gptneox-main.cpp 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. #include "ggml.h"
  2. #include "cmpnct_gpt2bpe.hpp"
  3. #include <cassert>
  4. #include <cmath>
  5. #include <cstdio>
  6. #include <cstring>
  7. #include <cinttypes>
  8. #include <fstream>
  9. #include <map>
  10. #include <string>
  11. #include <vector>
  12. #include <thread>
  13. #include <random>
  14. #if defined(_MSC_VER)
  15. #pragma warning(disable: 4244 4267) // possible loss of data
  16. #endif
  17. // default hparams
  18. struct gpt_neox_hparams {
  19. size_t n_merges = 0;
  20. size_t n_vocab = 0;
  21. uint32_t n_ctx = 0;
  22. uint32_t n_embd = 0;
  23. uint32_t n_head = 0;
  24. uint32_t n_block = 0;
  25. uint32_t n_rot = 0; // rotary_pct * (n_embd / n_head)
  26. bool par_res = true;
  27. float norm_eps = 1e-5;
  28. };
  29. struct gpt_neox_block {
  30. // pre normalization
  31. struct ggml_tensor * ln_1_g;
  32. struct ggml_tensor * ln_1_b;
  33. // attention
  34. struct ggml_tensor * c_attn_attn_w;
  35. struct ggml_tensor * c_attn_attn_b;
  36. struct ggml_tensor * c_attn_proj_w;
  37. struct ggml_tensor * c_attn_proj_b;
  38. // post normalization
  39. struct ggml_tensor * ln_2_g;
  40. struct ggml_tensor * ln_2_b;
  41. // ff
  42. struct ggml_tensor * c_mlp_fc_w;
  43. struct ggml_tensor * c_mlp_fc_b;
  44. struct ggml_tensor * c_mlp_proj_w;
  45. struct ggml_tensor * c_mlp_proj_b;
  46. };
  47. struct gpt_neox_model {
  48. gpt_neox_hparams hparams;
  49. // normalization
  50. struct ggml_tensor * ln_f_g;
  51. struct ggml_tensor * ln_f_b;
  52. struct ggml_tensor * wte; // position embedding
  53. struct ggml_tensor * lmh_g; // language model head
  54. std::vector<gpt_neox_block> blocks;
  55. // key + value memory
  56. struct ggml_tensor * memory_k;
  57. struct ggml_tensor * memory_v;
  58. //
  59. struct gguf_context * ggufctx;
  60. struct ggml_context * ctx;
  61. struct ggml_context * kvctx;
  62. std::map<std::string, struct ggml_tensor *> tensors;
  63. };
  64. struct gpt_params {
  65. int32_t seed = -1; // RNG seed
  66. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  67. uint32_t n_predict = 200; // new tokens to predict
  68. uint32_t n_batch = 512; // batch size for prompt processing
  69. // sampling parameters
  70. int32_t top_k = 40;
  71. float top_p = 1.0f;
  72. float temp = 0.8f;
  73. int32_t repeat_last_n = 64;
  74. float repeat_penalty = 1.02f;
  75. std::string model = ""; // model path
  76. std::string prompt = "";
  77. std::string token_test = "";
  78. bool interactive = false;
  79. int32_t interactive_port = -1;
  80. int32_t n_gpu_layers = 0;
  81. };
  82. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  83. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  84. fprintf(stderr, "\n");
  85. fprintf(stderr, "options:\n");
  86. fprintf(stderr, " -h, --help show this help message and exit\n");
  87. fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
  88. fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  89. fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
  90. fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
  91. fprintf(stderr, " prompt to start generation with (default: random)\n");
  92. fprintf(stderr, " -f FNAME, --file FNAME\n");
  93. fprintf(stderr, " load prompt from a file\n");
  94. fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
  95. fprintf(stderr, " test tokenization\n");
  96. fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
  97. fprintf(stderr, " --top_k N top-k sampling, 0 = n_vocab (default: %d)\n", params.top_k);
  98. fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
  99. fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
  100. fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
  101. fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
  102. fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
  103. fprintf(stderr, " -m FNAME, --model FNAME\n");
  104. fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
  105. fprintf(stderr, "\n");
  106. }
  107. // Function to check if the next argument exists
  108. std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
  109. if (i + 1 < argc && argv[i + 1][0] != '-') {
  110. return argv[++i];
  111. } else {
  112. fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
  113. gpt_print_usage(argc, argv, params);
  114. exit(0);
  115. }
  116. }
  117. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  118. for (int i = 1; i < argc; i++) {
  119. std::string arg = argv[i];
  120. if (arg == "-s" || arg == "--seed") {
  121. params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
  122. } else if (arg == "-t" || arg == "--threads") {
  123. params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
  124. } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
  125. params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
  126. } else if (arg == "-p" || arg == "--prompt") {
  127. params.prompt = get_next_arg(i, argc, argv, arg, params);
  128. } else if (arg == "-n" || arg == "--n_predict") {
  129. params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
  130. } else if (arg == "--top_k") {
  131. params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
  132. } else if (arg == "--top_p") {
  133. params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
  134. } else if (arg == "--temp") {
  135. params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
  136. } else if (arg == "--repeat-last-n") {
  137. params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
  138. } else if (arg == "--repeat-penalty") {
  139. params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
  140. } else if (arg == "-b" || arg == "--batch_size") {
  141. params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
  142. } else if (arg == "-m" || arg == "--model") {
  143. params.model = get_next_arg(i, argc, argv, arg, params);
  144. } else if (arg == "-i" || arg == "--interactive") {
  145. params.interactive = true;
  146. } else if (arg == "-ip" || arg == "--interactive-port") {
  147. params.interactive = true;
  148. params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
  149. } else if (arg == "-h" || arg == "--help") {
  150. gpt_print_usage(argc, argv, params);
  151. exit(0);
  152. } else if (arg == "-f" || arg == "--file") {
  153. get_next_arg(i, argc, argv, arg, params);
  154. std::ifstream file(argv[i]);
  155. if (!file) {
  156. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  157. break;
  158. }
  159. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  160. if (params.prompt.back() == '\n') {
  161. params.prompt.pop_back();
  162. }
  163. } else if (arg == "-tt" || arg == "--token_test") {
  164. params.token_test = get_next_arg(i, argc, argv, arg, params);
  165. }
  166. else {
  167. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  168. gpt_print_usage(argc, argv, params);
  169. exit(0);
  170. }
  171. }
  172. return true;
  173. }
  174. gpt2bpe_vocab::id sample_top_k_top_p_repeat(
  175. const gpt2bpe_vocab & vocab,
  176. const float * logits,
  177. const int32_t * last_n_tokens_data,
  178. size_t last_n_tokens_data_size,
  179. int top_k,
  180. double top_p,
  181. double temp,
  182. int repeat_last_n,
  183. float repeat_penalty,
  184. std::mt19937 & rng) {
  185. int n_logits = vocab.id_to_token.size();
  186. const auto * plogits = logits;
  187. const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
  188. if (temp <= 0) {
  189. // select the token with the highest logit directly
  190. float max_logit = plogits[0];
  191. gpt2bpe_vocab::id max_id = 0;
  192. for (int i = 1; i < n_logits; ++i) {
  193. if (plogits[i] > max_logit) {
  194. max_logit = plogits[i];
  195. max_id = i;
  196. }
  197. }
  198. return max_id;
  199. }
  200. std::vector<std::pair<double, gpt2bpe_vocab::id>> logits_id;
  201. logits_id.reserve(n_logits);
  202. {
  203. const float scale = 1.0f/temp;
  204. for (int i = 0; i < n_logits; ++i) {
  205. // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
  206. // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
  207. if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
  208. // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
  209. if (plogits[i] < 0.0f) {
  210. logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
  211. } else {
  212. logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
  213. }
  214. } else {
  215. logits_id.push_back(std::make_pair(plogits[i]*scale, i));
  216. }
  217. }
  218. }
  219. // find the top K tokens
  220. std::partial_sort(
  221. logits_id.begin(),
  222. logits_id.begin() + top_k, logits_id.end(),
  223. [](const std::pair<double, gpt2bpe_vocab::id> & a, const std::pair<double, gpt2bpe_vocab::id> & b) {
  224. return a.first > b.first;
  225. });
  226. logits_id.resize(top_k);
  227. double maxl = -INFINITY;
  228. for (const auto & kv : logits_id) {
  229. maxl = std::max(maxl, kv.first);
  230. }
  231. // compute probs for the top K tokens
  232. std::vector<double> probs;
  233. probs.reserve(logits_id.size());
  234. double sum = 0.0;
  235. for (const auto & kv : logits_id) {
  236. double p = exp(kv.first - maxl);
  237. probs.push_back(p);
  238. sum += p;
  239. }
  240. // normalize the probs
  241. for (auto & p : probs) {
  242. p /= sum;
  243. }
  244. if (top_p < 1.0f) {
  245. double cumsum = 0.0f;
  246. for (int i = 0; i < top_k; i++) {
  247. cumsum += probs[i];
  248. if (cumsum >= top_p) {
  249. top_k = i + 1;
  250. probs.resize(top_k);
  251. logits_id.resize(top_k);
  252. break;
  253. }
  254. }
  255. cumsum = 1.0/cumsum;
  256. for (int i = 0; i < (int) probs.size(); i++) {
  257. probs[i] *= cumsum;
  258. }
  259. }
  260. // printf("\n");
  261. // for (int i = 0; i < (int) probs.size(); i++) {
  262. // for (int i = 0; i < 10; i++) {
  263. // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
  264. // }
  265. std::discrete_distribution<> dist(probs.begin(), probs.end());
  266. int idx = dist(rng);
  267. return logits_id[idx].second;
  268. }
  269. struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){
  270. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  271. if( cur == NULL ) {
  272. fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str());
  273. } else {
  274. // fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name);
  275. }
  276. return cur;
  277. }
  278. // load the model's weights from a file
  279. bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2bpe_vocab & vocab) {
  280. printf("%s: loading model from '%s'..\n", __func__, fname.c_str());
  281. model.ctx = NULL;
  282. struct gguf_init_params ggufparams = {
  283. /*.no_alloc = */ false,
  284. /*.ctx = */ &model.ctx,
  285. };
  286. auto & ggufctx = model.ggufctx;
  287. ggufctx = gguf_init_from_file(fname.c_str(), ggufparams);
  288. if (!ggufctx) {
  289. fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
  290. return false;
  291. }
  292. fprintf(stdout, "%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
  293. fprintf(stdout, "%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
  294. fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
  295. // print all kv
  296. #if 0
  297. {
  298. const int n_kv = gguf_get_n_kv(ggufctx);
  299. fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
  300. for (int i = 0; i < n_kv; ++i) {
  301. const char * key = gguf_get_key(ggufctx, i);
  302. fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
  303. }
  304. }
  305. #endif
  306. // print some standard metadata
  307. {
  308. int keyidx;
  309. keyidx = gguf_find_key(ggufctx, "general.name");
  310. if (keyidx != -1) { fprintf(stdout, "%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  311. keyidx = gguf_find_key(ggufctx, "general.description");
  312. if (keyidx != -1) { fprintf(stdout, "%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  313. keyidx = gguf_find_key(ggufctx, "general.author");
  314. if (keyidx != -1) { fprintf(stdout, "%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  315. keyidx = gguf_find_key(ggufctx, "general.license");
  316. if (keyidx != -1) { fprintf(stdout, "%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  317. keyidx = gguf_find_key(ggufctx, "general.architecture");
  318. if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  319. keyidx = gguf_find_key(ggufctx, "general.file_type");
  320. if (keyidx != -1) { fprintf(stdout, "%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  321. keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
  322. if (keyidx != -1) { fprintf(stdout, "%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  323. keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository");
  324. if (keyidx != -1) { fprintf(stdout, "%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
  325. }
  326. // check required metadata
  327. {
  328. int keyidx;
  329. // check model architecture kv
  330. keyidx = gguf_find_key(ggufctx, "general.architecture");
  331. if (keyidx != -1) {
  332. if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gptneox") != 0) {
  333. fprintf(stdout, "%s: model architecture not supported!\n", __func__);
  334. return false;
  335. }
  336. } else {
  337. fprintf(stdout, "%s: gguf model architecture not found!\n", __func__);
  338. return false;
  339. }
  340. }
  341. // load hparams
  342. {
  343. auto & hparams = model.hparams;
  344. bool ok = true;
  345. int keyidx;
  346. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.context_length");
  347. if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
  348. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.embedding_length");
  349. if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
  350. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.head_count");
  351. if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
  352. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.block_count");
  353. if (keyidx != -1) { hparams.n_block = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
  354. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count");
  355. if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
  356. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.use_parallel_residual");
  357. if (keyidx != -1) { hparams.par_res = gguf_get_val_bool(ggufctx, keyidx); } else { ok = false; } }
  358. if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.layer_norm_epsilon");
  359. if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; } }
  360. if (!ok) {
  361. fprintf(stderr, "%s: required hparam missing!\n", __func__);
  362. return false;
  363. }
  364. printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
  365. printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
  366. printf("%s: n_head = %d\n", __func__, hparams.n_head);
  367. printf("%s: n_block = %d\n", __func__, hparams.n_block);
  368. printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
  369. printf("%s: par_res = %d\n", __func__, hparams.par_res);
  370. printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps);
  371. }
  372. // load vocab
  373. {
  374. auto & hparams = model.hparams;
  375. int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
  376. if (keyidx != -1) {
  377. if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
  378. fprintf(stdout, "%s: tokenizer model not supported!\n", __func__);
  379. return false;
  380. }
  381. } else {
  382. fprintf(stdout, "%s: tokenizer model not found!\n", __func__);
  383. return false;
  384. }
  385. int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
  386. if (tokens_keyidx == -1) {
  387. fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__);
  388. return false;
  389. }
  390. int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges");
  391. if (merges_keyidx == -1) {
  392. fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__);
  393. return false;
  394. }
  395. hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx);
  396. hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx);
  397. fprintf(stdout, "%s: gpt2 tokenizer vocab = %zu\n", __func__, hparams.n_vocab);
  398. fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges);
  399. for (size_t i = 0; i < hparams.n_vocab; i++) {
  400. std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
  401. // printf("token %d = '%s'\n",i,word.c_str() );
  402. vocab.token_to_id[word] = i;
  403. vocab.id_to_token[i] = word;
  404. if( vocab.id_to_token[i] == "\n" ) {
  405. vocab.linefeed_id = i;
  406. }
  407. }
  408. std::vector<std::pair<std::string, std::string>> bpe_merges;
  409. for (size_t i = 0; i < hparams.n_merges; i++) {
  410. std::string word = gguf_get_arr_str(ggufctx, merges_keyidx, i);
  411. // Split the merges
  412. std::string first, second;
  413. size_t pos = word.find(' ', 1); // Start the search from the second character
  414. if (pos != std::string::npos) {
  415. first = word.substr(0, pos);
  416. second = word.substr(pos + 1);
  417. }
  418. bpe_merges.push_back(std::make_pair(first, second));
  419. }
  420. vocab.populate_bpe_ranks(bpe_merges);
  421. keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.bos_token_id"); if( keyidx != -1 ) { vocab.special_bos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
  422. keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.eos_token_id"); if( keyidx != -1 ) { vocab.special_eos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
  423. keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.unknown_token_id"); if( keyidx != -1 ) { vocab.special_unk_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
  424. keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.separator_token_id"); if( keyidx != -1 ) { vocab.special_sep_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
  425. keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.padding_token_id"); if( keyidx != -1 ) { vocab.special_pad_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
  426. if( vocab.special_bos_id != -1 ) { fprintf(stdout, "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].c_str() ); }
  427. if( vocab.special_eos_id != -1 ) { fprintf(stdout, "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].c_str() ); }
  428. if( vocab.special_unk_id != -1 ) { fprintf(stdout, "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].c_str() ); }
  429. if( vocab.special_sep_id != -1 ) { fprintf(stdout, "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].c_str() ); }
  430. if( vocab.special_pad_id != -1 ) { fprintf(stdout, "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].c_str() ); }
  431. if( vocab.linefeed_id != -1 ) { fprintf(stdout, "%s: LF token = %d\n", __func__, vocab.linefeed_id ); }
  432. }
  433. auto & ctx = model.ctx;
  434. size_t ctx_size = ggml_get_mem_size(ctx);
  435. printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
  436. // print tensor info
  437. #if 0
  438. {
  439. const int n_tensors = gguf_get_n_tensors(ggufctx);
  440. fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
  441. for (int i = 0; i < n_tensors; ++i) {
  442. const char * name = gguf_get_tensor_name (ggufctx, i);
  443. const size_t offset = gguf_get_tensor_offset(ggufctx, i);
  444. fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
  445. }
  446. }
  447. #endif
  448. // prepare memory for the weights
  449. {
  450. const int n_block = model.hparams.n_block;
  451. model.blocks.resize(n_block);
  452. model.wte = ggml_get_tensor(ctx, "token_embd.weight");
  453. model.ln_f_g = ggml_get_tensor(ctx, "output_norm.weight");
  454. model.ln_f_b = ggml_get_tensor(ctx, "output_norm.bias");
  455. model.lmh_g = ggml_get_tensor(ctx, "output.weight");
  456. // map by name
  457. model.tensors["token_embd.weight"] = model.wte;
  458. model.tensors["output_norm.weight"] = model.ln_f_g;
  459. model.tensors["output_norm.bias"] = model.ln_f_b;
  460. model.tensors["output.weight"] = model.lmh_g;
  461. for (int i = 0; i < n_block; ++i) {
  462. auto & block = model.blocks[i];
  463. std::string blocknamestart = "blk." + std::to_string(i) + ".";
  464. block.ln_1_g = get_tensor_ex(ctx, blocknamestart + "attn_norm.weight" );
  465. block.ln_1_b = get_tensor_ex(ctx, blocknamestart + "attn_norm.bias" );
  466. block.c_attn_attn_w = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" );
  467. block.c_attn_attn_b = get_tensor_ex(ctx ,blocknamestart + "attn_qkv.bias" );
  468. block.c_attn_proj_w = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" );
  469. block.c_attn_proj_b = get_tensor_ex(ctx, blocknamestart + "attn_output.bias" );
  470. block.ln_2_g = get_tensor_ex(ctx, blocknamestart + "ffn_norm.weight" );
  471. block.ln_2_b = get_tensor_ex(ctx, blocknamestart + "ffn_norm.bias");
  472. block.c_mlp_fc_w = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" );
  473. block.c_mlp_fc_b = get_tensor_ex(ctx, blocknamestart + "ffn_up.bias" );
  474. block.c_mlp_proj_w = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" );
  475. block.c_mlp_proj_b = get_tensor_ex(ctx, blocknamestart + "ffn_down.bias" );
  476. // map by name
  477. model.tensors[blocknamestart + "attn_norm.weight"] = block.ln_1_g;
  478. model.tensors[blocknamestart + "attn_norm.bias"] = block.ln_1_b;
  479. model.tensors[blocknamestart + "attn_qkv.weight"] = block.c_attn_attn_w;
  480. model.tensors[blocknamestart + "attn_qkv.bias"] = block.c_attn_attn_b;
  481. model.tensors[blocknamestart + "attn_output.weight"] = block.c_attn_proj_w;
  482. model.tensors[blocknamestart + "attn_output.bias"] = block.c_attn_proj_b;
  483. model.tensors[blocknamestart + "ffn_norm.weight"] = block.ln_2_g;
  484. model.tensors[blocknamestart + "ffn_norm.bias"] = block.ln_2_b;
  485. model.tensors[blocknamestart + "ffn_up.weight"] = block.c_mlp_fc_w;
  486. model.tensors[blocknamestart + "ffn_up.bias"] = block.c_mlp_fc_b;
  487. model.tensors[blocknamestart + "ffn_down.weight"] = block.c_mlp_proj_w;
  488. model.tensors[blocknamestart + "ffn_down.bias"] = block.c_mlp_proj_b;
  489. }
  490. }
  491. // key + value memory
  492. {
  493. const auto & kvctx = model.kvctx;
  494. const auto & hparams = model.hparams;
  495. const int n_embd = hparams.n_embd;
  496. const int n_block = hparams.n_block;
  497. const int n_ctx = hparams.n_ctx;
  498. const int64_t n_mem = n_block*n_ctx;
  499. const int64_t n_elements = n_embd*n_mem;
  500. // create the ggml context
  501. {
  502. struct ggml_init_params params = {
  503. /*.mem_size =*/ size_t(n_elements*4+ggml_tensor_overhead()*2),
  504. /*.mem_buffer =*/ NULL,
  505. /*.no_alloc =*/ false,
  506. };
  507. model.kvctx = ggml_init(params);
  508. if (!model.kvctx) {
  509. fprintf(stderr, "%s: kv ggml_init() failed\n", __func__);
  510. return false;
  511. }
  512. }
  513. model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
  514. model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
  515. const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
  516. printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
  517. }
  518. return true;
  519. }
  520. // feed-forward network
  521. ggml_tensor * gpt_neox_ff(
  522. const gpt_neox_block &block,
  523. ggml_context * ctx0,
  524. ggml_tensor * inp) {
  525. ggml_tensor * cur = ggml_norm(ctx0, inp);
  526. cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, block.ln_2_g, cur), cur), ggml_repeat(ctx0, block.ln_2_b, cur));
  527. cur = ggml_mul_mat(ctx0, block.c_mlp_fc_w, cur);
  528. cur = ggml_add(ctx0, ggml_repeat(ctx0, block.c_mlp_fc_b, cur), cur);
  529. // GELU activation
  530. cur = ggml_gelu(ctx0, cur);
  531. // projection
  532. // cur = proj_w*cur + proj_b
  533. cur = ggml_mul_mat(ctx0, block.c_mlp_proj_w, cur);
  534. cur = ggml_add(ctx0, ggml_repeat(ctx0, block.c_mlp_proj_b, cur), cur);
  535. return cur;
  536. }
  537. // evaluate the transformer
  538. //
  539. // - model: the model
  540. // - n_threads: number of threads to use
  541. // - n_past: the context size so far
  542. // - embd_inp: the embeddings of the tokens in the context
  543. // - embd_w: the predicted logits for the next token
  544. //
  545. bool gpt_neox_eval(
  546. const gpt_neox_model & model,
  547. const int n_threads,
  548. const int n_past,
  549. const std::vector<gpt2bpe_vocab::id> & embd_inp,
  550. std::vector<float> & embd_w,
  551. size_t & mem_per_token) {
  552. const int N = embd_inp.size();
  553. const auto & hparams = model.hparams;
  554. const int n_embd = hparams.n_embd;
  555. const int n_block = hparams.n_block;
  556. const int n_ctx = hparams.n_ctx;
  557. const int n_head = hparams.n_head;
  558. const int n_vocab = hparams.n_vocab;
  559. const int n_rot = hparams.n_rot;
  560. static size_t buf_size = 256u*1024*1024;
  561. static void * buf = malloc(buf_size);
  562. // use 2 scratch buffers
  563. // TODO: very hacky solution - reimplement in a more elegant way
  564. static size_t scr0_size = 256u*1024*1024;
  565. static void * scr0 = malloc(scr0_size);
  566. static size_t scr1_size = 256u*1024*1024;
  567. static void * scr1 = malloc(scr1_size);
  568. if (mem_per_token > 0 && mem_per_token*N > buf_size) {
  569. const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
  570. //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
  571. // reallocate
  572. buf_size = buf_size_new;
  573. buf = realloc(buf, buf_size);
  574. if (buf == nullptr) {
  575. fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
  576. return false;
  577. }
  578. }
  579. struct ggml_init_params params = {
  580. /*.mem_size =*/ buf_size,
  581. /*.mem_buffer =*/ buf,
  582. /*.no_alloc =*/ false,
  583. };
  584. struct ggml_context * ctx0 = ggml_init(params);
  585. struct ggml_cgraph gf = {};
  586. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  587. memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
  588. // wte
  589. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
  590. for (int il = 0; il < n_block; ++il) {
  591. struct ggml_tensor * cur;
  592. ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
  593. // self-attention
  594. {
  595. {
  596. cur = ggml_norm(ctx0, inpL);
  597. cur = ggml_add(ctx0,
  598. ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].ln_1_g, cur), cur),
  599. ggml_repeat(ctx0, model.blocks[il].ln_1_b, cur));
  600. }
  601. // compute QKV
  602. {
  603. cur = ggml_mul_mat(ctx0, model.blocks[il].c_attn_attn_w, cur);
  604. cur = ggml_add(ctx0, ggml_repeat(ctx0, model.blocks[il].c_attn_attn_b, cur), cur);
  605. }
  606. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
  607. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head));
  608. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head));
  609. // using mode = 2 for GPT-NeoX mode
  610. Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0);
  611. Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0);
  612. // store key and value to memory
  613. {
  614. Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
  615. struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
  616. struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
  617. ( n_ctx)*ggml_element_size(model.memory_v),
  618. (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
  619. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  620. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  621. }
  622. // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
  623. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  624. // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
  625. struct ggml_tensor * K =
  626. ggml_permute(ctx0,
  627. ggml_reshape_3d(ctx0,
  628. ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
  629. n_embd/n_head, n_head, n_past + N),
  630. 0, 2, 1, 3);
  631. // K * Q
  632. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  633. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  634. struct ggml_tensor * KQ_scaled =
  635. ggml_scale_inplace(ctx0,
  636. KQ,
  637. ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
  638. );
  639. // KQ_masked = mask_past(KQ_scaled)
  640. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  641. // KQ = soft_max(KQ_masked)
  642. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  643. // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
  644. struct ggml_tensor * V =
  645. ggml_view_3d(ctx0, model.memory_v,
  646. n_past + N, n_embd/n_head, n_head,
  647. n_ctx*ggml_element_size(model.memory_v),
  648. n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
  649. il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
  650. // KQV = transpose(V) * KQ_soft_max
  651. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  652. // KQV_merged = KQV.permute(0, 2, 1, 3)
  653. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  654. // cur = KQV_merged.contiguous().view(n_embd, N)
  655. cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  656. // projection
  657. {
  658. cur = ggml_mul_mat(ctx0, model.blocks[il].c_attn_proj_w, cur);
  659. cur = ggml_add(ctx0, ggml_repeat(ctx0, model.blocks[il].c_attn_proj_b, cur), cur);
  660. }
  661. }
  662. ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
  663. if (hparams.par_res == 0) {
  664. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
  665. cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF);
  666. // input for next layer
  667. inpL = ggml_add(ctx0, cur, inpFF);
  668. } else {
  669. struct ggml_tensor * inpFF = cur;
  670. // this is independent of the self-attention result, so it could be done in parallel to the self-attention
  671. // note here we pass inpL instead of cur
  672. cur = gpt_neox_ff(model.blocks[il], ctx0, inpL);
  673. // layer input + FF
  674. cur = ggml_add(ctx0, cur, inpFF);
  675. // input for next layer
  676. inpL = ggml_add(ctx0, cur, inpL);
  677. }
  678. }
  679. ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
  680. // norm
  681. {
  682. inpL = ggml_norm(ctx0, inpL);
  683. // inpL = ln_f_g*inpL + ln_f_b
  684. inpL = ggml_add(ctx0,
  685. ggml_mul(ctx0,
  686. ggml_repeat(ctx0, model.ln_f_g, inpL),
  687. inpL),
  688. ggml_repeat(ctx0, model.ln_f_b, inpL));
  689. }
  690. ggml_set_scratch(ctx0, { 0, 0, nullptr, });
  691. // lm_head
  692. {
  693. inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
  694. //inpL = ggml_add(ctx0,
  695. // ggml_repeat(ctx0, model.lmh_b, inpL),
  696. // inpL);
  697. }
  698. // logits -> probs
  699. //inpL = ggml_soft_max_inplace(ctx0, inpL);
  700. // run the computation
  701. ggml_build_forward_expand(&gf, inpL);
  702. ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
  703. //if (n_past%100 == 0) {
  704. // ggml_graph_print (&gf);
  705. // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
  706. //}
  707. //embd_w.resize(n_vocab*N);
  708. //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  709. // return result for just the last token
  710. embd_w.resize(n_vocab);
  711. memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  712. if (mem_per_token == 0) {
  713. mem_per_token = ggml_used_mem(ctx0)/N;
  714. }
  715. //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
  716. ggml_free(ctx0);
  717. return true;
  718. }
  719. int main(int argc, char ** argv) {
  720. ggml_time_init();
  721. const int64_t t_main_start_us = ggml_time_us();
  722. gpt_params params;
  723. if (gpt_params_parse(argc, argv, params) == false) {
  724. return 1;
  725. }
  726. int64_t t_load_us = 0;
  727. gpt2bpe_vocab vocab;
  728. gpt_neox_model model;
  729. // load the model
  730. {
  731. const int64_t t_start_us = ggml_time_us();
  732. if (!gpt_neox_model_load(params.model, model, vocab)) {
  733. fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
  734. return 1;
  735. }
  736. t_load_us = ggml_time_us() - t_start_us;
  737. }
  738. if (params.seed < 0) {
  739. params.seed = time(NULL);
  740. }
  741. if (params.top_k == 0) {
  742. params.top_k = model.hparams.n_vocab;
  743. }
  744. printf("%s: seed = %d\n", __func__, params.seed);
  745. printf("%s: temp = %.3f\n", __func__, params.temp);
  746. printf("%s: top_k = %d\n", __func__, params.top_k);
  747. printf("%s: top_p = %.3f\n", __func__, params.top_p);
  748. printf("%s: repeat_last_n = %d\n", __func__, params.repeat_last_n);
  749. printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
  750. std::mt19937 rng(params.seed);
  751. if (params.prompt.empty()) {
  752. params.prompt = "Once upon";
  753. }
  754. std::vector<int32_t> last_n_tokens(model.hparams.n_ctx);
  755. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  756. int n_past = 0;
  757. int64_t t_sample_us = 0;
  758. int64_t t_predict_us = 0;
  759. std::vector<float> logits;
  760. // tokenize the prompt
  761. std::vector<gpt2bpe_vocab::id> embd_inp = gpt2bpe_tokenize(vocab, params.prompt,false, false);
  762. params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
  763. printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  764. // for (size_t i = 0; i < embd_inp.size(); i++) {
  765. // printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token[embd_inp[i]].c_str());
  766. // }
  767. if( model.hparams.n_ctx < params.n_predict+embd_inp.size() ) {
  768. params.n_predict = model.hparams.n_ctx-embd_inp.size();
  769. }
  770. printf("%s: n_predict = %d\n", __func__, params.n_predict);
  771. printf("\n");
  772. std::vector<gpt2bpe_vocab::id> embd;
  773. // determine the required inference memory per token:
  774. size_t mem_per_token = 0;
  775. gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
  776. for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
  777. // predict
  778. if (embd.size() > 0) {
  779. const int64_t t_start_us = ggml_time_us();
  780. if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
  781. printf("Failed to predict\n");
  782. return 1;
  783. }
  784. t_predict_us += ggml_time_us() - t_start_us;
  785. }
  786. n_past += embd.size();
  787. embd.clear();
  788. if (i >= embd_inp.size()) {
  789. // sample next token
  790. const int top_k = params.top_k;
  791. const float top_p = params.top_p;
  792. const float temp = params.temp;
  793. const int repeat_last_n = params.repeat_last_n;
  794. const float repeat_penalty = params.repeat_penalty;
  795. const int n_vocab = model.hparams.n_vocab;
  796. gpt2bpe_vocab::id id = 0;
  797. {
  798. const int64_t t_start_sample_us = ggml_time_us();
  799. id = sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_last_n, repeat_penalty, rng);
  800. last_n_tokens.erase(last_n_tokens.begin());
  801. last_n_tokens.push_back(id);
  802. t_sample_us += ggml_time_us() - t_start_sample_us;
  803. }
  804. // add it to the context
  805. embd.push_back(id);
  806. } else {
  807. // if here, it means we are still processing the input prompt
  808. for (size_t k = i; k < embd_inp.size(); k++) {
  809. embd.push_back(embd_inp[k]);
  810. if (embd.size() > params.n_batch) {
  811. break;
  812. }
  813. }
  814. i += embd.size() - 1;
  815. }
  816. // display text
  817. for (auto id : embd) {
  818. printf("%s", vocab.id_to_token[id].c_str() );
  819. }
  820. fflush(stdout);
  821. // end of text token
  822. if (vocab.special_eos_id != -1 && embd.back() == vocab.special_eos_id) {
  823. break;
  824. }
  825. }
  826. // report timing
  827. {
  828. const int64_t t_main_end_us = ggml_time_us();
  829. printf("\n\n");
  830. printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
  831. printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
  832. printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
  833. printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
  834. printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
  835. }
  836. ggml_free(model.ctx);
  837. return 0;
  838. }