
- "attention type for embeddings, use model default if unspecified",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--rope-scaling"}, "{none,linear,yarn}",
- "RoPE frequency scaling method, defaults to linear unless specified by the model",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ));
- add_opt(llama_arg(
- {"--rope-scale"}, "N",
- "RoPE context scaling factor, expands context by a factor of N",
- [](gpt_params & params, const std::string & value) {
- params.rope_freq_scale = 1.0f / std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--rope-freq-base"}, "N",
- "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
- [](gpt_params & params, const std::string & value) {
- params.rope_freq_base = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--rope-freq-scale"}, "N",
- "RoPE frequency scaling factor, expands context by a factor of 1/N",
- [](gpt_params & params, const std::string & value) {
- params.rope_freq_scale = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--yarn-orig-ctx"}, "N",
- format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
- [](gpt_params & params, int value) {
- params.yarn_orig_ctx = value;
- }
- ));
- add_opt(llama_arg(
- {"--yarn-ext-factor"}, "N",
- format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
- [](gpt_params & params, const std::string & value) {
- params.yarn_ext_factor = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--yarn-attn-factor"}, "N",
- format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
- [](gpt_params & params, const std::string & value) {
- params.yarn_attn_factor = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--yarn-beta-slow"}, "N",
- format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
- [](gpt_params & params, const std::string & value) {
- params.yarn_beta_slow = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"--yarn-beta-fast"}, "N",
- format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
- [](gpt_params & params, const std::string & value) {
- params.yarn_beta_fast = std::stof(value);
- }
- ));
- add_opt(llama_arg(
- {"-gan", "--grp-attn-n"}, "N",
- format("group-attention factor (default: %d)", params.grp_attn_n),
- [](gpt_params & params, int value) {
- params.grp_attn_n = value;
- }
- ));
- add_opt(llama_arg(
- {"-gaw", "--grp-attn-w"}, "N",
- format("group-attention width (default: %.1f)", (double)params.grp_attn_w),
- [](gpt_params & params, int value) {
- params.grp_attn_w = value;
- }
- ));
- add_opt(llama_arg(
- {"-dkvc", "--dump-kv-cache"},
- "verbose print of the KV cache",
- [](gpt_params & params) {
- params.dump_kv_cache = true;
- }
- ));
- add_opt(llama_arg(
- {"-nkvo", "--no-kv-offload"},
- "disable KV offload",
- [](gpt_params & params) {
- params.no_kv_offload = true;
- }
- ));
- add_opt(llama_arg(
- {"-ctk", "--cache-type-k"}, "TYPE",
- format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()),
- [](gpt_params & params, const std::string & value) {
- // TODO: get the type right here
- params.cache_type_k = value;
- }
- ));
- add_opt(llama_arg(
- {"-ctv", "--cache-type-v"}, "TYPE",
- format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()),
- [](gpt_params & params, const std::string & value) {
- // TODO: get the type right here
- params.cache_type_v = value;
- }
- ));
- add_opt(llama_arg(
- {"--all-logits"},
- format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
- [](gpt_params & params) {
- params.logits_all = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--hellaswag"},
- "compute HellaSwag score over random tasks from datafile supplied with -f",
- [](gpt_params & params) {
- params.hellaswag = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--hellaswag-tasks"}, "N",
- format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
- [](gpt_params & params, int value) {
- params.hellaswag_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--winogrande"},
- "compute Winogrande score over random tasks from datafile supplied with -f",
- [](gpt_params & params) {
- params.winogrande = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--winogrande-tasks"}, "N",
- format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
- [](gpt_params & params, int value) {
- params.winogrande_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--multiple-choice"},
- "compute multiple choice score over random tasks from datafile supplied with -f",
- [](gpt_params & params) {
- params.multiple_choice = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--multiple-choice-tasks"}, "N",
- format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
- [](gpt_params & params, int value) {
- params.multiple_choice_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--kl-divergence"},
- "computes KL-divergence to logits provided via --kl-divergence-base",
- [](gpt_params & params) {
- params.kl_divergence = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--ppl-stride"}, "N",
- format("stride for perplexity calculation (default: %d)", params.ppl_stride),
- [](gpt_params & params, int value) {
- params.ppl_stride = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"--ppl-output-type"}, "<0|1>",
- format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
- [](gpt_params & params, int value) {
- params.ppl_output_type = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(llama_arg(
- {"-dt", "--defrag-thold"}, "N",
- format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
- [](gpt_params & params, const std::string & value) {
- params.defrag_thold = std::stof(value);
- }
- ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
- add_opt(llama_arg(
- {"-np", "--parallel"}, "N",
- format("number of parallel sequences to decode (default: %d)", params.n_parallel),
- [](gpt_params & params, int value) {
- params.n_parallel = value;
- }
- ));
- add_opt(llama_arg(
- {"-ns", "--sequences"}, "N",
- format("number of sequences to decode (default: %d)", params.n_sequences),
- [](gpt_params & params, int value) {
- params.n_sequences = value;
- }
- ));
- add_opt(llama_arg(
- {"-cb", "--cont-batching"},
- format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.cont_batching = true;
- }
- ).set_env("LLAMA_ARG_CONT_BATCHING"));
- add_opt(llama_arg(
- {"-nocb", "--no-cont-batching"},
- "disable continuous batching",
- [](gpt_params & params) {
- params.cont_batching = false;
- }
- ).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
- add_opt(llama_arg(
- {"--mmproj"}, "FILE",
- "path to a multimodal projector file for LLaVA. see examples/llava/README.md",
- [](gpt_params & params, const std::string & value) {
- params.mmproj = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LLAVA}));
- add_opt(llama_arg(
- {"--image"}, "FILE",
- "path to an image file. use with multimodal models. Specify multiple times for batching",
- [](gpt_params & params, const std::string & value) {
- params.image.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_LLAVA}));
- #ifdef GGML_USE_RPC
- add_opt(llama_arg(
- {"--rpc"}, "SERVERS",
- "comma separated list of RPC servers",
- [](gpt_params & params, const std::string & value) {
- params.rpc_servers = value;
- }
- ));
- #endif
- add_opt(llama_arg(
- {"--mlock"},
- "force system to keep model in RAM rather than swapping or compressing",
- [](gpt_params & params) {
- params.use_mlock = true;
- }
- ));
- add_opt(llama_arg(
- {"--no-mmap"},
- "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
- [](gpt_params & params) {
- params.use_mmap = false;
- }
- ));
- add_opt(llama_arg(
- {"--numa"}, "TYPE",
- "attempt optimizations that help on some NUMA systems\n"
- "- distribute: spread execution evenly over all nodes\n"
- "- isolate: only spawn threads on CPUs on the node that execution started on\n"
- "- numactl: use the CPU map provided by numactl\n"
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
- "see https://github.com/ggerganov/llama.cpp/issues/1437",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ));
- add_opt(llama_arg(
- {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
- "number of layers to store in VRAM",
- [](gpt_params & params, int value) {
- params.n_gpu_layers = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- }
- ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
- add_opt(llama_arg(
- {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
- "number of layers to store in VRAM for the draft model",
- [](gpt_params & params, int value) {
- params.n_gpu_layers_draft = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-sm", "--split-mode"}, "{none,layer,row}",
- "how to split the model across multiple GPUs, one of:\n"
- "- none: use one GPU only\n"
- "- layer (default): split layers and KV across GPUs\n"
- "- row: split rows across GPUs",
- [](gpt_params & params, const std::string & value) {
- std::string arg_next = value;
- if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- } else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- }
- else if (arg_next == "row") {
- #ifdef GGML_USE_SYCL
- fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
- exit(1);
- #endif // GGML_USE_SYCL
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- }
- else {
- throw std::invalid_argument("invalid value");
- }
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
- #endif // GGML_USE_CUDA_SYCL_VULKAN
- }
- ));
- add_opt(llama_arg(
- {"-ts", "--tensor-split"}, "N0,N1,N2,...",
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
- [](gpt_params & params, const std::string & value) {
- std::string arg_next = value;
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- if (split_arg.size() >= llama_max_devices()) {
- throw std::invalid_argument(
- format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
- );
- }
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- params.tensor_split[i] = std::stof(split_arg[i]);
- } else {
- params.tensor_split[i] = 0.0f;
- }
- }
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
- #endif // GGML_USE_CUDA_SYCL_VULKAN
- }
- ));
- add_opt(llama_arg(
- {"-mg", "--main-gpu"}, "INDEX",
- format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
- [](gpt_params & params, int value) {
- params.main_gpu = value;
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
- #endif // GGML_USE_CUDA_SYCL_VULKAN
- }
- ));
- add_opt(llama_arg(
- {"--check-tensors"},
- format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
- [](gpt_params & params) {
- params.check_tensors = true;
- }
- ));
- add_opt(llama_arg(
- {"--override-kv"}, "KEY=TYPE:VALUE",
- "advanced option to override model metadata by key. may be specified multiple times.\n"
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
- [](gpt_params & params, const std::string & value) {
- if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
- throw std::runtime_error(format("error: Invalid type for KV override: %s\n", value.c_str()));
- }
- }
- ));
- add_opt(llama_arg(
- {"--lora"}, "FNAME",
- "path to LoRA adapter (can be repeated to use multiple adapters)",
- [](gpt_params & params, const std::string & value) {
- params.lora_adapters.push_back({ std::string(value), 1.0 });
- }
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(llama_arg(
- {"--lora-scaled"}, "FNAME", "SCALE",
- "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
- [](gpt_params & params, const std::string & fname, const std::string & scale) {
- params.lora_adapters.push_back({ fname, std::stof(scale) });
- }
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(llama_arg(
- {"--control-vector"}, "FNAME",
- "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
- [](gpt_params & params, const std::string & value) {
- params.control_vectors.push_back({ 1.0f, value, });
- }
- ));
- add_opt(llama_arg(
- {"--control-vector-scaled"}, "FNAME", "SCALE",
- "add a control vector with user defined scaling SCALE\n"
- "note: this argument can be repeated to add multiple scaled control vectors",
- [](gpt_params & params, const std::string & fname, const std::string & scale) {
- params.control_vectors.push_back({ std::stof(scale), fname });
- }
- ));
- add_opt(llama_arg(
- {"--control-vector-layer-range"}, "START", "END",
- "layer range to apply the control vector(s) to, start and end inclusive",
- [](gpt_params & params, const std::string & start, const std::string & end) {
- params.control_vector_layer_start = std::stoi(start);
- params.control_vector_layer_end = std::stoi(end);
- }
- ));
- add_opt(llama_arg(
- {"-a", "--alias"}, "STRING",
- "set alias for model name (to be used by REST API)",
- [](gpt_params & params, const std::string & value) {
- params.model_alias = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL"));
- add_opt(llama_arg(
- {"-m", "--model"}, "FNAME",
- ex == LLAMA_EXAMPLE_EXPORT_LORA
- ? std::string("model path from which to load base model")
- : format(
- "model path (default: `models/$filename` with filename from `--hf-file` "
- "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
- ),
- [](gpt_params & params, const std::string & value) {
- params.model = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
- add_opt(llama_arg(
- {"-md", "--model-draft"}, "FNAME",
- "draft model for speculative decoding (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.model_draft = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(llama_arg(
- {"-mu", "--model-url"}, "MODEL_URL",
- "model download url (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.model_url = value;
- }
- ).set_env("LLAMA_ARG_MODEL_URL"));
- add_opt(llama_arg(
- {"-hfr", "--hf-repo"}, "REPO",
- "Hugging Face model repository (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HF_REPO"));
- add_opt(llama_arg(
- {"-hff", "--hf-file"}, "FILE",
- "Hugging Face model file (default: unused)",
- [](gpt_params & params, const std::string & value) {
- params.hf_file = value;
- }
- ).set_env("LLAMA_ARG_HF_FILE"));
- add_opt(llama_arg(
- {"-hft", "--hf-token"}, "TOKEN",
- "Hugging Face access token (default: value from HF_TOKEN environment variable)",
- [](gpt_params & params, const std::string & value) {
- params.hf_token = value;
- }
- ).set_env("HF_TOKEN"));
- add_opt(llama_arg(
- {"--context-file"}, "FNAME",
- "file to load context from (repeat to specify multiple files)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.context_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"--chunk-size"}, "N",
- format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
- [](gpt_params & params, int value) {
- params.chunk_size = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"--chunk-separator"}, "STRING",
- format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.chunk_separator = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(llama_arg(
- {"--junk"}, "N",
- format("number of times to repeat the junk text (default: %d)", params.n_junk),
- [](gpt_params & params, int value) {
- params.n_junk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
- add_opt(llama_arg(
- {"--pos"}, "N",
- format("position of the passkey in the junk text (default: %d)", params.i_pos),
- [](gpt_params & params, int value) {
- params.i_pos = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
- add_opt(llama_arg(
- {"-o", "--output"}, "FNAME",
- format("output file (default: '%s')",
- ex == LLAMA_EXAMPLE_EXPORT_LORA
- ? params.lora_outfile.c_str()
- : ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
- ? params.cvector_outfile.c_str()
- : params.out_file.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.out_file = value;
- params.cvector_outfile = value;
- params.lora_outfile = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(llama_arg(
- {"-ofreq", "--output-frequency"}, "N",
- format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
- [](gpt_params & params, int value) {
- params.n_out_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--save-frequency"}, "N",
- format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
- [](gpt_params & params, int value) {
- params.n_save_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--process-output"},
- format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
- [](gpt_params & params) {
- params.process_output = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--no-ppl"},
- format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
- [](gpt_params & params) {
- params.compute_ppl = false;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"--chunk"}, "N",
- format("start processing the input from chunk N (default: %d)", params.i_chunk),
- [](gpt_params & params, int value) {
- params.i_chunk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(llama_arg(
- {"-pps"},
- format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
- [](gpt_params & params) {
- params.is_pp_shared = true;
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"-npp"}, "n0,n1,...",
- "number of prompt tokens",
- [](gpt_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"-ntg"}, "n0,n1,...",
- "number of text generation tokens",
- [](gpt_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"-npl"}, "n0,n1,...",
- "number of parallel prompts",
- [](gpt_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(llama_arg(
- {"--embd-normalize"}, "N",
- format("normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
- [](gpt_params & params, int value) {
- params.embd_normalize = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--embd-output-format"}, "FORMAT",
- "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
- [](gpt_params & params, const std::string & value) {
- params.embd_out = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--embd-separator"}, "STRING",
- "separator of embendings (default \\n) for example \"<#sep#>\"",
- [](gpt_params & params, const std::string & value) {
- params.embd_sep = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(llama_arg(
- {"--host"}, "HOST",
- format("ip address to listen (default: %s)", params.hostname.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.hostname = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
- add_opt(llama_arg(
- {"--port"}, "PORT",
- format("port to listen (default: %d)", params.port),
- [](gpt_params & params, int value) {
- params.port = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
- add_opt(llama_arg(
- {"--path"}, "PATH",
- format("path to serve static files from (default: %s)", params.public_path.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.public_path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--embedding", "--embeddings"},
- format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.embedding = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
- add_opt(llama_arg(
- {"--api-key"}, "KEY",
- "API key to use for authentication (default: none)",
- [](gpt_params & params, const std::string & value) {
- params.api_keys.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
- add_opt(llama_arg(
- {"--api-key-file"}, "FNAME",
- "path to file containing API keys (default: none)",
- [](gpt_params & params, const std::string & value) {
- std::ifstream key_file(value);
- if (!key_file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (!key.empty()) {
- params.api_keys.push_back(key);
- }
- }
- key_file.close();
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--ssl-key-file"}, "FNAME",
- "path to file a PEM-encoded SSL private key",
- [](gpt_params & params, const std::string & value) {
- params.ssl_file_key = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--ssl-cert-file"}, "FNAME",
- "path to file a PEM-encoded SSL certificate",
- [](gpt_params & params, const std::string & value) {
- params.ssl_file_cert = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--timeout"}, "N",
- format("server read/write timeout in seconds (default: %d)", params.timeout_read),
- [](gpt_params & params, int value) {
- params.timeout_read = value;
- params.timeout_write = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--threads-http"}, "N",
- format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
- [](gpt_params & params, int value) {
- params.n_threads_http = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
- add_opt(llama_arg(
- {"-spf", "--system-prompt-file"}, "FNAME",
- "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications",
- [](gpt_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string system_prompt;
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(system_prompt)
- );
- params.system_prompt = system_prompt;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--log-format"}, "{text, json}",
- "log output format: json or text (default: json)",
- [](gpt_params & params, const std::string & value) {
- if (value == "json") {
- params.log_json = true;
- } else if (value == "text") {
- params.log_json = false;
- } else {
- throw std::invalid_argument("invalid value");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--metrics"},
- format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.endpoint_metrics = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
- add_opt(llama_arg(
- {"--no-slots"},
- format("disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.endpoint_slots = false;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
- add_opt(llama_arg(
- {"--slot-save-path"}, "PATH",
- "path to save slot kv cache (default: disabled)",
- [](gpt_params & params, const std::string & value) {
- params.slot_save_path = value;
- // if doesn't end with DIRECTORY_SEPARATOR, add it
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
- params.slot_save_path += DIRECTORY_SEPARATOR;
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--chat-template"}, "JINJA_TEMPLATE",
- "set custom jinja chat template (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template",
- [](gpt_params & params, const std::string & value) {
- if (!llama_chat_verify_template(value)) {
- throw std::runtime_error(format(
- "error: the supplied chat template is not supported: %s\n"
- "note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
- value.c_str()
- ));
- }
- params.chat_template = value;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
- add_opt(llama_arg(
- {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
- format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
- [](gpt_params & params, const std::string & value) {
- params.slot_prompt_similarity = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--lora-init-without-apply"},
- format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
- [](gpt_params & params) {
- params.lora_init_without_apply = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(llama_arg(
- {"--simple-io"},
- "use basic IO for better compatibility in subprocesses and limited consoles",
- [](gpt_params & params) {
- params.simple_io = true;
- }
- ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
- add_opt(llama_arg(
- {"-ld", "--logdir"}, "LOGDIR",
- "path under which to save YAML logs (no logging if unset)",
- [](gpt_params & params, const std::string & value) {
- params.logdir = value;
- if (params.logdir.back() != DIRECTORY_SEPARATOR) {
- params.logdir += DIRECTORY_SEPARATOR;
- }
- }
- ));
- add_opt(llama_arg(
- {"--positive-file"}, "FNAME",
- format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.cvector_positive_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--negative-file"}, "FNAME",
- format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
- [](gpt_params & params, const std::string & value) {
- params.cvector_negative_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--pca-batch"}, "N",
- format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
- [](gpt_params & params, int value) {
- params.n_pca_batch = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--pca-iter"}, "N",
- format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
- [](gpt_params & params, int value) {
- params.n_pca_iterations = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--method"}, "{pca, mean}",
- "dimensionality reduction method to be used (default: pca)",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(llama_arg(
- {"--output-format"}, "{md,jsonl}",
- "output format for batched-bench results (default: md)",
- [](gpt_params & params, const std::string & value) {
- /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
- else if (value == "md") { params.batched_bench_output_jsonl = false; }
- else { std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- #ifndef LOG_DISABLE_LOGS
- // TODO: make this looks less weird
- add_opt(llama_arg(
- {"--log-test"},
- "Log test",
- [](gpt_params &) { log_param_single_parse("--log-test"); }
- ));
- add_opt(llama_arg(
- {"--log-disable"},
- "Log disable",
- [](gpt_params &) { log_param_single_parse("--log-disable"); }
- ));
- add_opt(llama_arg(
- {"--log-enable"},
- "Log enable",
- [](gpt_params &) { log_param_single_parse("--log-enable"); }
- ));
- add_opt(llama_arg(
- {"--log-new"},
- "Log new",
- [](gpt_params &) { log_param_single_parse("--log-new"); }
- ));
- add_opt(llama_arg(
- {"--log-append"},
- "Log append",
- [](gpt_params &) { log_param_single_parse("--log-append"); }
- ));
- add_opt(llama_arg(
- {"--log-file"}, "FNAME",
- "Log file",
- [](gpt_params &, const std::string & value) { log_param_pair_parse(false, "--log-file", value); }
- ));
- #endif // LOG_DISABLE_LOGS
- return options;
- }
- std::string gpt_params_get_system_info(const gpt_params & params) {
- std::ostringstream os;
- os << "system_info: n_threads = " << params.cpuparams.n_threads;
- if (params.cpuparams_batch.n_threads != -1) {
- os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
- }
- #if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
- // TODO: windows + arm64 + mingw64
- DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
- os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
- #else
- os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
- #endif
- return os.str();
- }
- //
- // String utils
- //
- std::vector<std::string> string_split(std::string input, char separator) {
- std::vector<std::string> parts;
- size_t separator_pos = input.find(separator);
- while (separator_pos != std::string::npos) {
- std::string part = input.substr(0, separator_pos);
- parts.emplace_back(part);
- input = input.substr(separator_pos + 1);
- separator_pos = input.find(separator);
- }
- parts.emplace_back(input);
- return parts;
- }
- std::string string_strip(const std::string & str) {
- size_t start = 0;
- size_t end = str.size();
- while (start < end && std::isspace(str[start])) {
- start++;
- }
- while (end > start && std::isspace(str[end - 1])) {
- end--;
- }
- return str.substr(start, end - start);
- }
- std::string string_get_sortable_timestamp() {
- using clock = std::chrono::system_clock;
- const clock::time_point current_time = clock::now();
- const time_t as_time_t = clock::to_time_t(current_time);
- char timestamp_no_ns[100];
- std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
- const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
- current_time.time_since_epoch() % 1000000000).count();
- char timestamp_ns[11];
- snprintf(timestamp_ns, 11, "%09" PRId64, ns);
- return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
- }
- void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
- if (search.empty()) {
- return;
- }
- std::string builder;
- builder.reserve(s.length());
- size_t pos = 0;
- size_t last_pos = 0;
- while ((pos = s.find(search, last_pos)) != std::string::npos) {
- builder.append(s, last_pos, pos - last_pos);
- builder.append(replace);
- last_pos = pos + search.length();
- }
- builder.append(s, last_pos, std::string::npos);
- s = std::move(builder);
- }
- void string_process_escapes(std::string & input) {
- std::size_t input_len = input.length();
- std::size_t output_idx = 0;
- for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
- if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
- switch (input[++input_idx]) {
- case 'n': input[output_idx++] = '\n'; break;
- case 'r': input[output_idx++] = '\r'; break;
- case 't': input[output_idx++] = '\t'; break;
- case '\'': input[output_idx++] = '\''; break;
- case '\"': input[output_idx++] = '\"'; break;
- case '\\': input[output_idx++] = '\\'; break;
- case 'x':
- // Handle \x12, etc
- if (input_idx + 2 < input_len) {
- const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
- char *err_p = nullptr;
- const long val = std::strtol(x, &err_p, 16);
- if (err_p == x + 2) {
- input_idx += 2;
- input[output_idx++] = char(val);
- break;
- }
- }
- // fall through
- default: input[output_idx++] = '\\';
- input[output_idx++] = input[input_idx]; break;
- }
- } else {
- input[output_idx++] = input[input_idx];
- }
- }
- input.resize(output_idx);
- }
- bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
- const char * sep = strchr(data, '=');
- if (sep == nullptr || sep - data >= 128) {
- fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
- return false;
- }
- llama_model_kv_override kvo;
- std::strncpy(kvo.key, data, sep - data);
- kvo.key[sep - data] = 0;
- sep++;
- if (strncmp(sep, "int:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.val_i64 = std::atol(sep);
- } else if (strncmp(sep, "float:", 6) == 0) {
- sep += 6;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
- kvo.val_f64 = std::atof(sep);
- } else if (strncmp(sep, "bool:", 5) == 0) {
- sep += 5;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
- if (std::strcmp(sep, "true") == 0) {
- kvo.val_bool = true;
- } else if (std::strcmp(sep, "false") == 0) {
- kvo.val_bool = false;
- } else {
- fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
- return false;
- }
- } else if (strncmp(sep, "str:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
- if (strlen(sep) > 127) {
- fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
- return false;
- }
- strncpy(kvo.val_str, sep, 127);
- kvo.val_str[127] = '\0';
- } else {
- fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
- return false;
- }
- overrides.emplace_back(std::move(kvo));
- return true;
- }
- //
- // Filesystem utils
- //
- // Validate if a filename is safe to use
- // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
- bool fs_validate_filename(const std::string & filename) {
- if (!filename.length()) {
- // Empty filename invalid
- return false;
- }
- if (filename.length() > 255) {
- // Limit at common largest possible filename on Linux filesystems
- // to avoid unnecessary further validation
- // (On systems with smaller limits it will be caught by the OS)
- return false;
- }
- std::u32string filename_utf32;
- try {
- std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
- filename_utf32 = converter.from_bytes(filename);
- // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
- // or invalid encodings were encountered. Reject such attempts
- std::string filename_reencoded = converter.to_bytes(filename_utf32);
- if (filename_reencoded != filename) {
- return false;
- }
- } catch (const std::exception &) {
- return false;
- }
- // Check for forbidden codepoints:
- // - Control characters
- // - Unicode equivalents of illegal characters
- // - UTF-16 surrogate pairs
- // - UTF-8 replacement character
- // - Byte order mark (BOM)
- // - Illegal characters: / \ : * ? " < > |
- for (char32_t c : filename_utf32) {
- if (c <= 0x1F // Control characters (C0)
- || c == 0x7F // Control characters (DEL)
- || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
- || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
- || c == 0x2215 // Division Slash (forward slash equivalent)
- || c == 0x2216 // Set Minus (backslash equivalent)
- || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
- || c == 0xFFFD // Replacement Character (UTF-8)
- || c == 0xFEFF // Byte Order Mark (BOM)
- || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
- || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
- return false;
- }
- }
- // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
- // Unicode and other whitespace is not affected, only 0x20 space
- if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
- return false;
- }
- // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
- if (filename.find("..") != std::string::npos) {
- return false;
- }
- // Reject "."
- if (filename == ".") {
- return false;
- }
- return true;
- }
- // returns true if successful, false otherwise
- bool fs_create_directory_with_parents(const std::string & path) {
- #ifdef _WIN32
- std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
- std::wstring wpath = converter.from_bytes(path);
- // if the path already exists, check whether it's a directory
- const DWORD attributes = GetFileAttributesW(wpath.c_str());
- if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
- return true;
- }
- size_t pos_slash = 0;
- // process path from front to back, procedurally creating directories
- while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
- const std::wstring subpath = wpath.substr(0, pos_slash);
- const wchar_t * test = subpath.c_str();
- const bool success = CreateDirectoryW(test, NULL);
- if (!success) {
- const DWORD error = GetLastError();
- // if the path already exists, ensure that it's a directory
- if (error == ERROR_ALREADY_EXISTS) {
- const DWORD attributes = GetFileAttributesW(subpath.c_str());
- if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
- return false;
- }
- } else {
- return false;
- }
- }
- pos_slash += 1;
- }
- return true;
- #else
- // if the path already exists, check whether it's a directory
- struct stat info;
- if (stat(path.c_str(), &info) == 0) {
- return S_ISDIR(info.st_mode);
- }
- size_t pos_slash = 1; // skip leading slashes for directory creation
- // process path from front to back, procedurally creating directories
- while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
- const std::string subpath = path.substr(0, pos_slash);
- struct stat info;
- // if the path already exists, ensure that it's a directory
- if (stat(subpath.c_str(), &info) == 0) {
- if (!S_ISDIR(info.st_mode)) {
- return false;
- }
- } else {
- // create parent directories
- const int ret = mkdir(subpath.c_str(), 0755);
- if (ret != 0) {
- return false;
- }
- }
- pos_slash += 1;
- }
- return true;
- #endif // _WIN32
- }
- std::string fs_get_cache_directory() {
- std::string cache_directory = "";
- auto ensure_trailing_slash = [](std::string p) {
- // Make sure to add trailing slash
- if (p.back() != DIRECTORY_SEPARATOR) {
- p += DIRECTORY_SEPARATOR;
- }
- return p;
- };
- if (getenv("LLAMA_CACHE")) {
- cache_directory = std::getenv("LLAMA_CACHE");
- } else {
- #ifdef __linux__
- if (std::getenv("XDG_CACHE_HOME")) {
- cache_directory = std::getenv("XDG_CACHE_HOME");
- } else {
- cache_directory = std::getenv("HOME") + std::string("/.cache/");
- }
- #elif defined(__APPLE__)
- cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
- #elif defined(_WIN32)
- cache_directory = std::getenv("LOCALAPPDATA");
- #endif // __linux__
- cache_directory = ensure_trailing_slash(cache_directory);
- cache_directory += "llama.cpp";
- }
- return ensure_trailing_slash(cache_directory);
- }
- std::string fs_get_cache_file(const std::string & filename) {
- GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
- std::string cache_directory = fs_get_cache_directory();
- const bool success = fs_create_directory_with_parents(cache_directory);
- if (!success) {
- throw std::runtime_error("failed to create cache directory: " + cache_directory);
- }
- return cache_directory + filename;
- }
- //
- // Model utils
- //
- struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
- llama_init_result iparams;
- auto mparams = llama_model_params_from_gpt_params(params);
- llama_model * model = nullptr;
- if (!params.hf_repo.empty() && !params.hf_file.empty()) {
- model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
- } else if (!params.model_url.empty()) {
- model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
- } else {
- model = llama_load_model_from_file(params.model.c_str(), mparams);
- }
- if (model == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
- return iparams;
- }
- auto cparams = llama_context_params_from_gpt_params(params);
- llama_context * lctx = llama_new_context_with_model(model, cparams);
- if (lctx == NULL) {
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
- llama_free_model(model);
- return iparams;
- }
- if (!params.control_vectors.empty()) {
- if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
- if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
- const auto cvec = llama_control_vector_load(params.control_vectors);
- if (cvec.n_embd == -1) {
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
- }
- int err = llama_control_vector_apply(lctx,
- cvec.data.data(),
- cvec.data.size(),
- cvec.n_embd,
- params.control_vector_layer_start,
- params.control_vector_layer_end);
- if (err) {
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
- }
- }
- // load and optionally apply lora adapters
- for (auto & la : params.lora_adapters) {
- llama_lora_adapter_container loaded_la;
- loaded_la.path = la.path;
- loaded_la.scale = la.scale;
- loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
- if (loaded_la.adapter == nullptr) {
- fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
- }
- iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
- }
- if (!params.lora_init_without_apply) {
- llama_lora_adapters_apply(lctx, iparams.lora_adapters);
- }
- if (params.sparams.ignore_eos && llama_token_eos(model) == -1) {
- fprintf(stderr, "%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
- params.sparams.ignore_eos = false;
- }
- if (params.warmup) {
- LOG("warming up the model with an empty run\n");
- std::vector<llama_token> tmp;
- llama_token bos = llama_token_bos(model);
- llama_token eos = llama_token_eos(model);
- // some models (e.g. T5) don't have a BOS token
- if (bos != LLAMA_TOKEN_NULL) {
- tmp.push_back(bos);
- }
- if (eos != LLAMA_TOKEN_NULL) {
- tmp.push_back(eos);
- }
- if (tmp.empty()) {
- tmp.push_back(0);
- }
- if (llama_model_has_encoder(model)) {
- llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
- llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
- if (decoder_start_token_id == -1) {
- decoder_start_token_id = bos;
- }
- tmp.clear();
- tmp.push_back(decoder_start_token_id);
- }
- if (llama_model_has_decoder(model)) {
- llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
- }
- llama_kv_cache_clear(lctx);
- llama_synchronize(lctx);
- llama_perf_reset(lctx, LLAMA_PERF_TYPE_CONTEXT);
- }
- iparams.model = model;
- iparams.context = lctx;
- return iparams;
- }
- void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
- llama_lora_adapter_clear(ctx);
- for (auto & la : lora_adapters) {
- if (la.scale != 0.0f) {
- llama_lora_adapter_set(ctx, la.adapter, la.scale);
- }
- }
- }
- struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
- auto mparams = llama_model_default_params();
- if (params.n_gpu_layers != -1) {
- mparams.n_gpu_layers = params.n_gpu_layers;
- }
- mparams.rpc_servers = params.rpc_servers.c_str();
- mparams.main_gpu = params.main_gpu;
- mparams.split_mode = params.split_mode;
- mparams.tensor_split = params.tensor_split;
- mparams.use_mmap = params.use_mmap;
- mparams.use_mlock = params.use_mlock;
- mparams.check_tensors = params.check_tensors;
- if (params.kv_overrides.empty()) {
- mparams.kv_overrides = NULL;
- } else {
- GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
- mparams.kv_overrides = params.kv_overrides.data();
- }
- return mparams;
- }
- static ggml_type kv_cache_type_from_str(const std::string & s) {
- if (s == "f32") {
- return GGML_TYPE_F32;
- }
- if (s == "f16") {
- return GGML_TYPE_F16;
- }
- if (s == "q8_0") {
- return GGML_TYPE_Q8_0;
- }
- if (s == "q4_0") {
- return GGML_TYPE_Q4_0;
- }
- if (s == "q4_1") {
- return GGML_TYPE_Q4_1;
- }
- if (s == "iq4_nl") {
- return GGML_TYPE_IQ4_NL;
- }
- if (s == "q5_0") {
- return GGML_TYPE_Q5_0;
- }
- if (s == "q5_1") {
- return GGML_TYPE_Q5_1;
- }
- throw std::runtime_error("Invalid cache type: " + s);
- }
- struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
- auto cparams = llama_context_default_params();
- cparams.n_ctx = params.n_ctx;
- cparams.n_seq_max = params.n_parallel;
- cparams.n_batch = params.n_batch;
- cparams.n_ubatch = params.n_ubatch;
- cparams.n_threads = params.cpuparams.n_threads;
- cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
- params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
- cparams.logits_all = params.logits_all;
- cparams.embeddings = params.embedding;
- cparams.rope_scaling_type = params.rope_scaling_type;
- cparams.rope_freq_base = params.rope_freq_base;
- cparams.rope_freq_scale = params.rope_freq_scale;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.yarn_orig_ctx = params.yarn_orig_ctx;
- cparams.pooling_type = params.pooling_type;
- cparams.attention_type = params.attention_type;
- cparams.defrag_thold = params.defrag_thold;
- cparams.cb_eval = params.cb_eval;
- cparams.cb_eval_user_data = params.cb_eval_user_data;
- cparams.offload_kqv = !params.no_kv_offload;
- cparams.flash_attn = params.flash_attn;
- cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
- cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
- return cparams;
- }
- struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
- struct ggml_threadpool_params tpp;
- ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
- if (params.mask_valid) {
- std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS);
- }
- tpp.prio = params.priority;
- tpp.poll = params.poll;
- tpp.strict_cpu = params.strict_cpu;
- return tpp;
- }
- #ifdef LLAMA_USE_CURL
- static bool starts_with(const std::string & str, const std::string & prefix) {
- // While we wait for C++20's std::string::starts_with...
- return str.rfind(prefix, 0) == 0;
- }
- static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
- // Initialize libcurl
- std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
- if (!curl) {
- fprintf(stderr, "%s: error initializing libcurl\n", __func__);
- return false;
- }
- bool force_download = false;
- // Set the URL, allow to follow http redirection
- curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
- curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
- // Check if hf-token or bearer-token was specified
- if (!hf_token.empty()) {
- std::string auth_header = "Authorization: Bearer ";
- auth_header += hf_token.c_str();
- struct curl_slist *http_headers = NULL;
- http_headers = curl_slist_append(http_headers, auth_header.c_str());
- curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
- }
- #if defined(_WIN32)
- // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
- // operating system. Currently implemented under MS-Windows.
- curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
- #endif
- // Check if the file already exists locally
- struct stat model_file_info;
- auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
- // If the file exists, check its JSON metadata companion file.
- std::string metadata_path = path + ".json";
- nlohmann::json metadata;
- std::string etag;
- std::string last_modified;
- if (file_exists) {
- // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
- std::ifstream metadata_in(metadata_path);
- if (metadata_in.good()) {
- try {
- metadata_in >> metadata;
- fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
- if (metadata.contains("url") && metadata.at("url").is_string()) {
- auto previous_url = metadata.at("url").get<std::string>();
- if (previous_url != url) {
- fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
- return false;
- }
- }
- if (metadata.contains("etag") && metadata.at("etag").is_string()) {
- etag = metadata.at("etag");
- }
- if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
- last_modified = metadata.at("lastModified");
- }
- } catch (const nlohmann::json::exception & e) {
- fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
- return false;
- }
- }
- } else {
- fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
- }
- // Send a HEAD request to retrieve the etag and last-modified headers
- struct llama_load_model_from_url_headers {
- std::string etag;
- std::string last_modified;
- };
- llama_load_model_from_url_headers headers;
- {
- typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
- auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
- llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
- static std::regex header_regex("([^:]+): (.*)\r\n");
- static std::regex etag_regex("ETag", std::regex_constants::icase);
- static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
- std::string header(buffer, n_items);
- std::smatch match;
- if (std::regex_match(header, match, header_regex)) {
- const std::string & key = match[1];
- const std::string & value = match[2];
- if (std::regex_match(key, match, etag_regex)) {
- headers->etag = value;
- } else if (std::regex_match(key, match, last_modified_regex)) {
- headers->last_modified = value;
- }
- }
- return n_items;
- };
- curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
- curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
- curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
- curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
- CURLcode res = curl_easy_perform(curl.get());
- if (res != CURLE_OK) {
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
- return false;
- }
- long http_code = 0;
- curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code != 200) {
- // HEAD not supported, we don't know if the file has changed
- // force trigger downloading
- force_download = true;
- fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
- }
- }
- bool should_download = !file_exists || force_download;
- if (!should_download) {
- if (!etag.empty() && etag != headers.etag) {
- fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
- should_download = true;
- } else if (!last_modified.empty() && last_modified != headers.last_modified) {
- fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
- should_download = true;
- }
- }
- if (should_download) {
- std::string path_temporary = path + ".downloadInProgress";
- if (file_exists) {
- fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
- if (remove(path.c_str()) != 0) {
- fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
- return false;
- }
- }
- // Set the output file
- struct FILE_deleter {
- void operator()(FILE * f) const {
- fclose(f);
- }
- };
- std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
- if (!outfile) {
- fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
- return false;
- }
- typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
- auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
- return fwrite(data, size, nmemb, (FILE *)fd);
- };
- curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
- curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
- curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
- // display download progress
- curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
- // helper function to hide password in URL
- auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
- std::size_t protocol_pos = url.find("://");
- if (protocol_pos == std::string::npos) {
- return url; // Malformed URL
- }
- std::size_t at_pos = url.find('@', protocol_pos + 3);
- if (at_pos == std::string::npos) {
- return url; // No password in URL
- }
- return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
- };
- // start the download
- fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
- llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
- auto res = curl_easy_perform(curl.get());
- if (res != CURLE_OK) {
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
- return false;
- }
- long http_code = 0;
- curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code < 200 || http_code >= 400) {
- fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
- return false;
- }
- // Causes file to be closed explicitly here before we rename it.
- outfile.reset();
- // Write the updated JSON metadata file.
- metadata.update({
- {"url", url},
- {"etag", headers.etag},
- {"lastModified", headers.last_modified}
- });
- std::ofstream(metadata_path) << metadata.dump(4);
- fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
- if (rename(path_temporary.c_str(), path.c_str()) != 0) {
- fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
- return false;
- }
- }
- return true;
- }
- struct llama_model * llama_load_model_from_url(
- const char * model_url,
- const char * path_model,
- const char * hf_token,
- const struct llama_model_params & params) {
- // Basic validation of the model_url
- if (!model_url || strlen(model_url) == 0) {
- fprintf(stderr, "%s: invalid model_url\n", __func__);
- return NULL;
- }
- if (!llama_download_file(model_url, path_model, hf_token)) {
- return NULL;
- }
- // check for additional GGUFs split to download
- int n_split = 0;
- {
- struct gguf_init_params gguf_params = {
- /*.no_alloc = */ true,
- /*.ctx = */ NULL,
- };
- auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
- if (!ctx_gguf) {
- fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
- return NULL;
- }
- auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
- if (key_n_split >= 0) {
- n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
- }
- gguf_free(ctx_gguf);
- }
- if (n_split > 1) {
- char split_prefix[PATH_MAX] = {0};
- char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
- // Verify the first split file format
- // and extract split URL and PATH prefixes
- {
- if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
- fprintf(stderr, "\n%s: unexpected model file name: %s"
- " n_split=%d\n", __func__, path_model, n_split);
- return NULL;
- }
- if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
- fprintf(stderr, "\n%s: unexpected model url: %s"
- " n_split=%d\n", __func__, model_url, n_split);
- return NULL;
- }
- }
- // Prepare download in parallel
- std::vector<std::future<bool>> futures_download;
- for (int idx = 1; idx < n_split; idx++) {
- futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
- char split_path[PATH_MAX] = {0};
- llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
- char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
- llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
- return llama_download_file(split_url, split_path, hf_token);
- }, idx));
- }
- // Wait for all downloads to complete
- for (auto & f : futures_download) {
- if (!f.get()) {
- return NULL;
- }
- }
- }
- return llama_load_model_from_file(path_model, params);
- }
- struct llama_model * llama_load_model_from_hf(
- const char * repo,
- const char * model,
- const char * path_model,
- const char * hf_token,
- const struct llama_model_params & params) {
- // construct hugging face model url:
- //
- // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
- // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
- //
- // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
- // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
- //
- std::string model_url = "https://huggingface.co/";
- model_url += repo;
- model_url += "/resolve/main/";
- model_url += model;
- return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
- }
- #else
- struct llama_model * llama_load_model_from_url(
- const char * /*model_url*/,
- const char * /*path_model*/,
- const char * /*hf_token*/,
- const struct llama_model_params & /*params*/) {
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
- return nullptr;
- }
- struct llama_model * llama_load_model_from_hf(
- const char * /*repo*/,
- const char * /*model*/,
- const char * /*path_model*/,
- const char * /*hf_token*/,
- const struct llama_model_params & /*params*/) {
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
- return nullptr;
- }
- #endif // LLAMA_USE_CURL
- //
- // Batch utils
- //
- void llama_batch_clear(struct llama_batch & batch) {
- batch.n_tokens = 0;
- }
- void llama_batch_add(
- struct llama_batch & batch,
- llama_token id,
- llama_pos pos,
- const std::vector<llama_seq_id> & seq_ids,
- bool logits) {
- batch.token [batch.n_tokens] = id;
- batch.pos [batch.n_tokens] = pos;
- batch.n_seq_id[batch.n_tokens] = seq_ids.size();
- for (size_t i = 0; i < seq_ids.size(); ++i) {
- batch.seq_id[batch.n_tokens][i] = seq_ids[i];
- }
- batch.logits [batch.n_tokens] = logits;
- batch.n_tokens++;
- }
- //
- // Vocab utils
- //
- std::vector<llama_token> llama_tokenize(
- const struct llama_context * ctx,
- const std::string & text,
- bool add_special,
- bool parse_special) {
- return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
- }
- std::vector<llama_token> llama_tokenize(
- const struct llama_model * model,
- const std::string & text,
- bool add_special,
- bool parse_special) {
- // upper limit for the number of tokens
- int n_tokens = text.length() + 2 * add_special;
- std::vector<llama_token> result(n_tokens);
- n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return result;
- }
- std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
- std::string piece;
- piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
- const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
- if (n_chars < 0) {
- piece.resize(-n_chars);
- int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
- GGML_ASSERT(check == -n_chars);
- }
- else {
- piece.resize(n_chars);
- }
- return piece;
- }
- std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
- std::string text;
- text.resize(std::max(text.capacity(), tokens.size()));
- int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
- if (n_chars < 0) {
- text.resize(-n_chars);
- n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
- GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
- }
- text.resize(n_chars);
- // NOTE: the original tokenizer decodes bytes after collecting the pieces.
- return text;
- }
- //
- // Chat template utils
- //
- bool llama_chat_verify_template(const std::string & tmpl) {
- llama_chat_message chat[] = {{"user", "test"}};
- int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
- return res >= 0;
- }
- std::string llama_chat_apply_template(const struct llama_model * model,
- const std::string & tmpl,
- const std::vector<llama_chat_msg> & msgs,
- bool add_ass) {
- int alloc_size = 0;
- bool fallback = false; // indicate if we must fallback to default chatml
- std::vector<llama_chat_message> chat;
- for (auto & msg : msgs) {
- chat.push_back({msg.role.c_str(), msg.content.c_str()});
- alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
- }
- const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
- std::vector<char> buf(alloc_size);
- // run the first time to get the total output length
- int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
- // error: chat template is not supported
- if (res < 0) {
- if (ptr_tmpl != nullptr) {
- // if the custom "tmpl" is not supported, we throw an error
- // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
- throw std::runtime_error("this custom template is not supported");
- } else {
- // If the built-in template is not supported, we default to chatml
- res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
- fallback = true;
- }
- }
- // if it turns out that our buffer is too small, we resize it
- if ((size_t) res > buf.size()) {
- buf.resize(res);
- res = llama_chat_apply_template(
- fallback ? nullptr : model,
- fallback ? "chatml" : ptr_tmpl,
- chat.data(), chat.size(), add_ass, buf.data(), buf.size());
- }
- std::string formatted_chat(buf.data(), res);
- return formatted_chat;
- }
- std::string llama_chat_format_single(const struct llama_model * model,
- const std::string & tmpl,
- const std::vector<llama_chat_msg> & past_msg,
- const llama_chat_msg & new_msg,
- bool add_ass) {
- std::ostringstream ss;
- auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
- std::vector<llama_chat_msg> chat_new(past_msg);
- // if the past_msg ends with a newline, we must preserve it in the formatted version
- if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
- ss << "\n";
- };
- // format chat with new_msg
- chat_new.push_back(new_msg);
- auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
- // get the diff part
- ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
- return ss.str();
- }
- std::string llama_chat_format_example(const struct llama_model * model,
- const std::string & tmpl) {
- std::vector<llama_chat_msg> msgs = {
- {"system", "You are a helpful assistant"},
- {"user", "Hello"},
- {"assistant", "Hi there"},
- {"user", "How are you?"},
- };
- return llama_chat_apply_template(model, tmpl, msgs, true);
- }
- //
- // KV cache utils
- //
- void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
- static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
- printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
- view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
- llama_kv_cache_view_cell * c_curr = view.cells;
- llama_seq_id * cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- if (i % row_size == 0) {
- printf("\n%5d: ", i);
- }
- int seq_count = 0;
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] >= 0) { seq_count++; }
- }
- putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
- }
- printf("\n=== Done dumping\n");
- }
- void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
- static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
- view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
- std::unordered_map<llama_seq_id, size_t> seqs;
- llama_kv_cache_view_cell * c_curr = view.cells;
- llama_seq_id * cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] < 0) { continue; }
- if (seqs.find(cs_curr[j]) == seqs.end()) {
- if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
- const size_t sz = seqs.size();
- seqs[cs_curr[j]] = sz;
- }
- }
- if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
- }
- printf("=== Sequence legend: ");
- for (const auto & it : seqs) {
- printf("%zu=%d, ", it.second, it.first);
- }
- printf("'+'=other sequence ids");
- c_curr = view.cells;
- cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- if (i % row_size == 0) {
- printf("\n%5d: ", i);
- }
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] >= 0) {
- const auto & it = seqs.find(cs_curr[j]);
- putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
- } else {
- putchar('.');
- }
- }
- putchar(' ');
- }
- printf("\n=== Done dumping\n");
- }
- //
- // Embedding utils
- //
- void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
- double sum = 0.0;
- switch (embd_norm) {
- case -1: // no normalisation
- sum = 1.0;
- break;
- case 0: // max absolute
- for (int i = 0; i < n; i++) {
- if (sum < std::abs(inp[i])) sum = std::abs(inp[i]);
- }
- sum /= 32760.0; // make an int16 range
- break;
- case 2: // euclidean
- for (int i = 0; i < n; i++) {
- sum += inp[i] * inp[i];
- }
- sum = std::sqrt(sum);
- break;
- default: // p-norm (euclidean is p-norm p=2)
- for (int i = 0; i < n; i++) {
- sum += std::pow(std::abs(inp[i]), embd_norm);
- }
- sum = std::pow(sum, 1.0 / embd_norm);
- break;
- }
- const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
- for (int i = 0; i < n; i++) {
- out[i] = inp[i] * norm;
- }
- }
- float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
- double sum = 0.0;
- double sum1 = 0.0;
- double sum2 = 0.0;
- for (int i = 0; i < n; i++) {
- sum += embd1[i] * embd2[i];
- sum1 += embd1[i] * embd1[i];
- sum2 += embd2[i] * embd2[i];
- }
- // Handle the case where one or both vectors are zero vectors
- if (sum1 == 0.0 || sum2 == 0.0) {
- if (sum1 == 0.0 && sum2 == 0.0) {
- return 1.0f; // two zero vectors are similar
- }
- return 0.0f;
- }
- return sum / (sqrt(sum1) * sqrt(sum2));
- }
- //
- // Control vector utils
- //
- static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
- llama_control_vector_data result = { -1, {} };
- ggml_context * ctx = nullptr;
- struct gguf_init_params meta_gguf_params = {
- /* .no_alloc = */ false,
- /* .ctx = */ &ctx,
- };
- struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
- if (!ctx_gguf) {
- fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
- return result;
- }
- int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
- if (n_tensors == 0) {
- fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
- }
- for (int i = 0; i < n_tensors; i++) {
- std::string name = gguf_get_tensor_name(ctx_gguf, i);
- int layer_idx = -1;
- // split on '.'
- size_t dotpos = name.find('.');
- if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
- try {
- layer_idx = std::stoi(name.substr(dotpos + 1));
- } catch (...) {
- layer_idx = -1;
- }
- }
- if (layer_idx < 0) {
- fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- } else if (layer_idx == 0) {
- fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
- if (tensor->type != GGML_TYPE_F32) {
- fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- if (ggml_n_dims(tensor) != 1) {
- fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- if (result.n_embd == -1) {
- result.n_embd = ggml_nelements(tensor);
- } else if (ggml_nelements(tensor) != result.n_embd) {
- fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- // extend if necessary - do not store data for layer 0 (it's not used)
- result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
- const float * src = (const float *) tensor->data;
- float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0]
- for (int j = 0; j < result.n_embd; j++) {
- dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file
- }
- }
- if (result.n_embd == -1) {
- fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
- result.data.clear();
- }
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return result;
- }
- llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
- llama_control_vector_data result = { -1, {} };
- for (const auto & info : load_infos) {
- auto cur = llama_control_vector_load_one(info);
- if (cur.n_embd == -1) {
- result.n_embd = -1;
- break;
- }
- if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
- fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- if (result.n_embd == -1) {
- result = std::move(cur);
- } else {
- result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary
- for (size_t i = 0; i < cur.data.size(); i++) {
- result.data[i] += cur.data[i];
- }
- }
- }
- if (result.n_embd == -1) {
- fprintf(stderr, "%s: no valid control vector files passed\n", __func__);
- result.data.clear();
- }
- return result;
- }
- //
- // YAML utils
- //
- void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
- if (data.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- fprintf(stream, "%s: [", prop_name);
- for (size_t i = 0; i < data.size() - 1; ++i) {
- fprintf(stream, "%e, ", data[i]);
- }
- fprintf(stream, "%e]\n", data.back());
- }
- void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
- if (data.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- fprintf(stream, "%s: [", prop_name);
- for (size_t i = 0; i < data.size() - 1; ++i) {
- fprintf(stream, "%d, ", data[i]);
- }
- fprintf(stream, "%d]\n", data.back());
- }
- void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
- std::string data_str(data == NULL ? "" : data);
- if (data_str.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- size_t pos_start = 0;
- size_t pos_found = 0;
- if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
- data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
- data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
- data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
- data_str = "\"" + data_str + "\"";
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
- return;
- }
- if (data_str.find('\n') == std::string::npos) {
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
- return;
- }
- fprintf(stream, "%s: |\n", prop_name);
- while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
- fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
- pos_start = pos_found + 1;
- }
- }
- void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
- const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
- const auto & sparams = params.sparams;
- fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
- fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
- fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
- fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
- fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
- fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
- fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
- fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
- fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
- fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
- fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
- fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
- fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
- fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
- fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
- fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
- fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
- fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
- fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
- fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
- #ifdef NDEBUG
- fprintf(stream, "debug: false\n");
- #else
- fprintf(stream, "debug: true\n");
- #endif // NDEBUG
- fprintf(stream, "model_desc: %s\n", model_desc);
- fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
- #ifdef __OPTIMIZE__
- fprintf(stream, "optimize: true\n");
- #else
- fprintf(stream, "optimize: false\n");
- #endif // __OPTIMIZE__
- fprintf(stream, "time: %s\n", timestamp.c_str());
- fprintf(stream, "\n");
- fprintf(stream, "###############\n");
- fprintf(stream, "# User Inputs #\n");
- fprintf(stream, "###############\n");
- fprintf(stream, "\n");
- fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
- fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
- fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
- fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
- fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
- fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
- fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
- fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
- yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
- fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
- fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
- fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
- fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
- yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
- fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
- yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
- fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
- fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
- fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
- fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
- fprintf(stream, "logit_bias:\n");
- for (const auto & logit_bias : sparams.logit_bias) {
- fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
- }
- fprintf(stream, "lora:\n");
- for (auto & la : params.lora_adapters) {
- if (la.scale == 1.0f) {
- fprintf(stream, " - %s\n", la.path.c_str());
- }
- }
- fprintf(stream, "lora_scaled:\n");
- for (auto & la : params.lora_adapters) {
- if (la.scale != 1.0f) {
- fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
- }
- }
- fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
- fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
- fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
- fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
- fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
- fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
- fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
- fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
- fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
- fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
- fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
- fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
- fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
- fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
- fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
- fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
- fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
- fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
- yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
- fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
- fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
- fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
- yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
- fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
- fprintf(stream, "reverse_prompt:\n");
- for (std::string ap : params.antiprompt) {
- size_t pos = 0;
- while ((pos = ap.find('\n', pos)) != std::string::npos) {
- ap.replace(pos, 1, "\\n");
- pos += 1;
- }
- fprintf(stream, " - %s\n", ap.c_str());
- }
- fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
- fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
- fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
- fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
- fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
- fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
- const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
- yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
- fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
- fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
- fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
- fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
- fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
- fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
- fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
- fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
- }
|