| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- #!/usr/bin/env python3
- import json
- import os
- import re
- import struct
- import sys
- from typing import Any, Dict, Sequence, TextIO
- import numpy as np
- import torch
- NUMPY_TYPE_TO_FTYPE: Dict[str, int] = {"float32": 0, "float16": 1}
- HF_SUBLAYER_TO_GGML = {
- "self_attn.q_proj": "attn_q",
- "self_attn.k_proj": "attn_k",
- "self_attn.v_proj": "attn_v",
- "self_attn.o_proj": "attn_output",
- "mlp.gate_proj": "ffn_gate",
- "mlp.down_proj": "ffn_down",
- "mlp.up_proj": "ffn_up",
- "input_layernorm": "attn_norm",
- "post_attention_layernorm": "ffn_norm",
- }
- def translate_tensor_name(t: str) -> str:
- match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
- if match:
- nn = match.group(1)
- sub_layer = match.group(2)
- lora_type = match.group(3)
- sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
- if sub_layer_renamed is None:
- print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
- sys.exit(1)
- output_string = (
- f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
- )
- return output_string
- else:
- print(f"Error: unrecognized tensor {t}")
- sys.exit(1)
- def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
- fout.write(b"ggla"[::-1]) # magic (ggml lora)
- fout.write(struct.pack("i", 1)) # file version
- fout.write(struct.pack("i", params["r"]))
- # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
- # but some models ship a float value instead
- # let's convert to int, but fail if lossless conversion is not possible
- assert (
- int(params["lora_alpha"]) == params["lora_alpha"]
- ), "cannot convert float to int losslessly"
- fout.write(struct.pack("i", int(params["lora_alpha"])))
- def write_tensor_header(
- self, name: str, shape: Sequence[int], data_type: np.dtype
- ) -> None:
- sname = name.encode("utf-8")
- fout.write(
- struct.pack(
- "iii",
- len(shape),
- len(sname),
- NUMPY_TYPE_TO_FTYPE[data_type.name],
- )
- )
- fout.write(struct.pack("i" * len(shape), *shape[::-1]))
- fout.write(sname)
- fout.seek((fout.tell() + 31) & -32)
- if len(sys.argv) != 2:
- print(f"Usage: python {sys.argv[0]} <path>")
- print(
- "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
- )
- sys.exit(1)
- input_json = os.path.join(sys.argv[1], "adapter_config.json")
- input_model = os.path.join(sys.argv[1], "adapter_model.bin")
- output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
- model = torch.load(input_model, map_location="cpu")
- with open(input_json, "r") as f:
- params = json.load(f)
- if params["peft_type"] != "LORA":
- print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
- sys.exit(1)
- if params["fan_in_fan_out"] is True:
- print("Error: param fan_in_fan_out is not supported")
- sys.exit(1)
- if params["bias"] is not None and params["bias"] != "none":
- print("Error: param bias is not supported")
- sys.exit(1)
- # TODO: these seem to be layers that have been trained but without lora.
- # doesn't seem widely used but eventually should be supported
- if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
- print("Error: param modules_to_save is not supported")
- sys.exit(1)
- with open(output_path, "wb") as fout:
- fout.truncate()
- write_file_header(fout, params)
- for k, v in model.items():
- if k.endswith(".default.weight"):
- k = k.replace(".default.weight", ".weight")
- if k in ["llama_proj.weight", "llama_proj.bias"]:
- continue
- if k.endswith("lora_A.weight"):
- if v.dtype != torch.float16 and v.dtype != torch.float32:
- v = v.float()
- v = v.T
- else:
- v = v.float()
- t = v.detach().numpy()
- tname = translate_tensor_name(k)
- print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
- write_tensor_header(fout, tname, t.shape, t.dtype)
- t.tofile(fout)
- print(f"Converted {input_json} and {input_model} to {output_path}")
|