convert-llama2c-to-ggml.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863
  1. #include "ggml.h"
  2. #include "llama.h"
  3. #include <unordered_map>
  4. #include <vector>
  5. #include <cassert>
  6. #include <climits>
  7. #include <cstring>
  8. #include <cstdarg>
  9. #include <ctime>
  10. #include <random>
  11. #include <stdexcept>
  12. #include <algorithm>
  13. #include <string>
  14. #if defined(_MSC_VER)
  15. #pragma warning(disable: 4244 4267) // possible loss of data
  16. #endif
  17. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  18. #define LLAMA_FILE_VERSION_GGJT_V3 3
  19. //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
  20. typedef struct {
  21. int dim; // transformer dimension
  22. int hidden_dim; // for ffn layers
  23. int n_layers; // number of layers
  24. int n_heads; // number of query heads
  25. int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
  26. int vocab_size; // vocabulary size, usually 256 (byte-level)
  27. int seq_len; // max sequence length
  28. } Config;
  29. typedef struct {
  30. // token embedding table
  31. float* token_embedding_table; // (vocab_size, dim)
  32. // weights for rmsnorms
  33. float* rms_att_weight; // (layer, dim) rmsnorm weights
  34. float* rms_ffn_weight; // (layer, dim)
  35. // weights for matmuls
  36. float* wq; // (layer, dim, dim)
  37. float* wk; // (layer, dim, dim)
  38. float* wv; // (layer, dim, dim)
  39. float* wo; // (layer, dim, dim)
  40. // weights for ffn
  41. float* w1; // (layer, hidden_dim, dim)
  42. float* w2; // (layer, dim, hidden_dim)
  43. float* w3; // (layer, hidden_dim, dim)
  44. // final rmsnorm
  45. float* rms_final_weight; // (dim,)
  46. // freq_cis for RoPE relatively positional embeddings
  47. // float* freq_cis_real; // (seq_len, dim/2)
  48. // float* freq_cis_imag; // (seq_len, dim/2)
  49. // (optional) classifier weights for the logits, on the last layer
  50. float* wcls;
  51. } TransformerWeights;
  52. void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
  53. // we calloc instead of malloc to keep valgrind happy
  54. w->token_embedding_table = new float[p->vocab_size * p->dim]();
  55. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
  56. w->rms_att_weight = new float[p->n_layers * p->dim]();
  57. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
  58. w->rms_ffn_weight = new float[p->n_layers * p->dim]();
  59. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
  60. w->wq = new float[p->n_layers * p->dim * p->dim]();
  61. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  62. w->wk = new float[p->n_layers * p->dim * p->dim]();
  63. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  64. w->wv = new float[p->n_layers * p->dim * p->dim]();
  65. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  66. w->wo = new float[p->n_layers * p->dim * p->dim]();
  67. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  68. w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
  69. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
  70. w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
  71. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
  72. w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
  73. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
  74. w->rms_final_weight = new float[p->dim]();
  75. printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
  76. if (shared_weights) {
  77. w->wcls = NULL;
  78. } else {
  79. w->wcls = new float[p->vocab_size * p->dim]();
  80. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
  81. }
  82. }
  83. int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
  84. if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
  85. if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
  86. if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  87. if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  88. if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  89. if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  90. if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
  91. if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
  92. if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
  93. if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
  94. if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
  95. // Skip freq_cis_real & freq_cis_imag
  96. int head_size = p->dim / p->n_heads;
  97. fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
  98. if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
  99. // Check we didn't forget to read anything
  100. auto curr = ftell(f);
  101. fseek(f, 0, SEEK_END);
  102. auto end = ftell(f);
  103. if (curr != end) {
  104. printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
  105. return 1;
  106. }
  107. return 0;
  108. }
  109. void free_weights(TransformerWeights* w) {
  110. delete w->token_embedding_table;
  111. delete w->rms_att_weight;
  112. delete w->rms_ffn_weight;
  113. delete w->wq;
  114. delete w->wk;
  115. delete w->wv;
  116. delete w->wo;
  117. delete w->w1;
  118. delete w->w2;
  119. delete w->w3;
  120. delete w->rms_final_weight;
  121. if (w->wcls) delete w->wcls;
  122. }
  123. void print_sample_weights(TransformerWeights *w){
  124. printf("----- Quick print of first of the weight vales of all the variables\n");
  125. printf("%f\n", w->token_embedding_table[0]);
  126. printf("%f\n", w->rms_att_weight[0]);
  127. printf("%f\n", w->rms_ffn_weight[0]);
  128. printf("%f\n", w->wq[0]);
  129. printf("%f\n", w->wk[0]);
  130. printf("%f\n", w->wv[0]);
  131. printf("%f\n", w->wo[0]);
  132. printf("%f\n", w->w1[0]);
  133. printf("%f\n", w->w2[0]);
  134. printf("%f\n", w->w3[0]);
  135. printf("%f\n", w->rms_att_weight[0]);
  136. if (w->wcls) printf("%f\n", w->wcls[0]);
  137. }
  138. ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  139. //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
  140. struct llama_vocab {
  141. using id = int32_t;
  142. using token = std::string;
  143. using ttype = llama_token_type;
  144. struct token_data {
  145. token text;
  146. float score;
  147. ttype type;
  148. };
  149. std::unordered_map<token, id> token_to_id;
  150. std::vector<token_data> id_to_token;
  151. };
  152. struct my_llama_hparams {
  153. uint32_t n_vocab = 32000;
  154. uint32_t n_ctx = 512; // this is provided as user input?
  155. uint32_t n_embd = 4096;
  156. uint32_t n_mult = 4;
  157. uint32_t n_head = 32;
  158. uint32_t n_layer = 32;
  159. uint32_t n_rot = 64;
  160. bool operator!=(const my_llama_hparams& other) const {
  161. return memcmp(this, &other, sizeof(my_llama_hparams));
  162. }
  163. };
  164. struct my_llama_layer {
  165. // normalization
  166. struct ggml_tensor * attention_norm;
  167. // attention
  168. struct ggml_tensor * wq;
  169. struct ggml_tensor * wk;
  170. struct ggml_tensor * wv;
  171. struct ggml_tensor * wo;
  172. // normalization
  173. struct ggml_tensor * ffn_norm;
  174. // ff
  175. struct ggml_tensor * w1;
  176. struct ggml_tensor * w2;
  177. struct ggml_tensor * w3;
  178. };
  179. struct my_llama_model {
  180. struct ggml_context * ctx = NULL;
  181. my_llama_hparams hparams;
  182. struct ggml_tensor * tok_embeddings;
  183. struct ggml_tensor * norm;
  184. struct ggml_tensor * output;
  185. std::vector<my_llama_layer> layers;
  186. uint32_t train_its = 0;
  187. uint32_t train_samples = 0;
  188. uint32_t train_tokens = 0;
  189. };
  190. struct train_params {
  191. const char * fn_vocab_model;
  192. const char * fn_llama2c_model;
  193. const char * fn_llama2c_output_model;
  194. const char * fn_train_data;
  195. const char * fn_checkpoint_in;
  196. const char * fn_checkpoint_out;
  197. const char * fn_model_out;
  198. uint32_t seed;
  199. int n_ctx;
  200. int n_embd;
  201. int n_mult;
  202. int n_head;
  203. int n_layer;
  204. int n_rotmax;
  205. int n_threads;
  206. int n_batch;
  207. int n_examples;
  208. int n_predict;
  209. int print_info_interval;
  210. int print_details_interval;
  211. bool samples_start_after_nl;
  212. bool use_adam;
  213. bool use_flash;
  214. bool use_scratch;
  215. // only adam
  216. int warmup;
  217. int cos_decay_steps;
  218. float cos_decay_restart;
  219. float cos_decay_alpha;
  220. int lbfgs_n_iter;
  221. int adam_n_iter;
  222. float adam_alpha;
  223. float adam_decay;
  224. int mem_model_gb;
  225. int mem_compute_gb;
  226. int mem_compute0_gb;
  227. int mem_compute1_gb;
  228. };
  229. uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
  230. const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
  231. return n_ff;
  232. }
  233. void print_params(struct my_llama_hparams * params) {
  234. printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
  235. printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
  236. printf("%s: n_embd: %d\n", __func__, params->n_embd);
  237. printf("%s: n_mult: %d\n", __func__, params->n_mult);
  238. printf("%s: n_head: %d\n", __func__, params->n_head);
  239. printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
  240. printf("%s: n_layer: %d\n", __func__, params->n_layer);
  241. printf("%s: n_rot: %d\n", __func__, params->n_rot);
  242. }
  243. void init_model(struct my_llama_model * model) {
  244. const auto & hparams = model->hparams;
  245. const uint32_t n_embd = hparams.n_embd;
  246. const uint32_t n_layer = hparams.n_layer;
  247. const uint32_t n_vocab = hparams.n_vocab;
  248. const uint32_t n_ff = get_n_ff(&hparams);
  249. struct ggml_context * ctx = model->ctx;
  250. model->train_its = 0;
  251. model->train_samples = 0;
  252. model->train_tokens = 0;
  253. model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  254. printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
  255. model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  256. printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
  257. model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  258. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
  259. // printing the per-layer allocations here so we dont print in the for loop.
  260. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  261. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  262. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  263. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  264. printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
  265. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
  266. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
  267. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
  268. ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
  269. ggml_set_name(model->norm, "norm.weight");
  270. ggml_set_name(model->output, "output.weight");
  271. model->layers.resize(n_layer);
  272. for (uint32_t i = 0; i < n_layer; ++i) {
  273. auto & layer = model->layers[i];
  274. std::string layers_i = "layers." + std::to_string(i);
  275. layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  276. layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  277. layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  278. layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  279. layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  280. layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  281. layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  282. layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
  283. layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  284. ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
  285. ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
  286. ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
  287. ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
  288. ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
  289. ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
  290. ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
  291. ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
  292. ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
  293. }
  294. }
  295. float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
  296. float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
  297. return *ptr;
  298. }
  299. int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
  300. int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
  301. return *ptr;
  302. }
  303. void print_row(struct ggml_tensor * probs, int i) {
  304. for (int k = 0; k < probs->ne[0]; ++k) {
  305. float p = get_f32_2d(probs, k, i);
  306. printf(" %f", p);
  307. }
  308. printf("\n");
  309. }
  310. void print_matrix(struct ggml_tensor * probs) {
  311. assert(probs->n_dims == 2);
  312. for (int i = 0; i < probs->ne[1]; ++i) {
  313. for (int k = 0; k < probs->ne[0]; ++k) {
  314. float p = get_f32_2d(probs, k, i);
  315. printf(" %.2f", p);
  316. }
  317. printf("\n");
  318. }
  319. }
  320. #ifdef __GNUC__
  321. #ifdef __MINGW32__
  322. __attribute__((format(gnu_printf, 1, 2)))
  323. #else
  324. __attribute__((format(printf, 1, 2)))
  325. #endif
  326. #endif
  327. static std::string format(const char * fmt, ...) {
  328. va_list ap, ap2;
  329. va_start(ap, fmt);
  330. va_copy(ap2, ap);
  331. int size = vsnprintf(NULL, 0, fmt, ap);
  332. GGML_ASSERT(size >= 0 && size < INT_MAX);
  333. std::vector<char> buf(size + 1);
  334. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  335. GGML_ASSERT(size2 == size);
  336. va_end(ap2);
  337. va_end(ap);
  338. return std::string(buf.data(), size);
  339. }
  340. struct llama_file {
  341. // use FILE * so we don't have to re-open the file to mmap
  342. FILE * fp;
  343. size_t size;
  344. llama_file(const char * fname, const char * mode) {
  345. fp = std::fopen(fname, mode);
  346. if (fp == NULL) {
  347. size = 0;
  348. } else {
  349. seek(0, SEEK_END);
  350. size = tell();
  351. seek(0, SEEK_SET);
  352. }
  353. }
  354. size_t tell() const {
  355. #ifdef _WIN32
  356. __int64 ret = _ftelli64(fp);
  357. #else
  358. long ret = std::ftell(fp);
  359. #endif
  360. GGML_ASSERT(ret != -1); // this really shouldn't fail
  361. return (size_t) ret;
  362. }
  363. void seek(size_t offset, int whence) {
  364. #ifdef _WIN32
  365. int ret = _fseeki64(fp, (__int64) offset, whence);
  366. #else
  367. int ret = std::fseek(fp, (long) offset, whence);
  368. #endif
  369. GGML_ASSERT(ret == 0); // same
  370. }
  371. void read_raw(void * ptr, size_t size) {
  372. if (size == 0) {
  373. return;
  374. }
  375. errno = 0;
  376. std::size_t ret = std::fread(ptr, size, 1, fp);
  377. if (ferror(fp)) {
  378. throw std::runtime_error(format("read error: %s", strerror(errno)));
  379. }
  380. if (ret != 1) {
  381. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  382. }
  383. }
  384. std::uint32_t read_u32() {
  385. std::uint32_t ret;
  386. read_raw(&ret, sizeof(ret));
  387. return ret;
  388. }
  389. std::float_t read_f32() {
  390. std::float_t ret;
  391. read_raw(&ret, sizeof(ret));
  392. return ret;
  393. }
  394. std::string read_string(std::uint32_t len) {
  395. std::vector<char> chars(len);
  396. read_raw(chars.data(), len);
  397. return std::string(chars.data(), len);
  398. }
  399. void write_raw(const void * ptr, size_t size) {
  400. if (size == 0) {
  401. return;
  402. }
  403. errno = 0;
  404. size_t ret = std::fwrite(ptr, size, 1, fp);
  405. if (ret != 1) {
  406. throw std::runtime_error(format("write error: %s", strerror(errno)));
  407. }
  408. }
  409. void write_u32(std::uint32_t val) {
  410. write_raw(&val, sizeof(val));
  411. }
  412. ~llama_file() {
  413. if (fp) {
  414. std::fclose(fp);
  415. }
  416. }
  417. };
  418. void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
  419. if (tensor == NULL) {
  420. file->write_u32(0);
  421. file->write_u32(0);
  422. file->write_u32(GGML_TYPE_F32);
  423. file->seek((0-file->tell()) & 31, SEEK_CUR);
  424. return;
  425. }
  426. const char * name = ggml_get_name(tensor);
  427. uint32_t name_len = strlen(name);
  428. uint32_t nd = tensor->n_dims;
  429. uint32_t ne[4] = { (uint32_t)tensor->ne[0],
  430. (uint32_t)tensor->ne[1],
  431. (uint32_t)tensor->ne[2],
  432. (uint32_t)tensor->ne[3] };
  433. file->write_u32(nd);
  434. file->write_u32(name_len);
  435. file->write_u32(tensor->type);
  436. file->write_raw(ne, sizeof(ne[0]) * nd);
  437. file->write_raw(name, name_len);
  438. file->seek((0-file->tell()) & 31, SEEK_CUR);
  439. file->write_raw(tensor->data, ggml_nbytes(tensor));
  440. }
  441. bool is_ggml_file(const char *filename) {
  442. llama_file file(filename, "rb");
  443. if (file.size < 4) {
  444. return false;
  445. }
  446. uint32_t magic = file.read_u32();
  447. return magic == GGUF_MAGIC;
  448. }
  449. void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
  450. #pragma message("TODO: implement reading vocabulary using gguf")
  451. // // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
  452. // if (is_ggml_file(filename)) {
  453. //
  454. // struct llama_context_params llama_params = llama_context_default_params();
  455. // llama_params.vocab_only = true;
  456. //
  457. // struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
  458. // struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
  459. //
  460. // const int n_vocab = llama_n_vocab(lctx);
  461. // vocab->id_to_token.resize(n_vocab);
  462. // for (int i=0; i<n_vocab; ++i) {
  463. // vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
  464. // vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
  465. // vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
  466. // vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
  467. // }
  468. // llama_free(lctx);
  469. // llama_free_model(lmodel);
  470. // } else
  471. { // assume llama2.c vocabulary
  472. printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
  473. llama_file file(filename, "rb");
  474. const int n_vocab = config->vocab_size;
  475. /* uint32_t max_token_length = */ file.read_u32(); // unused
  476. vocab->id_to_token.resize(n_vocab);
  477. for (int i=0; i<n_vocab; ++i) {
  478. float_t score = file.read_f32();
  479. uint32_t len = file.read_u32();
  480. std::string text = file.read_string(len);
  481. // Special-case handling of <0xXX> single byte tokens.
  482. char byte_val;
  483. if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
  484. char cstr[2] = { byte_val, 0 };
  485. text = cstr;
  486. }
  487. vocab->id_to_token[i].text = text;
  488. vocab->id_to_token[i].score = score;
  489. vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED;
  490. vocab->token_to_id.emplace(text, i);
  491. }
  492. }
  493. }
  494. void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
  495. int ct;
  496. switch (gg_weights->n_dims){
  497. case 1:
  498. ct = 0;
  499. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
  500. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
  501. *ptr = karpathy_weights[ct];
  502. ct++;
  503. }
  504. break;
  505. case 2:
  506. ct = 0;
  507. for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
  508. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
  509. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
  510. *ptr = karpathy_weights[ct];
  511. ct++;
  512. }
  513. }
  514. break;
  515. case 3:
  516. ct = 0;
  517. for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
  518. for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
  519. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
  520. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
  521. *ptr = karpathy_weights[ct];
  522. ct++;
  523. }
  524. }
  525. }
  526. break;
  527. }
  528. }
  529. void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
  530. struct llama_file file(filename, "wb");
  531. if (file.fp == NULL) {
  532. return;
  533. }
  534. #pragma message("TODO: implement file saving using gguf")
  535. // write_magic
  536. file.write_u32(LLAMA_FILE_MAGIC_GGJT); // magic
  537. file.write_u32(LLAMA_FILE_VERSION_GGJT_V3); // version
  538. // write_hparams
  539. file.write_u32(model->hparams.n_vocab);
  540. file.write_u32(model->hparams.n_embd);
  541. file.write_u32(model->hparams.n_mult);
  542. file.write_u32(model->hparams.n_head);
  543. file.write_u32(model->hparams.n_layer);
  544. file.write_u32(model->hparams.n_rot);
  545. file.write_u32(LLAMA_FTYPE_ALL_F32);
  546. // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
  547. uint32_t n_vocab = model->hparams.n_vocab;
  548. for (uint32_t i = 0; i < n_vocab; i++) {
  549. const auto & token_data = vocab->id_to_token.at(i);
  550. file.write_u32((uint32_t) token_data.text.size());
  551. file.write_raw(token_data.text.data(), token_data.text.size());
  552. file.write_raw(&token_data.score, sizeof(token_data.score));
  553. }
  554. // stuff AK weights into GG weights one by one.
  555. // w->token_embedding_table -> model->tok_embeddings
  556. // float* -> struct ggml_tensor
  557. stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
  558. stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
  559. stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
  560. //print_row(model->norm, 0);
  561. // for rms-att-weight
  562. int row_length = model->hparams.n_embd;
  563. const auto & hparams = model->hparams;
  564. //int n_ff = model->hparams.n_embd;
  565. int n_ff = get_n_ff(&hparams);
  566. for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
  567. auto & layer = model->layers[i];
  568. // 1d
  569. stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
  570. stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
  571. // from 3d matrix layer x dim x dim to 2d matrix dim x dim
  572. stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
  573. stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
  574. stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
  575. stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
  576. stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
  577. stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
  578. stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
  579. }
  580. // write tensors
  581. write_tensor(&file, model->tok_embeddings);
  582. write_tensor(&file, model->norm);
  583. write_tensor(&file, model->output); // ?
  584. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  585. auto & layer = model->layers[i];
  586. write_tensor(&file, layer.attention_norm);
  587. write_tensor(&file, layer.wq);
  588. write_tensor(&file, layer.wk);
  589. write_tensor(&file, layer.wv);
  590. write_tensor(&file, layer.wo);
  591. write_tensor(&file, layer.ffn_norm);
  592. write_tensor(&file, layer.w1);
  593. write_tensor(&file, layer.w2);
  594. write_tensor(&file, layer.w3);
  595. }
  596. }
  597. struct train_params get_default_train_params() {
  598. struct train_params params;
  599. params.fn_vocab_model = "tokenizer.bin";
  600. params.fn_llama2c_output_model = "ak_llama_model.bin";
  601. params.fn_train_data = "shakespeare.txt";
  602. params.fn_checkpoint_in = "checkpoint.bin";
  603. params.fn_checkpoint_out = "checkpoint.bin";
  604. params.fn_model_out = "ggml-checkpoint-f32.bin";
  605. params.seed = -1;
  606. params.n_ctx = 128;
  607. params.n_embd = 256;
  608. params.n_mult = 256;
  609. params.n_head = 8;
  610. params.n_layer = 16;
  611. params.n_rotmax = 64;
  612. params.n_threads = 6;
  613. params.n_batch = 8;
  614. params.n_examples = 8;
  615. params.n_predict = 1024;
  616. params.print_info_interval = 1;
  617. params.print_details_interval = 2;
  618. params.samples_start_after_nl = false;
  619. params.use_adam = true;
  620. params.use_flash = true;
  621. params.use_scratch = true;
  622. // only adam
  623. params.warmup = 100;
  624. params.cos_decay_steps = 1000;
  625. params.cos_decay_restart = 1.1f;
  626. params.cos_decay_alpha = 0.0f;
  627. params.lbfgs_n_iter = 16;
  628. params.adam_n_iter = 16;
  629. params.adam_alpha = 1e-3f;
  630. params.adam_decay = 1e-3f;
  631. params.mem_model_gb = 2;
  632. params.mem_compute_gb = 24;
  633. params.mem_compute0_gb = 8;
  634. params.mem_compute1_gb = 2;
  635. return params;
  636. }
  637. void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
  638. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  639. fprintf(stderr, "\n");
  640. fprintf(stderr, "options:\n");
  641. fprintf(stderr, " -h, --help show this help message and exit\n");
  642. fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggmlv3 model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
  643. fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
  644. fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
  645. fprintf(stderr, "\n");
  646. }
  647. bool params_parse(int argc, char ** argv, struct train_params * params) {
  648. bool invalid_param = false;
  649. bool reqd_param_found = false;
  650. std::string arg;
  651. struct train_params default_params = get_default_train_params();
  652. const std::string arg_prefix = "--";
  653. for (int i = 1; i < argc; i++) {
  654. arg = argv[i];
  655. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  656. std::replace(arg.begin(), arg.end(), '_', '-');
  657. }
  658. if (arg == "--copy-vocab-from-model") {
  659. if (++i >= argc) {
  660. invalid_param = true;
  661. break;
  662. }
  663. params->fn_vocab_model = argv[i];
  664. } else if (arg == "--llama2c-model") {
  665. if (++i >= argc) {
  666. invalid_param = true;
  667. break;
  668. }
  669. reqd_param_found = true;
  670. params->fn_llama2c_model = argv[i];
  671. } else if (arg == "--llama2c-output-model") {
  672. if (++i >= argc) {
  673. invalid_param = true;
  674. break;
  675. }
  676. params->fn_llama2c_output_model = argv[i];
  677. } else if (arg == "-h" || arg == "--help") {
  678. print_usage(argc, argv, &default_params);
  679. exit(0);
  680. } else {
  681. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  682. print_usage(argc, argv, &default_params);
  683. exit(1);
  684. }
  685. }
  686. if (invalid_param) {
  687. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  688. print_usage(argc, argv, &default_params);
  689. exit(1);
  690. }
  691. if (!reqd_param_found){
  692. fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
  693. print_usage(argc, argv, &default_params);
  694. exit(1);
  695. }
  696. return true;
  697. }
  698. int main(int argc, char ** argv) {
  699. struct train_params params = get_default_train_params();
  700. if (!params_parse(argc, argv, &params)) {
  701. return 1;
  702. }
  703. Config config;
  704. TransformerWeights weights;
  705. {
  706. FILE *file = fopen(params.fn_llama2c_model, "rb");
  707. if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
  708. // read in the config header
  709. if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
  710. auto shared_weights = config.vocab_size > 0;
  711. config.vocab_size = abs(config.vocab_size);
  712. // read in the Transformer weights
  713. malloc_weights(&weights, &config, shared_weights);
  714. if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
  715. fclose(file);
  716. }
  717. struct llama_vocab vocab;
  718. load_vocab(params.fn_vocab_model, &config, &vocab);
  719. struct my_llama_model model;
  720. model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
  721. model.hparams.n_ctx = params.n_ctx;
  722. model.hparams.n_embd = config.dim; //params.n_embd;
  723. model.hparams.n_mult = 32;//params.n_mult;
  724. model.hparams.n_head = config.n_heads; //params.n_head;
  725. model.hparams.n_layer = config.n_layers; //params.n_layer;
  726. model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
  727. print_params(&model.hparams);
  728. struct ggml_init_params lcparams;
  729. lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
  730. lcparams.mem_buffer = NULL;
  731. lcparams.no_alloc = false;
  732. model.ctx = ggml_init(lcparams);
  733. init_model(&model);
  734. save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
  735. printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
  736. ggml_free(model.ctx);
  737. free_weights(&weights);
  738. return 0;
  739. }