ggml.h 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport) extern
  178. # else
  179. # define GGML_API __declspec(dllimport) extern
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default"))) extern
  183. # endif
  184. #else
  185. # define GGML_API extern
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__) && !defined(__clang__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. #define GGML_ROPE_TYPE_NEOX 2
  228. #define GGML_ROPE_TYPE_MROPE 8
  229. #define GGML_ROPE_TYPE_VISION 24
  230. #define GGML_MROPE_SECTIONS 4
  231. #define GGML_DELTA_NET_CHUNK 64
  232. #define GGML_UNUSED(x) (void)(x)
  233. #ifdef __CUDACC__
  234. template<typename... Args>
  235. __host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
  236. #define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
  237. #else
  238. #define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
  239. #endif // __CUDACC__
  240. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  241. #ifndef NDEBUG
  242. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  243. #elif defined(__GNUC__)
  244. # define GGML_UNREACHABLE() __builtin_unreachable()
  245. #elif defined(_MSC_VER)
  246. # define GGML_UNREACHABLE() __assume(0)
  247. #else
  248. # define GGML_UNREACHABLE() ((void) 0)
  249. #endif
  250. #ifdef __cplusplus
  251. # define GGML_NORETURN [[noreturn]]
  252. #elif defined(_MSC_VER)
  253. # define GGML_NORETURN __declspec(noreturn)
  254. #else
  255. # define GGML_NORETURN _Noreturn
  256. #endif
  257. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  258. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  259. // used to copy the number of elements and stride in bytes of tensors into local variables.
  260. // main purpose is to reduce code duplication and improve readability.
  261. //
  262. // example:
  263. //
  264. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  265. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  266. //
  267. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  268. const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
  269. GGML_UNUSED(prefix##0);
  270. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  271. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  272. const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
  273. GGML_UNUSED(prefix##1);
  274. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  275. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  276. const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
  277. GGML_UNUSED(prefix##2);
  278. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  279. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  280. const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
  281. GGML_UNUSED(prefix##3);
  282. #define GGML_TENSOR_UNARY_OP_LOCALS \
  283. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  284. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  285. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  287. #define GGML_TENSOR_BINARY_OP_LOCALS \
  288. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  289. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  290. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  294. #define GGML_TENSOR_TERNARY_OP_LOCALS \
  295. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  296. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  297. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  298. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  299. GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
  300. GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
  301. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  302. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  303. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  304. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  305. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  306. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  307. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  308. #ifdef __cplusplus
  309. extern "C" {
  310. #endif
  311. // Function type used in fatal error callbacks
  312. typedef void (*ggml_abort_callback_t)(const char * error_message);
  313. // Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
  314. // Returns the old callback for chaining
  315. GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
  316. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  317. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  318. enum ggml_status {
  319. GGML_STATUS_ALLOC_FAILED = -2,
  320. GGML_STATUS_FAILED = -1,
  321. GGML_STATUS_SUCCESS = 0,
  322. GGML_STATUS_ABORTED = 1,
  323. };
  324. // get ggml_status name string
  325. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  326. // ieee 754-2008 half-precision float16
  327. // todo: make this not an integral type
  328. typedef uint16_t ggml_fp16_t;
  329. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  330. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  331. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  332. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  333. // google brain half-precision bfloat16
  334. typedef struct { uint16_t bits; } ggml_bf16_t;
  335. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  336. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  337. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  338. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  339. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  340. struct ggml_object;
  341. struct ggml_context;
  342. struct ggml_cgraph;
  343. // NOTE: always add types at the end of the enum to keep backward compatibility
  344. enum ggml_type {
  345. GGML_TYPE_F32 = 0,
  346. GGML_TYPE_F16 = 1,
  347. GGML_TYPE_Q4_0 = 2,
  348. GGML_TYPE_Q4_1 = 3,
  349. // GGML_TYPE_Q4_2 = 4, support has been removed
  350. // GGML_TYPE_Q4_3 = 5, support has been removed
  351. GGML_TYPE_Q5_0 = 6,
  352. GGML_TYPE_Q5_1 = 7,
  353. GGML_TYPE_Q8_0 = 8,
  354. GGML_TYPE_Q8_1 = 9,
  355. GGML_TYPE_Q2_K = 10,
  356. GGML_TYPE_Q3_K = 11,
  357. GGML_TYPE_Q4_K = 12,
  358. GGML_TYPE_Q5_K = 13,
  359. GGML_TYPE_Q6_K = 14,
  360. GGML_TYPE_Q8_K = 15,
  361. GGML_TYPE_IQ2_XXS = 16,
  362. GGML_TYPE_IQ2_XS = 17,
  363. GGML_TYPE_IQ3_XXS = 18,
  364. GGML_TYPE_IQ1_S = 19,
  365. GGML_TYPE_IQ4_NL = 20,
  366. GGML_TYPE_IQ3_S = 21,
  367. GGML_TYPE_IQ2_S = 22,
  368. GGML_TYPE_IQ4_XS = 23,
  369. GGML_TYPE_I8 = 24,
  370. GGML_TYPE_I16 = 25,
  371. GGML_TYPE_I32 = 26,
  372. GGML_TYPE_I64 = 27,
  373. GGML_TYPE_F64 = 28,
  374. GGML_TYPE_IQ1_M = 29,
  375. GGML_TYPE_BF16 = 30,
  376. // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
  377. // GGML_TYPE_Q4_0_4_8 = 32,
  378. // GGML_TYPE_Q4_0_8_8 = 33,
  379. GGML_TYPE_TQ1_0 = 34,
  380. GGML_TYPE_TQ2_0 = 35,
  381. // GGML_TYPE_IQ4_NL_4_4 = 36,
  382. // GGML_TYPE_IQ4_NL_4_8 = 37,
  383. // GGML_TYPE_IQ4_NL_8_8 = 38,
  384. GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
  385. GGML_TYPE_COUNT = 40,
  386. };
  387. // precision
  388. enum ggml_prec {
  389. GGML_PREC_DEFAULT = 0, // stored as ggml_tensor.op_params, 0 by default
  390. GGML_PREC_F32 = 10,
  391. };
  392. // model file types
  393. enum ggml_ftype {
  394. GGML_FTYPE_UNKNOWN = -1,
  395. GGML_FTYPE_ALL_F32 = 0,
  396. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  397. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  398. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  400. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  402. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  403. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  404. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  405. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  406. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  409. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  410. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  411. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  412. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  413. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  414. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  415. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  416. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  417. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  418. GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
  419. };
  420. // available tensor operations:
  421. enum ggml_op {
  422. GGML_OP_NONE = 0,
  423. GGML_OP_DUP,
  424. GGML_OP_ADD,
  425. GGML_OP_ADD_ID,
  426. GGML_OP_ADD1,
  427. GGML_OP_ACC,
  428. GGML_OP_SUB,
  429. GGML_OP_MUL,
  430. GGML_OP_DIV,
  431. GGML_OP_SQR,
  432. GGML_OP_SQRT,
  433. GGML_OP_LOG,
  434. GGML_OP_SIN,
  435. GGML_OP_COS,
  436. GGML_OP_SUM,
  437. GGML_OP_SUM_ROWS,
  438. GGML_OP_CUMSUM,
  439. GGML_OP_MEAN,
  440. GGML_OP_ARGMAX,
  441. GGML_OP_COUNT_EQUAL,
  442. GGML_OP_REPEAT,
  443. GGML_OP_REPEAT_BACK,
  444. GGML_OP_CONCAT,
  445. GGML_OP_SILU_BACK,
  446. GGML_OP_NORM, // normalize
  447. GGML_OP_RMS_NORM,
  448. GGML_OP_RMS_NORM_BACK,
  449. GGML_OP_GROUP_NORM,
  450. GGML_OP_L2_NORM,
  451. GGML_OP_MUL_MAT,
  452. GGML_OP_MUL_MAT_ID,
  453. GGML_OP_OUT_PROD,
  454. GGML_OP_SCALE,
  455. GGML_OP_SET,
  456. GGML_OP_CPY,
  457. GGML_OP_CONT,
  458. GGML_OP_RESHAPE,
  459. GGML_OP_VIEW,
  460. GGML_OP_PERMUTE,
  461. GGML_OP_TRANSPOSE,
  462. GGML_OP_GET_ROWS,
  463. GGML_OP_GET_ROWS_BACK,
  464. GGML_OP_SET_ROWS,
  465. GGML_OP_DIAG,
  466. GGML_OP_DIAG_MASK_INF,
  467. GGML_OP_DIAG_MASK_ZERO,
  468. GGML_OP_SOFT_MAX,
  469. GGML_OP_SOFT_MAX_BACK,
  470. GGML_OP_ROPE,
  471. GGML_OP_ROPE_BACK,
  472. GGML_OP_CLAMP,
  473. GGML_OP_CONV_TRANSPOSE_1D,
  474. GGML_OP_IM2COL,
  475. GGML_OP_IM2COL_BACK,
  476. GGML_OP_IM2COL_3D,
  477. GGML_OP_CONV_2D,
  478. GGML_OP_CONV_3D,
  479. GGML_OP_CONV_2D_DW,
  480. GGML_OP_CONV_TRANSPOSE_2D,
  481. GGML_OP_POOL_1D,
  482. GGML_OP_POOL_2D,
  483. GGML_OP_POOL_2D_BACK,
  484. GGML_OP_UPSCALE,
  485. GGML_OP_PAD,
  486. GGML_OP_PAD_REFLECT_1D,
  487. GGML_OP_ROLL,
  488. GGML_OP_ARANGE,
  489. GGML_OP_TIMESTEP_EMBEDDING,
  490. GGML_OP_ARGSORT,
  491. GGML_OP_LEAKY_RELU,
  492. GGML_OP_TRI,
  493. GGML_OP_FLASH_ATTN_EXT,
  494. GGML_OP_FLASH_ATTN_BACK,
  495. GGML_OP_SSM_CONV,
  496. GGML_OP_SSM_SCAN,
  497. GGML_OP_WIN_PART,
  498. GGML_OP_WIN_UNPART,
  499. GGML_OP_GET_REL_POS,
  500. GGML_OP_ADD_REL_POS,
  501. GGML_OP_RWKV_WKV6,
  502. GGML_OP_GATED_LINEAR_ATTN,
  503. GGML_OP_RWKV_WKV7,
  504. GGML_OP_DELTA_NET,
  505. GGML_OP_UNARY,
  506. GGML_OP_MAP_CUSTOM1,
  507. GGML_OP_MAP_CUSTOM2,
  508. GGML_OP_MAP_CUSTOM3,
  509. GGML_OP_CUSTOM,
  510. GGML_OP_CROSS_ENTROPY_LOSS,
  511. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  512. GGML_OP_OPT_STEP_ADAMW,
  513. GGML_OP_OPT_STEP_SGD,
  514. GGML_OP_GLU,
  515. GGML_OP_COUNT,
  516. };
  517. enum ggml_unary_op {
  518. GGML_UNARY_OP_ABS,
  519. GGML_UNARY_OP_SGN,
  520. GGML_UNARY_OP_NEG,
  521. GGML_UNARY_OP_STEP,
  522. GGML_UNARY_OP_TANH,
  523. GGML_UNARY_OP_ELU,
  524. GGML_UNARY_OP_RELU,
  525. GGML_UNARY_OP_SIGMOID,
  526. GGML_UNARY_OP_GELU,
  527. GGML_UNARY_OP_GELU_QUICK,
  528. GGML_UNARY_OP_SILU,
  529. GGML_UNARY_OP_HARDSWISH,
  530. GGML_UNARY_OP_HARDSIGMOID,
  531. GGML_UNARY_OP_EXP,
  532. GGML_UNARY_OP_GELU_ERF,
  533. GGML_UNARY_OP_COUNT,
  534. };
  535. enum ggml_glu_op {
  536. GGML_GLU_OP_REGLU,
  537. GGML_GLU_OP_GEGLU,
  538. GGML_GLU_OP_SWIGLU,
  539. GGML_GLU_OP_SWIGLU_OAI,
  540. GGML_GLU_OP_GEGLU_ERF,
  541. GGML_GLU_OP_GEGLU_QUICK,
  542. GGML_GLU_OP_COUNT,
  543. };
  544. enum ggml_object_type {
  545. GGML_OBJECT_TYPE_TENSOR,
  546. GGML_OBJECT_TYPE_GRAPH,
  547. GGML_OBJECT_TYPE_WORK_BUFFER
  548. };
  549. enum ggml_log_level {
  550. GGML_LOG_LEVEL_NONE = 0,
  551. GGML_LOG_LEVEL_DEBUG = 1,
  552. GGML_LOG_LEVEL_INFO = 2,
  553. GGML_LOG_LEVEL_WARN = 3,
  554. GGML_LOG_LEVEL_ERROR = 4,
  555. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  556. };
  557. // this tensor...
  558. enum ggml_tensor_flag {
  559. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  560. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  561. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  562. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  563. };
  564. enum ggml_tri_type {
  565. GGML_TRI_TYPE_UPPER_DIAG = 0,
  566. GGML_TRI_TYPE_UPPER = 1,
  567. GGML_TRI_TYPE_LOWER_DIAG = 2,
  568. GGML_TRI_TYPE_LOWER = 3
  569. };
  570. struct ggml_init_params {
  571. // memory pool
  572. size_t mem_size; // bytes
  573. void * mem_buffer; // if NULL, memory will be allocated internally
  574. bool no_alloc; // don't allocate memory for the tensor data
  575. };
  576. // n-dimensional tensor
  577. struct ggml_tensor {
  578. enum ggml_type type;
  579. struct ggml_backend_buffer * buffer;
  580. int64_t ne[GGML_MAX_DIMS]; // number of elements
  581. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  582. // nb[0] = ggml_type_size(type)
  583. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  584. // nb[i] = nb[i-1] * ne[i-1]
  585. // compute data
  586. enum ggml_op op;
  587. // op params - allocated as int32_t for alignment
  588. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  589. int32_t flags;
  590. struct ggml_tensor * src[GGML_MAX_SRC];
  591. // source tensor and offset for views
  592. struct ggml_tensor * view_src;
  593. size_t view_offs;
  594. void * data;
  595. char name[GGML_MAX_NAME];
  596. void * extra; // extra things e.g. for ggml-cuda.cu
  597. char padding[8];
  598. };
  599. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  600. // Abort callback
  601. // If not NULL, called before ggml computation
  602. // If it returns true, the computation is aborted
  603. typedef bool (*ggml_abort_callback)(void * data);
  604. //
  605. // GUID
  606. //
  607. // GUID types
  608. typedef uint8_t ggml_guid[16];
  609. typedef ggml_guid * ggml_guid_t;
  610. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  611. // misc
  612. GGML_API const char * ggml_version(void);
  613. GGML_API const char * ggml_commit(void);
  614. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  615. GGML_API int64_t ggml_time_ms(void);
  616. GGML_API int64_t ggml_time_us(void);
  617. GGML_API int64_t ggml_cycles(void);
  618. GGML_API int64_t ggml_cycles_per_ms(void);
  619. // accepts a UTF-8 path, even on Windows
  620. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  621. GGML_API void ggml_print_object (const struct ggml_object * obj);
  622. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  623. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  624. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  625. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  626. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  627. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  628. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  629. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  630. GGML_DEPRECATED(
  631. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  632. "use ggml_row_size() instead");
  633. GGML_API const char * ggml_type_name(enum ggml_type type);
  634. GGML_API const char * ggml_op_name (enum ggml_op op);
  635. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  636. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  637. GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
  638. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  639. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  640. GGML_API bool ggml_is_quantized(enum ggml_type type);
  641. // TODO: temporary until model loading of ggml examples is refactored
  642. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  643. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  644. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  645. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  646. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  647. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  648. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  649. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  650. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  651. // returns whether the tensor elements can be iterated over with a flattened index (no gaps, no permutation)
  652. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  653. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  654. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  655. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  656. // returns whether the tensor elements are allocated as one contiguous block of memory (no gaps, but permutation ok)
  657. GGML_API bool ggml_is_contiguously_allocated(const struct ggml_tensor * tensor);
  658. // true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
  659. GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
  660. // true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
  661. GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
  662. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  663. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  664. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  665. // use this to compute the memory overhead of a tensor
  666. GGML_API size_t ggml_tensor_overhead(void);
  667. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  668. // main
  669. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  670. GGML_API void ggml_reset(struct ggml_context * ctx);
  671. GGML_API void ggml_free (struct ggml_context * ctx);
  672. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  673. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  674. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  675. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  676. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  677. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  678. GGML_API struct ggml_tensor * ggml_new_tensor(
  679. struct ggml_context * ctx,
  680. enum ggml_type type,
  681. int n_dims,
  682. const int64_t *ne);
  683. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  684. struct ggml_context * ctx,
  685. enum ggml_type type,
  686. int64_t ne0);
  687. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  688. struct ggml_context * ctx,
  689. enum ggml_type type,
  690. int64_t ne0,
  691. int64_t ne1);
  692. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  693. struct ggml_context * ctx,
  694. enum ggml_type type,
  695. int64_t ne0,
  696. int64_t ne1,
  697. int64_t ne2);
  698. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  699. struct ggml_context * ctx,
  700. enum ggml_type type,
  701. int64_t ne0,
  702. int64_t ne1,
  703. int64_t ne2,
  704. int64_t ne3);
  705. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  706. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  707. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  708. // Context tensor enumeration and lookup
  709. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  710. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  711. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  712. // Converts a flat index into coordinates
  713. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  714. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  715. GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
  716. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  717. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  718. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  719. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  720. GGML_ATTRIBUTE_FORMAT(2, 3)
  721. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  722. // Tensor flags
  723. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  724. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  725. GGML_API void ggml_set_param(struct ggml_tensor * tensor);
  726. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  727. //
  728. // operations on tensors with backpropagation
  729. //
  730. GGML_API struct ggml_tensor * ggml_dup(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a);
  733. // in-place, returns view(a)
  734. GGML_API struct ggml_tensor * ggml_dup_inplace(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a);
  737. GGML_API struct ggml_tensor * ggml_add(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a,
  740. struct ggml_tensor * b);
  741. GGML_API struct ggml_tensor * ggml_add_inplace(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. struct ggml_tensor * b);
  745. GGML_API struct ggml_tensor * ggml_add_cast(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a,
  748. struct ggml_tensor * b,
  749. enum ggml_type type);
  750. // dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
  751. GGML_API struct ggml_tensor * ggml_add_id(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a,
  754. struct ggml_tensor * b,
  755. struct ggml_tensor * ids);
  756. GGML_API struct ggml_tensor * ggml_add1(
  757. struct ggml_context * ctx,
  758. struct ggml_tensor * a,
  759. struct ggml_tensor * b);
  760. GGML_API struct ggml_tensor * ggml_add1_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a,
  763. struct ggml_tensor * b);
  764. // dst = a
  765. // view(dst, nb1, nb2, nb3, offset) += b
  766. // return dst
  767. GGML_API struct ggml_tensor * ggml_acc(
  768. struct ggml_context * ctx,
  769. struct ggml_tensor * a,
  770. struct ggml_tensor * b,
  771. size_t nb1,
  772. size_t nb2,
  773. size_t nb3,
  774. size_t offset);
  775. GGML_API struct ggml_tensor * ggml_acc_inplace(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a,
  778. struct ggml_tensor * b,
  779. size_t nb1,
  780. size_t nb2,
  781. size_t nb3,
  782. size_t offset);
  783. GGML_API struct ggml_tensor * ggml_sub(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a,
  786. struct ggml_tensor * b);
  787. GGML_API struct ggml_tensor * ggml_sub_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a,
  790. struct ggml_tensor * b);
  791. GGML_API struct ggml_tensor * ggml_mul(
  792. struct ggml_context * ctx,
  793. struct ggml_tensor * a,
  794. struct ggml_tensor * b);
  795. GGML_API struct ggml_tensor * ggml_mul_inplace(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a,
  798. struct ggml_tensor * b);
  799. GGML_API struct ggml_tensor * ggml_div(
  800. struct ggml_context * ctx,
  801. struct ggml_tensor * a,
  802. struct ggml_tensor * b);
  803. GGML_API struct ggml_tensor * ggml_div_inplace(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. struct ggml_tensor * b);
  807. GGML_API struct ggml_tensor * ggml_sqr(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a);
  810. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a);
  813. GGML_API struct ggml_tensor * ggml_sqrt(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a);
  816. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a);
  819. GGML_API struct ggml_tensor * ggml_log(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a);
  822. GGML_API struct ggml_tensor * ggml_log_inplace(
  823. struct ggml_context * ctx,
  824. struct ggml_tensor * a);
  825. GGML_API struct ggml_tensor * ggml_sin(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a);
  828. GGML_API struct ggml_tensor * ggml_sin_inplace(
  829. struct ggml_context * ctx,
  830. struct ggml_tensor * a);
  831. GGML_API struct ggml_tensor * ggml_cos(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a);
  834. GGML_API struct ggml_tensor * ggml_cos_inplace(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. // return scalar
  838. GGML_API struct ggml_tensor * ggml_sum(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  842. GGML_API struct ggml_tensor * ggml_sum_rows(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a);
  845. GGML_API struct ggml_tensor * ggml_cumsum(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a);
  848. // mean along rows
  849. GGML_API struct ggml_tensor * ggml_mean(
  850. struct ggml_context * ctx,
  851. struct ggml_tensor * a);
  852. // argmax along rows
  853. GGML_API struct ggml_tensor * ggml_argmax(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a);
  856. // count number of equal elements in a and b
  857. GGML_API struct ggml_tensor * ggml_count_equal(
  858. struct ggml_context * ctx,
  859. struct ggml_tensor * a,
  860. struct ggml_tensor * b);
  861. // if a is the same shape as b, and a is not parameter, return a
  862. // otherwise, return a new tensor: repeat(a) to fit in b
  863. GGML_API struct ggml_tensor * ggml_repeat(
  864. struct ggml_context * ctx,
  865. struct ggml_tensor * a,
  866. struct ggml_tensor * b);
  867. // repeat a to the specified shape
  868. GGML_API struct ggml_tensor * ggml_repeat_4d(
  869. struct ggml_context * ctx,
  870. struct ggml_tensor * a,
  871. int64_t ne0,
  872. int64_t ne1,
  873. int64_t ne2,
  874. int64_t ne3);
  875. // sums repetitions in a into shape of b
  876. GGML_API struct ggml_tensor * ggml_repeat_back(
  877. struct ggml_context * ctx,
  878. struct ggml_tensor * a,
  879. struct ggml_tensor * b); // sum up values that are adjacent in dims > 0 instead of repeated with same stride
  880. // concat a and b along dim
  881. // used in stable-diffusion
  882. GGML_API struct ggml_tensor * ggml_concat(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a,
  885. struct ggml_tensor * b,
  886. int dim);
  887. GGML_API struct ggml_tensor * ggml_abs(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_abs_inplace(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. GGML_API struct ggml_tensor * ggml_sgn(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a);
  896. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. GGML_API struct ggml_tensor * ggml_neg(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a);
  902. GGML_API struct ggml_tensor * ggml_neg_inplace(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. GGML_API struct ggml_tensor * ggml_step(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a);
  908. GGML_API struct ggml_tensor * ggml_step_inplace(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a);
  911. GGML_API struct ggml_tensor * ggml_tanh(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a);
  914. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a);
  917. GGML_API struct ggml_tensor * ggml_elu(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a);
  920. GGML_API struct ggml_tensor * ggml_elu_inplace(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a);
  923. GGML_API struct ggml_tensor * ggml_relu(
  924. struct ggml_context * ctx,
  925. struct ggml_tensor * a);
  926. GGML_API struct ggml_tensor * ggml_leaky_relu(
  927. struct ggml_context * ctx,
  928. struct ggml_tensor * a, float negative_slope, bool inplace);
  929. GGML_API struct ggml_tensor * ggml_relu_inplace(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a);
  932. GGML_API struct ggml_tensor * ggml_sigmoid(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a);
  935. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  936. struct ggml_context * ctx,
  937. struct ggml_tensor * a);
  938. GGML_API struct ggml_tensor * ggml_gelu(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a);
  941. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  942. struct ggml_context * ctx,
  943. struct ggml_tensor * a);
  944. // GELU using erf (error function) when possible
  945. // some backends may fallback to approximation based on Abramowitz and Stegun formula
  946. GGML_API struct ggml_tensor * ggml_gelu_erf(
  947. struct ggml_context * ctx,
  948. struct ggml_tensor * a);
  949. GGML_API struct ggml_tensor * ggml_gelu_erf_inplace(
  950. struct ggml_context * ctx,
  951. struct ggml_tensor * a);
  952. GGML_API struct ggml_tensor * ggml_gelu_quick(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a);
  955. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  956. struct ggml_context * ctx,
  957. struct ggml_tensor * a);
  958. GGML_API struct ggml_tensor * ggml_silu(
  959. struct ggml_context * ctx,
  960. struct ggml_tensor * a);
  961. GGML_API struct ggml_tensor * ggml_silu_inplace(
  962. struct ggml_context * ctx,
  963. struct ggml_tensor * a);
  964. // a - x
  965. // b - dy
  966. GGML_API struct ggml_tensor * ggml_silu_back(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a,
  969. struct ggml_tensor * b);
  970. // hardswish(x) = x * relu6(x + 3) / 6
  971. GGML_API struct ggml_tensor * ggml_hardswish(
  972. struct ggml_context * ctx,
  973. struct ggml_tensor * a);
  974. // hardsigmoid(x) = relu6(x + 3) / 6
  975. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  976. struct ggml_context * ctx,
  977. struct ggml_tensor * a);
  978. GGML_API struct ggml_tensor * ggml_exp(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a);
  981. GGML_API struct ggml_tensor * ggml_exp_inplace(
  982. struct ggml_context * ctx,
  983. struct ggml_tensor * a);
  984. // gated linear unit ops
  985. // A: n columns, r rows,
  986. // result is n / 2 columns, r rows,
  987. // expects gate in second half of row, unless swapped is true
  988. GGML_API struct ggml_tensor * ggml_glu(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * a,
  991. enum ggml_glu_op op,
  992. bool swapped);
  993. GGML_API struct ggml_tensor * ggml_reglu(
  994. struct ggml_context * ctx,
  995. struct ggml_tensor * a);
  996. GGML_API struct ggml_tensor * ggml_reglu_swapped(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a);
  999. GGML_API struct ggml_tensor * ggml_geglu(
  1000. struct ggml_context * ctx,
  1001. struct ggml_tensor * a);
  1002. GGML_API struct ggml_tensor * ggml_geglu_swapped(
  1003. struct ggml_context * ctx,
  1004. struct ggml_tensor * a);
  1005. GGML_API struct ggml_tensor * ggml_swiglu(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a);
  1008. GGML_API struct ggml_tensor * ggml_swiglu_swapped(
  1009. struct ggml_context * ctx,
  1010. struct ggml_tensor * a);
  1011. GGML_API struct ggml_tensor * ggml_geglu_erf(
  1012. struct ggml_context * ctx,
  1013. struct ggml_tensor * a);
  1014. GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a);
  1017. GGML_API struct ggml_tensor * ggml_geglu_quick(
  1018. struct ggml_context * ctx,
  1019. struct ggml_tensor * a);
  1020. GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
  1021. struct ggml_context * ctx,
  1022. struct ggml_tensor * a);
  1023. // A: n columns, r rows,
  1024. // B: n columns, r rows,
  1025. GGML_API struct ggml_tensor * ggml_glu_split(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. struct ggml_tensor * b,
  1029. enum ggml_glu_op op);
  1030. GGML_API struct ggml_tensor * ggml_reglu_split(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a,
  1033. struct ggml_tensor * b);
  1034. GGML_API struct ggml_tensor * ggml_geglu_split(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. struct ggml_tensor * b);
  1038. GGML_API struct ggml_tensor * ggml_swiglu_split(
  1039. struct ggml_context * ctx,
  1040. struct ggml_tensor * a,
  1041. struct ggml_tensor * b);
  1042. GGML_API struct ggml_tensor * ggml_geglu_erf_split(
  1043. struct ggml_context * ctx,
  1044. struct ggml_tensor * a,
  1045. struct ggml_tensor * b);
  1046. GGML_API struct ggml_tensor * ggml_geglu_quick_split(
  1047. struct ggml_context * ctx,
  1048. struct ggml_tensor * a,
  1049. struct ggml_tensor * b);
  1050. GGML_API struct ggml_tensor * ggml_swiglu_oai(
  1051. struct ggml_context * ctx,
  1052. struct ggml_tensor * a,
  1053. struct ggml_tensor * b,
  1054. float alpha,
  1055. float limit);
  1056. // normalize along rows
  1057. GGML_API struct ggml_tensor * ggml_norm(
  1058. struct ggml_context * ctx,
  1059. struct ggml_tensor * a,
  1060. float eps);
  1061. GGML_API struct ggml_tensor * ggml_norm_inplace(
  1062. struct ggml_context * ctx,
  1063. struct ggml_tensor * a,
  1064. float eps);
  1065. GGML_API struct ggml_tensor * ggml_rms_norm(
  1066. struct ggml_context * ctx,
  1067. struct ggml_tensor * a,
  1068. float eps);
  1069. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  1070. struct ggml_context * ctx,
  1071. struct ggml_tensor * a,
  1072. float eps);
  1073. // group normalize along ne0*ne1*n_groups
  1074. // used in stable-diffusion
  1075. GGML_API struct ggml_tensor * ggml_group_norm(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. int n_groups,
  1079. float eps);
  1080. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  1081. struct ggml_context * ctx,
  1082. struct ggml_tensor * a,
  1083. int n_groups,
  1084. float eps);
  1085. // l2 normalize along rows
  1086. // used in rwkv v7
  1087. GGML_API struct ggml_tensor * ggml_l2_norm(
  1088. struct ggml_context * ctx,
  1089. struct ggml_tensor * a,
  1090. float eps);
  1091. GGML_API struct ggml_tensor * ggml_l2_norm_inplace(
  1092. struct ggml_context * ctx,
  1093. struct ggml_tensor * a,
  1094. float eps);
  1095. // a - x
  1096. // b - dy
  1097. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  1098. struct ggml_context * ctx,
  1099. struct ggml_tensor * a,
  1100. struct ggml_tensor * b,
  1101. float eps);
  1102. // A: k columns, n rows => [ne03, ne02, n, k]
  1103. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  1104. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1105. GGML_API struct ggml_tensor * ggml_mul_mat(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. struct ggml_tensor * b);
  1109. // change the precision of a matrix multiplication
  1110. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1111. GGML_API void ggml_mul_mat_set_prec(
  1112. struct ggml_tensor * a,
  1113. enum ggml_prec prec);
  1114. // indirect matrix multiplication
  1115. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1116. struct ggml_context * ctx,
  1117. struct ggml_tensor * as,
  1118. struct ggml_tensor * b,
  1119. struct ggml_tensor * ids);
  1120. // A: m columns, n rows,
  1121. // B: p columns, n rows,
  1122. // result is m columns, p rows
  1123. GGML_API struct ggml_tensor * ggml_out_prod(
  1124. struct ggml_context * ctx,
  1125. struct ggml_tensor * a,
  1126. struct ggml_tensor * b);
  1127. //
  1128. // operations on tensors without backpropagation
  1129. //
  1130. GGML_API struct ggml_tensor * ggml_scale(
  1131. struct ggml_context * ctx,
  1132. struct ggml_tensor * a,
  1133. float s);
  1134. // in-place, returns view(a)
  1135. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1136. struct ggml_context * ctx,
  1137. struct ggml_tensor * a,
  1138. float s);
  1139. // x = s * a + b
  1140. GGML_API struct ggml_tensor * ggml_scale_bias(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a,
  1143. float s,
  1144. float b);
  1145. GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. float s,
  1149. float b);
  1150. // b -> view(a,offset,nb1,nb2,3), return modified a
  1151. GGML_API struct ggml_tensor * ggml_set(
  1152. struct ggml_context * ctx,
  1153. struct ggml_tensor * a,
  1154. struct ggml_tensor * b,
  1155. size_t nb1,
  1156. size_t nb2,
  1157. size_t nb3,
  1158. size_t offset); // in bytes
  1159. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1160. GGML_API struct ggml_tensor * ggml_set_inplace(
  1161. struct ggml_context * ctx,
  1162. struct ggml_tensor * a,
  1163. struct ggml_tensor * b,
  1164. size_t nb1,
  1165. size_t nb2,
  1166. size_t nb3,
  1167. size_t offset); // in bytes
  1168. GGML_API struct ggml_tensor * ggml_set_1d(
  1169. struct ggml_context * ctx,
  1170. struct ggml_tensor * a,
  1171. struct ggml_tensor * b,
  1172. size_t offset); // in bytes
  1173. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a,
  1176. struct ggml_tensor * b,
  1177. size_t offset); // in bytes
  1178. // b -> view(a,offset,nb1,nb2,3), return modified a
  1179. GGML_API struct ggml_tensor * ggml_set_2d(
  1180. struct ggml_context * ctx,
  1181. struct ggml_tensor * a,
  1182. struct ggml_tensor * b,
  1183. size_t nb1,
  1184. size_t offset); // in bytes
  1185. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1186. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1187. struct ggml_context * ctx,
  1188. struct ggml_tensor * a,
  1189. struct ggml_tensor * b,
  1190. size_t nb1,
  1191. size_t offset); // in bytes
  1192. // a -> b, return view(b)
  1193. GGML_API struct ggml_tensor * ggml_cpy(
  1194. struct ggml_context * ctx,
  1195. struct ggml_tensor * a,
  1196. struct ggml_tensor * b);
  1197. // note: casting from f32 to i32 will discard the fractional part
  1198. GGML_API struct ggml_tensor * ggml_cast(
  1199. struct ggml_context * ctx,
  1200. struct ggml_tensor * a,
  1201. enum ggml_type type);
  1202. // make contiguous
  1203. GGML_API struct ggml_tensor * ggml_cont(
  1204. struct ggml_context * ctx,
  1205. struct ggml_tensor * a);
  1206. // make contiguous, with new shape
  1207. GGML_API struct ggml_tensor * ggml_cont_1d(
  1208. struct ggml_context * ctx,
  1209. struct ggml_tensor * a,
  1210. int64_t ne0);
  1211. GGML_API struct ggml_tensor * ggml_cont_2d(
  1212. struct ggml_context * ctx,
  1213. struct ggml_tensor * a,
  1214. int64_t ne0,
  1215. int64_t ne1);
  1216. GGML_API struct ggml_tensor * ggml_cont_3d(
  1217. struct ggml_context * ctx,
  1218. struct ggml_tensor * a,
  1219. int64_t ne0,
  1220. int64_t ne1,
  1221. int64_t ne2);
  1222. GGML_API struct ggml_tensor * ggml_cont_4d(
  1223. struct ggml_context * ctx,
  1224. struct ggml_tensor * a,
  1225. int64_t ne0,
  1226. int64_t ne1,
  1227. int64_t ne2,
  1228. int64_t ne3);
  1229. // return view(a), b specifies the new shape
  1230. // TODO: when we start computing gradient, make a copy instead of view
  1231. GGML_API struct ggml_tensor * ggml_reshape(
  1232. struct ggml_context * ctx,
  1233. struct ggml_tensor * a,
  1234. struct ggml_tensor * b);
  1235. // return view(a)
  1236. // TODO: when we start computing gradient, make a copy instead of view
  1237. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1238. struct ggml_context * ctx,
  1239. struct ggml_tensor * a,
  1240. int64_t ne0);
  1241. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1242. struct ggml_context * ctx,
  1243. struct ggml_tensor * a,
  1244. int64_t ne0,
  1245. int64_t ne1);
  1246. // return view(a)
  1247. // TODO: when we start computing gradient, make a copy instead of view
  1248. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1249. struct ggml_context * ctx,
  1250. struct ggml_tensor * a,
  1251. int64_t ne0,
  1252. int64_t ne1,
  1253. int64_t ne2);
  1254. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1255. struct ggml_context * ctx,
  1256. struct ggml_tensor * a,
  1257. int64_t ne0,
  1258. int64_t ne1,
  1259. int64_t ne2,
  1260. int64_t ne3);
  1261. // offset in bytes
  1262. GGML_API struct ggml_tensor * ggml_view_1d(
  1263. struct ggml_context * ctx,
  1264. struct ggml_tensor * a,
  1265. int64_t ne0,
  1266. size_t offset);
  1267. GGML_API struct ggml_tensor * ggml_view_2d(
  1268. struct ggml_context * ctx,
  1269. struct ggml_tensor * a,
  1270. int64_t ne0,
  1271. int64_t ne1,
  1272. size_t nb1, // row stride in bytes
  1273. size_t offset);
  1274. GGML_API struct ggml_tensor * ggml_view_3d(
  1275. struct ggml_context * ctx,
  1276. struct ggml_tensor * a,
  1277. int64_t ne0,
  1278. int64_t ne1,
  1279. int64_t ne2,
  1280. size_t nb1, // row stride in bytes
  1281. size_t nb2, // slice stride in bytes
  1282. size_t offset);
  1283. GGML_API struct ggml_tensor * ggml_view_4d(
  1284. struct ggml_context * ctx,
  1285. struct ggml_tensor * a,
  1286. int64_t ne0,
  1287. int64_t ne1,
  1288. int64_t ne2,
  1289. int64_t ne3,
  1290. size_t nb1, // row stride in bytes
  1291. size_t nb2, // slice stride in bytes
  1292. size_t nb3,
  1293. size_t offset);
  1294. GGML_API struct ggml_tensor * ggml_permute(
  1295. struct ggml_context * ctx,
  1296. struct ggml_tensor * a,
  1297. int axis0,
  1298. int axis1,
  1299. int axis2,
  1300. int axis3);
  1301. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1302. GGML_API struct ggml_tensor * ggml_transpose(
  1303. struct ggml_context * ctx,
  1304. struct ggml_tensor * a);
  1305. // supports 4D a:
  1306. // a [n_embd, ne1, ne2, ne3]
  1307. // b I32 [n_rows, ne2, ne3, 1]
  1308. //
  1309. // return [n_embd, n_rows, ne2, ne3]
  1310. GGML_API struct ggml_tensor * ggml_get_rows(
  1311. struct ggml_context * ctx,
  1312. struct ggml_tensor * a, // data
  1313. struct ggml_tensor * b); // row indices
  1314. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1315. struct ggml_context * ctx,
  1316. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1317. struct ggml_tensor * b, // row indices
  1318. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1319. // a TD [n_embd, ne1, ne2, ne3]
  1320. // b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
  1321. // c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
  1322. //
  1323. // undefined behavior if destination rows overlap
  1324. //
  1325. // broadcast:
  1326. // ne2 % ne11 == 0
  1327. // ne3 % ne12 == 0
  1328. //
  1329. // return view(a)
  1330. GGML_API struct ggml_tensor * ggml_set_rows(
  1331. struct ggml_context * ctx,
  1332. struct ggml_tensor * a, // destination
  1333. struct ggml_tensor * b, // source
  1334. struct ggml_tensor * c); // row indices
  1335. GGML_API struct ggml_tensor * ggml_diag(
  1336. struct ggml_context * ctx,
  1337. struct ggml_tensor * a);
  1338. // set elements above the diagonal to -INF
  1339. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1340. struct ggml_context * ctx,
  1341. struct ggml_tensor * a,
  1342. int n_past);
  1343. // in-place, returns view(a)
  1344. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1345. struct ggml_context * ctx,
  1346. struct ggml_tensor * a,
  1347. int n_past);
  1348. // set elements above the diagonal to 0
  1349. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1350. struct ggml_context * ctx,
  1351. struct ggml_tensor * a,
  1352. int n_past);
  1353. // in-place, returns view(a)
  1354. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1355. struct ggml_context * ctx,
  1356. struct ggml_tensor * a,
  1357. int n_past);
  1358. GGML_API struct ggml_tensor * ggml_soft_max(
  1359. struct ggml_context * ctx,
  1360. struct ggml_tensor * a);
  1361. // in-place, returns view(a)
  1362. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1363. struct ggml_context * ctx,
  1364. struct ggml_tensor * a);
  1365. // a [ne0, ne01, ne02, ne03]
  1366. // mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
  1367. //
  1368. // broadcast:
  1369. // ne02 % ne12 == 0
  1370. // ne03 % ne13 == 0
  1371. //
  1372. // fused soft_max(a*scale + mask*(ALiBi slope))
  1373. // max_bias = 0.0f for no ALiBi
  1374. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1375. struct ggml_context * ctx,
  1376. struct ggml_tensor * a,
  1377. struct ggml_tensor * mask,
  1378. float scale,
  1379. float max_bias);
  1380. GGML_API void ggml_soft_max_add_sinks(
  1381. struct ggml_tensor * a,
  1382. struct ggml_tensor * sinks);
  1383. GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
  1384. struct ggml_context * ctx,
  1385. struct ggml_tensor * a,
  1386. struct ggml_tensor * b,
  1387. float scale,
  1388. float max_bias);
  1389. // in-place, returns view(a)
  1390. GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
  1391. struct ggml_context * ctx,
  1392. struct ggml_tensor * a,
  1393. struct ggml_tensor * b,
  1394. float scale,
  1395. float max_bias);
  1396. // rotary position embedding
  1397. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1398. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1399. //
  1400. // b is an int32 vector with size a->ne[2], it contains the positions
  1401. GGML_API struct ggml_tensor * ggml_rope(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a,
  1404. struct ggml_tensor * b,
  1405. int n_dims,
  1406. int mode);
  1407. // in-place, returns view(a)
  1408. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1409. struct ggml_context * ctx,
  1410. struct ggml_tensor * a,
  1411. struct ggml_tensor * b,
  1412. int n_dims,
  1413. int mode);
  1414. // custom RoPE
  1415. // c is freq factors (e.g. phi3-128k), (optional)
  1416. GGML_API struct ggml_tensor * ggml_rope_ext(
  1417. struct ggml_context * ctx,
  1418. struct ggml_tensor * a,
  1419. struct ggml_tensor * b,
  1420. struct ggml_tensor * c,
  1421. int n_dims,
  1422. int mode,
  1423. int n_ctx_orig,
  1424. float freq_base,
  1425. float freq_scale,
  1426. float ext_factor,
  1427. float attn_factor,
  1428. float beta_fast,
  1429. float beta_slow);
  1430. GGML_API struct ggml_tensor * ggml_rope_multi(
  1431. struct ggml_context * ctx,
  1432. struct ggml_tensor * a,
  1433. struct ggml_tensor * b,
  1434. struct ggml_tensor * c,
  1435. int n_dims,
  1436. int sections[GGML_MROPE_SECTIONS],
  1437. int mode,
  1438. int n_ctx_orig,
  1439. float freq_base,
  1440. float freq_scale,
  1441. float ext_factor,
  1442. float attn_factor,
  1443. float beta_fast,
  1444. float beta_slow);
  1445. // in-place, returns view(a)
  1446. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * a,
  1449. struct ggml_tensor * b,
  1450. struct ggml_tensor * c,
  1451. int n_dims,
  1452. int mode,
  1453. int n_ctx_orig,
  1454. float freq_base,
  1455. float freq_scale,
  1456. float ext_factor,
  1457. float attn_factor,
  1458. float beta_fast,
  1459. float beta_slow);
  1460. GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
  1461. struct ggml_context * ctx,
  1462. struct ggml_tensor * a,
  1463. struct ggml_tensor * b,
  1464. struct ggml_tensor * c,
  1465. int n_dims,
  1466. int sections[GGML_MROPE_SECTIONS],
  1467. int mode,
  1468. int n_ctx_orig,
  1469. float freq_base,
  1470. float freq_scale,
  1471. float ext_factor,
  1472. float attn_factor,
  1473. float beta_fast,
  1474. float beta_slow);
  1475. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1476. struct ggml_context * ctx,
  1477. struct ggml_tensor * a,
  1478. struct ggml_tensor * b,
  1479. int n_dims,
  1480. int mode,
  1481. int n_ctx_orig,
  1482. float freq_base,
  1483. float freq_scale,
  1484. float ext_factor,
  1485. float attn_factor,
  1486. float beta_fast,
  1487. float beta_slow),
  1488. "use ggml_rope_ext instead");
  1489. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1490. struct ggml_context * ctx,
  1491. struct ggml_tensor * a,
  1492. struct ggml_tensor * b,
  1493. int n_dims,
  1494. int mode,
  1495. int n_ctx_orig,
  1496. float freq_base,
  1497. float freq_scale,
  1498. float ext_factor,
  1499. float attn_factor,
  1500. float beta_fast,
  1501. float beta_slow),
  1502. "use ggml_rope_ext_inplace instead");
  1503. // compute correction dims for YaRN RoPE scaling
  1504. GGML_API void ggml_rope_yarn_corr_dims(
  1505. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1506. // rotary position embedding backward, i.e compute dx from dy
  1507. // a - dy
  1508. GGML_API struct ggml_tensor * ggml_rope_ext_back(
  1509. struct ggml_context * ctx,
  1510. struct ggml_tensor * a, // gradients of ggml_rope result
  1511. struct ggml_tensor * b, // positions
  1512. struct ggml_tensor * c, // freq factors
  1513. int n_dims,
  1514. int mode,
  1515. int n_ctx_orig,
  1516. float freq_base,
  1517. float freq_scale,
  1518. float ext_factor,
  1519. float attn_factor,
  1520. float beta_fast,
  1521. float beta_slow);
  1522. GGML_API struct ggml_tensor * ggml_rope_multi_back(
  1523. struct ggml_context * ctx,
  1524. struct ggml_tensor * a,
  1525. struct ggml_tensor * b,
  1526. struct ggml_tensor * c,
  1527. int n_dims,
  1528. int sections[4],
  1529. int mode,
  1530. int n_ctx_orig,
  1531. float freq_base,
  1532. float freq_scale,
  1533. float ext_factor,
  1534. float attn_factor,
  1535. float beta_fast,
  1536. float beta_slow);
  1537. // clamp
  1538. // in-place, returns view(a)
  1539. GGML_API struct ggml_tensor * ggml_clamp(
  1540. struct ggml_context * ctx,
  1541. struct ggml_tensor * a,
  1542. float min,
  1543. float max);
  1544. // im2col
  1545. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1546. GGML_API struct ggml_tensor * ggml_im2col(
  1547. struct ggml_context * ctx,
  1548. struct ggml_tensor * a, // convolution kernel
  1549. struct ggml_tensor * b, // data
  1550. int s0, // stride dimension 0
  1551. int s1, // stride dimension 1
  1552. int p0, // padding dimension 0
  1553. int p1, // padding dimension 1
  1554. int d0, // dilation dimension 0
  1555. int d1, // dilation dimension 1
  1556. bool is_2D,
  1557. enum ggml_type dst_type);
  1558. GGML_API struct ggml_tensor * ggml_im2col_back(
  1559. struct ggml_context * ctx,
  1560. struct ggml_tensor * a, // convolution kernel
  1561. struct ggml_tensor * b, // gradient of im2col output
  1562. int64_t * ne, // shape of im2col input
  1563. int s0, // stride dimension 0
  1564. int s1, // stride dimension 1
  1565. int p0, // padding dimension 0
  1566. int p1, // padding dimension 1
  1567. int d0, // dilation dimension 0
  1568. int d1, // dilation dimension 1
  1569. bool is_2D);
  1570. GGML_API struct ggml_tensor * ggml_conv_1d(
  1571. struct ggml_context * ctx,
  1572. struct ggml_tensor * a, // convolution kernel
  1573. struct ggml_tensor * b, // data
  1574. int s0, // stride
  1575. int p0, // padding
  1576. int d0); // dilation
  1577. // conv_1d with padding = half
  1578. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1579. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1580. struct ggml_context * ctx,
  1581. struct ggml_tensor * a, // convolution kernel
  1582. struct ggml_tensor * b, // data
  1583. int s, // stride
  1584. int d); // dilation
  1585. // depthwise
  1586. // TODO: this is very likely wrong for some cases! - needs more testing
  1587. GGML_API struct ggml_tensor * ggml_conv_1d_dw(
  1588. struct ggml_context * ctx,
  1589. struct ggml_tensor * a, // convolution kernel
  1590. struct ggml_tensor * b, // data
  1591. int s0, // stride
  1592. int p0, // padding
  1593. int d0); // dilation
  1594. GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
  1595. struct ggml_context * ctx,
  1596. struct ggml_tensor * a, // convolution kernel
  1597. struct ggml_tensor * b, // data
  1598. int s0, // stride
  1599. int d0); // dilation
  1600. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1601. struct ggml_context * ctx,
  1602. struct ggml_tensor * a, // convolution kernel
  1603. struct ggml_tensor * b, // data
  1604. int s0, // stride
  1605. int p0, // padding
  1606. int d0); // dilation
  1607. GGML_API struct ggml_tensor * ggml_conv_2d(
  1608. struct ggml_context * ctx,
  1609. struct ggml_tensor * a, // convolution kernel
  1610. struct ggml_tensor * b, // data
  1611. int s0, // stride dimension 0
  1612. int s1, // stride dimension 1
  1613. int p0, // padding dimension 0
  1614. int p1, // padding dimension 1
  1615. int d0, // dilation dimension 0
  1616. int d1); // dilation dimension 1
  1617. GGML_API struct ggml_tensor * ggml_im2col_3d(
  1618. struct ggml_context * ctx,
  1619. struct ggml_tensor * a,
  1620. struct ggml_tensor * b,
  1621. int64_t IC,
  1622. int s0, // stride width
  1623. int s1, // stride height
  1624. int s2, // stride depth
  1625. int p0, // padding width
  1626. int p1, // padding height
  1627. int p2, // padding depth
  1628. int d0, // dilation width
  1629. int d1, // dilation height
  1630. int d2, // dilation depth
  1631. enum ggml_type dst_type);
  1632. // a: [OC*IC, KD, KH, KW]
  1633. // b: [N*IC, ID, IH, IW]
  1634. // result: [N*OC, OD, OH, OW]
  1635. GGML_API struct ggml_tensor * ggml_conv_3d(
  1636. struct ggml_context * ctx,
  1637. struct ggml_tensor * a,
  1638. struct ggml_tensor * b,
  1639. int64_t IC,
  1640. int s0, // stride width
  1641. int s1, // stride height
  1642. int s2, // stride depth
  1643. int p0, // padding width
  1644. int p1, // padding height
  1645. int p2, // padding depth
  1646. int d0, // dilation width
  1647. int d1, // dilation height
  1648. int d2 // dilation depth
  1649. );
  1650. // kernel size is a->ne[0] x a->ne[1]
  1651. // stride is equal to kernel size
  1652. // padding is zero
  1653. // example:
  1654. // a: 16 16 3 768
  1655. // b: 1024 1024 3 1
  1656. // res: 64 64 768 1
  1657. // used in sam
  1658. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1659. struct ggml_context * ctx,
  1660. struct ggml_tensor * a,
  1661. struct ggml_tensor * b);
  1662. // kernel size is a->ne[0] x a->ne[1]
  1663. // stride is 1
  1664. // padding is half
  1665. // example:
  1666. // a: 3 3 256 256
  1667. // b: 64 64 256 1
  1668. // res: 64 64 256 1
  1669. // used in sam
  1670. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1671. struct ggml_context * ctx,
  1672. struct ggml_tensor * a,
  1673. struct ggml_tensor * b);
  1674. // depthwise (via im2col and mul_mat)
  1675. GGML_API struct ggml_tensor * ggml_conv_2d_dw(
  1676. struct ggml_context * ctx,
  1677. struct ggml_tensor * a, // convolution kernel
  1678. struct ggml_tensor * b, // data
  1679. int s0, // stride dimension 0
  1680. int s1, // stride dimension 1
  1681. int p0, // padding dimension 0
  1682. int p1, // padding dimension 1
  1683. int d0, // dilation dimension 0
  1684. int d1); // dilation dimension 1
  1685. // Depthwise 2D convolution
  1686. // may be faster than ggml_conv_2d_dw, but not available in all backends
  1687. // a: KW KH 1 C convolution kernel
  1688. // b: W H C N input data
  1689. // res: W_out H_out C N
  1690. GGML_API struct ggml_tensor * ggml_conv_2d_dw_direct(
  1691. struct ggml_context * ctx,
  1692. struct ggml_tensor * a,
  1693. struct ggml_tensor * b,
  1694. int stride0,
  1695. int stride1,
  1696. int pad0,
  1697. int pad1,
  1698. int dilation0,
  1699. int dilation1);
  1700. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1701. struct ggml_context * ctx,
  1702. struct ggml_tensor * a,
  1703. struct ggml_tensor * b,
  1704. int stride);
  1705. GGML_API struct ggml_tensor * ggml_conv_2d_direct(
  1706. struct ggml_context * ctx,
  1707. struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
  1708. struct ggml_tensor * b, // input data [W, H, C, N]
  1709. int s0, // stride dimension 0
  1710. int s1, // stride dimension 1
  1711. int p0, // padding dimension 0
  1712. int p1, // padding dimension 1
  1713. int d0, // dilation dimension 0
  1714. int d1); // dilation dimension 1
  1715. GGML_API struct ggml_tensor * ggml_conv_3d_direct(
  1716. struct ggml_context * ctx,
  1717. struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
  1718. struct ggml_tensor * b, // input [W, H, D, C * N]
  1719. int s0, // stride
  1720. int s1,
  1721. int s2,
  1722. int p0, // padding
  1723. int p1,
  1724. int p2,
  1725. int d0, // dilation
  1726. int d1,
  1727. int d2,
  1728. int n_channels,
  1729. int n_batch,
  1730. int n_channels_out);
  1731. enum ggml_op_pool {
  1732. GGML_OP_POOL_MAX,
  1733. GGML_OP_POOL_AVG,
  1734. GGML_OP_POOL_COUNT,
  1735. };
  1736. GGML_API struct ggml_tensor * ggml_pool_1d(
  1737. struct ggml_context * ctx,
  1738. struct ggml_tensor * a,
  1739. enum ggml_op_pool op,
  1740. int k0, // kernel size
  1741. int s0, // stride
  1742. int p0); // padding
  1743. // the result will have 2*p0 padding for the first dimension
  1744. // and 2*p1 padding for the second dimension
  1745. GGML_API struct ggml_tensor * ggml_pool_2d(
  1746. struct ggml_context * ctx,
  1747. struct ggml_tensor * a,
  1748. enum ggml_op_pool op,
  1749. int k0,
  1750. int k1,
  1751. int s0,
  1752. int s1,
  1753. float p0,
  1754. float p1);
  1755. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1756. struct ggml_context * ctx,
  1757. struct ggml_tensor * a,
  1758. struct ggml_tensor * af, // "a"/input used in forward pass
  1759. enum ggml_op_pool op,
  1760. int k0,
  1761. int k1,
  1762. int s0,
  1763. int s1,
  1764. float p0,
  1765. float p1);
  1766. enum ggml_scale_mode {
  1767. GGML_SCALE_MODE_NEAREST = 0,
  1768. GGML_SCALE_MODE_BILINEAR = 1,
  1769. GGML_SCALE_MODE_COUNT
  1770. };
  1771. enum ggml_scale_flag {
  1772. GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
  1773. };
  1774. // interpolate
  1775. // multiplies ne0 and ne1 by scale factor
  1776. GGML_API struct ggml_tensor * ggml_upscale(
  1777. struct ggml_context * ctx,
  1778. struct ggml_tensor * a,
  1779. int scale_factor,
  1780. enum ggml_scale_mode mode);
  1781. // interpolate
  1782. // interpolate scale to specified dimensions
  1783. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
  1784. struct ggml_context * ctx,
  1785. struct ggml_tensor * a,
  1786. int ne0,
  1787. int ne1,
  1788. int ne2,
  1789. int ne3,
  1790. enum ggml_scale_mode mode),
  1791. "use ggml_interpolate instead");
  1792. // Up- or downsamples the input to the specified size.
  1793. // 2D scale modes (eg. bilinear) are applied to the first two dimensions.
  1794. GGML_API struct ggml_tensor * ggml_interpolate(
  1795. struct ggml_context * ctx,
  1796. struct ggml_tensor * a,
  1797. int64_t ne0,
  1798. int64_t ne1,
  1799. int64_t ne2,
  1800. int64_t ne3,
  1801. uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
  1802. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1803. GGML_API struct ggml_tensor * ggml_pad(
  1804. struct ggml_context * ctx,
  1805. struct ggml_tensor * a,
  1806. int p0,
  1807. int p1,
  1808. int p2,
  1809. int p3);
  1810. GGML_API struct ggml_tensor * ggml_pad_ext(
  1811. struct ggml_context * ctx,
  1812. struct ggml_tensor * a,
  1813. int lp0,
  1814. int rp0,
  1815. int lp1,
  1816. int rp1,
  1817. int lp2,
  1818. int rp2,
  1819. int lp3,
  1820. int rp3
  1821. );
  1822. // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
  1823. GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
  1824. struct ggml_context * ctx,
  1825. struct ggml_tensor * a,
  1826. int p0,
  1827. int p1);
  1828. // Move tensor elements by an offset given for each dimension. Elements that
  1829. // are shifted beyond the last position are wrapped around to the beginning.
  1830. GGML_API struct ggml_tensor * ggml_roll(
  1831. struct ggml_context * ctx,
  1832. struct ggml_tensor * a,
  1833. int shift0,
  1834. int shift1,
  1835. int shift2,
  1836. int shift3);
  1837. // Make matrix into a triangular one (upper, upper + diagonal, lower or lower + diagonal) with constant value
  1838. GGML_API struct ggml_tensor * ggml_tri(
  1839. struct ggml_context * ctx,
  1840. struct ggml_tensor * a,
  1841. float constant,
  1842. enum ggml_tri_type tritype);
  1843. GGML_API struct ggml_tensor * ggml_tri_keep(
  1844. struct ggml_context * ctx,
  1845. struct ggml_tensor * a,
  1846. enum ggml_tri_type tritype);
  1847. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1848. // timesteps: [N,]
  1849. // return: [N, dim]
  1850. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1851. struct ggml_context * ctx,
  1852. struct ggml_tensor * timesteps,
  1853. int dim,
  1854. int max_period);
  1855. // sort rows
  1856. enum ggml_sort_order {
  1857. GGML_SORT_ORDER_ASC,
  1858. GGML_SORT_ORDER_DESC,
  1859. };
  1860. GGML_API struct ggml_tensor * ggml_argsort(
  1861. struct ggml_context * ctx,
  1862. struct ggml_tensor * a,
  1863. enum ggml_sort_order order);
  1864. GGML_API struct ggml_tensor * ggml_arange(
  1865. struct ggml_context * ctx,
  1866. float start,
  1867. float stop,
  1868. float step);
  1869. // top k elements per row
  1870. GGML_API struct ggml_tensor * ggml_top_k(
  1871. struct ggml_context * ctx,
  1872. struct ggml_tensor * a,
  1873. int k);
  1874. #define GGML_KQ_MASK_PAD 64
  1875. // q: [n_embd_k, n_batch, n_head, ne3 ]
  1876. // k: [n_embd_k, n_kv, n_head_kv, ne3 ]
  1877. // v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
  1878. // mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1879. // res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
  1880. //
  1881. // broadcast:
  1882. // n_head % n_head_kv == 0
  1883. // n_head % ne32 == 0
  1884. // ne3 % ne33 == 0
  1885. //
  1886. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1887. struct ggml_context * ctx,
  1888. struct ggml_tensor * q,
  1889. struct ggml_tensor * k,
  1890. struct ggml_tensor * v,
  1891. struct ggml_tensor * mask,
  1892. float scale,
  1893. float max_bias,
  1894. float logit_softcap);
  1895. GGML_API void ggml_flash_attn_ext_set_prec(
  1896. struct ggml_tensor * a,
  1897. enum ggml_prec prec);
  1898. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1899. const struct ggml_tensor * a);
  1900. GGML_API void ggml_flash_attn_ext_add_sinks(
  1901. struct ggml_tensor * a,
  1902. struct ggml_tensor * sinks);
  1903. // TODO: needs to be adapted to ggml_flash_attn_ext
  1904. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1905. struct ggml_context * ctx,
  1906. struct ggml_tensor * q,
  1907. struct ggml_tensor * k,
  1908. struct ggml_tensor * v,
  1909. struct ggml_tensor * d,
  1910. bool masked);
  1911. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1912. struct ggml_context * ctx,
  1913. struct ggml_tensor * sx,
  1914. struct ggml_tensor * c);
  1915. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1916. struct ggml_context * ctx,
  1917. struct ggml_tensor * s,
  1918. struct ggml_tensor * x,
  1919. struct ggml_tensor * dt,
  1920. struct ggml_tensor * A,
  1921. struct ggml_tensor * B,
  1922. struct ggml_tensor * C,
  1923. struct ggml_tensor * ids);
  1924. // partition into non-overlapping windows with padding if needed
  1925. // example:
  1926. // a: 768 64 64 1
  1927. // w: 14
  1928. // res: 768 14 14 25
  1929. // used in sam
  1930. GGML_API struct ggml_tensor * ggml_win_part(
  1931. struct ggml_context * ctx,
  1932. struct ggml_tensor * a,
  1933. int w);
  1934. // reverse of ggml_win_part
  1935. // used in sam
  1936. GGML_API struct ggml_tensor * ggml_win_unpart(
  1937. struct ggml_context * ctx,
  1938. struct ggml_tensor * a,
  1939. int w0,
  1940. int h0,
  1941. int w);
  1942. GGML_API struct ggml_tensor * ggml_unary(
  1943. struct ggml_context * ctx,
  1944. struct ggml_tensor * a,
  1945. enum ggml_unary_op op);
  1946. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1947. struct ggml_context * ctx,
  1948. struct ggml_tensor * a,
  1949. enum ggml_unary_op op);
  1950. // used in sam
  1951. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1952. struct ggml_context * ctx,
  1953. struct ggml_tensor * a,
  1954. int qh,
  1955. int kh);
  1956. // used in sam
  1957. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1958. struct ggml_context * ctx,
  1959. struct ggml_tensor * a,
  1960. struct ggml_tensor * pw,
  1961. struct ggml_tensor * ph);
  1962. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1963. struct ggml_context * ctx,
  1964. struct ggml_tensor * a,
  1965. struct ggml_tensor * pw,
  1966. struct ggml_tensor * ph);
  1967. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1968. struct ggml_context * ctx,
  1969. struct ggml_tensor * k,
  1970. struct ggml_tensor * v,
  1971. struct ggml_tensor * r,
  1972. struct ggml_tensor * tf,
  1973. struct ggml_tensor * td,
  1974. struct ggml_tensor * state);
  1975. GGML_API struct ggml_tensor * ggml_gated_linear_attn(
  1976. struct ggml_context * ctx,
  1977. struct ggml_tensor * k,
  1978. struct ggml_tensor * v,
  1979. struct ggml_tensor * q,
  1980. struct ggml_tensor * g,
  1981. struct ggml_tensor * state,
  1982. float scale);
  1983. GGML_API struct ggml_tensor * ggml_rwkv_wkv7(
  1984. struct ggml_context * ctx,
  1985. struct ggml_tensor * r,
  1986. struct ggml_tensor * w,
  1987. struct ggml_tensor * k,
  1988. struct ggml_tensor * v,
  1989. struct ggml_tensor * a,
  1990. struct ggml_tensor * b,
  1991. struct ggml_tensor * state);
  1992. // custom operators
  1993. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1994. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1995. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1996. #define GGML_N_TASKS_MAX (-1)
  1997. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1998. GGML_API struct ggml_tensor * ggml_map_custom1(
  1999. struct ggml_context * ctx,
  2000. struct ggml_tensor * a,
  2001. ggml_custom1_op_t fun,
  2002. int n_tasks,
  2003. void * userdata);
  2004. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  2005. struct ggml_context * ctx,
  2006. struct ggml_tensor * a,
  2007. ggml_custom1_op_t fun,
  2008. int n_tasks,
  2009. void * userdata);
  2010. GGML_API struct ggml_tensor * ggml_map_custom2(
  2011. struct ggml_context * ctx,
  2012. struct ggml_tensor * a,
  2013. struct ggml_tensor * b,
  2014. ggml_custom2_op_t fun,
  2015. int n_tasks,
  2016. void * userdata);
  2017. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  2018. struct ggml_context * ctx,
  2019. struct ggml_tensor * a,
  2020. struct ggml_tensor * b,
  2021. ggml_custom2_op_t fun,
  2022. int n_tasks,
  2023. void * userdata);
  2024. GGML_API struct ggml_tensor * ggml_map_custom3(
  2025. struct ggml_context * ctx,
  2026. struct ggml_tensor * a,
  2027. struct ggml_tensor * b,
  2028. struct ggml_tensor * c,
  2029. ggml_custom3_op_t fun,
  2030. int n_tasks,
  2031. void * userdata);
  2032. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  2033. struct ggml_context * ctx,
  2034. struct ggml_tensor * a,
  2035. struct ggml_tensor * b,
  2036. struct ggml_tensor * c,
  2037. ggml_custom3_op_t fun,
  2038. int n_tasks,
  2039. void * userdata);
  2040. typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
  2041. GGML_API struct ggml_tensor * ggml_custom_4d(
  2042. struct ggml_context * ctx,
  2043. enum ggml_type type,
  2044. int64_t ne0,
  2045. int64_t ne1,
  2046. int64_t ne2,
  2047. int64_t ne3,
  2048. struct ggml_tensor ** args,
  2049. int n_args,
  2050. ggml_custom_op_t fun,
  2051. int n_tasks,
  2052. void * userdata);
  2053. GGML_API struct ggml_tensor * ggml_custom_inplace(
  2054. struct ggml_context * ctx,
  2055. struct ggml_tensor * a,
  2056. struct ggml_tensor ** args,
  2057. int n_args,
  2058. ggml_custom_op_t fun,
  2059. int n_tasks,
  2060. void * userdata);
  2061. // loss function
  2062. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  2063. struct ggml_context * ctx,
  2064. struct ggml_tensor * a, // logits
  2065. struct ggml_tensor * b); // labels
  2066. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  2067. struct ggml_context * ctx,
  2068. struct ggml_tensor * a, // logits
  2069. struct ggml_tensor * b, // labels
  2070. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  2071. // AdamW optimizer step
  2072. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  2073. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  2074. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  2075. struct ggml_context * ctx,
  2076. struct ggml_tensor * a,
  2077. struct ggml_tensor * grad,
  2078. struct ggml_tensor * m,
  2079. struct ggml_tensor * v,
  2080. struct ggml_tensor * adamw_params); // parameters such as the learning rate
  2081. // stochastic gradient descent step (with weight decay)
  2082. GGML_API struct ggml_tensor * ggml_opt_step_sgd(
  2083. struct ggml_context * ctx,
  2084. struct ggml_tensor * a,
  2085. struct ggml_tensor * grad,
  2086. struct ggml_tensor * sgd_params); // alpha, weight decay
  2087. //
  2088. // automatic differentiation
  2089. //
  2090. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2091. GGML_API void ggml_build_backward_expand(
  2092. struct ggml_context * ctx, // context for gradient computation
  2093. struct ggml_cgraph * cgraph,
  2094. struct ggml_tensor ** grad_accs);
  2095. // graph allocation in a context
  2096. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  2097. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  2098. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph, bool force_grads);
  2099. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  2100. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  2101. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  2102. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  2103. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  2104. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  2105. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  2106. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  2107. GGML_API size_t ggml_graph_overhead(void);
  2108. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  2109. GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
  2110. GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2111. GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
  2112. // print info and performance information for the graph
  2113. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  2114. // dump the graph into a file using the dot format
  2115. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  2116. // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
  2117. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  2118. // Set callback for all future logging events.
  2119. // If this is not called, or NULL is supplied, everything is output on stderr.
  2120. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  2121. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  2122. //
  2123. // quantization
  2124. //
  2125. // - ggml_quantize_init can be called multiple times with the same type
  2126. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  2127. // automatically called by ggml_quantize_chunk for convenience
  2128. //
  2129. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  2130. // call this at the end of the program to avoid memory leaks
  2131. //
  2132. // note: these are thread-safe
  2133. //
  2134. GGML_API void ggml_quantize_init(enum ggml_type type);
  2135. GGML_API void ggml_quantize_free(void);
  2136. // some quantization type cannot be used without an importance matrix
  2137. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  2138. // calls ggml_quantize_init internally (i.e. can allocate memory)
  2139. GGML_API size_t ggml_quantize_chunk(
  2140. enum ggml_type type,
  2141. const float * src,
  2142. void * dst,
  2143. int64_t start,
  2144. int64_t nrows,
  2145. int64_t n_per_row,
  2146. const float * imatrix);
  2147. #ifdef __cplusplus
  2148. // restrict not standard in C++
  2149. # if defined(__GNUC__)
  2150. # define GGML_RESTRICT __restrict__
  2151. # elif defined(__clang__)
  2152. # define GGML_RESTRICT __restrict
  2153. # elif defined(_MSC_VER)
  2154. # define GGML_RESTRICT __restrict
  2155. # else
  2156. # define GGML_RESTRICT
  2157. # endif
  2158. #else
  2159. # if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
  2160. # define GGML_RESTRICT __restrict
  2161. # else
  2162. # define GGML_RESTRICT restrict
  2163. # endif
  2164. #endif
  2165. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2166. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2167. struct ggml_type_traits {
  2168. const char * type_name;
  2169. int64_t blck_size;
  2170. int64_t blck_size_interleave; // interleave elements in blocks
  2171. size_t type_size;
  2172. bool is_quantized;
  2173. ggml_to_float_t to_float;
  2174. ggml_from_float_t from_float_ref;
  2175. };
  2176. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  2177. // ggml threadpool
  2178. // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
  2179. // the goal should be to create an API that other backends can use move everything to the ggml base
  2180. // scheduling priorities
  2181. enum ggml_sched_priority {
  2182. GGML_SCHED_PRIO_LOW = -1,
  2183. GGML_SCHED_PRIO_NORMAL,
  2184. GGML_SCHED_PRIO_MEDIUM,
  2185. GGML_SCHED_PRIO_HIGH,
  2186. GGML_SCHED_PRIO_REALTIME
  2187. };
  2188. // threadpool params
  2189. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  2190. struct ggml_threadpool_params {
  2191. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  2192. int n_threads; // number of threads
  2193. enum ggml_sched_priority prio; // thread priority
  2194. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  2195. bool strict_cpu; // strict cpu placement
  2196. bool paused; // start in paused state
  2197. };
  2198. struct ggml_threadpool; // forward declaration, see ggml.c
  2199. typedef struct ggml_threadpool * ggml_threadpool_t;
  2200. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  2201. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  2202. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  2203. #ifdef __cplusplus
  2204. }
  2205. #endif