convert-hf-to-gguf.py 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from abc import ABC, abstractmethod
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. from convert import LlamaHfVocab, permute
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model(ABC):
  34. _model_classes: dict[str, type[Model]] = {}
  35. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  36. self.dir_model = dir_model
  37. self.ftype = ftype
  38. self.fname_out = fname_out
  39. self.is_big_endian = is_big_endian
  40. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  41. self.use_temp_file = use_temp_file
  42. self.is_safetensors = self._is_model_safetensors()
  43. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  44. self.part_names = self._get_part_names()
  45. self.hparams = Model.load_hparams(self.dir_model)
  46. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  47. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  48. @property
  49. @abstractmethod
  50. def model_arch(self) -> gguf.MODEL_ARCH:
  51. pass
  52. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  53. key = next((k for k in keys if k in self.hparams), None)
  54. if key is not None:
  55. return self.hparams[key]
  56. if optional:
  57. return None
  58. raise KeyError(f"could not find any of: {keys}")
  59. def set_vocab(self):
  60. self._set_vocab_gpt2()
  61. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  62. for part_name in self.part_names:
  63. logger.info(f"gguf: loading model part '{part_name}'")
  64. ctx: ContextManager[Any]
  65. if self.is_safetensors:
  66. from safetensors import safe_open
  67. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  68. else:
  69. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  70. with ctx as model_part:
  71. for name in model_part.keys():
  72. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  73. yield name, data
  74. def set_gguf_parameters(self):
  75. self.gguf_writer.add_name(self.dir_model.name)
  76. self.gguf_writer.add_block_count(self.block_count)
  77. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  78. self.gguf_writer.add_context_length(n_ctx)
  79. logger.info(f"gguf: context length = {n_ctx}")
  80. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  81. self.gguf_writer.add_embedding_length(n_embd)
  82. logger.info(f"gguf: embedding length = {n_embd}")
  83. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  84. self.gguf_writer.add_feed_forward_length(n_ff)
  85. logger.info(f"gguf: feed forward length = {n_ff}")
  86. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  87. self.gguf_writer.add_head_count(n_head)
  88. logger.info(f"gguf: head count = {n_head}")
  89. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  90. self.gguf_writer.add_head_count_kv(n_head_kv)
  91. logger.info(f"gguf: key-value head count = {n_head_kv}")
  92. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  93. self.gguf_writer.add_rope_freq_base(rope_theta)
  94. logger.info(f"gguf: rope theta = {rope_theta}")
  95. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  96. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  97. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  98. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  99. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  100. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  101. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  102. self.gguf_writer.add_expert_count(n_experts)
  103. logger.info(f"gguf: expert count = {n_experts}")
  104. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  105. self.gguf_writer.add_expert_used_count(n_experts_used)
  106. logger.info(f"gguf: experts used count = {n_experts_used}")
  107. self.gguf_writer.add_file_type(self.ftype)
  108. logger.info(f"gguf: file type = {self.ftype}")
  109. def write_tensors(self):
  110. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  111. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  112. for name, data_torch in self.get_tensors():
  113. # we don't need these
  114. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  115. continue
  116. old_dtype = data_torch.dtype
  117. # convert any unsupported data types to float32
  118. if data_torch.dtype not in (torch.float16, torch.float32):
  119. data_torch = data_torch.to(torch.float32)
  120. data = data_torch.squeeze().numpy()
  121. # map tensor names
  122. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  123. if new_name is None:
  124. raise ValueError(f"Can not map tensor {name!r}")
  125. n_dims = len(data.shape)
  126. data_dtype = data.dtype
  127. # if f32 desired, convert any float16 to float32
  128. if self.ftype == 0 and data_dtype == np.float16:
  129. data = data.astype(np.float32)
  130. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  131. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  132. data = data.astype(np.float32)
  133. # if f16 desired, convert any float32 2-dim weight tensors to float16
  134. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  135. data = data.astype(np.float16)
  136. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  137. self.gguf_writer.add_tensor(new_name, data)
  138. def write(self):
  139. self.write_tensors()
  140. self.gguf_writer.write_header_to_file()
  141. self.gguf_writer.write_kv_data_to_file()
  142. self.gguf_writer.write_tensors_to_file()
  143. self.gguf_writer.close()
  144. def write_vocab(self):
  145. self.gguf_writer.write_header_to_file()
  146. self.gguf_writer.write_kv_data_to_file()
  147. self.gguf_writer.close()
  148. @staticmethod
  149. def count_model_parts(dir_model: Path, prefix: str) -> int:
  150. num_parts = 0
  151. for filename in os.listdir(dir_model):
  152. if filename.endswith(prefix):
  153. num_parts += 1
  154. return num_parts
  155. @staticmethod
  156. def load_hparams(dir_model):
  157. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  158. return json.load(f)
  159. @classmethod
  160. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  161. assert names
  162. def func(modelcls: type[Model]):
  163. for name in names:
  164. cls._model_classes[name] = modelcls
  165. return modelcls
  166. return func
  167. @classmethod
  168. def from_model_architecture(cls, arch):
  169. try:
  170. return cls._model_classes[arch]
  171. except KeyError:
  172. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  173. def _is_model_safetensors(self) -> bool:
  174. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  175. def _get_part_names(self):
  176. if self.is_safetensors:
  177. if self.num_parts == 1: # there's only one .safetensors file
  178. return ("model.safetensors",)
  179. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  180. if self.num_parts == 1: # there's only one .bin file
  181. return ("pytorch_model.bin",)
  182. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  183. # used for GPT-2 BPE and WordPiece vocabs
  184. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  185. tokens: list[str] = []
  186. toktypes: list[int] = []
  187. from transformers import AutoTokenizer
  188. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  189. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  190. assert max(tokenizer.vocab.values()) < vocab_size
  191. tokpre = self.get_vocab_base_pre(tokenizer)
  192. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  193. added_vocab = tokenizer.get_added_vocab()
  194. for i in range(vocab_size):
  195. if i not in reverse_vocab:
  196. tokens.append(f"[PAD{i}]")
  197. toktypes.append(gguf.TokenType.USER_DEFINED)
  198. elif reverse_vocab[i] in added_vocab:
  199. tokens.append(reverse_vocab[i])
  200. if tokenizer.added_tokens_decoder[i].special:
  201. toktypes.append(gguf.TokenType.CONTROL)
  202. else:
  203. toktypes.append(gguf.TokenType.USER_DEFINED)
  204. else:
  205. tokens.append(reverse_vocab[i])
  206. toktypes.append(gguf.TokenType.NORMAL)
  207. return tokens, toktypes, tokpre
  208. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  209. # do not modify it manually!
  210. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  211. def get_vocab_base_pre(self, tokenizer) -> str:
  212. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  213. # is specific for the BPE pre-tokenizer used by the model
  214. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  215. # use in llama.cpp to implement the same pre-tokenizer
  216. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  217. chktok = tokenizer.encode(chktxt)
  218. chkhsh = sha256(str(chktok).encode()).hexdigest()
  219. logger.debug(f"chktok: {chktok}")
  220. logger.debug(f"chkhsh: {chkhsh}")
  221. res = None
  222. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  223. # or pull the latest version of the model from Huggingface
  224. # don't edit the hashes manually!
  225. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  226. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  227. res = "llama-bpe"
  228. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  229. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  230. res = "deepseek-llm"
  231. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  232. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  233. res = "deepseek-coder"
  234. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  235. # ref: https://huggingface.co/tiiuae/falcon-7b
  236. res = "falcon"
  237. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  238. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  239. res = "bert-bge"
  240. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  241. # ref: https://huggingface.co/mosaicml/mpt-7b
  242. res = "mpt"
  243. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  244. # ref: https://huggingface.co/bigcode/starcoder2-3b
  245. res = "starcoder"
  246. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  247. # ref: https://huggingface.co/openai-community/gpt2
  248. res = "gpt-2"
  249. if res is None:
  250. logger.warning("\n")
  251. logger.warning("**************************************************************************************")
  252. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  253. logger.warning("** There are 2 possible reasons for this:")
  254. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  255. logger.warning("** - the pre-tokenization config has changed upstream")
  256. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  257. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  258. logger.warning("**")
  259. logger.warning(f"** chkhsh: {chkhsh}")
  260. logger.warning("**************************************************************************************")
  261. logger.warning("\n")
  262. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  263. logger.debug(f"tokenizer.ggml.pre: {res}")
  264. logger.debug(f"chkhsh: {chkhsh}")
  265. return res
  266. def _set_vocab_gpt2(self) -> None:
  267. tokens, toktypes, tokpre = self.get_vocab_base()
  268. self.gguf_writer.add_tokenizer_model("gpt2")
  269. self.gguf_writer.add_tokenizer_pre(tokpre)
  270. self.gguf_writer.add_token_list(tokens)
  271. self.gguf_writer.add_token_types(toktypes)
  272. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  273. special_vocab.add_to_gguf(self.gguf_writer)
  274. def _set_vocab_qwen(self):
  275. dir_model = self.dir_model
  276. hparams = self.hparams
  277. tokens: list[str] = []
  278. toktypes: list[int] = []
  279. from transformers import AutoTokenizer
  280. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  281. vocab_size = hparams["vocab_size"]
  282. assert max(tokenizer.get_vocab().values()) < vocab_size
  283. tokpre = self.get_vocab_base_pre(tokenizer)
  284. merges = []
  285. vocab = {}
  286. mergeable_ranks = tokenizer.mergeable_ranks
  287. for token, rank in mergeable_ranks.items():
  288. vocab[QwenModel.token_bytes_to_string(token)] = rank
  289. if len(token) == 1:
  290. continue
  291. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  292. assert len(merged) == 2
  293. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  294. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  295. added_vocab = tokenizer.special_tokens
  296. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  297. for i in range(vocab_size):
  298. if i not in reverse_vocab:
  299. tokens.append(f"[PAD{i}]")
  300. toktypes.append(gguf.TokenType.USER_DEFINED)
  301. elif reverse_vocab[i] in added_vocab:
  302. tokens.append(reverse_vocab[i])
  303. toktypes.append(gguf.TokenType.CONTROL)
  304. else:
  305. tokens.append(reverse_vocab[i])
  306. toktypes.append(gguf.TokenType.NORMAL)
  307. self.gguf_writer.add_tokenizer_model("gpt2")
  308. self.gguf_writer.add_tokenizer_pre(tokpre)
  309. self.gguf_writer.add_token_list(tokens)
  310. self.gguf_writer.add_token_types(toktypes)
  311. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  312. special_vocab.merges = merges
  313. # only add special tokens when they were not already loaded from config.json
  314. if len(special_vocab.special_token_ids) == 0:
  315. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  316. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  317. # this one is usually not in config.json anyway
  318. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  319. special_vocab.add_to_gguf(self.gguf_writer)
  320. def _set_vocab_sentencepiece(self):
  321. from sentencepiece import SentencePieceProcessor
  322. tokenizer_path = self.dir_model / 'tokenizer.model'
  323. tokens: list[bytes] = []
  324. scores: list[float] = []
  325. toktypes: list[int] = []
  326. if not tokenizer_path.is_file():
  327. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  328. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  329. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  330. for token_id in range(tokenizer.vocab_size()):
  331. piece = tokenizer.id_to_piece(token_id)
  332. text = piece.encode("utf-8")
  333. score = tokenizer.get_score(token_id)
  334. toktype = SentencePieceTokenTypes.NORMAL
  335. if tokenizer.is_unknown(token_id):
  336. toktype = SentencePieceTokenTypes.UNKNOWN
  337. elif tokenizer.is_control(token_id):
  338. toktype = SentencePieceTokenTypes.CONTROL
  339. elif tokenizer.is_unused(token_id):
  340. toktype = SentencePieceTokenTypes.UNUSED
  341. elif tokenizer.is_byte(token_id):
  342. toktype = SentencePieceTokenTypes.BYTE
  343. tokens.append(text)
  344. scores.append(score)
  345. toktypes.append(toktype)
  346. added_tokens_file = self.dir_model / 'added_tokens.json'
  347. if added_tokens_file.is_file():
  348. with open(added_tokens_file, "r", encoding="utf-8") as f:
  349. added_tokens_json = json.load(f)
  350. for key in added_tokens_json:
  351. key = key.encode("utf-8")
  352. if key not in tokens:
  353. tokens.append(key)
  354. scores.append(-1000.0)
  355. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  356. if vocab_size > len(tokens):
  357. pad_count = vocab_size - len(tokens)
  358. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  359. for i in range(1, pad_count + 1):
  360. tokens.append(f"[PAD{i}]")
  361. scores.append(-1000.0)
  362. toktypes.append(SentencePieceTokenTypes.UNUSED)
  363. assert len(tokens) == vocab_size
  364. self.gguf_writer.add_tokenizer_model("llama")
  365. self.gguf_writer.add_tokenizer_pre("default")
  366. self.gguf_writer.add_token_list(tokens)
  367. self.gguf_writer.add_token_scores(scores)
  368. self.gguf_writer.add_token_types(toktypes)
  369. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  370. special_vocab.add_to_gguf(self.gguf_writer)
  371. def _set_vocab_llama_hf(self):
  372. vocab = LlamaHfVocab(self.dir_model)
  373. tokens = []
  374. scores = []
  375. toktypes = []
  376. for text, score, toktype in vocab.all_tokens():
  377. tokens.append(text)
  378. scores.append(score)
  379. toktypes.append(toktype)
  380. assert len(tokens) == vocab.vocab_size
  381. self.gguf_writer.add_tokenizer_model("llama")
  382. self.gguf_writer.add_tokenizer_pre("default")
  383. self.gguf_writer.add_token_list(tokens)
  384. self.gguf_writer.add_token_scores(scores)
  385. self.gguf_writer.add_token_types(toktypes)
  386. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  387. special_vocab.add_to_gguf(self.gguf_writer)
  388. @Model.register("GPTNeoXForCausalLM")
  389. class GPTNeoXModel(Model):
  390. model_arch = gguf.MODEL_ARCH.GPTNEOX
  391. def set_gguf_parameters(self):
  392. block_count = self.hparams["num_hidden_layers"]
  393. self.gguf_writer.add_name(self.dir_model.name)
  394. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  395. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  396. self.gguf_writer.add_block_count(block_count)
  397. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  398. self.gguf_writer.add_rope_dimension_count(
  399. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  400. )
  401. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  402. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  403. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  404. @Model.register("BloomForCausalLM")
  405. class BloomModel(Model):
  406. model_arch = gguf.MODEL_ARCH.BLOOM
  407. def set_gguf_parameters(self):
  408. self.gguf_writer.add_name("Bloom")
  409. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  410. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  411. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  412. self.gguf_writer.add_embedding_length(n_embed)
  413. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  414. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  415. self.gguf_writer.add_head_count(n_head)
  416. self.gguf_writer.add_head_count_kv(n_head)
  417. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  418. self.gguf_writer.add_file_type(self.ftype)
  419. def write_tensors(self):
  420. block_count = self.hparams["n_layer"]
  421. tensors = dict(self.get_tensors())
  422. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  423. has_lm_head = True
  424. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  425. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  426. for name, data_torch in tensors.items():
  427. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  428. has_lm_head = False
  429. name = re.sub(r'transformer\.', '', name)
  430. old_dtype = data_torch.dtype
  431. # convert any unsupported data types to float32
  432. if data_torch.dtype not in (torch.float16, torch.float32):
  433. data_torch = data_torch.to(torch.float32)
  434. data = data_torch.squeeze().numpy()
  435. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  436. # Map bloom-style qkv_linear to gpt-style qkv_linear
  437. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  438. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  439. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  440. data = np.concatenate(
  441. (
  442. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  443. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  444. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  445. ),
  446. axis=0,
  447. )
  448. logger.info("re-format attention.linear_qkv.weight")
  449. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  450. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  451. data = np.concatenate(
  452. (
  453. qkv_bias[:, 0, :].reshape((n_embed,)),
  454. qkv_bias[:, 1, :].reshape((n_embed,)),
  455. qkv_bias[:, 2, :].reshape((n_embed,)),
  456. ),
  457. axis=0,
  458. )
  459. logger.info("re-format attention.linear_qkv.bias")
  460. # map tensor names
  461. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  462. if new_name is None:
  463. raise ValueError(f"Can not map tensor {name!r}")
  464. n_dims = len(data.shape)
  465. data_dtype = data.dtype
  466. # if f32 desired, convert any float16 to float32
  467. if self.ftype == 0 and data_dtype == np.float16:
  468. data = data.astype(np.float32)
  469. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  470. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  471. data = data.astype(np.float32)
  472. # if f16 desired, convert any float32 2-dim weight tensors to float16
  473. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  474. data = data.astype(np.float16)
  475. logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  476. self.gguf_writer.add_tensor(new_name, data)
  477. if not has_lm_head and name == "word_embeddings.weight":
  478. self.gguf_writer.add_tensor("output.weight", data)
  479. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  480. @Model.register("MPTForCausalLM")
  481. class MPTModel(Model):
  482. model_arch = gguf.MODEL_ARCH.MPT
  483. def set_vocab(self):
  484. try:
  485. self._set_vocab_gpt2()
  486. except Exception:
  487. # Fallback for SEA-LION model
  488. self._set_vocab_sentencepiece()
  489. self.gguf_writer.add_add_bos_token(False)
  490. self.gguf_writer.add_pad_token_id(3)
  491. self.gguf_writer.add_eos_token_id(1)
  492. self.gguf_writer.add_unk_token_id(0)
  493. def set_gguf_parameters(self):
  494. block_count = self.hparams["n_layers"]
  495. self.gguf_writer.add_name(self.dir_model.name)
  496. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  497. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  498. self.gguf_writer.add_block_count(block_count)
  499. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  500. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  501. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  502. self.gguf_writer.add_head_count_kv(kv_n_heads)
  503. self.gguf_writer.add_layer_norm_eps(1e-5)
  504. if self.hparams["attn_config"]["clip_qkv"] is not None:
  505. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  506. if self.hparams["attn_config"]["alibi"]:
  507. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  508. else:
  509. self.gguf_writer.add_max_alibi_bias(0.0)
  510. def write_tensors(self):
  511. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  512. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  513. for name, data_torch in self.get_tensors():
  514. # we don't need these
  515. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  516. continue
  517. old_dtype = data_torch.dtype
  518. # convert any unsupported data types to float32
  519. if data_torch.dtype not in (torch.float16, torch.float32):
  520. data_torch = data_torch.to(torch.float32)
  521. data = data_torch.squeeze().numpy()
  522. # map tensor names
  523. if "scales" in name:
  524. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  525. if new_name is not None:
  526. new_name = new_name.replace("scales", "act.scales")
  527. else:
  528. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  529. if new_name is None:
  530. raise ValueError(f"Can not map tensor {name!r}")
  531. n_dims = len(data.shape)
  532. data_dtype = data.dtype
  533. # if f32 desired, convert any float16 to float32
  534. if self.ftype == 0 and data_dtype == np.float16:
  535. data = data.astype(np.float32)
  536. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  537. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  538. data = data.astype(np.float32)
  539. # if f16 desired, convert any float32 2-dim weight tensors to float16
  540. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  541. data = data.astype(np.float16)
  542. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  543. self.gguf_writer.add_tensor(new_name, data)
  544. @Model.register("OrionForCausalLM")
  545. class OrionModel(Model):
  546. model_arch = gguf.MODEL_ARCH.ORION
  547. def set_vocab(self):
  548. self._set_vocab_sentencepiece()
  549. def set_gguf_parameters(self):
  550. block_count = self.hparams["num_hidden_layers"]
  551. head_count = self.hparams["num_attention_heads"]
  552. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  553. hf_repo = self.hparams.get("_name_or_path", "")
  554. ctx_length = 0
  555. if "max_sequence_length" in self.hparams:
  556. ctx_length = self.hparams["max_sequence_length"]
  557. elif "max_position_embeddings" in self.hparams:
  558. ctx_length = self.hparams["max_position_embeddings"]
  559. elif "model_max_length" in self.hparams:
  560. ctx_length = self.hparams["model_max_length"]
  561. else:
  562. raise ValueError("gguf: can not find ctx length parameter.")
  563. self.gguf_writer.add_file_type(self.ftype)
  564. self.gguf_writer.add_name(self.dir_model.name)
  565. self.gguf_writer.add_source_hf_repo(hf_repo)
  566. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  567. self.gguf_writer.add_context_length(ctx_length)
  568. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  569. self.gguf_writer.add_block_count(block_count)
  570. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  571. self.gguf_writer.add_head_count(head_count)
  572. self.gguf_writer.add_head_count_kv(head_count_kv)
  573. # note: config provides rms norm but it is actually layer norm
  574. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  575. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  576. def write_tensors(self):
  577. # Collect tensors from generator object
  578. model_kv = dict(self.get_tensors())
  579. block_count = self.hparams["num_hidden_layers"]
  580. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  581. for name, data_torch in model_kv.items():
  582. # we don't need these
  583. if name.endswith(".rotary_emb.inv_freq"):
  584. continue
  585. old_dtype = data_torch.dtype
  586. # convert any unsupported data types to float32
  587. if data_torch.dtype not in (torch.float16, torch.float32):
  588. data_torch = data_torch.to(torch.float32)
  589. data = data_torch.squeeze().numpy()
  590. # map tensor names
  591. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  592. if new_name is None:
  593. raise ValueError(f"Can not map tensor {name!r}")
  594. n_dims = len(data.shape)
  595. data_dtype = data.dtype
  596. # if f32 desired, convert any float16 to float32
  597. if self.ftype == 0 and data_dtype == np.float16:
  598. data = data.astype(np.float32)
  599. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  600. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  601. data = data.astype(np.float32)
  602. # if f16 desired, convert any float32 2-dim weight tensors to float16
  603. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  604. data = data.astype(np.float16)
  605. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  606. self.gguf_writer.add_tensor(new_name, data)
  607. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  608. class BaichuanModel(Model):
  609. model_arch = gguf.MODEL_ARCH.BAICHUAN
  610. def set_vocab(self):
  611. self._set_vocab_sentencepiece()
  612. def set_gguf_parameters(self):
  613. block_count = self.hparams["num_hidden_layers"]
  614. head_count = self.hparams["num_attention_heads"]
  615. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  616. hf_repo = self.hparams.get("_name_or_path", "")
  617. ctx_length = 0
  618. if "max_sequence_length" in self.hparams:
  619. ctx_length = self.hparams["max_sequence_length"]
  620. elif "max_position_embeddings" in self.hparams:
  621. ctx_length = self.hparams["max_position_embeddings"]
  622. elif "model_max_length" in self.hparams:
  623. ctx_length = self.hparams["model_max_length"]
  624. else:
  625. raise ValueError("gguf: can not find ctx length parameter.")
  626. self.gguf_writer.add_name(self.dir_model.name)
  627. self.gguf_writer.add_source_hf_repo(hf_repo)
  628. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  629. self.gguf_writer.add_context_length(ctx_length)
  630. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  631. self.gguf_writer.add_block_count(block_count)
  632. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  633. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  634. self.gguf_writer.add_head_count(head_count)
  635. self.gguf_writer.add_head_count_kv(head_count_kv)
  636. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  637. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  638. if self.hparams["rope_scaling"].get("type") == "linear":
  639. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  640. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  641. def write_tensors(self):
  642. # Collect tensors from generator object
  643. model_kv = dict(self.get_tensors())
  644. block_count = self.hparams["num_hidden_layers"]
  645. head_count = self.hparams["num_attention_heads"]
  646. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  647. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  648. for i in range(block_count):
  649. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  650. logger.info(f"Unpacking and permuting layer {i}")
  651. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  652. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  653. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  654. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  655. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  656. self._reverse_hf_part(w, 2)
  657. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  658. for name, data_torch in model_kv.items():
  659. # we don't need these
  660. if name.endswith(".rotary_emb.inv_freq"):
  661. continue
  662. old_dtype = data_torch.dtype
  663. # convert any unsupported data types to float32
  664. if data_torch.dtype not in (torch.float16, torch.float32):
  665. data_torch = data_torch.to(torch.float32)
  666. data = data_torch.squeeze().numpy()
  667. # map tensor names
  668. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  669. if new_name is None:
  670. raise ValueError(f"Can not map tensor {name!r}")
  671. n_dims = len(data.shape)
  672. data_dtype = data.dtype
  673. # if f32 desired, convert any float16 to float32
  674. if self.ftype == 0 and data_dtype == np.float16:
  675. data = data.astype(np.float32)
  676. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  677. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  678. data = data.astype(np.float32)
  679. # if f16 desired, convert any float32 2-dim weight tensors to float16
  680. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  681. data = data.astype(np.float16)
  682. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  683. self.gguf_writer.add_tensor(new_name, data)
  684. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  685. if n_kv_head is not None and n_head != n_kv_head:
  686. n_head //= n_kv_head
  687. return (
  688. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  689. .swapaxes(1, 2)
  690. .reshape(weights.shape)
  691. )
  692. def _reverse_hf_permute_part(
  693. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  694. ) -> Tensor:
  695. r = weights.shape[0] // 3
  696. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  697. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  698. r = weights.shape[0] // 3
  699. return weights[r * n_part:r * n_part + r, ...]
  700. @Model.register("XverseForCausalLM")
  701. class XverseModel(Model):
  702. model_arch = gguf.MODEL_ARCH.XVERSE
  703. def set_vocab(self):
  704. assert (self.dir_model / "tokenizer.json").is_file()
  705. dir_model = self.dir_model
  706. hparams = self.hparams
  707. tokens: list[bytearray] = []
  708. toktypes: list[int] = []
  709. from transformers import AutoTokenizer
  710. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  711. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  712. assert max(tokenizer.vocab.values()) < vocab_size
  713. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  714. added_vocab = tokenizer.get_added_vocab()
  715. for token_id in range(vocab_size):
  716. token_text = reverse_vocab[token_id].encode('utf-8')
  717. # replace "\x00" to string with length > 0
  718. if token_text == b"\x00":
  719. toktype = gguf.TokenType.BYTE # special
  720. token_text = f"<{token_text}>".encode('utf-8')
  721. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  722. toktype = gguf.TokenType.BYTE # special
  723. elif reverse_vocab[token_id] in added_vocab:
  724. if tokenizer.added_tokens_decoder[token_id].special:
  725. toktype = gguf.TokenType.CONTROL
  726. else:
  727. toktype = gguf.TokenType.USER_DEFINED
  728. else:
  729. toktype = gguf.TokenType.NORMAL
  730. tokens.append(token_text)
  731. toktypes.append(toktype)
  732. self.gguf_writer.add_tokenizer_model("llama")
  733. self.gguf_writer.add_tokenizer_pre("default")
  734. self.gguf_writer.add_token_list(tokens)
  735. self.gguf_writer.add_token_types(toktypes)
  736. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  737. special_vocab.add_to_gguf(self.gguf_writer)
  738. def set_gguf_parameters(self):
  739. block_count = self.hparams["num_hidden_layers"]
  740. head_count = self.hparams["num_attention_heads"]
  741. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  742. hf_repo = self.hparams.get("_name_or_path", "")
  743. ctx_length = 0
  744. if "max_sequence_length" in self.hparams:
  745. ctx_length = self.hparams["max_sequence_length"]
  746. elif "max_position_embeddings" in self.hparams:
  747. ctx_length = self.hparams["max_position_embeddings"]
  748. elif "model_max_length" in self.hparams:
  749. ctx_length = self.hparams["model_max_length"]
  750. else:
  751. raise ValueError("gguf: can not find ctx length parameter.")
  752. self.gguf_writer.add_name(self.dir_model.name)
  753. self.gguf_writer.add_source_hf_repo(hf_repo)
  754. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  755. self.gguf_writer.add_context_length(ctx_length)
  756. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  757. self.gguf_writer.add_block_count(block_count)
  758. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  759. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  760. self.gguf_writer.add_head_count(head_count)
  761. self.gguf_writer.add_head_count_kv(head_count_kv)
  762. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  763. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  764. if self.hparams["rope_scaling"].get("type") == "linear":
  765. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  766. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  767. def write_tensors(self):
  768. # Collect tensors from generator object
  769. model_kv = dict(self.get_tensors())
  770. block_count = self.hparams["num_hidden_layers"]
  771. head_count = self.hparams["num_attention_heads"]
  772. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  773. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  774. for name, data_torch in model_kv.items():
  775. # we don't need these
  776. if name.endswith(".rotary_emb.inv_freq"):
  777. continue
  778. old_dtype = data_torch.dtype
  779. # convert any unsupported data types to float32
  780. if data_torch.dtype not in (torch.float16, torch.float32):
  781. data_torch = data_torch.to(torch.float32)
  782. # HF models permute some of the tensors, so we need to undo that
  783. if name.endswith(("q_proj.weight")):
  784. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  785. if name.endswith(("k_proj.weight")):
  786. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  787. data = data_torch.squeeze().numpy()
  788. # map tensor names
  789. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  790. if new_name is None:
  791. raise ValueError(f"Can not map tensor {name!r}")
  792. n_dims = len(data.shape)
  793. data_dtype = data.dtype
  794. # if f32 desired, convert any float16 to float32
  795. if self.ftype == 0 and data_dtype == np.float16:
  796. data = data.astype(np.float32)
  797. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  798. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  799. data = data.astype(np.float32)
  800. # if f16 desired, convert any float32 2-dim weight tensors to float16
  801. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  802. data = data.astype(np.float16)
  803. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  804. self.gguf_writer.add_tensor(new_name, data)
  805. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  806. if n_kv_head is not None and n_head != n_kv_head:
  807. n_head //= n_kv_head
  808. return (
  809. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  810. .swapaxes(1, 2)
  811. .reshape(weights.shape)
  812. )
  813. @Model.register("FalconForCausalLM", "RWForCausalLM")
  814. class FalconModel(Model):
  815. model_arch = gguf.MODEL_ARCH.FALCON
  816. def set_gguf_parameters(self):
  817. block_count = self.hparams.get("num_hidden_layers")
  818. if block_count is None:
  819. block_count = self.hparams["n_layer"] # old name
  820. n_head = self.hparams.get("num_attention_heads")
  821. if n_head is None:
  822. n_head = self.hparams["n_head"] # old name
  823. n_head_kv = self.hparams.get("num_kv_heads")
  824. if n_head_kv is None:
  825. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  826. self.gguf_writer.add_name("Falcon")
  827. self.gguf_writer.add_context_length(2048) # not in config.json
  828. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  829. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  830. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  831. self.gguf_writer.add_block_count(block_count)
  832. self.gguf_writer.add_head_count(n_head)
  833. self.gguf_writer.add_head_count_kv(n_head_kv)
  834. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  835. self.gguf_writer.add_file_type(self.ftype)
  836. def write_tensors(self):
  837. block_count = self.hparams.get("num_hidden_layers")
  838. if block_count is None:
  839. block_count = self.hparams["n_layer"] # old name
  840. n_head = self.hparams.get("num_attention_heads")
  841. if n_head is None:
  842. n_head = self.hparams["n_head"] # old name
  843. n_head_kv = self.hparams.get("num_kv_heads")
  844. if n_head_kv is None:
  845. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  846. head_dim = self.hparams["hidden_size"] // n_head
  847. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  848. for name, data_torch in self.get_tensors():
  849. old_dtype = data_torch.dtype
  850. # convert any unsupported data types to float32
  851. if data_torch.dtype not in (torch.float16, torch.float32):
  852. data_torch = data_torch.to(torch.float32)
  853. # QKV tensor transform
  854. # The original query_key_value tensor contains n_head_kv "kv groups",
  855. # each consisting of n_head/n_head_kv query weights followed by one key
  856. # and one value weight (shared by all query heads in the kv group).
  857. # This layout makes it a big pain to work with in GGML.
  858. # So we rearrange them here,, so that we have n_head query weights
  859. # followed by n_head_kv key weights followed by n_head_kv value weights,
  860. # in contiguous fashion.
  861. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  862. if "query_key_value" in name:
  863. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  864. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  865. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  866. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  867. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  868. data = data_torch.squeeze().numpy()
  869. # map tensor names
  870. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  871. if new_name is None:
  872. raise ValueError(f"Can not map tensor {name!r}")
  873. n_dims = len(data.shape)
  874. data_dtype = data.dtype
  875. # if f32 desired, convert any float16 to float32
  876. if self.ftype == 0 and data_dtype == np.float16:
  877. data = data.astype(np.float32)
  878. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  879. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  880. data = data.astype(np.float32)
  881. # if f16 desired, convert any float32 2-dim weight tensors to float16
  882. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  883. data = data.astype(np.float16)
  884. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  885. self.gguf_writer.add_tensor(new_name, data)
  886. @Model.register("GPTBigCodeForCausalLM")
  887. class StarCoderModel(Model):
  888. model_arch = gguf.MODEL_ARCH.STARCODER
  889. def set_gguf_parameters(self):
  890. block_count = self.hparams["n_layer"]
  891. self.gguf_writer.add_name("StarCoder")
  892. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  893. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  894. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  895. self.gguf_writer.add_block_count(block_count)
  896. self.gguf_writer.add_head_count(self.hparams["n_head"])
  897. self.gguf_writer.add_head_count_kv(1)
  898. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  899. self.gguf_writer.add_file_type(self.ftype)
  900. @Model.register("GPTRefactForCausalLM")
  901. class RefactModel(Model):
  902. model_arch = gguf.MODEL_ARCH.REFACT
  903. def set_gguf_parameters(self):
  904. hidden_dim = self.hparams["n_embd"]
  905. inner_dim = 4 * hidden_dim
  906. hidden_dim = int(2 * inner_dim / 3)
  907. multiple_of = 256
  908. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  909. block_count = self.hparams["n_layer"]
  910. self.gguf_writer.add_name("Refact")
  911. # refact uses Alibi. So this is from config.json which might be used by training.
  912. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  913. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  914. self.gguf_writer.add_feed_forward_length(ff_dim)
  915. self.gguf_writer.add_block_count(block_count)
  916. self.gguf_writer.add_head_count(self.hparams["n_head"])
  917. self.gguf_writer.add_head_count_kv(1)
  918. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  919. self.gguf_writer.add_file_type(self.ftype)
  920. def write_tensors(self):
  921. hidden_dim = self.hparams["n_embd"]
  922. inner_dim = 4 * hidden_dim
  923. hidden_dim = int(2 * inner_dim / 3)
  924. multiple_of = 256
  925. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  926. n_head = self.hparams["n_head"]
  927. n_head_kv = 1
  928. head_dim = self.hparams["n_embd"] // n_head
  929. block_count = self.hparams["n_layer"]
  930. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  931. tensors = dict(self.get_tensors())
  932. for i in range(block_count):
  933. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  934. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  935. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  936. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  937. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  938. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  939. del tensors[f"transformer.h.{i}.attn.q.weight"]
  940. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  941. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  942. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  943. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  944. for name, data_torch in tensors.items():
  945. old_dtype = data_torch.dtype
  946. # convert any unsupported data types to float32
  947. if data_torch.dtype not in (torch.float16, torch.float32):
  948. data_torch = data_torch.to(torch.float32)
  949. data = data_torch.squeeze().numpy()
  950. # map tensor names
  951. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  952. if new_name is None:
  953. raise ValueError(f"Can not map tensor {name!r}")
  954. n_dims = len(data.shape)
  955. data_dtype = data.dtype
  956. # if f32 desired, convert any float16 to float32
  957. if self.ftype == 0 and data_dtype == np.float16:
  958. data = data.astype(np.float32)
  959. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  960. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  961. data = data.astype(np.float32)
  962. # if f16 desired, convert any float32 2-dim weight tensors to float16
  963. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  964. data = data.astype(np.float16)
  965. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  966. self.gguf_writer.add_tensor(new_name, data)
  967. @Model.register("PersimmonForCausalLM")
  968. class PersimmonModel(Model):
  969. model_arch = gguf.MODEL_ARCH.PERSIMMON
  970. def set_gguf_parameters(self):
  971. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  972. head_count = self.hparams["num_attention_heads"]
  973. head_count_kv = head_count
  974. hidden_size = self.hparams["hidden_size"]
  975. self.gguf_writer.add_name('persimmon-8b-chat')
  976. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  977. self.gguf_writer.add_embedding_length(hidden_size)
  978. self.gguf_writer.add_block_count(block_count)
  979. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  980. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  981. # than the head size?
  982. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  983. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  984. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  985. self.gguf_writer.add_head_count(head_count)
  986. self.gguf_writer.add_head_count_kv(head_count_kv)
  987. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  988. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  989. def set_vocab(self):
  990. self._set_vocab_sentencepiece()
  991. # self.gguf_writer.add_bos_token_id(71013)
  992. # self.gguf_writer.add_eos_token_id(71013)
  993. def write_tensors(self):
  994. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  995. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  996. for name, data_torch in self.get_tensors():
  997. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  998. continue
  999. old_dtype = data_torch.dtype
  1000. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1001. data = data_torch.to(torch.float32).squeeze().numpy()
  1002. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1003. if new_name is None:
  1004. raise ValueError(f"Can not map tensor {name!r}")
  1005. n_dims = len(data.shape)
  1006. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1007. self.gguf_writer.add_tensor(new_name, data)
  1008. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1009. class StableLMModel(Model):
  1010. model_arch = gguf.MODEL_ARCH.STABLELM
  1011. def set_vocab(self):
  1012. if (self.dir_model / "tokenizer.json").is_file():
  1013. self._set_vocab_gpt2()
  1014. else:
  1015. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1016. self._set_vocab_qwen()
  1017. def set_gguf_parameters(self):
  1018. hparams = self.hparams
  1019. block_count = hparams["num_hidden_layers"]
  1020. self.gguf_writer.add_name(self.dir_model.name)
  1021. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1022. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1023. self.gguf_writer.add_block_count(block_count)
  1024. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1025. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1026. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1027. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1028. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1029. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1030. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1031. def write_tensors(self):
  1032. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1033. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1034. n_head = self.hparams.get("num_attention_heads")
  1035. n_kv_head = self.hparams.get("num_key_value_heads")
  1036. q_norms = dict()
  1037. k_norms = dict()
  1038. for name, data_torch in self.get_tensors():
  1039. # we don't need these
  1040. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1041. continue
  1042. old_dtype = data_torch.dtype
  1043. # convert any unsupported data types to float32
  1044. if data_torch.dtype not in (torch.float16, torch.float32):
  1045. data_torch = data_torch.to(torch.float32)
  1046. data = data_torch.squeeze().numpy()
  1047. n_dims = len(data.shape)
  1048. if name.find("q_layernorm.norms") != -1:
  1049. q_norms[name] = data
  1050. if len(q_norms) >= (block_count * n_head):
  1051. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1052. continue
  1053. if name.find("k_layernorm.norms") != -1:
  1054. k_norms[name] = data
  1055. if len(k_norms) >= (block_count * n_kv_head):
  1056. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1057. continue
  1058. # map tensor names
  1059. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1060. if new_name is None:
  1061. raise ValueError(f"Can not map tensor {name!r}")
  1062. n_dims = len(data.shape)
  1063. data_dtype = data.dtype
  1064. # if f32 desired, convert any float16 to float32
  1065. if self.ftype == 0 and data_dtype == np.float16:
  1066. data = data.astype(np.float32)
  1067. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1068. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1069. data = data.astype(np.float32)
  1070. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1071. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1072. data = data.astype(np.float16)
  1073. logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1074. self.gguf_writer.add_tensor(new_name, data)
  1075. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1076. for bid in range(block_count):
  1077. datas = []
  1078. for xid in range(n_head):
  1079. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1080. datas.append(norms[ename])
  1081. del norms[ename]
  1082. data = np.stack(datas, axis=0)
  1083. data_dtype = data.dtype
  1084. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1085. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1086. if new_name is None:
  1087. raise ValueError(f"Can not map tensor {name!r}")
  1088. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1089. data = data.astype(np.float32)
  1090. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1091. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1092. data = data.astype(np.float16)
  1093. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1094. self.gguf_writer.add_tensor(new_name, data)
  1095. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1096. class LlamaModel(Model):
  1097. model_arch = gguf.MODEL_ARCH.LLAMA
  1098. def set_vocab(self):
  1099. try:
  1100. self. _set_vocab_sentencepiece()
  1101. except FileNotFoundError:
  1102. try:
  1103. self._set_vocab_llama_hf()
  1104. except (FileNotFoundError, TypeError):
  1105. # Llama 3
  1106. self._set_vocab_gpt2()
  1107. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1108. if self.hparams.get("vocab_size", 32000) == 32016:
  1109. special_vocab = gguf.SpecialVocab(
  1110. self.dir_model, load_merges=False,
  1111. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1112. )
  1113. special_vocab._set_special_token("prefix", 32007)
  1114. special_vocab._set_special_token("suffix", 32008)
  1115. special_vocab._set_special_token("middle", 32009)
  1116. special_vocab._set_special_token("eot", 32010)
  1117. special_vocab.add_to_gguf(self.gguf_writer)
  1118. def set_gguf_parameters(self):
  1119. super().set_gguf_parameters()
  1120. hparams = self.hparams
  1121. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1122. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1123. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1124. if self.hparams["rope_scaling"].get("type") == "linear":
  1125. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1126. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1127. # Same as super class, but permuting q_proj, k_proj
  1128. def write_tensors(self):
  1129. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1130. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1131. n_head = self.hparams.get("num_attention_heads")
  1132. n_kv_head = self.hparams.get("num_key_value_heads")
  1133. n_experts = self.hparams.get("num_local_experts")
  1134. experts = dict()
  1135. for name, data_torch in self.get_tensors():
  1136. # we don't need these
  1137. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  1138. continue
  1139. old_dtype = data_torch.dtype
  1140. # convert any unsupported data types to float32
  1141. if data_torch.dtype not in (torch.float16, torch.float32):
  1142. data_torch = data_torch.to(torch.float32)
  1143. data = data_torch.numpy()
  1144. if name.endswith("q_proj.weight"):
  1145. data = permute(data, n_head, n_head)
  1146. if name.endswith("k_proj.weight"):
  1147. data = permute(data, n_head, n_kv_head)
  1148. data = data.squeeze()
  1149. # process the experts separately
  1150. if name.find("block_sparse_moe.experts") != -1:
  1151. experts[name] = data
  1152. if len(experts) >= n_experts:
  1153. # merge the experts into a single 3d tensor
  1154. for bid in range(block_count):
  1155. for wid in range(1, 4):
  1156. full = True
  1157. for xid in range(n_experts):
  1158. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1159. if ename not in experts:
  1160. full = False
  1161. break
  1162. if not full:
  1163. continue
  1164. datas = []
  1165. for xid in range(n_experts):
  1166. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1167. datas.append(experts[ename])
  1168. del experts[ename]
  1169. data = np.stack(datas, axis=0)
  1170. data_dtype = data.dtype
  1171. if self.ftype == 0 and data_dtype == np.float16:
  1172. data = data.astype(np.float32)
  1173. if self.ftype == 1 and data_dtype == np.float32:
  1174. data = data.astype(np.float16)
  1175. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1176. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1177. if new_name is None:
  1178. raise ValueError(f"Can not map tensor {name!r}")
  1179. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1180. self.gguf_writer.add_tensor(new_name, data)
  1181. continue
  1182. # map tensor names
  1183. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1184. if new_name is None:
  1185. raise ValueError(f"Can not map tensor {name!r}")
  1186. n_dims = len(data.shape)
  1187. data_dtype = data.dtype
  1188. # if f32 desired, convert any float16 to float32
  1189. if self.ftype == 0 and data_dtype == np.float16:
  1190. data = data.astype(np.float32)
  1191. # 1d tensors need to be converted to float32
  1192. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1193. data = data.astype(np.float32)
  1194. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1195. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1196. data = data.astype(np.float16)
  1197. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1198. self.gguf_writer.add_tensor(new_name, data)
  1199. if len(experts) > 0:
  1200. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1201. @Model.register("GrokForCausalLM")
  1202. class GrokModel(Model):
  1203. model_arch = gguf.MODEL_ARCH.GROK
  1204. def set_vocab(self):
  1205. self._set_vocab_sentencepiece()
  1206. def __init__(self, *args, **kwargs):
  1207. super().__init__(*args, **kwargs)
  1208. def set_gguf_parameters(self):
  1209. super().set_gguf_parameters()
  1210. self.gguf_writer.add_name("Grok")
  1211. def write_tensors(self):
  1212. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1213. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1214. n_experts = self.hparams.get("num_local_experts")
  1215. experts = dict()
  1216. for name, data_torch in self.get_tensors():
  1217. # we don't need these
  1218. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1219. continue
  1220. old_dtype = data_torch.dtype
  1221. # convert any unsupported data types to float32
  1222. if data_torch.dtype not in (torch.float16, torch.float32):
  1223. data_torch = data_torch.to(torch.float32)
  1224. data = data_torch.squeeze().numpy()
  1225. # process the experts separately
  1226. if name.find(".moe.") != -1:
  1227. experts[name] = data
  1228. if len(experts) >= n_experts:
  1229. # merge the experts into a single 3d tensor
  1230. for bid in range(block_count):
  1231. for wid in ["linear", "linear_1", "linear_v"]:
  1232. full = True
  1233. for xid in range(n_experts):
  1234. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1235. if ename not in experts:
  1236. full = False
  1237. break
  1238. if not full:
  1239. continue
  1240. datas = []
  1241. for xid in range(n_experts):
  1242. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1243. datas.append(experts[ename])
  1244. del experts[ename]
  1245. data = np.stack(datas, axis=0)
  1246. data_dtype = data.dtype
  1247. if self.ftype == 0 and data_dtype == np.float16:
  1248. data = data.astype(np.float32)
  1249. if self.ftype == 1 and data_dtype == np.float32:
  1250. data = data.astype(np.float16)
  1251. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1252. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1253. if new_name is None:
  1254. raise ValueError(f"Can not map tensor {name!r}")
  1255. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1256. self.gguf_writer.add_tensor(new_name, data)
  1257. continue
  1258. # map tensor names
  1259. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1260. if new_name is None:
  1261. raise ValueError(f"Can not map tensor {name!r}")
  1262. n_dims = len(data.shape)
  1263. data_dtype = data.dtype
  1264. # if f32 desired, convert any float16 to float32
  1265. if self.ftype == 0 and data_dtype == np.float16:
  1266. data = data.astype(np.float32)
  1267. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1268. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1269. data = data.astype(np.float32)
  1270. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1271. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1272. data = data.astype(np.float16)
  1273. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1274. self.gguf_writer.add_tensor(new_name, data)
  1275. @Model.register("DbrxForCausalLM")
  1276. class DbrxModel(Model):
  1277. model_arch = gguf.MODEL_ARCH.DBRX
  1278. def set_gguf_parameters(self):
  1279. ffn_config = self.hparams["ffn_config"]
  1280. attn_config = self.hparams["attn_config"]
  1281. self.gguf_writer.add_name(self.hparams["model_type"])
  1282. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1283. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1284. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1285. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1286. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1287. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1288. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1289. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1290. self.gguf_writer.add_file_type(self.ftype)
  1291. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1292. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1293. self.gguf_writer.add_layer_norm_eps(1e-5)
  1294. self.gguf_writer.add_file_type(self.ftype)
  1295. logger.info(f"gguf: file type = {self.ftype}")
  1296. def write_tensors(self):
  1297. block_count = self.hparams.get("n_layers")
  1298. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1299. for name, data_torch in self.get_tensors():
  1300. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1301. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1302. n_embd = self.hparams["d_model"]
  1303. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1304. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1305. # But llama.cpp moe graph works differently
  1306. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1307. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1308. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1309. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1310. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1311. experts = False
  1312. for exp_tensor_name in exp_tensor_names.keys():
  1313. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1314. experts = True
  1315. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1316. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1317. data_torch = data_torch.permute(*permute_tensor)
  1318. break
  1319. old_dtype = data_torch.dtype
  1320. # convert any unsupported data types to float32
  1321. if data_torch.dtype not in (torch.float16, torch.float32):
  1322. data_torch = data_torch.to(torch.float32)
  1323. data = data_torch.squeeze().numpy()
  1324. # map tensor names
  1325. # In MoE models the ffn tensors are typically most of the model weights,
  1326. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1327. # Every other model has the weight names ending in .weight,
  1328. # let's assume that is the convention which is not the case for dbrx:
  1329. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1330. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1331. if new_name is None:
  1332. raise ValueError(f"Can not map tensor {name!r}")
  1333. n_dims = len(data.shape)
  1334. data_dtype = data.dtype
  1335. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1336. # and most of the outputs tensors are F32.
  1337. if data_dtype != np.float32 and n_dims == 1:
  1338. raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1339. # if f32 desired, convert any float16 to float32
  1340. if self.ftype == 0 and data_dtype == np.float16:
  1341. data = data.astype(np.float32)
  1342. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1343. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1344. data = data.astype(np.float16)
  1345. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1346. self.gguf_writer.add_tensor(new_name, data)
  1347. @Model.register("MiniCPMForCausalLM")
  1348. class MiniCPMModel(Model):
  1349. model_arch = gguf.MODEL_ARCH.MINICPM
  1350. def set_gguf_parameters(self):
  1351. block_count = self.hparams["num_hidden_layers"]
  1352. self.gguf_writer.add_name("MiniCPM")
  1353. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1354. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1355. self.gguf_writer.add_block_count(block_count)
  1356. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1357. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1358. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1359. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1360. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1361. self.gguf_writer.add_file_type(self.ftype)
  1362. def set_vocab(self):
  1363. self._set_vocab_llama_hf()
  1364. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1365. if n_kv_head is not None and n_head != n_kv_head:
  1366. n_head //= n_kv_head
  1367. return (
  1368. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1369. .swapaxes(1, 2)
  1370. .reshape(weights.shape)
  1371. )
  1372. def write_tensors(self):
  1373. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1374. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1375. n_head = self.hparams.get("num_attention_heads")
  1376. n_kv_head = self.hparams.get("num_key_value_heads")
  1377. for name, data_torch in self.get_tensors():
  1378. # we don't need these
  1379. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1380. continue
  1381. old_dtype = data_torch.dtype
  1382. # convert any unsupported data types to float32
  1383. if data_torch.dtype not in (torch.float16, torch.float32):
  1384. data_torch = data_torch.to(torch.float32)
  1385. # HF models permute some of the tensors, so we need to undo that
  1386. if name.endswith(("q_proj.weight")):
  1387. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1388. if name.endswith(("k_proj.weight")):
  1389. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1390. data = data_torch.squeeze().numpy()
  1391. # map tensor names
  1392. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1393. if new_name is None:
  1394. raise ValueError(f"Can not map tensor {name!r}")
  1395. n_dims = len(data.shape)
  1396. data_dtype = data.dtype
  1397. # if f32 desired, convert any float16 to float32
  1398. if self.ftype == 0 and data_dtype == np.float16:
  1399. data = data.astype(np.float32)
  1400. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1401. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1402. data = data.astype(np.float32)
  1403. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1404. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1405. data = data.astype(np.float16)
  1406. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1407. self.gguf_writer.add_tensor(new_name, data)
  1408. @Model.register("QWenLMHeadModel")
  1409. class QwenModel(Model):
  1410. model_arch = gguf.MODEL_ARCH.QWEN
  1411. @staticmethod
  1412. def token_bytes_to_string(b):
  1413. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1414. byte_encoder = bytes_to_unicode()
  1415. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1416. @staticmethod
  1417. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1418. parts = [bytes([b]) for b in token]
  1419. while True:
  1420. min_idx = None
  1421. min_rank = None
  1422. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1423. rank = mergeable_ranks.get(pair[0] + pair[1])
  1424. if rank is not None and (min_rank is None or rank < min_rank):
  1425. min_idx = i
  1426. min_rank = rank
  1427. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1428. break
  1429. assert min_idx is not None
  1430. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1431. return parts
  1432. def set_vocab(self):
  1433. self._set_vocab_qwen()
  1434. def set_gguf_parameters(self):
  1435. self.gguf_writer.add_name("Qwen")
  1436. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1437. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1438. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1439. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1440. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1441. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1442. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1443. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1444. def write_tensors(self):
  1445. block_count = self.hparams["num_hidden_layers"]
  1446. model_kv = dict(self.get_tensors())
  1447. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1448. for name, data_torch in model_kv.items():
  1449. # we don't need these
  1450. if name.endswith(".rotary_emb.inv_freq"):
  1451. continue
  1452. old_dtype = data_torch.dtype
  1453. # convert any unsupported data types to float32
  1454. if data_torch.dtype not in (torch.float16, torch.float32):
  1455. data_torch = data_torch.to(torch.float32)
  1456. data = data_torch.squeeze().numpy()
  1457. # map tensor names
  1458. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1459. if new_name is None:
  1460. raise ValueError(f"Can not map tensor {name!r}")
  1461. n_dims = len(data.shape)
  1462. data_dtype = data.dtype
  1463. # if f32 desired, convert any float16 to float32
  1464. if self.ftype == 0 and data_dtype == np.float16:
  1465. data = data.astype(np.float32)
  1466. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1467. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1468. data = data.astype(np.float32)
  1469. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1470. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1471. data = data.astype(np.float16)
  1472. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1473. self.gguf_writer.add_tensor(new_name, data)
  1474. @Model.register("Qwen2ForCausalLM")
  1475. class Qwen2Model(Model):
  1476. model_arch = gguf.MODEL_ARCH.QWEN2
  1477. def set_vocab(self):
  1478. try:
  1479. self._set_vocab_sentencepiece()
  1480. except FileNotFoundError:
  1481. self._set_vocab_gpt2()
  1482. @Model.register("Qwen2MoeForCausalLM")
  1483. class Qwen2MoeModel(Model):
  1484. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1485. def set_gguf_parameters(self):
  1486. super().set_gguf_parameters()
  1487. if (n_experts := self.hparams.get("num_experts")) is not None:
  1488. self.gguf_writer.add_expert_count(n_experts)
  1489. def write_tensors(self):
  1490. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1491. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1492. n_experts = self.hparams.get("num_experts")
  1493. experts = dict()
  1494. for name, data_torch in self.get_tensors():
  1495. # we don't need these
  1496. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1497. continue
  1498. old_dtype = data_torch.dtype
  1499. # convert any unsupported data types to float32
  1500. if data_torch.dtype not in (torch.float16, torch.float32):
  1501. data_torch = data_torch.to(torch.float32)
  1502. data = data_torch.squeeze().numpy()
  1503. # process the experts separately
  1504. if name.find("experts") != -1:
  1505. experts[name] = data
  1506. if len(experts) >= n_experts * 3:
  1507. # merge the experts into a single 3d tensor
  1508. for bid in range(block_count):
  1509. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1510. full = True
  1511. for xid in range(n_experts):
  1512. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1513. if ename not in experts:
  1514. full = False
  1515. break
  1516. if not full:
  1517. continue
  1518. datas = []
  1519. for xid in range(n_experts):
  1520. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1521. datas.append(experts[ename])
  1522. del experts[ename]
  1523. data = np.stack(datas, axis=0)
  1524. data_dtype = data.dtype
  1525. if self.ftype == 0 and data_dtype == np.float16:
  1526. data = data.astype(np.float32)
  1527. if self.ftype == 1 and data_dtype == np.float32:
  1528. data = data.astype(np.float16)
  1529. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1530. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1531. if new_name is None:
  1532. raise ValueError(f"Can not map tensor {name!r}")
  1533. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1534. self.gguf_writer.add_tensor(new_name, data)
  1535. continue
  1536. # map tensor names
  1537. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1538. if new_name is None:
  1539. raise ValueError(f"Can not map tensor {name!r}")
  1540. n_dims = len(data.shape)
  1541. data_dtype = data.dtype
  1542. # if f32 desired, convert any float16 to float32
  1543. if self.ftype == 0 and data_dtype == np.float16:
  1544. data = data.astype(np.float32)
  1545. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1546. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1547. data = data.astype(np.float32)
  1548. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1549. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1550. data = data.astype(np.float16)
  1551. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1552. self.gguf_writer.add_tensor(new_name, data)
  1553. if len(experts) > 0:
  1554. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1555. @Model.register("GPT2LMHeadModel")
  1556. class GPT2Model(Model):
  1557. model_arch = gguf.MODEL_ARCH.GPT2
  1558. def set_gguf_parameters(self):
  1559. self.gguf_writer.add_name(self.dir_model.name)
  1560. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1561. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1562. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1563. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1564. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1565. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1566. self.gguf_writer.add_file_type(self.ftype)
  1567. def write_tensors(self):
  1568. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1569. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1570. for name, data_torch in self.get_tensors():
  1571. # we don't need these
  1572. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1573. continue
  1574. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1575. data_torch = data_torch.transpose(1, 0)
  1576. old_dtype = data_torch.dtype
  1577. # convert any unsupported data types to float32
  1578. if data_torch.dtype not in (torch.float16, torch.float32):
  1579. data_torch = data_torch.to(torch.float32)
  1580. data = data_torch.squeeze().numpy()
  1581. # map tensor names
  1582. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1583. if new_name is None:
  1584. raise ValueError(f"Can not map tensor {name!r}")
  1585. n_dims = len(data.shape)
  1586. data_dtype = data.dtype
  1587. # if f32 desired, convert any float16 to float32
  1588. if self.ftype == 0 and data_dtype == np.float16:
  1589. data = data.astype(np.float32)
  1590. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1591. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1592. data = data.astype(np.float32)
  1593. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1594. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1595. data = data.astype(np.float16)
  1596. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1597. self.gguf_writer.add_tensor(new_name, data)
  1598. # note: GPT2 output is tied to (same as) wte in original model
  1599. if new_name == "token_embd.weight":
  1600. logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1601. self.gguf_writer.add_tensor("output.weight", data)
  1602. @Model.register("PhiForCausalLM")
  1603. class Phi2Model(Model):
  1604. model_arch = gguf.MODEL_ARCH.PHI2
  1605. def set_gguf_parameters(self):
  1606. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1607. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1608. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1609. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1610. self.gguf_writer.add_name("Phi2")
  1611. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1612. self.gguf_writer.add_embedding_length(n_embd)
  1613. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1614. self.gguf_writer.add_block_count(block_count)
  1615. self.gguf_writer.add_head_count(n_head)
  1616. self.gguf_writer.add_head_count_kv(n_head)
  1617. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1618. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1619. self.gguf_writer.add_file_type(self.ftype)
  1620. self.gguf_writer.add_add_bos_token(False)
  1621. @Model.register("Phi3ForCausalLM")
  1622. class Phi3MiniModel(Model):
  1623. model_arch = gguf.MODEL_ARCH.PHI3
  1624. def set_vocab(self):
  1625. from sentencepiece import SentencePieceProcessor
  1626. tokenizer_path = self.dir_model / 'tokenizer.model'
  1627. if not tokenizer_path.is_file():
  1628. raise ValueError(f'Error: Missing {tokenizer_path}')
  1629. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1630. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1631. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1632. scores: list[float] = [-10000.0] * vocab_size
  1633. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1634. for token_id in range(tokenizer.vocab_size()):
  1635. piece = tokenizer.id_to_piece(token_id)
  1636. text = piece.encode("utf-8")
  1637. score = tokenizer.get_score(token_id)
  1638. toktype = SentencePieceTokenTypes.NORMAL
  1639. if tokenizer.is_unknown(token_id):
  1640. toktype = SentencePieceTokenTypes.UNKNOWN
  1641. elif tokenizer.is_control(token_id):
  1642. toktype = SentencePieceTokenTypes.CONTROL
  1643. elif tokenizer.is_unused(token_id):
  1644. toktype = SentencePieceTokenTypes.UNUSED
  1645. elif tokenizer.is_byte(token_id):
  1646. toktype = SentencePieceTokenTypes.BYTE
  1647. tokens[token_id] = text
  1648. scores[token_id] = score
  1649. toktypes[token_id] = toktype
  1650. added_tokens_file = self.dir_model / 'added_tokens.json'
  1651. if added_tokens_file.is_file():
  1652. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1653. added_tokens_json = json.load(f)
  1654. for key in added_tokens_json:
  1655. token_id = added_tokens_json[key]
  1656. if (token_id >= vocab_size):
  1657. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1658. continue
  1659. tokens[token_id] = key.encode("utf-8")
  1660. scores[token_id] = -1000.0
  1661. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1662. self.gguf_writer.add_tokenizer_model("llama")
  1663. self.gguf_writer.add_tokenizer_pre("default")
  1664. self.gguf_writer.add_token_list(tokens)
  1665. self.gguf_writer.add_token_scores(scores)
  1666. self.gguf_writer.add_token_types(toktypes)
  1667. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1668. special_vocab.add_to_gguf(self.gguf_writer)
  1669. def set_gguf_parameters(self):
  1670. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1671. rot_pct = 1.0
  1672. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1673. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1674. rms_eps = self.find_hparam(["rms_norm_eps"])
  1675. self.gguf_writer.add_name("Phi3")
  1676. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1677. self.gguf_writer.add_embedding_length(n_embd)
  1678. self.gguf_writer.add_feed_forward_length(8192)
  1679. self.gguf_writer.add_block_count(block_count)
  1680. self.gguf_writer.add_head_count(n_head)
  1681. self.gguf_writer.add_head_count_kv(n_head)
  1682. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1683. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1684. self.gguf_writer.add_file_type(self.ftype)
  1685. @Model.register("PlamoForCausalLM")
  1686. class PlamoModel(Model):
  1687. model_arch = gguf.MODEL_ARCH.PLAMO
  1688. def set_vocab(self):
  1689. self._set_vocab_sentencepiece()
  1690. def set_gguf_parameters(self):
  1691. hparams = self.hparams
  1692. block_count = hparams["num_hidden_layers"]
  1693. self.gguf_writer.add_name("PLaMo")
  1694. self.gguf_writer.add_context_length(4096) # not in config.json
  1695. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1696. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1697. self.gguf_writer.add_block_count(block_count)
  1698. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1699. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1700. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1701. def shuffle_attn_q_weight(self, data_torch):
  1702. assert data_torch.size() == (5120, 5120)
  1703. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1704. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1705. data_torch = torch.reshape(data_torch, (5120, 5120))
  1706. return data_torch
  1707. def shuffle_attn_output_weight(self, data_torch):
  1708. assert data_torch.size() == (5120, 5120)
  1709. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1710. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1711. data_torch = torch.reshape(data_torch, (5120, 5120))
  1712. return data_torch
  1713. def write_tensors(self):
  1714. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1715. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1716. for name, data_torch in self.get_tensors():
  1717. if "self_attn.rotary_emb.inv_freq" in name:
  1718. continue
  1719. # map tensor names
  1720. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1721. if new_name is None:
  1722. raise ValueError(f"Can not map tensor {name!r}")
  1723. # shuffle for broadcasting of gqa in ggml_mul_mat
  1724. if new_name.endswith("attn_q.weight"):
  1725. data_torch = self.shuffle_attn_q_weight(data_torch)
  1726. elif new_name.endswith("attn_output.weight"):
  1727. data_torch = self.shuffle_attn_output_weight(data_torch)
  1728. old_dtype = data_torch.dtype
  1729. # convert any unsupported data types to float32
  1730. if data_torch.dtype not in (torch.float16, torch.float32):
  1731. data_torch = data_torch.to(torch.float32)
  1732. data = data_torch.squeeze().numpy()
  1733. n_dims = len(data.shape)
  1734. data_dtype = data.dtype
  1735. # if f32 desired, convert any float16 to float32
  1736. if self.ftype == 0 and data_dtype == np.float16:
  1737. data = data.astype(np.float32)
  1738. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1739. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1740. data = data.astype(np.float32)
  1741. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1742. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1743. data = data.astype(np.float16)
  1744. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1745. self.gguf_writer.add_tensor(new_name, data)
  1746. @Model.register("CodeShellForCausalLM")
  1747. class CodeShellModel(Model):
  1748. model_arch = gguf.MODEL_ARCH.CODESHELL
  1749. def set_gguf_parameters(self):
  1750. block_count = self.hparams["n_layer"]
  1751. self.gguf_writer.add_name("CodeShell")
  1752. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1753. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1754. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1755. self.gguf_writer.add_block_count(block_count)
  1756. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1757. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1758. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1759. self.gguf_writer.add_file_type(self.ftype)
  1760. self.gguf_writer.add_rope_freq_base(10000.0)
  1761. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1762. self.gguf_writer.add_rope_scaling_factor(1.0)
  1763. def write_tensors(self):
  1764. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1765. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1766. tensors = dict(self.get_tensors())
  1767. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1768. for name, data_torch in tensors.items():
  1769. # we don't need these
  1770. if name.endswith((".attn.rotary_emb.inv_freq")):
  1771. continue
  1772. old_dtype = data_torch.dtype
  1773. # convert any unsupported data types to float32
  1774. if data_torch.dtype not in (torch.float16, torch.float32):
  1775. data_torch = data_torch.to(torch.float32)
  1776. data = data_torch.squeeze().numpy()
  1777. # map tensor names
  1778. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1779. if new_name is None:
  1780. raise ValueError(f"Can not map tensor {name!r}")
  1781. n_dims = len(data.shape)
  1782. data_dtype = data.dtype
  1783. # if f32 desired, convert any float16 to float32
  1784. if self.ftype == 0 and data_dtype == np.float16:
  1785. data = data.astype(np.float32)
  1786. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1787. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1788. data = data.astype(np.float32)
  1789. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1790. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1791. data = data.astype(np.float16)
  1792. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1793. self.gguf_writer.add_tensor(new_name, data)
  1794. if not has_lm_head and name == "transformer.wte.weight":
  1795. self.gguf_writer.add_tensor("output.weight", data)
  1796. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1797. @Model.register("InternLM2ForCausalLM")
  1798. class InternLM2Model(Model):
  1799. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1800. def set_vocab(self):
  1801. # (TODO): Is there a better way?
  1802. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1803. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1804. # recognized as an empty string in C++.
  1805. from sentencepiece import SentencePieceProcessor
  1806. from sentencepiece import sentencepiece_model_pb2 as model
  1807. tokenizer_path = self.dir_model / 'tokenizer.model'
  1808. tokens: list[bytes] = []
  1809. scores: list[float] = []
  1810. toktypes: list[int] = []
  1811. if not tokenizer_path.is_file():
  1812. logger.error(f'Error: Missing {tokenizer_path}')
  1813. sys.exit(1)
  1814. sentencepiece_model = model.ModelProto()
  1815. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1816. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1817. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1818. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1819. for token_id in range(vocab_size):
  1820. piece = tokenizer.id_to_piece(token_id)
  1821. text = piece.encode("utf-8")
  1822. score = tokenizer.get_score(token_id)
  1823. if text == b"\x00":
  1824. # (TODO): fixme
  1825. # Hack here and replace the \x00 characters.
  1826. logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
  1827. text = "🐉"
  1828. toktype = SentencePieceTokenTypes.NORMAL
  1829. if tokenizer.is_unknown(token_id):
  1830. toktype = SentencePieceTokenTypes.UNKNOWN
  1831. elif tokenizer.is_control(token_id):
  1832. toktype = SentencePieceTokenTypes.CONTROL
  1833. elif tokenizer.is_unused(token_id):
  1834. toktype = SentencePieceTokenTypes.UNUSED
  1835. elif tokenizer.is_byte(token_id):
  1836. toktype = SentencePieceTokenTypes.BYTE
  1837. tokens.append(text)
  1838. scores.append(score)
  1839. toktypes.append(toktype)
  1840. added_tokens_file = self.dir_model / 'added_tokens.json'
  1841. if added_tokens_file.is_file():
  1842. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1843. added_tokens_json = json.load(f)
  1844. for key in added_tokens_json:
  1845. tokens.append(key.encode("utf-8"))
  1846. scores.append(-1000.0)
  1847. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1848. self.gguf_writer.add_tokenizer_model("llama")
  1849. self.gguf_writer.add_tokenizer_pre("default")
  1850. self.gguf_writer.add_token_list(tokens)
  1851. self.gguf_writer.add_token_scores(scores)
  1852. self.gguf_writer.add_token_types(toktypes)
  1853. self.gguf_writer.add_add_space_prefix(add_prefix)
  1854. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1855. old_eos = special_vocab.special_token_ids["eos"]
  1856. if "chat" in os.path.basename(self.dir_model.absolute()):
  1857. # For the chat model, we replace the eos with '<|im_end|>'.
  1858. # TODO: this is a hack, should be fixed
  1859. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1860. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1861. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1862. in chat mode so that the conversation can end normally.")
  1863. special_vocab.add_to_gguf(self.gguf_writer)
  1864. def _try_get_sft_eos(self, tokenizer):
  1865. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1866. im_end_list = tokenizer.encode('<|im_end|>')
  1867. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1868. if len(unused_145_list) == 1:
  1869. eos_token = unused_145_list[0]
  1870. if len(im_end_list) == 1:
  1871. eos_token = im_end_list[0]
  1872. return eos_token
  1873. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1874. if n_head_kv is not None and n_head != n_head_kv:
  1875. n_head = n_head_kv
  1876. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1877. .swapaxes(1, 2)
  1878. .reshape(weights.shape))
  1879. def set_gguf_parameters(self):
  1880. self.gguf_writer.add_name("InternLM2")
  1881. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1882. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1883. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1884. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1885. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1886. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1887. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1888. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1889. def post_write_tensors(self, tensor_map, name, data_torch):
  1890. old_dtype = data_torch.dtype
  1891. # convert any unsupported data types to float32
  1892. if data_torch.dtype not in (torch.float16, torch.float32):
  1893. data_torch = data_torch.to(torch.float32)
  1894. data = data_torch.squeeze().numpy()
  1895. # map tensor names
  1896. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1897. if new_name is None:
  1898. raise ValueError(f"Can not map tensor {name!r}")
  1899. n_dims = len(data.shape)
  1900. data_dtype = data.dtype
  1901. # if f32 desired, convert any float16 to float32
  1902. if self.ftype == 0 and data_dtype == np.float16:
  1903. data = data.astype(np.float32)
  1904. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1905. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1906. data = data.astype(np.float32)
  1907. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1908. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1909. data = data.astype(np.float16)
  1910. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1911. self.gguf_writer.add_tensor(new_name, data)
  1912. def write_tensors(self):
  1913. from einops import rearrange
  1914. num_heads = self.hparams.get("num_attention_heads")
  1915. num_kv_heads = self.hparams.get("num_key_value_heads")
  1916. hidden_size = self.hparams.get("hidden_size")
  1917. q_per_kv = num_heads // num_kv_heads
  1918. head_dim = hidden_size // num_heads
  1919. num_groups = num_heads // q_per_kv
  1920. block_count = self.hparams["num_hidden_layers"]
  1921. model_kv = dict(self.get_tensors())
  1922. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1923. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1924. for name, data_torch in model_kv.items():
  1925. # we don't need these
  1926. if name.endswith(".rotary_emb.inv_freq"):
  1927. continue
  1928. if re.match(qkv_pattern, name):
  1929. bid = re.findall(qkv_pattern, name)[0]
  1930. qkv = data_torch
  1931. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1932. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1933. # The model weights of q and k equire additional reshape.
  1934. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1935. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1936. v = rearrange(v, " o g n i -> o (g n i)").T
  1937. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1938. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1939. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1940. else:
  1941. self.post_write_tensors(tensor_map, name, data_torch)
  1942. @Model.register("BertModel", "CamembertModel")
  1943. class BertModel(Model):
  1944. model_arch = gguf.MODEL_ARCH.BERT
  1945. def __init__(self, *args, **kwargs):
  1946. super().__init__(*args, **kwargs)
  1947. self.vocab_size = None
  1948. def set_gguf_parameters(self):
  1949. super().set_gguf_parameters()
  1950. self.gguf_writer.add_causal_attention(False)
  1951. # get pooling path
  1952. pooling_path = None
  1953. module_path = self.dir_model / "modules.json"
  1954. if module_path.is_file():
  1955. with open(module_path, encoding="utf-8") as f:
  1956. modules = json.load(f)
  1957. for mod in modules:
  1958. if mod["type"] == "sentence_transformers.models.Pooling":
  1959. pooling_path = mod["path"]
  1960. break
  1961. # get pooling type
  1962. if pooling_path is not None:
  1963. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1964. pooling = json.load(f)
  1965. if pooling["pooling_mode_mean_tokens"]:
  1966. pooling_type = gguf.PoolingType.MEAN
  1967. elif pooling["pooling_mode_cls_token"]:
  1968. pooling_type = gguf.PoolingType.CLS
  1969. else:
  1970. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1971. self.gguf_writer.add_pooling_type(pooling_type)
  1972. def set_vocab(self):
  1973. tokens, toktypes, tokpre = self.get_vocab_base()
  1974. self.vocab_size = len(tokens)
  1975. # we need this to validate the size of the token_type embeddings
  1976. # though currently we are passing all zeros to the token_type embeddings
  1977. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1978. # convert to phantom space vocab
  1979. def phantom(tok):
  1980. if tok.startswith("[") and tok.endswith("]"):
  1981. return tok
  1982. if tok.startswith("##"):
  1983. return tok[2:]
  1984. return "\u2581" + tok
  1985. tokens = list(map(phantom, tokens))
  1986. # add vocab to gguf
  1987. self.gguf_writer.add_tokenizer_model("bert")
  1988. self.gguf_writer.add_tokenizer_pre(tokpre)
  1989. self.gguf_writer.add_token_list(tokens)
  1990. self.gguf_writer.add_token_types(toktypes)
  1991. # handle special tokens
  1992. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1993. special_vocab.add_to_gguf(self.gguf_writer)
  1994. def write_tensors(self):
  1995. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1996. tensors = dict(self.get_tensors())
  1997. for name, data_torch in tensors.items():
  1998. # we are only using BERT for embeddings so we don't need the pooling layer
  1999. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2000. continue # we don't need these
  2001. # map tensor names
  2002. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2003. if new_name is None:
  2004. raise ValueError(f"Can not map tensor {name!r}")
  2005. # convert any unsupported data types to float32
  2006. if data_torch.dtype not in (torch.float16, torch.float32):
  2007. data_torch = data_torch.to(torch.float32)
  2008. data = data_torch.squeeze().numpy()
  2009. n_dims = len(data.shape)
  2010. new_dtype: type[np.floating[Any]]
  2011. if (
  2012. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2013. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2014. ):
  2015. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2016. new_dtype = np.float16
  2017. else:
  2018. # if f32 desired, convert any float16 to float32
  2019. new_dtype = np.float32
  2020. logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2021. if data.dtype != new_dtype:
  2022. data = data.astype(new_dtype)
  2023. self.gguf_writer.add_tensor(new_name, data)
  2024. @Model.register("NomicBertModel")
  2025. class NomicBertModel(BertModel):
  2026. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2027. def __init__(self, *args, **kwargs):
  2028. super().__init__(*args, **kwargs)
  2029. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2030. self.hparams["n_ctx"] = 2048
  2031. # SwigLU activation
  2032. assert self.hparams["activation_function"] == "swiglu"
  2033. # this doesn't do anything in the HF version
  2034. assert self.hparams["causal"] is False
  2035. # no bias tensors
  2036. assert self.hparams["qkv_proj_bias"] is False
  2037. assert self.hparams["mlp_fc1_bias"] is False
  2038. assert self.hparams["mlp_fc2_bias"] is False
  2039. # norm at end of layer
  2040. assert self.hparams["prenorm"] is False
  2041. # standard RoPE
  2042. assert self.hparams["rotary_emb_fraction"] == 1.0
  2043. assert self.hparams["rotary_emb_interleaved"] is False
  2044. assert self.hparams["rotary_emb_scale_base"] is None
  2045. def set_gguf_parameters(self):
  2046. super().set_gguf_parameters()
  2047. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2048. @Model.register("GemmaForCausalLM")
  2049. class GemmaModel(Model):
  2050. model_arch = gguf.MODEL_ARCH.GEMMA
  2051. def set_vocab(self):
  2052. self._set_vocab_sentencepiece()
  2053. # TODO: these special tokens should be exported only for the CodeGemma family
  2054. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2055. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2056. special_vocab._set_special_token("prefix", 67)
  2057. special_vocab._set_special_token("suffix", 69)
  2058. special_vocab._set_special_token("middle", 68)
  2059. special_vocab._set_special_token("fsep", 70)
  2060. special_vocab._set_special_token("eot", 107)
  2061. special_vocab.add_to_gguf(self.gguf_writer)
  2062. def set_gguf_parameters(self):
  2063. hparams = self.hparams
  2064. block_count = hparams["num_hidden_layers"]
  2065. self.gguf_writer.add_name(self.dir_model.name)
  2066. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2067. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2068. self.gguf_writer.add_block_count(block_count)
  2069. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2070. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2071. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2072. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2073. self.gguf_writer.add_key_length(hparams["head_dim"])
  2074. self.gguf_writer.add_value_length(hparams["head_dim"])
  2075. self.gguf_writer.add_file_type(self.ftype)
  2076. def write_tensors(self):
  2077. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2078. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2079. for name, data_torch in self.get_tensors():
  2080. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2081. # To prevent errors, skip loading lm_head.weight.
  2082. if name == "lm_head.weight":
  2083. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2084. continue
  2085. old_dtype = data_torch.dtype
  2086. # convert any unsupported data types to float32
  2087. if data_torch.dtype not in (torch.float16, torch.float32):
  2088. data_torch = data_torch.to(torch.float32)
  2089. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2090. if name.endswith("norm.weight"):
  2091. data_torch = data_torch + 1
  2092. data = data_torch.squeeze().numpy()
  2093. # map tensor names
  2094. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2095. if new_name is None:
  2096. raise ValueError(f"Can not map tensor {name!r}")
  2097. n_dims = len(data.shape)
  2098. data_dtype = data.dtype
  2099. data = data.astype(np.float32)
  2100. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2101. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2102. data = data.astype(np.float16)
  2103. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2104. self.gguf_writer.add_tensor(new_name, data)
  2105. @Model.register("Starcoder2ForCausalLM")
  2106. class StarCoder2Model(Model):
  2107. model_arch = gguf.MODEL_ARCH.STARCODER2
  2108. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2109. class MambaModel(Model):
  2110. model_arch = gguf.MODEL_ARCH.MAMBA
  2111. def set_vocab(self):
  2112. vocab_size = self.hparams["vocab_size"]
  2113. # Round vocab size to next multiple of 8
  2114. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2115. # pad using ceiling division
  2116. # ref: https://stackoverflow.com/a/17511341/22827863
  2117. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2118. self.hparams["vocab_size"] = vocab_size
  2119. if (self.dir_model / "tokenizer.json").is_file():
  2120. self._set_vocab_gpt2()
  2121. else:
  2122. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2123. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2124. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2125. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2126. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2127. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2128. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2129. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2130. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2131. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2132. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2133. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2134. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2135. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2136. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2137. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2138. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2139. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2140. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2141. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2142. def set_gguf_parameters(self):
  2143. d_model = self.find_hparam(["hidden_size", "d_model"])
  2144. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2145. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2146. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2147. # ceiling division
  2148. # ref: https://stackoverflow.com/a/17511341/22827863
  2149. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2150. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2151. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2152. # Fail early for models which don't have a block expansion factor of 2
  2153. assert d_inner == 2 * d_model
  2154. self.gguf_writer.add_name(self.dir_model.name)
  2155. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2156. self.gguf_writer.add_embedding_length(d_model)
  2157. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2158. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2159. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2160. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2161. self.gguf_writer.add_ssm_inner_size(d_inner)
  2162. self.gguf_writer.add_ssm_state_size(d_state)
  2163. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2164. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2165. self.gguf_writer.add_file_type(self.ftype)
  2166. def write_tensors(self):
  2167. block_count = self.hparams["n_layer"]
  2168. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2169. tok_embd = None
  2170. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2171. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2172. for name, data_torch in self.get_tensors():
  2173. old_dtype = data_torch.dtype
  2174. # convert any unsupported data types to float32
  2175. if data_torch.dtype not in (torch.float16, torch.float32):
  2176. data_torch = data_torch.to(torch.float32)
  2177. # map tensor names
  2178. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2179. if new_name is None:
  2180. raise ValueError(f"Can not map tensor {name!r}")
  2181. if name.endswith(".A_log"):
  2182. logger.debug("A_log --> A ==> " + new_name)
  2183. data_torch = -torch.exp(data_torch)
  2184. # assuming token_embd.weight is seen before output.weight
  2185. if tok_embd is not None and new_name == output_name:
  2186. if torch.equal(tok_embd, data_torch):
  2187. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2188. continue
  2189. if new_name == tok_embd_name:
  2190. tok_embd = data_torch
  2191. data = data_torch.squeeze().numpy()
  2192. n_dims = len(data.shape)
  2193. data_dtype = data.dtype
  2194. # if f32 desired, convert any float16 to float32
  2195. if self.ftype == 0 and data_dtype == np.float16:
  2196. data = data.astype(np.float32)
  2197. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2198. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2199. data = data.astype(np.float32)
  2200. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2201. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2202. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2203. data = data.astype(np.float16)
  2204. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2205. self.gguf_writer.add_tensor(new_name, data)
  2206. @Model.register("CohereForCausalLM")
  2207. class CommandR2Model(Model):
  2208. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2209. def __init__(self, *args, **kwargs):
  2210. super().__init__(*args, **kwargs)
  2211. # max_position_embeddings = 8192 in config.json but model was actually
  2212. # trained on 128k context length
  2213. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2214. def set_gguf_parameters(self):
  2215. super().set_gguf_parameters()
  2216. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2217. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2218. @Model.register("OlmoForCausalLM")
  2219. @Model.register("OLMoForCausalLM")
  2220. class OlmoModel(Model):
  2221. model_arch = gguf.MODEL_ARCH.OLMO
  2222. def set_gguf_parameters(self):
  2223. super().set_gguf_parameters()
  2224. self.gguf_writer.add_layer_norm_eps(1e-5)
  2225. if "clip_qkv" in self.hparams is not None:
  2226. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2227. # Same as super class, but permuting q_proj, k_proj
  2228. # Copied from: LlamaModel
  2229. def write_tensors(self):
  2230. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2231. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2232. n_head = self.hparams.get("num_attention_heads")
  2233. n_kv_head = self.hparams.get("num_key_value_heads")
  2234. for name, data_torch in self.get_tensors():
  2235. old_dtype = data_torch.dtype
  2236. # convert any unsupported data types to float32
  2237. if data_torch.dtype not in (torch.float16, torch.float32):
  2238. data_torch = data_torch.to(torch.float32)
  2239. data = data_torch.numpy()
  2240. if name.endswith("q_proj.weight"):
  2241. data = permute(data, n_head, n_head)
  2242. if name.endswith("k_proj.weight"):
  2243. data = permute(data, n_head, n_kv_head)
  2244. data = data.squeeze()
  2245. # map tensor names
  2246. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2247. if new_name is None:
  2248. raise ValueError(f"Can not map tensor {name!r}")
  2249. n_dims = len(data.shape)
  2250. data_dtype = data.dtype
  2251. # if f32 desired, convert any float16 to float32
  2252. if self.ftype == 0 and data_dtype == np.float16:
  2253. data = data.astype(np.float32)
  2254. # 1d tensors need to be converted to float32
  2255. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2256. data = data.astype(np.float32)
  2257. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2258. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2259. data = data.astype(np.float16)
  2260. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2261. self.gguf_writer.add_tensor(new_name, data)
  2262. ###### CONVERSION LOGIC ######
  2263. def parse_args() -> argparse.Namespace:
  2264. parser = argparse.ArgumentParser(
  2265. description="Convert a huggingface model to a GGML compatible file")
  2266. parser.add_argument(
  2267. "--vocab-only", action="store_true",
  2268. help="extract only the vocab",
  2269. )
  2270. parser.add_argument(
  2271. "--awq-path", type=Path, default=None,
  2272. help="Path to scale awq cache file")
  2273. parser.add_argument(
  2274. "--outfile", type=Path,
  2275. help="path to write to; default: based on input",
  2276. )
  2277. parser.add_argument(
  2278. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2279. help="output format - use f32 for float32, f16 for float16",
  2280. )
  2281. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2282. parser.add_argument(
  2283. "model", type=Path,
  2284. help="directory containing model file",
  2285. )
  2286. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2287. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2288. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  2289. return parser.parse_args()
  2290. def main() -> None:
  2291. args = parse_args()
  2292. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2293. dir_model = args.model
  2294. if args.awq_path:
  2295. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2296. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2297. tmp_model_path = args.model / "weighted_model"
  2298. dir_model = tmp_model_path
  2299. if tmp_model_path.is_dir():
  2300. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2301. else:
  2302. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2303. logger.info("Saving new weighted model ...")
  2304. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2305. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2306. if not dir_model.is_dir():
  2307. logger.error(f'Error: {args.model} is not a directory')
  2308. sys.exit(1)
  2309. ftype_map = {
  2310. "f32": gguf.GGMLQuantizationType.F32,
  2311. "f16": gguf.GGMLQuantizationType.F16,
  2312. }
  2313. if args.outfile is not None:
  2314. fname_out = args.outfile
  2315. else:
  2316. # output in the same directory as the model by default
  2317. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2318. logger.info(f"Loading model: {dir_model.name}")
  2319. hparams = Model.load_hparams(dir_model)
  2320. with torch.inference_mode():
  2321. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2322. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2323. logger.info("Set model parameters")
  2324. model_instance.set_gguf_parameters()
  2325. logger.info("Set model tokenizer")
  2326. model_instance.set_vocab()
  2327. if args.vocab_only:
  2328. logger.info(f"Exporting model vocab to '{fname_out}'")
  2329. model_instance.write_vocab()
  2330. else:
  2331. logger.info(f"Exporting model to '{fname_out}'")
  2332. model_instance.write()
  2333. logger.info(f"Model successfully exported to '{fname_out}'")
  2334. if __name__ == '__main__':
  2335. main()