convert_hf_to_gguf.py 491 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  448. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  449. # we don't need these
  450. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  451. continue
  452. old_dtype = data_torch.dtype
  453. # convert any unsupported data types to float32
  454. if data_torch.dtype not in (torch.float16, torch.float32):
  455. data_torch = data_torch.to(torch.float32)
  456. # use the first number-like part of the tensor name as the block id
  457. bid = None
  458. for part in name.split("."):
  459. if part.isdecimal():
  460. bid = int(part)
  461. break
  462. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  463. # TODO: why do we squeeze here?
  464. # data = data_torch.squeeze().numpy()
  465. data = data_torch.numpy()
  466. n_dims = len(data.shape)
  467. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  468. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  469. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  470. data_qtype = gguf.GGMLQuantizationType.F32
  471. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  472. # Some tensor types are always in float32
  473. if data_qtype is False and (
  474. any(
  475. self.match_model_tensor_name(new_name, key, bid)
  476. for key in (
  477. gguf.MODEL_TENSOR.FFN_GATE_INP,
  478. gguf.MODEL_TENSOR.POS_EMBD,
  479. gguf.MODEL_TENSOR.TOKEN_TYPES,
  480. gguf.MODEL_TENSOR.SSM_CONV1D,
  481. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  482. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  483. gguf.MODEL_TENSOR.TIME_MIX_W1,
  484. gguf.MODEL_TENSOR.TIME_MIX_W2,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  486. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  487. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  488. gguf.MODEL_TENSOR.POSNET_NORM1,
  489. gguf.MODEL_TENSOR.POSNET_NORM2,
  490. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  492. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  493. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  494. )
  495. )
  496. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  497. ):
  498. data_qtype = gguf.GGMLQuantizationType.F32
  499. if data_qtype is False and any(
  500. self.match_model_tensor_name(new_name, key, bid)
  501. for key in (
  502. gguf.MODEL_TENSOR.TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  504. gguf.MODEL_TENSOR.OUTPUT,
  505. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  506. gguf.MODEL_TENSOR.LAUREL_L,
  507. gguf.MODEL_TENSOR.LAUREL_R,
  508. )
  509. ):
  510. if self.ftype in (
  511. gguf.LlamaFileType.MOSTLY_TQ1_0,
  512. gguf.LlamaFileType.MOSTLY_TQ2_0,
  513. ):
  514. # TODO: use Q4_K and Q6_K
  515. data_qtype = gguf.GGMLQuantizationType.F16
  516. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  517. if isinstance(data_qtype, bool):
  518. if self.ftype == gguf.LlamaFileType.ALL_F32:
  519. data_qtype = gguf.GGMLQuantizationType.F32
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  521. data_qtype = gguf.GGMLQuantizationType.F16
  522. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  523. data_qtype = gguf.GGMLQuantizationType.BF16
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  525. data_qtype = gguf.GGMLQuantizationType.Q8_0
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  527. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  529. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  530. else:
  531. raise ValueError(f"Unknown file type: {self.ftype.name}")
  532. try:
  533. data = gguf.quants.quantize(data, data_qtype)
  534. except gguf.QuantError as e:
  535. logger.warning("%s, %s", e, "falling back to F16")
  536. data_qtype = gguf.GGMLQuantizationType.F16
  537. data = gguf.quants.quantize(data, data_qtype)
  538. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  539. # reverse shape to make it similar to the internal ggml dimension order
  540. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  541. # n_dims is implicit in the shape
  542. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  543. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  544. def set_type(self):
  545. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  546. def prepare_metadata(self, vocab_only: bool):
  547. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  548. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  549. # If we are using HF model id, set the metadata name to the model id
  550. if self.remote_hf_model_id:
  551. self.metadata.name = self.remote_hf_model_id
  552. # Fallback to model directory name if metadata name is still missing
  553. if self.metadata.name is None:
  554. self.metadata.name = self.dir_model.name
  555. # Generate parameter weight class (useful for leader boards) if not yet determined
  556. if self.metadata.size_label is None and total_params > 0:
  557. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  558. self.set_type()
  559. logger.info("Set meta model")
  560. self.metadata.set_gguf_meta_model(self.gguf_writer)
  561. logger.info("Set model parameters")
  562. self.set_gguf_parameters()
  563. logger.info("Set model quantization version")
  564. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  565. def write_vocab(self):
  566. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  567. def write(self):
  568. self.prepare_tensors()
  569. self.prepare_metadata(vocab_only=False)
  570. self.gguf_writer.write_header_to_file(path=self.fname_out)
  571. self.gguf_writer.write_kv_data_to_file()
  572. self.gguf_writer.write_tensors_to_file(progress=True)
  573. self.gguf_writer.close()
  574. @staticmethod
  575. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  576. part_names: list[str] = []
  577. for filename in os.listdir(dir_model):
  578. if filename.startswith(prefix) and filename.endswith(suffix):
  579. part_names.append(filename)
  580. part_names.sort()
  581. return part_names
  582. @staticmethod
  583. def load_hparams(dir_model: Path, is_mistral_format: bool):
  584. if is_mistral_format:
  585. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  586. config = json.load(f)
  587. return config
  588. try:
  589. # for security reason, we don't allow loading remote code by default
  590. # if a model need remote code, we will fallback to config.json
  591. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  592. except Exception as e:
  593. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  594. logger.warning("Trying to load config.json instead")
  595. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  596. config = json.load(f)
  597. if "llm_config" in config:
  598. # rename for InternVL
  599. config["text_config"] = config["llm_config"]
  600. if "lm_config" in config:
  601. # rename for GlmASR
  602. config["text_config"] = config["lm_config"]
  603. if "thinker_config" in config:
  604. # rename for Qwen2.5-Omni
  605. config["text_config"] = config["thinker_config"]["text_config"]
  606. if "lfm" in config:
  607. # rename for LFM2-Audio
  608. config["text_config"] = config["lfm"]
  609. return config
  610. @classmethod
  611. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  612. assert names
  613. def func(modelcls: AnyModel) -> AnyModel:
  614. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  615. for name in names:
  616. cls._model_classes[model_type][name] = modelcls
  617. return modelcls
  618. return func
  619. @classmethod
  620. def print_registered_models(cls):
  621. for model_type, model_classes in cls._model_classes.items():
  622. logger.error(f"{model_type.name} models:")
  623. for name in sorted(model_classes.keys()):
  624. logger.error(f" - {name}")
  625. @classmethod
  626. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  627. try:
  628. return cls._model_classes[model_type][arch]
  629. except KeyError:
  630. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  631. class TextModel(ModelBase):
  632. model_type = ModelType.TEXT
  633. hf_arch: str
  634. def __init__(self, *args, **kwargs):
  635. super().__init__(*args, **kwargs)
  636. if not self.is_mistral_format:
  637. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  638. else:
  639. self.hf_arch = ""
  640. if "text_config" in self.hparams:
  641. # move the text_config to the root level
  642. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  643. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  644. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  645. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  646. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  647. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  648. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  649. self.rope_parameters["rope_theta"] = rope_theta
  650. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  651. self.rope_parameters["rope_type"] = rope_type
  652. @classmethod
  653. def __init_subclass__(cls):
  654. # can't use an abstract property, because overriding it without type errors
  655. # would require using decorated functions instead of simply defining the property
  656. if "model_arch" not in cls.__dict__:
  657. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  658. def set_vocab(self):
  659. self._set_vocab_gpt2()
  660. def prepare_metadata(self, vocab_only: bool):
  661. super().prepare_metadata(vocab_only=vocab_only)
  662. total_params = self.gguf_writer.get_total_parameter_count()[0]
  663. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  664. output_type: str = self.ftype.name.partition("_")[2]
  665. # Filename Output
  666. if self.fname_out.is_dir():
  667. # Generate default filename based on model specification and available metadata
  668. if not vocab_only:
  669. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  670. else:
  671. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  672. # Use the default filename
  673. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  674. else:
  675. # Output path is a custom defined templated filename
  676. # Note: `not is_dir()` is used because `.is_file()` will not detect
  677. # file template strings as it doesn't actually exist as a file
  678. # Process templated file name with the output ftype, useful with the "auto" ftype
  679. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  680. logger.info("Set model tokenizer")
  681. self.set_vocab()
  682. def set_gguf_parameters(self):
  683. self.gguf_writer.add_block_count(self.block_count)
  684. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  685. self.gguf_writer.add_context_length(n_ctx)
  686. logger.info(f"gguf: context length = {n_ctx}")
  687. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  688. self.gguf_writer.add_embedding_length(n_embd)
  689. logger.info(f"gguf: embedding length = {n_embd}")
  690. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  691. self.gguf_writer.add_feed_forward_length(n_ff)
  692. logger.info(f"gguf: feed forward length = {n_ff}")
  693. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  694. self.gguf_writer.add_head_count(n_head)
  695. logger.info(f"gguf: head count = {n_head}")
  696. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  697. self.gguf_writer.add_head_count_kv(n_head_kv)
  698. logger.info(f"gguf: key-value head count = {n_head_kv}")
  699. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  700. if (rope_type := rope_params.get("rope_type")) is not None:
  701. rope_factor = rope_params.get("factor")
  702. rope_gguf_type = gguf.RopeScalingType.NONE
  703. if rope_type == "linear" and rope_factor is not None:
  704. rope_gguf_type = gguf.RopeScalingType.LINEAR
  705. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  706. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  707. elif rope_type == "yarn" and rope_factor is not None:
  708. rope_gguf_type = gguf.RopeScalingType.YARN
  709. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  710. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  711. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  712. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  713. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  714. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  715. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  716. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  717. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  718. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  719. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  720. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  721. elif rope_type == "su" or rope_type == "longrope":
  722. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  723. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  724. elif rope_type == "dynamic":
  725. # HunYuan, handled in model class
  726. pass
  727. elif rope_type.lower() == "llama3":
  728. # Handled in generate_extra_tensors
  729. pass
  730. else:
  731. logger.warning(f"Unknown RoPE type: {rope_type}")
  732. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  733. if "mrope_section" in self.rope_parameters:
  734. mrope_section = self.rope_parameters["mrope_section"]
  735. # Pad to 4 dimensions [time, height, width, extra]
  736. while len(mrope_section) < 4:
  737. mrope_section.append(0)
  738. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  739. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  740. if (rope_theta := rope_params.get("rope_theta")) is not None:
  741. self.gguf_writer.add_rope_freq_base(rope_theta)
  742. logger.info(f"gguf: rope theta = {rope_theta}")
  743. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  744. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  745. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  746. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  747. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  748. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  749. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  750. self.gguf_writer.add_expert_count(n_experts)
  751. logger.info(f"gguf: expert count = {n_experts}")
  752. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  753. self.gguf_writer.add_expert_used_count(n_experts_used)
  754. logger.info(f"gguf: experts used count = {n_experts_used}")
  755. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  756. self.gguf_writer.add_expert_group_count(n_expert_groups)
  757. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  758. if (n_group_used := self.hparams.get("topk_group")) is not None:
  759. self.gguf_writer.add_expert_group_used_count(n_group_used)
  760. logger.info(f"gguf: expert groups used count = {n_group_used}")
  761. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  762. if score_func == "sigmoid":
  763. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  764. elif score_func == "softmax":
  765. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  766. else:
  767. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  768. logger.info(f"gguf: expert score gating function = {score_func}")
  769. if (head_dim := self.hparams.get("head_dim")) is not None:
  770. self.gguf_writer.add_key_length(head_dim)
  771. self.gguf_writer.add_value_length(head_dim)
  772. self.gguf_writer.add_file_type(self.ftype)
  773. logger.info(f"gguf: file type = {self.ftype}")
  774. def write_vocab(self):
  775. if len(self.gguf_writer.tensors) != 1:
  776. raise ValueError('Splitting the vocabulary is not supported')
  777. self.prepare_metadata(vocab_only=True)
  778. self.gguf_writer.write_header_to_file(path=self.fname_out)
  779. self.gguf_writer.write_kv_data_to_file()
  780. self.gguf_writer.close()
  781. def does_token_look_special(self, token: str | bytes) -> bool:
  782. if isinstance(token, (bytes, bytearray)):
  783. token_text = token.decode(encoding="utf-8")
  784. elif isinstance(token, memoryview):
  785. token_text = token.tobytes().decode(encoding="utf-8")
  786. else:
  787. token_text = token
  788. # Some models mark some added tokens which ought to be control tokens as not special.
  789. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  790. seems_special = token_text in (
  791. "<pad>", # deepseek-coder
  792. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  793. )
  794. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  795. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  796. # TODO: should these be marked as UNUSED instead? (maybe not)
  797. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  798. return seems_special
  799. # used for GPT-2 BPE and WordPiece vocabs
  800. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  801. tokens: list[str] = []
  802. toktypes: list[int] = []
  803. from transformers import AutoTokenizer
  804. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  805. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  806. assert max(tokenizer.vocab.values()) < vocab_size
  807. tokpre = self.get_vocab_base_pre(tokenizer)
  808. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  809. added_vocab = tokenizer.get_added_vocab()
  810. added_tokens_decoder = tokenizer.added_tokens_decoder
  811. for i in range(vocab_size):
  812. if i not in reverse_vocab:
  813. tokens.append(f"[PAD{i}]")
  814. toktypes.append(gguf.TokenType.UNUSED)
  815. else:
  816. token: str = reverse_vocab[i]
  817. if token in added_vocab:
  818. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  819. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  820. if not added_tokens_decoder[i].normalized:
  821. previous_token = token
  822. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  823. if previous_token != token:
  824. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  825. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  826. toktypes.append(gguf.TokenType.CONTROL)
  827. else:
  828. # NOTE: this was added for Gemma.
  829. # Encoding and decoding the tokens above isn't sufficient for this case.
  830. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  831. toktypes.append(gguf.TokenType.USER_DEFINED)
  832. else:
  833. toktypes.append(gguf.TokenType.NORMAL)
  834. tokens.append(token)
  835. return tokens, toktypes, tokpre
  836. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  837. # do not modify it manually!
  838. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  839. # Marker: Start get_vocab_base_pre
  840. def get_vocab_base_pre(self, tokenizer) -> str:
  841. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  842. # is specific for the BPE pre-tokenizer used by the model
  843. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  844. # use in llama.cpp to implement the same pre-tokenizer
  845. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  846. chktok = tokenizer.encode(chktxt)
  847. chkhsh = sha256(str(chktok).encode()).hexdigest()
  848. logger.debug(f"chktok: {chktok}")
  849. logger.debug(f"chkhsh: {chkhsh}")
  850. res = None
  851. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  852. # or pull the latest version of the model from Huggingface
  853. # don't edit the hashes manually!
  854. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  855. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  856. res = "chatglm-bpe"
  857. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  858. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  859. res = "chatglm-bpe"
  860. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  861. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  862. res = "glm4"
  863. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  864. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  865. res = "glm4"
  866. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  867. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  868. res = "minerva-7b"
  869. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  870. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  871. res = "hunyuan"
  872. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  873. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  874. res = "hunyuan-dense"
  875. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  876. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  877. res = "falcon-h1"
  878. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  879. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  880. res = "falcon-h1"
  881. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  882. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  883. res = "falcon-h1"
  884. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  885. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  886. res = "falcon-h1"
  887. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  888. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  889. res = "kimi-k2"
  890. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  891. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  892. res = "qwen2"
  893. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  894. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  895. res = "grok-2"
  896. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  897. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  898. res = "llama-bpe"
  899. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  900. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  901. res = "deepseek-llm"
  902. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  903. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  904. res = "deepseek-coder"
  905. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  906. # ref: https://huggingface.co/tiiuae/falcon-7b
  907. res = "falcon"
  908. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  909. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  910. res = "bert-bge"
  911. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  912. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  913. res = "falcon3"
  914. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  915. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  916. res = "bert-bge-large"
  917. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  918. # ref: https://huggingface.co/mosaicml/mpt-7b
  919. res = "mpt"
  920. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  921. # ref: https://huggingface.co/bigcode/starcoder2-3b
  922. res = "starcoder"
  923. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  924. # ref: https://huggingface.co/openai-community/gpt2
  925. res = "gpt-2"
  926. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  927. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  928. res = "stablelm2"
  929. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  930. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  931. res = "refact"
  932. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  933. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  934. res = "command-r"
  935. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  936. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  937. res = "qwen2"
  938. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  939. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  940. res = "olmo"
  941. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  942. # ref: https://huggingface.co/databricks/dbrx-base
  943. res = "dbrx"
  944. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  945. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  946. res = "jina-v1-en"
  947. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  948. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  949. res = "jina-v2-en"
  950. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  951. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  952. res = "jina-v2-es"
  953. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  954. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  955. res = "jina-v2-de"
  956. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  957. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  958. res = "smaug-bpe"
  959. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  960. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  961. res = "poro-chat"
  962. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  963. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  964. res = "jina-v2-code"
  965. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  966. # ref: https://huggingface.co/LumiOpen/Viking-7B
  967. res = "viking"
  968. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  969. # ref: https://huggingface.co/core42/jais-13b
  970. res = "jais"
  971. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  972. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  973. res = "codeshell"
  974. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  975. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  976. res = "tekken"
  977. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  978. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  979. res = "smollm"
  980. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  981. # ref: https://huggingface.co/bigscience/bloom
  982. res = "bloom"
  983. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  984. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  985. res = "gpt3-finnish"
  986. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  987. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  988. res = "exaone"
  989. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  990. # ref: https://huggingface.co/microsoft/phi-2
  991. res = "phi-2"
  992. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  993. # ref: https://huggingface.co/facebook/chameleon-7b
  994. res = "chameleon"
  995. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  996. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  997. res = "roberta-bpe"
  998. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  999. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1000. res = "gigachat"
  1001. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1002. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1003. res = "megrez"
  1004. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1005. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1006. res = "deepseek-v3"
  1007. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1008. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1009. res = "deepseek-r1-qwen"
  1010. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1011. # ref: https://huggingface.co/Xenova/gpt-4o
  1012. res = "gpt-4o"
  1013. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1014. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1015. res = "superbpe"
  1016. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1017. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1018. res = "trillion"
  1019. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1020. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1021. res = "bailingmoe"
  1022. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1023. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1024. res = "llama4"
  1025. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1026. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1027. res = "pixtral"
  1028. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1029. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1030. res = "seed-coder"
  1031. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1032. # ref: https://huggingface.co/skt/A.X-4.0
  1033. res = "a.x-4.0"
  1034. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1035. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1036. res = "midm-2.0"
  1037. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1038. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1039. res = "lfm2"
  1040. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1041. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1042. res = "exaone4"
  1043. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1044. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1045. res = "mellum"
  1046. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1047. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1048. res = "afmoe"
  1049. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1050. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1051. res = "bailingmoe2"
  1052. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1053. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1054. res = "granite-docling"
  1055. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1056. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1057. res = "minimax-m2"
  1058. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1059. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1060. res = "kormo"
  1061. if res is None:
  1062. logger.warning("\n")
  1063. logger.warning("**************************************************************************************")
  1064. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1065. logger.warning("** There are 2 possible reasons for this:")
  1066. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1067. logger.warning("** - the pre-tokenization config has changed upstream")
  1068. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1069. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1070. logger.warning("**")
  1071. logger.warning(f"** chkhsh: {chkhsh}")
  1072. logger.warning("**************************************************************************************")
  1073. logger.warning("\n")
  1074. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1075. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1076. logger.debug(f"chkhsh: {chkhsh}")
  1077. return res
  1078. # Marker: End get_vocab_base_pre
  1079. def _set_vocab_none(self) -> None:
  1080. self.gguf_writer.add_tokenizer_model("none")
  1081. def _set_vocab_gpt2(self) -> None:
  1082. tokens, toktypes, tokpre = self.get_vocab_base()
  1083. self.gguf_writer.add_tokenizer_model("gpt2")
  1084. self.gguf_writer.add_tokenizer_pre(tokpre)
  1085. self.gguf_writer.add_token_list(tokens)
  1086. self.gguf_writer.add_token_types(toktypes)
  1087. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1088. special_vocab.add_to_gguf(self.gguf_writer)
  1089. def _set_vocab_qwen(self):
  1090. dir_model = self.dir_model
  1091. hparams = self.hparams
  1092. tokens: list[str] = []
  1093. toktypes: list[int] = []
  1094. from transformers import AutoTokenizer
  1095. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1096. vocab_size = hparams["vocab_size"]
  1097. assert max(tokenizer.get_vocab().values()) < vocab_size
  1098. tokpre = self.get_vocab_base_pre(tokenizer)
  1099. merges = []
  1100. vocab = {}
  1101. mergeable_ranks = tokenizer.mergeable_ranks
  1102. for token, rank in mergeable_ranks.items():
  1103. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1104. if len(token) == 1:
  1105. continue
  1106. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1107. assert len(merged) == 2
  1108. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1109. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1110. added_vocab = tokenizer.special_tokens
  1111. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1112. for i in range(vocab_size):
  1113. if i not in reverse_vocab:
  1114. tokens.append(f"[PAD{i}]")
  1115. toktypes.append(gguf.TokenType.UNUSED)
  1116. elif reverse_vocab[i] in added_vocab:
  1117. tokens.append(reverse_vocab[i])
  1118. toktypes.append(gguf.TokenType.CONTROL)
  1119. else:
  1120. tokens.append(reverse_vocab[i])
  1121. toktypes.append(gguf.TokenType.NORMAL)
  1122. self.gguf_writer.add_tokenizer_model("gpt2")
  1123. self.gguf_writer.add_tokenizer_pre(tokpre)
  1124. self.gguf_writer.add_token_list(tokens)
  1125. self.gguf_writer.add_token_types(toktypes)
  1126. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1127. special_vocab.merges = merges
  1128. # only add special tokens when they were not already loaded from config.json
  1129. if len(special_vocab.special_token_ids) == 0:
  1130. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1131. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1132. # this one is usually not in config.json anyway
  1133. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1134. special_vocab.add_to_gguf(self.gguf_writer)
  1135. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1136. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1137. self.gguf_writer.add_tokenizer_model("llama")
  1138. self.gguf_writer.add_tokenizer_pre("default")
  1139. self.gguf_writer.add_token_list(tokens)
  1140. self.gguf_writer.add_token_scores(scores)
  1141. self.gguf_writer.add_token_types(toktypes)
  1142. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1143. special_vocab.add_to_gguf(self.gguf_writer)
  1144. def _create_vocab_sentencepiece(self):
  1145. from sentencepiece import SentencePieceProcessor
  1146. tokenizer_path = self.dir_model / 'tokenizer.model'
  1147. if not tokenizer_path.is_file():
  1148. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1149. tokenizer = SentencePieceProcessor()
  1150. tokenizer.LoadFromFile(str(tokenizer_path))
  1151. vocab_size = self.find_hparam([
  1152. "vocab_size_per_layer_input", # gemma3n
  1153. "vocab_size",
  1154. ], optional=True) or tokenizer.vocab_size()
  1155. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1156. scores: list[float] = [-10000.0] * vocab_size
  1157. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1158. for token_id in range(tokenizer.vocab_size()):
  1159. if token_id >= vocab_size:
  1160. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1161. break
  1162. piece = tokenizer.IdToPiece(token_id)
  1163. text = piece.encode("utf-8")
  1164. score = tokenizer.GetScore(token_id)
  1165. toktype = SentencePieceTokenTypes.NORMAL
  1166. if tokenizer.IsUnknown(token_id):
  1167. toktype = SentencePieceTokenTypes.UNKNOWN
  1168. elif tokenizer.IsControl(token_id):
  1169. toktype = SentencePieceTokenTypes.CONTROL
  1170. elif tokenizer.IsUnused(token_id):
  1171. toktype = SentencePieceTokenTypes.UNUSED
  1172. elif tokenizer.IsByte(token_id):
  1173. toktype = SentencePieceTokenTypes.BYTE
  1174. tokens[token_id] = text
  1175. scores[token_id] = score
  1176. toktypes[token_id] = toktype
  1177. added_tokens_file = self.dir_model / 'added_tokens.json'
  1178. if added_tokens_file.is_file():
  1179. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1180. added_tokens_json = json.load(f)
  1181. for key in added_tokens_json:
  1182. token_id = added_tokens_json[key]
  1183. if token_id >= vocab_size:
  1184. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1185. continue
  1186. tokens[token_id] = key.encode("utf-8")
  1187. scores[token_id] = -1000.0
  1188. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1189. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1190. if tokenizer_config_file.is_file():
  1191. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1192. tokenizer_config_json = json.load(f)
  1193. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1194. for token_id, token_data in added_tokens_decoder.items():
  1195. token_id = int(token_id)
  1196. token: str = token_data["content"]
  1197. if token_id >= vocab_size:
  1198. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1199. continue
  1200. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1201. if tokens[token_id] != token.encode("utf-8"):
  1202. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1203. if token_data.get("special") or self.does_token_look_special(token):
  1204. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1205. else:
  1206. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1207. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1208. scores[token_id] = -1000.0
  1209. tokens[token_id] = token.encode("utf-8")
  1210. if vocab_size > len(tokens):
  1211. pad_count = vocab_size - len(tokens)
  1212. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1213. for i in range(1, pad_count + 1):
  1214. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1215. scores.append(-1000.0)
  1216. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1217. return tokens, scores, toktypes
  1218. def _set_vocab_llama_hf(self):
  1219. vocab = gguf.LlamaHfVocab(self.dir_model)
  1220. tokens = []
  1221. scores = []
  1222. toktypes = []
  1223. for text, score, toktype in vocab.all_tokens():
  1224. tokens.append(text)
  1225. scores.append(score)
  1226. toktypes.append(toktype)
  1227. assert len(tokens) == vocab.vocab_size
  1228. self.gguf_writer.add_tokenizer_model("llama")
  1229. self.gguf_writer.add_tokenizer_pre("default")
  1230. self.gguf_writer.add_token_list(tokens)
  1231. self.gguf_writer.add_token_scores(scores)
  1232. self.gguf_writer.add_token_types(toktypes)
  1233. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1234. special_vocab.add_to_gguf(self.gguf_writer)
  1235. def _set_vocab_rwkv_world(self):
  1236. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1237. vocab_size = self.hparams.get("vocab_size", 65536)
  1238. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1239. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1240. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1241. lines = f.readlines()
  1242. for line in lines:
  1243. parts = line.split(' ')
  1244. assert len(parts) >= 3
  1245. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1246. token = token.encode("utf-8") if isinstance(token, str) else token
  1247. assert isinstance(token, bytes)
  1248. assert len(token) == token_len
  1249. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1250. tokens.append(token_text.encode("utf-8"))
  1251. toktypes.append(gguf.TokenType.NORMAL)
  1252. remainder = vocab_size - len(tokens)
  1253. assert remainder >= 0
  1254. for i in range(len(tokens), vocab_size):
  1255. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1256. toktypes.append(gguf.TokenType.UNUSED)
  1257. self.gguf_writer.add_tokenizer_model("rwkv")
  1258. self.gguf_writer.add_token_list(tokens)
  1259. self.gguf_writer.add_token_types(toktypes)
  1260. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1261. if special_vocab.chat_template is None:
  1262. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1263. if template_path.is_file():
  1264. with open(template_path, "r", encoding="utf-8") as f:
  1265. template = f.read()
  1266. else:
  1267. template = "rwkv-world"
  1268. special_vocab.chat_template = template
  1269. # hack: Add '\n\n' as the EOT token to make it chat normally
  1270. special_vocab._set_special_token("eot", 261)
  1271. # hack: Override these as they have already been set (incorrectly)
  1272. special_vocab.special_token_ids["bos"] = 0
  1273. special_vocab.special_token_ids["eos"] = 0
  1274. special_vocab.add_to_gguf(self.gguf_writer)
  1275. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1276. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1277. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1278. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1279. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1280. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1281. assert field # tokenizer model
  1282. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1283. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1284. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1285. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1286. assert field # token list
  1287. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1288. if model_name == "llama-spm":
  1289. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1290. assert field # token scores
  1291. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1292. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1293. assert field # token types
  1294. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1295. if model_name != "llama-spm":
  1296. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1297. assert field # token merges
  1298. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1299. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1300. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1301. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1302. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1303. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1304. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1305. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1306. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1307. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1308. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1309. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1310. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1311. def _try_set_pooling_type(self) -> None:
  1312. # get pooling path
  1313. pooling_path = None
  1314. module_path = self.dir_model / "modules.json"
  1315. if module_path.is_file():
  1316. with open(module_path, encoding="utf-8") as f:
  1317. modules = json.load(f)
  1318. for mod in modules:
  1319. if mod["type"] == "sentence_transformers.models.Pooling":
  1320. pooling_path = mod["path"]
  1321. break
  1322. # get pooling type
  1323. if pooling_path is not None:
  1324. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1325. pooling = json.load(f)
  1326. if pooling["pooling_mode_mean_tokens"]:
  1327. pooling_type = gguf.PoolingType.MEAN
  1328. elif pooling["pooling_mode_cls_token"]:
  1329. pooling_type = gguf.PoolingType.CLS
  1330. elif pooling["pooling_mode_lasttoken"]:
  1331. pooling_type = gguf.PoolingType.LAST
  1332. else:
  1333. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1334. self.gguf_writer.add_pooling_type(pooling_type)
  1335. def _set_vocab_glmedge(self):
  1336. from transformers import AutoTokenizer
  1337. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1338. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1339. tokens, toktypes, tokpre = self.get_vocab_base()
  1340. self.gguf_writer.add_tokenizer_model("gpt2")
  1341. self.gguf_writer.add_tokenizer_pre(tokpre)
  1342. self.gguf_writer.add_token_list(tokens)
  1343. self.gguf_writer.add_token_types(toktypes)
  1344. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1345. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1346. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1347. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1348. special_vocab.add_to_gguf(self.gguf_writer)
  1349. def _set_vocab_interns1(self):
  1350. tokens: list[str] = []
  1351. toktypes: list[int] = []
  1352. from transformers import AutoTokenizer
  1353. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1354. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1355. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1356. assert max(vocab.values()) < vocab_size
  1357. tokpre = self.get_vocab_base_pre(tokenizer)
  1358. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1359. added_vocab = tokenizer.get_added_vocab()
  1360. added_tokens_decoder = tokenizer.added_tokens_decoder
  1361. for i in range(vocab_size):
  1362. if i not in reverse_vocab:
  1363. tokens.append(f"[PAD{i}]")
  1364. toktypes.append(gguf.TokenType.UNUSED)
  1365. else:
  1366. token: str = reverse_vocab[i]
  1367. if token in added_vocab:
  1368. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1369. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1370. if not added_tokens_decoder[i].normalized:
  1371. previous_token = token
  1372. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1373. if previous_token != token:
  1374. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1375. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1376. toktypes.append(gguf.TokenType.CONTROL)
  1377. else:
  1378. toktypes.append(gguf.TokenType.USER_DEFINED)
  1379. else:
  1380. toktypes.append(gguf.TokenType.NORMAL)
  1381. tokens.append(token)
  1382. self.gguf_writer.add_tokenizer_model("gpt2")
  1383. self.gguf_writer.add_tokenizer_pre(tokpre)
  1384. self.gguf_writer.add_token_list(tokens)
  1385. self.gguf_writer.add_token_types(toktypes)
  1386. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1387. special_vocab._set_special_token("bos", 151643)
  1388. special_vocab.add_to_gguf(self.gguf_writer)
  1389. def _set_vocab_mistral(self):
  1390. if not _mistral_common_installed:
  1391. raise ImportError(_mistral_import_error_msg)
  1392. vocab = MistralVocab(self.dir_model)
  1393. logger.info(
  1394. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1395. )
  1396. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1397. tokens = []
  1398. scores = []
  1399. toktypes = []
  1400. for text, score, toktype in vocab.all_tokens():
  1401. tokens.append(text)
  1402. scores.append(score)
  1403. toktypes.append(toktype)
  1404. assert len(tokens) == vocab.vocab_size, (
  1405. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1406. )
  1407. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1408. self.gguf_writer.add_tokenizer_pre("tekken")
  1409. self.gguf_writer.add_token_merges(
  1410. vocab.extract_vocab_merges_from_model()
  1411. )
  1412. logger.info(
  1413. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1414. )
  1415. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1416. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1417. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1418. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1419. self.gguf_writer.add_token_list(tokens)
  1420. self.gguf_writer.add_token_scores(scores)
  1421. self.gguf_writer.add_token_types(toktypes)
  1422. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1423. self.gguf_writer.add_add_bos_token(True)
  1424. self.gguf_writer.add_add_eos_token(False)
  1425. local_template_file_path = self.dir_model / "chat_template.jinja"
  1426. if self.is_mistral_format and local_template_file_path.is_file():
  1427. # Ministral-3 and other new Mistral models come with chat templates.
  1428. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1429. logger.info("Using an existing Mistral local chat template.")
  1430. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1431. template = f.read()
  1432. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1433. template_dir = Path(__file__).parent / "models/templates/"
  1434. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1435. if self.is_mistral_format:
  1436. logger.info(
  1437. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1438. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1439. )
  1440. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1441. else:
  1442. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1443. template = None
  1444. if template is not None:
  1445. self.gguf_writer.add_chat_template(template)
  1446. class MmprojModel(ModelBase):
  1447. model_type = ModelType.MMPROJ
  1448. model_arch = gguf.MODEL_ARCH.MMPROJ
  1449. preprocessor_config: dict[str, Any]
  1450. global_config: dict[str, Any]
  1451. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1452. has_vision_encoder: bool = True # by default
  1453. has_audio_encoder: bool = False
  1454. # for models having multiple encoders, we need to separate their hparams
  1455. hparams_vision: dict[str, Any] | None = None
  1456. hparams_audio: dict[str, Any] | None = None
  1457. def __init__(self, *args, **kwargs):
  1458. super().__init__(*args, **kwargs)
  1459. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1460. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1461. # get n_embd of the text model
  1462. if not self.is_mistral_format:
  1463. if "text_config" not in self.hparams:
  1464. self.hparams["text_config"] = {}
  1465. if "audio_config" not in self.hparams:
  1466. self.hparams["audio_config"] = {}
  1467. text_config = {**self.hparams, **self.hparams["text_config"]}
  1468. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1469. else:
  1470. text_config = {
  1471. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1472. }
  1473. self.n_embd_text = text_config.get("hidden_dim", 0)
  1474. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1475. # move vision config to the top level, while preserving the original hparams in global_config
  1476. import copy
  1477. self.global_config = copy.deepcopy(self.hparams)
  1478. self.hparams_vision = self.get_vision_config()
  1479. self.hparams_audio = self.get_audio_config()
  1480. if self.hparams_vision is None and self.hparams_audio is None:
  1481. raise ValueError("vision_config / audio_config not found in hparams")
  1482. # for compat with vision-only models
  1483. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1484. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1485. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1486. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1487. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1488. # load preprocessor config
  1489. self.preprocessor_config = {}
  1490. # prefer preprocessor_config.json if possible
  1491. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1492. if preprocessor_config_path.is_file():
  1493. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1494. self.preprocessor_config = json.load(f)
  1495. # prefer processor_config.json if possible
  1496. processor_config_path = self.dir_model / "processor_config.json"
  1497. if processor_config_path.is_file():
  1498. with open(processor_config_path, "r", encoding="utf-8") as f:
  1499. cfg = json.load(f)
  1500. # move image_processor to root level for compat
  1501. if "image_processor" in cfg:
  1502. cfg = {
  1503. **cfg,
  1504. **cfg["image_processor"],
  1505. }
  1506. # merge configs
  1507. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1508. def get_vision_config(self) -> dict[str, Any] | None:
  1509. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1510. return self.global_config.get(config_name)
  1511. def get_audio_config(self) -> dict[str, Any] | None:
  1512. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1513. return self.global_config.get(mm_config_key)
  1514. def set_type(self):
  1515. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1516. def prepare_metadata(self, vocab_only: bool):
  1517. super().prepare_metadata(vocab_only=vocab_only)
  1518. output_type: str = self.ftype.name.partition("_")[2]
  1519. if self.fname_out.is_dir():
  1520. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1521. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1522. else:
  1523. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1524. def set_gguf_parameters(self):
  1525. self.gguf_writer.add_file_type(self.ftype)
  1526. if self.has_vision_encoder:
  1527. self.gguf_writer.add_clip_has_vision_encoder(True)
  1528. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1529. # vision config
  1530. self.image_size = self.find_vparam(["image_size"])
  1531. self.gguf_writer.add_vision_image_size(self.image_size)
  1532. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1533. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1534. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1535. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1536. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1537. # preprocessor config
  1538. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1539. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1540. self.gguf_writer.add_vision_image_mean(image_mean)
  1541. self.gguf_writer.add_vision_image_std(image_std)
  1542. if self.has_audio_encoder:
  1543. self.gguf_writer.add_clip_has_audio_encoder(True)
  1544. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1545. # audio config
  1546. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1547. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1548. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1549. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1550. if not self.has_vision_encoder and not self.has_audio_encoder:
  1551. raise ValueError("MmprojModel must have either vision or audio encoder")
  1552. def write_vocab(self):
  1553. raise ValueError("MmprojModel does not support vocab writing")
  1554. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1555. assert self.hparams_vision is not None
  1556. return self._find_param(self.hparams_vision, keys, optional)
  1557. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1558. assert self.hparams_audio is not None
  1559. return self._find_param(self.hparams_audio, keys, optional)
  1560. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1561. key = next((k for k in keys if k in obj), None)
  1562. if key is not None:
  1563. return obj[key]
  1564. if optional:
  1565. return None
  1566. raise KeyError(f"could not find any of: {keys}")
  1567. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1568. del bid, name, n_dims # unused
  1569. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1570. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1571. return False
  1572. @ModelBase.register("GPTNeoXForCausalLM")
  1573. class GPTNeoXModel(TextModel):
  1574. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1575. def set_gguf_parameters(self):
  1576. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1577. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1578. self.gguf_writer.add_block_count(self.block_count)
  1579. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1580. self.gguf_writer.add_rope_dimension_count(
  1581. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1582. )
  1583. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1584. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1585. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1586. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1587. del bid # unused
  1588. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1589. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1590. tensors: list[tuple[str, Tensor]] = []
  1591. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1592. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1593. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1594. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1595. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1596. data_torch = torch.cat(
  1597. (
  1598. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1599. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1600. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1601. ),
  1602. dim=0,
  1603. )
  1604. logger.info("re-format attention.linear_qkv.weight")
  1605. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1606. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1607. data_torch = torch.cat(
  1608. (
  1609. qkv_bias[:, 0, :].reshape((n_embed,)),
  1610. qkv_bias[:, 1, :].reshape((n_embed,)),
  1611. qkv_bias[:, 2, :].reshape((n_embed,)),
  1612. ),
  1613. dim=0,
  1614. )
  1615. logger.info("re-format attention.linear_qkv.bias")
  1616. tensors.append((self.map_tensor_name(name), data_torch))
  1617. return tensors
  1618. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1619. class BloomModel(TextModel):
  1620. model_arch = gguf.MODEL_ARCH.BLOOM
  1621. def set_gguf_parameters(self):
  1622. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1623. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1624. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1625. self.gguf_writer.add_embedding_length(n_embed)
  1626. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1627. self.gguf_writer.add_block_count(self.block_count)
  1628. self.gguf_writer.add_head_count(n_head)
  1629. self.gguf_writer.add_head_count_kv(n_head)
  1630. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1631. self.gguf_writer.add_file_type(self.ftype)
  1632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1633. del bid # unused
  1634. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1635. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1636. name = re.sub(r'transformer\.', '', name)
  1637. tensors: list[tuple[str, Tensor]] = []
  1638. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1639. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1640. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1641. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1642. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1643. data_torch = torch.cat(
  1644. (
  1645. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1646. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1647. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1648. ),
  1649. dim=0,
  1650. )
  1651. logger.info("re-format attention.linear_qkv.weight")
  1652. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1653. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1654. data_torch = torch.cat(
  1655. (
  1656. qkv_bias[:, 0, :].reshape((n_embed,)),
  1657. qkv_bias[:, 1, :].reshape((n_embed,)),
  1658. qkv_bias[:, 2, :].reshape((n_embed,)),
  1659. ),
  1660. dim=0,
  1661. )
  1662. logger.info("re-format attention.linear_qkv.bias")
  1663. tensors.append((self.map_tensor_name(name), data_torch))
  1664. return tensors
  1665. @ModelBase.register("MPTForCausalLM")
  1666. class MPTModel(TextModel):
  1667. model_arch = gguf.MODEL_ARCH.MPT
  1668. def set_vocab(self):
  1669. try:
  1670. self._set_vocab_gpt2()
  1671. except Exception:
  1672. # Fallback for SEA-LION model
  1673. self._set_vocab_sentencepiece()
  1674. self.gguf_writer.add_add_bos_token(False)
  1675. self.gguf_writer.add_pad_token_id(3)
  1676. self.gguf_writer.add_eos_token_id(1)
  1677. self.gguf_writer.add_unk_token_id(0)
  1678. def set_gguf_parameters(self):
  1679. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1680. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1681. self.gguf_writer.add_block_count(self.block_count)
  1682. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1683. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1684. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1685. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1686. self.gguf_writer.add_layer_norm_eps(1e-5)
  1687. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1688. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1689. if self.hparams["attn_config"]["alibi"]:
  1690. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1691. else:
  1692. self.gguf_writer.add_max_alibi_bias(0.0)
  1693. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1694. del bid # unused
  1695. if "scales" in name:
  1696. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1697. new_name = new_name.replace("scales", "act.scales")
  1698. else:
  1699. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1700. return [(new_name, data_torch)]
  1701. @ModelBase.register("OrionForCausalLM")
  1702. class OrionModel(TextModel):
  1703. model_arch = gguf.MODEL_ARCH.ORION
  1704. def set_vocab(self):
  1705. self._set_vocab_sentencepiece()
  1706. def set_gguf_parameters(self):
  1707. head_count = self.hparams["num_attention_heads"]
  1708. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1709. ctx_length = 0
  1710. if "max_sequence_length" in self.hparams:
  1711. ctx_length = self.hparams["max_sequence_length"]
  1712. elif "max_position_embeddings" in self.hparams:
  1713. ctx_length = self.hparams["max_position_embeddings"]
  1714. elif "model_max_length" in self.hparams:
  1715. ctx_length = self.hparams["model_max_length"]
  1716. else:
  1717. raise ValueError("gguf: can not find ctx length parameter.")
  1718. self.gguf_writer.add_file_type(self.ftype)
  1719. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1720. self.gguf_writer.add_context_length(ctx_length)
  1721. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1722. self.gguf_writer.add_block_count(self.block_count)
  1723. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1724. self.gguf_writer.add_head_count(head_count)
  1725. self.gguf_writer.add_head_count_kv(head_count_kv)
  1726. # note: config provides rms norm but it is actually layer norm
  1727. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1728. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1729. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1730. class BaichuanModel(TextModel):
  1731. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1732. def set_vocab(self):
  1733. self._set_vocab_sentencepiece()
  1734. def set_gguf_parameters(self):
  1735. super().set_gguf_parameters()
  1736. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1737. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1738. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1739. head_count = self.hparams["num_attention_heads"]
  1740. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1741. tensors: list[tuple[str, Tensor]] = []
  1742. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1743. logger.info(f"Unpacking and permuting layer {bid}")
  1744. tensors = [
  1745. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1746. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1747. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1748. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1749. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1750. self._reverse_hf_part(data_torch, 2)),
  1751. ]
  1752. else:
  1753. tensors = [(self.map_tensor_name(name), data_torch)]
  1754. return tensors
  1755. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1756. if n_kv_head is not None and n_head != n_kv_head:
  1757. n_head //= n_kv_head
  1758. return (
  1759. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1760. .swapaxes(1, 2)
  1761. .reshape(weights.shape)
  1762. )
  1763. def _reverse_hf_permute_part(
  1764. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1765. ) -> Tensor:
  1766. r = weights.shape[0] // 3
  1767. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1768. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1769. r = weights.shape[0] // 3
  1770. return weights[r * n_part:r * n_part + r, ...]
  1771. @ModelBase.register("XverseForCausalLM")
  1772. class XverseModel(TextModel):
  1773. model_arch = gguf.MODEL_ARCH.XVERSE
  1774. def set_vocab(self):
  1775. assert (self.dir_model / "tokenizer.json").is_file()
  1776. dir_model = self.dir_model
  1777. hparams = self.hparams
  1778. tokens: list[bytes] = []
  1779. toktypes: list[int] = []
  1780. from transformers import AutoTokenizer
  1781. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1782. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1783. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1784. # because vocab_size is the count of items, and indexes start at 0.
  1785. max_vocab_index = max(tokenizer.get_vocab().values())
  1786. if max_vocab_index >= vocab_size:
  1787. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1788. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1789. added_vocab = tokenizer.get_added_vocab()
  1790. for token_id in range(vocab_size):
  1791. token_text = reverse_vocab[token_id].encode('utf-8')
  1792. # replace "\x00" to string with length > 0
  1793. if token_text == b"\x00":
  1794. toktype = gguf.TokenType.BYTE # special
  1795. token_text = f"<{token_text}>".encode('utf-8')
  1796. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1797. toktype = gguf.TokenType.BYTE # special
  1798. elif reverse_vocab[token_id] in added_vocab:
  1799. if tokenizer.added_tokens_decoder[token_id].special:
  1800. toktype = gguf.TokenType.CONTROL
  1801. else:
  1802. toktype = gguf.TokenType.USER_DEFINED
  1803. else:
  1804. toktype = gguf.TokenType.NORMAL
  1805. tokens.append(token_text)
  1806. toktypes.append(toktype)
  1807. self.gguf_writer.add_tokenizer_model("llama")
  1808. self.gguf_writer.add_tokenizer_pre("default")
  1809. self.gguf_writer.add_token_list(tokens)
  1810. self.gguf_writer.add_token_types(toktypes)
  1811. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1812. special_vocab.add_to_gguf(self.gguf_writer)
  1813. def set_gguf_parameters(self):
  1814. super().set_gguf_parameters()
  1815. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1816. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1818. del bid # unused
  1819. head_count = self.hparams["num_attention_heads"]
  1820. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1821. # HF models permute some of the tensors, so we need to undo that
  1822. if name.endswith("q_proj.weight"):
  1823. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1824. if name.endswith("k_proj.weight"):
  1825. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1826. return [(self.map_tensor_name(name), data_torch)]
  1827. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1828. if n_kv_head is not None and n_head != n_kv_head:
  1829. n_head //= n_kv_head
  1830. return (
  1831. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1832. .swapaxes(1, 2)
  1833. .reshape(weights.shape)
  1834. )
  1835. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1836. class FalconModel(TextModel):
  1837. model_arch = gguf.MODEL_ARCH.FALCON
  1838. def set_gguf_parameters(self):
  1839. n_head = self.hparams.get("num_attention_heads")
  1840. if n_head is None:
  1841. n_head = self.hparams["n_head"] # old name
  1842. n_head_kv = self.hparams.get("num_kv_heads")
  1843. if n_head_kv is None:
  1844. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1845. self.gguf_writer.add_context_length(2048) # not in config.json
  1846. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1847. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1848. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1849. self.gguf_writer.add_block_count(self.block_count)
  1850. self.gguf_writer.add_head_count(n_head)
  1851. self.gguf_writer.add_head_count_kv(n_head_kv)
  1852. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1853. self.gguf_writer.add_file_type(self.ftype)
  1854. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1855. del bid # unused
  1856. # QKV tensor transform
  1857. # The original query_key_value tensor contains n_head_kv "kv groups",
  1858. # each consisting of n_head/n_head_kv query weights followed by one key
  1859. # and one value weight (shared by all query heads in the kv group).
  1860. # This layout makes it a big pain to work with in GGML.
  1861. # So we rearrange them here,, so that we have n_head query weights
  1862. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1863. # in contiguous fashion.
  1864. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1865. if "query_key_value" in name:
  1866. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1867. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1868. head_dim = self.hparams["hidden_size"] // n_head
  1869. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1870. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1871. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1872. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1873. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1874. return [(self.map_tensor_name(name), data_torch)]
  1875. @ModelBase.register("GPTBigCodeForCausalLM")
  1876. class StarCoderModel(TextModel):
  1877. model_arch = gguf.MODEL_ARCH.STARCODER
  1878. def set_gguf_parameters(self):
  1879. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1880. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1881. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1882. self.gguf_writer.add_block_count(self.block_count)
  1883. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1884. self.gguf_writer.add_head_count_kv(1)
  1885. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1886. self.gguf_writer.add_file_type(self.ftype)
  1887. @ModelBase.register("GPTRefactForCausalLM")
  1888. class RefactModel(TextModel):
  1889. model_arch = gguf.MODEL_ARCH.REFACT
  1890. def set_vocab(self):
  1891. super().set_vocab()
  1892. # TODO: how to determine special FIM tokens automatically?
  1893. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1894. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1895. special_vocab._set_special_token("prefix", 1)
  1896. special_vocab._set_special_token("suffix", 3)
  1897. special_vocab._set_special_token("middle", 2)
  1898. special_vocab.chat_template = None # do not add it twice
  1899. special_vocab.add_to_gguf(self.gguf_writer)
  1900. def set_gguf_parameters(self):
  1901. hidden_dim = self.hparams["n_embd"]
  1902. inner_dim = 4 * hidden_dim
  1903. hidden_dim = int(2 * inner_dim / 3)
  1904. multiple_of = 256
  1905. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1906. # refact uses Alibi. So this is from config.json which might be used by training.
  1907. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1908. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1909. self.gguf_writer.add_feed_forward_length(ff_dim)
  1910. self.gguf_writer.add_block_count(self.block_count)
  1911. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1912. self.gguf_writer.add_head_count_kv(1)
  1913. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1914. self.gguf_writer.add_file_type(self.ftype)
  1915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1916. hidden_dim = self.hparams["n_embd"]
  1917. inner_dim = 4 * hidden_dim
  1918. hidden_dim = int(2 * inner_dim / 3)
  1919. multiple_of = 256
  1920. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1921. n_head = self.hparams["n_head"]
  1922. n_head_kv = 1
  1923. head_dim = self.hparams["n_embd"] // n_head
  1924. tensors: list[tuple[str, Tensor]] = []
  1925. if bid is not None:
  1926. if name == f"transformer.h.{bid}.attn.kv.weight":
  1927. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1928. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1929. elif name == f"transformer.h.{bid}.attn.q.weight":
  1930. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1931. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1932. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1933. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1934. if len(tensors) == 0:
  1935. tensors.append((self.map_tensor_name(name), data_torch))
  1936. return tensors
  1937. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1938. class StableLMModel(TextModel):
  1939. model_arch = gguf.MODEL_ARCH.STABLELM
  1940. def set_vocab(self):
  1941. if (self.dir_model / "tokenizer.json").is_file():
  1942. self._set_vocab_gpt2()
  1943. else:
  1944. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1945. self._set_vocab_qwen()
  1946. def set_gguf_parameters(self):
  1947. hparams = self.hparams
  1948. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1949. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1950. self.gguf_writer.add_block_count(self.block_count)
  1951. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1952. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1953. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1954. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1955. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1956. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1957. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1958. self.gguf_writer.add_file_type(self.ftype)
  1959. _q_norms: list[dict[str, Tensor]] | None = None
  1960. _k_norms: list[dict[str, Tensor]] | None = None
  1961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1962. n_head = self.hparams["num_attention_heads"]
  1963. n_kv_head = self.hparams["num_key_value_heads"]
  1964. if name.find("q_layernorm.norms") != -1:
  1965. assert bid is not None
  1966. if self._q_norms is None:
  1967. self._q_norms = [{} for _ in range(self.block_count)]
  1968. self._q_norms[bid][name] = data_torch
  1969. if len(self._q_norms[bid]) >= n_head:
  1970. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1971. else:
  1972. return []
  1973. if name.find("k_layernorm.norms") != -1:
  1974. assert bid is not None
  1975. if self._k_norms is None:
  1976. self._k_norms = [{} for _ in range(self.block_count)]
  1977. self._k_norms[bid][name] = data_torch
  1978. if len(self._k_norms[bid]) >= n_kv_head:
  1979. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1980. else:
  1981. return []
  1982. return [(self.map_tensor_name(name), data_torch)]
  1983. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1984. datas: list[Tensor] = []
  1985. # extract the norms in order
  1986. for xid in range(n_head):
  1987. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1988. datas.append(norms[ename])
  1989. del norms[ename]
  1990. data_torch = torch.stack(datas, dim=0)
  1991. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1992. new_name = self.map_tensor_name(merged_name)
  1993. return [(new_name, data_torch)]
  1994. def prepare_tensors(self):
  1995. super().prepare_tensors()
  1996. if self._q_norms is not None or self._k_norms is not None:
  1997. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1998. norms = (
  1999. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2000. ) + (
  2001. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2002. )
  2003. if len(norms) > 0:
  2004. raise ValueError(f"Unprocessed norms: {norms}")
  2005. @ModelBase.register(
  2006. "LLaMAForCausalLM",
  2007. "LlamaForCausalLM",
  2008. "MistralForCausalLM",
  2009. "MixtralForCausalLM",
  2010. "VLlama3ForCausalLM",
  2011. "LlavaForConditionalGeneration",
  2012. "VoxtralForConditionalGeneration",
  2013. "LlamaModel")
  2014. class LlamaModel(TextModel):
  2015. model_arch = gguf.MODEL_ARCH.LLAMA
  2016. undo_permute = True
  2017. def __init__(self, *args, **kwargs):
  2018. super().__init__(*args, **kwargs)
  2019. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2020. if self.hf_arch == "VLlama3ForCausalLM":
  2021. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2022. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2023. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2024. def set_vocab(self):
  2025. if self.origin_hf_arch == "GlmasrModel":
  2026. return self._set_vocab_glmedge()
  2027. if self.is_mistral_format:
  2028. return self._set_vocab_mistral()
  2029. path_tekken_json = self.dir_model / "tekken.json"
  2030. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2031. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2032. self._set_vocab_mistral()
  2033. try:
  2034. self._set_vocab_sentencepiece()
  2035. except FileNotFoundError:
  2036. try:
  2037. self._set_vocab_llama_hf()
  2038. except (FileNotFoundError, TypeError):
  2039. # Llama 3
  2040. self._set_vocab_gpt2()
  2041. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2042. if self.hparams.get("vocab_size", 32000) == 32016:
  2043. special_vocab = gguf.SpecialVocab(
  2044. self.dir_model, load_merges=False,
  2045. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2046. )
  2047. special_vocab._set_special_token("prefix", 32007)
  2048. special_vocab._set_special_token("suffix", 32008)
  2049. special_vocab._set_special_token("middle", 32009)
  2050. special_vocab._set_special_token("eot", 32010)
  2051. special_vocab.add_to_gguf(self.gguf_writer)
  2052. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2053. if tokenizer_config_file.is_file():
  2054. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2055. tokenizer_config_json = json.load(f)
  2056. if "add_prefix_space" in tokenizer_config_json:
  2057. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2058. # Apply to granite small models only
  2059. if self.hparams.get("vocab_size", 32000) == 49152:
  2060. self.gguf_writer.add_add_bos_token(False)
  2061. def set_gguf_parameters(self):
  2062. super().set_gguf_parameters()
  2063. hparams = self.hparams
  2064. if not self.is_mistral_format:
  2065. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2066. if (rope_dim := hparams.get("head_dim")) is None:
  2067. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2068. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2069. @staticmethod
  2070. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2071. if n_head_kv is not None and n_head != n_head_kv:
  2072. n_head = n_head_kv
  2073. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2074. .swapaxes(1, 2)
  2075. .reshape(weights.shape))
  2076. _experts: list[dict[str, Tensor]] | None = None
  2077. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2078. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2079. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2080. vision_prefixes = [
  2081. "vision_encoder.",
  2082. "vision_language_adapter.",
  2083. "patch_merger.",
  2084. "pre_mm_projector_norm",
  2085. "audio_encoder.",
  2086. ]
  2087. is_multimodal_tensor = "vision_tower" in name \
  2088. or "vision_model" in name \
  2089. or "audio_tower" in name \
  2090. or "model.connector" in name \
  2091. or "multi_modal_projector" in name \
  2092. or any(
  2093. name.startswith(prefix)
  2094. for prefix in vision_prefixes
  2095. )
  2096. if is_multimodal_tensor:
  2097. return [] # skip vision tensors
  2098. elif self.hf_arch == "LlamaModel":
  2099. name = "model." + name
  2100. elif name.startswith("model.text_model"):
  2101. name = name.replace("text_model.", "") # for SmolVLM
  2102. elif name.startswith("language_model."):
  2103. name = name.replace("language_model.", "") # for the rest
  2104. if self.undo_permute:
  2105. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2106. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2107. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2108. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2109. # process the experts separately
  2110. if name.find("block_sparse_moe.experts") != -1:
  2111. n_experts = self.hparams["num_local_experts"]
  2112. assert bid is not None
  2113. if self._experts is None:
  2114. self._experts = [{} for _ in range(self.block_count)]
  2115. self._experts[bid][name] = data_torch
  2116. if len(self._experts[bid]) >= n_experts * 3:
  2117. tensors: list[tuple[str, Tensor]] = []
  2118. # merge the experts into a single 3d tensor
  2119. for wid in ["w1", "w2", "w3"]:
  2120. datas: list[Tensor] = []
  2121. for xid in range(n_experts):
  2122. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2123. datas.append(self._experts[bid][ename])
  2124. del self._experts[bid][ename]
  2125. data_torch = torch.stack(datas, dim=0)
  2126. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2127. new_name = self.map_tensor_name(merged_name)
  2128. tensors.append((new_name, data_torch))
  2129. return tensors
  2130. else:
  2131. return []
  2132. return [(self.map_tensor_name(name), data_torch)]
  2133. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2134. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2135. if rope_params.get("rope_type", '').lower() == "llama3":
  2136. base = rope_params.get("rope_theta", 10000.0)
  2137. if (dim := self.hparams.get("head_dim")) is None:
  2138. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2139. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2140. factor = rope_params.get("factor", 8.0)
  2141. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2142. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2143. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2144. low_freq_wavelen = old_context_len / low_freq_factor
  2145. high_freq_wavelen = old_context_len / high_freq_factor
  2146. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2147. rope_factors = []
  2148. for freq in freqs:
  2149. wavelen = 2 * math.pi / freq
  2150. if wavelen < high_freq_wavelen:
  2151. rope_factors.append(1)
  2152. elif wavelen > low_freq_wavelen:
  2153. rope_factors.append(factor)
  2154. else:
  2155. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2156. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2157. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2158. def prepare_tensors(self):
  2159. super().prepare_tensors()
  2160. if self._experts is not None:
  2161. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2162. experts = [k for d in self._experts for k in d.keys()]
  2163. if len(experts) > 0:
  2164. raise ValueError(f"Unprocessed experts: {experts}")
  2165. @ModelBase.register("ArceeForCausalLM")
  2166. class ArceeModel(LlamaModel):
  2167. model_arch = gguf.MODEL_ARCH.ARCEE
  2168. def set_gguf_parameters(self):
  2169. super().set_gguf_parameters()
  2170. self._try_set_pooling_type()
  2171. @ModelBase.register("AfmoeForCausalLM")
  2172. class AfmoeModel(LlamaModel):
  2173. model_arch = gguf.MODEL_ARCH.AFMOE
  2174. def set_gguf_parameters(self):
  2175. super().set_gguf_parameters()
  2176. # MoE parameters
  2177. if (n_experts := self.hparams.get("num_experts")) is not None:
  2178. self.gguf_writer.add_expert_count(n_experts)
  2179. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2180. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2181. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2182. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2183. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2184. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2185. # Route normalization and scaling
  2186. if (route_norm := self.hparams.get("route_norm")) is not None:
  2187. self.gguf_writer.add_expert_weights_norm(route_norm)
  2188. if (route_scale := self.hparams.get("route_scale")) is not None:
  2189. self.gguf_writer.add_expert_weights_scale(route_scale)
  2190. # Sliding window attention
  2191. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2192. self.gguf_writer.add_sliding_window(sliding_window)
  2193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2194. # Handle expert weights - they're already merged in the HF format
  2195. # process the experts separately
  2196. if name.find("mlp.experts") != -1:
  2197. n_experts = self.hparams["num_experts"]
  2198. assert bid is not None
  2199. if self._experts is None:
  2200. self._experts = [{} for _ in range(self.block_count)]
  2201. self._experts[bid][name] = data_torch
  2202. if len(self._experts[bid]) >= n_experts * 3:
  2203. tensors: list[tuple[str, Tensor]] = []
  2204. # merge the experts into a single 3d tensor
  2205. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2206. datas: list[Tensor] = []
  2207. for xid in range(n_experts):
  2208. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2209. datas.append(self._experts[bid][ename_to_retrieve])
  2210. del self._experts[bid][ename_to_retrieve]
  2211. data_torch = torch.stack(datas, dim=0)
  2212. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2213. new_name = self.map_tensor_name(merged_name)
  2214. tensors.append((new_name, data_torch))
  2215. return tensors
  2216. else:
  2217. return []
  2218. if name.endswith(".expert_bias"):
  2219. name = name.replace(".expert_bias", ".expert_bias.bias")
  2220. return [(self.map_tensor_name(name), data_torch)]
  2221. @ModelBase.register(
  2222. "LlavaForConditionalGeneration", # pixtral
  2223. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2224. )
  2225. class LlavaVisionModel(MmprojModel):
  2226. img_break_tok_id = -1
  2227. use_break_tok = True
  2228. def __init__(self, *args, **kwargs):
  2229. super().__init__(*args, **kwargs)
  2230. if self.hparams.get("model_type") == "pixtral":
  2231. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2232. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2233. if self.use_break_tok:
  2234. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2235. elif self.is_mistral_format:
  2236. # hparams is already vision config here so norm_eps is only defined in global_config.
  2237. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2238. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2239. if self.use_break_tok:
  2240. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2241. else:
  2242. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2243. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2244. def get_token_id(self, token: str) -> int:
  2245. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2246. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2247. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2248. for id_, token_data in added_tokens_decoder.items():
  2249. if token_data["content"] == token:
  2250. return int(id_)
  2251. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2252. def set_gguf_parameters(self):
  2253. super().set_gguf_parameters()
  2254. hparams = self.hparams
  2255. if hparams.get("model_type") == "pixtral":
  2256. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2257. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2258. # hidden_act
  2259. if hparams["hidden_act"] == "silu":
  2260. self.gguf_writer.add_vision_use_silu(True)
  2261. elif hparams["hidden_act"] == "gelu":
  2262. self.gguf_writer.add_vision_use_gelu(True)
  2263. else:
  2264. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2265. # spatial_merge_size
  2266. if "spatial_merge_size" in self.global_config:
  2267. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2269. del bid # unused
  2270. n_head = (
  2271. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2272. )
  2273. n_kv_head = n_head
  2274. valid_prefixes = (
  2275. "multi_modal_projector.",
  2276. "vision_tower.",
  2277. "vision_encoder.",
  2278. "vision_language_adapter.",
  2279. "patch_merger.",
  2280. "pre_mm_projector_norm",
  2281. )
  2282. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2283. # process vision tensors
  2284. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2285. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2286. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2287. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2288. return [(self.map_tensor_name(name), data_torch)]
  2289. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2290. if self.img_break_tok_id > 0 and embed_key in name:
  2291. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2292. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2293. img_break_embd = data_torch[self.img_break_tok_id]
  2294. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2295. return [(self.map_tensor_name(name), img_break_embd)]
  2296. return [] # skip other tensors
  2297. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2298. class SmolVLMModel(MmprojModel):
  2299. def __init__(self, *args, **kwargs):
  2300. super().__init__(*args, **kwargs)
  2301. if self.hparams["model_type"] == "smolvlm_vision":
  2302. # fix for SmolVLM2, missing some keys in config.json
  2303. # default values are taken from transformers code
  2304. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2305. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2306. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2307. def set_gguf_parameters(self):
  2308. super().set_gguf_parameters()
  2309. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2310. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2311. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2312. self.gguf_writer.add_vision_use_gelu(True)
  2313. # Add the preprocessor longest edge size
  2314. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2315. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2316. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2317. if ".embeddings." in name:
  2318. return gguf.GGMLQuantizationType.F32
  2319. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2320. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2321. del bid # unused
  2322. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2323. if is_vision_tensor:
  2324. return [(self.map_tensor_name(name), data_torch)]
  2325. return [] # skip other tensors
  2326. @ModelBase.register(
  2327. "Llama4ForConditionalGeneration",
  2328. "Llama4ForCausalLM",
  2329. )
  2330. class Llama4Model(LlamaModel):
  2331. model_arch = gguf.MODEL_ARCH.LLAMA4
  2332. undo_permute = False
  2333. def __init__(self, *args, **kwargs):
  2334. super().__init__(*args, **kwargs)
  2335. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2336. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2337. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2338. def set_vocab(self):
  2339. self._set_vocab_gpt2()
  2340. def set_gguf_parameters(self):
  2341. super().set_gguf_parameters()
  2342. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2343. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2344. if "layer_types" in self.hparams:
  2345. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2346. # all layers are full attention (for MobileLLM), disable swa
  2347. self.gguf_writer.add_sliding_window(0)
  2348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2349. if name.startswith("language_model."):
  2350. name = name.replace("language_model.", "")
  2351. # split the gate_up into gate and up
  2352. if "gate_up_proj" in name:
  2353. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2354. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2355. dim_half = data_torch.shape[-1] // 2
  2356. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2357. return [
  2358. (self.map_tensor_name(name_gate), gate_proj_weight),
  2359. (self.map_tensor_name(name_up), up_proj_weight)
  2360. ]
  2361. if name.endswith("down_proj"):
  2362. name += ".weight"
  2363. data_torch = data_torch.transpose(-1, -2)
  2364. if "multi_modal_projector" in name or "vision_model" in name:
  2365. return []
  2366. return super().modify_tensors(data_torch, name, bid)
  2367. @ModelBase.register("Llama4ForConditionalGeneration")
  2368. class Llama4VisionModel(MmprojModel):
  2369. def set_gguf_parameters(self):
  2370. super().set_gguf_parameters()
  2371. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2372. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2373. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2374. assert self.hparams["hidden_act"] == "gelu"
  2375. self.gguf_writer.add_vision_use_gelu(True)
  2376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2377. del bid # unused
  2378. if "multi_modal_projector" in name or "vision_model" in name:
  2379. # process vision tensors
  2380. if "positional_embedding_vlm" in name and ".weight" not in name:
  2381. name += ".weight"
  2382. if "multi_modal_projector.linear_1" in name:
  2383. # despite the name with number postfix, this is a single fully connected layer
  2384. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2385. return [(self.map_tensor_name(name), data_torch)]
  2386. return []
  2387. @ModelBase.register("Mistral3ForConditionalGeneration")
  2388. class Mistral3Model(LlamaModel):
  2389. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2390. def __init__(self, *args, **kwargs):
  2391. super().__init__(*args, **kwargs)
  2392. # for compatibility, we use LLAMA arch for older models
  2393. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2394. if self.hparams.get("model_type") != "ministral3":
  2395. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2396. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2397. self.gguf_writer.add_architecture()
  2398. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2399. def set_gguf_parameters(self):
  2400. super().set_gguf_parameters()
  2401. rope_params = self.rope_parameters
  2402. if self.hparams.get("model_type") == "ministral3":
  2403. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2404. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2405. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2406. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2407. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2408. name = name.replace("language_model.", "")
  2409. if "multi_modal_projector" in name or "vision_tower" in name:
  2410. return []
  2411. return super().modify_tensors(data_torch, name, bid)
  2412. @ModelBase.register("DeciLMForCausalLM")
  2413. class DeciModel(TextModel):
  2414. model_arch = gguf.MODEL_ARCH.DECI
  2415. @staticmethod
  2416. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2417. # DeciLM-specific code
  2418. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2419. return DeciModel._find_multiple(intermediate_size, 256)
  2420. @staticmethod
  2421. def _find_multiple(n: int, k: int) -> int:
  2422. # DeciLM-specific code
  2423. if n % k == 0:
  2424. return n
  2425. return n + k - (n % k)
  2426. def __init__(self, *args, **kwargs):
  2427. super().__init__(*args, **kwargs)
  2428. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2429. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2430. assert self.block_count == len(_block_configs)
  2431. self._num_kv_heads = list()
  2432. self._num_heads = list()
  2433. _ffn_multipliers = list()
  2434. # ***linear attention layer***
  2435. # if n_heads_in_group is None and replace_with_linear is True
  2436. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2437. # ***attention-free layer***
  2438. # if n_heads_in_group is None and replace_with_linear is False
  2439. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2440. # ***normal attention-layer***
  2441. # if n_heads_in_group is not None, then
  2442. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2443. # _num_heads[il] is num_attention_head
  2444. # ***dummy layer*** for nemotron 253B
  2445. # if n_heads_in_group is None and ffn_mult is None
  2446. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2447. for il in range(len(_block_configs)):
  2448. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2449. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2450. self._num_kv_heads.append(0)
  2451. self._num_heads.append(self.hparams["num_attention_heads"])
  2452. else:
  2453. self._num_kv_heads.append(0)
  2454. self._num_heads.append(0)
  2455. else:
  2456. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2457. self._num_heads.append(self.hparams["num_attention_heads"])
  2458. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2459. _ffn_multipliers.append(0.0)
  2460. else:
  2461. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2462. assert self.block_count == len(self._num_kv_heads)
  2463. assert self.block_count == len(self._num_heads)
  2464. assert self.block_count == len(_ffn_multipliers)
  2465. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2466. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2467. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2468. self._ffn_dims: list[int] = [
  2469. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2470. for multiplier in _ffn_multipliers
  2471. ]
  2472. def set_vocab(self):
  2473. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2474. # eos_token from '|eot_id|' to '|end_of_text|'
  2475. if self.hparams.get("vocab_size", 128256) == 128256:
  2476. tokens, toktypes, tokpre = self.get_vocab_base()
  2477. self.gguf_writer.add_tokenizer_model("gpt2")
  2478. self.gguf_writer.add_tokenizer_pre(tokpre)
  2479. self.gguf_writer.add_token_list(tokens)
  2480. self.gguf_writer.add_token_types(toktypes)
  2481. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2482. special_vocab.add_to_gguf(self.gguf_writer)
  2483. else:
  2484. # DeciLM-7B
  2485. self._set_vocab_llama_hf()
  2486. def set_gguf_parameters(self):
  2487. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2488. assert self.block_count == len(self._num_kv_heads)
  2489. assert self.block_count == len(self._num_heads)
  2490. assert self.block_count == len(self._ffn_dims)
  2491. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2492. self.gguf_writer.add_rope_freq_base(rope_theta)
  2493. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2494. self.gguf_writer.add_head_count(self._num_heads)
  2495. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2496. self.gguf_writer.add_block_count(self.block_count)
  2497. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2498. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2499. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2500. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2501. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2502. self.gguf_writer.add_file_type(self.ftype)
  2503. else: # DeciLM-7B
  2504. super().set_gguf_parameters()
  2505. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2506. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2507. assert self.block_count == len(self._num_kv_heads)
  2508. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2509. hparams = self.hparams
  2510. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2511. if (rope_dim := hparams.get("head_dim")) is None:
  2512. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2513. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2514. @staticmethod
  2515. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2516. if n_head_kv is not None and n_head != n_head_kv:
  2517. n_head = n_head_kv
  2518. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2519. .swapaxes(1, 2)
  2520. .reshape(weights.shape))
  2521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2522. n_head = self.hparams["num_attention_heads"]
  2523. if bid is not None:
  2524. if "num_key_value_heads_per_layer" in self.hparams:
  2525. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2526. elif "block_configs" in self.hparams:
  2527. n_kv_head = self._num_kv_heads[bid]
  2528. n_head = self._num_heads[bid]
  2529. else:
  2530. n_kv_head = self.hparams.get("num_key_value_heads")
  2531. else:
  2532. n_kv_head = self.hparams.get("num_key_value_heads")
  2533. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2534. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2535. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2536. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2537. return [(self.map_tensor_name(name), data_torch)]
  2538. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2539. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2540. if rope_params.get("rope_type", '').lower() == "llama3":
  2541. base = rope_params.get("rope_theta", 10000.0)
  2542. if (dim := self.hparams.get("head_dim")) is None:
  2543. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2544. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2545. factor = rope_params.get("factor", 8.0)
  2546. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2547. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2548. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2549. low_freq_wavelen = old_context_len / low_freq_factor
  2550. high_freq_wavelen = old_context_len / high_freq_factor
  2551. assert low_freq_wavelen != high_freq_wavelen
  2552. rope_factors = []
  2553. for freq in freqs:
  2554. wavelen = 2 * math.pi / freq
  2555. if wavelen < high_freq_wavelen:
  2556. rope_factors.append(1)
  2557. elif wavelen > low_freq_wavelen:
  2558. rope_factors.append(factor)
  2559. else:
  2560. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2561. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2562. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2563. def prepare_tensors(self):
  2564. super().prepare_tensors()
  2565. @ModelBase.register("BitnetForCausalLM")
  2566. class BitnetModel(TextModel):
  2567. model_arch = gguf.MODEL_ARCH.BITNET
  2568. def set_vocab(self):
  2569. self._set_vocab_sentencepiece()
  2570. def set_gguf_parameters(self):
  2571. super().set_gguf_parameters()
  2572. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2573. self.gguf_writer.add_rope_scaling_factor(1.0)
  2574. def weight_quant(self, weight: Tensor) -> Tensor:
  2575. dtype = weight.dtype
  2576. weight = weight.float()
  2577. scale = weight.abs().mean().clamp(min=1e-5)
  2578. iscale = 1 / scale
  2579. # TODO: multiply by the scale directly instead of inverting it twice
  2580. # (this is also unnecessarily doubly inverted upstream)
  2581. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2582. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2583. return result.type(dtype)
  2584. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2585. new_name = self.map_tensor_name(name)
  2586. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2587. gguf.MODEL_TENSOR.ATTN_Q,
  2588. gguf.MODEL_TENSOR.ATTN_K,
  2589. gguf.MODEL_TENSOR.ATTN_V,
  2590. gguf.MODEL_TENSOR.ATTN_OUT,
  2591. gguf.MODEL_TENSOR.FFN_UP,
  2592. gguf.MODEL_TENSOR.FFN_DOWN,
  2593. gguf.MODEL_TENSOR.FFN_GATE,
  2594. ]):
  2595. # transform weight into 1/0/-1 (in fp32)
  2596. data_torch = self.weight_quant(data_torch)
  2597. yield (new_name, data_torch)
  2598. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2599. class GrokModel(TextModel):
  2600. model_arch = gguf.MODEL_ARCH.GROK
  2601. def set_vocab(self):
  2602. if (self.dir_model / 'tokenizer.model').is_file():
  2603. self._set_vocab_sentencepiece()
  2604. return
  2605. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2606. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2607. sys.exit(1)
  2608. self._set_vocab_gpt2()
  2609. def __init__(self, *args, **kwargs):
  2610. super().__init__(*args, **kwargs)
  2611. def set_gguf_parameters(self):
  2612. super().set_gguf_parameters()
  2613. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2614. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2615. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2616. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2617. if (rope_dim := self.hparams.get("head_dim")) is None:
  2618. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2619. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2620. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2621. # Treat "original" as "yarn", seems to have been a mistake
  2622. if self.hparams.get("rope_type") in ("yarn", "original"):
  2623. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2624. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2625. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2626. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2627. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2628. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2629. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2630. if temp_len := self.hparams.get("attn_temperature_len"):
  2631. self.gguf_writer.add_attn_temperature_length(temp_len)
  2632. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2633. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2634. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2635. _experts: list[dict[str, list[Tensor]]] | None = None
  2636. _cur_expert = ""
  2637. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2638. tensors: list[tuple[str, Tensor]] = []
  2639. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2640. if not is_expert:
  2641. tensors.append((self.map_tensor_name(name), data_torch))
  2642. # process the experts separately
  2643. if is_expert or self._cur_expert:
  2644. n_experts = self.hparams["num_local_experts"]
  2645. assert bid is not None
  2646. if self._experts is None:
  2647. self._experts = [{} for _ in range(self.block_count)]
  2648. # concatenate split tensors
  2649. if name in self._experts[bid]:
  2650. self._cur_expert = name
  2651. self._experts[bid][name].append(data_torch)
  2652. return []
  2653. elif is_expert:
  2654. self._cur_expert = name
  2655. self._experts[bid][name] = [data_torch]
  2656. return []
  2657. else:
  2658. self._cur_expert = ""
  2659. for bid in range(self.block_count):
  2660. if len(self._experts[bid]) >= n_experts * 3:
  2661. # merge the experts into a single 3d tensor
  2662. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2663. datas: list[Tensor] = []
  2664. for xid in range(n_experts):
  2665. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2666. if ename not in self._experts[bid]:
  2667. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2668. tensor_list = self._experts[bid][ename]
  2669. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2670. del self._experts[bid][ename]
  2671. data_torch = torch.stack(datas, dim=0)
  2672. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2673. new_name = self.map_tensor_name(merged_name)
  2674. yield (new_name, data_torch)
  2675. yield from tensors
  2676. @ModelBase.register("DbrxForCausalLM")
  2677. class DbrxModel(TextModel):
  2678. model_arch = gguf.MODEL_ARCH.DBRX
  2679. def set_gguf_parameters(self):
  2680. ffn_config = self.hparams["ffn_config"]
  2681. attn_config = self.hparams["attn_config"]
  2682. self.gguf_writer.add_block_count(self.block_count)
  2683. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2684. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2685. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2686. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2687. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2688. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2689. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2690. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2691. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2692. self.gguf_writer.add_layer_norm_eps(1e-5)
  2693. self.gguf_writer.add_file_type(self.ftype)
  2694. logger.info(f"gguf: file type = {self.ftype}")
  2695. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2696. del bid # unused
  2697. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2698. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2699. n_embd = self.hparams["d_model"]
  2700. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2701. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2702. # But llama.cpp moe graph works differently
  2703. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2704. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2705. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2706. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2707. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2708. experts = False
  2709. for exp_tensor_name in exp_tensor_names.keys():
  2710. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2711. experts = True
  2712. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2713. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2714. data_torch = data_torch.permute(*permute_tensor)
  2715. break
  2716. # map tensor names
  2717. # In MoE models the ffn tensors are typically most of the model weights,
  2718. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2719. # Every other model has the weight names ending in .weight,
  2720. # let's assume that is the convention which is not the case for dbrx:
  2721. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2722. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2723. return [(new_name, data_torch)]
  2724. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2725. del name, new_name, bid # unused
  2726. return n_dims > 1
  2727. @ModelBase.register("MiniCPMForCausalLM")
  2728. class MiniCPMModel(TextModel):
  2729. model_arch = gguf.MODEL_ARCH.MINICPM
  2730. def set_gguf_parameters(self):
  2731. super().set_gguf_parameters()
  2732. embedding_scale = float(self.hparams["scale_emb"])
  2733. self.gguf_writer.add_embedding_scale(embedding_scale)
  2734. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2735. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2736. self.gguf_writer.add_residual_scale(residual_scale)
  2737. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2738. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2739. self.gguf_writer.add_logit_scale(logit_scale)
  2740. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2741. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2742. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2743. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2744. if rope_scaling is not None:
  2745. long_factors = rope_scaling.get('long_factor', None)
  2746. short_factors = rope_scaling.get('short_factor', None)
  2747. if long_factors is None or short_factors is None:
  2748. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2749. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2750. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2751. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2752. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2753. def set_vocab(self):
  2754. self._set_vocab_sentencepiece()
  2755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2756. del bid # unused
  2757. n_head = self.hparams["num_attention_heads"]
  2758. n_kv_head = self.hparams.get("num_key_value_heads")
  2759. # HF models permute some of the tensors, so we need to undo that
  2760. if name.endswith(("q_proj.weight")):
  2761. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2762. if name.endswith(("k_proj.weight")):
  2763. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2764. return [(self.map_tensor_name(name), data_torch)]
  2765. @ModelBase.register("MiniCPM3ForCausalLM")
  2766. class MiniCPM3Model(TextModel):
  2767. model_arch = gguf.MODEL_ARCH.MINICPM3
  2768. def set_gguf_parameters(self):
  2769. hparams = self.hparams
  2770. self.gguf_writer.add_file_type(self.ftype)
  2771. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2772. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2773. self.gguf_writer.add_block_count(self.block_count)
  2774. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2775. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2776. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2777. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2778. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2779. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2780. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2781. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2782. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2783. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2784. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2785. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2786. if rope_scaling is not None:
  2787. rope_dims = self.hparams["qk_rope_head_dim"]
  2788. long_factors = rope_scaling.get('long_factor', None)
  2789. short_factors = rope_scaling.get('short_factor', None)
  2790. if long_factors is None or short_factors is None:
  2791. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2792. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2793. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2794. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2795. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2796. def set_vocab(self):
  2797. self._set_vocab_sentencepiece()
  2798. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2799. if n_kv_head is not None and n_head != n_kv_head:
  2800. n_head //= n_kv_head
  2801. return (
  2802. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2803. .swapaxes(1, 2)
  2804. .reshape(weights.shape)
  2805. )
  2806. @ModelBase.register("QWenLMHeadModel")
  2807. class QwenModel(TextModel):
  2808. model_arch = gguf.MODEL_ARCH.QWEN
  2809. @staticmethod
  2810. def token_bytes_to_string(b):
  2811. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2812. byte_encoder = bytes_to_unicode()
  2813. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2814. @staticmethod
  2815. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2816. parts = [bytes([b]) for b in token]
  2817. while True:
  2818. min_idx = None
  2819. min_rank = None
  2820. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2821. rank = mergeable_ranks.get(pair[0] + pair[1])
  2822. if rank is not None and (min_rank is None or rank < min_rank):
  2823. min_idx = i
  2824. min_rank = rank
  2825. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2826. break
  2827. assert min_idx is not None
  2828. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2829. return parts
  2830. def set_vocab(self):
  2831. self._set_vocab_qwen()
  2832. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
  2833. class Qwen2Model(TextModel):
  2834. model_arch = gguf.MODEL_ARCH.QWEN2
  2835. def set_vocab(self):
  2836. try:
  2837. self._set_vocab_sentencepiece()
  2838. except FileNotFoundError:
  2839. self._set_vocab_gpt2()
  2840. def set_gguf_parameters(self):
  2841. super().set_gguf_parameters()
  2842. self._try_set_pooling_type()
  2843. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2844. if self.hf_arch == "Qwen2Model":
  2845. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2846. if "language_model." in name:
  2847. name = name.replace("language_model.", "") # for InternVL
  2848. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2849. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2850. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2851. # skip vision and audio tensors
  2852. return []
  2853. yield from super().modify_tensors(data_torch, name, bid)
  2854. @ModelBase.register("DreamModel")
  2855. class DreamModel(TextModel):
  2856. model_arch = gguf.MODEL_ARCH.DREAM
  2857. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2858. tokens: list[str] = []
  2859. toktypes: list[int] = []
  2860. from transformers import AutoTokenizer
  2861. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2862. vocab_dict = tokenizer.get_vocab()
  2863. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2864. assert max(vocab_dict.values()) < vocab_size
  2865. tokpre = self.get_vocab_base_pre(tokenizer)
  2866. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2867. added_vocab = tokenizer.get_added_vocab()
  2868. for i in range(vocab_size):
  2869. if i not in reverse_vocab:
  2870. tokens.append(f"[PAD{i}]")
  2871. toktypes.append(gguf.TokenType.UNUSED)
  2872. elif reverse_vocab[i] in added_vocab:
  2873. tokens.append(reverse_vocab[i])
  2874. # Check if it's a special token - treat special tokens as CONTROL tokens
  2875. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2876. if tokenizer.added_tokens_decoder[i].special:
  2877. toktypes.append(gguf.TokenType.CONTROL)
  2878. else:
  2879. toktypes.append(gguf.TokenType.USER_DEFINED)
  2880. else:
  2881. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2882. toktypes.append(gguf.TokenType.CONTROL)
  2883. else:
  2884. tokens.append(reverse_vocab[i])
  2885. toktypes.append(gguf.TokenType.NORMAL)
  2886. return tokens, toktypes, tokpre
  2887. def set_vocab(self):
  2888. try:
  2889. self._set_vocab_sentencepiece()
  2890. except FileNotFoundError:
  2891. self._set_vocab_gpt2()
  2892. def set_gguf_parameters(self):
  2893. super().set_gguf_parameters()
  2894. self._try_set_pooling_type()
  2895. # Dream models use non-causal attention for diffusion
  2896. self.gguf_writer.add_causal_attention(False)
  2897. # Add Dream-specific parameters
  2898. mask_token_id = self.hparams.get("mask_token_id")
  2899. if mask_token_id is not None:
  2900. self.gguf_writer.add_mask_token_id(mask_token_id)
  2901. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2902. # Dream model tensors should be mapped directly since it's the base model
  2903. yield from super().modify_tensors(data_torch, name, bid)
  2904. @ModelBase.register("LLaDAModelLM")
  2905. class LLaDAModel(TextModel):
  2906. model_arch = gguf.MODEL_ARCH.LLADA
  2907. undo_permute = True
  2908. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2909. tokens: list[str] = []
  2910. toktypes: list[int] = []
  2911. from transformers import AutoTokenizer
  2912. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2913. vocab_dict = tokenizer.get_vocab()
  2914. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2915. assert max(vocab_dict.values()) < vocab_size
  2916. tokpre = self.get_vocab_base_pre(tokenizer)
  2917. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2918. added_vocab = tokenizer.get_added_vocab()
  2919. for i in range(vocab_size):
  2920. if i not in reverse_vocab:
  2921. tokens.append(f"[PAD{i}]")
  2922. toktypes.append(gguf.TokenType.UNUSED)
  2923. elif reverse_vocab[i] in added_vocab:
  2924. tokens.append(reverse_vocab[i])
  2925. # Check if it's a special token - treat special tokens as CONTROL tokens
  2926. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2927. if tokenizer.added_tokens_decoder[i].special:
  2928. toktypes.append(gguf.TokenType.CONTROL)
  2929. else:
  2930. toktypes.append(gguf.TokenType.USER_DEFINED)
  2931. else:
  2932. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2933. toktypes.append(gguf.TokenType.CONTROL)
  2934. else:
  2935. tokens.append(reverse_vocab[i])
  2936. toktypes.append(gguf.TokenType.NORMAL)
  2937. return tokens, toktypes, tokpre
  2938. def set_vocab(self):
  2939. self._set_vocab_gpt2()
  2940. # LLaDA specific parameters
  2941. self.gguf_writer.add_add_bos_token(True)
  2942. def set_gguf_parameters(self):
  2943. super().set_gguf_parameters()
  2944. self._try_set_pooling_type()
  2945. # Add parameters similar to LlamaModel
  2946. hparams = self.hparams
  2947. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2948. if (rope_dim := hparams.get("head_dim")) is None:
  2949. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2950. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2951. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2952. # Set context length for LLaDA
  2953. context_length = self.hparams.get("max_sequence_length", 4096)
  2954. self.gguf_writer.add_context_length(context_length)
  2955. # Set embedding length (dimension size)
  2956. embedding_length = self.hparams.get("d_model", 4096)
  2957. self.gguf_writer.add_embedding_length(embedding_length)
  2958. # Set feed forward length (MLP hidden size)
  2959. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2960. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2961. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2962. self.gguf_writer.add_causal_attention(False)
  2963. # LLaDA models don't shift their logits
  2964. self.gguf_writer.add_diffusion_shift_logits(False)
  2965. @staticmethod
  2966. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2967. if n_head_kv is not None and n_head != n_head_kv:
  2968. n_head = n_head_kv
  2969. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2970. .swapaxes(1, 2)
  2971. .reshape(weights.shape))
  2972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2973. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2974. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2975. if self.undo_permute:
  2976. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2977. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2978. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2979. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2980. # LLaDA model tensors should be mapped directly since it's the base model
  2981. yield from super().modify_tensors(data_torch, name, bid)
  2982. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2983. class Ernie4_5Model(TextModel):
  2984. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2985. def set_vocab(self):
  2986. self._set_vocab_sentencepiece()
  2987. def set_gguf_parameters(self):
  2988. super().set_gguf_parameters()
  2989. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2990. num_heads = self.hparams["num_attention_heads"]
  2991. num_kv_heads = self.hparams["num_key_value_heads"]
  2992. if (head_dim := self.hparams.get("head_dim")) is None:
  2993. head_dim = self.hparams["hidden_size"] // num_heads
  2994. if "ernie." in name:
  2995. name = name.replace("ernie.", "model.")
  2996. # split the qkv weights
  2997. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2998. if "qkv_proj" in name:
  2999. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3000. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3001. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3002. total_q_dim = num_heads * head_dim
  3003. total_k_dim = num_kv_heads * head_dim
  3004. total_v_dim = num_kv_heads * head_dim
  3005. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3006. return [
  3007. (self.map_tensor_name(name_q), q_proj_weight),
  3008. (self.map_tensor_name(name_k), k_proj_weight),
  3009. (self.map_tensor_name(name_v), v_proj_weight)
  3010. ]
  3011. # split the up_gate_proj into gate and up
  3012. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3013. if "up_gate_proj" in name:
  3014. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3015. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3016. dim_half = data_torch.shape[0] // 2
  3017. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3018. return [
  3019. (self.map_tensor_name(name_gate), gate_proj_weight),
  3020. (self.map_tensor_name(name_up), up_proj_weight)
  3021. ]
  3022. return [(self.map_tensor_name(name), data_torch)]
  3023. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3024. class Ernie4_5MoeModel(Ernie4_5Model):
  3025. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3026. _experts: list[dict[str, Tensor]] | None = None
  3027. def __init__(self, *args, **kwargs):
  3028. super().__init__(*args, **kwargs)
  3029. self._experts = [{} for _ in range(self.block_count)]
  3030. def set_gguf_parameters(self):
  3031. super().set_gguf_parameters()
  3032. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3033. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3034. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3035. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3036. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3037. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3038. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3039. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3040. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3041. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3042. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3043. # Modify correction bias name as in DeepseekV2
  3044. if name.endswith("e_score_correction_bias"):
  3045. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3046. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3047. match = re.match(r"model.mtp_block.(\d+)", name)
  3048. if match:
  3049. return []
  3050. # skip all other MTP tensors for now
  3051. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3052. if match:
  3053. return []
  3054. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3055. if match:
  3056. return []
  3057. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3058. if match:
  3059. return []
  3060. # process the experts separately
  3061. if name.find("mlp.experts") != -1:
  3062. n_experts = self.hparams["moe_num_experts"]
  3063. assert bid is not None
  3064. if self._experts is None:
  3065. self._experts = [{} for _ in range(self.block_count)]
  3066. self._experts[bid][name] = data_torch
  3067. if len(self._experts[bid]) >= n_experts * 3:
  3068. tensors: list[tuple[str, Tensor]] = []
  3069. # merge the experts into a single 3d tensor
  3070. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3071. datas: list[Tensor] = []
  3072. for xid in range(n_experts):
  3073. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3074. datas.append(self._experts[bid][ename_to_retrieve])
  3075. del self._experts[bid][ename_to_retrieve]
  3076. data_torch = torch.stack(datas, dim=0)
  3077. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3078. new_name = self.map_tensor_name(merged_name)
  3079. tensors.append((new_name, data_torch))
  3080. return tensors
  3081. else:
  3082. return []
  3083. return [(self.map_tensor_name(name), data_torch)]
  3084. def prepare_tensors(self):
  3085. super().prepare_tensors()
  3086. if self._experts is not None:
  3087. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3088. experts = [k for d in self._experts for k in d.keys()]
  3089. if len(experts) > 0:
  3090. raise ValueError(f"Unprocessed experts: {experts}")
  3091. @ModelBase.register(
  3092. "Qwen2VLModel",
  3093. "Qwen2VLForConditionalGeneration",
  3094. "Qwen2_5_VLForConditionalGeneration",
  3095. "Qwen2_5OmniModel",
  3096. )
  3097. class Qwen2VLModel(TextModel):
  3098. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3099. def set_gguf_parameters(self):
  3100. super().set_gguf_parameters()
  3101. def set_vocab(self):
  3102. try:
  3103. self._set_vocab_sentencepiece()
  3104. except FileNotFoundError:
  3105. self._set_vocab_gpt2()
  3106. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3107. del bid # unused
  3108. if name.startswith("thinker."):
  3109. name = name.replace("thinker.", "")
  3110. if name.startswith("visual") or name.startswith("audio") or \
  3111. name.startswith("talker") or name.startswith("token2wav"):
  3112. # skip multimodal tensors
  3113. return []
  3114. return [(self.map_tensor_name(name), data_torch)]
  3115. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3116. class Qwen2VLVisionModel(MmprojModel):
  3117. def __init__(self, *args, **kwargs):
  3118. super().__init__(*args, **kwargs)
  3119. assert self.hparams_vision is not None
  3120. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3121. # rename config.json values
  3122. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3123. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3124. if "embed_dim" in self.hparams_vision: # qwen2vl
  3125. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3126. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3127. def set_gguf_parameters(self):
  3128. super().set_gguf_parameters()
  3129. assert self.hparams_vision is not None
  3130. hparams = self.hparams_vision
  3131. model_type = self.global_config['model_type']
  3132. if model_type == 'qwen2_vl':
  3133. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3134. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3135. if model_type == 'qwen2_5_omni':
  3136. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3137. else:
  3138. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3139. self.gguf_writer.add_vision_use_silu(True)
  3140. # find n_wa_pattern (window attention pattern)
  3141. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3142. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3143. n_wa_pattern = fullatt_block_indexes[0] + 1
  3144. # validate n_wa_pattern
  3145. for i in range(1, len(fullatt_block_indexes)):
  3146. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3147. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3148. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3149. else:
  3150. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3151. # default values below are taken from HF tranformers code
  3152. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3153. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3154. if ".position_embd." in new_name:
  3155. return gguf.GGMLQuantizationType.F32
  3156. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3157. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3158. del bid # unused
  3159. if name.startswith("visual."):
  3160. # process visual tensors
  3161. # split QKV tensors if needed
  3162. if ".qkv." in name:
  3163. if data_torch.ndim == 2: # weight
  3164. c3, _ = data_torch.shape
  3165. else: # bias
  3166. c3 = data_torch.shape[0]
  3167. assert c3 % 3 == 0
  3168. c = c3 // 3
  3169. wq = data_torch[:c]
  3170. wk = data_torch[c: c * 2]
  3171. wv = data_torch[c * 2:]
  3172. return [
  3173. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3174. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3175. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3176. ]
  3177. elif 'patch_embed.proj.weight' in name:
  3178. # split Conv3D into Conv2Ds
  3179. c1, c2, kt, kh, kw = data_torch.shape
  3180. del c1, c2, kh, kw # unused
  3181. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3182. return [
  3183. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3184. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3185. ]
  3186. else:
  3187. return [(self.map_tensor_name(name), data_torch)]
  3188. return [] # skip other tensors
  3189. @ModelBase.register("Qwen2_5OmniModel")
  3190. class Qwen25OmniModel(Qwen2VLVisionModel):
  3191. has_vision_encoder = True
  3192. has_audio_encoder = True
  3193. def __init__(self, *args, **kwargs):
  3194. super().__init__(*args, **kwargs)
  3195. assert self.hparams_audio is not None
  3196. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3197. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3198. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3199. def set_gguf_parameters(self):
  3200. super().set_gguf_parameters()
  3201. assert self.hparams_audio is not None
  3202. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3203. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3204. def get_vision_config(self) -> dict[str, Any] | None:
  3205. return self.global_config["thinker_config"].get("vision_config")
  3206. def get_audio_config(self) -> dict[str, Any] | None:
  3207. return self.global_config["thinker_config"].get("audio_config")
  3208. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3209. # SinusoidsPositionEmbedding
  3210. assert self.hparams_audio is not None
  3211. max_timescale = 10000
  3212. length = 1500
  3213. channels = self.hparams_audio["hidden_size"]
  3214. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3215. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3216. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3217. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3218. yield ("audio_tower.embed_positions.weight", pos_embd)
  3219. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3220. if ".conv" in name and ".weight" in name:
  3221. return gguf.GGMLQuantizationType.F16
  3222. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3224. if name.startswith("thinker."):
  3225. name = name.replace("thinker.", "")
  3226. if name.startswith("audio_tower"):
  3227. # process audio tensors
  3228. if "conv1.bias" in name or "conv2.bias" in name:
  3229. # transpose conv1 and conv2 bias
  3230. data_torch = data_torch.unsqueeze(-1)
  3231. if "audio_bos_eos_token" in name:
  3232. # this tensor is left unused in transformers code
  3233. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3234. return []
  3235. return [(self.map_tensor_name(name), data_torch)]
  3236. return super().modify_tensors(data_torch, name, bid)
  3237. @ModelBase.register("InternVisionModel")
  3238. class InternVisionModel(MmprojModel):
  3239. def set_gguf_parameters(self):
  3240. assert self.hparams_vision is not None
  3241. if isinstance(self.hparams_vision['image_size'], list):
  3242. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3243. if isinstance(self.hparams_vision['patch_size'], list):
  3244. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3245. super().set_gguf_parameters()
  3246. hparams = self.hparams
  3247. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3248. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3249. # hidden_act
  3250. if hparams["hidden_act"] == "silu":
  3251. self.gguf_writer.add_vision_use_silu(True)
  3252. elif hparams["hidden_act"] == "gelu":
  3253. self.gguf_writer.add_vision_use_gelu(True)
  3254. else:
  3255. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3256. # downsample_ratio
  3257. downsample_ratio = self.global_config.get("downsample_ratio")
  3258. assert downsample_ratio is not None
  3259. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3260. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3261. if ".position_embd." in new_name:
  3262. return gguf.GGMLQuantizationType.F32
  3263. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3264. def _mapping_interns1_name(self, name):
  3265. names_map = {
  3266. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3267. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3268. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3269. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3270. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3271. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3272. }
  3273. if name in names_map:
  3274. name = names_map[name]
  3275. return name
  3276. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3277. del bid # unused
  3278. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3279. # deal with intern-s1 special case
  3280. name = self._mapping_interns1_name(name)
  3281. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3282. # process visual tensors
  3283. # correct name
  3284. if name.startswith("vision_model"):
  3285. name = "vision_tower." + name
  3286. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3287. name += ".weight"
  3288. # split QKV tensors if needed
  3289. if ".qkv." in name:
  3290. if data_torch.ndim == 2: # weight
  3291. c3, _ = data_torch.shape
  3292. else: # bias
  3293. c3 = data_torch.shape[0]
  3294. assert c3 % 3 == 0
  3295. c = c3 // 3
  3296. wq = data_torch[:c]
  3297. wk = data_torch[c: c * 2]
  3298. wv = data_torch[c * 2:]
  3299. return [
  3300. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3301. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3302. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3303. ]
  3304. return [(self.map_tensor_name(name), data_torch)]
  3305. return [] # skip other tensors
  3306. @ModelBase.register("WavTokenizerDec")
  3307. class WavTokenizerDecModel(TextModel):
  3308. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3309. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3310. del bid # unused
  3311. if \
  3312. name.endswith("codebook.cluster_size") or \
  3313. name.endswith("codebook.embed_avg") or \
  3314. name.endswith("codebook.inited"):
  3315. logger.debug(f"Skipping {name!r}")
  3316. return []
  3317. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3318. return [(self.map_tensor_name(name), data_torch)]
  3319. def set_vocab(self):
  3320. self._set_vocab_none()
  3321. def set_gguf_parameters(self):
  3322. super().set_gguf_parameters()
  3323. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3324. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3325. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3326. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3327. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3328. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3329. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3330. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3331. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3332. self.gguf_writer.add_causal_attention(False)
  3333. @ModelBase.register("Qwen2MoeForCausalLM")
  3334. class Qwen2MoeModel(TextModel):
  3335. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3336. def set_gguf_parameters(self):
  3337. super().set_gguf_parameters()
  3338. if (n_experts := self.hparams.get("num_experts")) is not None:
  3339. self.gguf_writer.add_expert_count(n_experts)
  3340. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3341. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3342. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3343. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3344. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3345. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3346. _experts: list[dict[str, Tensor]] | None = None
  3347. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3348. # process the experts separately
  3349. name = name.replace("language_model.", "") # InternVL
  3350. # handle aggregated expert tensors
  3351. # GGUF stores dimensions reversed from PyTorch, so:
  3352. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3353. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3354. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3355. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3356. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3357. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3358. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3359. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3360. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3361. permuted = data_torch.permute(0, 2, 1).contiguous()
  3362. return [(self.map_tensor_name(mapped), permuted)]
  3363. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3364. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3365. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3366. split_dim = data_torch.shape[-1] // 2
  3367. gate = data_torch[..., :split_dim].contiguous()
  3368. up = data_torch[..., split_dim:].contiguous()
  3369. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3370. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3371. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3372. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3373. base_name = name.removesuffix(".weight")
  3374. base = base_name.rsplit('.', 1)[0]
  3375. mapped_gate = f"{base}.gate_proj.weight"
  3376. mapped_up = f"{base}.up_proj.weight"
  3377. perm_gate = gate.permute(0, 2, 1).contiguous()
  3378. perm_up = up.permute(0, 2, 1).contiguous()
  3379. return [
  3380. (self.map_tensor_name(mapped_gate), perm_gate),
  3381. (self.map_tensor_name(mapped_up), perm_up),
  3382. ]
  3383. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3384. # skip visual tensors
  3385. return []
  3386. if name.find("experts") != -1:
  3387. n_experts = self.hparams["num_experts"]
  3388. assert bid is not None
  3389. if self._experts is None:
  3390. self._experts = [{} for _ in range(self.block_count)]
  3391. self._experts[bid][name] = data_torch
  3392. if len(self._experts[bid]) >= n_experts * 3:
  3393. tensors: list[tuple[str, Tensor]] = []
  3394. # merge the experts into a single 3d tensor
  3395. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3396. datas: list[Tensor] = []
  3397. for xid in range(n_experts):
  3398. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3399. datas.append(self._experts[bid][ename])
  3400. del self._experts[bid][ename]
  3401. data_torch = torch.stack(datas, dim=0)
  3402. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3403. new_name = self.map_tensor_name(merged_name)
  3404. tensors.append((new_name, data_torch))
  3405. return tensors
  3406. else:
  3407. return []
  3408. return [(self.map_tensor_name(name), data_torch)]
  3409. def prepare_tensors(self):
  3410. super().prepare_tensors()
  3411. if self._experts is not None:
  3412. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3413. experts = [k for d in self._experts for k in d.keys()]
  3414. if len(experts) > 0:
  3415. raise ValueError(f"Unprocessed experts: {experts}")
  3416. @ModelBase.register("Qwen3ForCausalLM")
  3417. class Qwen3Model(Qwen2Model):
  3418. model_arch = gguf.MODEL_ARCH.QWEN3
  3419. # extra logic for rerank models
  3420. is_rerank: bool = False
  3421. is_tied_embeddings: bool = False
  3422. token_false_id: int | None = None
  3423. token_true_id: int | None = None
  3424. def __init__(self, *args, **kwargs):
  3425. super().__init__(*args, **kwargs)
  3426. # track for intern-s1-mini
  3427. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3428. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3429. # a bit hacky, but currently the only way to detect if this is a rerank model
  3430. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3431. readme_path = self.dir_model / "README.md"
  3432. readme_text = ""
  3433. if readme_path.exists():
  3434. with readme_path.open("r", encoding="utf-8") as f:
  3435. readme_text = f.read()
  3436. if "# Qwen3-Reranker" in readme_text:
  3437. self._find_rerank_config()
  3438. def set_vocab(self):
  3439. # deal with intern-s1-mini
  3440. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3441. self._set_vocab_interns1()
  3442. return
  3443. super().set_vocab()
  3444. def _find_rerank_config(self):
  3445. from transformers import AutoTokenizer
  3446. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3447. self.is_rerank = True
  3448. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3449. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3450. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3451. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3452. assert self.token_false_id is not None and self.token_true_id is not None
  3453. def set_gguf_parameters(self):
  3454. super().set_gguf_parameters()
  3455. if self.is_rerank:
  3456. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3457. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3458. self.gguf_writer.add_chat_template([{
  3459. "name": "rerank",
  3460. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3461. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3462. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3463. }])
  3464. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3465. # extract "yes" and "no" tokens from the output lm_head tensor
  3466. false_row = data_torch[self.token_false_id]
  3467. true_row = data_torch[self.token_true_id]
  3468. return torch.stack([true_row, false_row], dim=0)
  3469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3470. if "model.vision_" in name:
  3471. # skip multimodal tensors
  3472. return []
  3473. if self.is_rerank:
  3474. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3475. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3476. if is_tied_head or is_real_head:
  3477. cls_out_head = (
  3478. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3479. self._get_cls_out_tensor(data_torch),
  3480. )
  3481. if is_tied_head:
  3482. embed = (self.map_tensor_name(name), data_torch)
  3483. return [cls_out_head, embed]
  3484. if is_real_head:
  3485. return [cls_out_head]
  3486. return super().modify_tensors(data_torch, name, bid)
  3487. @ModelBase.register("Qwen3MoeForCausalLM")
  3488. class Qwen3MoeModel(Qwen2MoeModel):
  3489. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3490. def __init__(self, *args, **kwargs):
  3491. super().__init__(*args, **kwargs)
  3492. hparams = ModelBase.load_hparams(self.dir_model, False)
  3493. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3494. def set_vocab(self):
  3495. # deal with intern-s1
  3496. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3497. self._set_vocab_interns1()
  3498. return
  3499. super().set_vocab()
  3500. @ModelBase.register("Qwen3NextForCausalLM")
  3501. class Qwen3NextModel(Qwen2MoeModel):
  3502. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3503. def set_gguf_parameters(self):
  3504. super().set_gguf_parameters()
  3505. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3506. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3507. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3508. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3509. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3510. if (rope_dim := self.hparams.get("head_dim")) is None:
  3511. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3512. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3513. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3514. if name.startswith("mtp"):
  3515. return [] # ignore MTP layers for now
  3516. if name.endswith(".A_log"):
  3517. data_torch = -torch.exp(data_torch)
  3518. elif name.endswith(".dt_bias"):
  3519. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3520. elif "conv1d" in name:
  3521. data_torch = data_torch.squeeze()
  3522. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3523. data_torch = data_torch + 1
  3524. yield from super().modify_tensors(data_torch, name, bid)
  3525. @ModelBase.register("RND1")
  3526. class RND1Model(Qwen2MoeModel):
  3527. model_arch = gguf.MODEL_ARCH.RND1
  3528. def set_gguf_parameters(self):
  3529. super().set_gguf_parameters()
  3530. # RND1 specific parameters
  3531. # RND1 uses bidirectional attention
  3532. self.gguf_writer.add_causal_attention(False)
  3533. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3534. self.gguf_writer.add_mask_token_id(mask_token_id)
  3535. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3536. class Qwen3VLVisionModel(MmprojModel):
  3537. def __init__(self, *args, **kwargs):
  3538. super().__init__(*args, **kwargs)
  3539. assert self.hparams_vision is not None
  3540. # Compute image_size if not present
  3541. if "image_size" not in self.hparams_vision:
  3542. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3543. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3544. patch_size = self.hparams_vision.get("patch_size", 16)
  3545. # num_position_embeddings = (image_size / patch_size) ** 2
  3546. # So image_size = sqrt(num_position_embeddings) * patch_size
  3547. image_size = int(num_pos**0.5 * patch_size)
  3548. self.hparams_vision["image_size"] = image_size
  3549. # Rename config values for compatibility
  3550. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3551. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3552. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3553. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3554. self.is_deepstack_layers[idx] = True
  3555. def set_gguf_parameters(self):
  3556. super().set_gguf_parameters()
  3557. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3558. self.gguf_writer.add_vision_use_gelu(True)
  3559. if self.hparams_vision is not None:
  3560. merge_size = self.hparams_vision.get("spatial_merge_size")
  3561. if merge_size is not None:
  3562. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3563. # Use text config's rms_norm_eps for vision attention layernorm eps
  3564. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3565. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3566. if self.is_deepstack_layers:
  3567. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3569. assert self.hparams_vision is not None
  3570. # Skip text model tensors - they go in the text model file
  3571. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3572. return []
  3573. if name.startswith("model.visual."):
  3574. name = name.replace("model.visual.", "visual.", 1)
  3575. if name.startswith("visual.deepstack_merger_list."):
  3576. prefix, rest = name.split(".", maxsplit=3)[2:]
  3577. # prefix is the layer index, convert to absolute clip layer index!
  3578. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3579. target = rest
  3580. tensor_type: gguf.MODEL_TENSOR
  3581. if target.startswith("norm."):
  3582. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3583. suffix = target.split(".", 1)[1]
  3584. elif target.startswith("linear_fc1."):
  3585. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3586. suffix = target.split(".", 1)[1]
  3587. elif target.startswith("linear_fc2."):
  3588. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3589. suffix = target.split(".", 1)[1]
  3590. else:
  3591. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3592. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3593. return [(new_name, data_torch)]
  3594. if name.startswith("visual.merger."):
  3595. suffix = name.split(".", 2)[2]
  3596. if suffix.startswith("linear_fc"):
  3597. fc_idx_str, tail = suffix.split(".", 1)
  3598. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3599. # Qwen3VL has linear_fc1 and linear_fc2
  3600. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3601. if fc_num == 1:
  3602. fc_idx = 0
  3603. elif fc_num == 2:
  3604. fc_idx = 2
  3605. else:
  3606. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3607. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3608. elif suffix.startswith("norm."):
  3609. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3610. else:
  3611. raise ValueError(f"Unexpected merger tensor: {name}")
  3612. return [(new_name, data_torch)]
  3613. if name == "visual.patch_embed.proj.weight":
  3614. # split Conv3D into Conv2Ds along temporal dimension
  3615. c1, c2, kt, _, _ = data_torch.shape
  3616. del c1, c2
  3617. if kt != 2:
  3618. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3619. return [
  3620. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3621. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3622. ]
  3623. if name == "visual.patch_embed.proj.bias":
  3624. # Include the bias - it's used by the C++ code
  3625. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3626. if name.startswith("visual."):
  3627. return [(self.map_tensor_name(name), data_torch)]
  3628. # Fall back to parent class for other tensors
  3629. return super().modify_tensors(data_torch, name, bid)
  3630. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3631. class Glm4VVisionModel(Qwen3VLVisionModel):
  3632. def set_gguf_parameters(self):
  3633. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3634. assert self.hparams_vision is not None
  3635. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3636. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3637. if hidden_act == "gelu":
  3638. self.gguf_writer.add_vision_use_gelu(True)
  3639. elif hidden_act == "silu":
  3640. self.gguf_writer.add_vision_use_silu(True)
  3641. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3642. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3644. if name.startswith("model.visual."):
  3645. name = name.replace("model.visual.", "visual.")
  3646. if name.startswith("visual.merger."):
  3647. return [(self.map_tensor_name(name), data_torch)]
  3648. return super().modify_tensors(data_torch, name, bid)
  3649. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3650. class Qwen3VLTextModel(Qwen3Model):
  3651. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3652. def set_gguf_parameters(self):
  3653. super().set_gguf_parameters()
  3654. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3655. vision_config = self.hparams.get("vision_config", {})
  3656. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3657. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3659. # Skip vision tensors - they go in the mmproj file
  3660. if name.startswith("model.visual."):
  3661. return []
  3662. return super().modify_tensors(data_torch, name, bid)
  3663. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3664. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3665. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3666. def set_gguf_parameters(self):
  3667. super().set_gguf_parameters()
  3668. vision_config = self.hparams.get("vision_config", {})
  3669. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3670. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3672. # Skip vision tensors - they go in the mmproj file
  3673. if name.startswith("model.visual."):
  3674. return []
  3675. return super().modify_tensors(data_torch, name, bid)
  3676. @ModelBase.register("GPT2LMHeadModel")
  3677. class GPT2Model(TextModel):
  3678. model_arch = gguf.MODEL_ARCH.GPT2
  3679. def set_gguf_parameters(self):
  3680. self.gguf_writer.add_block_count(self.block_count)
  3681. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3682. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3683. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3684. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3685. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3686. self.gguf_writer.add_file_type(self.ftype)
  3687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3688. del bid # unused
  3689. tensors: list[tuple[str, Tensor]] = []
  3690. # we don't need these
  3691. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3692. return tensors
  3693. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3694. data_torch = data_torch.transpose(1, 0)
  3695. new_name = self.map_tensor_name(name)
  3696. tensors.append((new_name, data_torch))
  3697. return tensors
  3698. @ModelBase.register("PhiForCausalLM")
  3699. class Phi2Model(TextModel):
  3700. model_arch = gguf.MODEL_ARCH.PHI2
  3701. def set_gguf_parameters(self):
  3702. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3703. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3704. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3705. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3706. self.gguf_writer.add_embedding_length(n_embd)
  3707. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3708. self.gguf_writer.add_block_count(self.block_count)
  3709. self.gguf_writer.add_head_count(n_head)
  3710. self.gguf_writer.add_head_count_kv(n_head)
  3711. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3712. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3713. self.gguf_writer.add_file_type(self.ftype)
  3714. self.gguf_writer.add_add_bos_token(False)
  3715. @ModelBase.register("Phi3ForCausalLM")
  3716. class Phi3MiniModel(TextModel):
  3717. model_arch = gguf.MODEL_ARCH.PHI3
  3718. def set_vocab(self):
  3719. # Phi-4 model uses GPT2Tokenizer
  3720. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3721. if tokenizer_config_file.is_file():
  3722. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3723. tokenizer_config_json = json.load(f)
  3724. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3725. if tokenizer_class == 'GPT2Tokenizer':
  3726. return self._set_vocab_gpt2()
  3727. from sentencepiece import SentencePieceProcessor
  3728. tokenizer_path = self.dir_model / 'tokenizer.model'
  3729. if not tokenizer_path.is_file():
  3730. raise ValueError(f'Error: Missing {tokenizer_path}')
  3731. tokenizer = SentencePieceProcessor()
  3732. tokenizer.LoadFromFile(str(tokenizer_path))
  3733. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3734. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3735. scores: list[float] = [-10000.0] * vocab_size
  3736. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3737. for token_id in range(tokenizer.vocab_size()):
  3738. piece = tokenizer.IdToPiece(token_id)
  3739. text = piece.encode("utf-8")
  3740. score = tokenizer.GetScore(token_id)
  3741. toktype = SentencePieceTokenTypes.NORMAL
  3742. if tokenizer.IsUnknown(token_id):
  3743. toktype = SentencePieceTokenTypes.UNKNOWN
  3744. elif tokenizer.IsControl(token_id):
  3745. toktype = SentencePieceTokenTypes.CONTROL
  3746. elif tokenizer.IsUnused(token_id):
  3747. toktype = SentencePieceTokenTypes.UNUSED
  3748. elif tokenizer.IsByte(token_id):
  3749. toktype = SentencePieceTokenTypes.BYTE
  3750. tokens[token_id] = text
  3751. scores[token_id] = score
  3752. toktypes[token_id] = toktype
  3753. added_tokens_file = self.dir_model / 'added_tokens.json'
  3754. if added_tokens_file.is_file():
  3755. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3756. added_tokens_json = json.load(f)
  3757. for key in added_tokens_json:
  3758. token_id = added_tokens_json[key]
  3759. if token_id >= vocab_size:
  3760. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3761. continue
  3762. tokens[token_id] = key.encode("utf-8")
  3763. scores[token_id] = -1000.0
  3764. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3765. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3766. if tokenizer_config_file.is_file():
  3767. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3768. tokenizer_config_json = json.load(f)
  3769. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3770. for token_id, foken_data in added_tokens_decoder.items():
  3771. token_id = int(token_id)
  3772. token = foken_data["content"].encode("utf-8")
  3773. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3774. if tokens[token_id] != token:
  3775. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3776. tokens[token_id] = token
  3777. scores[token_id] = -1000.0
  3778. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3779. if foken_data.get("special"):
  3780. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3781. tokenizer_file = self.dir_model / 'tokenizer.json'
  3782. if tokenizer_file.is_file():
  3783. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3784. tokenizer_json = json.load(f)
  3785. added_tokens = tokenizer_json.get("added_tokens", [])
  3786. for foken_data in added_tokens:
  3787. token_id = int(foken_data["id"])
  3788. token = foken_data["content"].encode("utf-8")
  3789. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3790. if tokens[token_id] != token:
  3791. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3792. tokens[token_id] = token
  3793. scores[token_id] = -1000.0
  3794. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3795. if foken_data.get("special"):
  3796. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3797. self.gguf_writer.add_tokenizer_model("llama")
  3798. self.gguf_writer.add_tokenizer_pre("default")
  3799. self.gguf_writer.add_token_list(tokens)
  3800. self.gguf_writer.add_token_scores(scores)
  3801. self.gguf_writer.add_token_types(toktypes)
  3802. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3803. special_vocab.add_to_gguf(self.gguf_writer)
  3804. def set_gguf_parameters(self):
  3805. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3806. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3807. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3808. rms_eps = self.find_hparam(["rms_norm_eps"])
  3809. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3810. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3811. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3812. rope_dims = int(rot_pct * n_embd) // n_head
  3813. self.gguf_writer.add_context_length(max_pos_embds)
  3814. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3815. self.gguf_writer.add_embedding_length(n_embd)
  3816. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3817. self.gguf_writer.add_block_count(self.block_count)
  3818. self.gguf_writer.add_head_count(n_head)
  3819. self.gguf_writer.add_head_count_kv(n_head_kv)
  3820. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3821. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3822. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3823. self.gguf_writer.add_file_type(self.ftype)
  3824. sliding_window = self.hparams.get("sliding_window")
  3825. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3826. if sliding_window is None:
  3827. sliding_window = 0
  3828. self.gguf_writer.add_sliding_window(sliding_window)
  3829. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3830. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3831. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3832. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3833. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3834. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3835. rope_dims = int(rot_pct * n_embd) // n_head
  3836. # write rope scaling for long context (128k) model
  3837. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3838. if rope_scaling is None:
  3839. return
  3840. scale = max_pos_embds / orig_max_pos_embds
  3841. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3842. if len(rope_scaling_type) == 0:
  3843. raise KeyError('Missing the required key rope_scaling.type')
  3844. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3845. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3846. elif rope_scaling_type == 'yarn':
  3847. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3848. else:
  3849. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3850. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3851. long_factors = rope_scaling.get('long_factor', None)
  3852. short_factors = rope_scaling.get('short_factor', None)
  3853. if long_factors is None or short_factors is None:
  3854. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3855. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3856. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3857. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3858. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3859. @ModelBase.register("PhiMoEForCausalLM")
  3860. class PhiMoeModel(Phi3MiniModel):
  3861. model_arch = gguf.MODEL_ARCH.PHIMOE
  3862. _experts: list[dict[str, Tensor]] | None = None
  3863. def set_gguf_parameters(self):
  3864. super().set_gguf_parameters()
  3865. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3866. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3868. # process the experts separately
  3869. if name.find("block_sparse_moe.experts") != -1:
  3870. n_experts = self.hparams["num_local_experts"]
  3871. assert bid is not None
  3872. if self._experts is None:
  3873. self._experts = [{} for _ in range(self.block_count)]
  3874. self._experts[bid][name] = data_torch
  3875. if len(self._experts[bid]) >= n_experts * 3:
  3876. tensors: list[tuple[str, Tensor]] = []
  3877. # merge the experts into a single 3d tensor
  3878. for w_name in ["w1", "w2", "w3"]:
  3879. datas: list[Tensor] = []
  3880. for xid in range(n_experts):
  3881. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3882. datas.append(self._experts[bid][ename])
  3883. del self._experts[bid][ename]
  3884. data_torch = torch.stack(datas, dim=0)
  3885. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3886. new_name = self.map_tensor_name(merged_name)
  3887. tensors.append((new_name, data_torch))
  3888. return tensors
  3889. else:
  3890. return []
  3891. return [(self.map_tensor_name(name), data_torch)]
  3892. def prepare_tensors(self):
  3893. super().prepare_tensors()
  3894. if self._experts is not None:
  3895. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3896. experts = [k for d in self._experts for k in d.keys()]
  3897. if len(experts) > 0:
  3898. raise ValueError(f"Unprocessed experts: {experts}")
  3899. @ModelBase.register("PlamoForCausalLM")
  3900. class PlamoModel(TextModel):
  3901. model_arch = gguf.MODEL_ARCH.PLAMO
  3902. def set_vocab(self):
  3903. self._set_vocab_sentencepiece()
  3904. def set_gguf_parameters(self):
  3905. hparams = self.hparams
  3906. self.gguf_writer.add_context_length(4096) # not in config.json
  3907. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3908. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3909. self.gguf_writer.add_block_count(self.block_count)
  3910. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3911. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3912. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3913. self.gguf_writer.add_file_type(self.ftype)
  3914. def shuffle_attn_q_weight(self, data_torch):
  3915. assert data_torch.size() == (5120, 5120)
  3916. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3917. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3918. data_torch = torch.reshape(data_torch, (5120, 5120))
  3919. return data_torch
  3920. def shuffle_attn_output_weight(self, data_torch):
  3921. assert data_torch.size() == (5120, 5120)
  3922. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3923. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3924. data_torch = torch.reshape(data_torch, (5120, 5120))
  3925. return data_torch
  3926. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3927. del bid # unused
  3928. new_name = self.map_tensor_name(name)
  3929. # shuffle for broadcasting of gqa in ggml_mul_mat
  3930. if new_name.endswith("attn_q.weight"):
  3931. data_torch = self.shuffle_attn_q_weight(data_torch)
  3932. elif new_name.endswith("attn_output.weight"):
  3933. data_torch = self.shuffle_attn_output_weight(data_torch)
  3934. return [(new_name, data_torch)]
  3935. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3936. class Plamo2Model(TextModel):
  3937. model_arch = gguf.MODEL_ARCH.PLAMO2
  3938. def set_vocab(self):
  3939. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3940. # We need to handle this specially
  3941. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3942. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3943. if not tokenizer_jsonl_path.is_file():
  3944. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3945. # Load tokenizer config
  3946. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3947. tokenizer_config = json.load(f)
  3948. # Load tokens from JSONL file (actually a list format)
  3949. tokens = []
  3950. scores = []
  3951. toktypes = []
  3952. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3953. for line_num, line in enumerate(f):
  3954. if line.strip():
  3955. token_data = json.loads(line)
  3956. # Format: [token, score, type, ?, ?, ?, ?]
  3957. token = token_data[0].encode("utf-8")
  3958. score = float(token_data[1])
  3959. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3960. tokens.append(token)
  3961. scores.append(score)
  3962. # Map token type strings to GGUF token types
  3963. if token_type_str == "UNKNOWN":
  3964. toktypes.append(gguf.TokenType.UNKNOWN)
  3965. elif token_type_str == "CONTROL":
  3966. toktypes.append(gguf.TokenType.CONTROL)
  3967. elif token_type_str == "BYTE":
  3968. toktypes.append(gguf.TokenType.BYTE)
  3969. else:
  3970. # Check for PLaMo-2 special tokens
  3971. token_str = token_data[0]
  3972. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3973. toktypes.append(gguf.TokenType.CONTROL)
  3974. else:
  3975. toktypes.append(gguf.TokenType.NORMAL)
  3976. vocab_size = self.hparams["vocab_size"]
  3977. if vocab_size > len(tokens):
  3978. pad_count = vocab_size - len(tokens)
  3979. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3980. for i in range(1, pad_count + 1):
  3981. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3982. scores.append(-1000.0)
  3983. toktypes.append(gguf.TokenType.UNUSED)
  3984. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3985. self.gguf_writer.add_tokenizer_model("plamo2")
  3986. self.gguf_writer.add_tokenizer_pre("default")
  3987. self.gguf_writer.add_token_list(tokens)
  3988. self.gguf_writer.add_token_scores(scores)
  3989. self.gguf_writer.add_token_types(toktypes)
  3990. # Add special tokens from config
  3991. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3992. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3993. self.gguf_writer.add_bos_token_id(token_id)
  3994. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3995. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3996. self.gguf_writer.add_eos_token_id(token_id)
  3997. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3998. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3999. self.gguf_writer.add_pad_token_id(token_id)
  4000. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  4001. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  4002. self.gguf_writer.add_sep_token_id(token_id)
  4003. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  4004. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  4005. self.gguf_writer.add_unk_token_id(token_id)
  4006. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  4007. self.gguf_writer.add_eot_token_id(4)
  4008. self.gguf_writer.add_add_space_prefix(False)
  4009. def set_gguf_parameters(self):
  4010. hparams = self.hparams
  4011. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4012. # Which layers are Mamba layers
  4013. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4014. # This logic matches modeling_plamo.py's is_mamba function
  4015. mamba_step = hparams.get("mamba_step", 2)
  4016. mamba_enabled = hparams.get("mamba_enabled", True)
  4017. num_key_value_heads = []
  4018. num_attention_heads = []
  4019. if mamba_enabled:
  4020. for i in range(self.block_count):
  4021. if self.block_count <= (mamba_step // 2):
  4022. # use attention in last layer
  4023. is_mamba = (i != self.block_count - 1)
  4024. else:
  4025. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4026. if is_mamba:
  4027. num_key_value_heads.append(0)
  4028. num_attention_heads.append(0)
  4029. else:
  4030. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4031. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4032. if num_key_value_heads and num_attention_heads:
  4033. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4034. self.gguf_writer.add_head_count(num_attention_heads)
  4035. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4036. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4037. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4038. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4039. self.gguf_writer.add_block_count(self.block_count)
  4040. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4041. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4042. # Mamba parameters
  4043. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4044. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4045. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4046. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4047. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4048. self.gguf_writer.add_ssm_group_count(0)
  4049. # MLP feed forward parameters (for attention layers)
  4050. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4051. self.gguf_writer.add_file_type(self.ftype)
  4052. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4053. del bid # unused
  4054. if name.endswith(".A_log"):
  4055. data_torch = -torch.exp(data_torch)
  4056. elif name.endswith(".dt_bias"):
  4057. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4058. elif name.endswith(".dt_norm_weight"):
  4059. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4060. elif name.endswith(".B_norm_weight"):
  4061. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4062. elif name.endswith(".C_norm_weight"):
  4063. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4064. elif name.endswith(".k_weight"):
  4065. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4066. elif name.endswith(".q_weight"):
  4067. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4068. elif name.endswith(".conv1d.weight"):
  4069. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4070. assert data_torch.ndim == 2
  4071. elif name.endswith(".pre_mixer_norm.weight"):
  4072. data_torch += 1.0
  4073. elif name.endswith(".post_mixer_norm.weight"):
  4074. data_torch += 1.0 / 5
  4075. elif name.endswith(".pre_mlp_norm.weight"):
  4076. data_torch += 1.0
  4077. elif name.endswith(".post_mlp_norm.weight"):
  4078. data_torch += 1.0 / (5**1.5)
  4079. elif name.endswith(".norm.weight"):
  4080. data_torch += 1.0
  4081. new_name = self.map_tensor_name(name)
  4082. return [(new_name, data_torch)]
  4083. @ModelBase.register("CodeShellForCausalLM")
  4084. class CodeShellModel(TextModel):
  4085. model_arch = gguf.MODEL_ARCH.CODESHELL
  4086. def set_gguf_parameters(self):
  4087. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4088. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4089. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4090. self.gguf_writer.add_block_count(self.block_count)
  4091. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4092. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4093. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4094. self.gguf_writer.add_file_type(self.ftype)
  4095. self.gguf_writer.add_rope_freq_base(10000.0)
  4096. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4097. self.gguf_writer.add_rope_scaling_factor(1.0)
  4098. @ModelBase.register("InternLM2ForCausalLM")
  4099. class InternLM2Model(TextModel):
  4100. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4101. def set_vocab(self):
  4102. # (TODO): Is there a better way?
  4103. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4104. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4105. # recognized as an empty string in C++.
  4106. from sentencepiece import SentencePieceProcessor
  4107. from sentencepiece import sentencepiece_model_pb2 as model
  4108. tokenizer_path = self.dir_model / 'tokenizer.model'
  4109. tokens: list[bytes] = []
  4110. scores: list[float] = []
  4111. toktypes: list[int] = []
  4112. if not tokenizer_path.is_file():
  4113. logger.error(f'Error: Missing {tokenizer_path}')
  4114. sys.exit(1)
  4115. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4116. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4117. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4118. tokenizer = SentencePieceProcessor()
  4119. tokenizer.LoadFromFile(str(tokenizer_path))
  4120. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4121. for token_id in range(vocab_size):
  4122. piece = tokenizer.IdToPiece(token_id)
  4123. text = piece.encode("utf-8")
  4124. score = tokenizer.GetScore(token_id)
  4125. if text == b"\x00":
  4126. # (TODO): fixme
  4127. # Hack here and replace the \x00 characters.
  4128. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4129. text = "🐉".encode("utf-8")
  4130. toktype = SentencePieceTokenTypes.NORMAL
  4131. if tokenizer.IsUnknown(token_id):
  4132. toktype = SentencePieceTokenTypes.UNKNOWN
  4133. elif tokenizer.IsControl(token_id):
  4134. toktype = SentencePieceTokenTypes.CONTROL
  4135. elif tokenizer.IsUnused(token_id):
  4136. toktype = SentencePieceTokenTypes.UNUSED
  4137. elif tokenizer.IsByte(token_id):
  4138. toktype = SentencePieceTokenTypes.BYTE
  4139. # take care of ununsed raw token
  4140. if piece.startswith('[UNUSED'):
  4141. toktype = SentencePieceTokenTypes.UNUSED
  4142. tokens.append(text)
  4143. scores.append(score)
  4144. toktypes.append(toktype)
  4145. added_tokens_file = self.dir_model / 'added_tokens.json'
  4146. if added_tokens_file.is_file():
  4147. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4148. added_tokens_json = json.load(f)
  4149. for key in added_tokens_json:
  4150. tokens.append(key.encode("utf-8"))
  4151. scores.append(-1000.0)
  4152. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4153. chat_eos_token = '<|im_end|>'
  4154. chat_eos_token_id = None
  4155. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4156. if tokenizer_config_file.is_file():
  4157. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4158. tokenizer_config_json = json.load(f)
  4159. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4160. for token_id, foken_data in added_tokens_decoder.items():
  4161. token_id = int(token_id)
  4162. token = foken_data["content"]
  4163. if token == chat_eos_token:
  4164. chat_eos_token_id = token_id
  4165. token = token.encode("utf-8")
  4166. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4167. if tokens[token_id] != token:
  4168. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4169. tokens[token_id] = token
  4170. scores[token_id] = -1000.0
  4171. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4172. if foken_data.get("special"):
  4173. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4174. tokenizer_file = self.dir_model / 'tokenizer.json'
  4175. if tokenizer_file.is_file():
  4176. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4177. tokenizer_json = json.load(f)
  4178. added_tokens = tokenizer_json.get("added_tokens", [])
  4179. for foken_data in added_tokens:
  4180. token_id = int(foken_data["id"])
  4181. token = foken_data["content"]
  4182. if token == chat_eos_token:
  4183. chat_eos_token_id = token_id
  4184. token = token.encode("utf-8")
  4185. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4186. if tokens[token_id] != token:
  4187. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4188. tokens[token_id] = token
  4189. scores[token_id] = -1000.0
  4190. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4191. if foken_data.get("special"):
  4192. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4193. self.gguf_writer.add_tokenizer_model("llama")
  4194. self.gguf_writer.add_tokenizer_pre("default")
  4195. self.gguf_writer.add_token_list(tokens)
  4196. self.gguf_writer.add_token_scores(scores)
  4197. self.gguf_writer.add_token_types(toktypes)
  4198. self.gguf_writer.add_add_space_prefix(add_prefix)
  4199. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4200. old_eos = special_vocab.special_token_ids["eos"]
  4201. if chat_eos_token_id is not None:
  4202. # For the chat model, we replace the eos with '<|im_end|>'.
  4203. # TODO: this is a hack, should be fixed
  4204. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4205. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4206. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4207. " in chat mode so that the conversation can end normally.")
  4208. special_vocab.add_to_gguf(self.gguf_writer)
  4209. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4210. num_heads = self.hparams["num_attention_heads"]
  4211. num_kv_heads = self.hparams["num_key_value_heads"]
  4212. n_embd = self.hparams["hidden_size"]
  4213. q_per_kv = num_heads // num_kv_heads
  4214. head_dim = n_embd // num_heads
  4215. num_groups = num_heads // q_per_kv
  4216. name = name.replace("language_model.", "") # InternVL
  4217. if name.startswith("mlp") or name.startswith("vision_model"):
  4218. # skip visual tensors
  4219. return []
  4220. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4221. qkv = data_torch
  4222. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4223. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4224. # The model weights of q and k equire additional reshape.
  4225. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4226. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4227. v = v.reshape((-1, v.shape[-1]))
  4228. return [
  4229. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4230. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4231. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4232. ]
  4233. else:
  4234. return [(self.map_tensor_name(name), data_torch)]
  4235. @ModelBase.register("InternLM3ForCausalLM")
  4236. class InternLM3Model(TextModel):
  4237. model_arch = gguf.MODEL_ARCH.LLAMA
  4238. def set_vocab(self):
  4239. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4240. self.gguf_writer.add_tokenizer_model("llama")
  4241. self.gguf_writer.add_tokenizer_pre("default")
  4242. self.gguf_writer.add_token_list(tokens)
  4243. self.gguf_writer.add_token_scores(scores)
  4244. self.gguf_writer.add_token_types(toktypes)
  4245. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4246. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4247. if tokenizer_config_file.is_file():
  4248. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4249. tokenizer_config_json = json.load(f)
  4250. if "add_prefix_space" in tokenizer_config_json:
  4251. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4252. if "added_tokens_decoder" in tokenizer_config_json:
  4253. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4254. if token_data.get("special"):
  4255. token_id = int(token_id)
  4256. token = token_data["content"]
  4257. special_vocab._set_special_token(token, token_id)
  4258. # update eos token
  4259. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4260. special_vocab.special_token_ids["eos"] = token_id
  4261. special_vocab.add_to_gguf(self.gguf_writer)
  4262. def set_gguf_parameters(self):
  4263. super().set_gguf_parameters()
  4264. hparams = self.hparams
  4265. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4266. if (rope_dim := hparams.get("head_dim")) is None:
  4267. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4268. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4269. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4270. n_head = self.hparams["num_attention_heads"]
  4271. n_kv_head = self.hparams.get("num_key_value_heads")
  4272. name = name.replace("language_model.", "") # InternVL
  4273. if name.startswith("mlp") or name.startswith("vision_model"):
  4274. # skip visual tensors
  4275. return []
  4276. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4277. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4278. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4279. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4280. return [(self.map_tensor_name(name), data_torch)]
  4281. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4282. class BertModel(TextModel):
  4283. model_arch = gguf.MODEL_ARCH.BERT
  4284. def __init__(self, *args, **kwargs):
  4285. super().__init__(*args, **kwargs)
  4286. self.vocab_size = None
  4287. if cls_out_labels := self.hparams.get("id2label"):
  4288. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4289. # Remove dummy labels added by AutoConfig
  4290. cls_out_labels = None
  4291. self.cls_out_labels = cls_out_labels
  4292. def set_gguf_parameters(self):
  4293. super().set_gguf_parameters()
  4294. self.gguf_writer.add_causal_attention(False)
  4295. self._try_set_pooling_type()
  4296. if self.cls_out_labels:
  4297. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4298. def set_vocab(self):
  4299. tokens, toktypes, tokpre = self.get_vocab_base()
  4300. self.vocab_size = len(tokens)
  4301. # we need this to validate the size of the token_type embeddings
  4302. # though currently we are passing all zeros to the token_type embeddings
  4303. # "Sequence A" or "Sequence B"
  4304. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4305. # convert to phantom space vocab
  4306. def phantom(tok):
  4307. if tok.startswith("[") and tok.endswith("]"):
  4308. return tok
  4309. if tok.startswith("##"):
  4310. return tok[2:]
  4311. return "\u2581" + tok
  4312. tokens = list(map(phantom, tokens))
  4313. # add vocab to gguf
  4314. self.gguf_writer.add_tokenizer_model("bert")
  4315. self.gguf_writer.add_tokenizer_pre(tokpre)
  4316. self.gguf_writer.add_token_list(tokens)
  4317. self.gguf_writer.add_token_types(toktypes)
  4318. # handle special tokens
  4319. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4320. special_vocab.add_to_gguf(self.gguf_writer)
  4321. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4322. del bid # unused
  4323. if name.startswith("bert."):
  4324. name = name[5:]
  4325. if name.endswith(".gamma"):
  4326. name = name[:-6] + ".weight"
  4327. if name.endswith(".beta"):
  4328. name = name[:-5] + ".bias"
  4329. # we are only using BERT for embeddings so we don't need the pooling layer
  4330. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4331. return [] # we don't need these
  4332. if name.startswith("cls.predictions"):
  4333. return []
  4334. if name.startswith("cls.seq_relationship"):
  4335. return []
  4336. if self.cls_out_labels:
  4337. # For BertForSequenceClassification (direct projection layer)
  4338. if name == "classifier.weight":
  4339. name = "classifier.out_proj.weight"
  4340. if name == "classifier.bias":
  4341. name = "classifier.out_proj.bias"
  4342. return [(self.map_tensor_name(name), data_torch)]
  4343. def _xlmroberta_tokenizer_init(self) -> None:
  4344. # we need the pad_token_id to know how to chop down position_embd matrix
  4345. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4346. self._position_offset = 1 + pad_token_id
  4347. if "max_position_embeddings" in self.hparams:
  4348. self.hparams["max_position_embeddings"] -= self._position_offset
  4349. else:
  4350. self._position_offset = None
  4351. def _xlmroberta_set_vocab(self) -> None:
  4352. # to avoid TypeError: Descriptors cannot be created directly
  4353. # exception when importing sentencepiece_model_pb2
  4354. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4355. from sentencepiece import SentencePieceProcessor
  4356. from sentencepiece import sentencepiece_model_pb2 as model
  4357. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4358. tokenizer_json = {}
  4359. tokenizer_config_json = {}
  4360. if not tokenizer_path.is_file():
  4361. tokenizer_path = self.dir_model / 'tokenizer.json'
  4362. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4363. if not tokenizer_path.is_file():
  4364. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4365. from base64 import b64decode
  4366. from transformers import AutoTokenizer
  4367. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4368. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4369. tokenizer_json = json.load(fp)
  4370. if tokenizer_config_path.is_file():
  4371. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4372. tokenizer_config_json = json.load(fp)
  4373. add_prefix = tokenizer.add_prefix_space
  4374. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4375. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4376. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4377. else:
  4378. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4379. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4380. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4381. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4382. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4383. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4384. tokenizer = SentencePieceProcessor()
  4385. tokenizer.LoadFromFile(str(tokenizer_path))
  4386. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4387. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4388. scores: list[float] = [-10000.0] * vocab_size
  4389. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4390. if isinstance(tokenizer, SentencePieceProcessor):
  4391. for token_id in range(tokenizer.vocab_size()):
  4392. piece = tokenizer.IdToPiece(token_id)
  4393. text = piece.encode("utf-8")
  4394. score = tokenizer.GetScore(token_id)
  4395. toktype = SentencePieceTokenTypes.NORMAL
  4396. if tokenizer.IsUnknown(token_id):
  4397. toktype = SentencePieceTokenTypes.UNKNOWN
  4398. elif tokenizer.IsControl(token_id):
  4399. toktype = SentencePieceTokenTypes.CONTROL
  4400. elif tokenizer.IsUnused(token_id):
  4401. toktype = SentencePieceTokenTypes.UNUSED
  4402. elif tokenizer.IsByte(token_id):
  4403. toktype = SentencePieceTokenTypes.BYTE
  4404. tokens[token_id] = text
  4405. scores[token_id] = score
  4406. toktypes[token_id] = toktype
  4407. else:
  4408. added_vocab = tokenizer.get_added_vocab()
  4409. unk_token = tokenizer_config_json.get("unk_token")
  4410. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4411. for token_id in range(tokenizer.vocab_size):
  4412. piece = tokenizer._convert_id_to_token(token_id)
  4413. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4414. text = piece.encode("utf-8")
  4415. score = tokenizer_json["model"]["vocab"][token_id][1]
  4416. toktype = SentencePieceTokenTypes.NORMAL
  4417. if token_id == unk_token_id:
  4418. toktype = SentencePieceTokenTypes.UNKNOWN
  4419. elif token_id in tokenizer.all_special_ids:
  4420. toktype = SentencePieceTokenTypes.CONTROL
  4421. elif token_id in added_vocab.values():
  4422. toktype = SentencePieceTokenTypes.USER_DEFINED
  4423. # No reliable way to detect this, but jina doesn't have any
  4424. # elif tokenizer.IsByte(token_id):
  4425. # toktype = SentencePieceTokenTypes.BYTE
  4426. tokens[token_id] = text
  4427. scores[token_id] = score
  4428. toktypes[token_id] = toktype
  4429. if isinstance(tokenizer, SentencePieceProcessor):
  4430. # realign tokens (see HF tokenizer code)
  4431. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4432. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4433. toktypes = [
  4434. SentencePieceTokenTypes.CONTROL,
  4435. SentencePieceTokenTypes.CONTROL,
  4436. SentencePieceTokenTypes.CONTROL,
  4437. SentencePieceTokenTypes.UNKNOWN,
  4438. ] + toktypes[3:-1]
  4439. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4440. # Add mask token missing from sentencepiece.bpe.model
  4441. tokens[250001] = b'<mask>'
  4442. scores[250001] = 0.0
  4443. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4444. self.gguf_writer.add_tokenizer_model("t5")
  4445. self.gguf_writer.add_tokenizer_pre("default")
  4446. self.gguf_writer.add_token_list(tokens)
  4447. self.gguf_writer.add_token_scores(scores)
  4448. self.gguf_writer.add_token_types(toktypes)
  4449. self.gguf_writer.add_add_space_prefix(add_prefix)
  4450. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4451. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4452. if precompiled_charsmap:
  4453. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4454. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4455. special_vocab.add_to_gguf(self.gguf_writer)
  4456. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4457. class DistilBertModel(BertModel):
  4458. model_arch = gguf.MODEL_ARCH.BERT
  4459. def set_gguf_parameters(self):
  4460. self.gguf_writer.add_layer_norm_eps(1e-12)
  4461. logger.info("gguf: layer norm epsilon = 1e-12")
  4462. super().set_gguf_parameters()
  4463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4464. if name.startswith("distilbert."):
  4465. name = name[11:]
  4466. # These layers act as MLM head, so we don't need them
  4467. if name.startswith("vocab_"):
  4468. return []
  4469. return super().modify_tensors(data_torch, name, bid)
  4470. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4471. class RobertaModel(BertModel):
  4472. model_arch = gguf.MODEL_ARCH.BERT
  4473. def __init__(self, *args, **kwargs):
  4474. super().__init__(*args, **kwargs)
  4475. # we need the pad_token_id to know how to chop down position_embd matrix
  4476. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4477. self._position_offset = 1 + pad_token_id
  4478. if "max_position_embeddings" in self.hparams:
  4479. self.hparams["max_position_embeddings"] -= self._position_offset
  4480. else:
  4481. self._position_offset = None
  4482. def set_vocab(self):
  4483. """Support BPE tokenizers for roberta models"""
  4484. bpe_tok_path = self.dir_model / "tokenizer.json"
  4485. if bpe_tok_path.exists():
  4486. self._set_vocab_gpt2()
  4487. # we need this to validate the size of the token_type embeddings
  4488. # though currently we are passing all zeros to the token_type embeddings
  4489. # "Sequence A" or "Sequence B"
  4490. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4491. else:
  4492. return super().set_vocab()
  4493. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4494. # if name starts with "roberta.", remove the prefix
  4495. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4496. if name.startswith("roberta."):
  4497. name = name[8:]
  4498. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4499. if name == "embeddings.position_embeddings.weight":
  4500. if self._position_offset is not None:
  4501. data_torch = data_torch[self._position_offset:,:]
  4502. return super().modify_tensors(data_torch, name, bid)
  4503. @ModelBase.register("NomicBertModel")
  4504. class NomicBertModel(BertModel):
  4505. model_arch = gguf.MODEL_ARCH.BERT
  4506. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4507. hparams = kwargs.pop("hparams", None)
  4508. if hparams is None:
  4509. hparams = ModelBase.load_hparams(dir_model, False)
  4510. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4511. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4512. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4513. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4514. if self._tokenizer_is_xlmroberta:
  4515. self._xlmroberta_tokenizer_init()
  4516. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4517. if npos == 8192 and mtp == 2048:
  4518. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4519. elif npos == 2048 and mtp == 2048:
  4520. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4521. else:
  4522. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4523. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4524. # this doesn't do anything in the HF version
  4525. assert self.hparams["causal"] is False
  4526. # no bias tensors unless MoE
  4527. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4528. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4529. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4530. # norm at end of layer
  4531. assert self.hparams["prenorm"] is False
  4532. # standard RoPE
  4533. assert self.hparams["rotary_emb_fraction"] == 1.0
  4534. assert self.hparams["rotary_emb_interleaved"] is False
  4535. assert self.hparams["rotary_emb_scale_base"] is None
  4536. def set_vocab(self) -> None:
  4537. if self._tokenizer_is_xlmroberta:
  4538. return self._xlmroberta_set_vocab()
  4539. return super().set_vocab()
  4540. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4541. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4542. if "mlp.experts.bias" in name:
  4543. return [] # Explicitly return an empty list.
  4544. if "mlp.experts.mlp.w1" in name:
  4545. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4546. name += ".weight"
  4547. if "mlp.experts.mlp.w2" in name:
  4548. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4549. data_torch = data_torch.transpose(1, 2)
  4550. name += ".weight"
  4551. return [(self.map_tensor_name(name), data_torch)]
  4552. def set_gguf_parameters(self):
  4553. super().set_gguf_parameters()
  4554. if self.is_moe:
  4555. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4556. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4557. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4558. def _is_tokenizer_xlmroberta(self) -> bool:
  4559. with open(self.dir_model / "tokenizer.json") as f:
  4560. tokenizer_json = json.load(f)
  4561. toktyp = tokenizer_json["model"]["type"]
  4562. if toktyp == "Unigram":
  4563. return True
  4564. if toktyp == "WordPiece":
  4565. return False
  4566. raise ValueError(f"unknown tokenizer: {toktyp}")
  4567. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4568. class NeoBert(BertModel):
  4569. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4570. def set_gguf_parameters(self):
  4571. super().set_gguf_parameters()
  4572. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4573. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4574. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4575. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4576. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4577. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4578. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4579. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4580. def modify_tensors(self, data_torch, name, bid):
  4581. if name.startswith("decoder."):
  4582. return []
  4583. if name.startswith("model."):
  4584. name = name[6:]
  4585. return super().modify_tensors(data_torch, name, bid)
  4586. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4587. class XLMRobertaModel(BertModel):
  4588. model_arch = gguf.MODEL_ARCH.BERT
  4589. _lora_files = {}
  4590. _lora_names = []
  4591. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4592. hparams = kwargs.pop("hparams", None)
  4593. if hparams is None:
  4594. hparams = ModelBase.load_hparams(dir_model, False)
  4595. if lora_names := hparams.get("lora_adaptations"):
  4596. self._lora_names = lora_names
  4597. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4598. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4599. self._xlmroberta_tokenizer_init()
  4600. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4601. if self._lora_names:
  4602. for name in self._lora_names:
  4603. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4604. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4605. return super().generate_extra_tensors()
  4606. def set_type(self):
  4607. for lora_writer in self._lora_files.values():
  4608. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4609. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4610. super().set_type()
  4611. def set_vocab(self):
  4612. self._xlmroberta_set_vocab()
  4613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4614. # if name starts with "roberta.", remove the prefix
  4615. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4616. if name.startswith("roberta."):
  4617. name = name[8:]
  4618. # jina-embeddings-v3
  4619. if ".parametrizations." in name:
  4620. name = name.replace(".parametrizations.", ".")
  4621. if name.endswith(".original"):
  4622. name = name[:-9]
  4623. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4624. if name == "embeddings.position_embeddings.weight":
  4625. if self._position_offset is not None:
  4626. data_torch = data_torch[self._position_offset:,:]
  4627. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4628. if name.startswith("pooler.dense"):
  4629. return []
  4630. num_loras = data_torch.size(0)
  4631. assert num_loras == len(self._lora_names)
  4632. # Split out each LoRA in their own GGUF
  4633. for i, lora_writer in enumerate(self._lora_files.values()):
  4634. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4635. data = data_torch[i, :, :]
  4636. # Transpose/flip token_embd/types into correct shape
  4637. if new_name == "token_embd.weight.lora_b":
  4638. data = data.T
  4639. elif new_name.startswith("token_types.weight."):
  4640. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4641. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4642. return []
  4643. return super().modify_tensors(data_torch, name, bid)
  4644. def set_gguf_parameters(self):
  4645. super().set_gguf_parameters()
  4646. # jina-embeddings-v3
  4647. lora_alpha = self.hparams.get("lora_alpha")
  4648. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4649. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4650. for lora_name, lora_writer in self._lora_files.items():
  4651. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4652. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4653. if lora_prompt_prefixes:
  4654. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4655. def write(self):
  4656. super().write()
  4657. for lora_writer in self._lora_files.values():
  4658. lora_writer.write_header_to_file()
  4659. lora_writer.write_kv_data_to_file()
  4660. lora_writer.write_tensors_to_file(progress=True)
  4661. lora_writer.close()
  4662. @ModelBase.register("GemmaForCausalLM")
  4663. class GemmaModel(TextModel):
  4664. model_arch = gguf.MODEL_ARCH.GEMMA
  4665. def set_vocab(self):
  4666. self._set_vocab_sentencepiece()
  4667. # TODO: these special tokens should be exported only for the CodeGemma family
  4668. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4669. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4670. special_vocab._set_special_token("prefix", 67)
  4671. special_vocab._set_special_token("suffix", 69)
  4672. special_vocab._set_special_token("middle", 68)
  4673. special_vocab._set_special_token("fsep", 70)
  4674. special_vocab._set_special_token("eot", 107)
  4675. special_vocab.chat_template = None # do not add it twice
  4676. special_vocab.add_to_gguf(self.gguf_writer)
  4677. self.gguf_writer.add_add_space_prefix(False)
  4678. def set_gguf_parameters(self):
  4679. hparams = self.hparams
  4680. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4681. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4682. self.gguf_writer.add_block_count(self.block_count)
  4683. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4684. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4685. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4686. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4687. self.gguf_writer.add_key_length(hparams["head_dim"])
  4688. self.gguf_writer.add_value_length(hparams["head_dim"])
  4689. self.gguf_writer.add_file_type(self.ftype)
  4690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4691. del bid # unused
  4692. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4693. # To prevent errors, skip loading lm_head.weight.
  4694. if name == "lm_head.weight":
  4695. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4696. return []
  4697. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4698. if name.endswith("norm.weight"):
  4699. data_torch = data_torch + 1
  4700. return [(self.map_tensor_name(name), data_torch)]
  4701. @ModelBase.register("Gemma2ForCausalLM")
  4702. class Gemma2Model(TextModel):
  4703. model_arch = gguf.MODEL_ARCH.GEMMA2
  4704. def set_vocab(self):
  4705. self._set_vocab_sentencepiece()
  4706. self.gguf_writer.add_add_space_prefix(False)
  4707. def set_gguf_parameters(self):
  4708. hparams = self.hparams
  4709. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4710. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4711. self.gguf_writer.add_block_count(self.block_count)
  4712. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4713. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4714. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4715. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4716. self.gguf_writer.add_key_length(hparams["head_dim"])
  4717. self.gguf_writer.add_value_length(hparams["head_dim"])
  4718. self.gguf_writer.add_file_type(self.ftype)
  4719. self.gguf_writer.add_attn_logit_softcapping(
  4720. self.hparams["attn_logit_softcapping"]
  4721. )
  4722. self.gguf_writer.add_final_logit_softcapping(
  4723. self.hparams["final_logit_softcapping"]
  4724. )
  4725. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4726. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4727. del bid # unused
  4728. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4729. # To prevent errors, skip loading lm_head.weight.
  4730. if name == "lm_head.weight":
  4731. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4732. return []
  4733. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4734. if name.endswith("norm.weight"):
  4735. data_torch = data_torch + 1
  4736. return [(self.map_tensor_name(name), data_torch)]
  4737. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4738. class Gemma3Model(TextModel):
  4739. model_arch = gguf.MODEL_ARCH.GEMMA3
  4740. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4741. def set_vocab(self):
  4742. if (self.dir_model / "tokenizer.model").is_file():
  4743. self._set_vocab_sentencepiece()
  4744. self.gguf_writer.add_add_space_prefix(False)
  4745. else:
  4746. self._set_vocab_gpt2()
  4747. def set_gguf_parameters(self):
  4748. super().set_gguf_parameters()
  4749. hparams = self.hparams
  4750. # some default values are not specified in the hparams
  4751. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4752. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4753. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4754. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4755. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4756. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4757. # attn_logit_softcapping is removed in Gemma3
  4758. assert hparams.get("attn_logit_softcapping") is None
  4759. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4760. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4761. if hparams.get("sliding_window_pattern") != 1:
  4762. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4763. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4765. del bid # unused
  4766. if "language_model." in name:
  4767. name = name.replace("language_model.", "")
  4768. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4769. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4770. return [] # skip vision tensors
  4771. # remove OOV (out-of-vocabulary) rows in token_embd
  4772. if "embed_tokens.weight" in name:
  4773. if (self.dir_model / "tokenizer.model").is_file():
  4774. tokens = self._create_vocab_sentencepiece()[0]
  4775. else:
  4776. tokens = self.get_vocab_base()[0]
  4777. data_torch = data_torch[:len(tokens)]
  4778. # ref code in Gemma3RMSNorm
  4779. # output = output * (1.0 + self.weight.float())
  4780. # note: this is not the case on gemma3n
  4781. if name.endswith("norm.weight"):
  4782. data_torch = data_torch + self.norm_shift
  4783. return [(self.map_tensor_name(name), data_torch)]
  4784. @ModelBase.register("Gemma3TextModel")
  4785. class EmbeddingGemma(Gemma3Model):
  4786. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4787. module_paths = []
  4788. dense_features_dims = {}
  4789. def __init__(self, *args, **kwargs):
  4790. super().__init__(*args, **kwargs)
  4791. if self.sentence_transformers_dense_modules:
  4792. # read modules.json to determine if model has Dense layers
  4793. modules_file = self.dir_model / "modules.json"
  4794. if modules_file.is_file():
  4795. with open(modules_file, encoding="utf-8") as modules_json_file:
  4796. mods = json.load(modules_json_file)
  4797. for mod in mods:
  4798. if mod["type"] == "sentence_transformers.models.Dense":
  4799. mod_path = mod["path"]
  4800. # check if model.safetensors file for Dense layer exists
  4801. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4802. if model_tensors_file.is_file():
  4803. self.module_paths.append(mod_path)
  4804. # read config.json of the Dense layer to get in/out features
  4805. mod_conf_file = self.dir_model / mod_path / "config.json"
  4806. if mod_conf_file.is_file():
  4807. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4808. mod_conf = json.load(mod_conf_json_file)
  4809. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4810. prefix = self._get_dense_prefix(mod_path)
  4811. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4812. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4813. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4814. from safetensors.torch import load_file
  4815. module_paths = list(self.module_paths)
  4816. for i, module_path in enumerate(module_paths):
  4817. tensors_file = self.dir_model / module_path / "model.safetensors"
  4818. local_tensors = load_file(tensors_file)
  4819. tensor_name = self._get_dense_prefix(module_path)
  4820. for name, local_tensor in local_tensors.items():
  4821. if not name.endswith(".weight"):
  4822. continue
  4823. orig_name = name.replace("linear", tensor_name)
  4824. name = self.map_tensor_name(orig_name)
  4825. yield name, local_tensor.clone()
  4826. @staticmethod
  4827. def _get_dense_prefix(module_path) -> str:
  4828. """Get the tensor name prefix for the Dense layer from module path."""
  4829. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4830. return tensor_name
  4831. def set_gguf_parameters(self):
  4832. super().set_gguf_parameters()
  4833. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4834. # constructor. We want to use the value from the original model's config.json.
  4835. # ref: https://github.com/huggingface/transformers/pull/40700
  4836. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4837. config = json.load(f)
  4838. orig_sliding_window = config.get("sliding_window")
  4839. if orig_sliding_window is None:
  4840. raise ValueError("sliding_window not found in model config - this is required for the model")
  4841. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4842. f"instead of {self.hparams['sliding_window']}")
  4843. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4844. if self.sentence_transformers_dense_modules:
  4845. for dense, dims in self.dense_features_dims.items():
  4846. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4847. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4848. self._try_set_pooling_type()
  4849. @ModelBase.register("Gemma3ForConditionalGeneration")
  4850. class Gemma3VisionModel(MmprojModel):
  4851. def set_gguf_parameters(self):
  4852. super().set_gguf_parameters()
  4853. hparams = self.hparams
  4854. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4855. # default values below are taken from HF tranformers code
  4856. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4857. self.gguf_writer.add_vision_use_gelu(True)
  4858. # calculate proj_scale_factor (used by tinygemma3 test model)
  4859. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4860. n_per_side = int(image_seq_length ** 0.5)
  4861. image_size = self.hparams["image_size"]
  4862. patch_size = self.hparams["patch_size"]
  4863. proj_scale_factor = (image_size // patch_size) // n_per_side
  4864. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4865. # we only need to write this if it's not the default value
  4866. # in this case, we are converting a test model
  4867. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4868. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4869. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4870. if "input_projection" in name:
  4871. return gguf.GGMLQuantizationType.F16
  4872. if ".embeddings." in name:
  4873. return gguf.GGMLQuantizationType.F32
  4874. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4875. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4876. del bid # unused
  4877. if "vision_model.head." in name:
  4878. return [] # skip redundant tensors for tinygemma3
  4879. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4880. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4881. # process vision tensors
  4882. name = name.replace("_weight", ".weight")
  4883. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4884. # the other norm values are part of SigLIP model, and they are already correct
  4885. # ref code: Gemma3RMSNorm
  4886. if "soft_emb_norm.weight" in name:
  4887. logger.info(f"Correcting norm value for '{name}'")
  4888. data_torch = data_torch + 1
  4889. return [(self.map_tensor_name(name), data_torch)]
  4890. return [] # skip other tensors
  4891. @ModelBase.register("Gemma3nForConditionalGeneration")
  4892. class Gemma3NModel(Gemma3Model):
  4893. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4894. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4895. _altup_proj: list[Tensor] = []
  4896. _altup_unembd: list[Tensor] = []
  4897. def __init__(self, *args, **kwargs):
  4898. super().__init__(*args, **kwargs)
  4899. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4900. self._altup_proj = [
  4901. torch.Tensor(), # to be replaced
  4902. torch.Tensor(), # to be replaced
  4903. torch.Tensor(), # to be replaced
  4904. ]
  4905. self._altup_unembd = [
  4906. torch.Tensor(), # to be replaced
  4907. torch.Tensor(), # to be replaced
  4908. torch.Tensor(), # to be replaced
  4909. ]
  4910. def set_vocab(self):
  4911. super().set_vocab()
  4912. def set_gguf_parameters(self):
  4913. super().set_gguf_parameters()
  4914. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4915. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4916. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4917. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4918. activation_sparsity_scale = []
  4919. for s in self.hparams["activation_sparsity_pattern"]:
  4920. normal_dist = torch.distributions.normal.Normal(0, 1)
  4921. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4922. activation_sparsity_scale.append(std_multiplier.item())
  4923. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4924. sliding_window_pattern = []
  4925. for t in self.hparams["layer_types"]:
  4926. sliding_window_pattern.append(t == "sliding_attention")
  4927. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4928. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4929. has_all = all(m.numel() > 0 for m in matrices)
  4930. if not has_all:
  4931. return None
  4932. else:
  4933. return torch.stack(matrices, dim=0)
  4934. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4935. if name.endswith("_scale"):
  4936. name = name + ".weight"
  4937. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4938. if "language_model." not in name:
  4939. return [] # skip non-language model tensors
  4940. if "altup_unembed_projections" in name:
  4941. data_torch = data_torch.to(device="cpu")
  4942. if ".0." in name:
  4943. self._altup_unembd[0] = data_torch
  4944. elif ".1." in name:
  4945. self._altup_unembd[1] = data_torch
  4946. elif ".2." in name:
  4947. self._altup_unembd[2] = data_torch
  4948. else:
  4949. raise ValueError(f"Unknown name: {name}")
  4950. out = self._stack_matrices(self._altup_unembd)
  4951. if out is not None:
  4952. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4953. else:
  4954. return []
  4955. if "altup_projections" in name:
  4956. data_torch = data_torch.to(device="cpu")
  4957. if ".0." in name:
  4958. self._altup_proj[0] = data_torch
  4959. elif ".1." in name:
  4960. self._altup_proj[1] = data_torch
  4961. elif ".2." in name:
  4962. self._altup_proj[2] = data_torch
  4963. else:
  4964. raise ValueError(f"Unknown name: {name}")
  4965. out = self._stack_matrices(self._altup_proj)
  4966. if out is not None:
  4967. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4968. else:
  4969. return []
  4970. return super().modify_tensors(data_torch, name, bid)
  4971. @ModelBase.register("Starcoder2ForCausalLM")
  4972. class StarCoder2Model(TextModel):
  4973. model_arch = gguf.MODEL_ARCH.STARCODER2
  4974. @ModelBase.register("Rwkv6ForCausalLM")
  4975. class Rwkv6Model(TextModel):
  4976. model_arch = gguf.MODEL_ARCH.RWKV6
  4977. def set_vocab(self):
  4978. self._set_vocab_rwkv_world()
  4979. def set_gguf_parameters(self):
  4980. head_size = self.hparams["head_size"]
  4981. hidden_size = self.hparams["hidden_size"]
  4982. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4983. rescale_every_n_layers = self.hparams["rescale_every"]
  4984. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4985. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4986. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4987. # RWKV isn't context limited
  4988. self.gguf_writer.add_context_length(1048576)
  4989. self.gguf_writer.add_embedding_length(hidden_size)
  4990. self.gguf_writer.add_block_count(self.block_count)
  4991. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4992. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4993. self.gguf_writer.add_wkv_head_size(head_size)
  4994. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4995. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4996. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4997. self.gguf_writer.add_file_type(self.ftype)
  4998. # required by llama.cpp, unused
  4999. self.gguf_writer.add_head_count(0)
  5000. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5001. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5002. new_name = self.map_tensor_name(name)
  5003. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5004. new_name += ".weight"
  5005. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5006. data_torch = data_torch.transpose(0, 1)
  5007. if new_name.endswith("time_mix_w2.weight"):
  5008. data_torch = data_torch.permute(0, 2, 1)
  5009. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5010. data_torch = data_torch.squeeze()
  5011. try:
  5012. rescale_every_n_layers = self.hparams["rescale_every"]
  5013. if rescale_every_n_layers > 0:
  5014. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5015. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5016. except KeyError:
  5017. pass
  5018. # concat time_mix_lerp weights to reduce some cpu overhead
  5019. # also reduces the number of tensors in the model
  5020. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5021. try:
  5022. self.lerp_weights[bid][new_name] = data_torch
  5023. except KeyError:
  5024. self.lerp_weights[bid] = {new_name: data_torch}
  5025. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5026. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5027. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5028. yield (new_name, data)
  5029. return
  5030. yield (new_name, data_torch)
  5031. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5032. class RWKV6Qwen2Model(Rwkv6Model):
  5033. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5034. def set_vocab(self):
  5035. try:
  5036. self._set_vocab_sentencepiece()
  5037. except FileNotFoundError:
  5038. self._set_vocab_gpt2()
  5039. def set_gguf_parameters(self):
  5040. num_attention_heads = self.hparams["num_attention_heads"]
  5041. num_key_value_heads = self.hparams["num_key_value_heads"]
  5042. hidden_size = self.hparams["hidden_size"]
  5043. head_size = hidden_size // num_attention_heads
  5044. rms_norm_eps = self.hparams["rms_norm_eps"]
  5045. intermediate_size = self.hparams["intermediate_size"]
  5046. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5047. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5048. # RWKV isn't context limited
  5049. self.gguf_writer.add_context_length(1048576)
  5050. self.gguf_writer.add_embedding_length(hidden_size)
  5051. self.gguf_writer.add_block_count(self.block_count)
  5052. self.gguf_writer.add_wkv_head_size(head_size)
  5053. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5054. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5055. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5056. self.gguf_writer.add_file_type(self.ftype)
  5057. # special parameters for time_mixing in RWKV6QWEN2
  5058. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5059. self.gguf_writer.add_token_shift_count(1)
  5060. # RWKV6QWEN2 use grouped key/value like GQA
  5061. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5062. # required by llama.cpp, unused
  5063. self.gguf_writer.add_head_count(0)
  5064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5065. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5066. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5067. data = data.view(5, -1, data.shape[-1])
  5068. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5069. # permute them here to avoid code changes
  5070. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5071. if "w2" in new_name:
  5072. data = data.view(5, -1, data.shape[-1])
  5073. yield (new_name, data)
  5074. continue
  5075. yield (new_name, data)
  5076. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5077. class Rwkv7Model(TextModel):
  5078. model_arch = gguf.MODEL_ARCH.RWKV7
  5079. def set_vocab(self):
  5080. self._set_vocab_rwkv_world()
  5081. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5082. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5083. def set_gguf_parameters(self):
  5084. try:
  5085. head_size = self.hparams["head_size"]
  5086. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5087. except KeyError:
  5088. head_size = self.hparams["head_dim"]
  5089. layer_norm_eps = self.hparams["norm_eps"]
  5090. hidden_size = self.hparams["hidden_size"]
  5091. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5092. # ICLR: In-Context-Learning-Rate
  5093. try:
  5094. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5095. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5096. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5097. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5098. except KeyError:
  5099. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5100. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5101. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5102. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5103. # RWKV isn't context limited
  5104. self.gguf_writer.add_context_length(1048576)
  5105. self.gguf_writer.add_embedding_length(hidden_size)
  5106. self.gguf_writer.add_block_count(self.block_count)
  5107. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5108. self.gguf_writer.add_wkv_head_size(head_size)
  5109. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5110. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5111. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5112. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5113. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5114. self.gguf_writer.add_file_type(self.ftype)
  5115. # required by llama.cpp, unused
  5116. self.gguf_writer.add_head_count(0)
  5117. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5118. lora_needs_transpose: bool = True
  5119. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5120. # unify tensor names here to make life easier
  5121. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5122. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5123. name = name.replace("time_mixer.", "")
  5124. # lora layer names in fla-hub's impl
  5125. if "_lora.lora" in name:
  5126. self.lora_needs_transpose = False
  5127. name = name.replace("_lora.lora.0.weight", "1.weight")
  5128. name = name.replace("_lora.lora.2.weight", "2.weight")
  5129. name = name.replace("_lora.lora.2.bias", "0.weight")
  5130. name = name.replace("feed_forward_norm", "ln2")
  5131. name = name.replace("g_norm", "ln_x")
  5132. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5133. # some models have dummy v0/v1/v2 on first layer while others don't
  5134. # ignore them all since they are not used
  5135. return
  5136. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5137. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5138. if bid is not None and "attention.x_" in name:
  5139. if "attention.x_x" in name:
  5140. # already concatenated
  5141. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5142. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5143. yield (new_name, data)
  5144. else:
  5145. try:
  5146. self.lerp_weights[bid][name] = data_torch
  5147. except KeyError:
  5148. self.lerp_weights[bid] = {name: data_torch}
  5149. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5150. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5151. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5152. yield (new_name, data)
  5153. return
  5154. else:
  5155. data_torch = data_torch.squeeze()
  5156. new_name = self.map_tensor_name(name)
  5157. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5158. new_name += ".weight"
  5159. if self.lora_needs_transpose and any(
  5160. new_name.endswith(t) for t in [
  5161. "time_mix_w1.weight", "time_mix_w2.weight",
  5162. "time_mix_a1.weight", "time_mix_a2.weight",
  5163. "time_mix_v1.weight", "time_mix_v2.weight",
  5164. "time_mix_g1.weight", "time_mix_g2.weight",
  5165. ]
  5166. ):
  5167. data_torch = data_torch.transpose(0, 1)
  5168. if 'r_k' in new_name:
  5169. data_torch = data_torch.flatten()
  5170. if bid == 0 and "time_mix_a" in new_name:
  5171. # dummy v0/v1/v2 on first layer
  5172. # easist way to make llama happy
  5173. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5174. yield (new_name, data_torch)
  5175. @ModelBase.register("RwkvHybridForCausalLM")
  5176. class ARwkv7Model(Rwkv7Model):
  5177. model_arch = gguf.MODEL_ARCH.ARWKV7
  5178. def set_vocab(self):
  5179. try:
  5180. self._set_vocab_sentencepiece()
  5181. except FileNotFoundError:
  5182. self._set_vocab_gpt2()
  5183. def set_gguf_parameters(self):
  5184. hidden_size = self.hparams["hidden_size"]
  5185. head_size = self.hparams["head_size"]
  5186. rms_norm_eps = self.hparams["rms_norm_eps"]
  5187. intermediate_size = self.hparams["intermediate_size"]
  5188. wkv_has_gate = self.hparams["wkv_has_gate"]
  5189. assert self.hparams["wkv_version"] == 7
  5190. # ICLR: In-Context-Learning-Rate
  5191. lora_rank_decay = 64
  5192. lora_rank_iclr = 64
  5193. lora_rank_value_residual_mix = 32
  5194. lora_rank_gate = 128 if wkv_has_gate else 0
  5195. # RWKV isn't context limited
  5196. self.gguf_writer.add_context_length(1048576)
  5197. self.gguf_writer.add_embedding_length(hidden_size)
  5198. self.gguf_writer.add_block_count(self.block_count)
  5199. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5200. self.gguf_writer.add_wkv_head_size(head_size)
  5201. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5202. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5203. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5204. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5205. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5206. self.gguf_writer.add_file_type(self.ftype)
  5207. self.gguf_writer.add_token_shift_count(1)
  5208. # required by llama.cpp, unused
  5209. self.gguf_writer.add_head_count(0)
  5210. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5211. class MambaModel(TextModel):
  5212. model_arch = gguf.MODEL_ARCH.MAMBA
  5213. def __init__(self, dir_model: Path, *args, **kwargs):
  5214. # Avoid using AutoConfig for hparams
  5215. hparams = kwargs.pop("hparams", None)
  5216. if hparams is None:
  5217. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5218. hparams = json.load(f)
  5219. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5220. def set_vocab(self):
  5221. vocab_size = self.hparams["vocab_size"]
  5222. # Round vocab size to next multiple of 8
  5223. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5224. # pad using ceiling division
  5225. # ref: https://stackoverflow.com/a/17511341/22827863
  5226. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5227. self.hparams["vocab_size"] = vocab_size
  5228. if (self.dir_model / "tokenizer.json").is_file():
  5229. self._set_vocab_gpt2()
  5230. elif (self.dir_model / "tokenizer.model").is_file():
  5231. self._set_vocab_sentencepiece()
  5232. else:
  5233. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5234. self._set_vocab_builtin("gpt-neox", vocab_size)
  5235. def set_gguf_parameters(self):
  5236. d_model = self.find_hparam(["hidden_size", "d_model"])
  5237. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5238. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5239. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5240. # ceiling division
  5241. # ref: https://stackoverflow.com/a/17511341/22827863
  5242. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5243. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5244. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5245. use_dt_b_c_norm = False
  5246. # For falconmamba we do apply RMS norm on B / DT and C layers
  5247. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5248. use_dt_b_c_norm = True
  5249. # Fail early for models which don't have a block expansion factor of 2
  5250. assert d_inner == 2 * d_model
  5251. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5252. self.gguf_writer.add_embedding_length(d_model)
  5253. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5254. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5255. self.gguf_writer.add_block_count(self.block_count)
  5256. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5257. self.gguf_writer.add_ssm_inner_size(d_inner)
  5258. self.gguf_writer.add_ssm_state_size(d_state)
  5259. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5260. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5261. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5262. self.gguf_writer.add_file_type(self.ftype)
  5263. _tok_embd = None
  5264. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5265. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5266. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5267. new_name = self.map_tensor_name(name)
  5268. if name.endswith(".A_log"):
  5269. logger.debug("A_log --> A ==> " + new_name)
  5270. data_torch = -torch.exp(data_torch)
  5271. # [4 1 8192 1] -> [4 8192 1 1]
  5272. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5273. data_torch = data_torch.squeeze()
  5274. # assuming token_embd.weight is seen before output.weight
  5275. if self._tok_embd is not None and new_name == output_name:
  5276. if torch.equal(self._tok_embd, data_torch):
  5277. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5278. return []
  5279. elif new_name == tok_embd_name:
  5280. self._tok_embd = data_torch
  5281. return [(new_name, data_torch)]
  5282. @ModelBase.register("Mamba2ForCausalLM")
  5283. class Mamba2Model(TextModel):
  5284. model_arch = gguf.MODEL_ARCH.MAMBA2
  5285. def __init__(self, dir_model: Path, *args, **kwargs):
  5286. # Avoid using AutoConfig for hparams
  5287. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5288. hparams = kwargs.pop("hparams", None)
  5289. if hparams is None:
  5290. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5291. hparams = json.load(f)
  5292. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5293. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5294. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5295. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5296. def set_vocab(self):
  5297. vocab_size = self.hparams["vocab_size"]
  5298. # Round vocab size to next multiple of 16
  5299. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5300. # pad using ceiling division
  5301. # ref: https://stackoverflow.com/a/17511341/22827863
  5302. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5303. self.hparams["vocab_size"] = vocab_size
  5304. if (self.dir_model / "tokenizer.model").is_file():
  5305. self._set_vocab_sentencepiece()
  5306. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5307. # mamba-codestral
  5308. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5309. elif (self.dir_model / "tokenizer.json").is_file():
  5310. self._set_vocab_gpt2()
  5311. else:
  5312. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5313. self._set_vocab_builtin("gpt-neox", vocab_size)
  5314. def set_gguf_parameters(self):
  5315. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5316. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5317. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5318. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5319. # Fail early for models which don't have a block expansion factor of 2
  5320. # TODO: does this really matter?
  5321. # skip the assertion for FalconH1 Model
  5322. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5323. assert self.d_inner == 2 * self.d_model
  5324. assert self.d_inner % head_dim == 0
  5325. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5326. self.gguf_writer.add_embedding_length(self.d_model)
  5327. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5328. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5329. self.gguf_writer.add_block_count(self.block_count)
  5330. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5331. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5332. self.gguf_writer.add_ssm_state_size(d_state)
  5333. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5334. self.gguf_writer.add_ssm_group_count(self.n_group)
  5335. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5336. self.gguf_writer.add_file_type(self.ftype)
  5337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5338. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5339. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5340. name = name.removeprefix("model.")
  5341. if name.endswith(".dt_bias"):
  5342. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5343. new_name = self.map_tensor_name(name)
  5344. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5345. data_torch = data_torch.squeeze()
  5346. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5347. gguf.MODEL_TENSOR.SSM_A,
  5348. gguf.MODEL_TENSOR.SSM_D,
  5349. ]):
  5350. # unsqueeze A to use similar shape semantics as Mamba-1
  5351. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5352. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5353. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5354. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5355. if name.endswith(".A_log"):
  5356. logger.debug("A_log --> A ==> " + new_name)
  5357. data_torch = -torch.exp(data_torch)
  5358. yield (new_name, data_torch)
  5359. @ModelBase.register("JambaForCausalLM")
  5360. class JambaModel(TextModel):
  5361. model_arch = gguf.MODEL_ARCH.JAMBA
  5362. def set_vocab(self):
  5363. if (self.dir_model / "tokenizer.model").is_file():
  5364. self._set_vocab_sentencepiece()
  5365. else:
  5366. self._set_vocab_llama_hf()
  5367. self.gguf_writer.add_add_space_prefix(False)
  5368. def set_gguf_parameters(self):
  5369. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5370. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5371. d_inner = self.hparams["mamba_expand"] * d_model
  5372. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5373. # ceiling division
  5374. # ref: https://stackoverflow.com/a/17511341/22827863
  5375. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5376. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5377. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5378. n_kv_head = self.hparams["num_key_value_heads"]
  5379. attn_offset = self.hparams["attn_layer_offset"]
  5380. attn_period = self.hparams["attn_layer_period"]
  5381. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5382. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5383. ]
  5384. self.gguf_writer.add_block_count(self.block_count)
  5385. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5386. self.gguf_writer.add_embedding_length(d_model)
  5387. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5388. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5389. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5390. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5391. self.gguf_writer.add_ssm_inner_size(d_inner)
  5392. self.gguf_writer.add_ssm_state_size(d_state)
  5393. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5394. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5395. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5396. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5397. self.gguf_writer.add_file_type(self.ftype)
  5398. _experts: list[dict[str, Tensor]] | None = None
  5399. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5400. # Mini-Jamba
  5401. name = name.replace(".moe.", ".feed_forward.")
  5402. if bid is not None:
  5403. moe_offset = self.hparams["expert_layer_offset"]
  5404. moe_period = self.hparams["expert_layer_period"]
  5405. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5406. name = name.replace(".experts.0.", ".")
  5407. # process the experts separately
  5408. if ".feed_forward.experts." in name:
  5409. n_experts = self.hparams["num_experts"]
  5410. assert bid is not None
  5411. if self._experts is None:
  5412. self._experts = [{} for _ in range(self.block_count)]
  5413. self._experts[bid][name] = data_torch
  5414. if len(self._experts[bid]) >= n_experts * 3:
  5415. # merge the experts into a single 3d tensor
  5416. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5417. datas: list[Tensor] = []
  5418. for xid in range(n_experts):
  5419. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5420. datas.append(self._experts[bid][ename])
  5421. del self._experts[bid][ename]
  5422. data_torch = torch.stack(datas, dim=0)
  5423. # using the same merged name as qwen2moe
  5424. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5425. new_name = self.map_tensor_name(merged_name)
  5426. yield new_name, data_torch
  5427. return
  5428. new_name = self.map_tensor_name(name)
  5429. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5430. data_torch = data_torch.squeeze()
  5431. if name.endswith(".A_log"):
  5432. logger.debug("A_log --> A ==> " + new_name)
  5433. data_torch = -torch.exp(data_torch)
  5434. yield (new_name, data_torch)
  5435. def prepare_tensors(self):
  5436. super().prepare_tensors()
  5437. if self._experts is not None:
  5438. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5439. experts = [k for d in self._experts for k in d.keys()]
  5440. if len(experts) > 0:
  5441. raise ValueError(f"Unprocessed experts: {experts}")
  5442. @ModelBase.register("CohereForCausalLM")
  5443. class CommandR2Model(TextModel):
  5444. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5445. def __init__(self, *args, **kwargs):
  5446. super().__init__(*args, **kwargs)
  5447. # max_position_embeddings = 8192 in config.json but model was actually
  5448. # trained on 128k context length
  5449. # aya-23 models don't have model_max_length specified
  5450. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5451. def set_gguf_parameters(self):
  5452. super().set_gguf_parameters()
  5453. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5454. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5455. @ModelBase.register("Cohere2ForCausalLM")
  5456. class Cohere2Model(TextModel):
  5457. model_arch = gguf.MODEL_ARCH.COHERE2
  5458. def set_gguf_parameters(self):
  5459. super().set_gguf_parameters()
  5460. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5461. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5462. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5463. rotary_pct = self.hparams["rotary_pct"]
  5464. hidden_size = self.hparams["hidden_size"]
  5465. num_attention_heads = self.hparams["num_attention_heads"]
  5466. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5467. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5468. @ModelBase.register("OlmoForCausalLM")
  5469. @ModelBase.register("OLMoForCausalLM")
  5470. class OlmoModel(TextModel):
  5471. model_arch = gguf.MODEL_ARCH.OLMO
  5472. def set_gguf_parameters(self):
  5473. super().set_gguf_parameters()
  5474. self.gguf_writer.add_layer_norm_eps(1e-5)
  5475. clip_qkv = self.hparams.get("clip_qkv")
  5476. if clip_qkv is not None:
  5477. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5478. # Same as super class, but permuting q_proj, k_proj
  5479. # Copied from: LlamaModel
  5480. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5481. del bid # unused
  5482. n_head = self.hparams["num_attention_heads"]
  5483. n_kv_head = self.hparams.get("num_key_value_heads")
  5484. if name.endswith("q_proj.weight"):
  5485. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5486. if name.endswith("k_proj.weight"):
  5487. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5488. return [(self.map_tensor_name(name), data_torch)]
  5489. @ModelBase.register("SeedOssForCausalLM")
  5490. class SeedOssModel(TextModel):
  5491. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5492. @ModelBase.register("Olmo2ForCausalLM")
  5493. @ModelBase.register("Olmo3ForCausalLM")
  5494. class Olmo2Model(TextModel):
  5495. model_arch = gguf.MODEL_ARCH.OLMO2
  5496. def set_gguf_parameters(self):
  5497. super().set_gguf_parameters()
  5498. if "sliding_window" in self.hparams:
  5499. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5500. sliding_window_pattern = []
  5501. if "layer_types" in self.hparams:
  5502. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5503. else:
  5504. # Olmo2 does not use sliding window attention.
  5505. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5506. for i in range(self.hparams["num_hidden_layers"]):
  5507. sliding_window_pattern.append((i + 1) % 4 != 0)
  5508. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5509. @ModelBase.register("OlmoeForCausalLM")
  5510. class OlmoeModel(TextModel):
  5511. model_arch = gguf.MODEL_ARCH.OLMOE
  5512. def set_gguf_parameters(self):
  5513. super().set_gguf_parameters()
  5514. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5515. if (n_experts := self.hparams.get("num_experts")) is not None:
  5516. self.gguf_writer.add_expert_count(n_experts)
  5517. _experts: list[dict[str, Tensor]] | None = None
  5518. # Copied from: Qwen2MoeModel
  5519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5520. # process the experts separately
  5521. if name.find("experts") != -1:
  5522. n_experts = self.hparams["num_experts"]
  5523. assert bid is not None
  5524. if self._experts is None:
  5525. self._experts = [{} for _ in range(self.block_count)]
  5526. self._experts[bid][name] = data_torch
  5527. if len(self._experts[bid]) >= n_experts * 3:
  5528. tensors: list[tuple[str, Tensor]] = []
  5529. # merge the experts into a single 3d tensor
  5530. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5531. datas: list[Tensor] = []
  5532. for xid in range(n_experts):
  5533. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5534. datas.append(self._experts[bid][ename])
  5535. del self._experts[bid][ename]
  5536. data_torch = torch.stack(datas, dim=0)
  5537. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5538. new_name = self.map_tensor_name(merged_name)
  5539. tensors.append((new_name, data_torch))
  5540. return tensors
  5541. else:
  5542. return []
  5543. return [(self.map_tensor_name(name), data_torch)]
  5544. # Copied from: Qwen2MoeModel
  5545. def prepare_tensors(self):
  5546. super().prepare_tensors()
  5547. if self._experts is not None:
  5548. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5549. experts = [k for d in self._experts for k in d.keys()]
  5550. if len(experts) > 0:
  5551. raise ValueError(f"Unprocessed experts: {experts}")
  5552. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5553. class JinaBertV2Model(BertModel):
  5554. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5555. def set_vocab(self):
  5556. tokenizer_class = 'BertTokenizer'
  5557. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5558. tokenizer_class = json.load(f)['tokenizer_class']
  5559. if tokenizer_class == 'BertTokenizer':
  5560. super().set_vocab()
  5561. elif tokenizer_class == 'RobertaTokenizer':
  5562. self._set_vocab_gpt2()
  5563. self.gguf_writer.add_token_type_count(2)
  5564. else:
  5565. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5566. @ModelBase.register("OpenELMForCausalLM")
  5567. class OpenELMModel(TextModel):
  5568. model_arch = gguf.MODEL_ARCH.OPENELM
  5569. @staticmethod
  5570. def _make_divisible(v: float | int, divisor: int) -> int:
  5571. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5572. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5573. # Make sure that round down does not go down by more than 10%.
  5574. if new_v < 0.9 * v:
  5575. new_v += divisor
  5576. return new_v
  5577. def __init__(self, *args, **kwargs):
  5578. super().__init__(*args, **kwargs)
  5579. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5580. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5581. self._n_embd: int = self.hparams["model_dim"]
  5582. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5583. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5584. self._ffn_dims: list[int] = [
  5585. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5586. for multiplier in ffn_multipliers
  5587. ]
  5588. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5589. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5590. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5591. def set_vocab(self):
  5592. try:
  5593. self._set_vocab_sentencepiece()
  5594. except FileNotFoundError:
  5595. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5596. def set_gguf_parameters(self):
  5597. n_embd = self._n_embd
  5598. head_dim = self.hparams["head_dim"]
  5599. rot_pct = 1.0
  5600. assert self.block_count == len(self._num_kv_heads)
  5601. assert self.block_count == len(self._num_query_heads)
  5602. assert self.block_count == len(self._ffn_dims)
  5603. self.gguf_writer.add_block_count(self.block_count)
  5604. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5605. self.gguf_writer.add_embedding_length(n_embd)
  5606. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5607. self.gguf_writer.add_head_count(self._num_query_heads)
  5608. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5609. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5610. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5611. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5612. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5613. self.gguf_writer.add_key_length(head_dim)
  5614. self.gguf_writer.add_value_length(head_dim)
  5615. self.gguf_writer.add_file_type(self.ftype)
  5616. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5617. if "n_layers" in keys:
  5618. return self.hparams["num_transformer_layers"]
  5619. return super().find_hparam(keys, optional)
  5620. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5621. # split ff
  5622. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5623. ff_dim = self._ffn_dims[bid]
  5624. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5625. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5626. return
  5627. yield (self.map_tensor_name(name), data_torch)
  5628. @ModelBase.register("ArcticForCausalLM")
  5629. class ArcticModel(TextModel):
  5630. model_arch = gguf.MODEL_ARCH.ARCTIC
  5631. def set_vocab(self):
  5632. # The reason for using a custom implementation here is that the
  5633. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5634. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5635. from sentencepiece import SentencePieceProcessor
  5636. tokenizer_path = self.dir_model / 'tokenizer.model'
  5637. if not tokenizer_path.is_file():
  5638. logger.error(f'Error: Missing {tokenizer_path}')
  5639. sys.exit(1)
  5640. # Read the whole vocabulary from the tokenizer.model file
  5641. tokenizer = SentencePieceProcessor()
  5642. tokenizer.LoadFromFile(str(tokenizer_path))
  5643. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5644. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5645. scores: list[float] = [-10000.0] * vocab_size
  5646. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5647. for token_id in range(tokenizer.vocab_size()):
  5648. piece = tokenizer.IdToPiece(token_id)
  5649. text = piece.encode("utf-8")
  5650. score = tokenizer.GetScore(token_id)
  5651. toktype = SentencePieceTokenTypes.NORMAL
  5652. if tokenizer.IsUnknown(token_id):
  5653. toktype = SentencePieceTokenTypes.UNKNOWN
  5654. elif tokenizer.IsControl(token_id):
  5655. toktype = SentencePieceTokenTypes.CONTROL
  5656. elif tokenizer.IsUnused(token_id):
  5657. toktype = SentencePieceTokenTypes.UNUSED
  5658. elif tokenizer.IsByte(token_id):
  5659. toktype = SentencePieceTokenTypes.BYTE
  5660. tokens[token_id] = text
  5661. scores[token_id] = score
  5662. toktypes[token_id] = toktype
  5663. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5664. # of information about added/redefined tokens and modify them accordingly.
  5665. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5666. if tokenizer_config_file.is_file():
  5667. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5668. tokenizer_config_json = json.load(f)
  5669. if "added_tokens_decoder" in tokenizer_config_json:
  5670. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5671. for token_id, token_json in added_tokens_decoder.items():
  5672. token_id = int(token_id)
  5673. if token_id >= vocab_size:
  5674. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5675. continue
  5676. token_content = token_json["content"]
  5677. token_type = SentencePieceTokenTypes.USER_DEFINED
  5678. token_score = -10000.0
  5679. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5680. # Set the score to 0.0 as in the original tokenizer.model
  5681. if ("special" in token_json) and token_json["special"]:
  5682. if token_content == tokenizer_config_json["unk_token"]:
  5683. token_type = SentencePieceTokenTypes.UNKNOWN
  5684. else:
  5685. token_type = SentencePieceTokenTypes.CONTROL
  5686. token_score = 0.0
  5687. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5688. tokens[token_id] = token_content.encode("utf-8")
  5689. toktypes[token_id] = token_type
  5690. scores[token_id] = token_score
  5691. self.gguf_writer.add_tokenizer_model("llama")
  5692. self.gguf_writer.add_tokenizer_pre("default")
  5693. self.gguf_writer.add_token_list(tokens)
  5694. self.gguf_writer.add_token_scores(scores)
  5695. self.gguf_writer.add_token_types(toktypes)
  5696. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5697. special_vocab.add_to_gguf(self.gguf_writer)
  5698. def set_gguf_parameters(self):
  5699. super().set_gguf_parameters()
  5700. hparams = self.hparams
  5701. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5702. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5703. _experts: list[dict[str, Tensor]] | None = None
  5704. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5705. n_head = self.hparams["num_attention_heads"]
  5706. n_kv_head = self.hparams.get("num_key_value_heads")
  5707. if name.endswith("q_proj.weight"):
  5708. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5709. if name.endswith("k_proj.weight"):
  5710. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5711. # process the experts separately
  5712. if name.find("block_sparse_moe.experts") != -1:
  5713. n_experts = self.hparams["num_local_experts"]
  5714. assert bid is not None
  5715. if self._experts is None:
  5716. self._experts = [{} for _ in range(self.block_count)]
  5717. self._experts[bid][name] = data_torch
  5718. if len(self._experts[bid]) >= n_experts * 3:
  5719. tensors: list[tuple[str, Tensor]] = []
  5720. # merge the experts into a single 3d tensor
  5721. for wid in ["w1", "w2", "w3"]:
  5722. datas: list[Tensor] = []
  5723. for xid in range(n_experts):
  5724. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5725. datas.append(self._experts[bid][ename])
  5726. del self._experts[bid][ename]
  5727. data_torch = torch.stack(datas, dim=0)
  5728. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5729. new_name = self.map_tensor_name(merged_name)
  5730. tensors.append((new_name, data_torch))
  5731. return tensors
  5732. else:
  5733. return []
  5734. return [(self.map_tensor_name(name), data_torch)]
  5735. def prepare_tensors(self):
  5736. super().prepare_tensors()
  5737. if self._experts is not None:
  5738. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5739. experts = [k for d in self._experts for k in d.keys()]
  5740. if len(experts) > 0:
  5741. raise ValueError(f"Unprocessed experts: {experts}")
  5742. @ModelBase.register("DeepseekForCausalLM")
  5743. class DeepseekModel(TextModel):
  5744. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5745. def set_vocab(self):
  5746. try:
  5747. self._set_vocab_sentencepiece()
  5748. except FileNotFoundError:
  5749. self._set_vocab_gpt2()
  5750. def set_gguf_parameters(self):
  5751. super().set_gguf_parameters()
  5752. hparams = self.hparams
  5753. if (rope_dim := hparams.get("head_dim")) is None:
  5754. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5755. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5756. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5757. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5758. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5759. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5760. self.gguf_writer.add_expert_weights_scale(1.0)
  5761. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5762. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5763. _experts: list[dict[str, Tensor]] | None = None
  5764. @staticmethod
  5765. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5766. if n_head_kv is not None and n_head != n_head_kv:
  5767. n_head = n_head_kv
  5768. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5769. .swapaxes(1, 2)
  5770. .reshape(weights.shape))
  5771. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5772. n_head = self.hparams["num_attention_heads"]
  5773. n_kv_head = self.hparams.get("num_key_value_heads")
  5774. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5775. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5776. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5777. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5778. # process the experts separately
  5779. if name.find("mlp.experts") != -1:
  5780. n_experts = self.hparams["n_routed_experts"]
  5781. assert bid is not None
  5782. if self._experts is None:
  5783. self._experts = [{} for _ in range(self.block_count)]
  5784. self._experts[bid][name] = data_torch
  5785. if len(self._experts[bid]) >= n_experts * 3:
  5786. tensors: list[tuple[str, Tensor]] = []
  5787. # merge the experts into a single 3d tensor
  5788. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5789. datas: list[Tensor] = []
  5790. for xid in range(n_experts):
  5791. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5792. datas.append(self._experts[bid][ename])
  5793. del self._experts[bid][ename]
  5794. data_torch = torch.stack(datas, dim=0)
  5795. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5796. new_name = self.map_tensor_name(merged_name)
  5797. tensors.append((new_name, data_torch))
  5798. return tensors
  5799. else:
  5800. return []
  5801. return [(self.map_tensor_name(name), data_torch)]
  5802. def prepare_tensors(self):
  5803. super().prepare_tensors()
  5804. if self._experts is not None:
  5805. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5806. experts = [k for d in self._experts for k in d.keys()]
  5807. if len(experts) > 0:
  5808. raise ValueError(f"Unprocessed experts: {experts}")
  5809. @ModelBase.register(
  5810. "DeepseekV2ForCausalLM",
  5811. "DeepseekV3ForCausalLM",
  5812. "KimiVLForConditionalGeneration",
  5813. )
  5814. class DeepseekV2Model(TextModel):
  5815. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5816. def set_vocab(self):
  5817. try:
  5818. self._set_vocab_gpt2()
  5819. return
  5820. except Exception:
  5821. pass
  5822. from transformers import AutoTokenizer
  5823. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5824. tokpre = self.get_vocab_base_pre(tokenizer)
  5825. if tokpre == "kimi-k2":
  5826. # Build merges list using the approach similar to HunYuanMoE
  5827. merges = []
  5828. vocab = {}
  5829. mergeable_ranks = tokenizer.model._mergeable_ranks
  5830. for token, rank in mergeable_ranks.items():
  5831. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5832. if len(token) == 1:
  5833. continue
  5834. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5835. if len(merged) == 2:
  5836. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5837. # Build token list
  5838. vocab_size = self.hparams["vocab_size"]
  5839. special_tokens = tokenizer.special_tokens
  5840. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5841. tokens: list[str] = []
  5842. toktypes: list[int] = []
  5843. for i in range(vocab_size):
  5844. if i not in reverse_vocab:
  5845. tokens.append(f"[PAD{i}]")
  5846. toktypes.append(gguf.TokenType.UNUSED)
  5847. else:
  5848. token = reverse_vocab[i]
  5849. tokens.append(token)
  5850. if i in special_tokens.values():
  5851. toktypes.append(gguf.TokenType.CONTROL)
  5852. else:
  5853. toktypes.append(gguf.TokenType.NORMAL)
  5854. self.gguf_writer.add_tokenizer_model("gpt2")
  5855. self.gguf_writer.add_tokenizer_pre(tokpre)
  5856. self.gguf_writer.add_token_list(tokens)
  5857. self.gguf_writer.add_token_types(toktypes)
  5858. self.gguf_writer.add_token_merges(merges)
  5859. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5860. special_vocab.add_to_gguf(self.gguf_writer)
  5861. else:
  5862. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5863. def set_gguf_parameters(self):
  5864. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5865. self.hparams["num_key_value_heads"] = 1
  5866. super().set_gguf_parameters()
  5867. hparams = self.hparams
  5868. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5869. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5870. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5871. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5872. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5873. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5874. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5875. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5876. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5877. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5878. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5879. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5880. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5881. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5882. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5883. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5884. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5885. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5886. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5887. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5888. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5889. _experts: list[dict[str, Tensor]] | None = None
  5890. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5891. # skip vision tensors and remove "language_model." for Kimi-VL
  5892. if "vision_tower" in name or "multi_modal_projector" in name:
  5893. return []
  5894. if name.startswith("language_model."):
  5895. name = name.replace("language_model.", "")
  5896. # rename e_score_correction_bias tensors
  5897. if name.endswith("e_score_correction_bias"):
  5898. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5899. # skip Multi-Token Prediction (MTP) layers
  5900. block_count = self.hparams["num_hidden_layers"]
  5901. match = re.match(r"model.layers.(\d+)", name)
  5902. if match and int(match.group(1)) >= block_count:
  5903. return []
  5904. # process the experts separately
  5905. if name.find("mlp.experts") != -1:
  5906. n_experts = self.hparams["n_routed_experts"]
  5907. assert bid is not None
  5908. if self._experts is None:
  5909. self._experts = [{} for _ in range(self.block_count)]
  5910. self._experts[bid][name] = data_torch
  5911. if len(self._experts[bid]) >= n_experts * 3:
  5912. tensors: list[tuple[str, Tensor]] = []
  5913. # merge the experts into a single 3d tensor
  5914. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5915. datas: list[Tensor] = []
  5916. for xid in range(n_experts):
  5917. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5918. datas.append(self._experts[bid][ename])
  5919. del self._experts[bid][ename]
  5920. data_torch = torch.stack(datas, dim=0)
  5921. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5922. new_name = self.map_tensor_name(merged_name)
  5923. tensors.append((new_name, data_torch))
  5924. return tensors
  5925. else:
  5926. return []
  5927. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5928. if name.endswith("kv_b_proj.weight"):
  5929. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5930. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5931. n_head_kv = self.hparams["num_key_value_heads"]
  5932. v_head_dim = self.hparams["v_head_dim"]
  5933. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5934. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5935. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5936. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5937. k_b = k_b.transpose(1, 2)
  5938. return [
  5939. (self.map_tensor_name(name_kb), k_b),
  5940. (self.map_tensor_name(name_vb), v_b)
  5941. ]
  5942. return [(self.map_tensor_name(name), data_torch)]
  5943. def prepare_tensors(self):
  5944. super().prepare_tensors()
  5945. if self._experts is not None:
  5946. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5947. experts = [k for d in self._experts for k in d.keys()]
  5948. if len(experts) > 0:
  5949. raise ValueError(f"Unprocessed experts: {experts}")
  5950. @ModelBase.register("MiniMaxM2ForCausalLM")
  5951. class MiniMaxM2Model(TextModel):
  5952. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5953. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5954. def __init__(self, *args, **kwargs):
  5955. super().__init__(*args, **kwargs)
  5956. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5957. def set_gguf_parameters(self):
  5958. super().set_gguf_parameters()
  5959. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5960. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5962. if name.endswith("e_score_correction_bias"):
  5963. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5964. # merge expert weights
  5965. if 'experts' in name:
  5966. n_experts = self.hparams["num_experts"]
  5967. assert bid is not None
  5968. expert_cache = self._experts_cache.setdefault(bid, {})
  5969. expert_cache[name] = data_torch
  5970. expert_weights = ["w1", "w2", "w3"]
  5971. # not enough expert weights to merge
  5972. if len(expert_cache) < n_experts * len(expert_weights):
  5973. return []
  5974. tensors: list[tuple[str, Tensor]] = []
  5975. for w_name in expert_weights:
  5976. datas: list[Tensor] = []
  5977. for xid in range(n_experts):
  5978. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5979. datas.append(expert_cache[ename])
  5980. del expert_cache[ename]
  5981. data_torch = torch.stack(datas, dim=0)
  5982. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5983. new_name = self.map_tensor_name(merged_name)
  5984. tensors.append((new_name, data_torch))
  5985. del self._experts_cache[bid]
  5986. return tensors
  5987. return super().modify_tensors(data_torch, name, bid)
  5988. @ModelBase.register("PanguEmbeddedForCausalLM")
  5989. class PanguEmbeddedModel(TextModel):
  5990. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5991. def set_vocab(self):
  5992. self._set_vocab_sentencepiece()
  5993. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5994. if tokenizer_config_file.is_file():
  5995. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5996. tokenizer_config_json = json.load(f)
  5997. if "add_prefix_space" in tokenizer_config_json:
  5998. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5999. def set_gguf_parameters(self):
  6000. super().set_gguf_parameters()
  6001. hparams = self.hparams
  6002. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6003. # PanguEmbedded's hparam loaded from config.json without head_dim
  6004. if (rope_dim := hparams.get("head_dim")) is None:
  6005. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6006. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6007. if hparams.get("head_dim") is None:
  6008. self.gguf_writer.add_key_length(rope_dim)
  6009. self.gguf_writer.add_value_length(rope_dim)
  6010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6011. if name == "lm_head.weight":
  6012. if self.hparams.get("tie_word_embeddings", False):
  6013. logger.info("Skipping tied output layer 'lm_head.weight'")
  6014. return []
  6015. return [(self.map_tensor_name(name), data_torch)]
  6016. @ModelBase.register("Dots1ForCausalLM")
  6017. class Dots1Model(Qwen2MoeModel):
  6018. model_arch = gguf.MODEL_ARCH.DOTS1
  6019. def __init__(self, *args, **kwargs):
  6020. super().__init__(*args, **kwargs)
  6021. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6022. def set_gguf_parameters(self):
  6023. super().set_gguf_parameters()
  6024. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6025. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6026. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6027. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6029. if name.endswith("e_score_correction_bias"):
  6030. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6031. if "shared_experts" in name:
  6032. return [(self.map_tensor_name(name), data_torch)]
  6033. return super().modify_tensors(data_torch, name, bid)
  6034. @ModelBase.register("PLMForCausalLM")
  6035. class PLMModel(TextModel):
  6036. model_arch = gguf.MODEL_ARCH.PLM
  6037. def set_vocab(self):
  6038. self._set_vocab_gpt2()
  6039. def set_gguf_parameters(self):
  6040. super().set_gguf_parameters()
  6041. hparams = self.hparams
  6042. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6043. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6044. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6045. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6046. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6048. return [(self.map_tensor_name(name), data_torch)]
  6049. def prepare_tensors(self):
  6050. super().prepare_tensors()
  6051. @ModelBase.register("T5WithLMHeadModel")
  6052. @ModelBase.register("T5ForConditionalGeneration")
  6053. @ModelBase.register("MT5ForConditionalGeneration")
  6054. @ModelBase.register("UMT5ForConditionalGeneration")
  6055. @ModelBase.register("UMT5Model")
  6056. class T5Model(TextModel):
  6057. model_arch = gguf.MODEL_ARCH.T5
  6058. def __init__(self, *args, **kwargs):
  6059. super().__init__(*args, **kwargs)
  6060. self.shared_token_embeddings_found = False
  6061. def set_vocab(self):
  6062. # to avoid TypeError: Descriptors cannot be created directly
  6063. # exception when importing sentencepiece_model_pb2
  6064. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6065. from sentencepiece import SentencePieceProcessor
  6066. from sentencepiece import sentencepiece_model_pb2 as model
  6067. tokenizer_path = self.dir_model / 'tokenizer.model'
  6068. # many older models use spiece.model tokenizer model filename
  6069. if not tokenizer_path.is_file():
  6070. tokenizer_path = self.dir_model / 'spiece.model'
  6071. if not tokenizer_path.is_file():
  6072. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6073. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6074. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6075. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6076. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6077. # assure the tokenizer model file name is correct
  6078. assert tokenizer_path.name == 'tokenizer.model'
  6079. return self._set_vocab_sentencepiece()
  6080. else:
  6081. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6082. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6083. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6084. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6085. tokenizer = SentencePieceProcessor()
  6086. tokenizer.LoadFromFile(str(tokenizer_path))
  6087. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6088. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6089. scores: list[float] = [-10000.0] * vocab_size
  6090. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6091. for token_id in range(tokenizer.vocab_size()):
  6092. piece = tokenizer.IdToPiece(token_id)
  6093. text = piece.encode("utf-8")
  6094. score = tokenizer.GetScore(token_id)
  6095. toktype = SentencePieceTokenTypes.NORMAL
  6096. if tokenizer.IsUnknown(token_id):
  6097. toktype = SentencePieceTokenTypes.UNKNOWN
  6098. elif tokenizer.IsControl(token_id):
  6099. toktype = SentencePieceTokenTypes.CONTROL
  6100. elif tokenizer.IsUnused(token_id):
  6101. toktype = SentencePieceTokenTypes.UNUSED
  6102. elif tokenizer.IsByte(token_id):
  6103. toktype = SentencePieceTokenTypes.BYTE
  6104. tokens[token_id] = text
  6105. scores[token_id] = score
  6106. toktypes[token_id] = toktype
  6107. added_tokens_file = self.dir_model / 'added_tokens.json'
  6108. if added_tokens_file.is_file():
  6109. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6110. added_tokens_json = json.load(f)
  6111. for key in added_tokens_json:
  6112. token_id = added_tokens_json[key]
  6113. if token_id >= vocab_size:
  6114. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6115. continue
  6116. tokens[token_id] = key.encode("utf-8")
  6117. scores[token_id] = -1000.0
  6118. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6119. if vocab_size > len(tokens):
  6120. pad_count = vocab_size - len(tokens)
  6121. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6122. for i in range(1, pad_count + 1):
  6123. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6124. scores.append(-1000.0)
  6125. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6126. self.gguf_writer.add_tokenizer_model("t5")
  6127. self.gguf_writer.add_tokenizer_pre("default")
  6128. self.gguf_writer.add_token_list(tokens)
  6129. self.gguf_writer.add_token_scores(scores)
  6130. self.gguf_writer.add_token_types(toktypes)
  6131. self.gguf_writer.add_add_space_prefix(add_prefix)
  6132. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6133. if precompiled_charsmap:
  6134. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6135. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6136. special_vocab.add_to_gguf(self.gguf_writer)
  6137. def set_gguf_parameters(self):
  6138. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6139. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6140. n_ctx = 512
  6141. self.gguf_writer.add_context_length(n_ctx)
  6142. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6143. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6144. self.gguf_writer.add_block_count(self.block_count)
  6145. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6146. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6147. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6148. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6149. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6150. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6151. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6152. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6153. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6154. self.gguf_writer.add_file_type(self.ftype)
  6155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6156. del bid # unused
  6157. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6158. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6159. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6160. # and decoder and ignore the remaining ones.
  6161. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6162. if not self.shared_token_embeddings_found:
  6163. name = "shared.weight"
  6164. self.shared_token_embeddings_found = True
  6165. else:
  6166. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6167. return []
  6168. return [(self.map_tensor_name(name), data_torch)]
  6169. @ModelBase.register("T5EncoderModel")
  6170. class T5EncoderModel(TextModel):
  6171. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6172. def __init__(self, *args, **kwargs):
  6173. super().__init__(*args, **kwargs)
  6174. self.shared_token_embeddings_found = False
  6175. def set_vocab(self):
  6176. # to avoid TypeError: Descriptors cannot be created directly
  6177. # exception when importing sentencepiece_model_pb2
  6178. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6179. from sentencepiece import SentencePieceProcessor
  6180. from sentencepiece import sentencepiece_model_pb2 as model
  6181. tokenizer_path = self.dir_model / 'tokenizer.model'
  6182. # many older models use spiece.model tokenizer model filename
  6183. if not tokenizer_path.is_file():
  6184. tokenizer_path = self.dir_model / 'spiece.model'
  6185. if not tokenizer_path.is_file():
  6186. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6187. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6188. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6189. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6190. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6191. # assure the tokenizer model file name is correct
  6192. assert tokenizer_path.name == 'tokenizer.model'
  6193. return self._set_vocab_sentencepiece()
  6194. else:
  6195. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6196. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6197. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6198. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6199. tokenizer = SentencePieceProcessor()
  6200. tokenizer.LoadFromFile(str(tokenizer_path))
  6201. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6202. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6203. scores: list[float] = [-10000.0] * vocab_size
  6204. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6205. for token_id in range(tokenizer.vocab_size()):
  6206. piece = tokenizer.IdToPiece(token_id)
  6207. text = piece.encode("utf-8")
  6208. score = tokenizer.GetScore(token_id)
  6209. toktype = SentencePieceTokenTypes.NORMAL
  6210. if tokenizer.IsUnknown(token_id):
  6211. toktype = SentencePieceTokenTypes.UNKNOWN
  6212. elif tokenizer.IsControl(token_id):
  6213. toktype = SentencePieceTokenTypes.CONTROL
  6214. elif tokenizer.IsUnused(token_id):
  6215. toktype = SentencePieceTokenTypes.UNUSED
  6216. elif tokenizer.IsByte(token_id):
  6217. toktype = SentencePieceTokenTypes.BYTE
  6218. tokens[token_id] = text
  6219. scores[token_id] = score
  6220. toktypes[token_id] = toktype
  6221. added_tokens_file = self.dir_model / 'added_tokens.json'
  6222. if added_tokens_file.is_file():
  6223. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6224. added_tokens_json = json.load(f)
  6225. for key in added_tokens_json:
  6226. token_id = added_tokens_json[key]
  6227. if token_id >= vocab_size:
  6228. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6229. continue
  6230. tokens[token_id] = key.encode("utf-8")
  6231. scores[token_id] = -1000.0
  6232. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6233. if vocab_size > len(tokens):
  6234. pad_count = vocab_size - len(tokens)
  6235. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6236. for i in range(1, pad_count + 1):
  6237. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6238. scores.append(-1000.0)
  6239. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6240. self.gguf_writer.add_tokenizer_model("t5")
  6241. self.gguf_writer.add_tokenizer_pre("default")
  6242. self.gguf_writer.add_token_list(tokens)
  6243. self.gguf_writer.add_token_scores(scores)
  6244. self.gguf_writer.add_token_types(toktypes)
  6245. self.gguf_writer.add_add_space_prefix(add_prefix)
  6246. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6247. if precompiled_charsmap:
  6248. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6249. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6250. special_vocab.add_to_gguf(self.gguf_writer)
  6251. def set_gguf_parameters(self):
  6252. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6253. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6254. n_ctx = 512
  6255. self.gguf_writer.add_context_length(n_ctx)
  6256. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6257. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6258. self.gguf_writer.add_block_count(self.block_count)
  6259. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6260. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6261. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6262. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6263. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6264. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6265. self.gguf_writer.add_file_type(self.ftype)
  6266. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6267. del bid # unused
  6268. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6269. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6270. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6271. # and decoder and ignore the remaining ones.
  6272. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6273. if not self.shared_token_embeddings_found:
  6274. name = "shared.weight"
  6275. self.shared_token_embeddings_found = True
  6276. else:
  6277. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6278. return []
  6279. return [(self.map_tensor_name(name), data_torch)]
  6280. @ModelBase.register("JAISLMHeadModel")
  6281. class JaisModel(TextModel):
  6282. model_arch = gguf.MODEL_ARCH.JAIS
  6283. def __init__(self, *args, **kwargs):
  6284. super().__init__(*args, **kwargs)
  6285. # SwigLU activation
  6286. assert self.hparams["activation_function"] == "swiglu"
  6287. # ALiBi position embedding
  6288. assert self.hparams["position_embedding_type"] == "alibi"
  6289. # Embeddings scale
  6290. self.embeddings_scale = 1.0
  6291. if 'mup_embeddings_scale' in self.hparams:
  6292. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6293. elif 'embeddings_scale' in self.hparams:
  6294. self.embeddings_scale = self.hparams['embeddings_scale']
  6295. else:
  6296. assert False
  6297. self.width_scale = 1.0
  6298. if 'mup_output_alpha' in self.hparams:
  6299. assert 'mup_width_scale' in self.hparams
  6300. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6301. elif 'width_scale' in self.hparams:
  6302. self.width_scale = self.hparams['width_scale']
  6303. else:
  6304. assert False
  6305. self.max_alibi_bias = 8.0
  6306. def set_vocab(self):
  6307. self._set_vocab_gpt2()
  6308. def set_gguf_parameters(self):
  6309. self.gguf_writer.add_block_count(self.block_count)
  6310. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6311. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6312. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6313. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6314. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6315. self.gguf_writer.add_file_type(self.ftype)
  6316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6317. del bid # unused
  6318. tensors: list[tuple[str, Tensor]] = []
  6319. # we don't need these
  6320. if name.endswith((".attn.bias")):
  6321. return tensors
  6322. if name.endswith(("relative_pe.slopes")):
  6323. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6324. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6325. # but Jais's PyTorch model simply precalculates the slope values and places them
  6326. # in relative_pes.slopes
  6327. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6328. first_val = float(data_torch[0].item())
  6329. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6330. return tensors
  6331. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6332. data_torch = data_torch.transpose(1, 0)
  6333. new_name = self.map_tensor_name(name)
  6334. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6335. tensors.append((new_name, data_torch * self.embeddings_scale))
  6336. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6337. tensors.append((new_name, data_torch * self.width_scale))
  6338. else:
  6339. tensors.append((new_name, data_torch))
  6340. return tensors
  6341. def prepare_tensors(self):
  6342. super().prepare_tensors()
  6343. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6344. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6345. class Glm4Model(TextModel):
  6346. model_arch = gguf.MODEL_ARCH.GLM4
  6347. use_mrope = False
  6348. partial_rotary_factor = 0.5
  6349. def __init__(self, *args, **kwargs):
  6350. super().__init__(*args, **kwargs)
  6351. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6352. if "mrope_section" in self.rope_parameters:
  6353. self.use_mrope = True
  6354. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6355. def set_vocab(self):
  6356. from transformers import AutoTokenizer
  6357. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6358. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6359. tokens, toktypes, tokpre = self.get_vocab_base()
  6360. self.gguf_writer.add_tokenizer_model("gpt2")
  6361. self.gguf_writer.add_tokenizer_pre(tokpre)
  6362. self.gguf_writer.add_token_list(tokens)
  6363. self.gguf_writer.add_token_types(toktypes)
  6364. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6365. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6366. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6367. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6368. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6369. special_vocab.add_to_gguf(self.gguf_writer)
  6370. def set_gguf_parameters(self):
  6371. super().set_gguf_parameters()
  6372. if (rope_dim := self.hparams.get("head_dim")) is None:
  6373. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6374. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6375. @staticmethod
  6376. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6377. orig_shape = weights.shape
  6378. if len(orig_shape) == 1:
  6379. weights = weights.unsqueeze(1) # [out_dim, 1]
  6380. if len(weights.shape) != 2:
  6381. raise ValueError("Only 1D and 2D tensors are supported.")
  6382. n_effective_heads = weights.shape[0] // head_dim
  6383. if n_head_kv is not None and n_effective_heads != n_head:
  6384. if n_effective_heads != n_head_kv:
  6385. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6386. rotary_dim = int(head_dim * partial_rotary_factor)
  6387. if rotary_dim % 2 != 0:
  6388. raise ValueError("rotary_dim must be even.")
  6389. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6390. rot_part = reshaped[:, :rotary_dim, :]
  6391. non_rot_part = reshaped[:, rotary_dim:, :]
  6392. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6393. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6394. result = combined.reshape(weights.shape)
  6395. return result if len(orig_shape) != 1 else result.squeeze(1)
  6396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6397. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6398. return []
  6399. elif name.startswith("model.language_model."):
  6400. name = name.replace("language_model.", "") # for Glm4v
  6401. if self.use_mrope:
  6402. n_head = self.hparams["num_attention_heads"]
  6403. n_kv_head = self.hparams["num_key_value_heads"]
  6404. n_embd = self.hparams["hidden_size"]
  6405. head_dim = n_embd // n_head
  6406. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6407. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6408. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6409. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6410. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6411. return super().modify_tensors(data_torch, name, bid)
  6412. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6413. class Glm4MoeModel(TextModel):
  6414. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6415. def __init__(self, *args, **kwargs):
  6416. super().__init__(*args, **kwargs)
  6417. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6418. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6419. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6420. def set_vocab(self):
  6421. from transformers import AutoTokenizer
  6422. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6423. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6424. tokens, toktypes, tokpre = self.get_vocab_base()
  6425. self.gguf_writer.add_tokenizer_model("gpt2")
  6426. self.gguf_writer.add_tokenizer_pre(tokpre)
  6427. self.gguf_writer.add_token_list(tokens)
  6428. self.gguf_writer.add_token_types(toktypes)
  6429. # Special tokens
  6430. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6431. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6432. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6433. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6434. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6435. special_vocab.add_to_gguf(self.gguf_writer)
  6436. def set_gguf_parameters(self):
  6437. super().set_gguf_parameters()
  6438. if (rope_dim := self.hparams.get("head_dim")) is None:
  6439. rope_dim = (
  6440. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6441. )
  6442. self.gguf_writer.add_rope_dimension_count(
  6443. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6444. )
  6445. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6446. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6447. self.gguf_writer.add_expert_count(n_routed_experts)
  6448. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6449. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6450. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6451. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6452. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6453. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6454. # Expert gating function (sigmoid for GLM4_MOE)
  6455. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6456. # Routed scaling factor
  6457. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6458. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6459. # Normalise topk probabilities
  6460. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6461. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6462. # NextN/MTP prediction layers
  6463. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6464. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6465. _experts: list[dict[str, Tensor]] | None = None
  6466. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6467. def modify_tensors(
  6468. self, data_torch: Tensor, name: str, bid: int | None
  6469. ) -> Iterable[tuple[str, Tensor]]:
  6470. if name.startswith("model.visual."): # ignore visual part
  6471. return []
  6472. elif name.startswith("model.language_model."):
  6473. name = name.replace("language_model.", "") # for multimodal variants
  6474. # Handle main token embedding (but not layer-specific NextN embeddings)
  6475. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6476. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6477. # Handle routed experts
  6478. if name.find("mlp.experts") != -1:
  6479. n_experts = self.hparams["n_routed_experts"]
  6480. assert bid is not None
  6481. if self._experts is None:
  6482. self._experts = [{} for _ in range(self.block_count)]
  6483. self._experts[bid][name] = data_torch
  6484. if len(self._experts[bid]) >= n_experts * 3:
  6485. tensors: list[tuple[str, Tensor]] = []
  6486. # merge the experts into a single 3d tensor
  6487. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6488. datas: list[Tensor] = []
  6489. for xid in range(n_experts):
  6490. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6491. datas.append(self._experts[bid][ename])
  6492. del self._experts[bid][ename]
  6493. data_torch = torch.stack(datas, dim=0)
  6494. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6495. new_name = self.map_tensor_name(merged_name)
  6496. tensors.append((new_name, data_torch))
  6497. return tensors
  6498. else:
  6499. return []
  6500. if name.endswith("e_score_correction_bias"):
  6501. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6502. new_name = self.map_tensor_name(name)
  6503. return [(new_name, data_torch)]
  6504. def prepare_tensors(self):
  6505. super().prepare_tensors()
  6506. if self._experts is not None:
  6507. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6508. experts = [k for d in self._experts for k in d.keys()]
  6509. if len(experts) > 0:
  6510. raise ValueError(f"Unprocessed experts: {experts}")
  6511. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6512. class ChatGLMModel(TextModel):
  6513. model_arch = gguf.MODEL_ARCH.CHATGLM
  6514. def set_vocab_chatglm3(self):
  6515. dir_model = self.dir_model
  6516. hparams = self.hparams
  6517. tokens: list[bytes] = []
  6518. toktypes: list[int] = []
  6519. scores: list[float] = []
  6520. from transformers import AutoTokenizer
  6521. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6522. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6523. assert max(tokenizer.get_vocab().values()) < vocab_size
  6524. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6525. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6526. for token_id in range(vocab_size):
  6527. piece = tokenizer._convert_id_to_token(token_id)
  6528. if token_id == 0:
  6529. piece = "<unk>"
  6530. elif token_id == 1:
  6531. piece = "<bos>"
  6532. elif token_id == 2:
  6533. piece = "<eos>"
  6534. text = piece.encode("utf-8")
  6535. score = 0.0
  6536. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6537. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6538. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6539. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6540. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6541. if piece in special_tokens:
  6542. toktype = SentencePieceTokenTypes.CONTROL
  6543. elif len(piece) == 0:
  6544. text = f"[PAD{token_id}]".encode("utf-8")
  6545. toktype = SentencePieceTokenTypes.UNUSED
  6546. else:
  6547. toktype = SentencePieceTokenTypes.USER_DEFINED
  6548. tokens.append(text)
  6549. scores.append(score)
  6550. toktypes.append(toktype)
  6551. continue
  6552. toktype = SentencePieceTokenTypes.NORMAL
  6553. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6554. toktype = SentencePieceTokenTypes.UNKNOWN
  6555. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6556. toktype = SentencePieceTokenTypes.CONTROL
  6557. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6558. toktype = SentencePieceTokenTypes.UNUSED
  6559. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6560. toktype = SentencePieceTokenTypes.BYTE
  6561. tokens.append(text)
  6562. scores.append(score)
  6563. toktypes.append(toktype)
  6564. self.gguf_writer.add_tokenizer_model("llama")
  6565. # glm3 needs prefix and suffix formatted as:
  6566. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6567. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6568. self.gguf_writer.add_token_list(tokens)
  6569. self.gguf_writer.add_token_scores(scores)
  6570. self.gguf_writer.add_token_types(toktypes)
  6571. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6572. special_vocab.add_to_gguf(self.gguf_writer)
  6573. @staticmethod
  6574. def token_bytes_to_string(b):
  6575. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6576. byte_encoder = bytes_to_unicode()
  6577. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6578. @staticmethod
  6579. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6580. parts = [bytes([b]) for b in token]
  6581. while True:
  6582. min_idx = None
  6583. min_rank = None
  6584. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6585. rank = mergeable_ranks.get(pair[0] + pair[1])
  6586. if rank is not None and (min_rank is None or rank < min_rank):
  6587. min_idx = i
  6588. min_rank = rank
  6589. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6590. break
  6591. assert min_idx is not None
  6592. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6593. return parts
  6594. def set_vocab(self):
  6595. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6596. self.set_vocab_chatglm3()
  6597. return
  6598. dir_model = self.dir_model
  6599. hparams = self.hparams
  6600. tokens: list[str] = []
  6601. toktypes: list[int] = []
  6602. from transformers import AutoTokenizer
  6603. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6604. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6605. assert max(tokenizer.get_vocab().values()) < vocab_size
  6606. tokens, toktypes, tokpre = self.get_vocab_base()
  6607. self.gguf_writer.add_tokenizer_model("gpt2")
  6608. self.gguf_writer.add_tokenizer_pre(tokpre)
  6609. self.gguf_writer.add_token_list(tokens)
  6610. self.gguf_writer.add_token_types(toktypes)
  6611. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6612. # only add special tokens when they were not already loaded from config.json
  6613. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6614. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6615. # this one is usually not in config.json anyway
  6616. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6617. special_vocab.add_to_gguf(self.gguf_writer)
  6618. def set_gguf_parameters(self):
  6619. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6620. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6621. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6622. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6623. self.gguf_writer.add_embedding_length(n_embed)
  6624. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6625. self.gguf_writer.add_block_count(self.block_count)
  6626. self.gguf_writer.add_head_count(n_head)
  6627. self.gguf_writer.add_head_count_kv(n_head_kv)
  6628. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6629. self.gguf_writer.add_file_type(self.ftype)
  6630. if "attention_dim" in self.hparams:
  6631. rope_dim = self.hparams["attention_dim"]
  6632. else:
  6633. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6634. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6635. self.gguf_writer.add_add_bos_token(False)
  6636. rope_freq = 10000
  6637. if "rope_ratio" in self.hparams:
  6638. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6639. self.gguf_writer.add_rope_freq_base(rope_freq)
  6640. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6641. del bid # unused
  6642. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6643. return []
  6644. name = name.removeprefix("transformer.")
  6645. return [(self.map_tensor_name(name), data_torch)]
  6646. @ModelBase.register("NemotronForCausalLM")
  6647. class NemotronModel(TextModel):
  6648. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6649. def set_vocab(self):
  6650. self._set_vocab_sentencepiece()
  6651. self.gguf_writer.add_pad_token_id(0)
  6652. self.gguf_writer.add_unk_token_id(1)
  6653. def set_gguf_parameters(self):
  6654. super().set_gguf_parameters()
  6655. hparams = self.hparams
  6656. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6657. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6658. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6659. # * Partial RoPE
  6660. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6661. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6662. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6663. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6664. # * RopeScaling for Nemotron
  6665. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6666. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6667. else:
  6668. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6669. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6670. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6671. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6672. # model.layers.{l}.input_layernorm.weight
  6673. # model.layers.{l}.post_attention_layernorm.weight
  6674. # model.norm.weight
  6675. if name.endswith("norm.weight"):
  6676. data_torch = data_torch + 1
  6677. return [(self.map_tensor_name(name), data_torch)]
  6678. @ModelBase.register("ExaoneForCausalLM")
  6679. class ExaoneModel(TextModel):
  6680. model_arch = gguf.MODEL_ARCH.EXAONE
  6681. def set_gguf_parameters(self):
  6682. super().set_gguf_parameters()
  6683. hparams = self.hparams
  6684. assert (hparams["activation_function"] == "silu")
  6685. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6686. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6687. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6688. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6689. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6690. if rope_params.get("rope_type", '').lower() == "llama3":
  6691. base = self.rope_parameters.get("rope_theta", 10000.0)
  6692. if (dim := self.hparams.get("head_dim")) is None:
  6693. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6694. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6695. factor = rope_params.get("factor", 8.0)
  6696. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6697. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6698. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6699. low_freq_wavelen = old_context_len / low_freq_factor
  6700. high_freq_wavelen = old_context_len / high_freq_factor
  6701. assert low_freq_wavelen != high_freq_wavelen
  6702. rope_factors = []
  6703. for freq in freqs:
  6704. wavelen = 2 * math.pi / freq
  6705. if wavelen < high_freq_wavelen:
  6706. rope_factors.append(1)
  6707. elif wavelen > low_freq_wavelen:
  6708. rope_factors.append(factor)
  6709. else:
  6710. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6711. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6712. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6713. @ModelBase.register("Exaone4ForCausalLM")
  6714. class Exaone4Model(TextModel):
  6715. model_arch = gguf.MODEL_ARCH.EXAONE4
  6716. def set_vocab(self):
  6717. tokens, toktypes, tokpre = self.get_vocab_base()
  6718. self.gguf_writer.add_tokenizer_model("gpt2")
  6719. self.gguf_writer.add_tokenizer_pre(tokpre)
  6720. self.gguf_writer.add_token_list(tokens)
  6721. self.gguf_writer.add_token_types(toktypes)
  6722. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6723. special_vocab.add_to_gguf(self.gguf_writer)
  6724. def set_gguf_parameters(self):
  6725. super().set_gguf_parameters()
  6726. hparams = self.hparams
  6727. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6728. if hparams.get("sliding_window") is not None:
  6729. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6730. if "layer_types" in hparams:
  6731. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6732. elif "sliding_window_pattern" in hparams:
  6733. sliding_window_pattern = []
  6734. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6735. for i in range(hparams["num_hidden_layers"]):
  6736. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6737. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6738. for i in range(hparams["num_hidden_layers"]):
  6739. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6740. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6741. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6742. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6743. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6744. if rope_params.get("rope_type", '').lower() == "llama3":
  6745. base = rope_params.get("rope_theta", 10_000.0)
  6746. if (dim := self.hparams.get("head_dim")) is None:
  6747. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6748. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6749. factor = rope_params.get("factor", 16.0)
  6750. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6751. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6752. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6753. low_freq_wavelen = old_context_len / low_freq_factor
  6754. high_freq_wavelen = old_context_len / high_freq_factor
  6755. rope_factors = []
  6756. for freq in freqs:
  6757. wavelen = 2 * math.pi / freq
  6758. if wavelen < high_freq_wavelen:
  6759. rope_factors.append(1)
  6760. elif wavelen > low_freq_wavelen:
  6761. rope_factors.append(factor)
  6762. else:
  6763. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6764. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6765. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6766. @ModelBase.register("GraniteForCausalLM")
  6767. class GraniteModel(LlamaModel):
  6768. """Conversion for IBM's GraniteForCausalLM"""
  6769. model_arch = gguf.MODEL_ARCH.GRANITE
  6770. def set_gguf_parameters(self):
  6771. """Granite uses standard llama parameters with the following differences:
  6772. - No head_dim support
  6773. - New multiplier params:
  6774. - attention_scale
  6775. - embedding_scale
  6776. - residual_scale
  6777. - logits_scaling
  6778. """
  6779. if head_dim := self.hparams.pop("head_dim", None):
  6780. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6781. super().set_gguf_parameters()
  6782. # NOTE: Convert _multiplier params to _scale params for naming
  6783. # consistency
  6784. if attention_scale := self.hparams.get("attention_multiplier"):
  6785. self.gguf_writer.add_attention_scale(attention_scale)
  6786. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6787. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6788. self.gguf_writer.add_embedding_scale(embedding_scale)
  6789. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6790. if residual_scale := self.hparams.get("residual_multiplier"):
  6791. self.gguf_writer.add_residual_scale(residual_scale)
  6792. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6793. if logits_scale := self.hparams.get("logits_scaling"):
  6794. self.gguf_writer.add_logit_scale(logits_scale)
  6795. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6796. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6797. class GraniteMoeModel(GraniteModel):
  6798. """Conversion for IBM's GraniteMoeForCausalLM"""
  6799. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6800. def set_gguf_parameters(self):
  6801. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6802. - shared_intermediate_size
  6803. """
  6804. super().set_gguf_parameters()
  6805. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6806. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6807. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6808. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6809. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6810. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6811. the hidden size that is then split during forward. To keep compatibility
  6812. with existing mixtral support, we pull them apart here.
  6813. """
  6814. if name.endswith("block_sparse_moe.input_linear.weight"):
  6815. ffn_dim = self.hparams["intermediate_size"]
  6816. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6817. gate, up = data_torch.split(ffn_dim, dim=-2)
  6818. return [
  6819. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6820. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6821. ]
  6822. has_experts = bool(self.hparams.get('num_local_experts'))
  6823. if name.endswith("shared_mlp.input_linear.weight"):
  6824. ffn_dim = self.hparams["shared_intermediate_size"]
  6825. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6826. gate, up = data_torch.split(ffn_dim, dim=-2)
  6827. if has_experts:
  6828. return [
  6829. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6830. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6831. ]
  6832. return [
  6833. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6834. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6835. ]
  6836. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6837. return [
  6838. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6839. ]
  6840. return super().modify_tensors(data_torch, name, bid)
  6841. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6842. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6843. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6844. layers and optionally uses MoE w/ a shared expert"""
  6845. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6846. undo_permute = True
  6847. def __init__(self, *args, **kwargs):
  6848. # Hybrid mamba models use a prefix for the mamba-specific params.
  6849. # TODO: Extend this if the prefix(es) need to be configurable
  6850. self.hparam_prefixes = ["mamba"]
  6851. super().__init__(*args, **kwargs)
  6852. # Lists of which layers use ssm vs attention
  6853. self._attn_layers = self.get_attn_layers()
  6854. self._ssm_layers = [
  6855. i for i in range(self.block_count)
  6856. if i not in self._attn_layers
  6857. ]
  6858. # There are some models in this family that are non-hybrid, but keep the
  6859. # same parent class by setting all layers to "attention." If this is the
  6860. # case, the model architecture needs to be updated to a standard
  6861. # "granite" or "granitemoe" model
  6862. if not self._ssm_layers:
  6863. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6864. new_arch = (
  6865. gguf.MODEL_ARCH.GRANITE_MOE
  6866. if has_experts else
  6867. gguf.MODEL_ARCH.GRANITE
  6868. )
  6869. self.model_arch = new_arch
  6870. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6871. self.gguf_writer.add_architecture()
  6872. # n_group and d_inner are used during reshape_tensors for mamba2
  6873. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6874. # disambiguate with top-level head_dim
  6875. # NOTE 2: If needed for future models, this can be isolated in a method
  6876. # to separate the prefix setting and teh keys used
  6877. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6878. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6879. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6880. def get_attn_layers(self):
  6881. # Explicit list of layer type names
  6882. if layer_types := self.hparams.get("layer_types"):
  6883. return [
  6884. i for i, typ in enumerate(layer_types)
  6885. if typ == "attention"
  6886. ]
  6887. # Layer types indicated by index or period
  6888. attn_layers = self.hparams.get("attn_layer_indices", [])
  6889. if not attn_layers:
  6890. attn_period = self.hparams.get("attn_layer_period")
  6891. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6892. attn_offset = self.hparams.get("attn_layer_offset")
  6893. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6894. attn_layers = [
  6895. i for i in range(self.block_count)
  6896. if i % attn_period == attn_offset
  6897. ]
  6898. return attn_layers
  6899. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6900. prefixed = []
  6901. for pfx in self.hparam_prefixes:
  6902. prefixed.extend(
  6903. "_".join([pfx, k])
  6904. for k in keys
  6905. )
  6906. keys = list(keys) + prefixed
  6907. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6908. def modify_tensors(
  6909. self, data_torch: Tensor, name: str, bid: int | None
  6910. ) -> Iterable[tuple[str, Tensor]]:
  6911. if (
  6912. name.endswith("block_sparse_moe.input_linear.weight")
  6913. or "shared_mlp" in name
  6914. ):
  6915. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6916. # Determine whether this is a mamba layer or an attention layer
  6917. if bid in self._ssm_layers:
  6918. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6919. elif bid in self._attn_layers:
  6920. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6921. return [(self.map_tensor_name(name), data_torch)]
  6922. def set_gguf_parameters(self):
  6923. """This method merges params from both parents and some that are
  6924. specific to this model. The result is some duplication of how the params
  6925. get set. The following warnings are expected during conversion:
  6926. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6927. WARNING:Duplicated key name 'granitehybrid.context_length'
  6928. """
  6929. GraniteMoeModel.set_gguf_parameters(self)
  6930. ## Mamba mixer params ##
  6931. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6932. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6933. self.gguf_writer.add_ssm_group_count(self.n_group)
  6934. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6935. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6936. # in llama.cpp
  6937. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6938. ## Attention params ##
  6939. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6940. head_count_kv_vec = [
  6941. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6942. ]
  6943. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6944. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6945. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6946. ## If Bamba or non-hybrid, use rope, otherwise don't
  6947. use_rope = (
  6948. "BambaForCausalLM" in self.hparams["architectures"]
  6949. or not self._ssm_layers
  6950. )
  6951. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6952. if not use_rope:
  6953. self.gguf_writer.add_context_length(2**20)
  6954. ## Validation ##
  6955. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6956. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6957. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6958. def set_vocab(self):
  6959. self.hparams["pad_vocab_size_multiple"] = 8
  6960. Mamba2Model.set_vocab(self)
  6961. @ModelBase.register("NemotronHForCausalLM")
  6962. class NemotronHModel(GraniteHybridModel):
  6963. """Hybrid mamba2/attention model from NVIDIA"""
  6964. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6965. is_moe: bool = False
  6966. def __init__(self, *args, **kwargs):
  6967. # We have to determine the correct model architecture (MoE vs non-MoE) before
  6968. # calling the parent __init__. This is because the parent constructor
  6969. # uses self.model_arch to build the tensor name map, and all MoE-specific
  6970. # mappings would be missed if it were called with the default non-MoE arch.
  6971. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  6972. if "num_experts_per_tok" in hparams:
  6973. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  6974. self.is_moe = True
  6975. super().__init__(*args, **kwargs)
  6976. # Save the top-level head_dim for later
  6977. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6978. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6979. # Don't use expand to calculate d_inner
  6980. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6981. # Update the ssm / attn / mlp layers
  6982. # M: Mamba2, *: Attention, -: MLP
  6983. # MoE:
  6984. # M: Mamba2, *: Attention, E: Expert
  6985. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6986. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6987. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  6988. def get_attn_layers(self):
  6989. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6990. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6991. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6992. def set_gguf_parameters(self):
  6993. super().set_gguf_parameters()
  6994. self.gguf_writer.add_key_length(self.head_dim)
  6995. self.gguf_writer.add_value_length(self.head_dim)
  6996. # Set feed_forward_length
  6997. # NOTE: This will trigger an override warning. This is preferrable to
  6998. # duplicating all the parent logic
  6999. if not self.is_moe:
  7000. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7001. self.gguf_writer.add_feed_forward_length([
  7002. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7003. ])
  7004. else:
  7005. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7006. self.gguf_writer.add_feed_forward_length([
  7007. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7008. ])
  7009. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7010. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7011. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7012. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7013. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7014. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7015. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7016. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7017. # number of experts used per token (top-k)
  7018. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7019. self.gguf_writer.add_expert_used_count(n_experts_used)
  7020. def set_vocab(self):
  7021. super().set_vocab()
  7022. # The tokenizer _does_ add a BOS token (via post_processor type
  7023. # TemplateProcessing) but does not set add_bos_token to true in the
  7024. # config, so we need to explicitly override it here.
  7025. if not self.is_moe:
  7026. self.gguf_writer.add_add_bos_token(True)
  7027. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7028. if self.is_moe and bid is not None:
  7029. if name.endswith("mixer.gate.e_score_correction_bias"):
  7030. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7031. mapped_name = self.map_tensor_name(new_name)
  7032. return [(mapped_name, data_torch)]
  7033. if name.endswith("mixer.dt_bias"):
  7034. new_name = name.replace("dt_bias", "dt.bias")
  7035. mapped_name = self.map_tensor_name(new_name)
  7036. return [(mapped_name, data_torch)]
  7037. if name.endswith("mixer.conv1d.weight"):
  7038. squeezed_data = data_torch.squeeze()
  7039. mapped_name = self.map_tensor_name(name)
  7040. return [(mapped_name, squeezed_data)]
  7041. if name.endswith("mixer.A_log"):
  7042. transformed_data = -torch.exp(data_torch)
  7043. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7044. mapped_name = self.map_tensor_name(name)
  7045. return [(mapped_name, reshaped_data)]
  7046. if name.endswith("mixer.D"):
  7047. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7048. mapped_name = self.map_tensor_name(name)
  7049. return [(mapped_name, reshaped_data)]
  7050. if name.endswith("mixer.norm.weight"):
  7051. reshaped_data = data_torch.reshape(8, 512)
  7052. mapped_name = self.map_tensor_name(name)
  7053. return [(mapped_name, reshaped_data)]
  7054. if name.find("mixer.experts") != -1:
  7055. n_experts = self.hparams["n_routed_experts"]
  7056. assert bid is not None
  7057. if self._experts is None:
  7058. self._experts = [{} for _ in range(self.block_count)]
  7059. self._experts[bid][name] = data_torch
  7060. if len(self._experts[bid]) >= n_experts * 2:
  7061. # merge the experts into a single tensor
  7062. tensors: list[tuple[str, Tensor]] = []
  7063. for w_name in ["down_proj", "up_proj"]:
  7064. datas: list[Tensor] = []
  7065. for xid in range(n_experts):
  7066. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7067. datas.append(self._experts[bid][ename])
  7068. del self._experts[bid][ename]
  7069. data_torch = torch.stack(datas, dim=0)
  7070. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7071. new_name = self.map_tensor_name(merged_name)
  7072. tensors.append((new_name, data_torch))
  7073. return tensors
  7074. else:
  7075. return []
  7076. return super().modify_tensors(data_torch, name, bid)
  7077. def prepare_tensors(self):
  7078. super().prepare_tensors()
  7079. if self._experts is not None:
  7080. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7081. experts = [k for d in self._experts for k in d.keys()]
  7082. if len(experts) > 0:
  7083. raise ValueError(f"Unprocessed experts: {experts}")
  7084. @ModelBase.register("BailingMoeForCausalLM")
  7085. class BailingMoeModel(TextModel):
  7086. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7087. def set_vocab(self):
  7088. self._set_vocab_gpt2()
  7089. def set_gguf_parameters(self):
  7090. super().set_gguf_parameters()
  7091. hparams = self.hparams
  7092. if (rope_dim := hparams.get("head_dim")) is None:
  7093. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7094. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7095. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7096. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7097. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7098. self.gguf_writer.add_expert_weights_scale(1.0)
  7099. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7100. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7101. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7102. _experts: list[dict[str, Tensor]] | None = None
  7103. @staticmethod
  7104. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7105. if n_head_kv is not None and n_head != n_head_kv:
  7106. n_head = n_head_kv
  7107. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7108. .swapaxes(1, 2)
  7109. .reshape(weights.shape))
  7110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7111. n_head = self.hparams["num_attention_heads"]
  7112. n_kv_head = self.hparams.get("num_key_value_heads")
  7113. n_embd = self.hparams["hidden_size"]
  7114. if (head_dim := self.hparams.get("head_dim")) is None:
  7115. head_dim = n_embd // n_head
  7116. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7117. if name.endswith("attention.dense.weight"):
  7118. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7119. elif name.endswith("query_key_value.weight"):
  7120. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7121. return [
  7122. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7123. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7124. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7125. ]
  7126. elif name.find("mlp.experts") != -1:
  7127. n_experts = self.hparams["num_experts"]
  7128. assert bid is not None
  7129. tensors: list[tuple[str, Tensor]] = []
  7130. if self._experts is None:
  7131. self._experts = [{} for _ in range(self.block_count)]
  7132. self._experts[bid][name] = data_torch
  7133. if len(self._experts[bid]) >= n_experts * 3:
  7134. # merge the experts into a single 3d tensor
  7135. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7136. datas: list[Tensor] = []
  7137. for xid in range(n_experts):
  7138. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7139. datas.append(self._experts[bid][ename])
  7140. del self._experts[bid][ename]
  7141. data_torch = torch.stack(datas, dim=0)
  7142. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7143. new_name = self.map_tensor_name(merged_name)
  7144. tensors.append((new_name, data_torch))
  7145. return tensors
  7146. new_name = self.map_tensor_name(name)
  7147. if new_name == output_name and self.hparams.get("norm_head"):
  7148. data_torch = data_torch.float()
  7149. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7150. return [(new_name, data_torch)]
  7151. def prepare_tensors(self):
  7152. super().prepare_tensors()
  7153. if self._experts is not None:
  7154. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7155. experts = [k for d in self._experts for k in d.keys()]
  7156. if len(experts) > 0:
  7157. raise ValueError(f"Unprocessed experts: {experts}")
  7158. @ModelBase.register("BailingMoeV2ForCausalLM")
  7159. class BailingMoeV2Model(TextModel):
  7160. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7161. def __init__(self, *args, **kwargs):
  7162. super().__init__(*args, **kwargs)
  7163. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7164. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7165. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7166. def set_vocab(self):
  7167. self._set_vocab_gpt2()
  7168. def set_gguf_parameters(self):
  7169. super().set_gguf_parameters()
  7170. hparams = self.hparams
  7171. if (rope_dim := hparams.get("head_dim")) is None:
  7172. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7173. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7174. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7175. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7176. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7177. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7178. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7179. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7180. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7181. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7182. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7183. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7184. _experts: list[dict[str, Tensor]] | None = None
  7185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7186. if "mlp.experts" in name:
  7187. n_experts = self.hparams["num_experts"]
  7188. assert bid is not None
  7189. tensors: list[tuple[str, Tensor]] = []
  7190. if self._experts is None:
  7191. self._experts = [{} for _ in range(self.block_count)]
  7192. self._experts[bid][name] = data_torch
  7193. if len(self._experts[bid]) >= n_experts * 3:
  7194. # merge the experts into a single 3d tensor
  7195. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7196. datas: list[Tensor] = []
  7197. for xid in range(n_experts):
  7198. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7199. datas.append(self._experts[bid][ename])
  7200. del self._experts[bid][ename]
  7201. data_torch = torch.stack(datas, dim=0)
  7202. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7203. new_name = self.map_tensor_name(merged_name)
  7204. tensors.append((new_name, data_torch))
  7205. return tensors
  7206. if name.endswith(".expert_bias"):
  7207. name = name.replace(".expert_bias", ".expert_bias.bias")
  7208. return [(self.map_tensor_name(name), data_torch)]
  7209. def prepare_tensors(self):
  7210. super().prepare_tensors()
  7211. if self._experts is not None:
  7212. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7213. experts = [k for d in self._experts for k in d.keys()]
  7214. if len(experts) > 0:
  7215. raise ValueError(f"Unprocessed experts: {experts}")
  7216. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7217. class GroveMoeModel(TextModel):
  7218. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7219. def set_gguf_parameters(self):
  7220. super().set_gguf_parameters()
  7221. if (n_experts := self.hparams.get("num_experts")) is not None:
  7222. self.gguf_writer.add_expert_count(n_experts)
  7223. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7224. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7225. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7226. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7227. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7228. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7229. self.gguf_writer.add_experts_per_group(2)
  7230. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7231. self.gguf_writer.add_expert_group_scale(0.05)
  7232. _experts: list[dict[str, Tensor]] | None = None
  7233. _chunk_experts: list[dict[str, Tensor]] | None = None
  7234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7235. if name.endswith(".expert_bias"):
  7236. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7237. return []
  7238. # process the experts separately
  7239. if name.find("chunk_experts") != -1:
  7240. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7241. assert bid is not None
  7242. if self._chunk_experts is None:
  7243. self._chunk_experts = [{} for _ in range(self.block_count)]
  7244. self._chunk_experts[bid][name] = data_torch
  7245. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7246. tensors: list[tuple[str, Tensor]] = []
  7247. # merge the experts into a single 3d tensor
  7248. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7249. datas: list[Tensor] = []
  7250. for xid in range(n_experts):
  7251. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7252. datas.append(self._chunk_experts[bid][ename])
  7253. del self._chunk_experts[bid][ename]
  7254. data_torch = torch.stack(datas, dim=0)
  7255. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7256. new_name = self.map_tensor_name(merged_name)
  7257. tensors.append((new_name, data_torch))
  7258. return tensors
  7259. else:
  7260. return []
  7261. elif name.find("experts") != -1:
  7262. n_experts = self.hparams["num_experts"]
  7263. assert bid is not None
  7264. if self._experts is None:
  7265. self._experts = [{} for _ in range(self.block_count)]
  7266. self._experts[bid][name] = data_torch
  7267. if len(self._experts[bid]) >= n_experts * 3:
  7268. tensors: list[tuple[str, Tensor]] = []
  7269. # merge the experts into a single 3d tensor
  7270. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7271. datas: list[Tensor] = []
  7272. for xid in range(n_experts):
  7273. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7274. datas.append(self._experts[bid][ename])
  7275. del self._experts[bid][ename]
  7276. data_torch = torch.stack(datas, dim=0)
  7277. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7278. new_name = self.map_tensor_name(merged_name)
  7279. tensors.append((new_name, data_torch))
  7280. return tensors
  7281. else:
  7282. return []
  7283. return [(self.map_tensor_name(name), data_torch)]
  7284. def prepare_tensors(self):
  7285. super().prepare_tensors()
  7286. if self._chunk_experts is not None:
  7287. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7288. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7289. if len(chunk_experts) > 0:
  7290. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7291. if self._experts is not None:
  7292. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7293. experts = [k for d in self._experts for k in d.keys()]
  7294. if len(experts) > 0:
  7295. raise ValueError(f"Unprocessed experts: {experts}")
  7296. @ModelBase.register("ChameleonForConditionalGeneration")
  7297. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7298. class ChameleonModel(TextModel):
  7299. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7300. def set_gguf_parameters(self):
  7301. super().set_gguf_parameters()
  7302. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7303. def set_vocab(self):
  7304. self._set_vocab_gpt2()
  7305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7306. # ignore image tokenizer for now
  7307. # TODO: remove this once image support is implemented for Chameleon
  7308. if name.startswith("model.vqmodel"):
  7309. return []
  7310. n_head = self.hparams["num_attention_heads"]
  7311. n_kv_head = self.hparams.get("num_key_value_heads")
  7312. hidden_dim = self.hparams.get("hidden_size")
  7313. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7314. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7315. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7316. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7317. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7318. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7319. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7320. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7321. return [(self.map_tensor_name(name), data_torch)]
  7322. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7323. @staticmethod
  7324. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7325. head_dim = hidden_dim // n_heads
  7326. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7327. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7328. return data_torch
  7329. @ModelBase.register("UltravoxModel")
  7330. class UltravoxModel(TextModel):
  7331. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7332. def __init__(self, *args, **kwargs):
  7333. super().__init__(*args, **kwargs)
  7334. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7335. @ModelBase.register("GlmasrModel")
  7336. class GlmASRWhisperEncoderModel(MmprojModel):
  7337. has_vision_encoder = False
  7338. has_audio_encoder = True
  7339. def __init__(self, *args, **kwargs):
  7340. super().__init__(*args, **kwargs)
  7341. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7342. self.hparams["hidden_size"] = self.hparams["d_model"]
  7343. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7344. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7345. def set_gguf_parameters(self):
  7346. super().set_gguf_parameters()
  7347. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7348. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7349. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7350. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7351. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7352. if ".conv" in name and ".weight" in name:
  7353. return gguf.GGMLQuantizationType.F16
  7354. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7356. del bid # unused
  7357. if name.startswith("model.") or name.startswith("lm_head."):
  7358. # skip language model tensors
  7359. return []
  7360. if name.startswith("audio_encoder.whisper."):
  7361. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7362. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7363. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7364. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7365. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7366. if name.startswith("audio_encoder.adapting."):
  7367. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7368. if ".layer_norm." in name:
  7369. name = name.replace(".layer_norm.", ".ln_pre.")
  7370. if ".0." in name:
  7371. name = name.replace(".0.", ".linear_1.")
  7372. if ".2." in name:
  7373. name = name.replace(".2.", ".linear_2.")
  7374. if ".proj." in name:
  7375. return []
  7376. if "conv1.bias" in name or "conv2.bias" in name:
  7377. # transpose conv1 and conv2 bias
  7378. data_torch = data_torch.unsqueeze(-1)
  7379. return [(self.map_tensor_name(name), data_torch)]
  7380. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7381. class WhisperEncoderModel(MmprojModel):
  7382. has_vision_encoder = False # no vision encoder
  7383. has_audio_encoder = True
  7384. def __init__(self, *args, **kwargs):
  7385. super().__init__(*args, **kwargs)
  7386. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7387. self.hparams["hidden_size"] = self.hparams["d_model"]
  7388. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7389. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7390. def set_gguf_parameters(self):
  7391. super().set_gguf_parameters()
  7392. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7393. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7394. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7395. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7396. if ".conv" in name and ".weight" in name:
  7397. return gguf.GGMLQuantizationType.F16
  7398. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7399. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7400. del bid # unused
  7401. if name.startswith("language_model."):
  7402. # skip language model tensors
  7403. return []
  7404. # prevent clash naming with vision tensors
  7405. if name.startswith("multi_modal_projector"):
  7406. name = "audio." + name
  7407. if "conv1.bias" in name or "conv2.bias" in name:
  7408. # transpose conv1 and conv2 bias
  7409. data_torch = data_torch.unsqueeze(-1)
  7410. return [(self.map_tensor_name(name), data_torch)]
  7411. @ModelBase.register("UltravoxModel")
  7412. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7413. has_vision_encoder = False # no vision encoder
  7414. has_audio_encoder = True
  7415. def set_gguf_parameters(self):
  7416. super().set_gguf_parameters()
  7417. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7418. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7419. @ModelBase.register("VoxtralForConditionalGeneration")
  7420. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7421. has_vision_encoder = False # no vision encoder
  7422. has_audio_encoder = True
  7423. def set_gguf_parameters(self):
  7424. super().set_gguf_parameters()
  7425. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7426. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7427. @ModelBase.register("FalconH1ForCausalLM")
  7428. class FalconH1Model(Mamba2Model):
  7429. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7430. def __init__(self, *args, **kwargs):
  7431. # Set the hparam prefixes for Falcon Mamba2
  7432. self.hparam_prefixes = ["mamba"]
  7433. # Initialize the base Mamba2Model
  7434. super().__init__(*args, **kwargs)
  7435. # Use Llama conversion for attention
  7436. self._transformer_model_class = LlamaModel
  7437. # n_group and d_inner are used during reshape_tensors for mamba2
  7438. self.n_group = self.find_hparam(["n_groups"])
  7439. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7440. self.d_head = self.find_hparam(["d_head"])
  7441. # Initialize any Falcon Mamba2 specific attributes
  7442. self.has_attention = True # Falcon Mamba2 has attention components
  7443. # Load Falcon-H1 multipliers from hyperparameters
  7444. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7445. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7446. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7447. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7448. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7449. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7450. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7451. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7452. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7453. prefixed = []
  7454. for pfx in self.hparam_prefixes:
  7455. prefixed.extend(
  7456. "_".join([pfx, k])
  7457. for k in keys
  7458. )
  7459. keys = list(keys) + prefixed
  7460. return super().find_hparam(keys, *args, **kwargs)
  7461. def set_vocab(self):
  7462. self._set_vocab_gpt2()
  7463. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7464. tensors = list(super().modify_tensors(data_torch, name, bid))
  7465. tensor = tensors[0][1]
  7466. if "down_proj" in name:
  7467. tensor = tensor * self.mlp_multipliers[1]
  7468. elif "gate_proj" in name:
  7469. tensor = tensor * self.mlp_multipliers[0]
  7470. elif "k_proj" in name:
  7471. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7472. elif "q_proj" in name:
  7473. tensor = tensor * self.attention_in_multiplier
  7474. elif "v_proj" in name:
  7475. tensor = tensor * self.attention_in_multiplier
  7476. elif "o_proj" in name:
  7477. tensor = tensor * self.attention_out_multiplier
  7478. elif "out_proj" in name:
  7479. tensor = tensor * self.ssm_out_multiplier
  7480. elif "in_proj" in name:
  7481. tensor = tensor * self.ssm_in_multiplier
  7482. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7483. intermediate_size = self.hparams["mamba_d_ssm"]
  7484. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7485. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7486. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7487. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7488. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7489. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7490. elif "lm_head" in name:
  7491. tensor = tensor * self.hparams["lm_head_multiplier"]
  7492. elif "embed_tokens" in name:
  7493. tensor = tensor * self.hparams["embedding_multiplier"]
  7494. elif "mamba.norm" in name:
  7495. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7496. tensors = [(tensors[0][0], tensor)]
  7497. return tensors
  7498. def set_gguf_parameters(self):
  7499. super().set_gguf_parameters()
  7500. ## General Params ##
  7501. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7502. # Override some Mamba2 defaults
  7503. self.gguf_writer.add_block_count(self.block_count)
  7504. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7505. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7506. ## Attention params ##
  7507. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7508. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7509. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7510. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7511. ## Validation ##
  7512. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7513. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7514. # Add any other Falcon Mamba2 specific configuration
  7515. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7516. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7517. class HunYuanMoEModel(TextModel):
  7518. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7519. def set_vocab(self):
  7520. from transformers import AutoTokenizer
  7521. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7522. # 1. Get the pre-tokenizer identifier hash
  7523. tokpre = self.get_vocab_base_pre(tokenizer)
  7524. # 2. Reverse-engineer the merges list from mergeable_ranks
  7525. merges = []
  7526. vocab = {}
  7527. mergeable_ranks = tokenizer.mergeable_ranks
  7528. for token, rank in mergeable_ranks.items():
  7529. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7530. if len(token) == 1:
  7531. continue
  7532. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7533. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7534. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7535. # 3. Generate the tokens and toktypes lists
  7536. vocab_size = self.hparams["vocab_size"]
  7537. assert tokenizer.vocab_size == vocab_size
  7538. special_tokens = tokenizer.special_tokens
  7539. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7540. tokens: list[str] = []
  7541. toktypes: list[int] = []
  7542. for i in range(vocab_size):
  7543. if i not in reverse_vocab:
  7544. tokens.append(f"[PAD{i}]")
  7545. toktypes.append(gguf.TokenType.UNUSED)
  7546. else:
  7547. token = reverse_vocab[i]
  7548. tokens.append(token)
  7549. if i in special_tokens.values():
  7550. toktypes.append(gguf.TokenType.CONTROL)
  7551. else:
  7552. toktypes.append(gguf.TokenType.NORMAL)
  7553. # 4. Write all vocab-related fields to the GGUF writer
  7554. self.gguf_writer.add_tokenizer_model("gpt2")
  7555. self.gguf_writer.add_tokenizer_pre(tokpre)
  7556. self.gguf_writer.add_token_list(tokens)
  7557. self.gguf_writer.add_token_types(toktypes)
  7558. self.gguf_writer.add_token_merges(merges)
  7559. # 5. Add special tokens and chat templates
  7560. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7561. special_vocab.add_to_gguf(self.gguf_writer)
  7562. # FIX for BOS token: Overwrite incorrect id read from config.json
  7563. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7564. def set_gguf_parameters(self):
  7565. super().set_gguf_parameters()
  7566. hparams = self.hparams
  7567. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7568. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7569. moe_intermediate_size = hparams["moe_intermediate_size"]
  7570. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7571. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7572. moe_topk = hparams["moe_topk"]
  7573. assert all(topk == moe_topk[0] for topk in moe_topk)
  7574. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7575. moe_shared_expert = hparams["num_shared_expert"]
  7576. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7577. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7578. # Rope
  7579. if self.rope_parameters.get("rope_type") == "dynamic":
  7580. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7581. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7582. alpha = self.rope_parameters.get("alpha", 1000)
  7583. base = self.rope_parameters.get("rope_theta", 10000.0)
  7584. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7585. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7586. self.gguf_writer.add_rope_freq_base(scaled_base)
  7587. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7588. self.gguf_writer.add_rope_scaling_factor(1)
  7589. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7590. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7591. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7592. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7593. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7594. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7595. _experts: list[dict[str, Tensor]] | None = None
  7596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7597. if name == "lm_head.weight":
  7598. if self.hparams.get("tie_word_embeddings", False):
  7599. logger.info("Skipping tied output layer 'lm_head.weight'")
  7600. return []
  7601. if name.find("mlp.experts") != -1:
  7602. n_experts = self.hparams["num_experts"]
  7603. assert bid is not None
  7604. if self._experts is None:
  7605. self._experts = [{} for _ in range(self.block_count)]
  7606. self._experts[bid][name] = data_torch
  7607. if len(self._experts[bid]) >= n_experts * 3:
  7608. # merge the experts into a single 3d tensor
  7609. tensors: list[tuple[str, Tensor]] = []
  7610. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7611. datas: list[Tensor] = []
  7612. for xid in range(n_experts):
  7613. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7614. datas.append(self._experts[bid][ename])
  7615. del self._experts[bid][ename]
  7616. data_torch = torch.stack(datas, dim=0)
  7617. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7618. new_name = self.map_tensor_name(merged_name)
  7619. tensors.append((new_name, data_torch))
  7620. return tensors
  7621. else:
  7622. return []
  7623. return [(self.map_tensor_name(name), data_torch)]
  7624. def prepare_tensors(self):
  7625. super().prepare_tensors()
  7626. if self._experts is not None:
  7627. experts = [k for d in self._experts for k in d.keys()]
  7628. if len(experts) > 0:
  7629. raise ValueError(f"Unprocessed experts: {experts}")
  7630. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7631. class LLaDAMoEModel(TextModel):
  7632. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7633. def set_gguf_parameters(self):
  7634. super().set_gguf_parameters()
  7635. if (n_experts := self.hparams.get("num_experts")) is not None:
  7636. self.gguf_writer.add_expert_count(n_experts)
  7637. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7638. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7639. # number of experts used per token (top-k)
  7640. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7641. self.gguf_writer.add_expert_used_count(n_experts_used)
  7642. self.gguf_writer.add_mask_token_id(156895)
  7643. self.gguf_writer.add_causal_attention(False)
  7644. self.gguf_writer.add_diffusion_shift_logits(False)
  7645. _experts: list[dict[str, Tensor]] | None = None
  7646. # Copied from: Qwen2MoeModel
  7647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7648. # process the experts separately
  7649. if name.find("experts") != -1:
  7650. n_experts = self.hparams["num_experts"]
  7651. assert bid is not None
  7652. if self._experts is None:
  7653. self._experts = [{} for _ in range(self.block_count)]
  7654. self._experts[bid][name] = data_torch
  7655. if len(self._experts[bid]) >= n_experts * 3:
  7656. tensors: list[tuple[str, Tensor]] = []
  7657. # merge the experts into a single 3d tensor
  7658. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7659. datas: list[Tensor] = []
  7660. for xid in range(n_experts):
  7661. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7662. datas.append(self._experts[bid][ename])
  7663. del self._experts[bid][ename]
  7664. data_torch = torch.stack(datas, dim=0)
  7665. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7666. new_name = self.map_tensor_name(merged_name)
  7667. tensors.append((new_name, data_torch))
  7668. return tensors
  7669. else:
  7670. return []
  7671. return [(self.map_tensor_name(name), data_torch)]
  7672. # Copied from: Qwen2MoeModel
  7673. def prepare_tensors(self):
  7674. super().prepare_tensors()
  7675. if self._experts is not None:
  7676. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7677. experts = [k for d in self._experts for k in d.keys()]
  7678. if len(experts) > 0:
  7679. raise ValueError(f"Unprocessed experts: {experts}")
  7680. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7681. class HunYuanModel(TextModel):
  7682. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7683. def set_vocab(self):
  7684. if (self.dir_model / "tokenizer.json").is_file():
  7685. self._set_vocab_gpt2()
  7686. else:
  7687. from transformers import AutoTokenizer
  7688. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7689. # 1. Get the pre-tokenizer identifier hash
  7690. tokpre = self.get_vocab_base_pre(tokenizer)
  7691. # 2. Reverse-engineer the merges list from mergeable_ranks
  7692. merges = []
  7693. vocab = {}
  7694. mergeable_ranks = tokenizer.mergeable_ranks
  7695. for token, rank in mergeable_ranks.items():
  7696. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7697. if len(token) == 1:
  7698. continue
  7699. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7700. if len(merged) == 2:
  7701. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7702. # 3. Generate the tokens and toktypes lists
  7703. vocab_size = self.hparams["vocab_size"]
  7704. assert tokenizer.vocab_size == vocab_size
  7705. special_tokens = tokenizer.special_tokens
  7706. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7707. tokens: list[str] = []
  7708. toktypes: list[int] = []
  7709. for i in range(vocab_size):
  7710. if i not in reverse_vocab:
  7711. tokens.append(f"[PAD{i}]")
  7712. toktypes.append(gguf.TokenType.UNUSED)
  7713. else:
  7714. token = reverse_vocab[i]
  7715. tokens.append(token)
  7716. if i in special_tokens.values():
  7717. toktypes.append(gguf.TokenType.CONTROL)
  7718. else:
  7719. toktypes.append(gguf.TokenType.NORMAL)
  7720. # 4. Write all vocab-related fields to the GGUF writer
  7721. self.gguf_writer.add_tokenizer_model("gpt2")
  7722. self.gguf_writer.add_tokenizer_pre(tokpre)
  7723. self.gguf_writer.add_token_list(tokens)
  7724. self.gguf_writer.add_token_types(toktypes)
  7725. self.gguf_writer.add_token_merges(merges)
  7726. # 5. Add special tokens and chat templates
  7727. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7728. special_vocab.add_to_gguf(self.gguf_writer)
  7729. # FIX for BOS token: Overwrite incorrect id read from config.json
  7730. if self.hparams['hidden_size'] == 4096:
  7731. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7732. def set_gguf_parameters(self):
  7733. super().set_gguf_parameters()
  7734. hparams = self.hparams
  7735. # Rope
  7736. if self.rope_parameters.get("rope_type") == "dynamic":
  7737. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7738. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7739. alpha = self.rope_parameters.get("alpha", 50)
  7740. base = self.rope_parameters.get("rope_theta", 10000.0)
  7741. dim = hparams["head_dim"]
  7742. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7743. self.gguf_writer.add_rope_freq_base(scaled_base)
  7744. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7745. self.gguf_writer.add_rope_scaling_factor(1)
  7746. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7747. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7748. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7749. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7750. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7751. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7753. if name == "lm_head.weight":
  7754. if self.hparams.get("tie_word_embeddings", False):
  7755. logger.info("Skipping tied output layer 'lm_head.weight'")
  7756. return []
  7757. return [(self.map_tensor_name(name), data_torch)]
  7758. @ModelBase.register("SmolLM3ForCausalLM")
  7759. class SmolLM3Model(LlamaModel):
  7760. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7761. @ModelBase.register("GptOssForCausalLM")
  7762. class GptOssModel(TextModel):
  7763. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7764. # TODO: remove once MXFP4 is supported more generally
  7765. def dequant_model(self):
  7766. quant_config = self.hparams.get("quantization_config")
  7767. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7768. return
  7769. return super().dequant_model()
  7770. def transform_nibble_layout(self, tensor):
  7771. assert tensor.dtype == torch.uint8
  7772. assert tensor.shape[-1] == 16
  7773. # swap nibbles
  7774. t_lo = tensor & 0x0F
  7775. t_hi = tensor & 0xF0
  7776. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7777. tensor = t_swapped
  7778. # transform aaaa...bbbb... to abababab...
  7779. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7780. # get a_
  7781. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7782. blk_a1 = (blk_a << 4).view(-1, 1)
  7783. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7784. # get _b
  7785. blk_b0 = (blk_b >> 4).view(-1, 1)
  7786. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7787. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7788. # swap once more
  7789. out = blk_a | blk_b
  7790. out_h = out & 0xF0
  7791. out_l = out & 0x0F
  7792. out = (out_h >> 4) | (out_l << 4)
  7793. return out
  7794. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7795. assert blocks.dtype == torch.uint8
  7796. assert scales.dtype == torch.uint8
  7797. scales = scales.unsqueeze(-1)
  7798. assert len(blocks.shape) == 4
  7799. assert len(scales.shape) == 4
  7800. blocks = self.transform_nibble_layout(blocks)
  7801. new_data = torch.concat((scales, blocks), dim=-1)
  7802. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7803. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7804. # flatten last dim
  7805. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7806. new_data = new_data.numpy()
  7807. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7808. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7809. blocks0: Tensor = torch.zeros(1)
  7810. blocks1: Tensor = torch.zeros(1)
  7811. # we assume that tensors are loaded in the correct order
  7812. for name, data_torch in self.get_tensors():
  7813. if "mlp.experts.down_proj_blocks" in name:
  7814. blocks0 = data_torch
  7815. elif "mlp.experts.down_proj_scales" in name:
  7816. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7817. self.repack_mxfp4(new_name, blocks0, data_torch)
  7818. elif "mlp.experts.gate_up_proj_blocks" in name:
  7819. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7820. elif "mlp.experts.gate_up_proj_scales" in name:
  7821. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7822. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7823. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7824. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7825. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7826. return []
  7827. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7828. del bid # unused
  7829. if "sinks" in name:
  7830. name += ".weight"
  7831. # correct naming for down_proj
  7832. if "down_proj" in name:
  7833. if name.endswith("_bias"):
  7834. name = name.replace("down_proj_bias", "down_proj.bias")
  7835. elif "_blocks" not in name and "_scales" not in name:
  7836. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7837. name = name.replace("down_proj", "down_proj.weight")
  7838. data_torch = data_torch.transpose(-1, -2)
  7839. else:
  7840. # otherwise, it should already be repacked to ggml MXFP4 format
  7841. return []
  7842. # split the gate_up into gate and up
  7843. if "gate_up_proj" in name:
  7844. if name.endswith("_bias"):
  7845. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7846. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7847. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7848. return [
  7849. (self.map_tensor_name(name_gate), gate_proj_bias),
  7850. (self.map_tensor_name(name_up), up_proj_bias)
  7851. ]
  7852. elif "_blocks" not in name and "_scales" not in name:
  7853. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7854. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7855. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7856. data_torch = data_torch.transpose(-1, -2)
  7857. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7858. return [
  7859. (self.map_tensor_name(name_gate), gate_proj_weight),
  7860. (self.map_tensor_name(name_up), up_proj_weight)
  7861. ]
  7862. else:
  7863. # otherwise, it should already be repacked to ggml MXFP4 format
  7864. return []
  7865. return [(self.map_tensor_name(name), data_torch)]
  7866. def set_vocab(self):
  7867. self._set_vocab_gpt2()
  7868. def set_gguf_parameters(self):
  7869. super().set_gguf_parameters()
  7870. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7871. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7872. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7873. class LFM2Model(TextModel):
  7874. model_arch = gguf.MODEL_ARCH.LFM2
  7875. def _add_feed_forward_length(self):
  7876. ff_dim = self.hparams["block_ff_dim"]
  7877. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7878. ff_dim = self.hparams["block_ff_dim"]
  7879. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7880. multiple_of = self.hparams["block_multiple_of"]
  7881. if auto_adjust_ff_dim:
  7882. ff_dim = int(2 * ff_dim / 3)
  7883. # custom dim factor multiplier
  7884. if ffn_dim_multiplier is not None:
  7885. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7886. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7887. self.gguf_writer.add_feed_forward_length(ff_dim)
  7888. def set_gguf_parameters(self):
  7889. # set num_key_value_heads only for attention layers
  7890. self.hparams["num_key_value_heads"] = [
  7891. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7892. for layer_type in self.hparams["layer_types"]
  7893. ]
  7894. super().set_gguf_parameters()
  7895. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7896. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7897. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7898. self._add_feed_forward_length()
  7899. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7900. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  7901. # skip multimodal tensors
  7902. return []
  7903. name = name.replace("language_model.", "") # vision
  7904. name = name.replace("lfm.", "model.") # audio
  7905. # conv op requires 2d tensor
  7906. if 'conv.conv' in name:
  7907. data_torch = data_torch.squeeze(1)
  7908. return [(self.map_tensor_name(name), data_torch)]
  7909. def _is_vision_tensor(self, name: str) -> bool:
  7910. return "vision_tower" in name or "multi_modal_projector" in name
  7911. def _is_audio_tensor(self, name: str):
  7912. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  7913. @ModelBase.register("Lfm2MoeForCausalLM")
  7914. class LFM2MoeModel(TextModel):
  7915. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7916. def set_gguf_parameters(self):
  7917. # set num_key_value_heads only for attention layers
  7918. self.hparams["num_key_value_heads"] = [
  7919. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7920. for layer_type in self.hparams["layer_types"]
  7921. ]
  7922. super().set_gguf_parameters()
  7923. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7924. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7925. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7926. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7927. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7928. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7929. # cache for experts weights for merging
  7930. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7931. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7932. # conv op requires 2d tensor
  7933. if 'conv.conv' in name:
  7934. data_torch = data_torch.squeeze(1)
  7935. if name.endswith(".expert_bias"):
  7936. name = name.replace(".expert_bias", ".expert_bias.bias")
  7937. # merge expert weights
  7938. if 'experts' in name:
  7939. n_experts = self.hparams["num_experts"]
  7940. assert bid is not None
  7941. expert_cache = self._experts_cache.setdefault(bid, {})
  7942. expert_cache[name] = data_torch
  7943. expert_weights = ["w1", "w2", "w3"]
  7944. # not enough expert weights to merge
  7945. if len(expert_cache) < n_experts * len(expert_weights):
  7946. return []
  7947. tensors: list[tuple[str, Tensor]] = []
  7948. for w_name in expert_weights:
  7949. datas: list[Tensor] = []
  7950. for xid in range(n_experts):
  7951. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7952. datas.append(expert_cache[ename])
  7953. del expert_cache[ename]
  7954. data_torch = torch.stack(datas, dim=0)
  7955. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7956. new_name = self.map_tensor_name(merged_name)
  7957. tensors.append((new_name, data_torch))
  7958. del self._experts_cache[bid]
  7959. return tensors
  7960. return [(self.map_tensor_name(name), data_torch)]
  7961. def prepare_tensors(self):
  7962. super().prepare_tensors()
  7963. assert not self._experts_cache
  7964. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7965. class LFM2VLModel(MmprojModel):
  7966. def __init__(self, *args, **kwargs):
  7967. super().__init__(*args, **kwargs)
  7968. assert self.hparams_vision is not None
  7969. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7970. self.hparams_vision["image_size"] = 256
  7971. def set_gguf_parameters(self):
  7972. super().set_gguf_parameters()
  7973. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7974. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7975. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7976. self.gguf_writer.add_vision_use_gelu(True)
  7977. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7978. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7979. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7981. del bid # unused
  7982. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7983. if is_vision_tensor:
  7984. # remove "model." prefix
  7985. name = name.replace("model.vision_tower.", "vision_tower.")
  7986. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7987. if "patch_embedding.weight" in name:
  7988. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7989. return [(self.map_tensor_name(name), data_torch)]
  7990. return [] # skip other tensors
  7991. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  7992. class LFM2AudioModel(MmprojModel):
  7993. has_vision_encoder = False
  7994. has_audio_encoder = True
  7995. model_name = "Lfm2AudioEncoder"
  7996. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  7997. def get_audio_config(self) -> dict[str, Any] | None:
  7998. return self.global_config.get("encoder")
  7999. def set_gguf_parameters(self):
  8000. assert self.hparams_audio is not None
  8001. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8002. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8003. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8004. super().set_gguf_parameters()
  8005. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8006. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8007. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8008. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8009. if ".conv" in name and ".weight" in name:
  8010. return gguf.GGMLQuantizationType.F32
  8011. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8012. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8013. # skip language model tensors
  8014. if name.startswith("lfm."):
  8015. return []
  8016. # for training only
  8017. if any(p in name for p in ["audio_loss_weight"]):
  8018. return []
  8019. # for audio output
  8020. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8021. return []
  8022. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8023. if "batch_norm" in name:
  8024. if self._batch_norm_tensors is None:
  8025. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8026. assert bid is not None
  8027. self._batch_norm_tensors[bid][name] = data_torch
  8028. if len(self._batch_norm_tensors[bid]) < 5:
  8029. return []
  8030. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8031. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8032. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8033. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8034. eps = 1e-5 # default value
  8035. a = weight / torch.sqrt(running_var + eps)
  8036. b = bias - running_mean * a
  8037. return [
  8038. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8039. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8040. ]
  8041. # reshape conv weights
  8042. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8043. data_torch = data_torch[:, None, None]
  8044. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8045. assert data_torch.shape[1] == 1
  8046. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8047. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8048. assert data_torch.shape[2] == 1
  8049. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8050. return [(self.map_tensor_name(name), data_torch)]
  8051. @ModelBase.register("SmallThinkerForCausalLM")
  8052. class SmallThinkerModel(TextModel):
  8053. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8054. def set_gguf_parameters(self):
  8055. super().set_gguf_parameters()
  8056. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8057. self.gguf_writer.add_expert_count(n_experts)
  8058. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8059. self.gguf_writer.add_expert_used_count(n_experts_used)
  8060. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8061. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8062. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8063. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8064. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8065. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8066. else:
  8067. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8068. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8069. if sliding_window_layout:
  8070. for i in sliding_window_layout:
  8071. if i != 0:
  8072. sliding_window = self.hparams.get("sliding_window_size")
  8073. if sliding_window:
  8074. self.gguf_writer.add_sliding_window(sliding_window)
  8075. break
  8076. _experts: list[dict[str, Tensor]] | None = None
  8077. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8078. # process the experts separately
  8079. if name.find("experts") != -1:
  8080. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8081. assert bid is not None
  8082. if self._experts is None:
  8083. self._experts = [{} for _ in range(self.block_count)]
  8084. self._experts[bid][name] = data_torch
  8085. if len(self._experts[bid]) >= n_experts * 3:
  8086. tensors: list[tuple[str, Tensor]] = []
  8087. # merge the experts into a single 3d tensor
  8088. for w_name in ["down", "gate", "up"]:
  8089. datas: list[Tensor] = []
  8090. for xid in range(n_experts):
  8091. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8092. datas.append(self._experts[bid][ename])
  8093. del self._experts[bid][ename]
  8094. data_torch = torch.stack(datas, dim=0)
  8095. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8096. new_name = self.map_tensor_name(merged_name)
  8097. tensors.append((new_name, data_torch))
  8098. return tensors
  8099. else:
  8100. return []
  8101. return [(self.map_tensor_name(name), data_torch)]
  8102. def prepare_tensors(self):
  8103. super().prepare_tensors()
  8104. if self._experts is not None:
  8105. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8106. experts = [k for d in self._experts for k in d.keys()]
  8107. if len(experts) > 0:
  8108. raise ValueError(f"Unprocessed experts: {experts}")
  8109. @ModelBase.register("ApertusForCausalLM")
  8110. class ApertusModel(LlamaModel):
  8111. model_arch = gguf.MODEL_ARCH.APERTUS
  8112. undo_permute = False
  8113. _alpha_n = {}
  8114. _alpha_p = {}
  8115. _beta = {}
  8116. _eps = {}
  8117. def modify_tensors(self, data_torch, name, bid):
  8118. # Handle xIELU activation parameters
  8119. n_layers = self.hparams["num_hidden_layers"]
  8120. if name.endswith(".act_fn.alpha_n"):
  8121. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8122. if (len(self._alpha_n) == n_layers):
  8123. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8124. return []
  8125. if name.endswith(".act_fn.alpha_p"):
  8126. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8127. if (len(self._alpha_p) == n_layers):
  8128. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8129. return []
  8130. if name.endswith(".act_fn.beta"):
  8131. self._beta[bid] = data_torch.to("cpu").float().item()
  8132. if (len(self._beta) == n_layers):
  8133. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8134. return []
  8135. if name.endswith(".act_fn.eps"):
  8136. self._eps[bid] = data_torch.to("cpu").float().item()
  8137. if (len(self._eps) == n_layers):
  8138. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8139. return []
  8140. return super().modify_tensors(data_torch, name, bid)
  8141. class MistralModel(LlamaModel):
  8142. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8143. model_name = "Mistral"
  8144. hf_arch = ""
  8145. is_mistral_format = True
  8146. undo_permute = False
  8147. def __init__(self, *args, **kwargs):
  8148. super().__init__(*args, **kwargs)
  8149. # for compatibility, we use LLAMA arch for older models
  8150. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8151. if "llama_4_scaling" not in self.hparams:
  8152. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8153. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8154. self.gguf_writer.add_architecture()
  8155. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8156. def dequant_model(self):
  8157. # transform quantization config into HF format
  8158. quant_config = self.hparams.get("quantization")
  8159. if quant_config is not None:
  8160. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8161. self.hparams["quantization_config"] = {
  8162. "activation_scheme": "static",
  8163. "quant_method": "fp8",
  8164. "weight_block_size": None,
  8165. }
  8166. return super().dequant_model()
  8167. @staticmethod
  8168. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8169. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8170. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8171. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8172. )
  8173. if vocab.tokenizer.version == TokenizerVersion.v1:
  8174. return "mistral-v1"
  8175. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8176. return "mistral-v3"
  8177. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8178. return "mistral-v3-tekken"
  8179. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8180. return "mistral-v7"
  8181. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8182. return "mistral-v7-tekken"
  8183. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8184. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8185. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8186. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8187. else:
  8188. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8189. if is_mistral_format:
  8190. err_message += (
  8191. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8192. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8193. )
  8194. raise ValueError(err_message)
  8195. template_path = templates_dir / template_file
  8196. if not template_path.exists():
  8197. raise FileNotFoundError(f"Template file not found: {template_path}")
  8198. with open(template_path, "r", encoding="utf-8") as f:
  8199. template = f.read()
  8200. return template
  8201. def set_gguf_parameters(self):
  8202. super().set_gguf_parameters()
  8203. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8204. @staticmethod
  8205. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8206. if "yarn" in hparams:
  8207. yarn_params = hparams["yarn"]
  8208. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8209. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8210. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8211. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8212. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8213. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8214. if "llama_4_scaling" in hparams:
  8215. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8216. class MistralMoeModel(DeepseekV2Model):
  8217. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8218. model_name = "Mistral"
  8219. hf_arch = ""
  8220. is_mistral_format = True
  8221. def __init__(self, *args, **kwargs):
  8222. super().__init__(*args, **kwargs)
  8223. logger.info("Using MistralMoeModel")
  8224. # remap hparams from Mistral MoE format to DeepseekV2 format
  8225. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8226. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8227. config = self.hparams
  8228. # Mistral key -> HF key
  8229. config_mapping = {
  8230. "dim": "hidden_size",
  8231. "norm_eps": "rms_norm_eps",
  8232. "n_kv_heads": "num_key_value_heads",
  8233. "n_layers": "num_hidden_layers",
  8234. "n_heads": "num_attention_heads",
  8235. "hidden_dim": "intermediate_size",
  8236. }
  8237. # HF key -> (Mistral key, default value)
  8238. top_level_mapping_with_default = {
  8239. "model_type": ("model_type", "transformer"),
  8240. "hidden_act": ("activation", "silu"),
  8241. "tie_word_embeddings": ("tied_embeddings", False),
  8242. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8243. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8244. }
  8245. # mapping top-level keys
  8246. for key, new_key in config_mapping.items():
  8247. if key in config:
  8248. config[new_key] = config[key]
  8249. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8250. config[new_key] = config.get(key, default_value)
  8251. # mapping MoE-specific keys
  8252. moe_config_map = {
  8253. "route_every_n": "moe_layer_freq",
  8254. "first_k_dense_replace": "first_k_dense_replace",
  8255. "num_experts_per_tok": "num_experts_per_tok",
  8256. "num_experts": "n_routed_experts",
  8257. "expert_hidden_dim": "moe_intermediate_size",
  8258. "routed_scale": "routed_scaling_factor",
  8259. "num_shared_experts": "n_shared_experts",
  8260. "num_expert_groups": "n_group",
  8261. "num_expert_groups_per_tok": "topk_group",
  8262. }
  8263. moe = config["moe"]
  8264. for key, new_key in moe_config_map.items():
  8265. if key in moe:
  8266. config[new_key] = moe[key]
  8267. # provide missing values
  8268. config["topk_method"] = None
  8269. config["norm_topk_prob"] = True
  8270. config["scoring_func"] = "softmax"
  8271. def set_vocab(self):
  8272. self._set_vocab_mistral()
  8273. def set_gguf_parameters(self):
  8274. super().set_gguf_parameters()
  8275. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8276. yarn_params = self.hparams["yarn"]
  8277. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8278. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8279. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8280. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8281. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8282. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8283. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8284. return []
  8285. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8286. if name.endswith(".qscale_act"):
  8287. name = name.replace(".qscale_act", ".input_scale")
  8288. if name.endswith(".qscale_weight"):
  8289. name = name.replace(".qscale_weight", ".weight_scale")
  8290. if ".wkv_b." in name:
  8291. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8292. if ".experts." in name:
  8293. name = name.replace(".experts.", ".mlp.experts.")
  8294. name = name.replace(".w1.", ".gate_proj.")
  8295. name = name.replace(".w2.", ".down_proj.")
  8296. name = name.replace(".w3.", ".up_proj.")
  8297. name = "model." + name
  8298. return super().modify_tensors(data_torch, name, bid)
  8299. class PixtralModel(LlavaVisionModel):
  8300. model_name = "Pixtral"
  8301. hf_arch = ""
  8302. is_mistral_format = True
  8303. def set_gguf_parameters(self):
  8304. super().set_gguf_parameters()
  8305. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8306. self.gguf_writer.add_vision_attention_layernorm_eps(
  8307. self.find_hparam(["norm_eps"])
  8308. )
  8309. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8310. self.gguf_writer.add_vision_use_silu(True)
  8311. # spatial_merge_size
  8312. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8313. self.gguf_writer.add_vision_spatial_merge_size(
  8314. self.find_vparam(["spatial_merge_size"])
  8315. )
  8316. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8317. if name == "vision_language_adapter.w_in.weight":
  8318. return "mm.1.weight"
  8319. elif name == "vision_language_adapter.w_out.weight":
  8320. return "mm.2.weight"
  8321. return super().map_tensor_name(name, try_suffixes)
  8322. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8323. class LightOnOCRVisionModel(LlavaVisionModel):
  8324. is_mistral_format = False
  8325. use_break_tok = False
  8326. def set_gguf_parameters(self):
  8327. super().set_gguf_parameters()
  8328. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8330. name = name.replace("model.vision_encoder.", "vision_tower.")
  8331. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8332. return super().modify_tensors(data_torch, name, bid)
  8333. @ModelBase.register("KimiVLForConditionalGeneration")
  8334. class KimiVLModel(MmprojModel):
  8335. def __init__(self, *args, **kwargs):
  8336. super().__init__(*args, **kwargs)
  8337. assert self.hparams_vision is not None
  8338. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8339. def set_gguf_parameters(self):
  8340. super().set_gguf_parameters()
  8341. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8342. self.gguf_writer.add_vision_use_gelu(True)
  8343. self.gguf_writer.add_vision_projector_scale_factor(2)
  8344. # eps is the same as pytorch's default value
  8345. assert self.hparams_vision is not None
  8346. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8347. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8348. del bid # unused
  8349. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8350. if is_vision_tensor:
  8351. if "pos_emb.weight" in name:
  8352. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8353. elif "wqkv" in name:
  8354. split_dim = 0 if "weight" in name else -1
  8355. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8356. return [
  8357. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8358. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8359. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8360. ]
  8361. return [(self.map_tensor_name(name), data_torch)]
  8362. return [] # skip other tensors
  8363. @ModelBase.register("CogVLMForCausalLM")
  8364. class CogVLMVisionModel(MmprojModel):
  8365. def set_gguf_parameters(self):
  8366. super().set_gguf_parameters()
  8367. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8368. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8370. del bid # unused
  8371. if not name.startswith("model.vision."):
  8372. return []
  8373. return [(self.map_tensor_name(name), data_torch)]
  8374. @ModelBase.register("CogVLMForCausalLM")
  8375. class CogVLMModel(LlamaModel):
  8376. model_arch = gguf.MODEL_ARCH.COGVLM
  8377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8378. del bid # unused
  8379. # block vision tensors
  8380. if name.startswith("model.vision."):
  8381. return []
  8382. return [(self.map_tensor_name(name), data_torch)]
  8383. @ModelBase.register("JanusForConditionalGeneration")
  8384. class JanusProModel(LlamaModel):
  8385. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8387. # Skip vision, aligner, and generation tensors
  8388. skip_prefixes = (
  8389. 'model.vision_model.',
  8390. 'model.aligner.',
  8391. 'model.vqmodel.',
  8392. 'model.generation_embeddings.',
  8393. 'model.generation_aligner.',
  8394. 'model.generation_head.',
  8395. )
  8396. if name.startswith(skip_prefixes):
  8397. return []
  8398. if name.startswith('model.language_model.'):
  8399. name = name.replace('model.language_model.', 'model.')
  8400. elif name.startswith('language_model.'):
  8401. name = name.replace('language_model.', '')
  8402. return super().modify_tensors(data_torch, name, bid)
  8403. @ModelBase.register("JanusForConditionalGeneration")
  8404. class JanusProVisionModel(MmprojModel):
  8405. def __init__(self, *args, **kwargs):
  8406. super().__init__(*args, **kwargs)
  8407. assert self.hparams_vision is not None
  8408. if "intermediate_size" not in self.hparams_vision:
  8409. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8410. hidden_size = self.hparams_vision.get("hidden_size")
  8411. if mlp_ratio is not None and hidden_size is not None:
  8412. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8413. def set_gguf_parameters(self):
  8414. super().set_gguf_parameters()
  8415. assert self.hparams_vision is not None
  8416. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8417. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8418. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8419. if hidden_act == "gelu":
  8420. self.gguf_writer.add_vision_use_gelu(True)
  8421. elif hidden_act == "silu":
  8422. self.gguf_writer.add_vision_use_silu(True)
  8423. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8424. """Map aligner tensors to projector format"""
  8425. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8426. if name.startswith("model.aligner."):
  8427. local_name = name[len("model.aligner."):]
  8428. elif name.startswith("aligner."):
  8429. local_name = name[len("aligner."):]
  8430. else:
  8431. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8432. if local_name.startswith("fc1."):
  8433. mm_index = 0
  8434. elif local_name.startswith("hidden_layers."):
  8435. parts = local_name.split(".", 2)
  8436. if len(parts) < 3:
  8437. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8438. mm_index = int(parts[1]) + 1
  8439. else:
  8440. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8441. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8442. return [(tensor_name, data_torch)]
  8443. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8444. del bid # unused
  8445. # Skip language model tensors as they will be handled by `JanusProModel`
  8446. if name.startswith(('model.language_model.', 'language_model.')):
  8447. return []
  8448. # Skip generation-related components
  8449. skip_generation_prefixes = (
  8450. 'model.vqmodel.',
  8451. 'vqmodel.',
  8452. 'model.generation_embeddings.',
  8453. 'generation_embeddings.',
  8454. 'model.generation_aligner.',
  8455. 'generation_aligner.',
  8456. 'model.generation_head.',
  8457. 'generation_head.',
  8458. )
  8459. if name.startswith(skip_generation_prefixes):
  8460. return []
  8461. # Handle aligner tensors
  8462. if name.startswith(('model.aligner.', 'aligner.')):
  8463. return list(self._map_aligner_tensor(data_torch, name))
  8464. # Handle vision tensors
  8465. if name.startswith(('model.vision_model.', 'vision_model.')):
  8466. return [(self.map_tensor_name(name), data_torch)]
  8467. return []
  8468. ###### CONVERSION LOGIC ######
  8469. # tree of lazy tensors
  8470. class LazyTorchTensor(gguf.LazyBase):
  8471. _tensor_type = torch.Tensor
  8472. # to keep the type-checker happy
  8473. dtype: torch.dtype
  8474. shape: torch.Size
  8475. # only used when converting a torch.Tensor to a np.ndarray
  8476. _dtype_map: dict[torch.dtype, type] = {
  8477. torch.float16: np.float16,
  8478. torch.float32: np.float32,
  8479. torch.uint8: np.uint8,
  8480. }
  8481. # only used when byteswapping data. Only correct size is needed
  8482. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8483. torch.float64: np.float64,
  8484. torch.float32: np.float32,
  8485. torch.bfloat16: np.float16,
  8486. torch.float16: np.float16,
  8487. torch.int64: np.int64,
  8488. torch.uint64: np.uint64,
  8489. torch.int32: np.int32,
  8490. torch.uint32: np.uint32,
  8491. torch.int16: np.int16,
  8492. torch.uint16: np.uint16,
  8493. torch.int8: np.int8,
  8494. torch.uint8: np.uint8,
  8495. torch.bool: np.uint8,
  8496. torch.float8_e4m3fn: np.uint8,
  8497. torch.float8_e5m2: np.uint8,
  8498. }
  8499. # used for safetensors slices
  8500. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8501. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8502. _dtype_str_map: dict[str, torch.dtype] = {
  8503. "F64": torch.float64,
  8504. "F32": torch.float32,
  8505. "BF16": torch.bfloat16,
  8506. "F16": torch.float16,
  8507. # "U64": torch.uint64,
  8508. "I64": torch.int64,
  8509. # "U32": torch.uint32,
  8510. "I32": torch.int32,
  8511. # "U16": torch.uint16,
  8512. "I16": torch.int16,
  8513. "U8": torch.uint8,
  8514. "I8": torch.int8,
  8515. "BOOL": torch.bool,
  8516. "F8_E4M3": torch.float8_e4m3fn,
  8517. "F8_E5M2": torch.float8_e5m2,
  8518. }
  8519. def numpy(self) -> gguf.LazyNumpyTensor:
  8520. dtype = self._dtype_map[self.dtype]
  8521. return gguf.LazyNumpyTensor(
  8522. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8523. args=(self,),
  8524. func=(lambda s: s.numpy())
  8525. )
  8526. @classmethod
  8527. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8528. return torch.empty(size=shape, dtype=dtype, device="meta")
  8529. @classmethod
  8530. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8531. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8532. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8533. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8534. return cast(torch.Tensor, lazy)
  8535. @classmethod
  8536. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8537. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8538. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8539. if sys.byteorder == 'big':
  8540. # switch data back to big endian
  8541. tensor = tensor.view(dtype).byteswap(inplace=False)
  8542. return tensor
  8543. dtype = cls._dtype_str_map[tensor.dtype]
  8544. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8545. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8546. dtype = cls._dtype_str_map[t.dtype]
  8547. shape = t.shape
  8548. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8549. return cast(torch.Tensor, lazy)
  8550. @classmethod
  8551. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8552. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8553. if sys.byteorder == 'big':
  8554. # switch data back to big endian
  8555. tensor = tensor.view(dtype).byteswap(inplace=False)
  8556. return tensor
  8557. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8558. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8559. shape = remote_tensor.shape
  8560. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8561. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8562. return cast(torch.Tensor, lazy)
  8563. @classmethod
  8564. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8565. del types # unused
  8566. if kwargs is None:
  8567. kwargs = {}
  8568. if func is torch.Tensor.numpy:
  8569. return args[0].numpy()
  8570. return cls._wrap_fn(func)(*args, **kwargs)
  8571. def parse_args() -> argparse.Namespace:
  8572. parser = argparse.ArgumentParser(
  8573. description="Convert a huggingface model to a GGML compatible file")
  8574. parser.add_argument(
  8575. "--vocab-only", action="store_true",
  8576. help="extract only the vocab",
  8577. )
  8578. parser.add_argument(
  8579. "--outfile", type=Path,
  8580. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8581. )
  8582. parser.add_argument(
  8583. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8584. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8585. )
  8586. parser.add_argument(
  8587. "--bigendian", action="store_true",
  8588. help="model is executed on big endian machine",
  8589. )
  8590. parser.add_argument(
  8591. "model", type=str,
  8592. help="directory containing model file or huggingface repository ID (if --remote)",
  8593. nargs="?",
  8594. )
  8595. parser.add_argument(
  8596. "--use-temp-file", action="store_true",
  8597. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8598. )
  8599. parser.add_argument(
  8600. "--no-lazy", action="store_true",
  8601. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8602. )
  8603. parser.add_argument(
  8604. "--model-name", type=str, default=None,
  8605. help="name of the model",
  8606. )
  8607. parser.add_argument(
  8608. "--verbose", action="store_true",
  8609. help="increase output verbosity",
  8610. )
  8611. parser.add_argument(
  8612. "--split-max-tensors", type=int, default=0,
  8613. help="max tensors in each split",
  8614. )
  8615. parser.add_argument(
  8616. "--split-max-size", type=str, default="0",
  8617. help="max size per split N(M|G)",
  8618. )
  8619. parser.add_argument(
  8620. "--dry-run", action="store_true",
  8621. help="only print out a split plan and exit, without writing any new files",
  8622. )
  8623. parser.add_argument(
  8624. "--no-tensor-first-split", action="store_true",
  8625. help="do not add tensors to the first split (disabled by default)"
  8626. )
  8627. parser.add_argument(
  8628. "--metadata", type=Path,
  8629. help="Specify the path for an authorship metadata override file"
  8630. )
  8631. parser.add_argument(
  8632. "--print-supported-models", action="store_true",
  8633. help="Print the supported models"
  8634. )
  8635. parser.add_argument(
  8636. "--remote", action="store_true",
  8637. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8638. )
  8639. parser.add_argument(
  8640. "--mmproj", action="store_true",
  8641. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8642. )
  8643. parser.add_argument(
  8644. "--mistral-format", action="store_true",
  8645. help="Whether the model is stored following the Mistral format.",
  8646. )
  8647. parser.add_argument(
  8648. "--disable-mistral-community-chat-template", action="store_true",
  8649. help=(
  8650. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8651. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8652. )
  8653. )
  8654. parser.add_argument(
  8655. "--sentence-transformers-dense-modules", action="store_true",
  8656. help=("Whether to include sentence-transformers dense modules."
  8657. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8658. "Default these modules are not included.")
  8659. )
  8660. args = parser.parse_args()
  8661. if not args.print_supported_models and args.model is None:
  8662. parser.error("the following arguments are required: model")
  8663. return args
  8664. def split_str_to_n_bytes(split_str: str) -> int:
  8665. if split_str.endswith("K"):
  8666. n = int(split_str[:-1]) * 1000
  8667. elif split_str.endswith("M"):
  8668. n = int(split_str[:-1]) * 1000 * 1000
  8669. elif split_str.endswith("G"):
  8670. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8671. elif split_str.isnumeric():
  8672. n = int(split_str)
  8673. else:
  8674. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8675. if n < 0:
  8676. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8677. return n
  8678. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8679. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8680. # maybe we should fallback to text model's arch in that case, since not many models have both
  8681. text_config = hparams.get("text_config", {})
  8682. vision_config = hparams.get("vision_config", {})
  8683. arch = None
  8684. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8685. arch = arches[0]
  8686. elif "ssm_cfg" in hparams:
  8687. # For non-hf Mamba and Mamba2 models
  8688. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8689. # if "architectures" is found in the sub-config, use that instead
  8690. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8691. arch = text_config["architectures"][0]
  8692. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8693. arch = vision_config["architectures"][0]
  8694. if arch is None:
  8695. raise ValueError("Failed to detect model architecture")
  8696. return arch
  8697. def main() -> None:
  8698. args = parse_args()
  8699. if args.print_supported_models:
  8700. logger.error("Supported models:")
  8701. ModelBase.print_registered_models()
  8702. sys.exit(0)
  8703. if args.verbose:
  8704. logging.basicConfig(level=logging.DEBUG)
  8705. else:
  8706. logging.basicConfig(level=logging.INFO)
  8707. if args.remote:
  8708. hf_repo_id = args.model
  8709. from huggingface_hub import snapshot_download
  8710. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8711. if args.sentence_transformers_dense_modules:
  8712. # include sentence-transformers dense modules safetensors files
  8713. allowed_patterns.append("*.safetensors")
  8714. local_dir = snapshot_download(
  8715. repo_id=hf_repo_id,
  8716. allow_patterns=allowed_patterns)
  8717. dir_model = Path(local_dir)
  8718. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8719. else:
  8720. hf_repo_id = None
  8721. dir_model = Path(args.model)
  8722. if not dir_model.is_dir():
  8723. logger.error(f'Error: {dir_model} is not a directory')
  8724. sys.exit(1)
  8725. ftype_map: dict[str, gguf.LlamaFileType] = {
  8726. "f32": gguf.LlamaFileType.ALL_F32,
  8727. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8728. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8729. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8730. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8731. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8732. "auto": gguf.LlamaFileType.GUESSED,
  8733. }
  8734. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8735. if args.use_temp_file and is_split:
  8736. logger.error("Error: Cannot use temp file when splitting")
  8737. sys.exit(1)
  8738. if args.outfile is not None:
  8739. fname_out = args.outfile
  8740. elif hf_repo_id:
  8741. # if remote, use the model ID as the output file name
  8742. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8743. else:
  8744. fname_out = dir_model
  8745. logger.info(f"Loading model: {dir_model.name}")
  8746. is_mistral_format = args.mistral_format
  8747. if is_mistral_format and not _mistral_common_installed:
  8748. raise ImportError(_mistral_import_error_msg)
  8749. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8750. with torch.inference_mode():
  8751. output_type = ftype_map[args.outtype]
  8752. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8753. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8754. if not is_mistral_format:
  8755. model_architecture = get_model_architecture(hparams, model_type)
  8756. logger.info(f"Model architecture: {model_architecture}")
  8757. try:
  8758. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8759. except NotImplementedError:
  8760. logger.error(f"Model {model_architecture} is not supported")
  8761. sys.exit(1)
  8762. elif args.mmproj:
  8763. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8764. model_class = PixtralModel
  8765. elif "moe" in hparams:
  8766. model_class = MistralMoeModel
  8767. else:
  8768. model_class = MistralModel
  8769. model_instance = model_class(dir_model, output_type, fname_out,
  8770. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8771. eager=args.no_lazy,
  8772. metadata_override=args.metadata, model_name=args.model_name,
  8773. split_max_tensors=args.split_max_tensors,
  8774. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8775. small_first_shard=args.no_tensor_first_split,
  8776. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8777. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8778. )
  8779. if args.vocab_only:
  8780. logger.info("Exporting model vocab...")
  8781. model_instance.write_vocab()
  8782. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8783. else:
  8784. logger.info("Exporting model...")
  8785. model_instance.write()
  8786. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8787. logger.info(f"Model successfully exported to {out_path}")
  8788. if __name__ == '__main__':
  8789. main()