| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import logging
- import json
- import os
- import struct
- import sys
- from pathlib import Path
- from typing import Any, BinaryIO, Sequence
- import numpy as np
- import torch
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
- import gguf
- logger = logging.getLogger("lora-to-gguf")
- NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
- def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
- fout.write(b"ggla"[::-1]) # magic (ggml lora)
- fout.write(struct.pack("i", 1)) # file version
- fout.write(struct.pack("i", params["r"]))
- # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
- # but some models ship a float value instead
- # let's convert to int, but fail if lossless conversion is not possible
- assert (
- int(params["lora_alpha"]) == params["lora_alpha"]
- ), "cannot convert float to int losslessly"
- fout.write(struct.pack("i", int(params["lora_alpha"])))
- def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
- sname = name.encode("utf-8")
- fout.write(
- struct.pack(
- "iii",
- len(shape),
- len(sname),
- NUMPY_TYPE_TO_FTYPE[data_type.name],
- )
- )
- fout.write(struct.pack("i" * len(shape), *shape[::-1]))
- fout.write(sname)
- fout.seek((fout.tell() + 31) & -32)
- if __name__ == '__main__':
- if len(sys.argv) < 2:
- logger.info(f"Usage: python {sys.argv[0]} <path> [arch]")
- logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'")
- logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
- sys.exit(1)
- input_json = os.path.join(sys.argv[1], "adapter_config.json")
- input_model = os.path.join(sys.argv[1], "adapter_model.bin")
- output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
- if os.path.exists(input_model):
- model = torch.load(input_model, map_location="cpu")
- else:
- input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
- # lazy import load_file only if lora is in safetensors format.
- from safetensors.torch import load_file
- model = load_file(input_model, device="cpu")
- arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
- if arch_name not in gguf.MODEL_ARCH_NAMES.values():
- logger.error(f"Error: unsupported architecture {arch_name}")
- sys.exit(1)
- arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
- name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
- with open(input_json, "r") as f:
- params = json.load(f)
- if params["peft_type"] != "LORA":
- logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
- sys.exit(1)
- if params["fan_in_fan_out"] is True:
- logger.error("Error: param fan_in_fan_out is not supported")
- sys.exit(1)
- if params["bias"] is not None and params["bias"] != "none":
- logger.error("Error: param bias is not supported")
- sys.exit(1)
- # TODO: these seem to be layers that have been trained but without lora.
- # doesn't seem widely used but eventually should be supported
- if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
- logger.error("Error: param modules_to_save is not supported")
- sys.exit(1)
- with open(output_path, "wb") as fout:
- fout.truncate()
- write_file_header(fout, params)
- for k, v in model.items():
- orig_k = k
- if k.endswith(".default.weight"):
- k = k.replace(".default.weight", ".weight")
- if k in ["llama_proj.weight", "llama_proj.bias"]:
- continue
- if k.endswith("lora_A.weight"):
- if v.dtype != torch.float16 and v.dtype != torch.float32:
- v = v.float()
- v = v.T
- else:
- v = v.float()
- t = v.detach().numpy()
- prefix = "base_model.model."
- if k.startswith(prefix):
- k = k[len(prefix) :]
- lora_suffixes = (".lora_A.weight", ".lora_B.weight")
- if k.endswith(lora_suffixes):
- suffix = k[-len(lora_suffixes[0]):]
- k = k[: -len(lora_suffixes[0])]
- else:
- logger.error(f"Error: unrecognized tensor name {orig_k}")
- sys.exit(1)
- tname = name_map.get_name(k)
- if tname is None:
- logger.error(f"Error: could not map tensor name {orig_k}")
- logger.error(" Note: the arch parameter must be specified if the model is not llama")
- sys.exit(1)
- if suffix == ".lora_A.weight":
- tname += ".weight.loraA"
- elif suffix == ".lora_B.weight":
- tname += ".weight.loraB"
- else:
- assert False
- logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
- write_tensor_header(fout, tname, t.shape, t.dtype)
- t.tofile(fout)
- logger.info(f"Converted {input_json} and {input_model} to {output_path}")
|