convert-llama-hf-to-gguf.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #!/usr/bin/env python3
  2. # HF llama --> gguf conversion
  3. import gguf
  4. import os
  5. import sys
  6. import struct
  7. import json
  8. import numpy as np
  9. import torch
  10. from typing import Any, List, Optional
  11. from pathlib import Path
  12. from sentencepiece import SentencePieceProcessor
  13. #NDArray = np.ndarray[Any, Any]
  14. # compatible with python < 3.9
  15. NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
  16. # reverse HF permute back to original pth layout
  17. # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
  18. def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
  19. if n_kv_head is not None and n_head != n_kv_head:
  20. n_head //= n_kv_head
  21. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  22. .swapaxes(1, 2)
  23. .reshape(weights.shape))
  24. def count_model_parts(dir_model: str) -> int:
  25. num_parts = 0
  26. for filename in os.listdir(dir_model):
  27. if filename.startswith("pytorch_model-"):
  28. num_parts += 1
  29. if num_parts > 0:
  30. print("gguf: found " + str(num_parts) + " model parts")
  31. return num_parts
  32. if len(sys.argv) < 3:
  33. print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
  34. print(" ftype == 0 -> float32")
  35. print(" ftype == 1 -> float16")
  36. sys.exit(1)
  37. # output in the same directory as the model
  38. dir_model = sys.argv[1]
  39. last_dir = os.path.basename(os.path.normpath(dir_model))
  40. # possible tensor data types
  41. # ftype == 0 -> float32
  42. # ftype == 1 -> float16
  43. # map from ftype to string
  44. ftype_str = ["f32", "f16"]
  45. ftype = 1
  46. if len(sys.argv) > 2:
  47. ftype = int(sys.argv[2])
  48. if ftype < 0 or ftype > 1:
  49. print("Invalid ftype: " + str(ftype))
  50. sys.exit(1)
  51. fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
  52. print("gguf: loading model "+last_dir)
  53. with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
  54. hparams = json.load(f)
  55. if hparams["architectures"][0] != "LlamaForCausalLM":
  56. print("Model architecture not supported: " + hparams["architectures"][0])
  57. sys.exit()
  58. # get number of model parts
  59. num_parts = count_model_parts(dir_model)
  60. ARCH=gguf.MODEL_ARCH.LLAMA
  61. gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
  62. print("gguf: get model metadata")
  63. block_count = hparams["num_hidden_layers"]
  64. head_count = hparams["num_attention_heads"]
  65. if "num_key_value_heads" in hparams:
  66. head_count_kv = hparams["num_key_value_heads"]
  67. else:
  68. head_count_kv = head_count
  69. if "_name_or_path" in hparams:
  70. hf_repo = hparams["_name_or_path"]
  71. else:
  72. hf_repo = ""
  73. if "max_sequence_length" in hparams:
  74. ctx_length = hparams["max_sequence_length"]
  75. elif "max_position_embeddings" in hparams:
  76. ctx_length = hparams["max_position_embeddings"]
  77. else:
  78. print("gguf: can not find ctx length parameter.")
  79. sys.exit()
  80. gguf_writer.add_name(last_dir)
  81. gguf_writer.add_source_hf_repo(hf_repo)
  82. gguf_writer.add_tensor_data_layout("Meta AI original pth")
  83. gguf_writer.add_context_length(ctx_length)
  84. gguf_writer.add_embedding_length(hparams["hidden_size"])
  85. gguf_writer.add_block_count(block_count)
  86. gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  87. gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  88. gguf_writer.add_head_count(head_count)
  89. gguf_writer.add_head_count_kv(head_count_kv)
  90. gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  91. if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
  92. if "type" in hparams["rope_scaling"]:
  93. if hparams["rope_scaling"]["type"] == "linear":
  94. gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
  95. # TOKENIZATION
  96. print("gguf: get tokenizer metadata")
  97. tokens: List[bytes] = []
  98. scores: List[float] = []
  99. toktypes: List[int] = []
  100. if Path(dir_model + "/tokenizer.model").is_file():
  101. # vocab type sentencepiece
  102. print("gguf: get sentencepiece tokenizer vocab, scores and token types")
  103. tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
  104. for i in range(tokenizer.vocab_size()):
  105. text: bytes
  106. score: float
  107. piece = tokenizer.id_to_piece(i)
  108. text = piece.encode("utf-8")
  109. score = tokenizer.get_score(i)
  110. toktype = 1 # defualt to normal token type
  111. if tokenizer.is_unknown(i):
  112. toktype = 2
  113. if tokenizer.is_control(i):
  114. toktype = 3
  115. # toktype = 4 is user-defined = tokens from added_tokens.json
  116. if tokenizer.is_unused(i):
  117. toktype = 5
  118. if tokenizer.is_byte(i):
  119. toktype = 6
  120. tokens.append(text)
  121. scores.append(score)
  122. toktypes.append(toktype)
  123. if Path(dir_model + "/added_tokens.json").is_file():
  124. with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
  125. addtokens_json = json.load(f)
  126. print("gguf: get added tokens")
  127. for key in addtokens_json:
  128. tokens.append( key.encode("utf-8") )
  129. scores.append(-1000.0)
  130. toktypes.append(4) # user-defined token type
  131. gguf_writer.add_tokenizer_model("llama")
  132. gguf_writer.add_token_list(tokens)
  133. gguf_writer.add_token_scores(scores)
  134. gguf_writer.add_token_types(toktypes)
  135. print("gguf: get special token ids")
  136. if Path(dir_model + "/tokenizer.json").is_file():
  137. # Look for special tokens in tokenizer.json if it exists
  138. with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
  139. tokenizer = json.load(f)
  140. if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
  141. with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
  142. tokenizer_config = json.load(f)
  143. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
  144. for key in tokenizer["added_tokens"]:
  145. if key["content"] == tokenizer_config["bos_token"]["content"]:
  146. gguf_writer.add_bos_token_id(key["id"])
  147. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
  148. for key in tokenizer["added_tokens"]:
  149. if key["content"] == tokenizer_config["eos_token"]["content"]:
  150. gguf_writer.add_eos_token_id(key["id"])
  151. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
  152. for key in tokenizer["added_tokens"]:
  153. if key["content"] == tokenizer_config["unk_token"]["content"]:
  154. gguf_writer.add_unk_token_id(key["id"])
  155. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
  156. for key in tokenizer["added_tokens"]:
  157. if key["content"] == tokenizer_config["sep_token"]["content"]:
  158. gguf_writer.add_sep_token_id(key["id"])
  159. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
  160. for key in tokenizer["added_tokens"]:
  161. if key["content"] == tokenizer_config["pad_token"]["content"]:
  162. gguf_writer.add_pad_token_id(key["id"])
  163. else:
  164. # If no tokenizer.json: Look for special tokens in config.json
  165. if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
  166. gguf_writer.add_bos_token_id(hparams["bos_token_id"])
  167. if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
  168. gguf_writer.add_eos_token_id(hparams["eos_token_id"])
  169. if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
  170. gguf_writer.add_unk_token_id(hparams["unk_token_id"])
  171. if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
  172. gguf_writer.add_sep_token_id(hparams["sep_token_id"])
  173. if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
  174. gguf_writer.add_pad_token_id(hparams["pad_token_id"])
  175. # TENSORS
  176. tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
  177. # tensor info
  178. print("gguf: get tensor metadata")
  179. if num_parts == 0:
  180. part_names = ("pytorch_model.bin",)
  181. else:
  182. part_names = (
  183. f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
  184. )
  185. for part_name in part_names:
  186. print("gguf: loading model part '" + part_name + "'")
  187. model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
  188. for name in model_part.keys():
  189. data = model_part[name]
  190. # we don't need these
  191. if name.endswith(".rotary_emb.inv_freq"):
  192. continue
  193. old_dtype = data.dtype
  194. # convert any unsupported data types to float32
  195. if data.dtype != torch.float16 and data.dtype != torch.float32:
  196. data = data.to(torch.float32)
  197. data = data.squeeze().numpy()
  198. # reverse permute these
  199. if name.endswith(".q_proj.weight"):
  200. data = reverse_hf_permute(data, head_count)
  201. if name.endswith(".k_proj.weight"):
  202. data = reverse_hf_permute(data, head_count, head_count_kv)
  203. # map tensor names
  204. if name.endswith(".weight") and name[:-7] in tensor_map:
  205. name = tensor_map[name[:-7]] + ".weight"
  206. elif name.endswith(".bias") and name[:-5] in tensor_map:
  207. name = tensor_map[name[:-5]] + ".bias"
  208. else:
  209. print("Can not map tensor '" + name + "'")
  210. sys.exit()
  211. n_dims = len(data.shape)
  212. data_dtype = data.dtype
  213. # if f32 desired, convert any float16 to float32
  214. if ftype == 0 and data_dtype == np.float16:
  215. data = data.astype(np.float32)
  216. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  217. if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  218. data = data.astype(np.float32)
  219. # if f16 desired, convert any float32 2-dim weight tensors to float16
  220. if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  221. data = data.astype(np.float16)
  222. print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
  223. gguf_writer.add_tensor(name, data)
  224. print("gguf: write header")
  225. gguf_writer.write_header_to_file()
  226. print("gguf: write metadata")
  227. gguf_writer.write_kv_data_to_file()
  228. print("gguf: write tensors")
  229. gguf_writer.write_tensors_to_file()
  230. gguf_writer.close()
  231. print("gguf: model successfully exported to '" + fname_out + "'")
  232. print("")