mul_mat_vec_q5_k.comp 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
  1. #version 450
  2. #include "mul_mat_vec_base.comp"
  3. layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
  4. shared FLOAT_TYPE tmp[32];
  5. void main() {
  6. const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
  7. uint a_offset, b_offset, d_offset;
  8. get_offsets(a_offset, b_offset, d_offset);
  9. const uint num_blocks_per_row = p.ncols / QUANT_K;
  10. const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
  11. const uint tid = gl_LocalInvocationID.x/2; // 0...31 or 0...16
  12. const uint ix = gl_LocalInvocationID.x%2; // 0 or 0, 1
  13. const uint il = tid/4; // 0...3
  14. const uint ir = tid - 4*il; // 0...7 or 0...3
  15. const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
  16. const uint v_in = il % 2;
  17. const uint l0 = 4*ir + 2*v_in; // 0...15
  18. const uint q_offset = 32*v_im + l0;
  19. const uint y_offset = 64*v_im + l0;
  20. const uint8_t hm1 = uint8_t(1 << (2*v_im));
  21. const uint8_t hm2 = uint8_t(hm1 << 4);
  22. tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
  23. [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) {
  24. const uint y1_idx = i * QUANT_K + y_offset;
  25. const uint y2_idx = y1_idx + 128;
  26. const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
  27. const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
  28. const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f);
  29. const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f);
  30. const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f);
  31. const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f);
  32. const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2));
  33. const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
  34. const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
  35. const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
  36. const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
  37. const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
  38. const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf);
  39. const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf);
  40. const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
  41. const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
  42. const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] >> 4);
  43. const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] >> 4);
  44. const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
  45. const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
  46. const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf);
  47. const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf);
  48. const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
  49. const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
  50. const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4);
  51. const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4);
  52. const FLOAT_TYPE sx =
  53. fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0)),
  54. fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0)),
  55. fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 16]), (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0)),
  56. FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0)))));
  57. const FLOAT_TYPE sy =
  58. fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0)),
  59. fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0)),
  60. fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 48]), (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0)),
  61. FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0)))));
  62. const FLOAT_TYPE sz =
  63. fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0)),
  64. fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0)),
  65. fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 16]), (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0)),
  66. FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0)))));
  67. const FLOAT_TYPE sw =
  68. fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0)),
  69. fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 33]), (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0)),
  70. fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 48]), (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0)),
  71. FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0)))));
  72. const FLOAT_TYPE smin =
  73. fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]), sc2,
  74. fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]), sc3,
  75. fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]), sc6,
  76. (FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7)));
  77. const uint tmp_idx = 16 * ix + tid;
  78. tmp[tmp_idx] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, tmp[tmp_idx]));
  79. }
  80. // sum up partial sums and write back result
  81. barrier();
  82. [[unroll]] for (uint s = 16; s > 0; s >>= 1) {
  83. if (tid < s) {
  84. tmp[tid] += tmp[tid + s];
  85. }
  86. barrier();
  87. }
  88. if (tid == 0) {
  89. data_d[d_offset + row] = D_TYPE(tmp[0]);
  90. }
  91. }