| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763 |
- #define LLAMA_API_INTERNAL
- #include "llama.h"
- #include "unicode.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #ifdef GGML_USE_CUBLAS
- # include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- # include "ggml-opencl.h"
- #elif defined(GGML_USE_VULKAN)
- # include "ggml-vulkan.h"
- #elif defined(GGML_USE_SYCL)
- # include "ggml-sycl.h"
- #elif defined(GGML_USE_KOMPUTE)
- # include "ggml-kompute.h"
- #endif
- #ifdef GGML_USE_METAL
- # include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_MPI
- # include "ggml-mpi.h"
- #endif
- #ifndef QK_K
- # ifdef GGML_QKK_64
- # define QK_K 64
- # else
- # define QK_K 256
- # endif
- #endif
- #ifdef __has_include
- #if __has_include(<unistd.h>)
- #include <unistd.h>
- #if defined(_POSIX_MAPPED_FILES)
- #include <sys/mman.h>
- #include <fcntl.h>
- #endif
- #if defined(_POSIX_MEMLOCK_RANGE)
- #include <sys/resource.h>
- #endif
- #endif
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #include <io.h>
- #endif
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cfloat>
- #include <cinttypes>
- #include <climits>
- #include <cmath>
- #include <cstdarg>
- #include <cstddef>
- #include <cstdint>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <forward_list>
- #include <fstream>
- #include <functional>
- #include <initializer_list>
- #include <map>
- #include <memory>
- #include <mutex>
- #include <numeric>
- #include <queue>
- #include <random>
- #include <regex>
- #include <set>
- #include <sstream>
- #include <thread>
- #include <type_traits>
- #include <unordered_map>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_ATTRIBUTE_FORMAT(...)
- #endif
- #define LLAMA_MAX_NODES 8192
- #define LLAMA_MAX_EXPERTS 8
- //
- // logging
- //
- LLAMA_ATTRIBUTE_FORMAT(2, 3)
- static void llama_log_internal (ggml_log_level level, const char* format, ...);
- static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
- #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
- #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
- #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
- //
- // helpers
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- std::string result;
- for (size_t pos = 0; ; pos += search.length()) {
- auto new_pos = s.find(search, pos);
- if (new_pos == std::string::npos) {
- result += s.substr(pos, s.size() - pos);
- break;
- }
- result += s.substr(pos, new_pos - pos) + replace;
- pos = new_pos;
- }
- s = std::move(result);
- }
- static bool is_float_close(float a, float b, float abs_tol) {
- // Check for non-negative tolerance
- if (abs_tol < 0.0) {
- throw std::invalid_argument("Tolerance must be non-negative");
- }
- // Exact equality check
- if (a == b) {
- return true;
- }
- // Check for infinities
- if (std::isinf(a) || std::isinf(b)) {
- return false;
- }
- // Regular comparison using the provided absolute tolerance
- return std::fabs(b - a) <= abs_tol;
- }
- static void zeros(std::ofstream & file, size_t n) {
- char zero = 0;
- for (size_t i = 0; i < n; ++i) {
- file.write(&zero, 1);
- }
- }
- LLAMA_ATTRIBUTE_FORMAT(1, 2)
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- //
- // gguf constants (sync with gguf.py)
- //
- enum llm_arch {
- LLM_ARCH_LLAMA,
- LLM_ARCH_FALCON,
- LLM_ARCH_BAICHUAN,
- LLM_ARCH_GPT2,
- LLM_ARCH_GPTJ,
- LLM_ARCH_GPTNEOX,
- LLM_ARCH_MPT,
- LLM_ARCH_STARCODER,
- LLM_ARCH_PERSIMMON,
- LLM_ARCH_REFACT,
- LLM_ARCH_BERT,
- LLM_ARCH_NOMIC_BERT,
- LLM_ARCH_BLOOM,
- LLM_ARCH_STABLELM,
- LLM_ARCH_QWEN,
- LLM_ARCH_QWEN2,
- LLM_ARCH_PHI2,
- LLM_ARCH_PLAMO,
- LLM_ARCH_CODESHELL,
- LLM_ARCH_ORION,
- LLM_ARCH_INTERNLM2,
- LLM_ARCH_MINICPM,
- LLM_ARCH_UNKNOWN,
- };
- static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
- { LLM_ARCH_LLAMA, "llama" },
- { LLM_ARCH_FALCON, "falcon" },
- { LLM_ARCH_GPT2, "gpt2" },
- { LLM_ARCH_GPTJ, "gptj" },
- { LLM_ARCH_GPTNEOX, "gptneox" },
- { LLM_ARCH_MPT, "mpt" },
- { LLM_ARCH_BAICHUAN, "baichuan" },
- { LLM_ARCH_STARCODER, "starcoder" },
- { LLM_ARCH_PERSIMMON, "persimmon" },
- { LLM_ARCH_REFACT, "refact" },
- { LLM_ARCH_BERT, "bert" },
- { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
- { LLM_ARCH_BLOOM, "bloom" },
- { LLM_ARCH_STABLELM, "stablelm" },
- { LLM_ARCH_QWEN, "qwen" },
- { LLM_ARCH_QWEN2, "qwen2" },
- { LLM_ARCH_PHI2, "phi2" },
- { LLM_ARCH_PLAMO, "plamo" },
- { LLM_ARCH_CODESHELL, "codeshell" },
- { LLM_ARCH_ORION, "orion" },
- { LLM_ARCH_INTERNLM2, "internlm2" },
- { LLM_ARCH_MINICPM, "minicpm" },
- };
- enum llm_kv {
- LLM_KV_GENERAL_ARCHITECTURE,
- LLM_KV_GENERAL_QUANTIZATION_VERSION,
- LLM_KV_GENERAL_ALIGNMENT,
- LLM_KV_GENERAL_NAME,
- LLM_KV_GENERAL_AUTHOR,
- LLM_KV_GENERAL_URL,
- LLM_KV_GENERAL_DESCRIPTION,
- LLM_KV_GENERAL_LICENSE,
- LLM_KV_GENERAL_SOURCE_URL,
- LLM_KV_GENERAL_SOURCE_HF_REPO,
- LLM_KV_CONTEXT_LENGTH,
- LLM_KV_EMBEDDING_LENGTH,
- LLM_KV_BLOCK_COUNT,
- LLM_KV_FEED_FORWARD_LENGTH,
- LLM_KV_USE_PARALLEL_RESIDUAL,
- LLM_KV_TENSOR_DATA_LAYOUT,
- LLM_KV_EXPERT_COUNT,
- LLM_KV_EXPERT_USED_COUNT,
- LLM_KV_POOLING_TYPE,
- LLM_KV_ATTENTION_HEAD_COUNT,
- LLM_KV_ATTENTION_HEAD_COUNT_KV,
- LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
- LLM_KV_ATTENTION_CLAMP_KQV,
- LLM_KV_ATTENTION_KEY_LENGTH,
- LLM_KV_ATTENTION_VALUE_LENGTH,
- LLM_KV_ATTENTION_LAYERNORM_EPS,
- LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
- LLM_KV_ATTENTION_CAUSAL,
- LLM_KV_ROPE_DIMENSION_COUNT,
- LLM_KV_ROPE_FREQ_BASE,
- LLM_KV_ROPE_SCALE_LINEAR,
- LLM_KV_ROPE_SCALING_TYPE,
- LLM_KV_ROPE_SCALING_FACTOR,
- LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
- LLM_KV_ROPE_SCALING_FINETUNED,
- LLM_KV_TOKENIZER_MODEL,
- LLM_KV_TOKENIZER_LIST,
- LLM_KV_TOKENIZER_TOKEN_TYPE,
- LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
- LLM_KV_TOKENIZER_SCORES,
- LLM_KV_TOKENIZER_MERGES,
- LLM_KV_TOKENIZER_BOS_ID,
- LLM_KV_TOKENIZER_EOS_ID,
- LLM_KV_TOKENIZER_UNK_ID,
- LLM_KV_TOKENIZER_SEP_ID,
- LLM_KV_TOKENIZER_PAD_ID,
- LLM_KV_TOKENIZER_ADD_BOS,
- LLM_KV_TOKENIZER_ADD_EOS,
- LLM_KV_TOKENIZER_ADD_PREFIX,
- LLM_KV_TOKENIZER_HF_JSON,
- LLM_KV_TOKENIZER_RWKV,
- };
- static std::map<llm_kv, const char *> LLM_KV_NAMES = {
- { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
- { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
- { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
- { LLM_KV_GENERAL_NAME, "general.name" },
- { LLM_KV_GENERAL_AUTHOR, "general.author" },
- { LLM_KV_GENERAL_URL, "general.url" },
- { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
- { LLM_KV_GENERAL_LICENSE, "general.license" },
- { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
- { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
- { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
- { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
- { LLM_KV_BLOCK_COUNT, "%s.block_count" },
- { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
- { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
- { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
- { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
- { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
- { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
- { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
- { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
- { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
- { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
- { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
- { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
- { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
- { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
- { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
- { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
- { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
- { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
- { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
- { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
- { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
- { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
- { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
- { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
- { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
- { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
- { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
- { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
- };
- struct LLM_KV {
- LLM_KV(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_kv kv) const {
- return ::format(LLM_KV_NAMES[kv], LLM_ARCH_NAMES[arch]);
- }
- };
- enum llm_tensor {
- LLM_TENSOR_TOKEN_EMBD,
- LLM_TENSOR_TOKEN_EMBD_NORM,
- LLM_TENSOR_TOKEN_TYPES,
- LLM_TENSOR_POS_EMBD,
- LLM_TENSOR_OUTPUT,
- LLM_TENSOR_OUTPUT_NORM,
- LLM_TENSOR_ROPE_FREQS,
- LLM_TENSOR_ATTN_Q,
- LLM_TENSOR_ATTN_K,
- LLM_TENSOR_ATTN_V,
- LLM_TENSOR_ATTN_QKV,
- LLM_TENSOR_ATTN_OUT,
- LLM_TENSOR_ATTN_NORM,
- LLM_TENSOR_ATTN_NORM_2,
- LLM_TENSOR_ATTN_OUT_NORM,
- LLM_TENSOR_ATTN_ROT_EMBD,
- LLM_TENSOR_FFN_GATE_INP,
- LLM_TENSOR_FFN_NORM,
- LLM_TENSOR_FFN_GATE,
- LLM_TENSOR_FFN_DOWN,
- LLM_TENSOR_FFN_UP,
- LLM_TENSOR_FFN_ACT,
- LLM_TENSOR_FFN_DOWN_EXP,
- LLM_TENSOR_FFN_GATE_EXP,
- LLM_TENSOR_FFN_UP_EXP,
- LLM_TENSOR_ATTN_Q_NORM,
- LLM_TENSOR_ATTN_K_NORM,
- LLM_TENSOR_LAYER_OUT_NORM,
- };
- static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
- {
- LLM_ARCH_LLAMA,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
- { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
- { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
- },
- },
- {
- LLM_ARCH_BAICHUAN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_FALCON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_GPT2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_GPTJ,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- },
- },
- {
- LLM_ARCH_GPTNEOX,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PERSIMMON,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
- { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
- { LLM_TENSOR_OUTPUT, "output"},
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
- { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
- { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
- },
- },
- {
- LLM_ARCH_MPT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
- },
- },
- {
- LLM_ARCH_STARCODER,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_REFACT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_BERT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_TOKEN_TYPES, "token_types" },
- { LLM_TENSOR_POS_EMBD, "position_embd" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_NOMIC_BERT,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_TOKEN_TYPES, "token_types" },
- { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_BLOOM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- },
- },
- {
- LLM_ARCH_STABLELM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_QWEN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_QWEN2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PHI2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_PLAMO,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_CODESHELL,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_ORION,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_INTERNLM2,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- },
- },
- {
- LLM_ARCH_MINICPM,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
- { LLM_TENSOR_OUTPUT, "output" },
- { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
- { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
- { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
- { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
- { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
- { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
- { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
- { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
- { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
- { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
- { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
- { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
- { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
- { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
- { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
- },
- },
- {
- LLM_ARCH_UNKNOWN,
- {
- { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
- },
- },
- };
- static llm_arch llm_arch_from_string(const std::string & name) {
- for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
- if (kv.second == name) {
- return kv.first;
- }
- }
- return LLM_ARCH_UNKNOWN;
- }
- // helper to handle gguf constants
- // usage:
- //
- // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
- //
- // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
- // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
- // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
- //
- struct LLM_TN {
- LLM_TN(llm_arch arch) : arch(arch) {}
- llm_arch arch;
- std::string operator()(llm_tensor tensor) const {
- if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
- return "__missing__";
- }
- return LLM_TENSOR_NAMES[arch].at(tensor);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix) const {
- if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
- return "__missing__";
- }
- return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, int bid) const {
- if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
- return "__missing__";
- }
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
- if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
- return "__missing__";
- }
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
- }
- std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
- if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
- return "__missing__";
- }
- return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix;
- }
- };
- //
- // gguf helpers
- //
- static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_NONE, "none" },
- { LLAMA_ROPE_SCALING_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_YARN, "yarn" },
- };
- static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
- for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
- if (kv.second == name) {
- return kv.first;
- }
- }
- return LLAMA_ROPE_SCALING_UNSPECIFIED;
- }
- static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
- switch (type) {
- case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
- case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
- case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
- case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
- case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
- case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
- case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
- case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
- case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
- case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
- case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
- default: return format("unknown type %d", type);
- }
- }
- static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- switch (type) {
- case GGUF_TYPE_STRING:
- return gguf_get_val_str(ctx_gguf, i);
- case GGUF_TYPE_ARRAY:
- {
- const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
- int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
- std::stringstream ss;
- ss << "[";
- for (int j = 0; j < arr_n; j++) {
- if (arr_type == GGUF_TYPE_STRING) {
- std::string val = gguf_get_arr_str(ctx_gguf, i, j);
- // escape quotes
- replace_all(val, "\\", "\\\\");
- replace_all(val, "\"", "\\\"");
- ss << '"' << val << '"';
- } else if (arr_type == GGUF_TYPE_ARRAY) {
- ss << "???";
- } else {
- ss << gguf_data_to_str(arr_type, data, j);
- }
- if (j < arr_n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- return ss.str();
- }
- default:
- return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
- }
- }
- //
- // ggml helpers
- //
- static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
- struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
- if (plan.work_size > 0) {
- buf.resize(plan.work_size);
- plan.work_data = buf.data();
- }
- ggml_graph_compute(graph, &plan);
- }
- //
- // llama helpers
- //
- #if defined(_WIN32)
- static std::string llama_format_win_err(DWORD err) {
- LPSTR buf;
- size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
- NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
- if (!size) {
- return "FormatMessageA failed";
- }
- std::string ret(buf, size);
- LocalFree(buf);
- return ret;
- }
- #endif
- template <typename T>
- struct no_init {
- T value;
- no_init() { /* do nothing */ }
- };
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
- }
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) const {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, len, 1, fp);
- if (ferror(fp)) {
- throw std::runtime_error(format("read error: %s", strerror(errno)));
- }
- if (ret != 1) {
- throw std::runtime_error("unexpectedly reached end of file");
- }
- }
- uint32_t read_u32() const {
- uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- void write_raw(const void * ptr, size_t len) const {
- if (len == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, len, 1, fp);
- if (ret != 1) {
- throw std::runtime_error(format("write error: %s", strerror(errno)));
- }
- }
- void write_u32(std::uint32_t val) const {
- write_raw(&val, sizeof(val));
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- struct llama_mmap {
- void * addr;
- size_t size;
- llama_mmap(const llama_mmap &) = delete;
- #ifdef _POSIX_MAPPED_FILES
- static constexpr bool SUPPORTED = true;
- // list of mapped fragments (first_offset, last_offset)
- std::vector<std::pair<size_t, size_t>> mapped_fragments;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
- size = file->size;
- int fd = fileno(file->fp);
- int flags = MAP_SHARED;
- // prefetch/readahead impairs performance on NUMA systems
- if (numa) { prefetch = 0; }
- #ifdef __linux__
- // advise the kernel to read the file sequentially (increases readahead)
- if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
- LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
- strerror(errno));
- }
- if (prefetch) { flags |= MAP_POPULATE; }
- #endif
- addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
- if (addr == MAP_FAILED) { // NOLINT
- throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
- }
- if (prefetch > 0) {
- // advise the kernel to preload the mapped memory
- if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
- LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
- strerror(errno));
- }
- }
- if (numa) {
- // advise the kernel not to use readahead
- // (because the next page might not belong on the same node)
- if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
- LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
- strerror(errno));
- }
- }
- // initialize list of mapped_fragments
- mapped_fragments.emplace_back(0, file->size);
- }
- static void align_range(size_t * first, size_t * last, size_t page_size) {
- // align first to the next page
- size_t offset_in_page = *first & (page_size - 1);
- size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
- *first += offset_to_page;
- // align last to the previous page
- *last = *last & ~(page_size - 1);
- if (*last <= *first) {
- *last = *first;
- }
- }
- // partially unmap the file in the range [first, last)
- void unmap_fragment(size_t first, size_t last) {
- // note: this function must not be called multiple times with overlapping ranges
- // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
- int page_size = sysconf(_SC_PAGESIZE);
- align_range(&first, &last, page_size);
- size_t len = last - first;
- if (len == 0) {
- return;
- }
- GGML_ASSERT(first % page_size == 0);
- GGML_ASSERT(last % page_size == 0);
- GGML_ASSERT(last > first);
- void * next_page_start = (uint8_t *) addr + first;
- // unmap the range
- if (munmap(next_page_start, len)) {
- LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
- }
- // update the list of mapped fragments to avoid unmapping the same range again in the destructor
- std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
- for (const auto & frag : mapped_fragments) {
- if (frag.first < first && frag.second > last) {
- // the range is in the middle of the fragment, split it
- new_mapped_fragments.emplace_back(frag.first, first);
- new_mapped_fragments.emplace_back(last, frag.second);
- } else if (frag.first < first && frag.second > first) {
- // the range starts in the middle of the fragment
- new_mapped_fragments.emplace_back(frag.first, first);
- } else if (frag.first < last && frag.second > last) {
- // the range ends in the middle of the fragment
- new_mapped_fragments.emplace_back(last, frag.second);
- } else if (frag.first >= first && frag.second <= last) {
- // the range covers the entire fragment
- } else {
- // the range is outside the fragment
- new_mapped_fragments.push_back(frag);
- }
- }
- mapped_fragments = std::move(new_mapped_fragments);
- }
- ~llama_mmap() {
- for (const auto & frag : mapped_fragments) {
- if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
- LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
- }
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
- GGML_UNUSED(numa);
- size = file->size;
- HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
- HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
- if (hMapping == NULL) {
- DWORD error = GetLastError();
- throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
- }
- addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
- DWORD error = GetLastError();
- CloseHandle(hMapping);
- if (addr == NULL) {
- throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
- }
- if (prefetch > 0) {
- #if _WIN32_WINNT >= 0x602
- // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
- BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
- HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
- // may fail on pre-Windows 8 systems
- pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
- if (pPrefetchVirtualMemory) {
- // advise the kernel to preload the mapped memory
- WIN32_MEMORY_RANGE_ENTRY range;
- range.VirtualAddress = addr;
- range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
- if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
- LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- throw std::runtime_error("PrefetchVirtualMemory unavailable");
- #endif
- }
- }
- void unmap_fragment(size_t first, size_t last) {
- // not supported
- GGML_UNUSED(first);
- GGML_UNUSED(last);
- }
- ~llama_mmap() {
- if (!UnmapViewOfFile(addr)) {
- LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
- GGML_UNUSED(file);
- GGML_UNUSED(prefetch);
- GGML_UNUSED(numa);
- throw std::runtime_error("mmap not supported");
- }
- void unmap_fragment(size_t first, size_t last) {
- GGML_UNUSED(first);
- GGML_UNUSED(last);
- throw std::runtime_error("mmap not supported");
- }
- #endif
- };
- // Represents some region of memory being locked using mlock or VirtualLock;
- // will automatically unlock on destruction.
- struct llama_mlock {
- void * addr = NULL;
- size_t size = 0;
- bool failed_already = false;
- llama_mlock() {}
- llama_mlock(const llama_mlock &) = delete;
- ~llama_mlock() {
- if (size) {
- raw_unlock(addr, size);
- }
- }
- void init(void * ptr) {
- GGML_ASSERT(addr == NULL && size == 0); // NOLINT
- addr = ptr;
- }
- void grow_to(size_t target_size) {
- GGML_ASSERT(addr);
- if (failed_already) {
- return;
- }
- size_t granularity = lock_granularity();
- target_size = (target_size + granularity - 1) & ~(granularity - 1);
- if (target_size > size) {
- if (raw_lock((uint8_t *) addr + size, target_size - size)) {
- size = target_size;
- } else {
- failed_already = true;
- }
- }
- }
- #ifdef _POSIX_MEMLOCK_RANGE
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- return (size_t) sysconf(_SC_PAGESIZE);
- }
- #ifdef __APPLE__
- #define MLOCK_SUGGESTION \
- "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
- "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
- #else
- #define MLOCK_SUGGESTION \
- "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
- #endif
- bool raw_lock(const void * addr, size_t size) const {
- if (!mlock(addr, size)) {
- return true;
- }
- char* errmsg = std::strerror(errno);
- bool suggest = (errno == ENOMEM);
- // Check if the resource limit is fine after all
- struct rlimit lock_limit;
- if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
- suggest = false;
- }
- if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
- suggest = false;
- }
- LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
- size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
- return false;
- }
- #undef MLOCK_SUGGESTION
- static void raw_unlock(void * addr, size_t size) {
- if (munlock(addr, size)) {
- LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
- }
- }
- #elif defined(_WIN32)
- static constexpr bool SUPPORTED = true;
- static size_t lock_granularity() {
- SYSTEM_INFO si;
- GetSystemInfo(&si);
- return (size_t) si.dwPageSize;
- }
- bool raw_lock(void * ptr, size_t len) const {
- for (int tries = 1; ; tries++) {
- if (VirtualLock(ptr, len)) {
- return true;
- }
- if (tries == 2) {
- LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
- len, size, llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // It failed but this was only the first try; increase the working
- // set size and try again.
- SIZE_T min_ws_size, max_ws_size;
- if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
- LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- // Per MSDN: "The maximum number of pages that a process can lock
- // is equal to the number of pages in its minimum working set minus
- // a small overhead."
- // Hopefully a megabyte is enough overhead:
- size_t increment = len + 1048576;
- // The minimum must be <= the maximum, so we need to increase both:
- min_ws_size += increment;
- max_ws_size += increment;
- if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
- LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- return false;
- }
- }
- }
- static void raw_unlock(void * ptr, size_t len) {
- if (!VirtualUnlock(ptr, len)) {
- LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
- llama_format_win_err(GetLastError()).c_str());
- }
- }
- #else
- static constexpr bool SUPPORTED = false;
- static size_t lock_granularity() {
- return (size_t) 65536;
- }
- bool raw_lock(const void * addr, size_t len) const {
- LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
- return false;
- }
- static void raw_unlock(const void * addr, size_t len) {}
- #endif
- };
- static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- GGML_ASSERT(check == -n_tokens);
- }
- else {
- result.resize(n_tokens);
- }
- return std::string(result.data(), result.size());
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
- ggml_backend_buffer_type_t buft = nullptr;
- #if defined(GGML_USE_CUBLAS)
- // host buffers should only be used when data is expected to be copied to/from the GPU
- if (host_buffer) {
- buft = ggml_backend_cuda_host_buffer_type();
- }
- #elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_host_buffer_type();
- #elif defined(GGML_USE_CPU_HBM)
- buft = ggml_backend_cpu_hbm_buffer_type();
- #elif defined(GGML_USE_VULKAN)
- if (host_buffer) {
- buft = ggml_backend_vk_host_buffer_type();
- }
- #endif
- if (buft == nullptr) {
- buft = ggml_backend_cpu_buffer_type();
- }
- return buft;
- GGML_UNUSED(host_buffer);
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
- ggml_backend_buffer_type_t buft = nullptr;
- #ifdef GGML_USE_METAL
- buft = ggml_backend_metal_buffer_type();
- #elif defined(GGML_USE_CUBLAS)
- buft = ggml_backend_cuda_buffer_type(gpu);
- #elif defined(GGML_USE_VULKAN)
- buft = ggml_backend_vk_buffer_type(gpu);
- #elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_buffer_type(gpu);
- #elif defined(GGML_USE_CLBLAST)
- buft = ggml_backend_opencl_buffer_type();
- #elif defined(GGML_USE_KOMPUTE)
- buft = ggml_backend_kompute_buffer_type(gpu);
- if (buft == nullptr) {
- LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
- }
- #endif
- if (buft == nullptr) {
- buft = llama_default_buffer_type_cpu(true);
- }
- return buft;
- GGML_UNUSED(gpu);
- }
- static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
- ggml_backend_buffer_type_t buft = nullptr;
- #ifdef GGML_USE_CUBLAS
- if (ggml_backend_cuda_get_device_count() > 1) {
- buft = ggml_backend_cuda_split_buffer_type(tensor_split);
- }
- #endif
- if (buft == nullptr) {
- buft = llama_default_buffer_type_offload(fallback_gpu);
- }
- return buft;
- GGML_UNUSED(tensor_split);
- }
- static size_t llama_get_device_count() {
- #if defined(GGML_USE_CUBLAS)
- return ggml_backend_cuda_get_device_count();
- #elif defined(GGML_USE_VULKAN)
- return ggml_backend_vk_get_device_count();
- #else
- return 1;
- #endif
- }
- static size_t llama_get_device_memory(int device) {
- #if defined(GGML_USE_CUBLAS)
- size_t total;
- size_t free;
- ggml_backend_cuda_get_device_memory(device, &total, &free);
- return free;
- #elif defined(GGML_USE_VULKAN)
- size_t total;
- size_t free;
- ggml_backend_vk_get_device_memory(device, &total, &free);
- return free;
- #else
- return 1;
- GGML_UNUSED(device);
- #endif
- }
- //
- // globals
- //
- struct llama_state {
- llama_state() {
- #ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
- #endif
- }
- // We save the log callback globally
- ggml_log_callback log_callback = llama_log_callback_default;
- void * log_callback_user_data = nullptr;
- };
- static llama_state g_state;
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_17M,
- MODEL_22M,
- MODEL_33M,
- MODEL_109M,
- MODEL_137M,
- MODEL_335M,
- MODEL_0_5B,
- MODEL_1B,
- MODEL_2B,
- MODEL_3B,
- MODEL_4B,
- MODEL_7B,
- MODEL_8B,
- MODEL_13B,
- MODEL_14B,
- MODEL_15B,
- MODEL_20B,
- MODEL_30B,
- MODEL_34B,
- MODEL_40B,
- MODEL_65B,
- MODEL_70B,
- MODEL_SMALL,
- MODEL_MEDIUM,
- MODEL_LARGE,
- MODEL_XL,
- };
- static const size_t kiB = 1024;
- static const size_t MiB = 1024*kiB;
- static const size_t GiB = 1024*MiB;
- struct llama_hparams {
- bool vocab_only;
- bool rope_finetuned;
- uint32_t n_vocab;
- uint32_t n_ctx_train; // context size the model was trained on
- uint32_t n_embd;
- uint32_t n_head;
- uint32_t n_head_kv;
- uint32_t n_layer;
- uint32_t n_rot;
- uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
- uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
- uint32_t n_ff;
- uint32_t n_expert = 0;
- uint32_t n_expert_used = 0;
- uint32_t n_vocab_type = 0; // for BERT-style token types
- float f_norm_eps;
- float f_norm_rms_eps;
- float rope_freq_base_train;
- float rope_freq_scale_train;
- uint32_t n_yarn_orig_ctx;
- int32_t rope_scaling_type_train;
- float f_clamp_kqv = 0.0f;
- float f_max_alibi_bias = 0.0f;
- bool causal_attn = true;
- bool need_kq_pos = false;
- uint32_t pooling_type = LLAMA_POOLING_NONE;
- bool operator!=(const llama_hparams & other) const {
- if (this->vocab_only != other.vocab_only) return true;
- if (this->n_vocab != other.n_vocab) return true;
- if (this->n_ctx_train != other.n_ctx_train) return true;
- if (this->n_embd != other.n_embd) return true;
- if (this->n_head != other.n_head) return true;
- if (this->n_head_kv != other.n_head_kv) return true;
- if (this->n_layer != other.n_layer) return true;
- if (this->n_rot != other.n_rot) return true;
- if (this->n_embd_head_k != other.n_embd_head_k) return true;
- if (this->n_embd_head_v != other.n_embd_head_v) return true;
- if (this->n_ff != other.n_ff) return true;
- if (this->n_expert != other.n_expert) return true;
- if (this->n_expert_used != other.n_expert_used) return true;
- if (this->rope_finetuned != other.rope_finetuned) return true;
- if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
- const float EPSILON = 1e-9f;
- if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
- if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
- if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
- if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
- return false;
- }
- uint32_t n_gqa() const {
- return n_head/n_head_kv;
- }
- uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
- return n_embd_head_k * n_head_kv;
- }
- uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
- return n_embd_head_v * n_head_kv;
- }
- };
- struct llama_cparams {
- uint32_t n_ctx; // context size used during inference
- uint32_t n_batch;
- uint32_t n_threads; // number of threads to use for generation
- uint32_t n_threads_batch; // number of threads to use for batch processing
- float rope_freq_base;
- float rope_freq_scale;
- uint32_t n_yarn_orig_ctx;
- // These hyperparameters are not exposed in GGUF, because all
- // existing YaRN models use the same values for them.
- float yarn_ext_factor;
- float yarn_attn_factor;
- float yarn_beta_fast;
- float yarn_beta_slow;
- bool mul_mat_q;
- bool offload_kqv;
- bool do_pooling;
- ggml_backend_sched_eval_callback cb_eval;
- void * cb_eval_user_data;
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attn_norm;
- struct ggml_tensor * attn_norm_b;
- struct ggml_tensor * attn_norm_2;
- struct ggml_tensor * attn_norm_2_b;
- struct ggml_tensor * attn_q_norm;
- struct ggml_tensor * attn_q_norm_b;
- struct ggml_tensor * attn_k_norm;
- struct ggml_tensor * attn_k_norm_b;
- struct ggml_tensor * attn_out_norm;
- struct ggml_tensor * attn_out_norm_b;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- struct ggml_tensor * wqkv;
- // attention bias
- struct ggml_tensor * bq;
- struct ggml_tensor * bk;
- struct ggml_tensor * bv;
- struct ggml_tensor * bo;
- struct ggml_tensor * bqkv;
- // normalization
- struct ggml_tensor * ffn_norm;
- struct ggml_tensor * ffn_norm_b;
- struct ggml_tensor * layer_out_norm;
- struct ggml_tensor * layer_out_norm_b;
- // ff
- struct ggml_tensor * ffn_gate; // w1
- struct ggml_tensor * ffn_down; // w2
- struct ggml_tensor * ffn_up; // w3
- // ff MoE
- struct ggml_tensor * ffn_gate_inp;
- struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
- struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
- struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
- // ff bias
- struct ggml_tensor * ffn_down_b; // b2
- struct ggml_tensor * ffn_up_b; // b3
- struct ggml_tensor * ffn_act;
- };
- struct llama_kv_cell {
- llama_pos pos = -1;
- llama_pos delta = 0;
- std::set<llama_seq_id> seq_id;
- bool has_seq_id(const llama_seq_id & id) const {
- return seq_id.find(id) != seq_id.end();
- }
- };
- // ring-buffer of cached KV data
- struct llama_kv_cache {
- bool has_shift = false;
- // Note: The value of head isn't only used to optimize searching
- // for a free KV slot. llama_decode_internal also uses it, so it
- // cannot be freely changed after a slot has been allocated.
- uint32_t head = 0;
- uint32_t size = 0;
- uint32_t used = 0; // used cells (i.e. at least one seq_id)
- // computed before each graph build
- uint32_t n = 0;
- std::vector<llama_kv_cell> cells;
- std::vector<struct ggml_tensor *> k_l; // per layer
- std::vector<struct ggml_tensor *> v_l;
- std::vector<struct ggml_context *> ctxs;
- std::vector<ggml_backend_buffer_t> bufs;
- size_t total_size() const {
- size_t size = 0;
- for (ggml_backend_buffer_t buf : bufs) {
- size += ggml_backend_buffer_get_size(buf);
- }
- return size;
- }
- ~llama_kv_cache() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- using ttype = llama_token_type;
- struct token_data {
- token text;
- float score;
- ttype type;
- };
- enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
- std::unordered_map<token, id> token_to_id;
- std::vector<token_data> id_to_token;
- std::unordered_map<token, id> special_tokens_cache;
- std::map<std::pair<std::string, std::string>, int> bpe_ranks;
- // default LLaMA special tokens
- id special_bos_id = 1;
- id special_eos_id = 2;
- id special_unk_id = 0;
- id special_sep_id = -1;
- id special_pad_id = -1;
- int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
- int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
- id linefeed_id = 13;
- id special_prefix_id = 32007;
- id special_middle_id = 32009;
- id special_suffix_id = 32008;
- id special_eot_id = 32010;
- bool add_space_prefix = true;
- int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
- GGML_ASSERT(token_left.find(' ') == std::string::npos);
- GGML_ASSERT(token_left.find('\n') == std::string::npos);
- GGML_ASSERT(token_right.find(' ') == std::string::npos);
- GGML_ASSERT(token_right.find('\n') == std::string::npos);
- auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
- if (it == bpe_ranks.end()) {
- return -1;
- }
- return it->second;
- }
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llm_arch arch = LLM_ARCH_UNKNOWN;
- llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
- std::string name = "n/a";
- llama_hparams hparams = {};
- llama_vocab vocab;
- struct ggml_tensor * tok_embd;
- struct ggml_tensor * type_embd;
- struct ggml_tensor * pos_embd;
- struct ggml_tensor * tok_norm;
- struct ggml_tensor * tok_norm_b;
- struct ggml_tensor * output_norm;
- struct ggml_tensor * output_norm_b;
- struct ggml_tensor * output;
- struct ggml_tensor * output_b;
- std::vector<llama_layer> layers;
- llama_split_mode split_mode;
- int main_gpu;
- int n_gpu_layers;
- // gguf metadata
- std::unordered_map<std::string, std::string> gguf_kv;
- // layer -> buffer type mapping
- struct layer_buft {
- layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
- layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
- layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
- ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
- ggml_backend_buffer_type_t buft; // everything else
- };
- layer_buft buft_input;
- layer_buft buft_output;
- std::vector<layer_buft> buft_layer;
- // contexts where the model tensors metadata is stored
- std::vector<struct ggml_context *> ctxs;
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_t> bufs;
- // model memory mapped file
- std::unique_ptr<llama_mmap> mapping;
- // objects representing data potentially being locked in memory
- std::vector<std::unique_ptr<llama_mlock>> mlock_bufs;
- llama_mlock mlock_mmap;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- ~llama_model() {
- for (struct ggml_context * ctx : ctxs) {
- ggml_free(ctx);
- }
- for (ggml_backend_buffer_t buf : bufs) {
- ggml_backend_buffer_free(buf);
- }
- }
- };
- struct llama_context {
- llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
- ~llama_context() {
- ggml_backend_sched_free(sched);
- for (ggml_backend_t backend : backends) {
- ggml_backend_free(backend);
- }
- #ifdef GGML_USE_VULKAN
- ggml_vk_free_cpu_assist();
- #endif
- ggml_backend_buffer_free(buf_input);
- ggml_free(ctx_input);
- }
- llama_cparams cparams;
- std::vector<ggml_backend_t> backends;
- #ifdef GGML_USE_METAL
- ggml_backend_t backend_metal = nullptr;
- #endif
- ggml_backend_t backend_cpu = nullptr;
- const llama_model & model;
- // key + value cache for the self attention
- struct llama_kv_cache kv_self;
- std::mt19937 rng;
- bool has_evaluated_once = false;
- int64_t t_start_us;
- int64_t t_load_us;
- int64_t t_sample_us = 0;
- int64_t t_p_eval_us = 0;
- int64_t t_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- int32_t n_eval = 0; // number of eval calls
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- #ifndef NDEBUG
- // guard against access to unset logits
- std::vector<bool> logits_valid;
- #endif
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // memory buffers used to evaluate the model
- std::vector<uint8_t> buf_compute_meta;
- ggml_backend_sched_t sched = nullptr;
- // input tensors
- ggml_backend_buffer_t buf_input = nullptr;
- ggml_context * ctx_input = nullptr;
- struct ggml_tensor * inp_tokens; // I32 [n_batch]
- struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
- struct ggml_tensor * inp_pos; // I32 [n_batch]
- struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch]
- struct ggml_tensor * inp_KQ_pos; // F32 [n_ctx]
- struct ggml_tensor * inp_K_shift; // I32 [n_ctx]
- struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
- struct ggml_tensor * inp_cls; // I32 [n_batch]
- #ifdef GGML_USE_MPI
- ggml_mpi_context * ctx_mpi = NULL;
- #endif
- };
- //
- // kv cache helpers
- //
- static bool llama_kv_cache_init(
- struct llama_kv_cache & cache,
- const llama_model & model,
- ggml_type ktype,
- ggml_type vtype,
- uint32_t n_ctx,
- bool offload) {
- const struct llama_hparams & hparams = model.hparams;
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_layer = hparams.n_layer;
- cache.has_shift = false;
- cache.head = 0;
- cache.size = n_ctx;
- cache.used = 0;
- cache.cells.clear();
- cache.cells.resize(n_ctx);
- #ifdef GGML_USE_CLBLAST
- offload = false;
- #endif
- // count used buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- if (offload) {
- for (int64_t i = 0; i < n_layer; ++i) {
- buft_layer_count[model.buft_layer[i].buft]++;
- }
- } else {
- buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
- }
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- int n_layers = it.second;
- struct ggml_init_params params = {
- /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
- return false;
- }
- ctx_map[it.first] = ctx;
- cache.ctxs.push_back(ctx);
- }
- cache.k_l.reserve(n_layer);
- cache.v_l.reserve(n_layer);
- for (int i = 0; i < (int) n_layer; i++) {
- struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
- ggml_tensor * k = ggml_new_tensor_1d(ctx, ktype, n_embd_k_gqa*n_ctx);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, vtype, n_embd_v_gqa*n_ctx);
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- cache.k_l.push_back(k);
- cache.v_l.push_back(v);
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- cache.bufs.push_back(buf);
- }
- return true;
- }
- // find an empty slot of size "n_tokens" in the cache
- // updates the cache head
- // Note: On success, it's important that cache.head points
- // to the first cell of the slot.
- static bool llama_kv_cache_find_slot(
- struct llama_kv_cache & cache,
- const struct llama_batch & batch) {
- const uint32_t n_ctx = cache.size;
- const uint32_t n_tokens = batch.n_tokens;
- if (n_tokens > n_ctx) {
- LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
- return false;
- }
- uint32_t n_tested = 0;
- while (true) {
- if (cache.head + n_tokens > n_ctx) {
- n_tested += n_ctx - cache.head;
- cache.head = 0;
- continue;
- }
- bool found = true;
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (cache.cells[cache.head + i].pos >= 0) {
- found = false;
- cache.head += i + 1;
- n_tested += i + 1;
- break;
- }
- }
- if (found) {
- break;
- }
- if (n_tested >= n_ctx) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return false;
- }
- }
- for (uint32_t i = 0; i < n_tokens; i++) {
- cache.cells[cache.head + i].pos = batch.pos[i];
- for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
- cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
- }
- }
- cache.used += n_tokens;
- return true;
- }
- // find how many cells are currently in use
- static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
- for (uint32_t i = cache.size - 1; i > 0; --i) {
- if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
- return i + 1;
- }
- }
- return 0;
- }
- static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
- for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- }
- cache.head = 0;
- cache.used = 0;
- }
- static void llama_kv_cache_seq_rm(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- if (seq_id < 0) {
- cache.cells[i].seq_id.clear();
- } else if (cache.cells[i].has_seq_id(seq_id)) {
- cache.cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cache.cells[i].seq_id.empty()) {
- // keep count of the number of used cells
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- if (new_head == cache.size) new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- }
- static void llama_kv_cache_seq_cp(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id_src,
- llama_seq_id seq_id_dst,
- llama_pos p0,
- llama_pos p1) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- cache.head = 0;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.cells[i].seq_id.insert(seq_id_dst);
- }
- }
- }
- static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
- uint32_t new_head = cache.size;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (!cache.cells[i].has_seq_id(seq_id)) {
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) new_head = i;
- } else {
- cache.cells[i].seq_id.clear();
- cache.cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- }
- static void llama_kv_cache_seq_shift(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- llama_pos delta) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- cache.cells[i].pos += delta;
- cache.cells[i].delta += delta;
- if (cache.cells[i].pos < 0) {
- if (!cache.cells[i].seq_id.empty()) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- cache.head = new_head != cache.size ? new_head : 0;
- }
- static void llama_kv_cache_seq_div(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- int d) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- {
- llama_pos p_old = cache.cells[i].pos;
- cache.cells[i].pos /= d;
- cache.cells[i].delta += cache.cells[i].pos - p_old;
- }
- }
- }
- }
- //
- // model loading and saving
- //
- enum llama_fver {
- GGUF_FILE_VERSION_V1 = 1,
- GGUF_FILE_VERSION_V2 = 2,
- GGUF_FILE_VERSION_V3 = 3,
- };
- static const char * llama_file_version_name(llama_fver version) {
- switch (version) {
- case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
- case GGUF_FILE_VERSION_V2: return "GGUF V2";
- case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
- }
- return "unknown";
- }
- static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
- }
- return buf;
- }
- static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
- char buf[256];
- snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
- }
- return buf;
- }
- namespace GGUFMeta {
- template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
- struct GKV_Base_Type {
- static constexpr gguf_type gt = gt_;
- static T getter(const gguf_context * ctx, const int kid) {
- return gfun(ctx, kid);
- }
- };
- template<typename T> struct GKV_Base;
- template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
- template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
- template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
- template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
- template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
- template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
- template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
- template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
- template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
- template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
- template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
- template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
- template<> struct GKV_Base<std::string> {
- static constexpr gguf_type gt = GGUF_TYPE_STRING;
- static std::string getter(const gguf_context * ctx, const int kid) {
- return gguf_get_val_str(ctx, kid);
- }
- };
- struct ArrayInfo{
- const gguf_type gt;
- const size_t length;
- const void * data;
- };
- template<> struct GKV_Base<ArrayInfo> {
- public:
- static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
- static ArrayInfo getter(const gguf_context *ctx, const int k) {
- return ArrayInfo {
- gguf_get_arr_type(ctx, k),
- size_t(gguf_get_arr_n(ctx, k)),
- gguf_get_arr_data(ctx, k),
- };
- }
- };
- template<typename T>
- class GKV: public GKV_Base<T> {
- GKV() = delete;
- public:
- static T get_kv(const gguf_context * ctx, const int k) {
- const enum gguf_type kt = gguf_get_kv_type(ctx, k);
- if (kt != GKV::gt) {
- throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
- gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
- }
- return GKV::getter(ctx, k);
- }
- static const char * override_type_to_str(const llama_model_kv_override_type ty) {
- switch (ty) {
- case LLAMA_KV_OVERRIDE_BOOL: return "bool";
- case LLAMA_KV_OVERRIDE_INT: return "int";
- case LLAMA_KV_OVERRIDE_FLOAT: return "float";
- }
- return "unknown";
- }
- static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override *override) {
- if (!override) { return false; }
- if (override->tag == expected_type) {
- LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
- __func__, override_type_to_str(override->tag), override->key);
- switch (override->tag) {
- case LLAMA_KV_OVERRIDE_BOOL: {
- LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
- } break;
- case LLAMA_KV_OVERRIDE_INT: {
- LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
- } break;
- case LLAMA_KV_OVERRIDE_FLOAT: {
- LLAMA_LOG_INFO("%.6f\n", override->float_value);
- } break;
- default:
- // Shouldn't be possible to end up here, but just in case...
- throw std::runtime_error(
- format("Unsupported attempt to override %s type for metadata key %s\n",
- override_type_to_str(override->tag), override->key));
- }
- return true;
- }
- LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
- __func__, override->key, override_type_to_str(expected_type), override_type_to_str(override->tag));
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
- try_override(OT & target, const struct llama_model_kv_override *override) {
- if (validate_override(LLAMA_KV_OVERRIDE_BOOL, override)) {
- target = override->bool_value;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
- try_override(OT & target, const struct llama_model_kv_override *override) {
- if (validate_override(LLAMA_KV_OVERRIDE_INT, override)) {
- target = override->int_value;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
- try_override(T & target, const struct llama_model_kv_override *override) {
- if (validate_override(LLAMA_KV_OVERRIDE_FLOAT, override)) {
- target = override->float_value;
- return true;
- }
- return false;
- }
- template<typename OT>
- static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
- try_override(T & target, const struct llama_model_kv_override *override) {
- (void)target;
- (void)override;
- if (!override) { return false; }
- // Currently, we should never end up here so it would be a bug if we do.
- throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
- override ? override->key : "NULL"));
- }
- static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override *override = nullptr) {
- if (try_override<T>(target, override)) {
- return true;
- }
- if (k < 0) { return false; }
- target = get_kv(ctx, k);
- return true;
- }
- static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override *override = nullptr) {
- return set(ctx, gguf_find_key(ctx, key), target, override);
- }
- static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override *override = nullptr) {
- return set(ctx, key.c_str(), target, override);
- }
- };
- }
- struct llama_model_loader {
- int n_kv = 0;
- int n_tensors = 0;
- int n_created = 0;
- int64_t n_elements = 0;
- size_t n_bytes = 0;
- bool use_mmap = false;
- llama_file file;
- llama_ftype ftype;
- llama_fver fver;
- std::unique_ptr<llama_mmap> mapping;
- std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
- struct gguf_context * ctx_gguf = NULL;
- struct ggml_context * ctx_meta = NULL;
- std::string arch_name;
- LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
- llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
- int trace = 0;
- if (getenv("LLAMA_TRACE")) {
- trace = atoi(getenv("LLAMA_TRACE"));
- }
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &ctx_meta,
- };
- if (param_overrides_p != nullptr) {
- for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
- kv_overrides.insert({std::string(p->key), *p});
- }
- }
- ctx_gguf = gguf_init_from_file(fname.c_str(), params);
- if (!ctx_gguf) {
- throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
- }
- get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
- llm_kv = LLM_KV(llm_arch_from_string(arch_name));
- n_kv = gguf_get_n_kv(ctx_gguf);
- n_tensors = gguf_get_n_tensors(ctx_gguf);
- fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
- for (int i = 0; i < n_tensors; i++) {
- const char * name = gguf_get_tensor_name(ctx_gguf, i);
- struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
- n_elements += ggml_nelements(t);
- n_bytes += ggml_nbytes(t);
- }
- LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
- __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
- // determine file type based on the number of tensors for each quantization and print meta data
- // TODO: make optional
- {
- std::map<enum ggml_type, uint32_t> n_type;
- uint32_t n_type_max = 0;
- enum ggml_type type_max = GGML_TYPE_F32;
- for (int i = 0; i < n_tensors; i++) {
- enum ggml_type type = gguf_get_tensor_type(ctx_gguf, i);
- n_type[type]++;
- if (n_type_max < n_type[type]) {
- n_type_max = n_type[type];
- type_max = type;
- }
- if (trace > 0) {
- struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
- LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
- }
- }
- switch (type_max) {
- case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
- case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
- case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
- case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
- case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
- case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
- case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
- case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
- case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
- case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
- case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
- case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
- case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
- case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
- case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
- case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
- default:
- {
- LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
- ftype = LLAMA_FTYPE_ALL_F32;
- } break;
- }
- // this is a way to mark that we have "guessed" the file type
- ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
- {
- const int kid = gguf_find_key(ctx_gguf, "general.file_type");
- if (kid >= 0) {
- ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
- }
- }
- LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
- for (int i = 0; i < n_kv; i++) {
- const char * name = gguf_get_key(ctx_gguf, i);
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- const std::string type_name =
- type == GGUF_TYPE_ARRAY
- ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
- : gguf_type_name(type);
- std::string value = gguf_kv_to_str(ctx_gguf, i);
- const size_t MAX_VALUE_LEN = 40;
- if (value.size() > MAX_VALUE_LEN) {
- value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
- }
- replace_all(value, "\n", "\\n");
- LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
- }
- // print type counts
- for (auto & kv : n_type) {
- if (kv.second == 0) {
- continue;
- }
- LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
- }
- }
- if (!llama_mmap::SUPPORTED) {
- LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- }
- ~llama_model_loader() {
- if (ctx_gguf) {
- gguf_free(ctx_gguf);
- }
- if (ctx_meta) {
- ggml_free(ctx_meta);
- }
- }
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value, bool>::type
- get_arr_n(const std::string & key, T & result, const bool required = true) {
- const int kid = gguf_find_key(ctx_gguf, key.c_str());
- if (kid < 0) {
- if (required) {
- throw std::runtime_error(format("key not found in model: %s", key.c_str()));
- }
- return false;
- }
- struct GGUFMeta::ArrayInfo arr_info =
- GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
- result = arr_info.length;
- return true;
- }
- template<typename T>
- typename std::enable_if<std::is_integral<T>::value, bool>::type
- get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
- return get_arr_n(llm_kv(kid), result, required);
- }
- template<typename T>
- bool get_key(const std::string & key, T & result, const bool required = true) {
- auto it = kv_overrides.find(key);
- const struct llama_model_kv_override * override =
- it != kv_overrides.end() ? &it->second : nullptr;
- const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
- if (required && !found) {
- throw std::runtime_error(format("key not found in model: %s", key.c_str()));
- }
- return found;
- }
- template<typename T>
- bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
- return get_key(llm_kv(kid), result, required);
- }
- std::string get_arch_name() const {
- return arch_name;
- }
- enum llm_arch get_arch() const {
- return llm_kv.arch;
- }
- const char * get_tensor_name(int i) const {
- return gguf_get_tensor_name(ctx_gguf, i);
- }
- struct ggml_tensor * get_tensor_meta(const char * name) const {
- return ggml_get_tensor(ctx_meta, name);
- }
- struct ggml_tensor * get_tensor_meta(int i) const {
- return get_tensor_meta(get_tensor_name(i));
- }
- struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) {
- struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
- ggml_set_name(tensor, ggml_get_name(meta));
- n_created++;
- return tensor;
- }
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
- if (cur == NULL) {
- if (!required) {
- return NULL;
- }
- throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
- }
- {
- bool is_ok = true;
- for (size_t i = 0; i < ne.size(); ++i) {
- if (ne[i] != cur->ne[i]) {
- is_ok = false;
- break;
- }
- }
- if (!is_ok) {
- throw std::runtime_error(
- format("%s: tensor '%s' has wrong shape; expected %s, got %s",
- __func__, name.c_str(),
- llama_format_tensor_shape(ne).c_str(),
- llama_format_tensor_shape(cur).c_str()));
- }
- }
- return create_tensor_for(ctx, cur);
- }
- void done_getting_tensors() const {
- if (n_created != n_tensors) {
- throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
- }
- }
- size_t file_offset(const char * name) const {
- const int idx = gguf_find_tensor(ctx_gguf, name);
- if (idx < 0) {
- throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
- }
- return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
- }
- void init_mapping(bool prefetch = true, llama_mlock * lmlock = nullptr) {
- // prefetch the whole file - all the data is needed anyway
- if (use_mmap) {
- mapping.reset(new llama_mmap(&file, prefetch ? -1 : 0, ggml_is_numa()));
- }
- // compute the total size of all tensors for progress reporting
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
- size_data += ggml_nbytes(cur);
- }
- if (use_mmap && mapping) {
- if (lmlock) {
- lmlock->init(mapping->addr);
- }
- mmap_used_first = mapping->size;
- }
- }
- void get_mapping_range(size_t * first, size_t * last, ggml_context * ctx) const {
- GGML_ASSERT(mapping);
- *first = mapping->size;
- *last = 0;
- for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
- const size_t offs = file_offset(ggml_get_name(tensor));
- *first = std::min(*first, offs);
- *last = std::max(*last, offs + ggml_nbytes(tensor));
- }
- }
- // for backwards compatibility, does not support ggml-backend
- void load_data_for(struct ggml_tensor * cur) const {
- const size_t offs = file_offset(ggml_get_name(cur));
- if (use_mmap && mapping) {
- if (cur->data == nullptr) {
- cur->data = (uint8_t *)mapping->addr + offs;
- } else {
- memcpy(cur->data, (uint8_t *)mapping->addr + offs, ggml_nbytes(cur));
- }
- } else {
- GGML_ASSERT(cur->data != nullptr);
- file.seek(offs, SEEK_SET);
- file.read_raw(cur->data, ggml_nbytes(cur));
- }
- }
- size_t size_done = 0;
- size_t size_data = 0;
- size_t mmap_used_first = -1;
- size_t mmap_used_last = 0;
- // Returns false if cancelled by progress_callback
- bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) {
- GGML_ASSERT(size_data != 0 && "call init_mapping() first");
- std::vector<no_init<uint8_t>> read_buf;
- for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
- if (!cur) {
- // some tensors may be allocated in a different context
- continue;
- }
- if (progress_callback) {
- if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
- return false;
- }
- }
- const size_t offs = file_offset(ggml_get_name(cur));
- if (use_mmap && mapping) {
- if (buf_mmap && cur->data == nullptr) {
- ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs);
- if (lmlock) {
- lmlock->grow_to(offs + ggml_nbytes(cur));
- }
- mmap_used_first = std::min(mmap_used_first, offs);
- mmap_used_last = std::max(mmap_used_last, offs + ggml_nbytes(cur));
- } else {
- ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur));
- }
- } else {
- if (ggml_backend_buffer_is_host(cur->buffer)) {
- file.seek(offs, SEEK_SET);
- file.read_raw(cur->data, ggml_nbytes(cur));
- } else {
- read_buf.resize(ggml_nbytes(cur));
- file.seek(offs, SEEK_SET);
- file.read_raw(read_buf.data(), ggml_nbytes(cur));
- ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur));
- }
- }
- size_done += ggml_nbytes(cur);
- }
- // check if this is the last call and do final cleanup
- if (size_done >= size_data) {
- // unmap offloaded tensors and metadata
- if (use_mmap && mapping) {
- mapping->unmap_fragment(0, mmap_used_first);
- if (mmap_used_last != 0) {
- mapping->unmap_fragment(mmap_used_last, mapping->size);
- }
- }
- if (progress_callback) {
- // Even though the model is done loading, we still honor
- // cancellation since we need to free allocations.
- return progress_callback(1.0f, progress_callback_user_data);
- }
- }
- return true;
- }
- };
- //
- // load LLaMA models
- //
- static const char * llama_model_arch_name(llm_arch arch) {
- auto it = LLM_ARCH_NAMES.find(arch);
- if (it == LLM_ARCH_NAMES.end()) {
- return "unknown";
- }
- return it->second;
- }
- static std::string llama_model_ftype_name(llama_ftype ftype) {
- if (ftype & LLAMA_FTYPE_GUESSED) {
- return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
- }
- switch (ftype) {
- case LLAMA_FTYPE_ALL_F32: return "all F32";
- case LLAMA_FTYPE_MOSTLY_F16: return "F16";
- case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
- case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
- case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
- return "Q4_1, some F16";
- case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
- case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
- case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
- case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
- case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
- case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
- case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small";
- case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
- case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
- default: return "unknown, may not work";
- }
- }
- static const char * llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_22M: return "22M";
- case MODEL_33M: return "33M";
- case MODEL_109M: return "109M";
- case MODEL_137M: return "137M";
- case MODEL_0_5B: return "0.5B";
- case MODEL_1B: return "1B";
- case MODEL_2B: return "2B";
- case MODEL_3B: return "3B";
- case MODEL_7B: return "7B";
- case MODEL_8B: return "8B";
- case MODEL_13B: return "13B";
- case MODEL_14B: return "14B";
- case MODEL_15B: return "15B";
- case MODEL_20B: return "20B";
- case MODEL_30B: return "30B";
- case MODEL_34B: return "34B";
- case MODEL_40B: return "40B";
- case MODEL_65B: return "65B";
- case MODEL_70B: return "70B";
- case MODEL_SMALL: return "0.1B";
- case MODEL_MEDIUM: return "0.4B";
- case MODEL_LARGE: return "0.8B";
- case MODEL_XL: return "1.5B";
- default: return "?B";
- }
- }
- static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
- switch (type) {
- case LLAMA_VOCAB_TYPE_SPM: return "SPM";
- case LLAMA_VOCAB_TYPE_BPE: return "BPE";
- case LLAMA_VOCAB_TYPE_WPM: return "WPM";
- default: return "unknown";
- }
- }
- static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
- model.arch = ml.get_arch();
- if (model.arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- static void llm_load_hparams(
- llama_model_loader & ml,
- llama_model & model) {
- auto & hparams = model.hparams;
- const gguf_context * ctx = ml.ctx_gguf;
- // get metadata as string
- for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
- enum gguf_type type = gguf_get_kv_type(ctx, i);
- if (type == GGUF_TYPE_ARRAY) {
- continue;
- }
- const char * name = gguf_get_key(ctx, i);
- const std::string value = gguf_kv_to_str(ctx, i);
- model.gguf_kv.emplace(name, value);
- }
- // get general kv
- ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
- // get hparams kv
- ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
- ml.get_key (LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
- ml.get_key (LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
- ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
- ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
- ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
- ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
- ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
- GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
- GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
- if (hparams.n_expert > 0) {
- GGML_ASSERT(hparams.n_expert_used > 0);
- } else {
- GGML_ASSERT(hparams.n_expert_used == 0);
- }
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv = hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
- bool rope_finetuned = false;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
- // rope_freq_base (optional)
- hparams.rope_freq_base_train = 10000.0f;
- ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
- std::string rope_scaling("linear");
- ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
- hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
- GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
- // rope_freq_scale (inverse of the kv) is optional
- float ropescale = 0.0f;
- if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
- // try the old key name
- ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
- }
- hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
- // sanity check for n_rot (optional)
- {
- hparams.n_rot = hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
- if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
- }
- }
- // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
- // gpt-j n_rot = rotary_dim
- }
- hparams.n_embd_head_k = hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- hparams.n_embd_head_v = hparams.n_embd / hparams.n_head;
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- // arch-specific KVs
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 22: model.type = e_model::MODEL_1B; break;
- case 26: model.type = e_model::MODEL_3B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 48: model.type = e_model::MODEL_34B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_2B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 60: model.type = e_model::MODEL_40B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- if (model.type == e_model::MODEL_13B) {
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 36: model.type = e_model::MODEL_3B; break;
- case 42: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_15B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 36: model.type = e_model::MODEL_8B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_REFACT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_1B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- switch (hparams.n_layer) {
- case 3:
- model.type = e_model::MODEL_17M; break; // bge-micro
- case 6:
- model.type = e_model::MODEL_22M; break; // MiniLM-L6
- case 12:
- switch (hparams.n_embd) {
- case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
- case 768: model.type = e_model::MODEL_109M; break; // bge-base
- } break;
- case 24:
- model.type = e_model::MODEL_335M; break; // bge-large
- }
- } break;
- case LLM_ARCH_NOMIC_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- if (hparams.n_layer == 12 && hparams.n_embd == 768) {
- model.type = e_model::MODEL_137M;
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 30:
- switch (hparams.n_embd) {
- case 2560: model.type = e_model::MODEL_3B; break;
- case 4096: model.type = e_model::MODEL_7B; break;
- } break;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_MPT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 48: model.type = e_model::MODEL_30B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
- case 80: model.type = e_model::MODEL_70B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: model.type = e_model::MODEL_1B; break;
- case 32: model.type = e_model::MODEL_3B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_13B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 12: model.type = e_model::MODEL_SMALL; break;
- case 24: model.type = e_model::MODEL_MEDIUM; break;
- case 36: model.type = e_model::MODEL_LARGE; break;
- case 48: model.type = e_model::MODEL_XL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 42: model.type = e_model::MODEL_SMALL; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ORION:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: model.type = e_model::MODEL_14B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 48: model.type = e_model::MODEL_20B; break;
- default: model.type = e_model::MODEL_UNKNOWN;
- }
- } break;
- default: (void)0;
- }
- model.ftype = ml.ftype;
- if (hparams.f_max_alibi_bias > 0.0f) {
- hparams.need_kq_pos = true;
- }
- }
- // TODO: This should probably be in llama.h
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
- static void llm_load_vocab(
- llama_model_loader & ml,
- llama_model & model) {
- auto & vocab = model.vocab;
- struct gguf_context * ctx = ml.ctx_gguf;
- const auto kv = LLM_KV(model.arch);
- const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
- if (token_idx == -1) {
- throw std::runtime_error("cannot find tokenizer vocab in model file\n");
- }
- const float * scores = nullptr;
- const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
- if (score_idx != -1) {
- scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
- }
- const int * toktypes = nullptr;
- const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
- if (toktype_idx != -1) {
- toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
- }
- // determine vocab type
- {
- std::string tokenizer_name;
- ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
- if (tokenizer_name == "llama") {
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- // default special tokens
- vocab.special_bos_id = 1;
- vocab.special_eos_id = 2;
- vocab.special_unk_id = 0;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
- if (add_space_prefix_keyidx != -1) {
- vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
- } // The default value of add_space_prefix is true.
- } else if (tokenizer_name == "gpt2") {
- vocab.type = LLAMA_VOCAB_TYPE_BPE;
- // read bpe merges and populate bpe ranks
- const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
- if (merges_keyidx == -1) {
- throw std::runtime_error("cannot find tokenizer merges in model file\n");
- }
- const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
- for (int i = 0; i < n_merges; i++) {
- const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
- GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
- std::string first;
- std::string second;
- const size_t pos = word.find(' ', 1);
- if (pos != std::string::npos) {
- first = word.substr(0, pos);
- second = word.substr(pos + 1);
- }
- vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
- }
- // default special tokens
- vocab.special_bos_id = 11;
- vocab.special_eos_id = 11;
- vocab.special_unk_id = -1;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- } else if (tokenizer_name == "bert") {
- vocab.type = LLAMA_VOCAB_TYPE_WPM;
- // default special tokens
- vocab.special_bos_id = 101;
- vocab.special_eos_id = 102;
- vocab.special_unk_id = 100;
- vocab.special_sep_id = -1;
- vocab.special_pad_id = -1;
- vocab.add_space_prefix = false;
- } else {
- LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
- LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- }
- }
- const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
- vocab.id_to_token.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- std::string word = gguf_get_arr_str(ctx, token_idx, i);
- GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
- vocab.token_to_id[word] = i;
- auto & token_data = vocab.id_to_token[i];
- token_data.text = std::move(word);
- token_data.score = scores ? scores[i] : 0.0f;
- token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
- }
- GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
- // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
- if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
- try {
- vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
- } catch (const std::exception & e) {
- LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
- vocab.linefeed_id = vocab.special_pad_id;
- }
- } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
- vocab.linefeed_id = vocab.special_pad_id;
- } else {
- const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
- GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
- vocab.linefeed_id = ids[0];
- }
- // special tokens
- {
- const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
- { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
- { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
- { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
- { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
- { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
- };
- for (const auto & it : special_token_types) {
- const std::string & key = kv(std::get<0>(it));
- int32_t & id = std::get<1>(it);
- uint32_t new_id;
- if (!ml.get_key(std::get<0>(it), new_id, false)) {
- continue;
- }
- if (new_id >= vocab.id_to_token.size()) {
- LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
- __func__, key.c_str(), new_id, id);
- } else {
- id = new_id;
- }
- }
- // Handle add_bos_token and add_eos_token
- {
- bool temp = true;
- if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
- vocab.special_add_bos = int(temp);
- }
- if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
- vocab.special_add_eos = int(temp);
- }
- }
- }
- // build special tokens cache
- {
- // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
- // and will always be correctly labeled in 'added_tokens.json' etc.
- // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
- // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
- // are special tokens.
- // From testing, this appears to correlate 1:1 with special tokens.
- //
- // Counting special tokens and verifying in only one direction
- // is sufficient to detect difference in those two sets.
- //
- uint32_t special_tokens_count_by_type = 0;
- uint32_t special_tokens_count_from_verification = 0;
- bool special_tokens_definition_mismatch = false;
- for (const auto & t : vocab.token_to_id) {
- const auto & token = t.first;
- const auto & id = t.second;
- // Count all non-normal tokens in the vocab while iterating
- if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
- special_tokens_count_by_type++;
- }
- // Skip single character tokens
- if (token.length() > 1) {
- bool is_tokenizable = false;
- // Split token string representation in two, in all possible ways
- // and check if both halves can be matched to a valid token
- for (unsigned i = 1; i < token.length();) {
- const auto left = token.substr(0, i);
- const auto right = token.substr(i);
- // check if we didnt partition in the middle of a utf sequence
- auto utf = utf8_len(left.at(left.length() - 1));
- if (utf == 1) {
- if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
- vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
- is_tokenizable = true;
- break;
- }
- i++;
- } else {
- // skip over the rest of multibyte utf sequence
- i += utf - 1;
- }
- }
- if (!is_tokenizable) {
- // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
- // it's faster to re-filter them here, since there are way less candidates now
- // Calculate a total "utf" length of a token string representation
- size_t utf8_str_len = 0;
- for (unsigned i = 0; i < token.length();) {
- utf8_str_len++;
- i += utf8_len(token.at(i));
- }
- // And skip the ones which are one character
- if (utf8_str_len > 1) {
- // At this point what we have left are special tokens only
- vocab.special_tokens_cache[token] = id;
- // Count manually found special tokens
- special_tokens_count_from_verification++;
- // If this manually found special token is not marked as such, flag a mismatch
- if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
- special_tokens_definition_mismatch = true;
- }
- }
- }
- }
- }
- if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
- LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
- __func__,
- special_tokens_count_from_verification, vocab.id_to_token.size(),
- special_tokens_count_by_type, vocab.id_to_token.size()
- );
- } else {
- LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
- __func__,
- special_tokens_count_from_verification, vocab.id_to_token.size()
- );
- }
- }
- }
- static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
- const auto & hparams = model.hparams;
- const auto & vocab = model.vocab;
- const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
- // hparams
- LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
- LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
- LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
- LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
- LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
- LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
- LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
- LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
- LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
- LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
- LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
- LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
- LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
- LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
- LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
- LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
- LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
- LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
- LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
- if (ml.n_elements >= 1e12) {
- LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
- } else if (ml.n_elements >= 1e9) {
- LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
- } else if (ml.n_elements >= 1e6) {
- LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
- } else {
- LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
- }
- if (ml.n_bytes < GiB) {
- LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
- } else {
- LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
- }
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
- // special tokens
- if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
- if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
- if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
- if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
- if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
- if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
- }
- // Returns false if cancelled by progress_callback
- static bool llm_load_tensors(
- llama_model_loader & ml,
- llama_model & model,
- int n_gpu_layers,
- enum llama_split_mode split_mode,
- int main_gpu,
- const float * tensor_split,
- bool use_mlock,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- model.t_start_us = ggml_time_us();
- auto & hparams = model.hparams;
- model.split_mode = split_mode;
- model.main_gpu = main_gpu;
- model.n_gpu_layers = n_gpu_layers;
- const int64_t n_layer = hparams.n_layer;
- const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
- // there is very little benefit to offloading the input layer, so always keep it on the CPU
- model.buft_input = llama_default_buffer_type_cpu(true);
- model.buft_layer.resize(n_layer);
- // assign cpu layers
- for (int64_t i = 0; i < i_gpu_start; ++i) {
- model.buft_layer[i] = llama_default_buffer_type_cpu(true);
- }
- if (split_mode == LLAMA_SPLIT_LAYER) {
- // calculate the split points
- int device_count = llama_get_device_count();
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
- std::vector<float> splits(device_count);
- if (all_zero) {
- // default split, by free memory
- for (int i = 0; i < device_count; ++i) {
- splits[i] = llama_get_device_memory(i);
- }
- } else {
- std::copy(tensor_split, tensor_split + device_count, splits.begin());
- }
- // sum and normalize the splits to get the split points
- float split_sum = 0.0f;
- for (int i = 0; i < device_count; ++i) {
- split_sum += splits[i];
- splits[i] = split_sum;
- }
- for (int i = 0; i < device_count; ++i) {
- splits[i] /= split_sum;
- }
- // assign the repeating layers to the devices according to the splits
- int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
- for (int64_t i = i_gpu_start; i < n_layer; ++i) {
- int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
- model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
- }
- // assign the output layer
- if (n_gpu_layers > n_layer) {
- int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
- model.buft_output = llama_default_buffer_type_offload(layer_gpu);
- } else {
- model.buft_output = llama_default_buffer_type_cpu(true);
- }
- } else {
- ggml_backend_buffer_type_t split_buft;
- if (split_mode == LLAMA_SPLIT_ROW) {
- split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
- } else {
- // LLAMA_SPLIT_NONE or LLAMA_SPLIT_LAYER in backends where it is not supported
- split_buft = llama_default_buffer_type_offload(main_gpu);
- }
- // assign the repeating layers
- for (int64_t i = i_gpu_start; i < n_layer; ++i) {
- model.buft_layer[i] = {
- split_buft,
- llama_default_buffer_type_offload(main_gpu)
- };
- }
- // assign the output layer
- if (n_gpu_layers > n_layer) {
- model.buft_output = {
- split_buft,
- llama_default_buffer_type_offload(main_gpu)
- };
- } else {
- model.buft_output = llama_default_buffer_type_cpu(true);
- }
- }
- // count used buffer types
- std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
- buft_layer_count[model.buft_input.buft]++;
- buft_layer_count[model.buft_input.buft_matrix]++;
- buft_layer_count[model.buft_output.buft]++;
- buft_layer_count[model.buft_output.buft_matrix]++;
- for (int64_t i = 0; i < n_layer; ++i) {
- buft_layer_count[model.buft_layer[i].buft]++;
- buft_layer_count[model.buft_layer[i].buft_matrix]++;
- }
- // create one context per buffer type
- size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors;
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- for (auto & it : buft_layer_count) {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- throw std::runtime_error(format("failed to create context"));
- }
- ctx_map[it.first] = ctx;
- model.ctxs.push_back(ctx);
- }
- LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
- // create tensors for the weights
- {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = hparams.n_vocab;
- const int64_t n_vocab_type = hparams.n_vocab_type;
- const int64_t n_ff = hparams.n_ff;
- GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
- ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
- ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
- ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
- auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
- auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
- model.layers.resize(n_layer);
- const auto tn = LLM_TN(model.arch);
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_MINICPM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- if (model.arch != LLM_ARCH_MINICPM){
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false);
- if (layer.ffn_gate_inp == nullptr) {
- GGML_ASSERT(hparams.n_expert == 0);
- GGML_ASSERT(hparams.n_expert_used == 0);
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- } else {
- GGML_ASSERT(hparams.n_expert > 0);
- GGML_ASSERT(hparams.n_expert_used > 0);
- // MoE branch
- for (uint32_t x = 0; x < hparams.n_expert; ++x) {
- layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
- layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
- layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
- }
- }
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- } else {
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
- ml.n_created--; // artificial tensor
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
- layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
- layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
- }
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
- layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
- layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
- layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
- }
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
- if (model.arch == LLM_ARCH_BERT) {
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- }
- model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
- model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- if (model.arch == LLM_ARCH_BERT) {
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- } else {
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- }
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
- layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- if (model.arch == LLM_ARCH_BERT) {
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- } else {
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- }
- layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
- layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
- model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_MPT:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- // AWQ ScaleActivation layer
- layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors, present in Stable LM 2 1.6B
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
- }
- } break;
- case LLM_ARCH_QWEN2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- // optional bias tensors
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
- if (layer.wqkv == nullptr) {
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
- }
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
- layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
- }
- } break;
- case LLM_ARCH_ORION:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
- // output
- {
- model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
- model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
- }
- for (int i = 0; i < n_layer; ++i) {
- ggml_context * ctx_layer = ctx_for_layer(i);
- ggml_context * ctx_split = ctx_for_layer_split(i);
- auto & layer = model.layers[i];
- layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
- // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
- layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
- layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
- layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
- layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
- layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
- layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
- layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
- layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
- }
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- }
- }
- ml.done_getting_tensors();
- ml.init_mapping(true, use_mlock ? &model.mlock_mmap : nullptr);
- // create the backend buffers
- std::vector<std::pair<ggml_context *, ggml_backend_buffer_t>> ctx_bufs;
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = nullptr;
- // only the mmap region containing the tensors in the model is mapped to the backend buffer
- // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
- // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
- size_t first, last;
- ml.get_mapping_range(&first, &last, ctx);
- buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
- }
- #ifdef GGML_USE_METAL
- else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
- const size_t max_size = ggml_get_max_tensor_size(ctx);
- size_t first, last;
- ml.get_mapping_range(&first, &last, ctx);
- buf = ggml_backend_metal_buffer_from_ptr((char *) ml.mapping->addr + first, last - first, max_size);
- }
- #endif
- else {
- buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) {
- model.mlock_bufs.emplace_back(new llama_mlock);
- auto & mlock_buf = model.mlock_bufs.back();
- mlock_buf->init (ggml_backend_buffer_get_base(buf));
- mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
- }
- }
- if (buf == nullptr) {
- throw std::runtime_error("failed to allocate buffer");
- }
- // indicate that this buffer contains weights
- // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
- ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- model.bufs.push_back(buf);
- ctx_bufs.emplace_back(ctx, buf);
- }
- if (llama_supports_gpu_offload()) {
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
- }
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- }
- // print memory requirements
- for (ggml_backend_buffer_t buf : model.bufs) {
- LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
- }
- // populate tensors_by_name
- for (ggml_context * ctx : model.ctxs) {
- for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
- model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- }
- // load tensor data
- for (auto & it : ctx_bufs) {
- ggml_context * ctx = it.first;
- ggml_backend_buffer_t buf = it.second;
- if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) {
- return false;
- }
- }
- model.mapping = std::move(ml.mapping);
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- model.t_load_us = ggml_time_us() - model.t_start_us;
- return true;
- }
- // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
- static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
- try {
- llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
- model.hparams.vocab_only = params.vocab_only;
- try {
- llm_load_arch(ml, model);
- } catch(const std::exception & e) {
- throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
- }
- try {
- llm_load_hparams(ml, model);
- } catch(const std::exception & e) {
- throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
- }
- try {
- llm_load_vocab(ml, model);
- } catch(const std::exception & e) {
- throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
- }
- llm_load_print_meta(ml, model);
- if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
- throw std::runtime_error("vocab size mismatch");
- }
- if (params.vocab_only) {
- LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
- return 0;
- }
- #ifdef GGML_USE_KOMPUTE
- if (params.n_gpu_layers > 0 && (
- !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
- || !(
- model.ftype == LLAMA_FTYPE_ALL_F32 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
- model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
- )
- )) {
- // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
- LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
- params.n_gpu_layers = 0;
- }
- #endif
- if (!llm_load_tensors(
- ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
- params.progress_callback, params.progress_callback_user_data
- )) {
- return -2;
- }
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
- return -1;
- }
- return 0;
- }
- //
- // llm_build
- //
- using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
- enum llm_rope_type {
- LLM_ROPE,
- LLM_ROPE_NEOX,
- LLM_ROPE_GLM,
- };
- enum llm_ffn_op_type {
- LLM_FFN_SILU,
- LLM_FFN_GELU,
- LLM_FFN_RELU,
- LLM_FFN_RELU_SQR,
- };
- enum llm_ffn_gate_type {
- LLM_FFN_SEQ,
- LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- };
- static struct ggml_tensor * llm_build_inp_embd(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_batch & batch,
- struct ggml_tensor * tok_embd,
- struct ggml_tensor * inp_tokens,
- struct ggml_tensor * inp_embd,
- const llm_build_cb & cb) {
- const int64_t n_embd = hparams.n_embd;
- struct ggml_tensor * inpL;
- if (batch.token) {
- struct ggml_tensor * inp_tokens_v = ggml_view_1d(ctx, inp_tokens, batch.n_tokens, 0);
- cb(inp_tokens, "inp_tokens", -1);
- inpL = ggml_get_rows(ctx, tok_embd, inp_tokens_v);
- } else {
- #ifdef GGML_USE_MPI
- GGML_ASSERT(false && "not implemented");
- #endif
- inpL = ggml_view_2d(ctx, inp_embd, n_embd, batch.n_tokens, inp_embd->nb[1], 0);
- }
- return inpL;
- }
- // Persimmon: n_rot = n_embd_head_k/2
- // Other: n_rot = n_embd_head_k
- static void llm_build_k_shift(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_cparams & cparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * K_shift,
- llm_rope_type type,
- int64_t n_ctx,
- float freq_base,
- float freq_scale,
- const llm_build_cb & cb) {
- const int64_t n_layer = hparams.n_layer;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int32_t n_rot = hparams.n_rot;
- const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
- const float ext_factor = cparams.yarn_ext_factor;
- const float attn_factor = cparams.yarn_attn_factor;
- const float beta_fast = cparams.yarn_beta_fast;
- const float beta_slow = cparams.yarn_beta_slow;
- int rope_type = 0;
- switch (type) {
- case LLM_ROPE: rope_type = 0; break;
- case LLM_ROPE_NEOX: rope_type = 2; break;
- case LLM_ROPE_GLM: rope_type = 4; break;
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * tmp =
- // we rotate only the first n_rot dimensions
- ggml_rope_custom_inplace(ctx,
- ggml_view_3d(ctx, kv.k_l[il],
- n_embd_head_k, n_head_kv, n_ctx,
- ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
- ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
- 0),
- K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(tmp, "K_shifted", il);
- ggml_build_forward_expand(graph, tmp);
- }
- }
- static void llm_build_kv_store(
- struct ggml_context * ctx,
- const llama_hparams & hparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur,
- int64_t n_ctx,
- int32_t n_tokens,
- int32_t kv_head,
- const llm_build_cb & cb,
- int64_t il) {
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- // compute the transposed [n_tokens, n_embd] V matrix
- struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
- //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
- cb(v_cur_t, "v_cur_t", il);
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
- (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
- cb(k_cache_view, "k_cache_view", il);
- struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
- ( n_ctx)*ggml_element_size(kv.v_l[il]),
- (kv_head)*ggml_element_size(kv.v_l[il]));
- cb(v_cache_view, "v_cache_view", il);
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
- ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
- }
- static struct ggml_tensor * llm_build_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- const llama_hparams & hparams,
- struct ggml_tensor * mw,
- struct ggml_tensor * mb,
- llm_norm_type type,
- const llm_build_cb & cb,
- int il) {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
- }
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx, cur, mb);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_ffn(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * up,
- struct ggml_tensor * up_b,
- struct ggml_tensor * gate,
- struct ggml_tensor * gate_b,
- struct ggml_tensor * down,
- struct ggml_tensor * down_b,
- struct ggml_tensor * act_scales,
- llm_ffn_op_type type_op,
- llm_ffn_gate_type type_gate,
- const llm_build_cb & cb,
- int il) {
- struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (gate) {
- switch (type_gate) {
- case LLM_FFN_SEQ:
- {
- cur = ggml_mul_mat(ctx, gate, tmp);
- cb(cur, "ffn_gate", il);
- } break;
- case LLM_FFN_PAR:
- {
- cur = ggml_mul_mat(ctx, gate, cur);
- cb(cur, "ffn_gate", il);
- } break;
- }
- if (gate_b) {
- cur = ggml_add(ctx, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- } else {
- cur = tmp;
- }
- switch (type_op) {
- case LLM_FFN_SILU:
- {
- cur = ggml_silu(ctx, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case LLM_FFN_GELU:
- {
- cur = ggml_gelu(ctx, cur);
- cb(cur, "ffn_gelu", il);
- if (act_scales != NULL) {
- cur = ggml_div(ctx, cur, act_scales);
- cb(cur, "ffn_act", il);
- }
- } break;
- case LLM_FFN_RELU:
- {
- cur = ggml_relu(ctx, cur);
- cb(cur, "ffn_relu", il);
- } break;
- case LLM_FFN_RELU_SQR:
- {
- cur = ggml_relu(ctx, cur);
- cb(cur, "ffn_relu", il);
- cur = ggml_sqr(ctx, cur);
- cb(cur, "ffn_sqr(relu)", il);
- } break;
- }
- if (type_gate == LLM_FFN_PAR) {
- cur = ggml_mul(ctx, cur, tmp);
- cb(cur, "ffn_gate_par", il);
- }
- cur = ggml_mul_mat(ctx, down, cur);
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx, cur, down_b);
- }
- return cur;
- }
- // if max_alibi_bias > 0 then apply ALiBi
- static struct ggml_tensor * llm_build_kqv(
- struct ggml_context * ctx,
- const llama_model & model,
- const llama_hparams & hparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * wo,
- struct ggml_tensor * wo_b,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- struct ggml_tensor * kq_pos,
- int64_t n_ctx,
- int32_t n_tokens,
- int32_t n_kv,
- float kq_scale,
- const llm_build_cb & cb,
- int il) {
- const int64_t n_head = hparams.n_head;
- const int64_t n_head_kv = hparams.n_head_kv;
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
- cb(q, "q", il);
- struct ggml_tensor * k =
- ggml_view_3d(ctx, kv.k_l[il],
- n_embd_head_k, n_kv, n_head_kv,
- ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
- ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
- 0);
- cb(k, "k", il);
- struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
- cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2) {
- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- }
- #if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_SYCL)
- #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, Kompute, and SYCL")
- #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
- #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
- if (hparams.f_max_alibi_bias > 0.0f) {
- kq = ggml_scale(ctx, kq, kq_scale);
- cb(kq, "kq_scaled", il);
- kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
- cb(kq, "kq_scaled_alibi", il);
- kq = ggml_add(ctx, kq, kq_mask);
- cb(kq, "kq_masked", il);
- kq = ggml_soft_max(ctx, kq);
- cb(kq, "kq_soft_max", il);
- } else
- #endif
- {
- kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
- cb(kq, "kq_soft_max_ext", il);
- }
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx, kv.v_l[il],
- n_kv, n_embd_head_v, n_head_kv,
- ggml_element_size(kv.v_l[il])*n_ctx,
- ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
- 0);
- cb(v, "v", il);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
- cb(kqv, "kqv", il);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
- cb(kqv_merged, "kqv_merged", il);
- struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
- cb(cur, "kqv_merged_cont", il);
- ggml_build_forward_expand(graph, cur);
- cur = ggml_mul_mat(ctx, wo, cur);
- if (wo_b) {
- cb(cur, "kqv_wo", il);
- }
- if (wo_b) {
- cur = ggml_add(ctx, cur, wo_b);
- }
- return cur;
- }
- static struct ggml_tensor * llm_build_kv(
- struct ggml_context * ctx,
- const llama_model & model,
- const llama_hparams & hparams,
- const llama_kv_cache & kv,
- struct ggml_cgraph * graph,
- struct ggml_tensor * wo,
- struct ggml_tensor * wo_b,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- struct ggml_tensor * kq_pos,
- int64_t n_ctx,
- int32_t n_tokens,
- int32_t kv_head,
- int32_t n_kv,
- float kq_scale,
- const llm_build_cb & cb,
- int il) {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(graph, q_cur);
- ggml_build_forward_expand(graph, k_cur);
- ggml_build_forward_expand(graph, v_cur);
- llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
- struct ggml_tensor * cur;
- cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
- q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
- cb(cur, "kqv_out", il);
- return cur;
- }
- struct llm_build_context {
- const llama_model & model;
- const llama_context & lctx;
- const llama_hparams & hparams;
- const llama_cparams & cparams;
- const llama_batch & batch;
- const llama_kv_cache & kv_self;
- const int64_t n_embd;
- const int64_t n_layer;
- const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
- const int64_t n_head;
- const int64_t n_head_kv;
- const int64_t n_embd_head_k;
- const int64_t n_embd_k_gqa;
- const int64_t n_embd_head_v;
- const int64_t n_embd_v_gqa;
- const int64_t n_expert;
- const int64_t n_expert_used;
- const float freq_base;
- const float freq_scale;
- const float ext_factor;
- const float attn_factor;
- const float beta_fast;
- const float beta_slow;
- const float norm_eps;
- const float norm_rms_eps;
- const int32_t n_tokens;
- const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx)
- const int32_t kv_head; // index of where we store new KV data in the cache
- const int32_t n_orig_ctx;
- const bool do_rope_shift;
- const uint32_t pooling_type;
- const llm_build_cb & cb;
- std::vector<uint8_t> & buf_compute_meta;
- struct ggml_context * ctx0 = nullptr;
- // TODO: consider making the entire interface noexcept
- llm_build_context(
- llama_context & lctx,
- const llama_batch & batch,
- const llm_build_cb & cb,
- bool worst_case) :
- model (lctx.model),
- lctx (lctx),
- hparams (model.hparams),
- cparams (lctx.cparams),
- batch (batch),
- kv_self (lctx.kv_self),
- n_embd (hparams.n_embd),
- n_layer (hparams.n_layer),
- n_ctx (cparams.n_ctx),
- n_head (hparams.n_head),
- n_head_kv (hparams.n_head_kv),
- n_embd_head_k (hparams.n_embd_head_k),
- n_embd_k_gqa (hparams.n_embd_k_gqa()),
- n_embd_head_v (hparams.n_embd_head_v),
- n_embd_v_gqa (hparams.n_embd_v_gqa()),
- n_expert (hparams.n_expert),
- n_expert_used (hparams.n_expert_used),
- freq_base (cparams.rope_freq_base),
- freq_scale (cparams.rope_freq_scale),
- ext_factor (cparams.yarn_ext_factor),
- attn_factor (cparams.yarn_attn_factor),
- beta_fast (cparams.yarn_beta_fast),
- beta_slow (cparams.yarn_beta_slow),
- norm_eps (hparams.f_norm_eps),
- norm_rms_eps (hparams.f_norm_rms_eps),
- n_tokens (batch.n_tokens),
- n_kv (worst_case ? n_ctx : kv_self.n),
- kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
- n_orig_ctx (cparams.n_yarn_orig_ctx),
- do_rope_shift (worst_case || kv_self.has_shift),
- pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_NONE),
- cb (cb),
- buf_compute_meta (lctx.buf_compute_meta) {
- // all initializations should be done in init()
- }
- void init() {
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute_meta.size(),
- /*.mem_buffer =*/ buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ctx0 = ggml_init(params);
- }
- void free() {
- if (ctx0) {
- ggml_free(ctx0);
- ctx0 = nullptr;
- }
- }
- struct ggml_cgraph * build_llama() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (model.layers[il].ffn_gate_inp == nullptr) {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- } else {
- // MoE branch
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
- cb(logits, "ffn_moe_logits", il);
- ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
- cb(probs, "ffn_moe_probs", il);
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
- cb(selected_experts->src[0], "ffn_moe_argsort", il);
- ggml_tensor * weights = ggml_get_rows(ctx0,
- ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
- cb(weights, "ffn_moe_weights", il);
- weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
- ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
- cb(weights_sum, "ffn_moe_weights_sum", il);
- weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
- cb(weights, "ffn_moe_weights_norm", il);
- // compute expert outputs
- ggml_tensor * moe_out = nullptr;
- for (int i = 0; i < n_expert_used; ++i) {
- ggml_tensor * cur_expert;
- ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
- cb(cur_up, "ffn_moe_up", il);
- ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
- cb(cur_gate, "ffn_moe_gate", il);
- cur_gate = ggml_silu(ctx0, cur_gate);
- cb(cur_gate, "ffn_moe_silu", il);
- cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
- cb(cur_expert, "ffn_moe_gate_par", il);
- cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
- cb(cur_expert, "ffn_moe_down", il);
- cur_expert = ggml_mul(ctx0, cur_expert,
- ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
- cb(cur_expert, "ffn_moe_weighted", il);
- if (i == 0) {
- moe_out = cur_expert;
- } else {
- moe_out = ggml_add(ctx0, moe_out, cur_expert);
- cb(moe_out, "ffn_moe_out", il);
- }
- }
- cur = moe_out;
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_baichuan() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // positions of the tokens in the KV cache
- struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
- cb(KQ_pos, "KQ_pos", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- switch (model.type) {
- case MODEL_7B:
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- break;
- case MODEL_13B:
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
- break;
- default:
- GGML_ASSERT(false);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_falcon() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- attn_norm = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- if (model.layers[il].attn_norm_2) {
- // Falcon-40B
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm_2,
- model.layers[il].attn_norm_2_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm_2", il);
- } else {
- cur = attn_norm;
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
- model.layers[il].ffn_up, NULL,
- NULL, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- // norm
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_starcoder() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * pos;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_persimmon() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * residual = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- // split qkv
- GGML_ASSERT(n_head_kv == n_head);
- struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
- cb(tmpqkv, "tmpqkv", il);
- struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
- cb(tmpqkv_perm, "tmpqkv", il);
- struct ggml_tensor * tmpq = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- 0
- );
- cb(tmpq, "tmpq", il);
- struct ggml_tensor * tmpk = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
- );
- cb(tmpk, "tmpk", il);
- // Q/K Layernorm
- tmpq = llm_build_norm(ctx0, tmpq, hparams,
- model.layers[il].attn_q_norm,
- model.layers[il].attn_q_norm_b,
- LLM_NORM, cb, il);
- cb(tmpq, "tmpq", il);
- tmpk = llm_build_norm(ctx0, tmpk, hparams,
- model.layers[il].attn_k_norm,
- model.layers[il].attn_k_norm_b,
- LLM_NORM, cb, il);
- cb(tmpk, "tmpk", il);
- // RoPE the first n_rot of q/k, pass the other half, and concat.
- struct ggml_tensor * qrot = ggml_view_3d(
- ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpq) * n_embd_head,
- ggml_element_size(tmpq) * n_embd_head * n_head,
- 0
- );
- cb(qrot, "qrot", il);
- struct ggml_tensor * krot = ggml_view_3d(
- ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpk) * n_embd_head,
- ggml_element_size(tmpk) * n_embd_head * n_head,
- 0
- );
- cb(krot, "krot", il);
- // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
- struct ggml_tensor * qpass = ggml_view_3d(
- ctx0, tmpq, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpq) * n_embd_head,
- ggml_element_size(tmpq) * n_embd_head * n_head,
- ggml_element_size(tmpq) * hparams.n_rot
- );
- cb(qpass, "qpass", il);
- struct ggml_tensor * kpass = ggml_view_3d(
- ctx0, tmpk, hparams.n_rot, n_head, n_tokens,
- ggml_element_size(tmpk) * n_embd_head,
- ggml_element_size(tmpk) * n_embd_head * n_head,
- ggml_element_size(tmpk) * hparams.n_rot
- );
- cb(kpass, "kpass", il);
- struct ggml_tensor * qrotated = ggml_rope_custom(
- ctx0, qrot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(qrotated, "qrotated", il);
- struct ggml_tensor * krotated = ggml_rope_custom(
- ctx0, krot, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(krotated, "krotated", il);
- // ggml currently only supports concatenation on dim=2
- // so we need to permute qrot, qpass, concat, then permute back.
- qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
- cb(qrotated, "qrotated", il);
- krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
- cb(krotated, "krotated", il);
- qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
- cb(qpass, "qpass", il);
- kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
- cb(kpass, "kpass", il);
- struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
- cb(Q, "Q", il);
- Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_view_3d(
- ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
- ggml_element_size(tmpqkv_perm) * n_embd_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
- ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
- );
- cb(Vcur, "Vcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_refact() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // positions of the tokens in the KV cache
- struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
- cb(KQ_pos, "KQ_pos", -1);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- cb(Kcur, "Kcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cb(Qcur, "Qcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_bert() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- // get input vectors with right size
- const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type);
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- struct ggml_tensor * inp_mean = ggml_view_2d(ctx0, lctx.inp_mean, n_tokens, n_tokens, stride1, 0);
- struct ggml_tensor * inp_cls = ggml_view_1d(ctx0, lctx.inp_cls, n_tokens, 0);
- // construct input embeddings (token, type, position)
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- // token types are hardcoded to zero ("Sentence A")
- struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
- inpL = ggml_add(ctx0, inpL, type_row0);
- if (model.arch == LLM_ARCH_BERT) {
- inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
- }
- cb(inpL, "inp_embd", -1);
- // embed layer norm
- inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
- cb(inpL, "inp_norm", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1); // [n_kv, n_tokens]
- // iterate layers
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * cur = inpL;
- // self-attention
- if (model.arch == LLM_ARCH_BERT) {
- struct ggml_tensor * Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- // seems like we just need to do this for Q?
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- } else {
- // compute Q and K and RoPE them
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // re-add the layer input
- cur = ggml_add(ctx0, cur, inpL);
- // attention layer norm
- cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
- struct ggml_tensor * ffn_inp = cur;
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- if (model.arch == LLM_ARCH_BERT) {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- } else {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- }
- cb(cur, "ffn_out", il);
- // attentions bypass the intermediate layer
- cur = ggml_add(ctx0, cur, ffn_inp);
- // output layer norm
- cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
- // input for next layer
- inpL = cur;
- }
- // final output
- cur = inpL;
- // pooling layer
- if (pooling_type == LLAMA_POOLING_MEAN) {
- cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
- } else if (pooling_type == LLAMA_POOLING_CLS) {
- cur = ggml_get_rows(ctx0, cur, inp_cls);
- } else {
- GGML_ASSERT(pooling_type == LLAMA_POOLING_NONE && "Invalid pooling type");
- }
- cb(cur, "result_embd", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_bloom() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // positions of the tokens in the KV cache
- struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
- cb(KQ_pos, "KQ_pos", -1);
- inpL = llm_build_norm(ctx0, inpL, hparams,
- model.tok_norm,
- model.tok_norm_b,
- LLM_NORM, cb, -1);
- cb(inpL, "inp_norm", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // Add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_mpt() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // positions of the tokens in the KV cache
- struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
- cb(KQ_pos, "KQ_pos", -1);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * attn_norm;
- attn_norm = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(attn_norm, "attn_norm", il);
- // self-attention
- {
- cur = attn_norm;
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- if (hparams.f_clamp_kqv > 0.0f) {
- cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
- cb(cur, "wqkv_clamped", il);
- }
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // Add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // feed forward
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- NULL,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- NULL, NULL,
- model.layers[il].ffn_down, NULL,
- model.layers[il].ffn_act,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- NULL,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_stablelm() {
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward forward
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_qwen2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, Qcur);
- ggml_build_forward_expand(gf, Kcur);
- ggml_build_forward_expand(gf, Vcur);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_phi2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * attn_norm_output;
- struct ggml_tensor * ffn_output;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE_NEOX, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(attn_norm_output, "attn_norm", il);
- // self-attention
- {
- struct ggml_tensor * Qcur = nullptr;
- struct ggml_tensor * Kcur = nullptr;
- struct ggml_tensor * Vcur = nullptr;
- if (model.layers[il].wqkv) {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- } else {
- Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
- Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
- Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
- }
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
- Qcur = ggml_rope_custom(
- ctx0, Qcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- // with phi2, we scale the Q to avoid precision issues
- // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
- Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, Kcur, inp_pos, hparams.n_rot, 2, 0, n_orig_ctx,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
- cb(cur, "kqv_out", il);
- }
- // FF
- {
- ffn_output = llm_build_ffn(ctx0, attn_norm_output,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(ffn_output, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, ffn_output);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- inpL = cur;
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output_no_bias", -1);
- cur = ggml_add(ctx0, cur, model.output_b);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_plamo() {
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- struct ggml_tensor * attention_norm = cur;
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, hparams.n_rot, n_head, n_tokens), inp_pos,
- n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, hparams.n_rot, n_head_kv, n_tokens), inp_pos,
- n_embd_head, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow);
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * sa_out = cur;
- cur = attention_norm;
- // feed-forward network
- {
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- cur = ggml_add(ctx0, cur, sa_out);
- cb(cur, "l_out", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_gpt2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- struct ggml_tensor * cur;
- struct ggml_tensor * pos;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
- cb(pos, "pos_embd", -1);
- inpL = ggml_add(ctx0, inpL, pos);
- cb(inpL, "inpL", -1);
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_codeshell() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm,
- model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
- cb(cur, "wqkv", il);
- cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
- cb(cur, "bqkv", il);
- struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
- struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
- cb(tmpq, "tmpq", il);
- cb(tmpk, "tmpk", il);
- cb(Vcur, "Vcur", il);
- struct ggml_tensor * Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- struct ggml_tensor * Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // add the input
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
- cb(ffn_inp, "ffn_inp", il);
- // FF
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm,
- model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b,
- NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b,
- NULL,
- LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
- cb(cur, "ffn_out", il);
- }
- inpL = ggml_add(ctx0, cur, ffn_inp);
- cb(inpL, "l_out", il);
- }
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.output_norm,
- model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_orion() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, model.layers[il].attn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- // if (model.layers[il].bq) {
- // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- // cb(Qcur, "Qcur", il);
- // }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- // if (model.layers[il].bk) {
- // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- // cb(Kcur, "Kcur", il);
- // }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- // if (model.layers[il].bv) {
- // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- // cb(Vcur, "Vcur", il);
- // }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, NULL,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
- LLM_NORM, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, model.output_norm_b,
- LLM_NORM, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- struct ggml_cgraph * build_internlm2() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.output, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // ref: https://arxiv.org/abs/2203.03466
- // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
- // based on the original build_llama() function
- struct ggml_cgraph * build_minicpm() {
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
- const int64_t n_embd_head = hparams.n_embd_head_v;
- GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
- GGML_ASSERT(n_embd_head == hparams.n_rot);
- const int64_t n_embd = hparams.n_embd;
- //TODO: if the model varies, these parameters need to be read from the model
- const int64_t n_embd_base = 256;
- const float scale_embd = 12.0f;
- const float scale_depth = 1.4f;
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
- cb(inpL, "inp_embd", -1);
- // scale the input embeddings
- inpL = ggml_scale(ctx0, inpL, scale_embd);
- cb(inpL, "inp_scaled", -1);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
- cb(inp_pos, "inp_pos", -1);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
- cb(KQ_mask, "KQ_mask", -1);
- // shift the entire K-cache if needed
- if (do_rope_shift) {
- llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
- }
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- cur = llm_build_norm(ctx0, inpL, hparams,
- model.layers[il].attn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "attn_norm", il);
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- cb(Qcur, "Qcur", il);
- if (model.layers[il].bq) {
- Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
- cb(Qcur, "Qcur", il);
- }
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- cb(Kcur, "Kcur", il);
- if (model.layers[il].bk) {
- Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
- cb(Kcur, "Kcur", il);
- }
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- cb(Vcur, "Vcur", il);
- if (model.layers[il].bv) {
- Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
- cb(Vcur, "Vcur", il);
- }
- Qcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Qcur, "Qcur", il);
- Kcur = ggml_rope_custom(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
- hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- cb(Kcur, "Kcur", il);
- cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
- model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
- cb(cur, "kqv_out", il);
- }
- // scale_res - scale the hidden states for residual connection
- const float scale_res = scale_depth/sqrtf(float(n_layer));
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled", -1);
- struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
- cb(ffn_inp, "ffn_inp", il);
- // feed-forward network
- {
- cur = llm_build_norm(ctx0, ffn_inp, hparams,
- model.layers[il].ffn_norm, NULL,
- LLM_NORM_RMS, cb, il);
- cb(cur, "ffn_norm", il);
- cur = llm_build_ffn(ctx0, cur,
- model.layers[il].ffn_up, NULL,
- model.layers[il].ffn_gate, NULL,
- model.layers[il].ffn_down, NULL,
- NULL,
- LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
- cb(cur, "ffn_out", il);
- }
- // scale the hidden states for residual connection
- cur = ggml_scale(ctx0, cur, scale_res);
- cb(cur, "hidden_scaled_ffn", -1);
- cur = ggml_add(ctx0, cur, ffn_inp);
- cb(cur, "l_out", il);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- cur = llm_build_norm(ctx0, cur, hparams,
- model.output_norm, NULL,
- LLM_NORM_RMS, cb, -1);
- cb(cur, "result_norm", -1);
- // lm_head scaling
- const float scale_lmhead = float(n_embd_base)/float(n_embd);
- cur = ggml_scale(ctx0, cur, scale_lmhead);
- cb(cur, "lmhead_scaling", -1);
- // lm_head
- cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
- cb(cur, "result_output", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- };
- static struct ggml_cgraph * llama_build_graph(
- llama_context & lctx,
- const llama_batch & batch,
- bool worst_case) {
- const auto & model = lctx.model;
- // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
- llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
- if (il >= 0) {
- ggml_format_name(cur, "%s-%d", name, il);
- } else {
- ggml_set_name(cur, name);
- }
- if (!lctx.cparams.offload_kqv) {
- if (strcmp(name, "kqv_merged_cont") == 0) {
- // all nodes between the KV store and the attention output are run on the CPU
- ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu);
- }
- }
- };
- struct ggml_cgraph * result = NULL;
- struct llm_build_context llm(lctx, batch, cb, worst_case);
- llm.init();
- switch (model.arch) {
- case LLM_ARCH_LLAMA:
- {
- result = llm.build_llama();
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- result = llm.build_baichuan();
- } break;
- case LLM_ARCH_FALCON:
- {
- result = llm.build_falcon();
- } break;
- case LLM_ARCH_STARCODER:
- {
- result = llm.build_starcoder();
- } break;
- case LLM_ARCH_PERSIMMON:
- {
- result = llm.build_persimmon();
- } break;
- case LLM_ARCH_REFACT:
- {
- result = llm.build_refact();
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- {
- result = llm.build_bert();
- } break;
- case LLM_ARCH_BLOOM:
- {
- result = llm.build_bloom();
- } break;
- case LLM_ARCH_MPT:
- {
- result = llm.build_mpt();
- } break;
- case LLM_ARCH_STABLELM:
- {
- result = llm.build_stablelm();
- } break;
- case LLM_ARCH_QWEN:
- {
- result = llm.build_qwen();
- } break;
- case LLM_ARCH_QWEN2:
- {
- result = llm.build_qwen2();
- } break;
- case LLM_ARCH_PHI2:
- {
- result = llm.build_phi2();
- } break;
- case LLM_ARCH_PLAMO:
- {
- result = llm.build_plamo();
- } break;
- case LLM_ARCH_GPT2:
- {
- result = llm.build_gpt2();
- } break;
- case LLM_ARCH_CODESHELL:
- {
- result = llm.build_codeshell();
- } break;
- case LLM_ARCH_ORION:
- {
- result = llm.build_orion();
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- result = llm.build_internlm2();
- } break;
- case LLM_ARCH_MINICPM:
- {
- result = llm.build_minicpm();
- } break;
- default:
- GGML_ASSERT(false);
- }
- llm.free();
- return result;
- }
- static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
- //
- // set input data
- //
- const auto & hparams = lctx.model.hparams;
- const auto & cparams = lctx.cparams;
- const auto & kv_self = lctx.kv_self;
- if (batch.token) {
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
- }
- if (batch.embd) {
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
- }
- if (batch.pos) {
- const int64_t n_tokens = batch.n_tokens;
- ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
- }
- {
- const int64_t n_kv = kv_self.n;
- const int64_t n_tokens = batch.n_tokens;
- assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
- float * data = (float *) lctx.inp_KQ_mask->data;
- for (int h = 0; h < 1; ++h) {
- for (int j = 0; j < n_tokens; ++j) {
- const llama_pos pos = batch.pos[j];
- const llama_seq_id seq_id = batch.seq_id[j][0];
- for (int i = 0; i < n_kv; ++i) {
- float f;
- if (!lctx.kv_self.cells[i].has_seq_id(seq_id) ||
- (hparams.causal_attn && lctx.kv_self.cells[i].pos > pos)) {
- f = -INFINITY;
- } else {
- f = 0;
- }
- data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
- }
- }
- }
- }
- if (hparams.need_kq_pos) {
- const int64_t n_kv = kv_self.n;
- assert(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
- float * data = (float *) lctx.inp_KQ_pos->data;
- for (int i = 0; i < n_kv; ++i) {
- data[i] = float(lctx.kv_self.cells[i].pos);
- }
- }
- if (kv_self.has_shift) {
- const int64_t n_ctx = cparams.n_ctx;
- assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
- int32_t * data = (int32_t *) lctx.inp_K_shift->data;
- for (int i = 0; i < n_ctx; ++i) {
- data[i] = lctx.kv_self.cells[i].delta;
- }
- }
- if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_MEAN) {
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
- float * data = (float *) lctx.inp_mean->data;
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
- std::vector<uint64_t> sum(n_tokens, 0);
- for (int i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = batch.seq_id[i][0];
- sum[seq_id] += 1;
- }
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
- const uint64_t s = sum[i];
- if (s > 0) {
- div[i] = 1.0f/float(s);
- }
- }
- for (int i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = batch.seq_id[i][0];
- data[seq_id*n_tokens + i] = div[seq_id];
- }
- }
- if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_CLS) {
- const int64_t n_tokens = batch.n_tokens;
- GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
- uint32_t * data = (uint32_t *) lctx.inp_cls->data;
- for (int i = 0; i < n_tokens; ++i) {
- const llama_seq_id seq_id = batch.seq_id[i][0];
- const llama_pos pos = batch.pos[i];
- if (pos == 0) {
- data[seq_id] = i;
- }
- }
- }
- }
- // decode a batch of tokens by evaluating the transformer
- //
- // - lctx: llama context
- // - batch: batch to evaluate
- //
- // return 0 on success
- // return positive int on warning
- // return negative int on error
- //
- static int llama_decode_internal(
- llama_context & lctx,
- llama_batch batch) {
- const uint32_t n_tokens = batch.n_tokens;
- if (n_tokens == 0) {
- LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
- return -1;
- }
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- const auto & cparams = lctx.cparams;
- const auto n_batch = cparams.n_batch;
- GGML_ASSERT(n_tokens <= n_batch);
- int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
- GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
- const int64_t t_start_us = ggml_time_us();
- #ifdef GGML_USE_MPI
- // TODO: needs fix after #3228
- GGML_ASSERT(false && "not implemented");
- //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
- #endif
- GGML_ASSERT(n_threads > 0);
- auto & kv_self = lctx.kv_self;
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_vocab = hparams.n_vocab;
- // helpers for smoother batch API transition
- // after deprecating the llama_eval calls, these will be removed
- std::vector<llama_pos> pos;
- std::vector<int32_t> n_seq_id;
- std::vector<llama_seq_id *> seq_id_arr;
- std::vector<std::vector<llama_seq_id>> seq_id;
- if (batch.pos == nullptr) {
- pos.resize(n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
- }
- batch.pos = pos.data();
- }
- if (batch.seq_id == nullptr) {
- n_seq_id.resize(n_tokens);
- seq_id.resize(n_tokens);
- seq_id_arr.resize(n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- n_seq_id[i] = 1;
- seq_id[i].resize(1);
- seq_id[i][0] = batch.all_seq_id;
- seq_id_arr[i] = seq_id[i].data();
- }
- batch.n_seq_id = n_seq_id.data();
- batch.seq_id = seq_id_arr.data();
- }
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (kv_self.head > kv_self.used + 2*n_tokens) {
- kv_self.head = 0;
- }
- if (!llama_kv_cache_find_slot(kv_self, batch)) {
- return 1;
- }
- // a heuristic, to avoid attending the full cache if it is not yet utilized
- // after enough generations, the benefit from this heuristic disappears
- // if we start defragmenting the cache, the benefit from this will be more important
- kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
- //kv_self.n = llama_kv_cache_cell_max(kv_self);
- //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
- ggml_backend_sched_reset(lctx.sched);
- ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
- ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
- // the output is always the last tensor in the graph
- struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
- struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
- if (strcmp(res->name, "result_output") == 0) {
- // the embeddings could be the second to last tensor, or the third to last tensor
- if (strcmp(embeddings->name, "result_norm") != 0) {
- embeddings = gf->nodes[gf->n_nodes - 3];
- GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
- }
- } else if (strcmp(res->name, "result_embd") == 0) {
- embeddings = res;
- res = nullptr;
- } else {
- GGML_ASSERT(false);
- }
- // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
- // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
- // with the BLAS calls. need a better solution
- // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
- // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
- if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
- n_threads = std::min(4, n_threads);
- }
- #ifdef GGML_USE_MPI
- const int64_t n_layer = hparams.n_layer;
- ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
- #endif
- #ifdef GGML_USE_METAL
- if (ggml_backend_is_metal(lctx.backend_metal)) {
- ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
- }
- #endif
- if (lctx.backend_cpu != nullptr) {
- ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
- }
- llama_set_inputs(lctx, batch);
- ggml_backend_sched_graph_compute(lctx.sched, gf);
- // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
- #ifdef GGML_USE_MPI
- ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
- #endif
- // update the kv ring buffer
- {
- if (kv_self.has_shift) {
- kv_self.has_shift = false;
- for (uint32_t i = 0; i < kv_self.size; ++i) {
- kv_self.cells[i].delta = 0;
- }
- }
- kv_self.head += n_tokens;
- // Ensure kv cache head points to a valid index.
- if (kv_self.head >= kv_self.size) {
- kv_self.head = 0;
- }
- }
- #ifdef GGML_PERF
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- ggml_graph_print(gf);
- #endif
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(gf, NULL, "llama.dot");
- //}
- // extract logits
- // TODO: do not compute and extract logits if only embeddings are needed
- // need to update the graphs to skip "result_output"
- if (res) {
- auto & logits_out = lctx.logits;
- #ifndef NDEBUG
- auto & logits_valid = lctx.logits_valid;
- logits_valid.clear();
- logits_valid.resize(n_tokens);
- logits_out.clear();
- #endif
- ggml_backend_t res_backend = ggml_backend_sched_get_node_backend(lctx.sched, res);
- GGML_ASSERT(res_backend != nullptr);
- if (batch.logits) {
- logits_out.resize(n_vocab * n_tokens);
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (batch.logits[i] == 0) {
- continue;
- }
- ggml_backend_tensor_get_async(res_backend, res, logits_out.data() + (n_vocab*i), (n_vocab*i)*sizeof(float), n_vocab*sizeof(float));
- #ifndef NDEBUG
- logits_valid[i] = true;
- #endif
- }
- } else if (lctx.logits_all) {
- logits_out.resize(n_vocab * n_tokens);
- ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float));
- #ifndef NDEBUG
- std::fill(logits_valid.begin(), logits_valid.end(), true);
- #endif
- } else {
- logits_out.resize(n_vocab);
- ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float));
- #ifndef NDEBUG
- logits_valid[0] = true;
- #endif
- }
- ggml_backend_synchronize(res_backend);
- }
- // extract embeddings
- if (!lctx.embedding.empty()) {
- auto & embedding_out = lctx.embedding;
- const int64_t embd_pos = res ? n_embd * (n_tokens-1) : 0;
- const int64_t embd_size = res ? n_embd : n_embd * n_tokens;
- embedding_out.resize(embd_size);
- ggml_backend_t embeddings_backend = ggml_backend_sched_get_node_backend(lctx.sched, embeddings);
- ggml_backend_tensor_get_async(embeddings_backend, embeddings, embedding_out.data(), embd_pos*sizeof(float), embd_size*sizeof(float));
- ggml_backend_synchronize(embeddings_backend);
- }
- // measure the performance only for the single-token evals
- if (n_tokens == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (n_tokens > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += n_tokens;
- }
- // get a more accurate load time, upon first eval
- // TODO: fix this
- if (!lctx.has_evaluated_once) {
- lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
- lctx.has_evaluated_once = true;
- }
- return 0;
- }
- //
- // tokenizer
- //
- static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
- return vocab.type;
- }
- static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
- }
- static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
- }
- static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
- }
- static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
- }
- static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
- return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
- }
- static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
- GGML_ASSERT(llama_is_byte_token(vocab, id));
- const auto& token_data = vocab.id_to_token.at(id);
- switch (llama_vocab_get_type(vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- auto buf = token_data.text.substr(3, 2);
- return strtol(buf.c_str(), NULL, 16);
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- GGML_ASSERT(false);
- return unicode_to_bytes_bpe(token_data.text);
- }
- case LLAMA_VOCAB_TYPE_WPM: {
- GGML_ASSERT(false);
- }
- default:
- GGML_ASSERT(false);
- }
- }
- static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
- static const char * hex = "0123456789ABCDEF";
- switch (llama_vocab_get_type(vocab)) {
- case LLAMA_VOCAB_TYPE_SPM: {
- const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
- auto token = vocab.token_to_id.find(buf);
- if (token != vocab.token_to_id.end()) {
- return (*token).second;
- }
- // Try to fall back to just the byte as a string
- const char buf2[2] = { (char)ch, 0 };
- return vocab.token_to_id.at(buf2);
- }
- case LLAMA_VOCAB_TYPE_WPM:
- case LLAMA_VOCAB_TYPE_BPE: {
- return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
- }
- default:
- GGML_ASSERT(false);
- }
- }
- static void llama_escape_whitespace(std::string & text) {
- replace_all(text, " ", "\xe2\x96\x81");
- }
- static void llama_unescape_whitespace(std::string & word) {
- replace_all(word, "\xe2\x96\x81", " ");
- }
- struct llm_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
- // SPM tokenizer
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llm_bigram_spm {
- struct comparator {
- bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_spm>;
- using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- float score;
- size_t size;
- };
- struct llm_tokenizer_spm {
- llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llm_symbol sym;
- size_t len = utf8_len(text[offs]);
- sym.text = text.c_str() + offs;
- sym.n = std::min(len, text.size() - offs);
- offs += sym.n;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_sym = symbols[bigram.left];
- auto & right_sym = symbols[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- resegment(symbol, output);
- }
- }
- private:
- void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
- auto text = std::string(symbol.text, symbol.n);
- auto token = vocab.token_to_id.find(text);
- // Do we need to support is_unused?
- if (token != vocab.token_to_id.end()) {
- output.push_back((*token).second);
- return;
- }
- const auto p = rev_merge.find(text);
- if (p == rev_merge.end()) {
- // output any symbols that did not form tokens as bytes.
- output.reserve(output.size() + symbol.n);
- for (int j = 0; j < (int)symbol.n; ++j) {
- llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
- output.push_back(token_id);
- }
- return;
- }
- resegment(symbols[p->second.first], output);
- resegment(symbols[p->second.second], output);
- }
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
- auto token = vocab.token_to_id.find(text);
- if (token == vocab.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
- return;
- }
- const auto & tok_data = vocab.id_to_token[(*token).second];
- llm_bigram_spm bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_data.score;
- bigram.size = text.size();
- work_queue.push(bigram);
- // Do we need to support is_unused?
- rev_merge[text] = std::make_pair(left, right);
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- llm_bigram_spm::queue work_queue;
- std::map<std::string, std::pair<int, int>> rev_merge;
- };
- // BPE tokenizer
- // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
- // tried to simplify unicode stuff, so most likely does not work 100% correctly!
- // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
- struct llm_bigram_bpe {
- struct comparator {
- bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
- return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llm_bigram_bpe>;
- using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
- llm_symbol::index left;
- llm_symbol::index right;
- std::string text;
- int rank;
- size_t size;
- };
- struct llm_tokenizer_bpe {
- llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- int final_prev_index = -1;
- auto word_collection = bpe_gpt2_preprocess(text);
- symbols_final.clear();
- for (auto & word : word_collection) {
- work_queue = llm_bigram_bpe::queue();
- symbols.clear();
- int index = 0;
- size_t offset = 0;
- while (offset < word.size()) {
- llm_symbol sym;
- size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
- sym.text = word.c_str() + offset;
- sym.n = char_len;
- offset += sym.n;
- sym.prev = index - 1;
- sym.next = offset == word.size() ? -1 : index + 1;
- index++;
- symbols.emplace_back(sym);
- }
- for (size_t i = 1; i < symbols.size(); ++i) {
- add_new_bigram(i - 1, i);
- }
- // build token(s)
- while (!work_queue.empty()) {
- auto bigram = work_queue.top();
- work_queue.pop();
- auto & left_symbol = symbols[bigram.left];
- auto & right_symbol = symbols[bigram.right];
- if (left_symbol.n == 0 || right_symbol.n == 0) {
- continue;
- }
- std::string left_token = std::string(left_symbol.text, left_symbol.n);
- std::string right_token = std::string(right_symbol.text, right_symbol.n);
- if (left_token + right_token != bigram.text) {
- continue; // Skip this bigram if it's outdated
- }
- // merge the right sym into the left one
- left_symbol.n += right_symbol.n;
- right_symbol.n = 0;
- // remove the right sym from the chain
- left_symbol.next = right_symbol.next;
- if (right_symbol.next >= 0) {
- symbols[right_symbol.next].prev = bigram.left;
- }
- add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
- add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
- }
- // add the fnished tokens to the final list keeping correct order for next and prev
- for (auto & sym : symbols) {
- if (sym.n > 0) {
- sym.prev = final_prev_index;
- sym.next = -1;
- if (final_prev_index != -1) {
- symbols_final[final_prev_index].next = symbols_final.size();
- }
- symbols_final.emplace_back(sym);
- final_prev_index = symbols_final.size() - 1;
- }
- }
- }
- symbols = symbols_final;
- if (!symbols.empty()) {
- for (int i = 0; i != -1; i = symbols[i].next) {
- auto & symbol = symbols[i];
- if (symbol.n == 0) {
- continue;
- }
- const std::string str = std::string(symbol.text, symbol.n);
- const auto token = vocab.token_to_id.find(str);
- if (token == vocab.token_to_id.end()) {
- for (auto j = str.begin(); j != str.end(); ++j) {
- std::string byte_str(1, *j);
- auto token_multibyte = vocab.token_to_id.find(byte_str);
- if (token_multibyte == vocab.token_to_id.end()) {
- throw std::runtime_error("ERROR: byte not found in vocab");
- }
- output.push_back((*token_multibyte).second);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- }
- private:
- void add_new_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- std::string left_token = std::string(symbols[left].text, symbols[left].n);
- std::string right_token = std::string(symbols[right].text, symbols[right].n);
- int rank_found = -1;
- rank_found = vocab.find_bpe_rank(left_token, right_token);
- if (rank_found < 0) {
- return;
- }
- llm_bigram_bpe bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.text = left_token + right_token;
- bigram.size = left_token.size() + right_token.size();
- bigram.rank = rank_found;
- work_queue.push(bigram);
- }
- std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
- std::vector<std::string> bpe_words;
- std::vector<std::string> bpe_encoded_words;
- std::string token = "";
- // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
- bool collecting_numeric = false;
- bool collecting_letter = false;
- bool collecting_special = false;
- bool collecting_whitespace_lookahead = false;
- bool collecting = false;
- std::vector<std::string> text_utf;
- text_utf.reserve(text.size());
- bpe_words.reserve(text.size());
- bpe_encoded_words.reserve(text.size());
- auto cps = codepoints_from_utf8(text);
- for (size_t i = 0; i < cps.size(); ++i)
- text_utf.emplace_back(codepoint_to_utf8(cps[i]));
- for (int i = 0; i < (int)text_utf.size(); i++) {
- const std::string & utf_char = text_utf[i];
- bool split_condition = false;
- int bytes_remain = text_utf.size() - i;
- // forward backward lookups
- const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
- const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
- // handling contractions
- if (!split_condition && bytes_remain >= 2) {
- // 's|'t|'m|'d
- if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
- split_condition = true;
- }
- if (split_condition) {
- if (token.size()) {
- bpe_words.emplace_back(token); // push previous content as token
- }
- token = utf_char + utf_char_next;
- bpe_words.emplace_back(token);
- token = "";
- i++;
- continue;
- }
- }
- if (!split_condition && bytes_remain >= 3) {
- // 're|'ve|'ll
- if (utf_char == "\'" && (
- (utf_char_next == "r" && utf_char_next_next == "e") ||
- (utf_char_next == "v" && utf_char_next_next == "e") ||
- (utf_char_next == "l" && utf_char_next_next == "l"))
- ) {
- split_condition = true;
- }
- if (split_condition) {
- // current token + next token can be defined
- if (token.size()) {
- bpe_words.emplace_back(token); // push previous content as token
- }
- token = utf_char + utf_char_next + utf_char_next_next;
- bpe_words.emplace_back(token); // the contraction
- token = "";
- i += 2;
- continue;
- }
- }
- if (!split_condition && !collecting) {
- if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
- collecting_letter = true;
- collecting = true;
- }
- else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
- collecting_numeric = true;
- collecting = true;
- }
- else if (
- ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
- (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
- ) {
- collecting_special = true;
- collecting = true;
- }
- else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
- collecting_whitespace_lookahead = true;
- collecting = true;
- }
- else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
- split_condition = true;
- }
- }
- else if (!split_condition && collecting) {
- if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
- split_condition = true;
- }
- else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
- split_condition = true;
- }
- else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
- split_condition = true;
- }
- else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
- split_condition = true;
- }
- }
- if (utf_char_next == "") {
- split_condition = true; // final
- token += utf_char;
- }
- if (split_condition) {
- if (token.size()) {
- bpe_words.emplace_back(token);
- }
- token = utf_char;
- collecting = false;
- collecting_letter = false;
- collecting_numeric = false;
- collecting_special = false;
- collecting_whitespace_lookahead = false;
- }
- else {
- token += utf_char;
- }
- }
- for (std::string & word : bpe_words) {
- std::string encoded_token = "";
- for (char & c : word) {
- encoded_token += bytes_to_unicode_bpe(c);
- }
- bpe_encoded_words.emplace_back(encoded_token);
- }
- return bpe_encoded_words;
- }
- const llama_vocab & vocab;
- std::vector<llm_symbol> symbols;
- std::vector<llm_symbol> symbols_final;
- llm_bigram_bpe::queue work_queue;
- };
- struct llm_tokenizer_wpm {
- llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- auto * token_map = &vocab.token_to_id;
- // normalize and split by whitespace
- std::vector<std::string> words = preprocess(text);
- // bos token prepended already
- // find the longest tokens that form the words
- for (const std::string &word : words) {
- // skip empty words
- if (word.size() == 0) {
- continue;
- }
- // prepend phantom space
- std::string word1 = "\xe2\x96\x81" + word;
- int n = word1.size();
- // we're at the start of a new word
- int i = 0;
- bool match_any = false;
- // move through character position in word
- while (i < n) {
- // loop through possible match length
- bool match = false;
- for (int j = n; j > i; j--) {
- auto it = token_map->find(word1.substr(i, j - i));
- if (it != token_map->end()) {
- output.push_back(it->second);
- match = true;
- match_any = true;
- i = j;
- break;
- }
- }
- // must be an unknown character
- if (!match) {
- i++;
- }
- }
- // we didn't find any matches for this word
- if (!match_any) {
- output.push_back(vocab.special_unk_id);
- }
- }
- // append eos token
- output.push_back(vocab.special_eos_id);
- }
- std::vector<std::string> preprocess(const std::string & text) {
- std::string ori_str = normalize(text);
- uint64_t ori_size = ori_str.size();
- // single punct / single symbol / single digit
- // baseline: add whitespace on the left and right of punct and chinese characters
- std::vector<std::string> words;
- std::string new_str = "";
- uint64_t i = 0;
- while (i < ori_size) {
- int utf_char_len = utf8_len(ori_str[i]);
- if ((utf_char_len == 1) && ispunct(ori_str[i])) {
- new_str += " ";
- new_str += ori_str[i];
- new_str += " ";
- i += 1;
- }
- else if ((utf_char_len == 3) && is_chinese_char(ori_str.substr(i, 3))) {
- new_str += " ";
- new_str += ori_str.substr(i, 3);
- new_str += " ";
- i += 3;
- }
- else {
- new_str += ori_str[i];
- i += 1;
- }
- }
- // split by whitespace
- uint64_t l = 0;
- uint64_t r = 0;
- while (r < new_str.size()) {
- // if is whitespace
- if (isspace(new_str[r])) {
- if (r > l) words.push_back(new_str.substr(l, (r - l)));
- l = r + 1;
- r = l;
- }
- else {
- r += 1;
- }
- }
- if (r > l) {
- words.push_back(new_str.substr(l, (r - l)));
- }
- return words;
- }
- std::string normalize(const std::string & text) {
- // TODO: handle chinese characters? https://github.com/huggingface/tokenizers/blob/ef5f50605ddf9f8caef1598c0e4853862b9707a7/tokenizers/src/normalizers/bert.rs#L98
- std::string text2 = strip_accents(text);
- for (size_t i = 0; i < text2.size(); i += utf8_len(text2[i])) {
- char c = text2[i];
- if (c >= 'A' && c <= 'Z') {
- text2[i] = c - 'A' + 'a';
- }
- }
- return text2;
- }
- bool is_chinese_char(const std::string & str) {
- int len = str.length();
- unsigned int codepoint = 0;
- int num_bytes = 0;
- int i = 0;
- unsigned char ch = static_cast<unsigned char>(str[i]);
- if (ch <= 0x7f) {
- codepoint = ch;
- num_bytes = 1;
- } else if ((ch >> 5) == 0x06) {
- codepoint = ch & 0x1f;
- num_bytes = 2;
- } else if ((ch >> 4) == 0x0e) {
- codepoint = ch & 0x0f;
- num_bytes = 3;
- } else if ((ch >> 3) == 0x1e) {
- codepoint = ch & 0x07;
- num_bytes = 4;
- }
- for (int j = 1; j < num_bytes; ++j) {
- if (i + j >= len) {
- return false; // incomplete UTF-8 character
- }
- unsigned char next_ch = static_cast<unsigned char>(str[i + j]);
- if ((next_ch >> 6) != 0x02) {
- return false; // invalid trailing byte
- }
- codepoint = (codepoint << 6) | (next_ch & 0x3f);
- }
- if ((codepoint >= 0x4E00 && codepoint <= 0x9FFF) ||
- (codepoint >= 0x3400 && codepoint <= 0x4DBF) ||
- (codepoint >= 0x20000 && codepoint <= 0x2A6DF) ||
- (codepoint >= 0x2A700 && codepoint <= 0x2B73F) ||
- (codepoint >= 0x2B740 && codepoint <= 0x2B81F) ||
- (codepoint >= 0x2B920 && codepoint <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
- (codepoint >= 0xF900 && codepoint <= 0xFAFF) ||
- (codepoint >= 0x2F800 && codepoint <= 0x2FA1F) ||
- (codepoint >= 0x3000 && codepoint <= 0x303F) ||
- (codepoint >= 0xFF00 && codepoint <= 0xFFEF)) {
- return true; // NOLINT
- }
- return false;
- }
- std::string strip_accents(const std::string & input_string) {
- std::string resultString;
- std::map<std::string, char> accent_map = {
- {"À", 'A'}, {"Á", 'A'}, {"Â", 'A'}, {"Ã", 'A'}, {"Ä", 'A'}, {"Å", 'A'},
- {"à", 'a'}, {"á", 'a'}, {"â", 'a'}, {"ã", 'a'}, {"ä", 'a'}, {"å", 'a'},
- {"È", 'E'}, {"É", 'E'}, {"Ê", 'E'}, {"Ë", 'E'}, {"è", 'e'}, {"é", 'e'},
- {"ê", 'e'}, {"ë", 'e'}, {"Ì", 'I'}, {"Í", 'I'}, {"Î", 'I'}, {"Ï", 'I'},
- {"ì", 'i'}, {"í", 'i'}, {"î", 'i'}, {"ï", 'i'}, {"Ò", 'O'}, {"Ó", 'O'},
- {"Ô", 'O'}, {"Õ", 'O'}, {"Ö", 'O'}, {"ò", 'o'}, {"ó", 'o'}, {"ô", 'o'},
- {"õ", 'o'}, {"ö", 'o'}, {"Ù", 'U'}, {"Ú", 'U'}, {"Û", 'U'}, {"Ü", 'U'},
- {"ù", 'u'}, {"ú", 'u'}, {"û", 'u'}, {"ü", 'u'}, {"Ý", 'Y'}, {"ý", 'y'},
- {"Ç", 'C'}, {"ç", 'c'}, {"Ñ", 'N'}, {"ñ", 'n'},
- };
- for (size_t i = 0; i < input_string.length();) {
- int len = utf8_len(input_string[i]);
- std::string curChar = input_string.substr(i, len);
- auto iter = accent_map.find(curChar);
- if (iter != accent_map.end()) {
- resultString += iter->second;
- } else {
- resultString += curChar;
- }
- i += len;
- }
- return resultString;
- }
- static size_t utf8_len(char src) {
- const size_t lookup[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4};
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- const llama_vocab & vocab;
- };
- typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
- FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
- FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
- } FRAGMENT_BUFFER_VARIANT_TYPE;
- struct fragment_buffer_variant {
- fragment_buffer_variant(llama_vocab::id _token)
- :
- type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
- token(_token),
- raw_text(_dummy),
- offset(0),
- length(0) {}
- fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
- :
- type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
- token((llama_vocab::id) - 1),
- raw_text(_raw_text),
- offset(_offset),
- length(_length){
- GGML_ASSERT(_offset >= 0);
- GGML_ASSERT(_length >= 1);
- GGML_ASSERT(offset + length <= raw_text.length());
- }
- const FRAGMENT_BUFFER_VARIANT_TYPE type;
- const llama_vocab::id token;
- const std::string _dummy;
- const std::string & raw_text;
- const uint64_t offset;
- const uint64_t length;
- };
- // #define PRETOKENIZERDEBUG
- static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
- // for each special token
- for (const auto & st: vocab.special_tokens_cache) {
- const auto & special_token = st.first;
- const auto & special_id = st.second;
- // for each text fragment
- std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
- while (it != buffer.end()) {
- auto & fragment = (*it);
- // if a fragment is text ( not yet processed )
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto * raw_text = &(fragment.raw_text);
- auto raw_text_base_offset = fragment.offset;
- auto raw_text_base_length = fragment.length;
- // loop over the text
- while (true) {
- // find the first occurrence of a given special token in this fragment
- // passing offset argument only limit the "search area" but match coordinates
- // are still relative to the source full raw_text
- auto match = raw_text->find(special_token, raw_text_base_offset);
- // no occurrences found, stop processing this fragment for a given special token
- if (match == std::string::npos) break;
- // check if match is within bounds of offset <-> length
- if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
- #endif
- auto source = std::distance(buffer.begin(), it);
- // if match is further than base offset
- // then we have some text to the left of it
- if (match > raw_text_base_offset) {
- // left
- const int64_t left_reminder_offset = raw_text_base_offset + 0;
- const int64_t left_reminder_length = match - raw_text_base_offset;
- buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
- #endif
- it++;
- }
- // special token
- buffer.emplace_after(it, special_id);
- it++;
- // right
- if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
- const int64_t right_reminder_offset = match + special_token.length();
- const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
- buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
- #endif
- it++;
- if (source == 0) {
- buffer.erase_after(buffer.before_begin());
- } else {
- buffer.erase_after(std::next(buffer.begin(), (source-1)));
- }
- // repeat for the right side
- raw_text_base_offset = right_reminder_offset;
- raw_text_base_length = right_reminder_length;
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
- #endif
- } else {
- if (source == 0) {
- buffer.erase_after(buffer.before_begin());
- } else {
- buffer.erase_after(std::next(buffer.begin(), (source-1)));
- }
- break;
- }
- }
- }
- it++;
- }
- }
- }
- static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
- std::vector<llama_vocab::id> output;
- // OG tokenizer behavior:
- //
- // tokenizer.encode('', add_bos=True) returns [1]
- // tokenizer.encode('', add_bos=False) returns []
- if (bos && vocab.special_bos_id != -1) {
- output.push_back(vocab.special_bos_id);
- }
- if (raw_text.empty()) {
- return output;
- }
- std::forward_list<fragment_buffer_variant> fragment_buffer;
- fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
- if (special) tokenizer_st_partition(vocab, fragment_buffer);
- switch (vocab.type) {
- case LLAMA_VOCAB_TYPE_SPM:
- {
- for (const auto & fragment : fragment_buffer) {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- // without adding this leading whitespace, we do not get the same results as the original tokenizer
- // TODO: It's likely possible to get rid of this string copy entirely
- // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
- // and passing 'add space prefix' as bool argument
- //
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- if (&fragment == &fragment_buffer.front()) {
- if (vocab.add_space_prefix) {
- raw_text = " " + raw_text; // prefix with space if the first token is not special
- }
- }
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_spm tokenizer(vocab);
- llama_escape_whitespace(raw_text);
- tokenizer.tokenize(raw_text, output);
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- output.push_back(fragment.token);
- }
- }
- } break;
- case LLAMA_VOCAB_TYPE_BPE:
- {
- for (const auto & fragment : fragment_buffer) {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_bpe tokenizer(vocab);
- tokenizer.tokenize(raw_text, output);
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- output.push_back(fragment.token);
- }
- }
- } break;
- case LLAMA_VOCAB_TYPE_WPM:
- {
- for (const auto & fragment : fragment_buffer) {
- if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
- auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
- #ifdef PRETOKENIZERDEBUG
- LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
- #endif
- llm_tokenizer_wpm tokenizer(vocab);
- tokenizer.tokenize(raw_text, output);
- } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
- output.push_back(fragment.token);
- }
- }
- } break;
- }
- return output;
- }
- //
- // grammar - internal
- //
- struct llama_partial_utf8 {
- uint32_t value; // bit value so far (unshifted)
- int n_remain; // num bytes remaining; -1 indicates invalid sequence
- };
- struct llama_grammar {
- const std::vector<std::vector<llama_grammar_element>> rules;
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- // buffer for partially generated UTF-8 sequence from accepted tokens
- llama_partial_utf8 partial_utf8;
- };
- struct llama_grammar_candidate {
- size_t index;
- const uint32_t * code_points;
- llama_partial_utf8 partial_utf8;
- };
- // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
- // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
- static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
- const std::string & src,
- llama_partial_utf8 partial_start) {
- static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
- const char * pos = src.c_str();
- std::vector<uint32_t> code_points;
- // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
- code_points.reserve(src.size() + 1);
- uint32_t value = partial_start.value;
- int n_remain = partial_start.n_remain;
- // continue previous decode, if applicable
- while (*pos != 0 && n_remain > 0) {
- uint8_t next_byte = static_cast<uint8_t>(*pos);
- if ((next_byte >> 6) != 2) {
- // invalid sequence, abort
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
- }
- value = (value << 6) + (next_byte & 0x3F);
- ++pos;
- --n_remain;
- }
- if (partial_start.n_remain > 0 && n_remain == 0) {
- code_points.push_back(value);
- }
- // decode any subsequent utf-8 sequences, which may end in an incomplete one
- while (*pos != 0) {
- uint8_t first_byte = static_cast<uint8_t>(*pos);
- uint8_t highbits = first_byte >> 4;
- n_remain = lookup[highbits] - 1;
- if (n_remain < 0) {
- // invalid sequence, abort
- code_points.clear();
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
- }
- uint8_t mask = (1 << (7 - n_remain)) - 1;
- value = first_byte & mask;
- ++pos;
- while (*pos != 0 && n_remain > 0) {
- value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
- ++pos;
- --n_remain;
- }
- if (n_remain == 0) {
- code_points.push_back(value);
- }
- }
- code_points.push_back(0);
- return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
- }
- // returns true iff pos points to the end of one of the definitions of a rule
- static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
- switch (pos->type) {
- case LLAMA_GRETYPE_END: return true; // NOLINT
- case LLAMA_GRETYPE_ALT: return true; // NOLINT
- default: return false;
- }
- }
- // returns true iff chr satisfies the char range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
- const llama_grammar_element * pos,
- const uint32_t chr) {
- bool found = false;
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- found = found || (pos->value <= chr && chr <= pos[1].value);
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- found = found || pos->value == chr;
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return std::make_pair(found == is_positive_char, pos);
- }
- // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
- // range at pos (regular or inverse range)
- // asserts that pos is pointing to a char range element
- static bool llama_grammar_match_partial_char(
- const llama_grammar_element * pos,
- const llama_partial_utf8 partial_utf8) {
- bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
- GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
- uint32_t partial_value = partial_utf8.value;
- int n_remain = partial_utf8.n_remain;
- // invalid sequence or 7-bit char split across 2 bytes (overlong)
- if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
- return false;
- }
- // range of possible code points this partial UTF-8 sequence could complete to
- uint32_t low = partial_value << (n_remain * 6);
- uint32_t high = low | ((1 << (n_remain * 6)) - 1);
- if (low == 0) {
- if (n_remain == 2) {
- low = 1 << 11;
- } else if (n_remain == 3) {
- low = 1 << 16;
- }
- }
- do {
- if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
- // inclusive range, e.g. [a-z]
- if (pos->value <= high && low <= pos[1].value) {
- return is_positive_char;
- }
- pos += 2;
- } else {
- // exact char match, e.g. [a] or "a"
- if (low <= pos->value && pos->value <= high) {
- return is_positive_char;
- }
- pos += 1;
- }
- } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
- return !is_positive_char;
- }
- // transforms a grammar pushdown stack into N possible stacks, all ending
- // at a character range (terminal element)
- static void llama_grammar_advance_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
- if (stack.empty()) {
- new_stacks.emplace_back(stack);
- return;
- }
- const llama_grammar_element * pos = stack.back();
- switch (pos->type) {
- case LLAMA_GRETYPE_RULE_REF: {
- const size_t rule_id = static_cast<size_t>(pos->value);
- const llama_grammar_element * subpos = rules[rule_id].data();
- do {
- // init new stack without the top (pos)
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos + 1)) {
- // if this rule ref is followed by another element, add that to stack
- new_stack.push_back(pos + 1);
- }
- if (!llama_grammar_is_end_of_sequence(subpos)) {
- // if alternate is nonempty, add to stack
- new_stack.push_back(subpos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- while (!llama_grammar_is_end_of_sequence(subpos)) {
- // scan to end of alternate def
- subpos++;
- }
- if (subpos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- subpos++;
- } else {
- break;
- }
- } while (true);
- break;
- }
- case LLAMA_GRETYPE_CHAR:
- case LLAMA_GRETYPE_CHAR_NOT:
- new_stacks.emplace_back(stack);
- break;
- default:
- // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
- // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
- // those
- GGML_ASSERT(false);
- }
- }
- // takes a set of possible pushdown stacks on a grammar, which are required to
- // be positioned at a character range (see `llama_grammar_advance_stack`), and
- // produces the N possible stacks if the given char is accepted at those
- // positions
- static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const uint32_t chr) {
- std::vector<std::vector<const llama_grammar_element *>> new_stacks;
- for (const auto & stack : stacks) {
- if (stack.empty()) {
- continue;
- }
- auto match = llama_grammar_match_char(stack.back(), chr);
- if (match.first) {
- const llama_grammar_element * pos = match.second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(pos)) {
- new_stack.push_back(pos);
- }
- llama_grammar_advance_stack(rules, new_stack, new_stacks);
- }
- }
- return new_stacks;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates);
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<const llama_grammar_element *> & stack,
- const std::vector<llama_grammar_candidate> & candidates) {
- std::vector<llama_grammar_candidate> rejects;
- if (stack.empty()) {
- for (const auto & tok : candidates) {
- if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
- rejects.push_back(tok);
- }
- }
- return rejects;
- }
- const llama_grammar_element * stack_pos = stack.back();
- std::vector<llama_grammar_candidate> next_candidates;
- for (const auto & tok : candidates) {
- if (*tok.code_points == 0) {
- // reached end of full codepoints in token, reject iff it ended in a partial sequence
- // that cannot satisfy this position in grammar
- if (tok.partial_utf8.n_remain != 0 &&
- !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
- rejects.push_back(tok);
- }
- } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
- next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
- } else {
- rejects.push_back(tok);
- }
- }
- const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
- // update top of stack to next element, if any
- std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
- if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
- stack_after.push_back(stack_pos_after);
- }
- std::vector<std::vector<const llama_grammar_element *>> next_stacks;
- llama_grammar_advance_stack(rules, stack_after, next_stacks);
- auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
- for (const auto & tok : next_rejects) {
- rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
- }
- return rejects;
- }
- static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
- const std::vector<std::vector<llama_grammar_element>> & rules,
- const std::vector<std::vector<const llama_grammar_element *>> & stacks,
- const std::vector<llama_grammar_candidate> & candidates) {
- GGML_ASSERT(!stacks.empty()); // REVIEW
- if (candidates.empty()) {
- return std::vector<llama_grammar_candidate>();
- }
- auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
- for (size_t i = 1, size = stacks.size(); i < size; ++i) {
- rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
- }
- return rejects;
- }
- //
- // grammar - external
- //
- struct llama_grammar * llama_grammar_init(
- const llama_grammar_element ** rules,
- size_t n_rules,
- size_t start_rule_index) {
- const llama_grammar_element * pos;
- // copy rule definitions into vectors
- std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
- for (size_t i = 0; i < n_rules; i++) {
- for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
- vec_rules[i].push_back(*pos);
- }
- vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
- }
- // loop over alternates of start rule to build initial stacks
- std::vector<std::vector<const llama_grammar_element *>> stacks;
- pos = rules[start_rule_index];
- do {
- std::vector<const llama_grammar_element *> stack;
- if (!llama_grammar_is_end_of_sequence(pos)) {
- // if alternate is nonempty, add to stack
- stack.push_back(pos);
- }
- llama_grammar_advance_stack(vec_rules, stack, stacks);
- while (!llama_grammar_is_end_of_sequence(pos)) {
- // scan to end of alternate def
- pos++;
- }
- if (pos->type == LLAMA_GRETYPE_ALT) {
- // there's another alternate def of this rule to process
- pos++;
- } else {
- break;
- }
- } while (true);
- return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
- }
- void llama_grammar_free(struct llama_grammar * grammar) {
- delete grammar;
- }
- struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
- llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
- // redirect elements in stacks to point to new rules
- for (size_t is = 0; is < result->stacks.size(); is++) {
- for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
- for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
- for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
- if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
- result->stacks[is][ie] = &result->rules[ir0][ir1];
- }
- }
- }
- }
- }
- return result;
- }
- //
- // sampling
- //
- void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
- if (seed == LLAMA_DEFAULT_SEED) {
- seed = time(NULL);
- }
- ctx->rng.seed(seed);
- }
- void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(candidates->size > 0);
- const int64_t t_start_sample_us = ggml_time_us();
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- float max_l = candidates->data[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- float p = expf(candidates->data[i].logit - max_l);
- candidates->data[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < candidates->size; ++i) {
- candidates->data[i].p /= cum_sum;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
- // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
- // if (k >= (int32_t)candidates->size) {
- // return;
- // }
- const int64_t t_start_sample_us = ggml_time_us();
- if (k <= 0) {
- k = candidates->size;
- }
- k = std::max(k, (int) min_keep);
- k = std::min(k, (int) candidates->size);
- // Sort scores in descending order
- if (!candidates->sorted) {
- auto comp = [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- };
- if (k <= 128) {
- std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
- } else {
- constexpr int nbuckets = 128;
- constexpr float bucket_low = -10.0f;
- constexpr float bucket_high = 10.0f;
- constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
- constexpr float bucker_inter = -bucket_low * bucket_scale;
- std::vector<int> bucket_idx(candidates->size);
- std::vector<int> histo(nbuckets, 0);
- for (int i = 0; i < (int)candidates->size; ++i) {
- const float val = candidates->data[i].logit;
- int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
- ib = std::max(0, std::min(nbuckets-1, ib));
- bucket_idx[i] = ib;
- ++histo[ib];
- }
- int nhave = 0;
- int ib = nbuckets - 1;
- for ( ; ib >= 0; --ib) {
- nhave += histo[ib];
- if (nhave >= k) break;
- }
- std::vector<llama_token_data> tmp_tokens(nhave);
- auto ptr = tmp_tokens.data();
- std::vector<llama_token_data*> bucket_ptrs;
- bucket_ptrs.reserve(nbuckets - ib);
- for (int j = nbuckets - 1; j >= ib; --j) {
- bucket_ptrs.push_back(ptr);
- ptr += histo[j];
- }
- for (int i = 0; i < (int)candidates->size; ++i) {
- int j = bucket_idx[i];
- if (j >= ib) {
- *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
- }
- }
- ptr = tmp_tokens.data();
- int ndone = 0;
- for (int j = nbuckets-1; j > ib; --j) {
- std::sort(ptr, ptr + histo[j], comp);
- ptr += histo[j];
- ndone += histo[j];
- }
- std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
- std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
- }
- candidates->sorted = true;
- }
- candidates->size = k;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p >= 1.0f) {
- return;
- }
- llama_sample_softmax(ctx, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < candidates->size; ++i) {
- cum_sum += candidates->data[i].p;
- // Check if the running sum is at least p or if we have kept at least min_keep tokens
- // we set the last index to i+1 to indicate that the current iterate should be included in the set
- if (cum_sum >= p && i + 1 >= min_keep) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the top-p tokens
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- if (p <= 0.0f || !candidates->size) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- bool min_p_applied = false;
- // if the candidates aren't sorted, try the unsorted implementation first
- if (!candidates->sorted) {
- std::vector<llama_token_data> filtered_tokens;
- float max_logit = -FLT_MAX;
- for (size_t i = 0; i < candidates->size; ++i) {
- max_logit = std::max(max_logit, candidates->data[i].logit);
- }
- const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
- for (size_t i = 0; i < candidates->size; ++i) {
- if (candidates->data[i].logit >= min_logit) {
- filtered_tokens.push_back(candidates->data[i]);
- }
- }
- // if we have enough values the operation was a success
- if (filtered_tokens.size() >= min_keep) {
- memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
- candidates->size = filtered_tokens.size();
- min_p_applied = true;
- }
- }
- // if the candidates are sorted or the unsorted implementation failed, use this implementation
- if (!min_p_applied) {
- // Sort the logits in descending order
- if (!candidates->sorted) {
- std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- candidates->sorted = true;
- }
- const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
- size_t i = 1; // first token always matches
- for (; i < candidates->size; ++i) {
- if (candidates->data[i].logit < min_logit && i >= min_keep) {
- break; // prob too small
- }
- }
- // Resize the output vector to keep only the matching tokens
- candidates->size = i;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
- if (z >= 1.0f || candidates->size <= 2) {
- return;
- }
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- // Compute the first and second derivatives
- std::vector<float> first_derivatives(candidates->size - 1);
- std::vector<float> second_derivatives(candidates->size - 2);
- for (size_t i = 0; i < first_derivatives.size(); ++i) {
- first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
- }
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
- }
- // Calculate absolute value of second derivatives
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- second_derivatives[i] = std::abs(second_derivatives[i]);
- }
- // Normalize the second derivatives
- {
- const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
- if (second_derivatives_sum > 1e-6f) {
- for (float & value : second_derivatives) {
- value /= second_derivatives_sum;
- }
- } else {
- for (float & value : second_derivatives) {
- value = 1.0f / second_derivatives.size();
- }
- }
- }
- float cum_sum = 0.0f;
- size_t last_idx = candidates->size;
- for (size_t i = 0; i < second_derivatives.size(); ++i) {
- cum_sum += second_derivatives[i];
- // Check if the running sum is greater than z or if we have kept at least min_keep tokens
- if (cum_sum > z && i >= min_keep) {
- last_idx = i;
- break;
- }
- }
- // Resize the output vector to keep only the tokens above the tail location
- candidates->size = last_idx;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
- // Reference implementation:
- // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
- if (p >= 1.0f) {
- return;
- }
- // Compute the softmax of logits and calculate entropy
- llama_sample_softmax(nullptr, candidates);
- const int64_t t_start_sample_us = ggml_time_us();
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates->size; ++i) {
- entropy += -candidates->data[i].p * logf(candidates->data[i].p);
- }
- // Compute the absolute difference between negative log probability and entropy for each candidate
- std::vector<float> shifted_scores;
- for (size_t i = 0; i < candidates->size; ++i) {
- float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
- shifted_scores.push_back(shifted_score);
- }
- // Sort tokens based on the shifted_scores and their corresponding indices
- std::vector<size_t> indices(candidates->size);
- std::iota(indices.begin(), indices.end(), 0);
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- return shifted_scores[a] < shifted_scores[b];
- });
- // Compute the cumulative probabilities
- float cum_sum = 0.0f;
- size_t last_idx = indices.size();
- for (size_t i = 0; i < indices.size(); ++i) {
- size_t idx = indices[i];
- cum_sum += candidates->data[idx].p;
- // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
- if (cum_sum > p && i >= min_keep - 1) {
- last_idx = i + 1;
- break;
- }
- }
- // Resize the output vector to keep only the locally typical tokens
- std::vector<llama_token_data> new_candidates;
- for (size_t i = 0; i < last_idx; ++i) {
- size_t idx = indices[i];
- new_candidates.push_back(candidates->data[idx]);
- }
- // Replace the data in candidates with the new_candidates data
- std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
- candidates->size = new_candidates.size();
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
- const int64_t t_start_sample_us = ggml_time_us();
- // no need to do anything if there is only one (or zero) candidates
- if(candidates_p->size <= 1) {
- return;
- }
- // Calculate maximum possible entropy
- float max_entropy = -logf(1.0f / candidates_p->size);
- llama_sample_softmax(nullptr, candidates_p);
- // Calculate entropy of the softmax probabilities
- float entropy = 0.0f;
- for (size_t i = 0; i < candidates_p->size; ++i) {
- float prob = candidates_p->data[i].p;
- if (prob > 0.0f) { // Ensure no log(0)
- entropy -= prob * logf(prob);
- }
- }
- // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
- float normalized_entropy = entropy / max_entropy;
- // Map the normalized entropy to the desired temperature range using the power function
- float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
- #ifdef DEBUG
- LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
- LLAMA_LOG_INFO("Entropy: %f\n", entropy);
- LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
- LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
- LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
- LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
- #endif
- // Apply the dynamically calculated temperature scaling
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= dyn_temp;
- }
- // Re-compute softmax probabilities after scaling logits with dynamic temperature
- double max_l_double = candidates_p->data[0].logit;
- double cum_sum_double = 0.0;
- for (size_t i = 0; i < candidates_p->size; ++i) {
- double p = exp(candidates_p->data[i].logit - max_l_double);
- candidates_p->data[i].p = p; // Store the scaled probability
- cum_sum_double += p;
- }
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
- }
- #ifdef DEBUG
- // Print the updated top 25 probabilities after temperature scaling
- LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
- for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
- LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
- }
- #endif
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- const int64_t t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < candidates_p->size; ++i) {
- candidates_p->data[i].logit /= temp;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
- llama_sample_temp(ctx, candidates_p, temp);
- }
- void llama_sample_repetition_penalties(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- const llama_token * last_tokens,
- size_t penalty_last_n,
- float penalty_repeat,
- float penalty_freq,
- float penalty_present) {
- if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
- return;
- }
- const int64_t t_start_sample_us = ggml_time_us();
- // Create a frequency map to count occurrences of each token in last_tokens
- std::unordered_map<llama_token, int> token_count;
- for (size_t i = 0; i < penalty_last_n; ++i) {
- token_count[last_tokens[i]]++;
- }
- // Apply frequency and presence penalties to the candidates
- for (size_t i = 0; i < candidates->size; ++i) {
- const auto token_iter = token_count.find(candidates->data[i].id);
- if (token_iter == token_count.end()) {
- continue;
- }
- const int count = token_iter->second;
- // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
- // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
- if (candidates->data[i].logit <= 0) {
- candidates->data[i].logit *= penalty_repeat;
- } else {
- candidates->data[i].logit /= penalty_repeat;
- }
- candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
- }
- candidates->sorted = false;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- }
- void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- bool allow_eos = false;
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- allow_eos = true;
- break;
- }
- }
- const llama_token eos = llama_token_eos(&ctx->model);
- std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
- candidates_decoded.reserve(candidates->size);
- std::vector<llama_grammar_candidate> candidates_grammar;
- candidates_grammar.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- const llama_token id = candidates->data[i].id;
- const std::string piece = llama_token_to_piece(ctx, id);
- if (id == eos) {
- if (!allow_eos) {
- candidates->data[i].logit = -INFINITY;
- }
- } else if (piece.empty() || piece[0] == 0) {
- candidates->data[i].logit = -INFINITY;
- } else {
- candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
- candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
- }
- }
- const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
- for (const auto & reject : rejects) {
- candidates->data[reject.index].logit = -INFINITY;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- static void llama_log_softmax(float * array, size_t size) {
- float max_l = *std::max_element(array, array + size);
- float sum = 0.f;
- for (size_t i = 0; i < size; ++i) {
- float p = expf(array[i] - max_l);
- sum += p;
- array[i] = p;
- }
- for (size_t i = 0; i < size; ++i) {
- array[i] = logf(array[i] / sum);
- }
- }
- void llama_sample_apply_guidance(
- struct llama_context * ctx,
- float * logits,
- float * logits_guidance,
- float scale) {
- GGML_ASSERT(ctx);
- const auto t_start_sample_us = ggml_time_us();
- const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
- llama_log_softmax(logits, n_vocab);
- llama_log_softmax(logits_guidance, n_vocab);
- for (int i = 0; i < n_vocab; ++i) {
- auto & l = logits[i];
- const auto & g = logits_guidance[i];
- l = scale * (l - g) + g;
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- void llama_sample_classifier_free_guidance(
- struct llama_context * ctx,
- llama_token_data_array * candidates,
- struct llama_context * guidance_ctx,
- float scale) {
- GGML_ASSERT(ctx);
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- const size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
- GGML_ASSERT(n_vocab == candidates->size);
- GGML_ASSERT(!candidates->sorted);
- std::vector<float> logits_base(n_vocab);
- for (size_t i = 0; i < n_vocab; ++i) {
- logits_base[i] = candidates->data[i].logit;
- }
- float * logits_guidance = llama_get_logits(guidance_ctx);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale);
- t_start_sample_us = ggml_time_us();
- for (size_t i = 0; i < n_vocab; ++i) {
- candidates->data[i].logit = logits_base[i];
- }
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
- GGML_ASSERT(ctx);
- auto N = float(llama_n_vocab(llama_get_model(ctx)));
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- // Estimate s_hat using the most probable m tokens
- float s_hat = 0.0;
- float sum_ti_bi = 0.0;
- float sum_ti_sq = 0.0;
- for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
- float t_i = logf(float(i + 2) / float(i + 1));
- float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
- sum_ti_bi += t_i * b_i;
- sum_ti_sq += t_i * t_i;
- }
- s_hat = sum_ti_bi / sum_ti_sq;
- // Compute k from the estimated s_hat and target surprise value
- float epsilon_hat = s_hat - 1;
- float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
- // Sample the next word X using top-k sampling
- llama_sample_top_k(nullptr, candidates, int(k), 1);
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
- int64_t t_start_sample_us;
- t_start_sample_us = ggml_time_us();
- llama_sample_softmax(ctx, candidates);
- // Truncate the words with surprise values greater than mu
- candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return -log2f(candidate.p) > *mu;
- }));
- if (candidates->size == 0) {
- candidates->size = 1;
- }
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // Normalize the probabilities of the remaining words
- llama_sample_softmax(ctx, candidates);
- // Sample the next word X from the remaining words
- llama_token X = llama_sample_token(ctx, candidates);
- t_start_sample_us = ggml_time_us();
- // Compute error as the difference between observed surprise and target surprise value
- size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
- return candidate.id == X;
- }));
- float observed_surprise = -log2f(candidates->data[X_idx].p);
- float e = observed_surprise - tau;
- // Update mu using the learning rate and error
- *mu = *mu - eta * e;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- return X;
- }
- llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
- const int64_t t_start_sample_us = ggml_time_us();
- // Find max element
- auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit < b.logit;
- });
- llama_token result = max_iter->id;
- if (ctx) {
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- return result;
- }
- llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
- GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_sample_softmax(nullptr, candidates);
- std::vector<float> probs;
- probs.reserve(candidates->size);
- for (size_t i = 0; i < candidates->size; ++i) {
- probs.push_back(candidates->data[i].p);
- }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- auto & rng = ctx->rng;
- int idx = dist(rng);
- llama_token result = candidates->data[idx].id;
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
- const int64_t t_start_sample_us = ggml_time_us();
- if (token == llama_token_eos(&ctx->model)) {
- for (const auto & stack : grammar->stacks) {
- if (stack.empty()) {
- return;
- }
- }
- GGML_ASSERT(false);
- }
- const std::string piece = llama_token_to_piece(ctx, token);
- // Note terminating 0 in decoded string
- const auto decoded = decode_utf8(piece, grammar->partial_utf8);
- const auto & code_points = decoded.first;
- for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
- grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
- }
- grammar->partial_utf8 = decoded.second;
- GGML_ASSERT(!grammar->stacks.empty());
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- //
- // Beam search
- //
- struct llama_beam {
- std::vector<llama_token> tokens;
- float p; // Cumulative beam probability (renormalized relative to all beams)
- bool eob; // Initialize end-of-beam to false. Callback sets this to true.
- // Sort beams by probability. In case of ties, prefer beams at eob.
- bool operator<(const llama_beam & rhs) const {
- return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
- }
- // Shift off first n tokens and discard them.
- void shift_tokens(const size_t n) {
- if (n) {
- std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
- tokens.resize(tokens.size() - n);
- }
- }
- llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
- };
- // A struct for calculating logit-related info.
- struct llama_logit_info {
- const float * const logits;
- const int n_vocab;
- const float max_l;
- const float normalizer;
- struct sum_exp {
- float max_l;
- float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
- };
- llama_logit_info(llama_context * ctx)
- : logits(llama_get_logits(ctx))
- , n_vocab(llama_n_vocab(llama_get_model(ctx)))
- , max_l(*std::max_element(logits, logits + n_vocab))
- , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
- { }
- llama_token_data get_token_data(const llama_token token_id) const {
- constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
- return {token_id, logits[token_id], p};
- }
- // Return top k token_data by logit.
- std::vector<llama_token_data> top_k(size_t k) {
- std::vector<llama_token_data> min_heap; // min-heap by logit
- const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
- min_heap.reserve(k_min);
- for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
- min_heap.push_back(get_token_data(token_id));
- }
- auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
- std::make_heap(min_heap.begin(), min_heap.end(), comp);
- for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
- if (min_heap.front().logit < logits[token_id]) {
- std::pop_heap(min_heap.begin(), min_heap.end(), comp);
- min_heap.back().id = token_id;
- min_heap.back().logit = logits[token_id];
- std::push_heap(min_heap.begin(), min_heap.end(), comp);
- }
- }
- return min_heap;
- }
- float probability_from_logit(float logit) const {
- return normalizer * std::exp(logit - max_l);
- }
- };
- struct llama_beam_search_data {
- llama_context * ctx;
- size_t n_beams;
- int n_past;
- int n_predict;
- std::vector<llama_beam> beams;
- std::vector<llama_beam> next_beams;
- // Re-calculated on each loop iteration
- size_t common_prefix_length;
- // Used to communicate to/from callback on beams state.
- std::vector<llama_beam_view> beam_views;
- llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
- : ctx(ctx)
- , n_beams(n_beams)
- , n_past(n_past)
- , n_predict(n_predict)
- , beam_views(n_beams) {
- beams.reserve(n_beams);
- next_beams.reserve(n_beams);
- }
- // Collapse beams to a single beam given by index.
- void collapse_beams(const size_t beam_idx) {
- if (0u < beam_idx) {
- std::swap(beams[0], beams[beam_idx]);
- }
- beams.resize(1);
- }
- // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
- // The repetitive patterns below reflect the 2 stages of heaps:
- // * Gather elements until the vector is full, then call std::make_heap() on it.
- // * If the heap is full and a new element is found that should be included, pop the
- // least element to the back(), replace it with the new, then push it into the heap.
- void fill_next_beams_by_top_probabilities(llama_beam & beam) {
- // Min-heaps use a greater-than comparator.
- const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
- if (beam.eob) {
- // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
- if (next_beams.size() < n_beams) {
- next_beams.push_back(std::move(beam));
- if (next_beams.size() == n_beams) {
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else if (next_beams.front().p < beam.p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = std::move(beam);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- } else {
- // beam is not at end-of-sentence, so branch with next top_k tokens.
- if (!beam.tokens.empty()) {
- llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
- }
- llama_logit_info logit_info(ctx);
- std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
- size_t i=0;
- if (next_beams.size() < n_beams) {
- for (; next_beams.size() < n_beams ; ++i) {
- llama_beam next_beam = beam;
- next_beam.tokens.push_back(next_tokens[i].id);
- next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
- next_beams.push_back(std::move(next_beam));
- }
- std::make_heap(next_beams.begin(), next_beams.end(), comp);
- } else {
- for (; next_beams.front().p == 0.0f ; ++i) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- for (; i < n_beams ; ++i) {
- const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
- if (next_beams.front().p < next_p) {
- std::pop_heap(next_beams.begin(), next_beams.end(), comp);
- next_beams.back() = beam;
- next_beams.back().tokens.push_back(next_tokens[i].id);
- next_beams.back().p = next_p;
- std::push_heap(next_beams.begin(), next_beams.end(), comp);
- }
- }
- }
- }
- // Find common_prefix_length based on beams.
- // Requires beams is not empty.
- size_t find_common_prefix_length() {
- size_t common_prefix_length = beams[0].tokens.size();
- for (size_t i = 1 ; i < beams.size() ; ++i) {
- common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
- for (size_t j = 0 ; j < common_prefix_length ; ++j) {
- if (beams[0].tokens[j] != beams[i].tokens[j]) {
- common_prefix_length = j;
- break;
- }
- }
- }
- return common_prefix_length;
- }
- // Construct beams_state to send back to caller via the callback function.
- // Side effect: set common_prefix_length = find_common_prefix_length();
- llama_beams_state get_beams_state(const bool last_call) {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beam_views[i] = beams[i].view();
- }
- common_prefix_length = find_common_prefix_length();
- return {beam_views.data(), beams.size(), common_prefix_length, last_call};
- }
- // Loop:
- // * while i < n_predict, AND
- // * any of the beams have not yet reached end-of-beam (eob), AND
- // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
- // (since all other beam probabilities can only decrease)
- void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
- beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
- const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
- for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
- !beams[top_beam_index()].eob ; ++i) {
- callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
- update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
- if (common_prefix_length) {
- llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
- n_past += common_prefix_length;
- }
- // Zero-out next_beam probabilities to place them last in following min-heap.
- std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
- for (llama_beam & beam : beams) {
- beam.shift_tokens(common_prefix_length);
- fill_next_beams_by_top_probabilities(beam);
- }
- // next_beams become the beams of next/final iteration. Swap them to re-use memory.
- beams.swap(next_beams);
- renormalize_beam_probabilities(beams);
- }
- collapse_beams(top_beam_index());
- callback(callback_data, get_beams_state(true));
- }
- // As beams grow, the cumulative probabilities decrease.
- // Renormalize them to avoid floating point underflow.
- static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
- const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
- const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
- std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
- }
- // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
- size_t top_beam_index() {
- return std::max_element(beams.begin(), beams.end()) - beams.begin();
- }
- // Copy (p,eob) for each beam which may have been changed by the callback.
- void update_beams_from_beam_views() {
- for (size_t i = 0 ; i < beams.size() ; ++i) {
- beams[i].p = beam_views[i].p;
- beams[i].eob = beam_views[i].eob;
- }
- }
- };
- void llama_beam_search(llama_context * ctx,
- llama_beam_search_callback_fn_t callback, void * callback_data,
- size_t n_beams, int n_past, int n_predict) {
- assert(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
- llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
- beam_search_data.loop(callback, callback_data);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- }
- //
- // quantization
- //
- struct quantize_state_internal {
- const llama_model & model;
- const llama_model_quantize_params * params;
- int n_attention_wv = 0;
- int n_ffn_down = 0;
- int n_ffn_gate = 0;
- int n_ffn_up = 0;
- int i_attention_wv = 0;
- int i_ffn_down = 0;
- int i_ffn_gate = 0;
- int i_ffn_up = 0;
- int n_k_quantized = 0;
- int n_fallback = 0;
- bool has_imatrix = false;
- quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
- : model(model)
- , params(params)
- {}
- };
- static void llama_convert_tensor_internal(
- struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
- const size_t nelements, const int nthread
- ) {
- if (output.size() < nelements) {
- output.resize(nelements);
- }
- float * f32_output = (float *) output.data();
- ggml_type_traits_t qtype;
- if (ggml_is_quantized(tensor->type)) {
- qtype = ggml_internal_get_type_traits(tensor->type);
- if (qtype.to_float == NULL) {
- throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
- }
- } else if (tensor->type != GGML_TYPE_F16) {
- throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
- }
- if (nthread < 2) {
- if (tensor->type == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
- } else if (ggml_is_quantized(tensor->type)) {
- qtype.to_float(tensor->data, f32_output, nelements);
- } else {
- GGML_ASSERT(false); // unreachable
- }
- return;
- }
- size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
- size_t block_size_bytes = ggml_type_size(tensor->type);
- GGML_ASSERT(nelements % block_size == 0);
- size_t nblocks = nelements / block_size;
- size_t blocks_per_thread = nblocks / nthread;
- size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
- size_t in_buff_offs = 0;
- size_t out_buff_offs = 0;
- for (int tnum = 0; tnum < nthread; tnum++) {
- size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
- size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
- size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
- auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
- if (typ == GGML_TYPE_F16) {
- ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
- } else {
- qtype.to_float(inbuf, outbuf, nels);
- }
- };
- workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
- in_buff_offs += thr_block_bytes;
- out_buff_offs += thr_elems;
- }
- for (auto & w : workers) { w.join(); }
- workers.clear();
- }
- static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
- const std::string name = ggml_get_name(tensor);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- const llm_arch arch = qs.model.arch;
- const auto tn = LLM_TN(arch);
- auto use_more_bits = [](int i_layer, int num_layers) -> bool {
- return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
- };
- const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
- auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
- if (n_expert > 1) {
- // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
- // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
- // for getting the current layer as I initially thought, and we need to resort to parsing the
- // tensor name.
- n_layer /= n_expert;
- if (sscanf(name, "blk.%d.", &i_layer) != 1) {
- throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
- }
- if (i_layer < 0 || i_layer >= n_layer) {
- throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
- }
- }
- return std::make_pair(i_layer, n_layer);
- };
- if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
- int nx = tensor->ne[0];
- if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
- new_type = GGML_TYPE_Q8_0;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if (new_type != GGML_TYPE_Q8_0) {
- new_type = GGML_TYPE_Q6_K;
- }
- } else if (name == "token_embd.weight") {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
- new_type = GGML_TYPE_Q2_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = GGML_TYPE_Q4_K;
- }
- } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
- if (name.find("attn_v.weight") != std::string::npos) {
- if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
- else new_type = GGML_TYPE_Q2_K;
- ++qs.i_attention_wv;
- }
- else if (name.find("ffn_down") != std::string::npos) {
- if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K;
- ++qs.i_ffn_down;
- }
- else if (name.find("attn_output.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
- }
- } else if (name.find("attn_v.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
- new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
- new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
- new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_Q3_K : GGML_TYPE_IQ3_XXS;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
- use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
- else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
- (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
- if (qs.model.type == MODEL_70B) {
- // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
- // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
- // nearly negligible increase in model size by quantizing this tensor with more bits:
- if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
- }
- if (qs.model.hparams.n_expert == 8) {
- // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
- // TODO: explore better strategies
- new_type = GGML_TYPE_Q8_0;
- }
- ++qs.i_attention_wv;
- } else if (name.find("attn_k.weight") != std::string::npos) {
- if (qs.model.hparams.n_expert == 8) {
- // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
- // TODO: explore better strategies
- new_type = GGML_TYPE_Q8_0;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
- new_type = GGML_TYPE_Q2_K;
- }
- } else if (name.find("ffn_down") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
- if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
- new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
- new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
- : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
- : GGML_TYPE_Q3_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
- new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
- if (arch == LLM_ARCH_FALCON) {
- new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
- use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
- } else {
- if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
- }
- }
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
- new_type = GGML_TYPE_Q5_K;
- }
- else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
- && qs.has_imatrix && i_layer < n_layer/8) {
- // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
- // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
- // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
- new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
- }
- ++qs.i_ffn_down;
- } else if (name.find("attn_output.weight") != std::string::npos) {
- if (arch != LLM_ARCH_FALCON) {
- if (qs.model.hparams.n_expert == 8) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
- ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ||
- ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
- new_type = GGML_TYPE_Q5_K;
- }
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_Q3_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
- }
- } else {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- }
- }
- else if (name.find("attn_qkv.weight") != std::string::npos) {
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
- else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
- }
- else if (name.find("ffn_gate") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) {
- new_type = GGML_TYPE_Q2_K;
- }
- ++qs.i_ffn_gate;
- }
- else if (name.find("ffn_up") != std::string::npos) {
- auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
- int i_layer = info.first, n_layer = info.second;
- if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(i_layer, n_layer)) {
- new_type = GGML_TYPE_Q2_K;
- }
- ++qs.i_ffn_up;
- }
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- //}
- // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
- //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
- //}
- // This can be used to reduce the size of the Q5_K_S model.
- // The associated PPL increase is fully in line with the size reduction
- //else {
- // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
- //}
- bool convert_incompatible_tensor = false;
- if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
- new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K ||
- new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS ||
- new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
- int nx = tensor->ne[0];
- int ny = tensor->ne[1];
- if (nx % QK_K != 0) {
- LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
- convert_incompatible_tensor = true;
- } else {
- ++qs.n_k_quantized;
- }
- }
- if (convert_incompatible_tensor) {
- switch (new_type) {
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
- case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
- case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
- case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
- case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
- default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
- }
- LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
- ++qs.n_fallback;
- }
- return new_type;
- }
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
- ggml_type quantized_type;
- llama_ftype ftype = params->ftype;
- switch (params->ftype) {
- case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
- case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
- case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
- case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
- case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
- case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
- case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
- // K-quants
- case LLAMA_FTYPE_MOSTLY_Q2_K_S:
- case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
- case LLAMA_FTYPE_MOSTLY_Q3_K_XS:
- case LLAMA_FTYPE_MOSTLY_Q3_K_S:
- case LLAMA_FTYPE_MOSTLY_Q3_K_M:
- case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
- case LLAMA_FTYPE_MOSTLY_Q4_K_S:
- case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
- case LLAMA_FTYPE_MOSTLY_Q5_K_S:
- case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
- case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break;
- case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break;
- case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break;
- case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S ; break;
- default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
- }
- int nthread = params->nthread;
- if (nthread <= 0) {
- nthread = std::thread::hardware_concurrency();
- }
- // mmap consistently increases speed Linux, and also increases speed on Windows with
- // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
- #if defined(__linux__) || defined(_WIN32)
- constexpr bool use_mmap = true;
- #else
- constexpr bool use_mmap = false;
- #endif
- llama_model_loader ml(fname_inp, use_mmap, NULL);
- ml.init_mapping(false); // no prefetching?
- llama_model model;
- llm_load_arch(ml, model);
- llm_load_hparams(ml, model);
- struct quantize_state_internal qs(model, params);
- if (params->only_copy) {
- ftype = model.ftype;
- }
- const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
- if (params->imatrix) {
- imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
- if (imatrix_data) {
- LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
- qs.has_imatrix = true;
- }
- }
- const size_t align = GGUF_DEFAULT_ALIGNMENT;
- struct gguf_context * ctx_out = gguf_init_empty();
- // copy the KV pairs from the input file
- gguf_set_kv (ctx_out, ml.ctx_gguf);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", ftype);
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * meta = ml.get_tensor_meta(i);
- const std::string name = ggml_get_name(meta);
- // TODO: avoid hardcoded tensor names - use the TN_* constants
- if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
- ++qs.n_attention_wv;
- }
- else if (name.find("ffn_down") != std::string::npos) {
- ++qs.n_ffn_down;
- }
- else if (name.find("ffn_gate") != std::string::npos) {
- ++qs.n_ffn_gate;
- }
- else if (name.find("ffn_up") != std::string::npos) {
- ++qs.n_ffn_up;
- }
- }
- if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
- LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
- __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
- }
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<int64_t> hist_all(1 << 4, 0);
- std::vector<std::thread> workers;
- workers.reserve(nthread);
- std::mutex mutex;
- int idx = 0;
- std::vector<no_init<uint8_t>> read_data;
- std::vector<no_init<uint8_t>> work;
- std::vector<no_init<float>> f32_conv_buf;
- // populate the original tensors so we get an initial meta data
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * meta = ml.get_tensor_meta(i);
- gguf_add_tensor(ctx_out, meta);
- }
- std::ofstream fout(fname_out, std::ios::binary);
- fout.exceptions(std::ofstream::failbit); // fail fast on write errors
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
- // placeholder for the meta data
- ::zeros(fout, meta_size);
- for (int i = 0; i < ml.n_tensors; ++i) {
- struct ggml_tensor * tensor = ml.get_tensor_meta(i);
- const std::string name = ggml_get_name(tensor);
- if (!ml.use_mmap) {
- if (read_data.size() < ggml_nbytes(tensor)) {
- read_data.resize(ggml_nbytes(tensor));
- }
- tensor->data = read_data.data();
- }
- ml.load_data_for(tensor);
- LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
- ++idx, ml.n_tensors,
- ggml_get_name(tensor),
- llama_format_tensor_shape(tensor).c_str(),
- ggml_type_name(tensor->type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (ggml_n_dims(tensor) == 2);
- quantize &= params->quantize_output_tensor || name != "output.weight";
- quantize &= !params->only_copy;
- // do not quantize expert gating tensors
- quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_FFN_GATE_INP, "weight");
- // do not quantize positional embeddings and token types (BERT)
- quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
- quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- if (quantize) {
- new_type = quantized_type;
- if (!params->pure) {
- new_type = get_k_quant_type(qs, new_type, tensor, ftype);
- }
- // If we've decided to quantize to the same type the tensor is already
- // in then there's nothing to do.
- quantize = tensor->type != new_type;
- }
- if (!quantize) {
- new_type = tensor->type;
- new_data = tensor->data;
- new_size = ggml_nbytes(tensor);
- LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
- } else {
- const size_t nelements = ggml_nelements(tensor);
- const float * imatrix = nullptr;
- if (imatrix_data) {
- auto it = imatrix_data->find(tensor->name);
- if (it == imatrix_data->end()) {
- LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
- } else {
- if (it->second.size() == (size_t)tensor->ne[0]) {
- imatrix = it->second.data();
- } else {
- LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
- int(it->second.size()), int(tensor->ne[0]), tensor->name);
- }
- }
- }
- if ((new_type == GGML_TYPE_IQ2_XXS ||
- new_type == GGML_TYPE_IQ2_XS ||
- new_type == GGML_TYPE_IQ1_S ||
- (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
- LLAMA_LOG_ERROR("\n\n============================================================\n");
- LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
- LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
- LLAMA_LOG_ERROR("============================================================\n\n");
- throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
- }
- float * f32_data;
- if (tensor->type == GGML_TYPE_F32) {
- f32_data = (float *) tensor->data;
- } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
- throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
- } else {
- llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
- f32_data = (float *) f32_conv_buf.data();
- }
- LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
- fflush(stdout);
- if (work.size() < nelements * 4) {
- work.resize(nelements * 4); // upper bound on size
- }
- new_data = work.data();
- std::array<int64_t, 1 << 4> hist_cur = {};
- const int n_per_row = tensor->ne[0];
- const int nrows = nelements / n_per_row;
- static const int min_chunk_size = 32 * 512;
- const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
- const int nchunk = (nelements + chunk_size - 1)/chunk_size;
- const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
- if (nthread_use < 2) {
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
- } else {
- int counter = 0;
- new_size = 0;
- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
- nrows, n_per_row, imatrix]() {
- std::array<int64_t, 1 << 4> local_hist = {};
- const int nrows_per_chunk = chunk_size / n_per_row;
- size_t local_size = 0;
- while (true) {
- std::unique_lock<std::mutex> lock(mutex);
- int first_row = counter; counter += nrows_per_chunk;
- if (first_row >= nrows) {
- if (local_size > 0) {
- for (int j=0; j<int(local_hist.size()); ++j) {
- hist_cur[j] += local_hist[j];
- }
- new_size += local_size;
- }
- break;
- }
- lock.unlock();
- const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
- local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
- first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
- }
- };
- for (int it = 0; it < nthread_use - 1; ++it) {
- workers.emplace_back(compute);
- }
- compute();
- for (auto & w : workers) { w.join(); }
- workers.clear();
- }
- LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
- int64_t tot_count = 0;
- for (size_t i = 0; i < hist_cur.size(); i++) {
- hist_all[i] += hist_cur[i];
- tot_count += hist_cur[i];
- }
- if (tot_count > 0) {
- LLAMA_LOG_INFO(" | hist: ");
- for (size_t i = 0; i < hist_cur.size(); i++) {
- LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
- }
- }
- LLAMA_LOG_INFO("\n");
- }
- total_size_org += ggml_nbytes(tensor);
- total_size_new += new_size;
- // update the gguf meta data as we go
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
- // write tensor data + padding
- fout.write((const char *) new_data, new_size);
- zeros(fout, GGML_PAD(new_size, align) - new_size);
- }
- // go back to beginning of file and write the updated meta data
- {
- fout.seekp(0);
- std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
- gguf_get_meta_data(ctx_out, data.data());
- fout.write((const char *) data.data(), data.size());
- }
- fout.close();
- gguf_free(ctx_out);
- LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- // print histogram for all tensors
- {
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); i++) {
- sum_all += hist_all[i];
- }
- if (sum_all > 0) {
- LLAMA_LOG_INFO("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); i++) {
- LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
- }
- LLAMA_LOG_INFO("\n");
- }
- }
- if (qs.n_fallback > 0) {
- LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
- __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
- }
- }
- static int llama_apply_lora_from_file_internal(
- const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
- ) {
- LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
- const int64_t t_start_lora_us = ggml_time_us();
- llama_file fin(path_lora, "rb");
- // verify magic and version
- {
- uint32_t magic = fin.read_u32();
- if (magic != LLAMA_FILE_MAGIC_GGLA) {
- LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
- return 1;
- }
- uint32_t format_version = fin.read_u32();
- if (format_version != 1) {
- LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
- return 1;
- }
- }
- int32_t lora_r = fin.read_u32();
- int32_t lora_alpha = fin.read_u32();
- float scaling = scale * (float)lora_alpha / (float)lora_r;
- LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
- // load base model
- std::unique_ptr<llama_model_loader> ml;
- if (path_base_model) {
- LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
- ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
- ml->init_mapping(/*prefetch*/ false); // no prefetching
- }
- struct tensor_meta {
- std::string name;
- ggml_type type;
- int32_t ne[2];
- size_t offset;
- };
- std::map<std::string, tensor_meta> tensor_meta_map;
- // load all tensor meta
- while (true) {
- if (fin.tell() == fin.size) {
- // eof
- break;
- }
- int32_t n_dims;
- int32_t name_len;
- int32_t ftype;
- fin.read_raw(&n_dims, sizeof(n_dims));
- fin.read_raw(&name_len, sizeof(name_len));
- fin.read_raw(&ftype, sizeof(ftype));
- if (n_dims != 1 && n_dims != 2) {
- LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
- return 1;
- }
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read_raw(&ne[i], sizeof(ne[i]));
- }
- std::string name;
- {
- GGML_ASSERT(name_len < GGML_MAX_NAME);
- char buf[GGML_MAX_NAME];
- fin.read_raw(buf, name_len);
- name = std::string(buf, name_len);
- }
- // check for lora suffix
- std::string lora_suffix;
- if (name.length() > 6) {
- lora_suffix = name.substr(name.length() - 6);
- }
- if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
- LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
- return 1;
- }
- // tensor type
- ggml_type wtype;
- switch (ftype) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- default:
- {
- LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
- __func__, ftype);
- return 1;
- }
- }
- // data offset
- size_t offset = fin.tell();
- offset = (offset + 31) & -32;
- // skip tensor data
- fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
- tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
- }
- bool warned = false;
- int n_tensors = 0;
- // apply
- ggml_backend_t backend_cpu = ggml_backend_cpu_init();
- if (backend_cpu == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
- return 1;
- }
- ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
- std::vector<no_init<uint8_t>> read_buf;
- for (const auto & it : model.tensors_by_name) {
- const std::string & base_name = it.first;
- ggml_tensor * model_t = it.second;
- if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
- tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
- continue;
- }
- tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
- tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
- ggml_init_params lora_init_params = {
- /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_buffer */ nullptr,
- /* .no_alloc */ true,
- };
- ggml_context * lora_ctx = ggml_init(lora_init_params);
- if (lora_ctx == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- // create tensors
- ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
- ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
- ggml_set_name(loraA, metaA.name.c_str());
- ggml_set_name(loraB, metaB.name.c_str());
- ggml_tensor * base_t;
- if (ml) {
- if (gguf_find_tensor(ml->ctx_gguf, base_name.c_str()) < 0) {
- LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
- return 1;
- }
- base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
- } else {
- base_t = ggml_dup_tensor(lora_ctx, model_t);
- }
- ggml_set_name(base_t, base_name.c_str());
- // allocate in backend buffer
- ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- if (lora_buf == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
- return 1;
- }
- // load tensor data
- auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
- read_buf.resize(ggml_nbytes(tensor));
- fin.seek(tensor_meta.offset, SEEK_SET);
- fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
- ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
- };
- load_tensor(metaA, loraA);
- load_tensor(metaB, loraB);
- // load base model tensor data
- if (ml) {
- ml->load_data_for(base_t);
- } else {
- ggml_backend_tensor_copy(model_t, base_t);
- }
- if (ggml_is_quantized(base_t->type) && !warned) {
- LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
- "use a f16 or f32 base model with --lora-base\n", __func__);
- warned = true;
- }
- if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
- ggml_free(lora_ctx);
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- auto build_lora_graph = [&]() {
- // w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
- ggml_set_name(BA, "BA");
- if (scaling != 1.0f) {
- BA = ggml_scale(lora_ctx, BA, scaling);
- ggml_set_name(BA, "BA_scaled");
- }
- ggml_tensor * r;
- r = ggml_add_inplace(lora_ctx, base_t, BA);
- ggml_set_name(r, "r_add");
- if (base_t->type != model_t->type) {
- // convert the result to the model type
- r = ggml_cast(lora_ctx, r, model_t->type);
- ggml_set_name(r, "r_cast");
- }
- return r;
- };
- ggml_cgraph * gf = ggml_new_graph(lora_ctx);
- ggml_tensor * r = build_lora_graph();
- ggml_build_forward_expand(gf, r);
- ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
- if (graph_buf == nullptr) {
- LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
- ggml_free(lora_ctx);
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_free(backend_cpu);
- return 1;
- }
- ggml_backend_graph_compute(backend_cpu, gf);
- ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
- #if 0
- // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
- //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
- // sched compute
- ggml_build_forward_expand(gf, build_graph());
- ggml_backend_sched_init_measure(sched, gf);
- // create the graph again, since the previous one was destroyed by the measure
- ggml_graph_clear(gf);
- ggml_build_forward_expand(gf, build_graph());
- ggml_backend_sched_graph_compute(sched, gf);
- ggml_backend_sched_free(sched);
- #endif
- ggml_backend_buffer_free(lora_buf);
- ggml_backend_buffer_free(graph_buf);
- ggml_free(lora_ctx);
- n_tensors++;
- if (n_tensors % 4 == 0) {
- LLAMA_LOG_INFO(".");
- }
- }
- ggml_backend_free(backend_cpu);
- const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
- LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
- return 0;
- }
- //
- // interface implementation
- //
- struct llama_model_params llama_model_default_params() {
- struct llama_model_params result = {
- /*.n_gpu_layers =*/ 0,
- /*.split_mode =*/ LLAMA_SPLIT_LAYER,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- };
- #ifdef GGML_USE_METAL
- // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
- result.n_gpu_layers = 999;
- #endif
- return result;
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.seed =*/ LLAMA_DEFAULT_SEED,
- /*.n_ctx =*/ 512,
- /*.n_batch =*/ 512,
- /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
- /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
- /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
- /*.rope_freq_base =*/ 0.0f,
- /*.rope_freq_scale =*/ 0.0f,
- /*.yarn_ext_factor =*/ -1.0f,
- /*.yarn_attn_factor =*/ 1.0f,
- /*.yarn_beta_fast =*/ 32.0f,
- /*.yarn_beta_slow =*/ 1.0f,
- /*.yarn_orig_ctx =*/ 0,
- /*.cb_eval =*/ nullptr,
- /*.cb_eval_user_data =*/ nullptr,
- /*.type_k =*/ GGML_TYPE_F16,
- /*.type_v =*/ GGML_TYPE_F16,
- /*.mul_mat_q =*/ true,
- /*.logits_all =*/ false,
- /*.embedding =*/ false,
- /*.offload_kqv =*/ true,
- /*.do_pooling =*/ true,
- };
- return result;
- }
- struct llama_model_quantize_params llama_model_quantize_default_params() {
- struct llama_model_quantize_params result = {
- /*.nthread =*/ 0,
- /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
- /*.allow_requantize =*/ false,
- /*.quantize_output_tensor =*/ true,
- /*.only_copy =*/ false,
- /*.pure =*/ false,
- /*.imatrix =*/ nullptr,
- };
- return result;
- }
- size_t llama_max_devices(void) {
- #if defined(GGML_USE_METAL)
- return 1;
- #elif defined(GGML_USE_CUBLAS)
- return GGML_CUDA_MAX_DEVICES;
- #elif defined(GGML_USE_SYCL)
- return GGML_SYCL_MAX_DEVICES;
- #elif defined(GGML_USE_VULKAN)
- return GGML_VK_MAX_DEVICES;
- #else
- return 1;
- #endif
- }
- bool llama_supports_mmap(void) {
- return llama_mmap::SUPPORTED;
- }
- bool llama_supports_mlock(void) {
- return llama_mlock::SUPPORTED;
- }
- bool llama_supports_gpu_offload(void) {
- #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
- defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
- // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
- return true;
- #else
- return false;
- #endif
- }
- // deprecated:
- bool llama_mmap_supported(void) {
- return llama_supports_mmap();
- }
- bool llama_mlock_supported(void) {
- return llama_supports_mlock();
- }
- void llama_backend_init(void) {
- ggml_time_init();
- // needed to initialize f16 tables
- {
- struct ggml_init_params params = { 0, NULL, false };
- struct ggml_context * ctx = ggml_init(params);
- ggml_free(ctx);
- }
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_init();
- #endif
- }
- void llama_numa_init(enum ggml_numa_strategy numa) {
- if (numa != GGML_NUMA_STRATEGY_DISABLED) {
- ggml_numa_init(numa);
- }
- }
- void llama_backend_free(void) {
- #ifdef GGML_USE_MPI
- ggml_mpi_backend_free();
- #endif
- ggml_quantize_free();
- }
- int64_t llama_time_us(void) {
- return ggml_time_us();
- }
- struct llama_model * llama_load_model_from_file(
- const char * path_model,
- struct llama_model_params params) {
- ggml_time_init();
- llama_model * model = new llama_model;
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- *cur_percentage_p = percentage;
- LLAMA_LOG_INFO(".");
- if (percentage >= 100) {
- LLAMA_LOG_INFO("\n");
- }
- }
- return true;
- };
- }
- int status = llama_model_load(path_model, *model, params);
- GGML_ASSERT(status <= 0);
- if (status < 0) {
- if (status == -1) {
- LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
- } else if (status == -2) {
- LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
- }
- delete model;
- return nullptr;
- }
- return model;
- }
- void llama_free_model(struct llama_model * model) {
- delete model;
- }
- struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params) {
- if (!model) {
- return nullptr;
- }
- llama_context * ctx = new llama_context(*model);
- const auto & hparams = model->hparams;
- auto & cparams = ctx->cparams;
- cparams.n_batch = params.n_batch;
- cparams.n_threads = params.n_threads;
- cparams.n_threads_batch = params.n_threads_batch;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.mul_mat_q = params.mul_mat_q;
- cparams.offload_kqv = params.offload_kqv;
- cparams.do_pooling = params.do_pooling;
- cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
- cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
- cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
- cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
- hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
- hparams.n_ctx_train;
- cparams.cb_eval = params.cb_eval;
- cparams.cb_eval_user_data = params.cb_eval_user_data;
- auto rope_scaling_type = params.rope_scaling_type;
- if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
- rope_scaling_type = hparams.rope_scaling_type_train;
- }
- if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
- cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
- }
- if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
- cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
- }
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
- LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
- LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- const ggml_type type_k = params.type_k;
- const ggml_type type_v = params.type_v;
- GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
- GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
- if (!hparams.vocab_only) {
- // initialize backends
- #ifdef GGML_USE_METAL
- if (model->n_gpu_layers > 0) {
- ctx->backend_metal = ggml_backend_metal_init();
- if (ctx->backend_metal == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(ctx->backend_metal);
- }
- #elif defined(GGML_USE_CUBLAS)
- if (model->n_gpu_layers > 0) {
- // with split_mode LLAMA_SPLIT_NONE or LLAMA_SPLIT_ROW, only the main GPU backend is used
- if (model->split_mode == LLAMA_SPLIT_NONE || model->split_mode == LLAMA_SPLIT_ROW) {
- ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_LAYER requires a backend for each GPU
- for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cuda_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
- }
- #elif defined(GGML_USE_VULKAN)
- if (model->n_gpu_layers > 0) {
- for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_vk_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
- #elif defined(GGML_USE_SYCL)
- if (model->n_gpu_layers > 0) {
- ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- #elif defined(GGML_USE_KOMPUTE)
- if (model->n_gpu_layers > 0) {
- auto * backend = ggml_backend_kompute_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- #endif
- ctx->backend_cpu = ggml_backend_cpu_init();
- if (ctx->backend_cpu == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(ctx->backend_cpu);
- if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v,
- cparams.n_ctx, cparams.offload_kqv)) {
- LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- size_t memory_size_k = 0;
- size_t memory_size_v = 0;
- for (auto & k : ctx->kv_self.k_l) {
- memory_size_k += ggml_nbytes(k);
- }
- for (auto & v : ctx->kv_self.v_l) {
- memory_size_v += ggml_nbytes(v);
- }
- LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
- ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
- ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
- }
- // resized during inference, reserve maximum
- ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
- if (params.embedding) {
- ctx->embedding.resize(hparams.n_embd);
- }
- // graph inputs
- {
- ggml_init_params init_params = {
- /* .mem_size */ ggml_tensor_overhead()*8,
- /* .mem_buffer */ nullptr,
- /* .no_alloc */ true,
- };
- ctx->ctx_input = ggml_init(init_params);
- ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
- ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch);
- ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
- ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch);
- ctx->inp_KQ_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx);
- ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx);
- ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
- ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
- ggml_set_name(ctx->inp_tokens, "inp_tokens");
- ggml_set_name(ctx->inp_embd, "inp_embd");
- ggml_set_name(ctx->inp_pos, "inp_pos");
- ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask");
- ggml_set_name(ctx->inp_KQ_pos, "inp_KQ_pos");
- ggml_set_name(ctx->inp_K_shift, "inp_K_shift");
- ggml_set_name(ctx->inp_mean, "inp_mean");
- ggml_set_name(ctx->inp_cls, "inp_cls");
- ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true));
- LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buffer_name(ctx->buf_input),
- ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0);
- }
- // scheduler and compute buffers
- {
- // buffer types used for the compute buffer of each backend
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- for (auto * backend : ctx->backends) {
- if (ggml_backend_is_cpu(backend)) {
- // use host buffers for the CPU backend compute buffer
- backend_buft.push_back(llama_default_buffer_type_cpu(true));
- } else {
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- }
- }
- // buffer used to store the computation graph and the tensor meta data
- ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
- ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES);
- // build worst-case graph
- int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
- int n_past = cparams.n_ctx - n_tokens;
- llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
- ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
- // initialize scheduler with the worst-case graph
- if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
- LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- for (size_t i = 0; i < ctx->backends.size(); i++) {
- ggml_backend_t backend = ctx->backends[i];
- ggml_backend_buffer_type_t buft = backend_buft[i];
- size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
- LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buft_name(buft),
- size / 1024.0 / 1024.0);
- }
- // note: the number of splits during measure is higher than during inference due to the kv shift
- int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
- LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits);
- }
- }
- #ifdef GGML_USE_MPI
- ctx->ctx_mpi = ggml_mpi_init();
- if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
- // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
- // TODO: needs fix after #3228
- GGML_ASSERT(false && "not implemented");
- //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
- //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
- llama_backend_free();
- exit(1);
- }
- #endif
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- delete ctx;
- }
- const llama_model * llama_get_model(const struct llama_context * ctx) {
- return &ctx->model;
- }
- uint32_t llama_n_ctx(const struct llama_context * ctx) {
- return ctx->cparams.n_ctx;
- }
- uint32_t llama_n_batch(const struct llama_context * ctx) {
- return ctx->cparams.n_batch;
- }
- enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
- return model->vocab.type;
- }
- int32_t llama_n_vocab(const struct llama_model * model) {
- return model->vocab.id_to_token.size();
- }
- int32_t llama_n_ctx_train(const struct llama_model * model) {
- return model->hparams.n_ctx_train;
- }
- int32_t llama_n_embd(const struct llama_model * model) {
- return model->hparams.n_embd;
- }
- float llama_rope_freq_scale_train(const struct llama_model * model) {
- return model->hparams.rope_freq_scale_train;
- }
- int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_meta_count(const struct llama_model * model) {
- return (int)model->gguf_kv.size();
- }
- int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->first.c_str());
- }
- int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s %s %s",
- llama_model_arch_name(model->arch),
- llama_model_type_name(model->type),
- llama_model_ftype_name(model->ftype).c_str());
- }
- uint64_t llama_model_size(const struct llama_model * model) {
- uint64_t size = 0;
- for (const auto & it : model->tensors_by_name) {
- size += ggml_nbytes(it.second);
- }
- return size;
- }
- uint64_t llama_model_n_params(const struct llama_model * model) {
- uint64_t nparams = 0;
- for (const auto & it : model->tensors_by_name) {
- nparams += ggml_nelements(it.second);
- }
- return nparams;
- }
- struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
- auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
- [name](const std::pair<std::string, struct ggml_tensor *> & it) {
- return it.first == name;
- });
- if (it == model->tensors_by_name.end()) {
- return nullptr;
- }
- return it->second;
- }
- uint32_t llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- const llama_model_quantize_params * params) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, params);
- return 0;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
- return 1;
- }
- }
- int32_t llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
- try {
- return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
- try {
- return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- return 1;
- }
- }
- struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq) {
- struct llama_kv_cache_view result = {
- /*.n_cells = */ 0,
- /*.n_max_seq = */ n_max_seq,
- /*.token_count = */ 0,
- /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
- /*.max_contiguous = */ 0,
- /*.max_contiguous_idx = */ -1,
- /*.cells = */ nullptr,
- /*.cells_sequences = */ nullptr,
- };
- return result;
- }
- void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
- if (view->cells != nullptr) {
- free(view->cells);
- view->cells = nullptr;
- }
- if (view->cells_sequences != nullptr) {
- free(view->cells_sequences);
- view->cells_sequences = nullptr;
- }
- }
- void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
- if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
- view->n_cells = int32_t(ctx->kv_self.size);
- void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
- view->cells = (struct llama_kv_cache_view_cell *)p;
- p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_max_seq * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
- view->cells_sequences = (llama_seq_id *)p;
- }
- const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
- llama_kv_cache_view_cell * c_curr = view->cells;
- llama_seq_id * cs_curr = view->cells_sequences;
- int32_t used_cells = 0;
- int32_t token_count = 0;
- int32_t curr_contig_idx = -1;
- uint32_t max_contig = 0;
- int32_t max_contig_idx = -1;
- for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_max_seq) {
- const size_t curr_size = kv_cells[i].seq_id.size();
- token_count += curr_size;
- c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
- if (curr_size > 0) {
- if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
- max_contig = i - curr_contig_idx;
- max_contig_idx = curr_contig_idx;
- }
- curr_contig_idx = -1;
- } else if (curr_contig_idx < 0) {
- curr_contig_idx = i;
- }
- int seq_idx = 0;
- for (const llama_seq_id it : kv_cells[i].seq_id) {
- if (seq_idx >= view->n_max_seq) {
- break;
- }
- cs_curr[seq_idx] = it;
- seq_idx++;
- }
- if (seq_idx != 0) {
- used_cells++;
- }
- for (; seq_idx < view->n_max_seq; seq_idx++) {
- cs_curr[seq_idx] = -1;
- }
- }
- if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
- max_contig_idx = curr_contig_idx;
- max_contig = kv_cells.size() - curr_contig_idx;
- }
- view->max_contiguous = max_contig;
- view->max_contiguous_idx = max_contig_idx;
- view->token_count = token_count;
- view->used_cells = used_cells;
- if (uint32_t(used_cells) != ctx->kv_self.used) {
- LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
- __func__, ctx->kv_self.used, used_cells);
- }
- }
- int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
- int result = 0;
- for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
- result += ctx->kv_self.cells[i].seq_id.size();
- }
- return result;
- }
- int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
- return ctx->kv_self.used;
- }
- void llama_kv_cache_clear(struct llama_context * ctx) {
- llama_kv_cache_clear(ctx->kv_self);
- }
- void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
- }
- void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
- }
- void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
- llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
- }
- void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
- if (delta == 0) {
- return;
- }
- llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
- }
- void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
- }
- // Returns the *maximum* size of the state
- size_t llama_get_state_size(const struct llama_context * ctx) {
- // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
- // for reference, std::mt19937(1337) serializes to 6701 bytes.
- const size_t s_rng_size = sizeof(size_t);
- const size_t s_rng = LLAMA_MAX_RNG_STATE;
- const size_t s_logits_size = sizeof(size_t);
- // assume worst case for logits although only currently set ones are serialized
- const size_t s_logits = ctx->logits.capacity() * sizeof(float);
- const size_t s_embedding_size = sizeof(size_t);
- const size_t s_embedding = ctx->embedding.size() * sizeof(float);
- const size_t s_kv_size = sizeof(size_t);
- const size_t s_kv_ntok = sizeof(int);
- const size_t s_kv = ctx->kv_self.total_size();
- const size_t s_total = (
- + s_rng_size
- + s_rng
- + s_logits_size
- + s_logits
- + s_embedding_size
- + s_embedding
- + s_kv_size
- + s_kv_ntok
- + s_kv
- );
- return s_total;
- }
- // llama_context_data
- struct llama_data_context {
- virtual void write(const void * src, size_t size) = 0;
- virtual size_t get_size_written() = 0;
- virtual ~llama_data_context() = default;
- };
- struct llama_data_buffer_context : llama_data_context {
- uint8_t * ptr;
- size_t size_written = 0;
- llama_data_buffer_context(uint8_t * p) : ptr(p) {}
- void write(const void * src, size_t size) override {
- memcpy(ptr, src, size);
- ptr += size;
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- struct llama_data_file_context : llama_data_context {
- llama_file * file;
- size_t size_written = 0;
- llama_data_file_context(llama_file * f) : file(f) {}
- void write(const void * src, size_t size) override {
- file->write_raw(src, size);
- size_written += size;
- }
- size_t get_size_written() override {
- return size_written;
- }
- };
- /** copy state data into either a buffer or file depending on the passed in context
- *
- * file context:
- * llama_file file("/path", "wb");
- * llama_data_file_context data_ctx(&file);
- * llama_copy_state_data(ctx, &data_ctx);
- *
- * buffer context:
- * std::vector<uint8_t> buf(max_size, 0);
- * llama_data_buffer_context data_ctx(&buf.data());
- * llama_copy_state_data(ctx, &data_ctx);
- *
- */
- static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
- // copy rng
- {
- std::ostringstream rng_ss;
- rng_ss << ctx->rng;
- const std::string & rng_str = rng_ss.str();
- const size_t rng_size = rng_str.size();
- GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
- data_ctx->write(&rng_size, sizeof(rng_size));
- data_ctx->write(rng_str.data(), rng_size);
- }
- // copy logits
- {
- const size_t logits_size = ctx->logits.size();
- data_ctx->write(&logits_size, sizeof(logits_size));
- if (logits_size) {
- data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
- }
- }
- // copy embeddings
- {
- const size_t embedding_size = ctx->embedding.size();
- data_ctx->write(&embedding_size, sizeof(embedding_size));
- if (embedding_size) {
- data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
- }
- }
- // copy kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const auto & cparams = ctx->cparams;
- const auto n_layer = hparams.n_layer;
- const auto n_embd_k_gqa = hparams.n_embd_k_gqa();
- const auto n_embd_v_gqa = hparams.n_embd_v_gqa();
- const auto n_ctx = cparams.n_ctx;
- const size_t kv_buf_size = kv_self.total_size();
- const uint32_t kv_head = kv_self.head;
- const uint32_t kv_size = kv_self.size;
- const uint32_t kv_used = kv_self.used;
- data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
- data_ctx->write(&kv_head, sizeof(kv_head));
- data_ctx->write(&kv_size, sizeof(kv_size));
- data_ctx->write(&kv_used, sizeof(kv_used));
- if (kv_buf_size) {
- const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
- std::vector<uint8_t> tmp_buf;
- for (int il = 0; il < (int) n_layer; ++il) {
- tmp_buf.resize(elt_size*n_embd_k_gqa*kv_head);
- ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- // v is not contiguous, copy row by row
- tmp_buf.resize(elt_size*kv_head);
- for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
- ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*elt_size*n_ctx, tmp_buf.size());
- data_ctx->write(tmp_buf.data(), tmp_buf.size());
- }
- }
- }
- for (uint32_t i = 0; i < kv_size; ++i) {
- const auto & cell = kv_self.cells[i];
- const llama_pos pos = cell.pos;
- const size_t seq_id_size = cell.seq_id.size();
- data_ctx->write(&pos, sizeof(pos));
- data_ctx->write(&seq_id_size, sizeof(seq_id_size));
- for (auto seq_id : cell.seq_id) {
- data_ctx->write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
- llama_data_buffer_context data_ctx(dst);
- llama_copy_state_data_internal(ctx, &data_ctx);
- return data_ctx.get_size_written();
- }
- // Sets the state reading from the specified source address
- size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
- uint8_t * inp = src;
- // set rng
- {
- size_t rng_size;
- memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
- GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
- std::string rng_str((char *)inp, rng_size); inp += rng_size;
- std::istringstream rng_ss(rng_str);
- rng_ss >> ctx->rng;
- GGML_ASSERT(!rng_ss.fail());
- }
- // set logits
- {
- size_t logits_size;
- memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
- GGML_ASSERT(ctx->logits.capacity() >= logits_size);
- if (logits_size) {
- ctx->logits.resize(logits_size);
- memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
- inp += logits_size * sizeof(float);
- }
- }
- // set embeddings
- {
- size_t embedding_size;
- memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
- GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
- if (embedding_size) {
- memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
- inp += embedding_size * sizeof(float);
- }
- }
- // set kv cache
- {
- const auto & kv_self = ctx->kv_self;
- const auto & hparams = ctx->model.hparams;
- const auto & cparams = ctx->cparams;
- const int n_layer = hparams.n_layer;
- const int n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int n_ctx = cparams.n_ctx;
- size_t kv_buf_size;
- uint32_t kv_head;
- uint32_t kv_size;
- uint32_t kv_used;
- memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
- memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
- memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
- memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
- if (kv_buf_size) {
- GGML_ASSERT(kv_self.total_size() == kv_buf_size);
- const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
- for (int il = 0; il < (int) n_layer; ++il) {
- size_t k_size = elt_size*n_embd_k_gqa*kv_head;
- ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
- inp += k_size;
- // v is not contiguous, copy row by row
- size_t v_row_size = elt_size*kv_head;
- for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
- ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*elt_size*n_ctx, v_row_size);
- inp += v_row_size;
- }
- }
- }
- ctx->kv_self.head = kv_head;
- ctx->kv_self.size = kv_size;
- ctx->kv_self.used = kv_used;
- ctx->kv_self.cells.resize(kv_size);
- for (uint32_t i = 0; i < kv_size; ++i) {
- llama_pos pos;
- size_t seq_id_size;
- memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
- memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
- ctx->kv_self.cells[i].pos = pos;
- llama_seq_id seq_id;
- for (size_t j = 0; j < seq_id_size; ++j) {
- memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
- ctx->kv_self.cells[i].seq_id.insert(seq_id);
- }
- }
- }
- const size_t nread = inp - src;
- const size_t max_size = llama_get_state_size(ctx);
- GGML_ASSERT(nread <= max_size);
- return nread;
- }
- static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- llama_file file(path_session, "rb");
- // sanity checks
- {
- const uint32_t magic = file.read_u32();
- const uint32_t version = file.read_u32();
- if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
- LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
- return false;
- }
- llama_hparams session_hparams;
- file.read_raw(&session_hparams, sizeof(llama_hparams));
- if (session_hparams != ctx->model.hparams) {
- LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
- return false;
- }
- }
- // load the prompt
- {
- const uint32_t n_token_count = file.read_u32();
- if (n_token_count > n_token_capacity) {
- LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
- return false;
- }
- file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
- *n_token_count_out = n_token_count;
- }
- // restore the context state
- {
- const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_get_state_size(ctx);
- if (n_state_size_cur > n_state_size_max) {
- LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
- return false;
- }
- std::vector<uint8_t> state_data(n_state_size_max);
- file.read_raw(state_data.data(), n_state_size_cur);
- llama_set_state_data(ctx, state_data.data());
- }
- return true;
- }
- bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
- try {
- return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
- return false;
- }
- }
- bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
- llama_file file(path_session, "wb");
- file.write_u32(LLAMA_SESSION_MAGIC);
- file.write_u32(LLAMA_SESSION_VERSION);
- file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
- // save the prompt
- file.write_u32((uint32_t) n_token_count);
- file.write_raw(tokens, sizeof(llama_token) * n_token_count);
- // save the context state using stream saving
- llama_data_file_context data_ctx(&file);
- llama_copy_state_data_internal(ctx, &data_ctx);
- return true;
- }
- int llama_eval(
- struct llama_context * ctx,
- llama_token * tokens,
- int32_t n_tokens,
- int32_t n_past) {
- llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
- const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- int llama_eval_embd(
- struct llama_context * ctx,
- float * embd,
- int32_t n_tokens,
- int32_t n_past) {
- llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
- llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
- const int ret = llama_decode_internal(*ctx, batch);
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
- ctx->cparams.n_threads = n_threads;
- ctx->cparams.n_threads_batch = n_threads_batch;
- }
- struct llama_batch llama_batch_get_one(
- llama_token * tokens,
- int32_t n_tokens,
- llama_pos pos_0,
- llama_seq_id seq_id) {
- return {
- /*n_tokens =*/ n_tokens,
- /*tokens =*/ tokens,
- /*embd =*/ nullptr,
- /*pos =*/ nullptr,
- /*n_seq_id =*/ nullptr,
- /*seq_id =*/ nullptr,
- /*logits =*/ nullptr,
- /*all_pos_0 =*/ pos_0,
- /*all_pos_1 =*/ 1,
- /*all_seq_id =*/ seq_id,
- };
- }
- struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
- llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
- if (embd) {
- batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
- } else {
- batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
- }
- batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
- batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
- batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
- for (int i = 0; i < n_tokens_alloc; ++i) {
- batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
- }
- batch.seq_id[n_tokens_alloc] = nullptr;
- batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
- return batch;
- }
- void llama_batch_free(struct llama_batch batch) {
- if (batch.token) free(batch.token);
- if (batch.embd) free(batch.embd);
- if (batch.pos) free(batch.pos);
- if (batch.n_seq_id) free(batch.n_seq_id);
- if (batch.seq_id) {
- for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
- free(batch.seq_id[i]);
- }
- free(batch.seq_id);
- }
- if (batch.logits) free(batch.logits);
- }
- int32_t llama_decode(
- struct llama_context * ctx,
- struct llama_batch batch) {
- const int ret = llama_decode_internal(*ctx, batch);
- if (ret < 0) {
- LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
- }
- return ret;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
- assert(ctx->logits_valid.at(i));
- return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
- return ctx->embedding.data() + i*ctx->model.hparams.n_embd;
- }
- const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
- return model->vocab.id_to_token[token].text.c_str();
- }
- float llama_token_get_score(const struct llama_model * model, llama_token token) {
- return model->vocab.id_to_token[token].score;
- }
- llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
- return model->vocab.id_to_token[token].type;
- }
- llama_token llama_token_bos(const struct llama_model * model) {
- return model->vocab.special_bos_id;
- }
- llama_token llama_token_eos(const struct llama_model * model) {
- return model->vocab.special_eos_id;
- }
- llama_token llama_token_nl(const struct llama_model * model) {
- return model->vocab.linefeed_id;
- }
- int32_t llama_add_bos_token(const struct llama_model * model) {
- return model->vocab.special_add_bos;
- }
- int32_t llama_add_eos_token(const struct llama_model * model) {
- return model->vocab.special_add_eos;
- }
- llama_token llama_token_prefix(const struct llama_model * model) {
- return model->vocab.special_prefix_id;
- }
- llama_token llama_token_middle(const struct llama_model * model) {
- return model->vocab.special_middle_id;
- }
- llama_token llama_token_suffix(const struct llama_model * model) {
- return model->vocab.special_suffix_id;
- }
- llama_token llama_token_eot(const struct llama_model * model) {
- return model->vocab.special_eot_id;
- }
- int32_t llama_tokenize(
- const struct llama_model * model,
- const char * text,
- int32_t text_len,
- llama_token * tokens,
- int32_t n_max_tokens,
- bool add_bos,
- bool special) {
- auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
- if (n_max_tokens < (int) res.size()) {
- // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- static std::string llama_decode_text(const std::string & text) {
- std::string decoded_text;
- auto unicode_sequences = codepoints_from_utf8(text);
- for (auto& unicode_sequence : unicode_sequences) {
- decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
- }
- return decoded_text;
- }
- // does not write null-terminator to buf
- int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
- if (0 <= token && token < llama_n_vocab(model)) {
- switch (llama_vocab_get_type(model->vocab)) {
- case LLAMA_VOCAB_TYPE_WPM:
- case LLAMA_VOCAB_TYPE_SPM: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- llama_unescape_whitespace(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_user_defined_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
- if (length < 3) {
- return -3;
- }
- memcpy(buf, "\xe2\x96\x85", 3);
- return 3;
- } else if (llama_is_control_token(model->vocab, token)) {
- ;
- } else if (llama_is_byte_token(model->vocab, token)) {
- if (length < 1) {
- return -1;
- }
- buf[0] = llama_token_to_byte(model->vocab, token);
- return 1;
- }
- break;
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- result = llama_decode_text(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_user_defined_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_control_token(model->vocab, token)) {
- ;
- }
- break;
- }
- default:
- GGML_ASSERT(false);
- }
- }
- return 0;
- }
- // trim whitespace from the beginning and end of a string
- static std::string trim(const std::string & str) {
- size_t start = 0;
- size_t end = str.size();
- while (start < end && isspace(str[start])) {
- start += 1;
- }
- while (end > start && isspace(str[end - 1])) {
- end -= 1;
- }
- return str.substr(start, end - start);
- }
- // Simple version of "llama_apply_chat_template" that only works with strings
- // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
- static int32_t llama_chat_apply_template_internal(
- const std::string & tmpl,
- const std::vector<const llama_chat_message *> & chat,
- std::string & dest, bool add_ass) {
- // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
- std::stringstream ss;
- if (tmpl.find("<|im_start|>") != std::string::npos) {
- // chatml template
- for (auto message : chat) {
- ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
- }
- if (add_ass) {
- ss << "<|im_start|>assistant\n";
- }
- } else if (tmpl.find("[INST]") != std::string::npos) {
- // llama2 template and its variants
- // [variant] support system message
- bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
- // [variant] space before + after response
- bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
- // [variant] add BOS inside history
- bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
- // [variant] trim spaces from the input message
- bool strip_message = tmpl.find("content.strip()") != std::string::npos;
- // construct the prompt
- bool is_inside_turn = true; // skip BOS at the beginning
- ss << "[INST] ";
- for (auto message : chat) {
- std::string content = strip_message ? trim(message->content) : message->content;
- std::string role(message->role);
- if (!is_inside_turn) {
- is_inside_turn = true;
- ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
- }
- if (role == "system") {
- if (support_system_message) {
- ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
- } else {
- // if the model does not support system message, we still include it in the first message, but without <<SYS>>
- ss << content << "\n";
- }
- } else if (role == "user") {
- ss << content << " [/INST]";
- } else {
- ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
- is_inside_turn = false;
- }
- }
- // llama2 templates seem to not care about "add_generation_prompt"
- } else if (tmpl.find("<|user|>") != std::string::npos) {
- // zephyr template
- for (auto message : chat) {
- ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
- }
- if (add_ass) {
- ss << "<|assistant|>\n";
- }
- } else {
- // template not supported
- return -1;
- }
- dest = ss.str();
- return dest.size();
- }
- LLAMA_API int32_t llama_chat_apply_template(
- const struct llama_model * model,
- const char * tmpl,
- const struct llama_chat_message * chat,
- size_t n_msg,
- bool add_ass,
- char * buf,
- int32_t length) {
- std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
- if (tmpl == nullptr) {
- GGML_ASSERT(model != nullptr);
- // load template from model
- std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
- std::string template_key = "tokenizer.chat_template";
- int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), curr_tmpl.size());
- if (res < 0) {
- // worst case: there is no information about template, we will use chatml by default
- curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal
- } else {
- curr_tmpl = std::string(model_template.data(), model_template.size());
- }
- }
- // format the chat to string
- std::vector<const llama_chat_message *> chat_vec;
- chat_vec.resize(n_msg);
- for (size_t i = 0; i < n_msg; i++) {
- chat_vec[i] = &chat[i];
- }
- std::string formatted_chat;
- int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
- if (res < 0) {
- return res;
- }
- strncpy(buf, formatted_chat.c_str(), length);
- return res;
- }
- struct llama_timings llama_get_timings(struct llama_context * ctx) {
- struct llama_timings result = {
- /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
- /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
- /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
- /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
- /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
- /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
- /*.n_sample =*/ std::max(1, ctx->n_sample),
- /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
- /*.n_eval =*/ std::max(1, ctx->n_eval),
- };
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const llama_timings timings = llama_get_timings(ctx);
- LLAMA_LOG_INFO("\n");
- LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
- LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
- LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
- LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
- __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
- LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
- s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
- return s.c_str();
- }
- void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
- fprintf(stream, "\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "# Timings #\n");
- fprintf(stream, "###########\n");
- fprintf(stream, "\n");
- fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
- 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
- fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
- 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
- fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
- 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
- fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
- fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
- fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
- fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
- fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
- fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
- fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
- fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
- 1.0e6 * ctx->n_eval / ctx->t_eval_us);
- fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
- 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
- fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
- 1.0e6 * ctx->n_sample / ctx->t_sample_us);
- }
- // For internal test use
- const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
- struct llama_context * ctx
- ) {
- return ctx->model.tensors_by_name;
- }
- void llama_log_set(ggml_log_callback log_callback, void * user_data) {
- g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
- g_state.log_callback_user_data = user_data;
- #ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
- #endif
- }
- static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
- va_list args_copy;
- va_copy(args_copy, args);
- char buffer[128];
- int len = vsnprintf(buffer, 128, format, args);
- if (len < 128) {
- g_state.log_callback(level, buffer, g_state.log_callback_user_data);
- } else {
- char* buffer2 = new char[len+1];
- vsnprintf(buffer2, len+1, format, args_copy);
- buffer2[len] = 0;
- g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
- delete[] buffer2;
- }
- va_end(args_copy);
- }
- static void llama_log_internal(ggml_log_level level, const char * format, ...) {
- va_list args;
- va_start(args, format);
- llama_log_internal_v(level, format, args);
- va_end(args);
- }
- static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
- (void) level;
- (void) user_data;
- fputs(text, stderr);
- fflush(stderr);
- }
|