| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- #!/usr/bin/env python3
- # HF falcon--> gguf conversion
- import gguf
- import os
- import sys
- import struct
- import json
- import numpy as np
- import torch
- from typing import Any, List
- from pathlib import Path
- from transformers import AutoTokenizer
- def bytes_to_unicode():
- # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8+n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- def count_model_parts(dir_model: str) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
- if len(sys.argv) < 3:
- print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
- # output in the same directory as the model
- dir_model = sys.argv[1]
- last_dir = os.path.basename(os.path.normpath(dir_model))
- # possible tensor data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
- sys.exit(1)
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
- print("gguf: loading model "+last_dir)
- with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
- if hparams["architectures"][0] != "RWForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit()
- # get number of model parts
- num_parts = count_model_parts(dir_model)
- ARCH=gguf.MODEL_ARCH.FALCON
- gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
- print("gguf: get model metadata")
- block_count = hparams["n_layer"]
- gguf_writer.add_name("Falcon")
- gguf_writer.add_context_length(2048) # not in config.json
- gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
- gguf_writer.add_embedding_length(hparams["hidden_size"])
- gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_head_count(hparams["n_head"])
- if "n_head_kv" in hparams:
- gguf_writer.add_head_count_kv(hparams["n_head_kv"])
- else:
- gguf_writer.add_head_count_kv(1)
- gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
- gguf_writer.add_file_type(ftype)
- # TOKENIZATION
- print("gguf: get tokenizer metadata")
- tokens: List[str] = []
- scores: List[float] = []
- toktypes: List[int] = []
- merges: List[str] = []
- if Path(dir_model + "/tokenizer.json").is_file():
- # gpt2 tokenizer
- gguf_writer.add_tokenizer_model("gpt2")
- print("gguf: get gpt2 tokenizer merges")
- with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
- tokenizer_json = json.load(f)
- merges = tokenizer_json["model"]["merges"]
- gguf_writer.add_token_merges(merges)
- print("gguf: get gpt2 tokenizer vocab")
- vocab_size = len(tokenizer_json["model"]["vocab"])
- # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
- byte_encoder = bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
- for i in range(vocab_size):
- if i in reverse_vocab:
- try:
- text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
- except KeyError:
- text = bytearray()
- for c in reverse_vocab[i]:
- if ord(c) < 256: # single byte character
- text.append(byte_decoder[ord(c)])
- else: # multibyte special token character
- text.extend(c.encode('utf-8'))
- else:
- print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
- pad_token = f"[PAD{i}]".encode("utf8")
- text = bytearray(pad_token)
- tokens.append(text)
- scores.append(0.0) # dymmy
- toktypes.append(gguf.TokenType.NORMAL) # dummy
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- print("gguf: get special token ids")
- # Look for special tokens in config.json
- if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
- gguf_writer.add_bos_token_id(hparams["bos_token_id"])
- if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
- gguf_writer.add_eos_token_id(hparams["eos_token_id"])
- if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
- gguf_writer.add_unk_token_id(hparams["unk_token_id"])
- if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
- gguf_writer.add_sep_token_id(hparams["sep_token_id"])
- if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
- gguf_writer.add_pad_token_id(hparams["pad_token_id"])
- # TENSORS
- tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
- # params for qkv transform
- n_head = hparams["n_head"]
- n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
- head_dim = hparams["hidden_size"] // n_head
- # tensor info
- print("gguf: get tensor metadata")
- if num_parts == 0:
- part_names = ("pytorch_model.bin",)
- else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
- for part_name in part_names:
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
- for name in model_part.keys():
- data = model_part[name]
- old_dtype = data.dtype
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
- if "query_key_value" in name:
- qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data = torch.cat((q,k,v)).reshape_as(data)
- data = data.squeeze().numpy()
- # map tensor names
- if name.endswith(".weight") and name[:-7] in tensor_map:
- name = tensor_map[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tensor_map:
- name = tensor_map[name[:-5]] + ".bias"
- else:
- print("Can not map tensor '" + name + "'")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(name, data)
- print("gguf: write header")
- gguf_writer.write_header_to_file()
- print("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- print("gguf: model successfully exported to '" + fname_out + "'")
- print("")
|