ggml.c 316 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if defined(__ARM_NEON) || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. const vector float v85 = vec_splats(8.5f);
  412. for (int i = 0; i < nb; i++) {
  413. float amax = 0.0f; // absolute max
  414. vector float srcv [8];
  415. vector float asrcv[8];
  416. vector float amaxv[8];
  417. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  418. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  419. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  420. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  421. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  422. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  423. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  424. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  425. amax = MAX(
  426. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  427. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  428. const float d = amax / ((1 << 3) - 1);
  429. const float id = d ? 1.0/d : 0.0;
  430. *(float *)pd = d;
  431. pd += bs;
  432. const vector float vid = vec_splats(id);
  433. for (int l = 0; l < 8; l++) {
  434. const vector float vf = vec_madd(srcv[l], vid, v85);
  435. const vector signed int vi = vec_signed(vf);
  436. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  437. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  438. }
  439. //memcpy(pb, pp, sizeof(pp));
  440. pb += bs;
  441. }
  442. #elif __ARM_NEON
  443. for (int i = 0; i < nb; i++) {
  444. float amax = 0.0f; // absolute max
  445. float32x4_t srcv [8];
  446. float32x4_t asrcv[8];
  447. float32x4_t amaxv[8];
  448. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  449. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  450. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  451. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  452. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  453. amax = MAX(
  454. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  455. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  456. const float d = amax / ((1 << 3) - 1);
  457. const float id = d ? 1.0/d : 0.0;
  458. *(float *)pd = d;
  459. pd += bs;
  460. for (int l = 0; l < 8; l++) {
  461. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  462. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  463. const int32x4_t vi = vcvtq_s32_f32(vf);
  464. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  465. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  466. }
  467. memcpy(pb, pp, sizeof(pp));
  468. pb += bs;
  469. }
  470. #elif defined(__AVX2__)
  471. for (int i = 0; i < nb; i++) {
  472. // Load elements into 4 AVX vectors
  473. __m256 v0 = _mm256_loadu_ps( x );
  474. __m256 v1 = _mm256_loadu_ps( x + 8 );
  475. __m256 v2 = _mm256_loadu_ps( x + 16 );
  476. __m256 v3 = _mm256_loadu_ps( x + 24 );
  477. x += 32;
  478. // Compute max(abs(e)) for the block
  479. const __m256 signBit = _mm256_set1_ps( -0.0f );
  480. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  481. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  484. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  485. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  486. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  487. const float maxScalar = _mm_cvtss_f32( max4 );
  488. // Quantize these floats
  489. const float d = maxScalar / 7.0f;
  490. *(float *)pd = d;
  491. pd += bs;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )pb, res );
  525. pb += bs;
  526. }
  527. #elif defined(__wasm_simd128__)
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. *(float *)pd = d;
  544. pd += bs;
  545. for (int l = 0; l < 8; l++) {
  546. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  547. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  548. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  549. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  550. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  551. }
  552. memcpy(pb, pp, sizeof(pp));
  553. pb += bs;
  554. }
  555. #else
  556. // scalar
  557. quantize_row_q4_0_reference(x, y, k);
  558. #endif
  559. }
  560. // method 4
  561. // blocks of QK elements
  562. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  563. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  564. assert(k % QK == 0);
  565. const int nb = k / QK;
  566. const size_t bs = 2*sizeof(float) + QK/2;
  567. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  568. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  569. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  570. uint8_t pp[QK/2];
  571. for (int i = 0; i < nb; i++) {
  572. float min = FLT_MAX;
  573. float max = -FLT_MAX;
  574. for (int l = 0; l < QK; l++) {
  575. const float v = x[i*QK + l];
  576. if (v < min) min = v;
  577. if (v > max) max = v;
  578. }
  579. const float d = (max - min) / ((1 << 4) - 1);
  580. const float id = d ? 1.0f/d : 0.0f;
  581. *(float *)pm = min;
  582. *(float *)pd = d;
  583. pm += bs;
  584. pd += bs;
  585. for (int l = 0; l < QK; l += 2) {
  586. const float v0 = (x[i*QK + l + 0] - min)*id;
  587. const float v1 = (x[i*QK + l + 1] - min)*id;
  588. const uint8_t vi0 = round(v0);
  589. const uint8_t vi1 = round(v1);
  590. assert(vi0 >= 0 && vi0 < 16);
  591. assert(vi1 >= 0 && vi1 < 16);
  592. pp[l/2] = vi0 | (vi1 << 4);
  593. }
  594. memcpy(pb, pp, sizeof(pp));
  595. pb += bs;
  596. }
  597. }
  598. // TODO: vectorize
  599. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  600. assert(k % QK == 0);
  601. const int nb = k / QK;
  602. const size_t bs = sizeof(float) + QK/2;
  603. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  604. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  605. #if defined(__AVX2__)
  606. for (int i = 0; i < nb; i++) {
  607. // scale factor
  608. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  609. const uint8_t * restrict pp = pb + i*bs;
  610. for (int l = 0; l < QK; l += 32) {
  611. // Load 32x4-bit integers into 32x8-bit integers
  612. __m256i vx8 = bytesFromNibbles(pp+l/2);
  613. // Subtract 8 from the integers
  614. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  615. // Convert to 16-bit int
  616. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  617. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  618. // Convert to 32-bit int -> float 32
  619. const __m256 vf[4] = {
  620. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  621. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  622. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  623. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  624. };
  625. // Scale and store
  626. for (int j = 0; j < 4; j++) {
  627. __m256 result = _mm256_mul_ps(vf[j], d_v);
  628. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  629. }
  630. }
  631. }
  632. #elif defined(__ARM_NEON)
  633. for (int i = 0; i < nb; i++) {
  634. const float d = *(const float *) (pd + i*bs);
  635. const uint8_t * restrict pp = pb + i*bs;
  636. const float32x4_t vd = vdupq_n_f32(d);
  637. for (int l = 0; l < QK; l += 16) {
  638. // Load 16x4-bit integers into 8x8-bit integers
  639. const uint8x8_t v8 = vld1_u8(pp + l/2);
  640. // Expand 4-bit nibbles to 8-bit bytes
  641. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  642. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  643. // Convert to signed 8-bit integers
  644. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  645. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  646. // Subtract 8 from each byte
  647. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  648. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  649. // Interleave and combine
  650. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  651. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  652. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  653. // convert to 2x int16x8_t
  654. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  655. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  656. // convert to 4x float32x4_t
  657. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  658. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  659. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  660. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  661. // Multiply by d
  662. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  663. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  664. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  665. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  666. // Store
  667. vst1q_f32(y + i*QK + l + 0, r0);
  668. vst1q_f32(y + i*QK + l + 4, r1);
  669. vst1q_f32(y + i*QK + l + 8, r2);
  670. vst1q_f32(y + i*QK + l + 12, r3);
  671. }
  672. }
  673. #else
  674. // scalar
  675. for (int i = 0; i < nb; i++) {
  676. const float d = *(const float *) (pd + i*bs);
  677. const uint8_t * restrict pp = pb + i*bs;
  678. for (int l = 0; l < QK; l += 2) {
  679. const uint8_t vi = pp[l/2];
  680. const int8_t vi0 = vi & 0xf;
  681. const int8_t vi1 = vi >> 4;
  682. const float v0 = (vi0 - 8)*d;
  683. const float v1 = (vi1 - 8)*d;
  684. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  685. y[i*QK + l + 0] = v0;
  686. y[i*QK + l + 1] = v1;
  687. assert(!isnan(y[i*QK + l + 0]));
  688. assert(!isnan(y[i*QK + l + 1]));
  689. }
  690. }
  691. #endif
  692. }
  693. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  694. assert(k % QK == 0);
  695. const int nb = k / QK;
  696. const size_t bs = 2*sizeof(float) + QK/2;
  697. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  698. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  699. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  700. for (int i = 0; i < nb; i++) {
  701. const float d = *(const float *) (pd + i*bs);
  702. const float m = *(const float *) (pm + i*bs);
  703. const uint8_t * restrict pp = pb + i*bs;
  704. for (int l = 0; l < QK; l += 2) {
  705. const uint8_t vi = pp[l/2];
  706. const int8_t vi0 = vi & 0xf;
  707. const int8_t vi1 = vi >> 4;
  708. const float v0 = vi0*d + m;
  709. const float v1 = vi1*d + m;
  710. y[i*QK + l + 0] = v0;
  711. y[i*QK + l + 1] = v1;
  712. assert(!isnan(y[i*QK + l + 0]));
  713. assert(!isnan(y[i*QK + l + 1]));
  714. }
  715. }
  716. }
  717. //
  718. // simd mappings
  719. //
  720. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  721. // we then implement the fundamental computation operations below using only these macros
  722. // adding support for new architectures requires to define the corresponding SIMD macros
  723. //
  724. // GGML_F32_STEP / GGML_F16_STEP
  725. // number of elements to process in a single step
  726. //
  727. // GGML_F32_EPR / GGML_F16_EPR
  728. // number of elements to fit in a single register
  729. //
  730. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  731. #define GGML_SIMD
  732. // F32 NEON
  733. #define GGML_F32_STEP 16
  734. #define GGML_F32_EPR 4
  735. #define GGML_F32x4 float32x4_t
  736. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  737. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  738. #define GGML_F32x4_LOAD vld1q_f32
  739. #define GGML_F32x4_STORE vst1q_f32
  740. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  741. #define GGML_F32x4_ADD vaddq_f32
  742. #define GGML_F32x4_MUL vmulq_f32
  743. #if defined(__ARM_FEATURE_QRDMX)
  744. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  745. #else
  746. #define GGML_F32x4_REDUCE_ONE(x) \
  747. (vgetq_lane_f32(x, 0) + \
  748. vgetq_lane_f32(x, 1) + \
  749. vgetq_lane_f32(x, 2) + \
  750. vgetq_lane_f32(x, 3))
  751. #endif
  752. #define GGML_F32x4_REDUCE(res, x) \
  753. { \
  754. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  755. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  756. } \
  757. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  758. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  759. } \
  760. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  761. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  762. } \
  763. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  764. }
  765. #define GGML_F32_VEC GGML_F32x4
  766. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  767. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  768. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  769. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  770. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  771. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  772. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  773. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  774. // F16 NEON
  775. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  776. #define GGML_F16_STEP 32
  777. #define GGML_F16_EPR 8
  778. #define GGML_F16x8 float16x8_t
  779. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  780. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  781. #define GGML_F16x8_LOAD vld1q_f16
  782. #define GGML_F16x8_STORE vst1q_f16
  783. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  784. #define GGML_F16x8_ADD vaddq_f16
  785. #define GGML_F16x8_MUL vmulq_f16
  786. #define GGML_F16x8_REDUCE(res, x) \
  787. { \
  788. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  789. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  790. } \
  791. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  792. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  793. } \
  794. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  795. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  796. } \
  797. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  798. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  799. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  800. }
  801. #define GGML_F16_VEC GGML_F16x8
  802. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  803. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  804. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  805. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  806. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  807. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  808. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  809. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  810. #else
  811. // if FP16 vector arithmetic is not supported, we use FP32 instead
  812. // and take advantage of the vcvt_ functions to convert to/from FP16
  813. #define GGML_F16_STEP 16
  814. #define GGML_F16_EPR 4
  815. #define GGML_F32Cx4 float32x4_t
  816. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  817. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  818. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  819. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  820. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  821. #define GGML_F32Cx4_ADD vaddq_f32
  822. #define GGML_F32Cx4_MUL vmulq_f32
  823. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  824. #define GGML_F16_VEC GGML_F32Cx4
  825. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  826. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  827. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  828. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  829. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  830. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  831. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  832. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  833. #endif
  834. #elif defined(__AVX__)
  835. #define GGML_SIMD
  836. // F32 AVX
  837. #define GGML_F32_STEP 32
  838. #define GGML_F32_EPR 8
  839. #define GGML_F32x8 __m256
  840. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  841. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  842. #define GGML_F32x8_LOAD _mm256_loadu_ps
  843. #define GGML_F32x8_STORE _mm256_storeu_ps
  844. #if defined(__FMA__)
  845. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  846. #else
  847. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  848. #endif
  849. #define GGML_F32x8_ADD _mm256_add_ps
  850. #define GGML_F32x8_MUL _mm256_mul_ps
  851. #define GGML_F32x8_REDUCE(res, x) \
  852. { \
  853. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  854. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  855. } \
  856. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  857. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  858. } \
  859. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  860. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  861. } \
  862. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  863. _mm256_extractf128_ps(x[0], 1)); \
  864. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  865. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  866. }
  867. // TODO: is this optimal ?
  868. #define GGML_F32_VEC GGML_F32x8
  869. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  870. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  871. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  872. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  873. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  874. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  875. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  876. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  877. // F16 AVX
  878. #define GGML_F16_STEP 32
  879. #define GGML_F16_EPR 8
  880. // F16 arithmetic is not supported by AVX, so we use F32 instead
  881. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  882. #define GGML_F32Cx8 __m256
  883. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  884. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  885. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  886. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  887. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  888. #define GGML_F32Cx8_ADD _mm256_add_ps
  889. #define GGML_F32Cx8_MUL _mm256_mul_ps
  890. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  891. #define GGML_F16_VEC GGML_F32Cx8
  892. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  893. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  894. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  895. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  896. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  897. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  898. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  899. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  900. #elif defined(__POWER9_VECTOR__)
  901. #define GGML_SIMD
  902. // F32 POWER9
  903. #define GGML_F32_STEP 32
  904. #define GGML_F32_EPR 4
  905. #define GGML_F32x4 vector float
  906. #define GGML_F32x4_ZERO 0.0f
  907. #define GGML_F32x4_SET1 vec_splats
  908. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  909. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  910. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  911. #define GGML_F32x4_ADD vec_add
  912. #define GGML_F32x4_MUL vec_mul
  913. #define GGML_F32x4_REDUCE(res, x) \
  914. { \
  915. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  916. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  917. } \
  918. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  919. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  920. } \
  921. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  922. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  923. } \
  924. res = vec_extract(x[0], 0) + \
  925. vec_extract(x[0], 1) + \
  926. vec_extract(x[0], 2) + \
  927. vec_extract(x[0], 3); \
  928. }
  929. #define GGML_F32_VEC GGML_F32x4
  930. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  931. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  932. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  933. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  934. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  935. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  936. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  937. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  938. // F16 POWER9
  939. #define GGML_F16_STEP GGML_F32_STEP
  940. #define GGML_F16_EPR GGML_F32_EPR
  941. #define GGML_F16_VEC GGML_F32x4
  942. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  943. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  944. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  945. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  946. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  947. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  948. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  949. vec_extract_fp32_from_shortl(vec_xl(0, p))
  950. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  951. #define GGML_F16_VEC_STORE(p, r, i) \
  952. if (i & 0x1) \
  953. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  954. r[i - GGML_ENDIAN_BYTE(0)]), \
  955. 0, p - GGML_F16_EPR)
  956. #elif defined(__wasm_simd128__)
  957. #define GGML_SIMD
  958. // F32 WASM
  959. #define GGML_F32_STEP 16
  960. #define GGML_F32_EPR 4
  961. #define GGML_F32x4 v128_t
  962. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  963. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  964. #define GGML_F32x4_LOAD wasm_v128_load
  965. #define GGML_F32x4_STORE wasm_v128_store
  966. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  967. #define GGML_F32x4_ADD wasm_f32x4_add
  968. #define GGML_F32x4_MUL wasm_f32x4_mul
  969. #define GGML_F32x4_REDUCE(res, x) \
  970. { \
  971. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  972. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  973. } \
  974. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  975. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  976. } \
  977. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  978. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  979. } \
  980. res = wasm_f32x4_extract_lane(x[0], 0) + \
  981. wasm_f32x4_extract_lane(x[0], 1) + \
  982. wasm_f32x4_extract_lane(x[0], 2) + \
  983. wasm_f32x4_extract_lane(x[0], 3); \
  984. }
  985. #define GGML_F32_VEC GGML_F32x4
  986. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  987. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  988. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  989. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  990. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  991. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  992. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  993. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  994. // F16 WASM
  995. #define GGML_F16_STEP 16
  996. #define GGML_F16_EPR 4
  997. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  998. float tmp[4];
  999. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1000. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1001. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1002. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1003. return wasm_v128_load(tmp);
  1004. }
  1005. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1006. float tmp[4];
  1007. wasm_v128_store(tmp, x);
  1008. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1009. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1010. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1011. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1012. }
  1013. #define GGML_F16x4 v128_t
  1014. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1015. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1016. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1017. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1018. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1019. #define GGML_F16x4_ADD wasm_f32x4_add
  1020. #define GGML_F16x4_MUL wasm_f32x4_mul
  1021. #define GGML_F16x4_REDUCE(res, x) \
  1022. { \
  1023. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1024. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1025. } \
  1026. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1027. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1028. } \
  1029. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1030. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1031. } \
  1032. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1033. wasm_f32x4_extract_lane(x[0], 1) + \
  1034. wasm_f32x4_extract_lane(x[0], 2) + \
  1035. wasm_f32x4_extract_lane(x[0], 3); \
  1036. }
  1037. #define GGML_F16_VEC GGML_F16x4
  1038. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1039. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1040. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1041. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1042. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1043. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1044. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1045. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1046. #elif defined(__SSE3__)
  1047. #define GGML_SIMD
  1048. // F32 SSE
  1049. #define GGML_F32_STEP 32
  1050. #define GGML_F32_EPR 4
  1051. #define GGML_F32x4 __m128
  1052. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1053. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1054. #define GGML_F32x4_LOAD _mm_loadu_ps
  1055. #define GGML_F32x4_STORE _mm_storeu_ps
  1056. #if defined(__FMA__)
  1057. // TODO: Does this work?
  1058. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1059. #else
  1060. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1061. #endif
  1062. #define GGML_F32x4_ADD _mm_add_ps
  1063. #define GGML_F32x4_MUL _mm_mul_ps
  1064. #define GGML_F32x4_REDUCE(res, x) \
  1065. { \
  1066. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1067. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1068. } \
  1069. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1070. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1071. } \
  1072. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1073. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1074. } \
  1075. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1076. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1077. }
  1078. // TODO: is this optimal ?
  1079. #define GGML_F32_VEC GGML_F32x4
  1080. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1081. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1082. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1083. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1084. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1085. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1086. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1087. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1088. // F16 SSE
  1089. #define GGML_F16_STEP 32
  1090. #define GGML_F16_EPR 4
  1091. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1092. float tmp[4];
  1093. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1094. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1095. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1096. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1097. return _mm_loadu_ps(tmp);
  1098. }
  1099. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1100. float arr[4];
  1101. _mm_storeu_ps(arr, y);
  1102. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1103. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1104. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1105. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1106. }
  1107. #define GGML_F32Cx4 __m128
  1108. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1109. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1110. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1111. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1112. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1113. #define GGML_F32Cx4_ADD _mm_add_ps
  1114. #define GGML_F32Cx4_MUL _mm_mul_ps
  1115. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1116. #define GGML_F16_VEC GGML_F32Cx4
  1117. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1118. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1119. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1120. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1121. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1122. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1123. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1124. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1125. #endif
  1126. // GGML_F32_ARR / GGML_F16_ARR
  1127. // number of registers to use per step
  1128. #ifdef GGML_SIMD
  1129. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1130. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1131. #endif
  1132. //
  1133. // fundamental operations
  1134. //
  1135. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1136. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1137. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1138. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1139. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1140. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1141. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1142. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1143. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1144. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1145. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1146. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1147. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1148. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1149. ggml_float sumf = 0.0;
  1150. #ifdef GGML_SIMD
  1151. const int np = (n & ~(GGML_F32_STEP - 1));
  1152. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1153. GGML_F32_VEC ax[GGML_F32_ARR];
  1154. GGML_F32_VEC ay[GGML_F32_ARR];
  1155. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1156. for (int j = 0; j < GGML_F32_ARR; j++) {
  1157. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1158. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1159. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1160. }
  1161. }
  1162. // reduce sum0..sum3 to sum0
  1163. GGML_F32_VEC_REDUCE(sumf, sum);
  1164. // leftovers
  1165. for (int i = np; i < n; ++i) {
  1166. sumf += x[i]*y[i];
  1167. }
  1168. #else
  1169. // scalar
  1170. for (int i = 0; i < n; ++i) {
  1171. sumf += x[i]*y[i];
  1172. }
  1173. #endif
  1174. *s = sumf;
  1175. }
  1176. #if __AVX512F__ && QK == 32
  1177. static inline __m512 dot_q4_0_oneblock_avx512(
  1178. __m512 acc,
  1179. const uint8_t * pd0,
  1180. const uint8_t * pd1,
  1181. const uint8_t * pb0,
  1182. const uint8_t * pb1,
  1183. size_t bs,
  1184. int i
  1185. ) {
  1186. const float * d0_0 = (const float *) (pd0 + i*bs);
  1187. const float * d1_0 = (const float *) (pd1 + i*bs);
  1188. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1189. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1190. // Compute combined scale for the block
  1191. float scaleScalar = d0_0[0] * d1_0[0];
  1192. __m512 scale = _mm512_set1_ps( scaleScalar );
  1193. __m256i bx = bytesFromNibbles( p0 );
  1194. __m256i by = bytesFromNibbles( p1 );
  1195. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1196. const __m256i off = _mm256_set1_epi8( 8 );
  1197. bx = _mm256_sub_epi8( bx, off );
  1198. by = _mm256_sub_epi8( by, off );
  1199. // Sign-extend 16 signed bytes into int16_t
  1200. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1201. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1202. // Compute products of int16_t integers, add pairwise
  1203. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1204. // Convert int32_t to float
  1205. __m512 p = _mm512_cvtepi32_ps( i64 );
  1206. // Apply the scale, and accumulate
  1207. return _mm512_fmadd_ps( scale, p, acc );
  1208. }
  1209. #endif
  1210. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1211. ggml_float sumf = 0.0;
  1212. #if defined(GGML_SIMD)
  1213. const int np = (n & ~(GGML_F16_STEP - 1));
  1214. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1215. GGML_F16_VEC ax[GGML_F16_ARR];
  1216. GGML_F16_VEC ay[GGML_F16_ARR];
  1217. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1218. for (int j = 0; j < GGML_F16_ARR; j++) {
  1219. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1220. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1221. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1222. }
  1223. }
  1224. // reduce sum0..sum3 to sum0
  1225. GGML_F16_VEC_REDUCE(sumf, sum);
  1226. // leftovers
  1227. for (int i = np; i < n; ++i) {
  1228. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1229. }
  1230. #else
  1231. for (int i = 0; i < n; ++i) {
  1232. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1233. }
  1234. #endif
  1235. *s = sumf;
  1236. }
  1237. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1238. const int nb = n / QK;
  1239. assert(n % QK == 0);
  1240. assert(nb % 2 == 0);
  1241. const size_t bs = sizeof(float) + QK/2;
  1242. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1243. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1244. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1245. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1246. float sumf = 0.0;
  1247. #if defined(__ARM_NEON)
  1248. float sum0 = 0.0f;
  1249. float sum1 = 0.0f;
  1250. for (int i = 0; i < nb; i += 2) {
  1251. const float d0_0 = *(const float *) (pd0 + i*bs);
  1252. const float d1_0 = *(const float *) (pd1 + i*bs);
  1253. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1254. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1255. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1256. const uint8_t * restrict p0 = pb0 + i*bs;
  1257. const uint8_t * restrict p1 = pb1 + i*bs;
  1258. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1259. const int8x16_t s8b = vdupq_n_s8(0x8);
  1260. const uint8x16_t v0_0 = vld1q_u8(p0);
  1261. const uint8x16_t v1_0 = vld1q_u8(p1);
  1262. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1263. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1264. // 4-bit -> 8-bit
  1265. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1266. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1267. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1268. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1269. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1270. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1271. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1272. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1273. // sub 8
  1274. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1275. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1276. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1277. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1278. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1279. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1280. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1281. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1282. #if defined(__ARM_FEATURE_DOTPROD)
  1283. // dot product into int16x8_t
  1284. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1285. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1286. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1287. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1288. // scalar
  1289. #if defined(__ARM_FEATURE_QRDMX)
  1290. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1291. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1292. #else
  1293. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1294. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1295. #endif
  1296. #else
  1297. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1298. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1299. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1300. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1301. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1302. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1303. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1304. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1305. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1306. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1307. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1308. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1309. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1310. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1311. // scalar
  1312. #if defined(__ARM_FEATURE_QRDMX)
  1313. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1314. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1315. #else
  1316. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1317. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1318. #endif
  1319. #endif
  1320. }
  1321. sumf = sum0 + sum1;
  1322. #elif defined(__AVX512F__)
  1323. // Initialize accumulator with zeros
  1324. __m512 acc0 = _mm512_setzero_ps();
  1325. __m512 acc1 = _mm512_setzero_ps();
  1326. const int superblock_size = 8;
  1327. const int superblock_count = nb / superblock_size;
  1328. const int remainder = nb % superblock_size;
  1329. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1330. int i = superblock_ix * superblock_size;
  1331. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1332. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1333. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1334. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1335. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1336. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1337. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1338. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1339. }
  1340. // Remainders
  1341. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1342. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1343. }
  1344. // Horizontal sum of all lanes of the accumulator
  1345. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1346. #elif defined(__AVX2__)
  1347. const size_t countBlocks = nb;
  1348. // Initialize accumulator with zeros
  1349. __m256 acc = _mm256_setzero_ps();
  1350. // Main loop
  1351. for (int i = 0; i < nb; ++i) {
  1352. const float * d0_0 = (const float *) (pd0 + i*bs);
  1353. const float * d1_0 = (const float *) (pd1 + i*bs);
  1354. const uint8_t * restrict p0 = pb0 + i*bs;
  1355. const uint8_t * restrict p1 = pb1 + i*bs;
  1356. // Compute combined scale for the block
  1357. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1358. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1359. __m256i bx = bytesFromNibbles( p0 );
  1360. __m256i by = bytesFromNibbles( p1 );
  1361. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1362. const __m256i off = _mm256_set1_epi8( 8 );
  1363. bx = _mm256_sub_epi8( bx, off );
  1364. by = _mm256_sub_epi8( by, off );
  1365. // Sign-extend first 16 signed bytes into int16_t
  1366. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1367. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1368. // Compute products of int16_t integers, add pairwise
  1369. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1370. // Sign-extend last 16 signed bytes into int16_t vectors
  1371. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1372. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1373. // Accumulate products of int16_t integers
  1374. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1375. // Convert int32_t to float
  1376. __m256 p = _mm256_cvtepi32_ps( i32 );
  1377. // Apply the scale, and accumulate
  1378. acc = _mm256_fmadd_ps( scale, p, acc );
  1379. }
  1380. // Return horizontal sum of the acc vector
  1381. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1382. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1383. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1384. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1385. sumf = _mm_cvtss_f32( res );
  1386. #elif defined(__wasm_simd128__)
  1387. // wasm simd
  1388. float sum0 = 0.0f;
  1389. float sum1 = 0.0f;
  1390. for (int i = 0; i < nb; i += 2) {
  1391. const float d0_0 = *(const float *) (pd0 + i*bs);
  1392. const float d1_0 = *(const float *) (pd1 + i*bs);
  1393. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1394. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1395. const uint8_t * restrict p0 = pb0 + i*bs;
  1396. const uint8_t * restrict p1 = pb1 + i*bs;
  1397. const v128_t m4b = wasm_u8x16_splat(0xf);
  1398. const v128_t s8b = wasm_i8x16_splat(0x8);
  1399. const v128_t v0_0 = wasm_v128_load(p0);
  1400. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1401. const v128_t v1_0 = wasm_v128_load(p1);
  1402. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1403. // 4-bit -> 8-bit
  1404. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1405. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1406. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1407. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1408. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1409. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1410. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1411. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1412. // sub 8
  1413. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1414. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1415. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1416. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1417. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1418. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1419. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1420. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1421. // dot product into int16x8_t
  1422. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1423. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1424. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1425. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1426. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1427. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1428. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1429. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1430. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1431. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1432. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1433. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1434. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1435. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1436. sum0 += d0_0*d1_0*(
  1437. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1438. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1439. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1440. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1441. sum1 += d0_1*d1_1*(
  1442. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1443. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1444. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1445. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1446. }
  1447. sumf = sum0 + sum1;
  1448. #else
  1449. // scalar
  1450. for (int i = 0; i < nb; i++) {
  1451. const float d0 = *(const float *) (pd0 + i*bs);
  1452. const float d1 = *(const float *) (pd1 + i*bs);
  1453. const uint8_t * restrict p0 = pb0 + i*bs;
  1454. const uint8_t * restrict p1 = pb1 + i*bs;
  1455. for (int j = 0; j < QK/2; j++) {
  1456. const uint8_t v0 = p0[j];
  1457. const uint8_t v1 = p1[j];
  1458. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1459. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1460. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1461. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1462. sumf += f0*f2 + f1*f3;
  1463. }
  1464. }
  1465. #endif
  1466. *s = sumf;
  1467. }
  1468. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1469. const int nb = n / QK;
  1470. const size_t bs = 2*sizeof(float) + QK/2;
  1471. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1472. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1473. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1474. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1475. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1476. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1477. float sumf = 0.0;
  1478. #if defined(__AVX2__)
  1479. // Initialize accumulator with zeros
  1480. __m256 acc = _mm256_setzero_ps();
  1481. // Accumulator for constant offsets
  1482. float acc_offset = 0.0f;
  1483. // Main loop
  1484. for (int i = 0; i < nb; ++i) {
  1485. const float * m0 = (const float *) (pm0 + i*bs);
  1486. const float * m1 = (const float *) (pm1 + i*bs);
  1487. const float * d0 = (const float *) (pd0 + i*bs);
  1488. const float * d1 = (const float *) (pd1 + i*bs);
  1489. const uint8_t * restrict p0 = pb0 + i*bs;
  1490. const uint8_t * restrict p1 = pb1 + i*bs;
  1491. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1492. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1493. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1494. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1495. // Compute combined scale for the block
  1496. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1497. // Compute cross scales for the block
  1498. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1499. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1500. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1501. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1502. __m256i bx = bytesFromNibbles( p0 );
  1503. __m256i by = bytesFromNibbles( p1 );
  1504. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1505. // Sign-extend first 16 signed bytes into int16_t
  1506. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1507. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1508. // Compute products of int16_t integers, add pairwise
  1509. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1510. // Sign-extend last 16 signed bytes into int16_t vectors
  1511. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1512. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1513. // Accumulate products of int16_t integers
  1514. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1515. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1516. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1517. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1518. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1519. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1520. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1521. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1522. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1523. // Convert int32_t to float
  1524. __m256 p = _mm256_cvtepi32_ps( i32 );
  1525. // Apply the scale, and accumulate
  1526. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1527. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1528. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1529. // acc_offset += m0*m1 (for each entry in the block)
  1530. acc_offset += (*m0)*(*m1);
  1531. }
  1532. // Return horizontal sum of the acc vector
  1533. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1534. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1535. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1536. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1537. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1538. #else
  1539. // scalar
  1540. for (int i = 0; i < nb; i++) {
  1541. const float m0 = *(const float *) (pm0 + i*bs);
  1542. const float m1 = *(const float *) (pm1 + i*bs);
  1543. const float d0 = *(const float *) (pd0 + i*bs);
  1544. const float d1 = *(const float *) (pd1 + i*bs);
  1545. const uint8_t * restrict p0 = pb0 + i*bs;
  1546. const uint8_t * restrict p1 = pb1 + i*bs;
  1547. for (int j = 0; j < QK/2; j++) {
  1548. const uint8_t v0 = p0[j];
  1549. const uint8_t v1 = p1[j];
  1550. const float f0 = d0*(v0 & 0xf) + m0;
  1551. const float f1 = d0*(v0 >> 4) + m0;
  1552. const float f2 = d1*(v1 & 0xf) + m1;
  1553. const float f3 = d1*(v1 >> 4) + m1;
  1554. sumf += f0*f2 + f1*f3;
  1555. }
  1556. }
  1557. #endif
  1558. *s = sumf;
  1559. }
  1560. // compute GGML_VEC_DOT_UNROLL dot products at once
  1561. // xs - x row stride in bytes
  1562. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1563. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1564. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1565. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1566. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1567. }
  1568. #if defined(GGML_SIMD)
  1569. const int np = (n & ~(GGML_F16_STEP - 1));
  1570. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1571. GGML_F16_VEC ax[GGML_F16_ARR];
  1572. GGML_F16_VEC ay[GGML_F16_ARR];
  1573. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1574. for (int j = 0; j < GGML_F16_ARR; j++) {
  1575. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1576. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1577. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1578. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1579. }
  1580. }
  1581. }
  1582. // reduce sum0..sum3 to sum0
  1583. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1584. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1585. }
  1586. // leftovers
  1587. for (int i = np; i < n; ++i) {
  1588. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1589. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1590. }
  1591. }
  1592. #else
  1593. for (int i = 0; i < n; ++i) {
  1594. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1595. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1596. }
  1597. }
  1598. #endif
  1599. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1600. s[i] = sumf[i];
  1601. }
  1602. }
  1603. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1604. #if defined(GGML_SIMD)
  1605. const int np = (n & ~(GGML_F32_STEP - 1));
  1606. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1607. GGML_F32_VEC ax[GGML_F32_ARR];
  1608. GGML_F32_VEC ay[GGML_F32_ARR];
  1609. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1610. for (int j = 0; j < GGML_F32_ARR; j++) {
  1611. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1612. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1613. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1614. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1615. }
  1616. }
  1617. // leftovers
  1618. for (int i = np; i < n; ++i) {
  1619. y[i] += x[i]*v;
  1620. }
  1621. #else
  1622. // scalar
  1623. for (int i = 0; i < n; ++i) {
  1624. y[i] += x[i]*v;
  1625. }
  1626. #endif
  1627. }
  1628. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1629. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1630. #if defined(GGML_SIMD)
  1631. const int np = (n & ~(GGML_F32_STEP - 1));
  1632. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1633. GGML_F32_VEC ay[GGML_F32_ARR];
  1634. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1635. for (int j = 0; j < GGML_F32_ARR; j++) {
  1636. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1637. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1638. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1639. }
  1640. }
  1641. // leftovers
  1642. for (int i = np; i < n; ++i) {
  1643. y[i] *= v;
  1644. }
  1645. #else
  1646. // scalar
  1647. for (int i = 0; i < n; ++i) {
  1648. y[i] *= v;
  1649. }
  1650. #endif
  1651. }
  1652. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1653. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1654. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1655. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1656. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1657. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1658. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1659. static const ggml_float GELU_COEF_A = 0.044715;
  1660. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1661. inline static float ggml_gelu_f32(float x) {
  1662. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1663. }
  1664. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1665. const uint16_t * i16 = (const uint16_t *) x;
  1666. for (int i = 0; i < n; ++i) {
  1667. y[i] = table_gelu_f16[i16[i]];
  1668. }
  1669. }
  1670. #ifdef GGML_GELU_FP16
  1671. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1672. uint16_t t;
  1673. for (int i = 0; i < n; ++i) {
  1674. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1675. memcpy(&t, &fp16, sizeof(uint16_t));
  1676. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1677. }
  1678. }
  1679. #else
  1680. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1681. for (int i = 0; i < n; ++i) {
  1682. y[i] = ggml_gelu_f32(x[i]);
  1683. }
  1684. }
  1685. #endif
  1686. // Sigmoid Linear Unit (SiLU) function
  1687. inline static float ggml_silu_f32(float x) {
  1688. return x/(1.0 + exp(-x));
  1689. }
  1690. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1691. const uint16_t * i16 = (const uint16_t *) x;
  1692. for (int i = 0; i < n; ++i) {
  1693. y[i] = table_silu_f16[i16[i]];
  1694. }
  1695. }
  1696. #ifdef GGML_SILU_FP16
  1697. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1698. uint16_t t;
  1699. for (int i = 0; i < n; ++i) {
  1700. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1701. memcpy(&t, &fp16, sizeof(uint16_t));
  1702. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1703. }
  1704. }
  1705. #else
  1706. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1707. for (int i = 0; i < n; ++i) {
  1708. y[i] = ggml_silu_f32(x[i]);
  1709. }
  1710. }
  1711. #endif
  1712. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1713. #ifndef GGML_USE_ACCELERATE
  1714. ggml_float sum = 0.0;
  1715. for (int i = 0; i < n; ++i) {
  1716. sum += x[i];
  1717. }
  1718. *s = sum;
  1719. #else
  1720. vDSP_sve(x, 1, s, n);
  1721. #endif
  1722. }
  1723. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1724. #ifndef GGML_USE_ACCELERATE
  1725. ggml_float max = -INFINITY;
  1726. for (int i = 0; i < n; ++i) {
  1727. max = MAX(max, x[i]);
  1728. }
  1729. *s = max;
  1730. #else
  1731. vDSP_maxv(x, 1, s, n);
  1732. #endif
  1733. }
  1734. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1735. //
  1736. // logging
  1737. //
  1738. #if (GGML_DEBUG >= 1)
  1739. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1740. #else
  1741. #define GGML_PRINT_DEBUG(...)
  1742. #endif
  1743. #if (GGML_DEBUG >= 5)
  1744. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1745. #else
  1746. #define GGML_PRINT_DEBUG_5(...)
  1747. #endif
  1748. #if (GGML_DEBUG >= 10)
  1749. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1750. #else
  1751. #define GGML_PRINT_DEBUG_10(...)
  1752. #endif
  1753. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1754. //
  1755. // data types
  1756. //
  1757. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1758. QK,
  1759. QK,
  1760. 1,
  1761. 1,
  1762. 1,
  1763. 1,
  1764. 1,
  1765. };
  1766. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1767. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1768. sizeof(float ) + QK/2,
  1769. sizeof(float )*2 + QK/2,
  1770. sizeof(int8_t ),
  1771. sizeof(int16_t),
  1772. sizeof(int32_t),
  1773. sizeof(ggml_fp16_t),
  1774. sizeof(float ),
  1775. };
  1776. // don't forget to update the array above when adding new types
  1777. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1778. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1779. "NONE",
  1780. "DUP",
  1781. "ADD",
  1782. "SUB",
  1783. "MUL",
  1784. "DIV",
  1785. "SQR",
  1786. "SQRT",
  1787. "SUM",
  1788. "MEAN",
  1789. "REPEAT",
  1790. "ABS",
  1791. "SGN",
  1792. "NEG",
  1793. "STEP",
  1794. "RELU",
  1795. "GELU",
  1796. "SILU",
  1797. "NORM",
  1798. "RMS_NORM",
  1799. "MUL_MAT",
  1800. "SCALE",
  1801. "CPY",
  1802. "RESHAPE",
  1803. "VIEW",
  1804. "PERMUTE",
  1805. "TRANSPOSE",
  1806. "GET_ROWS",
  1807. "DIAG_MASK_INF",
  1808. "SOFT_MAX",
  1809. "ROPE",
  1810. "CONV_1D_1S",
  1811. "CONV_1D_2S",
  1812. "FLASH_ATTN",
  1813. "FLASH_FF",
  1814. };
  1815. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1816. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1817. "none",
  1818. "x",
  1819. "x+y",
  1820. "x-y",
  1821. "x*y",
  1822. "x/y",
  1823. "x^2",
  1824. "√x",
  1825. "Σx",
  1826. "Σx/n",
  1827. "repeat(x)",
  1828. "abs(x)",
  1829. "sgn(x)",
  1830. "-x",
  1831. "step(x)",
  1832. "relu(x)",
  1833. "gelu(x)",
  1834. "silu(x)",
  1835. "norm(x)",
  1836. "rms_norm(x)",
  1837. "X*Y",
  1838. "x*v",
  1839. "x-\\>y",
  1840. "reshape(x)",
  1841. "view(x)",
  1842. "permute(x)",
  1843. "transpose(x)",
  1844. "get_rows(x)",
  1845. "diag_mask_inf(x)",
  1846. "soft_max(x)",
  1847. "rope(x)",
  1848. "conv_1d_1s(x)",
  1849. "conv_1d_2s(x)",
  1850. "flash_attn(x)",
  1851. "flash_ff(x)",
  1852. };
  1853. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1854. //
  1855. // ggml object
  1856. //
  1857. struct ggml_object {
  1858. size_t offs;
  1859. size_t size;
  1860. struct ggml_object * next;
  1861. char padding[8];
  1862. };
  1863. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1864. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1865. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1866. //
  1867. // ggml context
  1868. //
  1869. struct ggml_context {
  1870. size_t mem_size;
  1871. void * mem_buffer;
  1872. bool mem_buffer_owned;
  1873. bool mem_buffer_mlocked;
  1874. int n_objects;
  1875. struct ggml_object * objects_begin;
  1876. struct ggml_object * objects_end;
  1877. struct ggml_scratch scratch;
  1878. struct ggml_scratch scratch_save;
  1879. };
  1880. struct ggml_context_container {
  1881. bool used;
  1882. struct ggml_context context;
  1883. };
  1884. //
  1885. // compute types
  1886. //
  1887. enum ggml_task_type {
  1888. GGML_TASK_INIT = 0,
  1889. GGML_TASK_COMPUTE,
  1890. GGML_TASK_FINALIZE,
  1891. };
  1892. struct ggml_compute_params {
  1893. enum ggml_task_type type;
  1894. int ith, nth;
  1895. // work buffer for all threads
  1896. size_t wsize;
  1897. void * wdata;
  1898. };
  1899. //
  1900. // ggml state
  1901. //
  1902. struct ggml_state {
  1903. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1904. };
  1905. // global state
  1906. static struct ggml_state g_state;
  1907. static atomic_int g_state_barrier = 0;
  1908. // barrier via spin lock
  1909. inline static void ggml_critical_section_start(void) {
  1910. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1911. while (processing > 0) {
  1912. // wait for other threads to finish
  1913. atomic_fetch_sub(&g_state_barrier, 1);
  1914. sched_yield(); // TODO: reconsider this
  1915. processing = atomic_fetch_add(&g_state_barrier, 1);
  1916. }
  1917. }
  1918. // TODO: make this somehow automatically executed
  1919. // some sort of "sentry" mechanism
  1920. inline static void ggml_critical_section_end(void) {
  1921. atomic_fetch_sub(&g_state_barrier, 1);
  1922. }
  1923. ////////////////////////////////////////////////////////////////////////////////
  1924. void ggml_print_object(const struct ggml_object * obj) {
  1925. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1926. obj->offs, obj->size, (const void *) obj->next);
  1927. }
  1928. void ggml_print_objects(const struct ggml_context * ctx) {
  1929. struct ggml_object * obj = ctx->objects_begin;
  1930. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1931. while (obj != NULL) {
  1932. ggml_print_object(obj);
  1933. obj = obj->next;
  1934. }
  1935. GGML_PRINT("%s: --- end ---\n", __func__);
  1936. }
  1937. int ggml_nelements(const struct ggml_tensor * tensor) {
  1938. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1939. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1940. }
  1941. int ggml_nrows(const struct ggml_tensor * tensor) {
  1942. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1943. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1944. }
  1945. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1946. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1947. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1948. }
  1949. int ggml_blck_size(enum ggml_type type) {
  1950. return GGML_BLCK_SIZE[type];
  1951. }
  1952. size_t ggml_type_size(enum ggml_type type) {
  1953. return GGML_TYPE_SIZE[type];
  1954. }
  1955. float ggml_type_sizef(enum ggml_type type) {
  1956. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1957. }
  1958. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1959. return GGML_TYPE_SIZE[tensor->type];
  1960. }
  1961. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1962. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1963. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1964. }
  1965. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1966. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1967. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1968. }
  1969. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1970. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1971. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1972. }
  1973. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1974. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1975. return
  1976. (t0->ne[0] == t1->ne[0]) &&
  1977. (t0->ne[2] == t1->ne[2]) &&
  1978. (t0->ne[3] == t1->ne[3]);
  1979. }
  1980. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1981. return tensor->nb[0] > tensor->nb[1];
  1982. }
  1983. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1984. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1985. return
  1986. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1987. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1988. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1989. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1990. }
  1991. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1992. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1993. return
  1994. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1995. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1996. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1997. }
  1998. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1999. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2000. return
  2001. (t0->ne[0] == t1->ne[0] ) &&
  2002. (t0->ne[1] == t1->ne[1] ) &&
  2003. (t0->ne[2] == t1->ne[2] ) &&
  2004. (t0->ne[3] == t1->ne[3] );
  2005. }
  2006. // check if t1 can be represented as a repeatition of t0
  2007. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2008. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2009. return
  2010. (t1->ne[0]%t0->ne[0] == 0) &&
  2011. (t1->ne[1]%t0->ne[1] == 0) &&
  2012. (t1->ne[2]%t0->ne[2] == 0) &&
  2013. (t1->ne[3]%t0->ne[3] == 0);
  2014. }
  2015. static inline int ggml_up32(int n) {
  2016. return (n + 31) & ~31;
  2017. }
  2018. static inline int ggml_up64(int n) {
  2019. return (n + 63) & ~63;
  2020. }
  2021. static inline int ggml_up(int n, int m) {
  2022. // assert m is a power of 2
  2023. GGML_ASSERT((m & (m - 1)) == 0);
  2024. return (n + m - 1) & ~(m - 1);
  2025. }
  2026. // assert that pointer is aligned to GGML_MEM_ALIGN
  2027. #define ggml_assert_aligned(ptr) \
  2028. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2029. ////////////////////////////////////////////////////////////////////////////////
  2030. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2031. // make this function thread safe
  2032. ggml_critical_section_start();
  2033. static bool is_first_call = true;
  2034. if (is_first_call) {
  2035. // initialize GELU, SILU and EXP F32 tables
  2036. {
  2037. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2038. ggml_fp16_t ii;
  2039. for (int i = 0; i < (1 << 16); ++i) {
  2040. uint16_t ui = i;
  2041. memcpy(&ii, &ui, sizeof(ii));
  2042. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2043. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2044. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2045. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2046. }
  2047. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2048. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2049. }
  2050. // initialize g_state
  2051. {
  2052. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2053. g_state = (struct ggml_state) {
  2054. /*.contexts =*/ { { 0 } },
  2055. };
  2056. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2057. g_state.contexts[i].used = false;
  2058. }
  2059. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2060. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2061. }
  2062. is_first_call = false;
  2063. }
  2064. // find non-used context in g_state
  2065. struct ggml_context * ctx = NULL;
  2066. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2067. if (!g_state.contexts[i].used) {
  2068. g_state.contexts[i].used = true;
  2069. ctx = &g_state.contexts[i].context;
  2070. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2071. break;
  2072. }
  2073. }
  2074. if (ctx == NULL) {
  2075. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2076. ggml_critical_section_end();
  2077. return NULL;
  2078. }
  2079. *ctx = (struct ggml_context) {
  2080. /*.mem_size =*/ params.mem_size,
  2081. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2082. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2083. /*.mem_buffer_mlocked =*/ false,
  2084. /*.n_objects =*/ 0,
  2085. /*.objects_begin =*/ NULL,
  2086. /*.objects_end =*/ NULL,
  2087. /*.scratch =*/ { 0, 0, NULL, },
  2088. /*.scratch_save =*/ { 0, 0, NULL, },
  2089. };
  2090. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2091. ggml_assert_aligned(ctx->mem_buffer);
  2092. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2093. ggml_critical_section_end();
  2094. return ctx;
  2095. }
  2096. void ggml_free(struct ggml_context * ctx) {
  2097. // make this function thread safe
  2098. ggml_critical_section_start();
  2099. bool found = false;
  2100. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2101. if (&g_state.contexts[i].context == ctx) {
  2102. g_state.contexts[i].used = false;
  2103. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2104. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2105. #if GGML_MLOCK_SUPPORT
  2106. if (ctx->mem_buffer_mlocked) {
  2107. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2108. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2109. }
  2110. }
  2111. #endif
  2112. if (ctx->mem_buffer_owned) {
  2113. free(ctx->mem_buffer);
  2114. }
  2115. found = true;
  2116. break;
  2117. }
  2118. }
  2119. if (!found) {
  2120. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2121. }
  2122. ggml_critical_section_end();
  2123. }
  2124. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2125. return ctx->objects_end->offs + ctx->objects_end->size;
  2126. }
  2127. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2128. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2129. ctx->scratch = scratch;
  2130. return result;
  2131. }
  2132. bool ggml_mlock_supported(void) {
  2133. return GGML_MLOCK_SUPPORT;
  2134. }
  2135. #if GGML_MLOCK_SUPPORT
  2136. #ifdef __APPLE__
  2137. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2138. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2139. #else
  2140. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2141. #endif
  2142. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2143. if (ctx->mem_buffer_mlocked) {
  2144. return true;
  2145. }
  2146. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2147. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2148. ctx->mem_size, strerror(errno));
  2149. GGML_ASSERT(ret >= 0);
  2150. return false;
  2151. }
  2152. ctx->mem_buffer_mlocked = true;
  2153. return true;
  2154. }
  2155. #else // GGML_MLOCK_SUPPORT
  2156. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2157. *err_p = strdup("can't mlock because it's not supported on this system");
  2158. return false;
  2159. }
  2160. #endif // GGML_MLOCK_SUPPORT
  2161. ////////////////////////////////////////////////////////////////////////////////
  2162. struct ggml_tensor * ggml_new_tensor_impl(
  2163. struct ggml_context * ctx,
  2164. enum ggml_type type,
  2165. int n_dims,
  2166. const int* ne,
  2167. void* data) {
  2168. // always insert objects at the end of the context's memory pool
  2169. struct ggml_object * obj_cur = ctx->objects_end;
  2170. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2171. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2172. const size_t cur_end = cur_offs + cur_size;
  2173. size_t size_needed = 0;
  2174. if (data == NULL) {
  2175. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2176. for (int i = 1; i < n_dims; i++) {
  2177. size_needed *= ne[i];
  2178. }
  2179. // align to GGML_MEM_ALIGN
  2180. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2181. }
  2182. char * const mem_buffer = ctx->mem_buffer;
  2183. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2184. if (ctx->scratch.data == NULL || data != NULL) {
  2185. size_needed += sizeof(struct ggml_tensor);
  2186. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2187. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2188. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2189. assert(false);
  2190. return NULL;
  2191. }
  2192. *obj_new = (struct ggml_object) {
  2193. .offs = cur_end + GGML_OBJECT_SIZE,
  2194. .size = size_needed,
  2195. .next = NULL,
  2196. };
  2197. } else {
  2198. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2199. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2200. assert(false);
  2201. return NULL;
  2202. }
  2203. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2204. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2205. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2206. assert(false);
  2207. return NULL;
  2208. }
  2209. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2210. *obj_new = (struct ggml_object) {
  2211. .offs = cur_end + GGML_OBJECT_SIZE,
  2212. .size = sizeof(struct ggml_tensor),
  2213. .next = NULL,
  2214. };
  2215. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2216. ctx->scratch.offs += size_needed;
  2217. }
  2218. if (obj_cur != NULL) {
  2219. obj_cur->next = obj_new;
  2220. } else {
  2221. // this is the first object in this context
  2222. ctx->objects_begin = obj_new;
  2223. }
  2224. ctx->objects_end = obj_new;
  2225. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2226. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2227. ggml_assert_aligned(result);
  2228. *result = (struct ggml_tensor) {
  2229. /*.type =*/ type,
  2230. /*.n_dims =*/ n_dims,
  2231. /*.ne =*/ { 1, 1, 1, 1 },
  2232. /*.nb =*/ { 0, 0, 0, 0 },
  2233. /*.op =*/ GGML_OP_NONE,
  2234. /*.is_param =*/ false,
  2235. /*.grad =*/ NULL,
  2236. /*.src0 =*/ NULL,
  2237. /*.src1 =*/ NULL,
  2238. /*.opt =*/ { NULL },
  2239. /*.n_tasks =*/ 0,
  2240. /*.perf_runs =*/ 0,
  2241. /*.perf_cycles =*/ 0,
  2242. /*.perf_time_us =*/ 0,
  2243. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2244. /*.pad =*/ { 0 },
  2245. };
  2246. ggml_assert_aligned(result->data);
  2247. for (int i = 0; i < n_dims; i++) {
  2248. result->ne[i] = ne[i];
  2249. }
  2250. result->nb[0] = GGML_TYPE_SIZE[type];
  2251. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2252. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2253. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2254. }
  2255. ctx->n_objects++;
  2256. return result;
  2257. }
  2258. struct ggml_tensor * ggml_new_tensor(
  2259. struct ggml_context * ctx,
  2260. enum ggml_type type,
  2261. int n_dims,
  2262. const int * ne) {
  2263. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2264. }
  2265. struct ggml_tensor * ggml_new_tensor_1d(
  2266. struct ggml_context * ctx,
  2267. enum ggml_type type,
  2268. int ne0) {
  2269. return ggml_new_tensor(ctx, type, 1, &ne0);
  2270. }
  2271. struct ggml_tensor * ggml_new_tensor_2d(
  2272. struct ggml_context * ctx,
  2273. enum ggml_type type,
  2274. int ne0,
  2275. int ne1) {
  2276. const int ne[2] = { ne0, ne1 };
  2277. return ggml_new_tensor(ctx, type, 2, ne);
  2278. }
  2279. struct ggml_tensor * ggml_new_tensor_3d(
  2280. struct ggml_context * ctx,
  2281. enum ggml_type type,
  2282. int ne0,
  2283. int ne1,
  2284. int ne2) {
  2285. const int ne[3] = { ne0, ne1, ne2 };
  2286. return ggml_new_tensor(ctx, type, 3, ne);
  2287. }
  2288. struct ggml_tensor * ggml_new_tensor_4d(
  2289. struct ggml_context * ctx,
  2290. enum ggml_type type,
  2291. int ne0,
  2292. int ne1,
  2293. int ne2,
  2294. int ne3) {
  2295. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2296. return ggml_new_tensor(ctx, type, 4, ne);
  2297. }
  2298. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2299. ctx->scratch_save = ctx->scratch;
  2300. ctx->scratch.data = NULL;
  2301. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2302. ctx->scratch = ctx->scratch_save;
  2303. ggml_set_i32(result, value);
  2304. return result;
  2305. }
  2306. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2307. ctx->scratch_save = ctx->scratch;
  2308. ctx->scratch.data = NULL;
  2309. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2310. ctx->scratch = ctx->scratch_save;
  2311. ggml_set_f32(result, value);
  2312. return result;
  2313. }
  2314. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2315. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2316. }
  2317. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2318. memset(tensor->data, 0, ggml_nbytes(tensor));
  2319. return tensor;
  2320. }
  2321. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2322. const int n = ggml_nrows(tensor);
  2323. const int nc = tensor->ne[0];
  2324. const size_t n1 = tensor->nb[1];
  2325. char * const data = tensor->data;
  2326. switch (tensor->type) {
  2327. case GGML_TYPE_Q4_0:
  2328. {
  2329. GGML_ASSERT(false);
  2330. } break;
  2331. case GGML_TYPE_Q4_1:
  2332. {
  2333. GGML_ASSERT(false);
  2334. } break;
  2335. case GGML_TYPE_I8:
  2336. {
  2337. assert(tensor->nb[0] == sizeof(int8_t));
  2338. for (int i = 0; i < n; i++) {
  2339. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2340. }
  2341. } break;
  2342. case GGML_TYPE_I16:
  2343. {
  2344. assert(tensor->nb[0] == sizeof(int16_t));
  2345. for (int i = 0; i < n; i++) {
  2346. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2347. }
  2348. } break;
  2349. case GGML_TYPE_I32:
  2350. {
  2351. assert(tensor->nb[0] == sizeof(int32_t));
  2352. for (int i = 0; i < n; i++) {
  2353. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2354. }
  2355. } break;
  2356. case GGML_TYPE_F16:
  2357. {
  2358. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2359. for (int i = 0; i < n; i++) {
  2360. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2361. }
  2362. } break;
  2363. case GGML_TYPE_F32:
  2364. {
  2365. assert(tensor->nb[0] == sizeof(float));
  2366. for (int i = 0; i < n; i++) {
  2367. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2368. }
  2369. } break;
  2370. case GGML_TYPE_COUNT:
  2371. {
  2372. GGML_ASSERT(false);
  2373. } break;
  2374. }
  2375. return tensor;
  2376. }
  2377. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2378. const int n = ggml_nrows(tensor);
  2379. const int nc = tensor->ne[0];
  2380. const size_t n1 = tensor->nb[1];
  2381. char * const data = tensor->data;
  2382. switch (tensor->type) {
  2383. case GGML_TYPE_Q4_0:
  2384. {
  2385. GGML_ASSERT(false);
  2386. } break;
  2387. case GGML_TYPE_Q4_1:
  2388. {
  2389. GGML_ASSERT(false);
  2390. } break;
  2391. case GGML_TYPE_I8:
  2392. {
  2393. assert(tensor->nb[0] == sizeof(int8_t));
  2394. for (int i = 0; i < n; i++) {
  2395. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2396. }
  2397. } break;
  2398. case GGML_TYPE_I16:
  2399. {
  2400. assert(tensor->nb[0] == sizeof(int16_t));
  2401. for (int i = 0; i < n; i++) {
  2402. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2403. }
  2404. } break;
  2405. case GGML_TYPE_I32:
  2406. {
  2407. assert(tensor->nb[0] == sizeof(int32_t));
  2408. for (int i = 0; i < n; i++) {
  2409. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2410. }
  2411. } break;
  2412. case GGML_TYPE_F16:
  2413. {
  2414. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2415. for (int i = 0; i < n; i++) {
  2416. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2417. }
  2418. } break;
  2419. case GGML_TYPE_F32:
  2420. {
  2421. assert(tensor->nb[0] == sizeof(float));
  2422. for (int i = 0; i < n; i++) {
  2423. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2424. }
  2425. } break;
  2426. case GGML_TYPE_COUNT:
  2427. {
  2428. GGML_ASSERT(false);
  2429. } break;
  2430. }
  2431. return tensor;
  2432. }
  2433. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2434. switch (tensor->type) {
  2435. case GGML_TYPE_Q4_0:
  2436. {
  2437. GGML_ASSERT(false);
  2438. } break;
  2439. case GGML_TYPE_Q4_1:
  2440. {
  2441. GGML_ASSERT(false);
  2442. } break;
  2443. case GGML_TYPE_I8:
  2444. {
  2445. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2446. return ((int8_t *)(tensor->data))[i];
  2447. } break;
  2448. case GGML_TYPE_I16:
  2449. {
  2450. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2451. return ((int16_t *)(tensor->data))[i];
  2452. } break;
  2453. case GGML_TYPE_I32:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2456. return ((int32_t *)(tensor->data))[i];
  2457. } break;
  2458. case GGML_TYPE_F16:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2461. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2462. } break;
  2463. case GGML_TYPE_F32:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2466. return ((float *)(tensor->data))[i];
  2467. } break;
  2468. case GGML_TYPE_COUNT:
  2469. {
  2470. GGML_ASSERT(false);
  2471. } break;
  2472. }
  2473. return 0.0f;
  2474. }
  2475. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2476. switch (tensor->type) {
  2477. case GGML_TYPE_Q4_0:
  2478. {
  2479. GGML_ASSERT(false);
  2480. } break;
  2481. case GGML_TYPE_Q4_1:
  2482. {
  2483. GGML_ASSERT(false);
  2484. } break;
  2485. case GGML_TYPE_I8:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2488. ((int8_t *)(tensor->data))[i] = value;
  2489. } break;
  2490. case GGML_TYPE_I16:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2493. ((int16_t *)(tensor->data))[i] = value;
  2494. } break;
  2495. case GGML_TYPE_I32:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2498. ((int32_t *)(tensor->data))[i] = value;
  2499. } break;
  2500. case GGML_TYPE_F16:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2503. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2504. } break;
  2505. case GGML_TYPE_F32:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2508. ((float *)(tensor->data))[i] = value;
  2509. } break;
  2510. case GGML_TYPE_COUNT:
  2511. {
  2512. GGML_ASSERT(false);
  2513. } break;
  2514. }
  2515. }
  2516. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2517. switch (tensor->type) {
  2518. case GGML_TYPE_Q4_0:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. case GGML_TYPE_Q4_1:
  2523. {
  2524. GGML_ASSERT(false);
  2525. } break;
  2526. case GGML_TYPE_I8:
  2527. {
  2528. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2529. return ((int8_t *)(tensor->data))[i];
  2530. } break;
  2531. case GGML_TYPE_I16:
  2532. {
  2533. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2534. return ((int16_t *)(tensor->data))[i];
  2535. } break;
  2536. case GGML_TYPE_I32:
  2537. {
  2538. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2539. return ((int32_t *)(tensor->data))[i];
  2540. } break;
  2541. case GGML_TYPE_F16:
  2542. {
  2543. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2544. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2545. } break;
  2546. case GGML_TYPE_F32:
  2547. {
  2548. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2549. return ((float *)(tensor->data))[i];
  2550. } break;
  2551. case GGML_TYPE_COUNT:
  2552. {
  2553. GGML_ASSERT(false);
  2554. } break;
  2555. }
  2556. return 0.0f;
  2557. }
  2558. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2559. switch (tensor->type) {
  2560. case GGML_TYPE_Q4_0:
  2561. {
  2562. GGML_ASSERT(false);
  2563. } break;
  2564. case GGML_TYPE_Q4_1:
  2565. {
  2566. GGML_ASSERT(false);
  2567. } break;
  2568. case GGML_TYPE_I8:
  2569. {
  2570. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2571. ((int8_t *)(tensor->data))[i] = value;
  2572. } break;
  2573. case GGML_TYPE_I16:
  2574. {
  2575. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2576. ((int16_t *)(tensor->data))[i] = value;
  2577. } break;
  2578. case GGML_TYPE_I32:
  2579. {
  2580. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2581. ((int32_t *)(tensor->data))[i] = value;
  2582. } break;
  2583. case GGML_TYPE_F16:
  2584. {
  2585. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2586. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2587. } break;
  2588. case GGML_TYPE_F32:
  2589. {
  2590. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2591. ((float *)(tensor->data))[i] = value;
  2592. } break;
  2593. case GGML_TYPE_COUNT:
  2594. {
  2595. GGML_ASSERT(false);
  2596. } break;
  2597. }
  2598. }
  2599. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2600. return tensor->data;
  2601. }
  2602. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2603. assert(tensor->type == GGML_TYPE_F32);
  2604. return (float *)(tensor->data);
  2605. }
  2606. struct ggml_tensor * ggml_view_tensor(
  2607. struct ggml_context * ctx,
  2608. const struct ggml_tensor * src) {
  2609. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2610. }
  2611. ////////////////////////////////////////////////////////////////////////////////
  2612. // ggml_dup
  2613. struct ggml_tensor * ggml_dup_impl(
  2614. struct ggml_context * ctx,
  2615. struct ggml_tensor * a,
  2616. bool inplace) {
  2617. bool is_node = false;
  2618. if (!inplace && (a->grad)) {
  2619. is_node = true;
  2620. }
  2621. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2622. result->op = GGML_OP_DUP;
  2623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2624. result->src0 = a;
  2625. result->src1 = NULL;
  2626. return result;
  2627. }
  2628. struct ggml_tensor * ggml_dup(
  2629. struct ggml_context * ctx,
  2630. struct ggml_tensor * a) {
  2631. return ggml_dup_impl(ctx, a, false);
  2632. }
  2633. struct ggml_tensor * ggml_dup_inplace(
  2634. struct ggml_context * ctx,
  2635. struct ggml_tensor * a) {
  2636. return ggml_dup_impl(ctx, a, true);
  2637. }
  2638. // ggml_add
  2639. struct ggml_tensor * ggml_add_impl(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a,
  2642. struct ggml_tensor * b,
  2643. bool inplace) {
  2644. GGML_ASSERT(ggml_are_same_shape(a, b));
  2645. bool is_node = false;
  2646. if (!inplace && (a->grad || b->grad)) {
  2647. is_node = true;
  2648. }
  2649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2650. result->op = GGML_OP_ADD;
  2651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2652. result->src0 = a;
  2653. result->src1 = b;
  2654. return result;
  2655. }
  2656. struct ggml_tensor * ggml_add(
  2657. struct ggml_context * ctx,
  2658. struct ggml_tensor * a,
  2659. struct ggml_tensor * b) {
  2660. return ggml_add_impl(ctx, a, b, false);
  2661. }
  2662. struct ggml_tensor * ggml_add_inplace(
  2663. struct ggml_context * ctx,
  2664. struct ggml_tensor * a,
  2665. struct ggml_tensor * b) {
  2666. return ggml_add_impl(ctx, a, b, true);
  2667. }
  2668. // ggml_sub
  2669. struct ggml_tensor * ggml_sub_impl(
  2670. struct ggml_context * ctx,
  2671. struct ggml_tensor * a,
  2672. struct ggml_tensor * b,
  2673. bool inplace) {
  2674. GGML_ASSERT(ggml_are_same_shape(a, b));
  2675. bool is_node = false;
  2676. if (!inplace && (a->grad || b->grad)) {
  2677. is_node = true;
  2678. }
  2679. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2680. result->op = GGML_OP_SUB;
  2681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2682. result->src0 = a;
  2683. result->src1 = b;
  2684. return result;
  2685. }
  2686. struct ggml_tensor * ggml_sub(
  2687. struct ggml_context * ctx,
  2688. struct ggml_tensor * a,
  2689. struct ggml_tensor * b) {
  2690. return ggml_sub_impl(ctx, a, b, false);
  2691. }
  2692. struct ggml_tensor * ggml_sub_inplace(
  2693. struct ggml_context * ctx,
  2694. struct ggml_tensor * a,
  2695. struct ggml_tensor * b) {
  2696. return ggml_sub_impl(ctx, a, b, true);
  2697. }
  2698. // ggml_mul
  2699. struct ggml_tensor * ggml_mul_impl(
  2700. struct ggml_context * ctx,
  2701. struct ggml_tensor * a,
  2702. struct ggml_tensor * b,
  2703. bool inplace) {
  2704. GGML_ASSERT(ggml_are_same_shape(a, b));
  2705. bool is_node = false;
  2706. if (!inplace && (a->grad || b->grad)) {
  2707. is_node = true;
  2708. }
  2709. if (inplace) {
  2710. GGML_ASSERT(is_node == false);
  2711. }
  2712. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2713. result->op = GGML_OP_MUL;
  2714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2715. result->src0 = a;
  2716. result->src1 = b;
  2717. return result;
  2718. }
  2719. struct ggml_tensor * ggml_mul(
  2720. struct ggml_context * ctx,
  2721. struct ggml_tensor * a,
  2722. struct ggml_tensor * b) {
  2723. return ggml_mul_impl(ctx, a, b, false);
  2724. }
  2725. struct ggml_tensor * ggml_mul_inplace(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * a,
  2728. struct ggml_tensor * b) {
  2729. return ggml_mul_impl(ctx, a, b, true);
  2730. }
  2731. // ggml_div
  2732. struct ggml_tensor * ggml_div_impl(
  2733. struct ggml_context * ctx,
  2734. struct ggml_tensor * a,
  2735. struct ggml_tensor * b,
  2736. bool inplace) {
  2737. GGML_ASSERT(ggml_are_same_shape(a, b));
  2738. bool is_node = false;
  2739. if (!inplace && (a->grad || b->grad)) {
  2740. is_node = true;
  2741. }
  2742. if (inplace) {
  2743. GGML_ASSERT(is_node == false);
  2744. }
  2745. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2746. result->op = GGML_OP_DIV;
  2747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2748. result->src0 = a;
  2749. result->src1 = b;
  2750. return result;
  2751. }
  2752. struct ggml_tensor * ggml_div(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b) {
  2756. return ggml_div_impl(ctx, a, b, false);
  2757. }
  2758. struct ggml_tensor * ggml_div_inplace(
  2759. struct ggml_context * ctx,
  2760. struct ggml_tensor * a,
  2761. struct ggml_tensor * b) {
  2762. return ggml_div_impl(ctx, a, b, true);
  2763. }
  2764. // ggml_sqr
  2765. struct ggml_tensor * ggml_sqr_impl(
  2766. struct ggml_context * ctx,
  2767. struct ggml_tensor * a,
  2768. bool inplace) {
  2769. bool is_node = false;
  2770. if (!inplace && (a->grad)) {
  2771. is_node = true;
  2772. }
  2773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2774. result->op = GGML_OP_SQR;
  2775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2776. result->src0 = a;
  2777. result->src1 = NULL;
  2778. return result;
  2779. }
  2780. struct ggml_tensor * ggml_sqr(
  2781. struct ggml_context * ctx,
  2782. struct ggml_tensor * a) {
  2783. return ggml_sqr_impl(ctx, a, false);
  2784. }
  2785. struct ggml_tensor * ggml_sqr_inplace(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a) {
  2788. return ggml_sqr_impl(ctx, a, true);
  2789. }
  2790. // ggml_sqrt
  2791. struct ggml_tensor * ggml_sqrt_impl(
  2792. struct ggml_context * ctx,
  2793. struct ggml_tensor * a,
  2794. bool inplace) {
  2795. bool is_node = false;
  2796. if (!inplace && (a->grad)) {
  2797. is_node = true;
  2798. }
  2799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2800. result->op = GGML_OP_SQRT;
  2801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2802. result->src0 = a;
  2803. result->src1 = NULL;
  2804. return result;
  2805. }
  2806. struct ggml_tensor * ggml_sqrt(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a) {
  2809. return ggml_sqrt_impl(ctx, a, false);
  2810. }
  2811. struct ggml_tensor * ggml_sqrt_inplace(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a) {
  2814. return ggml_sqrt_impl(ctx, a, true);
  2815. }
  2816. // ggml_sum
  2817. struct ggml_tensor * ggml_sum(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a) {
  2820. bool is_node = false;
  2821. if (a->grad) {
  2822. is_node = true;
  2823. }
  2824. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2825. result->op = GGML_OP_SUM;
  2826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2827. result->src0 = a;
  2828. result->src1 = NULL;
  2829. return result;
  2830. }
  2831. // ggml_mean
  2832. struct ggml_tensor * ggml_mean(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a) {
  2835. bool is_node = false;
  2836. if (a->grad) {
  2837. GGML_ASSERT(false); // TODO: implement
  2838. is_node = true;
  2839. }
  2840. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2841. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2842. result->op = GGML_OP_MEAN;
  2843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2844. result->src0 = a;
  2845. result->src1 = NULL;
  2846. return result;
  2847. }
  2848. // ggml_repeat
  2849. struct ggml_tensor * ggml_repeat(
  2850. struct ggml_context * ctx,
  2851. struct ggml_tensor * a,
  2852. struct ggml_tensor * b) {
  2853. GGML_ASSERT(ggml_can_repeat(a, b));
  2854. bool is_node = false;
  2855. if (a->grad) {
  2856. is_node = true;
  2857. }
  2858. if (ggml_are_same_shape(a, b) && !is_node) {
  2859. return a;
  2860. }
  2861. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2862. result->op = GGML_OP_REPEAT;
  2863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2864. result->src0 = a;
  2865. result->src1 = b;
  2866. return result;
  2867. }
  2868. // ggml_abs
  2869. struct ggml_tensor * ggml_abs_impl(
  2870. struct ggml_context * ctx,
  2871. struct ggml_tensor * a,
  2872. bool inplace) {
  2873. bool is_node = false;
  2874. if (!inplace && (a->grad)) {
  2875. is_node = true;
  2876. }
  2877. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2878. result->op = GGML_OP_ABS;
  2879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2880. result->src0 = a;
  2881. result->src1 = NULL;
  2882. return result;
  2883. }
  2884. struct ggml_tensor * ggml_abs(
  2885. struct ggml_context * ctx,
  2886. struct ggml_tensor * a) {
  2887. return ggml_abs_impl(ctx, a, false);
  2888. }
  2889. struct ggml_tensor * ggml_abs_inplace(
  2890. struct ggml_context * ctx,
  2891. struct ggml_tensor * a) {
  2892. return ggml_abs_impl(ctx, a, true);
  2893. }
  2894. // ggml_sgn
  2895. struct ggml_tensor * ggml_sgn_impl(
  2896. struct ggml_context * ctx,
  2897. struct ggml_tensor * a,
  2898. bool inplace) {
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad)) {
  2901. is_node = true;
  2902. }
  2903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2904. result->op = GGML_OP_SGN;
  2905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2906. result->src0 = a;
  2907. result->src1 = NULL;
  2908. return result;
  2909. }
  2910. struct ggml_tensor * ggml_sgn(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a) {
  2913. return ggml_sgn_impl(ctx, a, false);
  2914. }
  2915. struct ggml_tensor * ggml_sgn_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a) {
  2918. return ggml_sgn_impl(ctx, a, true);
  2919. }
  2920. // ggml_neg
  2921. struct ggml_tensor * ggml_neg_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_NEG;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src0 = a;
  2933. result->src1 = NULL;
  2934. return result;
  2935. }
  2936. struct ggml_tensor * ggml_neg(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. return ggml_neg_impl(ctx, a, false);
  2940. }
  2941. struct ggml_tensor * ggml_neg_inplace(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a) {
  2944. return ggml_neg_impl(ctx, a, true);
  2945. }
  2946. // ggml_step
  2947. struct ggml_tensor * ggml_step_impl(
  2948. struct ggml_context * ctx,
  2949. struct ggml_tensor * a,
  2950. bool inplace) {
  2951. bool is_node = false;
  2952. if (!inplace && (a->grad)) {
  2953. is_node = true;
  2954. }
  2955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2956. result->op = GGML_OP_STEP;
  2957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2958. result->src0 = a;
  2959. result->src1 = NULL;
  2960. return result;
  2961. }
  2962. struct ggml_tensor * ggml_step(
  2963. struct ggml_context * ctx,
  2964. struct ggml_tensor * a) {
  2965. return ggml_step_impl(ctx, a, false);
  2966. }
  2967. struct ggml_tensor * ggml_step_inplace(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. return ggml_step_impl(ctx, a, true);
  2971. }
  2972. // ggml_relu
  2973. struct ggml_tensor * ggml_relu_impl(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a,
  2976. bool inplace) {
  2977. bool is_node = false;
  2978. if (!inplace && (a->grad)) {
  2979. is_node = true;
  2980. }
  2981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2982. result->op = GGML_OP_RELU;
  2983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2984. result->src0 = a;
  2985. result->src1 = NULL;
  2986. return result;
  2987. }
  2988. struct ggml_tensor * ggml_relu(
  2989. struct ggml_context * ctx,
  2990. struct ggml_tensor * a) {
  2991. return ggml_relu_impl(ctx, a, false);
  2992. }
  2993. struct ggml_tensor * ggml_relu_inplace(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a) {
  2996. return ggml_relu_impl(ctx, a, true);
  2997. }
  2998. // ggml_gelu
  2999. struct ggml_tensor * ggml_gelu_impl(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a,
  3002. bool inplace) {
  3003. bool is_node = false;
  3004. if (!inplace && (a->grad)) {
  3005. is_node = true;
  3006. }
  3007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3008. result->op = GGML_OP_GELU;
  3009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3010. result->src0 = a;
  3011. result->src1 = NULL;
  3012. return result;
  3013. }
  3014. struct ggml_tensor * ggml_gelu(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a) {
  3017. return ggml_gelu_impl(ctx, a, false);
  3018. }
  3019. struct ggml_tensor * ggml_gelu_inplace(
  3020. struct ggml_context * ctx,
  3021. struct ggml_tensor * a) {
  3022. return ggml_gelu_impl(ctx, a, true);
  3023. }
  3024. // ggml_silu
  3025. struct ggml_tensor * ggml_silu_impl(
  3026. struct ggml_context * ctx,
  3027. struct ggml_tensor * a,
  3028. bool inplace) {
  3029. bool is_node = false;
  3030. if (!inplace && (a->grad)) {
  3031. is_node = true;
  3032. }
  3033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3034. result->op = GGML_OP_SILU;
  3035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3036. result->src0 = a;
  3037. result->src1 = NULL;
  3038. return result;
  3039. }
  3040. struct ggml_tensor * ggml_silu(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a) {
  3043. return ggml_silu_impl(ctx, a, false);
  3044. }
  3045. struct ggml_tensor * ggml_silu_inplace(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a) {
  3048. return ggml_silu_impl(ctx, a, true);
  3049. }
  3050. // ggml_norm
  3051. struct ggml_tensor * ggml_norm_impl(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a,
  3054. bool inplace) {
  3055. bool is_node = false;
  3056. if (!inplace && (a->grad)) {
  3057. GGML_ASSERT(false); // TODO: implement backward
  3058. is_node = true;
  3059. }
  3060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3061. result->op = GGML_OP_NORM;
  3062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3063. result->src0 = a;
  3064. result->src1 = NULL; // TODO: maybe store epsilon here?
  3065. return result;
  3066. }
  3067. struct ggml_tensor * ggml_norm(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a) {
  3070. return ggml_norm_impl(ctx, a, false);
  3071. }
  3072. struct ggml_tensor * ggml_norm_inplace(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a) {
  3075. return ggml_norm_impl(ctx, a, true);
  3076. }
  3077. struct ggml_tensor * ggml_rms_norm_impl(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. bool inplace) {
  3081. bool is_node = false;
  3082. if (!inplace && (a->grad)) {
  3083. GGML_ASSERT(false); // TODO: implement backward
  3084. is_node = true;
  3085. }
  3086. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3087. result->op = GGML_OP_RMS_NORM;
  3088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3089. result->src0 = a;
  3090. result->src1 = NULL; // TODO: maybe store epsilon here?
  3091. return result;
  3092. }
  3093. struct ggml_tensor * ggml_rms_norm(
  3094. struct ggml_context * ctx,
  3095. struct ggml_tensor * a) {
  3096. return ggml_rms_norm_impl(ctx, a, false);
  3097. }
  3098. struct ggml_tensor * ggml_rms_norm_inplace(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a) {
  3101. return ggml_rms_norm_impl(ctx, a, true);
  3102. }
  3103. // ggml_mul_mat
  3104. struct ggml_tensor * ggml_mul_mat(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. struct ggml_tensor * b) {
  3108. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3109. GGML_ASSERT(!ggml_is_transposed(a));
  3110. bool is_node = false;
  3111. if (a->grad || b->grad) {
  3112. is_node = true;
  3113. }
  3114. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3115. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3116. result->op = GGML_OP_MUL_MAT;
  3117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3118. result->src0 = a;
  3119. result->src1 = b;
  3120. return result;
  3121. }
  3122. // ggml_scale
  3123. struct ggml_tensor * ggml_scale_impl(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a,
  3126. struct ggml_tensor * b,
  3127. bool inplace) {
  3128. GGML_ASSERT(ggml_is_scalar(b));
  3129. GGML_ASSERT(ggml_is_padded_1d(a));
  3130. bool is_node = false;
  3131. if (!inplace && (a->grad || b->grad)) {
  3132. GGML_ASSERT(false); // TODO: implement backward
  3133. is_node = true;
  3134. }
  3135. // TODO: when implement backward, fix this:
  3136. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3137. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3138. result->op = GGML_OP_SCALE;
  3139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3140. result->src0 = a;
  3141. result->src1 = b;
  3142. return result;
  3143. }
  3144. struct ggml_tensor * ggml_scale(
  3145. struct ggml_context * ctx,
  3146. struct ggml_tensor * a,
  3147. struct ggml_tensor * b) {
  3148. return ggml_scale_impl(ctx, a, b, false);
  3149. }
  3150. struct ggml_tensor * ggml_scale_inplace(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. struct ggml_tensor * b) {
  3154. return ggml_scale_impl(ctx, a, b, true);
  3155. }
  3156. // ggml_cpy
  3157. struct ggml_tensor * ggml_cpy_impl(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a,
  3160. struct ggml_tensor * b,
  3161. bool inplace) {
  3162. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3163. bool is_node = false;
  3164. if (!inplace && (a->grad || b->grad)) {
  3165. GGML_ASSERT(false); // TODO: implement backward
  3166. is_node = true;
  3167. }
  3168. // make a view of the destination
  3169. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3170. result->op = GGML_OP_CPY;
  3171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3172. result->src0 = a;
  3173. result->src1 = b;
  3174. return result;
  3175. }
  3176. struct ggml_tensor * ggml_cpy(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a,
  3179. struct ggml_tensor * b) {
  3180. return ggml_cpy_impl(ctx, a, b, false);
  3181. }
  3182. struct ggml_tensor * ggml_cpy_inplace(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. struct ggml_tensor * b) {
  3186. return ggml_cpy_impl(ctx, a, b, true);
  3187. }
  3188. // ggml_reshape
  3189. struct ggml_tensor * ggml_reshape(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. struct ggml_tensor * b) {
  3193. GGML_ASSERT(ggml_is_contiguous(a));
  3194. GGML_ASSERT(ggml_is_contiguous(b));
  3195. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3196. bool is_node = false;
  3197. if (a->grad || b->grad) {
  3198. GGML_ASSERT(false); // TODO: implement backward
  3199. is_node = true;
  3200. }
  3201. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3202. result->op = GGML_OP_RESHAPE;
  3203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3204. result->src0 = a;
  3205. result->src1 = NULL;
  3206. return result;
  3207. }
  3208. struct ggml_tensor * ggml_reshape_2d(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a,
  3211. int ne0,
  3212. int ne1) {
  3213. GGML_ASSERT(ggml_is_contiguous(a));
  3214. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3215. bool is_node = false;
  3216. if (a->grad) {
  3217. GGML_ASSERT(false); // TODO: implement backward
  3218. is_node = true;
  3219. }
  3220. const int ne[2] = { ne0, ne1 };
  3221. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3222. result->op = GGML_OP_RESHAPE;
  3223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3224. result->src0 = a;
  3225. result->src1 = NULL;
  3226. return result;
  3227. }
  3228. struct ggml_tensor * ggml_reshape_3d(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a,
  3231. int ne0,
  3232. int ne1,
  3233. int ne2) {
  3234. GGML_ASSERT(ggml_is_contiguous(a));
  3235. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3236. bool is_node = false;
  3237. if (a->grad) {
  3238. GGML_ASSERT(false); // TODO: implement backward
  3239. is_node = true;
  3240. }
  3241. const int ne[3] = { ne0, ne1, ne2 };
  3242. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3243. result->op = GGML_OP_RESHAPE;
  3244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3245. result->src0 = a;
  3246. result->src1 = NULL;
  3247. return result;
  3248. }
  3249. // ggml_view_1d
  3250. struct ggml_tensor * ggml_view_1d(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a,
  3253. int ne0,
  3254. size_t offset) {
  3255. if (a->grad) {
  3256. GGML_ASSERT(false); // gradient propagation is not supported
  3257. }
  3258. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3259. result->op = GGML_OP_VIEW;
  3260. result->grad = NULL;
  3261. result->src0 = a;
  3262. result->src1 = NULL; // TODO: maybe store the offset here?
  3263. return result;
  3264. }
  3265. // ggml_view_2d
  3266. struct ggml_tensor * ggml_view_2d(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. int ne0,
  3270. int ne1,
  3271. size_t nb1,
  3272. size_t offset) {
  3273. if (a->grad) {
  3274. GGML_ASSERT(false); // gradient propagation is not supported
  3275. }
  3276. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3277. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3278. result->nb[1] = nb1;
  3279. result->nb[2] = result->nb[1]*ne1;
  3280. result->nb[3] = result->nb[2];
  3281. result->op = GGML_OP_VIEW;
  3282. result->grad = NULL;
  3283. result->src0 = a;
  3284. result->src1 = NULL; // TODO: maybe store the offset here?
  3285. return result;
  3286. }
  3287. // ggml_permute
  3288. struct ggml_tensor * ggml_permute(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. int axis0,
  3292. int axis1,
  3293. int axis2,
  3294. int axis3) {
  3295. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3296. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3297. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3298. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3299. GGML_ASSERT(axis0 != axis1);
  3300. GGML_ASSERT(axis0 != axis2);
  3301. GGML_ASSERT(axis0 != axis3);
  3302. GGML_ASSERT(axis1 != axis2);
  3303. GGML_ASSERT(axis1 != axis3);
  3304. GGML_ASSERT(axis2 != axis3);
  3305. bool is_node = false;
  3306. if (a->grad) {
  3307. GGML_ASSERT(false); // TODO: implement backward
  3308. is_node = true;
  3309. }
  3310. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3311. int ne[GGML_MAX_DIMS];
  3312. int nb[GGML_MAX_DIMS];
  3313. ne[axis0] = a->ne[0];
  3314. ne[axis1] = a->ne[1];
  3315. ne[axis2] = a->ne[2];
  3316. ne[axis3] = a->ne[3];
  3317. nb[axis0] = a->nb[0];
  3318. nb[axis1] = a->nb[1];
  3319. nb[axis2] = a->nb[2];
  3320. nb[axis3] = a->nb[3];
  3321. result->ne[0] = ne[0];
  3322. result->ne[1] = ne[1];
  3323. result->ne[2] = ne[2];
  3324. result->ne[3] = ne[3];
  3325. result->nb[0] = nb[0];
  3326. result->nb[1] = nb[1];
  3327. result->nb[2] = nb[2];
  3328. result->nb[3] = nb[3];
  3329. result->op = GGML_OP_PERMUTE;
  3330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3331. result->src0 = a;
  3332. result->src1 = NULL; // TODO: maybe store the permutation here?
  3333. return result;
  3334. }
  3335. // ggml_transpose
  3336. struct ggml_tensor * ggml_transpose(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a) {
  3339. bool is_node = false;
  3340. if (a->grad) {
  3341. GGML_ASSERT(false); // TODO: implement backward
  3342. is_node = true;
  3343. }
  3344. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3345. result->ne[0] = a->ne[1];
  3346. result->ne[1] = a->ne[0];
  3347. result->nb[0] = a->nb[1];
  3348. result->nb[1] = a->nb[0];
  3349. result->op = GGML_OP_TRANSPOSE;
  3350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3351. result->src0 = a;
  3352. result->src1 = NULL;
  3353. return result;
  3354. }
  3355. // ggml_get_rows
  3356. struct ggml_tensor * ggml_get_rows(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. struct ggml_tensor * b) {
  3360. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3361. bool is_node = false;
  3362. if (a->grad || b->grad) {
  3363. GGML_ASSERT(false); // TODO: implement backward
  3364. is_node = true;
  3365. }
  3366. // TODO: implement non F32 return
  3367. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3368. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3369. result->op = GGML_OP_GET_ROWS;
  3370. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3371. result->src0 = a;
  3372. result->src1 = b;
  3373. return result;
  3374. }
  3375. // ggml_diag_mask_inf
  3376. struct ggml_tensor * ggml_diag_mask_inf(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * a,
  3379. int n_past) {
  3380. bool is_node = false;
  3381. if (a->grad) {
  3382. GGML_ASSERT(false); // TODO: implement backward
  3383. is_node = true;
  3384. }
  3385. // TODO: when implement backward, fix this:
  3386. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3387. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3388. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3389. result->op = GGML_OP_DIAG_MASK_INF;
  3390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3391. result->src0 = a;
  3392. result->src1 = b;
  3393. return result;
  3394. }
  3395. // ggml_soft_max
  3396. struct ggml_tensor * ggml_soft_max(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a) {
  3399. bool is_node = false;
  3400. if (a->grad) {
  3401. GGML_ASSERT(false); // TODO: implement backward
  3402. is_node = true;
  3403. }
  3404. // TODO: when implement backward, fix this:
  3405. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3406. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3407. result->op = GGML_OP_SOFT_MAX;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src0 = a;
  3410. result->src1 = NULL;
  3411. return result;
  3412. }
  3413. // ggml_rope
  3414. struct ggml_tensor * ggml_rope(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a,
  3417. int n_past,
  3418. int n_dims,
  3419. int mode) {
  3420. GGML_ASSERT(n_past >= 0);
  3421. bool is_node = false;
  3422. if (a->grad) {
  3423. GGML_ASSERT(false); // TODO: implement backward
  3424. is_node = true;
  3425. }
  3426. // TODO: when implement backward, fix this:
  3427. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3428. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3429. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3430. ((int32_t *) b->data)[0] = n_past;
  3431. ((int32_t *) b->data)[1] = n_dims;
  3432. ((int32_t *) b->data)[2] = mode;
  3433. result->op = GGML_OP_ROPE;
  3434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3435. result->src0 = a;
  3436. result->src1 = b;
  3437. return result;
  3438. }
  3439. // ggml_conv_1d_1s
  3440. struct ggml_tensor * ggml_conv_1d_1s(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b) {
  3444. GGML_ASSERT(ggml_is_matrix(b));
  3445. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3446. GGML_ASSERT(a->ne[3] == 1);
  3447. bool is_node = false;
  3448. if (a->grad || b->grad) {
  3449. GGML_ASSERT(false); // TODO: implement backward
  3450. is_node = true;
  3451. }
  3452. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3454. result->op = GGML_OP_CONV_1D_1S;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src0 = a;
  3457. result->src1 = b;
  3458. return result;
  3459. }
  3460. // ggml_conv_1d_2s
  3461. struct ggml_tensor * ggml_conv_1d_2s(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. GGML_ASSERT(ggml_is_matrix(b));
  3466. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3467. GGML_ASSERT(a->ne[3] == 1);
  3468. bool is_node = false;
  3469. if (a->grad || b->grad) {
  3470. GGML_ASSERT(false); // TODO: implement backward
  3471. is_node = true;
  3472. }
  3473. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3474. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3475. result->op = GGML_OP_CONV_1D_2S;
  3476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3477. result->src0 = a;
  3478. result->src1 = b;
  3479. return result;
  3480. }
  3481. // ggml_flash_attn
  3482. struct ggml_tensor * ggml_flash_attn(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * q,
  3485. struct ggml_tensor * k,
  3486. struct ggml_tensor * v,
  3487. bool masked) {
  3488. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3489. // TODO: check if vT can be multiplied by (k*qT)
  3490. bool is_node = false;
  3491. if (q->grad || k->grad || v->grad) {
  3492. GGML_ASSERT(false); // TODO: implement backward
  3493. is_node = true;
  3494. }
  3495. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3496. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3497. result->op = GGML_OP_FLASH_ATTN;
  3498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3499. result->src0 = q;
  3500. result->src1 = k;
  3501. result->opt[0] = v;
  3502. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3503. return result;
  3504. }
  3505. // ggml_flash_ff
  3506. struct ggml_tensor * ggml_flash_ff(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b0,
  3510. struct ggml_tensor * b1,
  3511. struct ggml_tensor * c0,
  3512. struct ggml_tensor * c1) {
  3513. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3514. // TODO: more checks
  3515. bool is_node = false;
  3516. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3517. GGML_ASSERT(false); // TODO: implement backward
  3518. is_node = true;
  3519. }
  3520. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3521. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3522. result->op = GGML_OP_FLASH_FF;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src0 = a;
  3525. result->src1 = b0;
  3526. result->opt[0] = b1;
  3527. result->opt[1] = c0;
  3528. result->opt[2] = c1;
  3529. return result;
  3530. }
  3531. ////////////////////////////////////////////////////////////////////////////////
  3532. void ggml_set_param(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * tensor) {
  3535. tensor->is_param = true;
  3536. GGML_ASSERT(tensor->grad == NULL);
  3537. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3538. }
  3539. // ggml_compute_forward_dup
  3540. static void ggml_compute_forward_dup_f16(
  3541. const struct ggml_compute_params * params,
  3542. const struct ggml_tensor * src0,
  3543. struct ggml_tensor * dst) {
  3544. GGML_ASSERT(params->ith == 0);
  3545. GGML_ASSERT(ggml_is_contiguous(dst));
  3546. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3548. return;
  3549. }
  3550. const int ne00 = src0->ne[0];
  3551. const int ne01 = src0->ne[1];
  3552. const int ne02 = src0->ne[2];
  3553. const int ne03 = src0->ne[3];
  3554. const size_t nb00 = src0->nb[0];
  3555. const size_t nb01 = src0->nb[1];
  3556. const size_t nb02 = src0->nb[2];
  3557. const size_t nb03 = src0->nb[3];
  3558. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3559. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3560. return;
  3561. }
  3562. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3563. if (dst->type == GGML_TYPE_F16) {
  3564. size_t id = 0;
  3565. const size_t rs = ne00*nb00;
  3566. for (int i03 = 0; i03 < ne03; i03++) {
  3567. for (int i02 = 0; i02 < ne02; i02++) {
  3568. for (int i01 = 0; i01 < ne01; i01++) {
  3569. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3570. char * dst_ptr = (char *) dst->data + id*rs;
  3571. memcpy(dst_ptr, src0_ptr, rs);
  3572. id++;
  3573. }
  3574. }
  3575. }
  3576. } else if (dst->type == GGML_TYPE_F32) {
  3577. size_t id = 0;
  3578. float * dst_ptr = (float *) dst->data;
  3579. for (int i03 = 0; i03 < ne03; i03++) {
  3580. for (int i02 = 0; i02 < ne02; i02++) {
  3581. for (int i01 = 0; i01 < ne01; i01++) {
  3582. for (int i00 = 0; i00 < ne00; i00++) {
  3583. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3584. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3585. id++;
  3586. }
  3587. }
  3588. }
  3589. }
  3590. } else {
  3591. GGML_ASSERT(false); // TODO: implement
  3592. }
  3593. } else {
  3594. //printf("%s: this is not optimal - fix me\n", __func__);
  3595. if (dst->type == GGML_TYPE_F32) {
  3596. size_t id = 0;
  3597. float * dst_ptr = (float *) dst->data;
  3598. for (int i03 = 0; i03 < ne03; i03++) {
  3599. for (int i02 = 0; i02 < ne02; i02++) {
  3600. for (int i01 = 0; i01 < ne01; i01++) {
  3601. for (int i00 = 0; i00 < ne00; i00++) {
  3602. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3603. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3604. id++;
  3605. }
  3606. }
  3607. }
  3608. }
  3609. } else if (dst->type == GGML_TYPE_F16) {
  3610. size_t id = 0;
  3611. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3612. for (int i03 = 0; i03 < ne03; i03++) {
  3613. for (int i02 = 0; i02 < ne02; i02++) {
  3614. for (int i01 = 0; i01 < ne01; i01++) {
  3615. for (int i00 = 0; i00 < ne00; i00++) {
  3616. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3617. dst_ptr[id] = *src0_ptr;
  3618. id++;
  3619. }
  3620. }
  3621. }
  3622. }
  3623. } else {
  3624. GGML_ASSERT(false); // TODO: implement
  3625. }
  3626. }
  3627. }
  3628. static void ggml_compute_forward_dup_f32(
  3629. const struct ggml_compute_params * params,
  3630. const struct ggml_tensor * src0,
  3631. struct ggml_tensor * dst) {
  3632. GGML_ASSERT(params->ith == 0);
  3633. GGML_ASSERT(ggml_is_contiguous(dst));
  3634. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3635. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3636. return;
  3637. }
  3638. const int ne00 = src0->ne[0];
  3639. const int ne01 = src0->ne[1];
  3640. const int ne02 = src0->ne[2];
  3641. const int ne03 = src0->ne[3];
  3642. const size_t nb00 = src0->nb[0];
  3643. const size_t nb01 = src0->nb[1];
  3644. const size_t nb02 = src0->nb[2];
  3645. const size_t nb03 = src0->nb[3];
  3646. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3647. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3648. return;
  3649. }
  3650. if (src0->nb[0] == sizeof(float)) {
  3651. if (dst->type == GGML_TYPE_F32) {
  3652. size_t id = 0;
  3653. const size_t rs = ne00*nb00;
  3654. for (int i03 = 0; i03 < ne03; i03++) {
  3655. for (int i02 = 0; i02 < ne02; i02++) {
  3656. for (int i01 = 0; i01 < ne01; i01++) {
  3657. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3658. char * dst_ptr = (char *) dst->data + id*rs;
  3659. memcpy(dst_ptr, src0_ptr, rs);
  3660. id++;
  3661. }
  3662. }
  3663. }
  3664. } else if (dst->type == GGML_TYPE_F16) {
  3665. size_t id = 0;
  3666. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3667. for (int i03 = 0; i03 < ne03; i03++) {
  3668. for (int i02 = 0; i02 < ne02; i02++) {
  3669. for (int i01 = 0; i01 < ne01; i01++) {
  3670. for (int i00 = 0; i00 < ne00; i00++) {
  3671. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3672. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3673. id++;
  3674. }
  3675. }
  3676. }
  3677. }
  3678. } else {
  3679. GGML_ASSERT(false); // TODO: implement
  3680. }
  3681. } else {
  3682. //printf("%s: this is not optimal - fix me\n", __func__);
  3683. if (dst->type == GGML_TYPE_F32) {
  3684. size_t id = 0;
  3685. float * dst_ptr = (float *) dst->data;
  3686. for (int i03 = 0; i03 < ne03; i03++) {
  3687. for (int i02 = 0; i02 < ne02; i02++) {
  3688. for (int i01 = 0; i01 < ne01; i01++) {
  3689. for (int i00 = 0; i00 < ne00; i00++) {
  3690. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3691. dst_ptr[id] = *src0_ptr;
  3692. id++;
  3693. }
  3694. }
  3695. }
  3696. }
  3697. } else if (dst->type == GGML_TYPE_F16) {
  3698. size_t id = 0;
  3699. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3700. for (int i03 = 0; i03 < ne03; i03++) {
  3701. for (int i02 = 0; i02 < ne02; i02++) {
  3702. for (int i01 = 0; i01 < ne01; i01++) {
  3703. for (int i00 = 0; i00 < ne00; i00++) {
  3704. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3705. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3706. id++;
  3707. }
  3708. }
  3709. }
  3710. }
  3711. } else {
  3712. GGML_ASSERT(false); // TODO: implement
  3713. }
  3714. }
  3715. }
  3716. static void ggml_compute_forward_dup(
  3717. const struct ggml_compute_params * params,
  3718. const struct ggml_tensor * src0,
  3719. struct ggml_tensor * dst) {
  3720. switch (src0->type) {
  3721. case GGML_TYPE_F16:
  3722. {
  3723. ggml_compute_forward_dup_f16(params, src0, dst);
  3724. } break;
  3725. case GGML_TYPE_F32:
  3726. {
  3727. ggml_compute_forward_dup_f32(params, src0, dst);
  3728. } break;
  3729. case GGML_TYPE_Q4_0:
  3730. case GGML_TYPE_Q4_1:
  3731. case GGML_TYPE_I8:
  3732. case GGML_TYPE_I16:
  3733. case GGML_TYPE_I32:
  3734. case GGML_TYPE_COUNT:
  3735. {
  3736. GGML_ASSERT(false);
  3737. } break;
  3738. }
  3739. }
  3740. // ggml_compute_forward_add
  3741. static void ggml_compute_forward_add_f32(
  3742. const struct ggml_compute_params * params,
  3743. const struct ggml_tensor * src0,
  3744. const struct ggml_tensor * src1,
  3745. struct ggml_tensor * dst) {
  3746. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3748. return;
  3749. }
  3750. const int ith = params->ith;
  3751. const int nth = params->nth;
  3752. const int n = ggml_nrows(src0);
  3753. const int nc = src0->ne[0];
  3754. const size_t nb00 = src0->nb[0];
  3755. const size_t nb01 = src0->nb[1];
  3756. const size_t nb10 = src1->nb[0];
  3757. const size_t nb11 = src1->nb[1];
  3758. const size_t nb0 = dst->nb[0];
  3759. const size_t nb1 = dst->nb[1];
  3760. GGML_ASSERT( nb0 == sizeof(float));
  3761. GGML_ASSERT(nb00 == sizeof(float));
  3762. if (nb10 == sizeof(float)) {
  3763. const int j0 = (n/nth)*ith;
  3764. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3765. for (int j = j0; j < j1; j++) {
  3766. ggml_vec_add_f32(nc,
  3767. (float *) ((char *) dst->data + j*nb1),
  3768. (float *) ((char *) src0->data + j*nb01),
  3769. (float *) ((char *) src1->data + j*nb11));
  3770. }
  3771. } else {
  3772. // src1 is not contiguous
  3773. for (int j = ith; j < n; j += nth) {
  3774. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3775. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3776. for (int i = 0; i < nc; i++) {
  3777. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3778. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3779. }
  3780. }
  3781. }
  3782. }
  3783. static void ggml_compute_forward_add(
  3784. const struct ggml_compute_params * params,
  3785. const struct ggml_tensor * src0,
  3786. const struct ggml_tensor * src1,
  3787. struct ggml_tensor * dst) {
  3788. switch (src0->type) {
  3789. case GGML_TYPE_F32:
  3790. {
  3791. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3792. } break;
  3793. case GGML_TYPE_Q4_0:
  3794. case GGML_TYPE_Q4_1:
  3795. case GGML_TYPE_I8:
  3796. case GGML_TYPE_I16:
  3797. case GGML_TYPE_I32:
  3798. case GGML_TYPE_F16:
  3799. case GGML_TYPE_COUNT:
  3800. {
  3801. GGML_ASSERT(false);
  3802. } break;
  3803. }
  3804. }
  3805. // ggml_compute_forward_sub
  3806. static void ggml_compute_forward_sub_f32(
  3807. const struct ggml_compute_params * params,
  3808. const struct ggml_tensor * src0,
  3809. const struct ggml_tensor * src1,
  3810. struct ggml_tensor * dst) {
  3811. assert(params->ith == 0);
  3812. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3814. return;
  3815. }
  3816. const int n = ggml_nrows(src0);
  3817. const int nc = src0->ne[0];
  3818. assert( dst->nb[0] == sizeof(float));
  3819. assert(src0->nb[0] == sizeof(float));
  3820. assert(src1->nb[0] == sizeof(float));
  3821. for (int i = 0; i < n; i++) {
  3822. ggml_vec_sub_f32(nc,
  3823. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3824. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3825. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3826. }
  3827. }
  3828. static void ggml_compute_forward_sub(
  3829. const struct ggml_compute_params * params,
  3830. const struct ggml_tensor * src0,
  3831. const struct ggml_tensor * src1,
  3832. struct ggml_tensor * dst) {
  3833. switch (src0->type) {
  3834. case GGML_TYPE_F32:
  3835. {
  3836. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3837. } break;
  3838. case GGML_TYPE_Q4_0:
  3839. case GGML_TYPE_Q4_1:
  3840. case GGML_TYPE_I8:
  3841. case GGML_TYPE_I16:
  3842. case GGML_TYPE_I32:
  3843. case GGML_TYPE_F16:
  3844. case GGML_TYPE_COUNT:
  3845. {
  3846. GGML_ASSERT(false);
  3847. } break;
  3848. }
  3849. }
  3850. // ggml_compute_forward_mul
  3851. static void ggml_compute_forward_mul_f32(
  3852. const struct ggml_compute_params * params,
  3853. const struct ggml_tensor * src0,
  3854. const struct ggml_tensor * src1,
  3855. struct ggml_tensor * dst) {
  3856. assert(params->ith == 0);
  3857. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3858. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3859. return;
  3860. }
  3861. const int n = ggml_nrows(src0);
  3862. const int nc = src0->ne[0];
  3863. assert( dst->nb[0] == sizeof(float));
  3864. assert(src0->nb[0] == sizeof(float));
  3865. assert(src1->nb[0] == sizeof(float));
  3866. for (int i = 0; i < n; i++) {
  3867. ggml_vec_mul_f32(nc,
  3868. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3869. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3870. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3871. }
  3872. }
  3873. static void ggml_compute_forward_mul(
  3874. const struct ggml_compute_params * params,
  3875. const struct ggml_tensor * src0,
  3876. const struct ggml_tensor * src1,
  3877. struct ggml_tensor * dst) {
  3878. switch (src0->type) {
  3879. case GGML_TYPE_F32:
  3880. {
  3881. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3882. } break;
  3883. case GGML_TYPE_Q4_0:
  3884. case GGML_TYPE_Q4_1:
  3885. case GGML_TYPE_I8:
  3886. case GGML_TYPE_I16:
  3887. case GGML_TYPE_I32:
  3888. case GGML_TYPE_F16:
  3889. case GGML_TYPE_COUNT:
  3890. {
  3891. GGML_ASSERT(false);
  3892. } break;
  3893. }
  3894. }
  3895. // ggml_compute_forward_div
  3896. static void ggml_compute_forward_div_f32(
  3897. const struct ggml_compute_params * params,
  3898. const struct ggml_tensor * src0,
  3899. const struct ggml_tensor * src1,
  3900. struct ggml_tensor * dst) {
  3901. assert(params->ith == 0);
  3902. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3904. return;
  3905. }
  3906. const int n = ggml_nrows(src0);
  3907. const int nc = src0->ne[0];
  3908. assert( dst->nb[0] == sizeof(float));
  3909. assert(src0->nb[0] == sizeof(float));
  3910. assert(src1->nb[0] == sizeof(float));
  3911. for (int i = 0; i < n; i++) {
  3912. ggml_vec_div_f32(nc,
  3913. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3914. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3915. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3916. }
  3917. }
  3918. static void ggml_compute_forward_div(
  3919. const struct ggml_compute_params * params,
  3920. const struct ggml_tensor * src0,
  3921. const struct ggml_tensor * src1,
  3922. struct ggml_tensor * dst) {
  3923. switch (src0->type) {
  3924. case GGML_TYPE_F32:
  3925. {
  3926. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3927. } break;
  3928. case GGML_TYPE_Q4_0:
  3929. case GGML_TYPE_Q4_1:
  3930. case GGML_TYPE_I8:
  3931. case GGML_TYPE_I16:
  3932. case GGML_TYPE_I32:
  3933. case GGML_TYPE_F16:
  3934. case GGML_TYPE_COUNT:
  3935. {
  3936. GGML_ASSERT(false);
  3937. } break;
  3938. }
  3939. }
  3940. // ggml_compute_forward_sqr
  3941. static void ggml_compute_forward_sqr_f32(
  3942. const struct ggml_compute_params * params,
  3943. const struct ggml_tensor * src0,
  3944. struct ggml_tensor * dst) {
  3945. assert(params->ith == 0);
  3946. assert(ggml_are_same_shape(src0, dst));
  3947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3948. return;
  3949. }
  3950. const int n = ggml_nrows(src0);
  3951. const int nc = src0->ne[0];
  3952. assert( dst->nb[0] == sizeof(float));
  3953. assert(src0->nb[0] == sizeof(float));
  3954. for (int i = 0; i < n; i++) {
  3955. ggml_vec_sqr_f32(nc,
  3956. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3957. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3958. }
  3959. }
  3960. static void ggml_compute_forward_sqr(
  3961. const struct ggml_compute_params * params,
  3962. const struct ggml_tensor * src0,
  3963. struct ggml_tensor * dst) {
  3964. switch (src0->type) {
  3965. case GGML_TYPE_F32:
  3966. {
  3967. ggml_compute_forward_sqr_f32(params, src0, dst);
  3968. } break;
  3969. case GGML_TYPE_Q4_0:
  3970. case GGML_TYPE_Q4_1:
  3971. case GGML_TYPE_I8:
  3972. case GGML_TYPE_I16:
  3973. case GGML_TYPE_I32:
  3974. case GGML_TYPE_F16:
  3975. case GGML_TYPE_COUNT:
  3976. {
  3977. GGML_ASSERT(false);
  3978. } break;
  3979. }
  3980. }
  3981. // ggml_compute_forward_sqrt
  3982. static void ggml_compute_forward_sqrt_f32(
  3983. const struct ggml_compute_params * params,
  3984. const struct ggml_tensor * src0,
  3985. struct ggml_tensor * dst) {
  3986. assert(params->ith == 0);
  3987. assert(ggml_are_same_shape(src0, dst));
  3988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3989. return;
  3990. }
  3991. const int n = ggml_nrows(src0);
  3992. const int nc = src0->ne[0];
  3993. assert( dst->nb[0] == sizeof(float));
  3994. assert(src0->nb[0] == sizeof(float));
  3995. for (int i = 0; i < n; i++) {
  3996. ggml_vec_sqrt_f32(nc,
  3997. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3998. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3999. }
  4000. }
  4001. static void ggml_compute_forward_sqrt(
  4002. const struct ggml_compute_params * params,
  4003. const struct ggml_tensor * src0,
  4004. struct ggml_tensor * dst) {
  4005. switch (src0->type) {
  4006. case GGML_TYPE_F32:
  4007. {
  4008. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4009. } break;
  4010. case GGML_TYPE_Q4_0:
  4011. case GGML_TYPE_Q4_1:
  4012. case GGML_TYPE_I8:
  4013. case GGML_TYPE_I16:
  4014. case GGML_TYPE_I32:
  4015. case GGML_TYPE_F16:
  4016. case GGML_TYPE_COUNT:
  4017. {
  4018. GGML_ASSERT(false);
  4019. } break;
  4020. }
  4021. }
  4022. // ggml_compute_forward_sum
  4023. static void ggml_compute_forward_sum_f32(
  4024. const struct ggml_compute_params * params,
  4025. const struct ggml_tensor * src0,
  4026. struct ggml_tensor * dst) {
  4027. assert(params->ith == 0);
  4028. assert(ggml_is_scalar(dst));
  4029. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4030. return;
  4031. }
  4032. assert(ggml_is_scalar(dst));
  4033. assert(src0->nb[0] == sizeof(float));
  4034. const int ne00 = src0->ne[0];
  4035. const int ne01 = src0->ne[1];
  4036. const int ne02 = src0->ne[2];
  4037. const int ne03 = src0->ne[3];
  4038. const size_t nb01 = src0->nb[1];
  4039. const size_t nb02 = src0->nb[2];
  4040. const size_t nb03 = src0->nb[3];
  4041. for (int i03 = 0; i03 < ne03; i03++) {
  4042. for (int i02 = 0; i02 < ne02; i02++) {
  4043. for (int i01 = 0; i01 < ne01; i01++) {
  4044. ggml_vec_sum_f32(ne00,
  4045. (float *) (dst->data),
  4046. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4047. }
  4048. }
  4049. }
  4050. }
  4051. static void ggml_compute_forward_sum(
  4052. const struct ggml_compute_params * params,
  4053. const struct ggml_tensor * src0,
  4054. struct ggml_tensor * dst) {
  4055. switch (src0->type) {
  4056. case GGML_TYPE_F32:
  4057. {
  4058. ggml_compute_forward_sum_f32(params, src0, dst);
  4059. } break;
  4060. case GGML_TYPE_Q4_0:
  4061. case GGML_TYPE_Q4_1:
  4062. case GGML_TYPE_I8:
  4063. case GGML_TYPE_I16:
  4064. case GGML_TYPE_I32:
  4065. case GGML_TYPE_F16:
  4066. case GGML_TYPE_COUNT:
  4067. {
  4068. GGML_ASSERT(false);
  4069. } break;
  4070. }
  4071. }
  4072. // ggml_compute_forward_mean
  4073. static void ggml_compute_forward_mean_f32(
  4074. const struct ggml_compute_params * params,
  4075. const struct ggml_tensor * src0,
  4076. struct ggml_tensor * dst) {
  4077. assert(params->ith == 0);
  4078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4079. return;
  4080. }
  4081. assert(src0->nb[0] == sizeof(float));
  4082. const int ne00 = src0->ne[0];
  4083. const int ne01 = src0->ne[1];
  4084. const int ne02 = src0->ne[2];
  4085. const int ne03 = src0->ne[3];
  4086. const size_t nb01 = src0->nb[1];
  4087. const size_t nb02 = src0->nb[2];
  4088. const size_t nb03 = src0->nb[3];
  4089. const int ne0 = dst->ne[0];
  4090. const int ne1 = dst->ne[1];
  4091. const int ne2 = dst->ne[2];
  4092. const int ne3 = dst->ne[3];
  4093. assert(ne0 == 1);
  4094. assert(ne1 == ne01);
  4095. assert(ne2 == ne02);
  4096. assert(ne3 == ne03);
  4097. UNUSED(ne0);
  4098. UNUSED(ne1);
  4099. UNUSED(ne2);
  4100. UNUSED(ne3);
  4101. const size_t nb1 = dst->nb[1];
  4102. const size_t nb2 = dst->nb[2];
  4103. const size_t nb3 = dst->nb[3];
  4104. for (int i03 = 0; i03 < ne03; i03++) {
  4105. for (int i02 = 0; i02 < ne02; i02++) {
  4106. for (int i01 = 0; i01 < ne01; i01++) {
  4107. ggml_vec_sum_f32(ne00,
  4108. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4109. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4110. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4111. }
  4112. }
  4113. }
  4114. }
  4115. static void ggml_compute_forward_mean(
  4116. const struct ggml_compute_params * params,
  4117. const struct ggml_tensor * src0,
  4118. struct ggml_tensor * dst) {
  4119. switch (src0->type) {
  4120. case GGML_TYPE_F32:
  4121. {
  4122. ggml_compute_forward_mean_f32(params, src0, dst);
  4123. } break;
  4124. case GGML_TYPE_Q4_0:
  4125. case GGML_TYPE_Q4_1:
  4126. case GGML_TYPE_I8:
  4127. case GGML_TYPE_I16:
  4128. case GGML_TYPE_I32:
  4129. case GGML_TYPE_F16:
  4130. case GGML_TYPE_COUNT:
  4131. {
  4132. GGML_ASSERT(false);
  4133. } break;
  4134. }
  4135. }
  4136. // ggml_compute_forward_repeat
  4137. static void ggml_compute_forward_repeat_f32(
  4138. const struct ggml_compute_params * params,
  4139. const struct ggml_tensor * src0,
  4140. struct ggml_tensor * dst) {
  4141. assert(params->ith == 0);
  4142. assert(ggml_can_repeat(src0, dst));
  4143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4144. return;
  4145. }
  4146. // TODO: implement support for rank > 2 tensors
  4147. assert(src0->ne[2] == 1);
  4148. assert(src0->ne[3] == 1);
  4149. assert( dst->ne[2] == 1);
  4150. assert( dst->ne[3] == 1);
  4151. const int nc = dst->ne[0];
  4152. const int nr = dst->ne[1];
  4153. const int nc0 = src0->ne[0];
  4154. const int nr0 = src0->ne[1];
  4155. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4156. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4157. // TODO: support for transposed / permuted tensors
  4158. assert( dst->nb[0] == sizeof(float));
  4159. assert(src0->nb[0] == sizeof(float));
  4160. // TODO: maybe this is not optimal?
  4161. for (int i = 0; i < nrr; i++) {
  4162. for (int j = 0; j < ncr; j++) {
  4163. for (int k = 0; k < nr0; k++) {
  4164. ggml_vec_cpy_f32(nc0,
  4165. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4166. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4167. }
  4168. }
  4169. }
  4170. }
  4171. static void ggml_compute_forward_repeat(
  4172. const struct ggml_compute_params * params,
  4173. const struct ggml_tensor * src0,
  4174. struct ggml_tensor * dst) {
  4175. switch (src0->type) {
  4176. case GGML_TYPE_F32:
  4177. {
  4178. ggml_compute_forward_repeat_f32(params, src0, dst);
  4179. } break;
  4180. case GGML_TYPE_Q4_0:
  4181. case GGML_TYPE_Q4_1:
  4182. case GGML_TYPE_I8:
  4183. case GGML_TYPE_I16:
  4184. case GGML_TYPE_I32:
  4185. case GGML_TYPE_F16:
  4186. case GGML_TYPE_COUNT:
  4187. {
  4188. GGML_ASSERT(false);
  4189. } break;
  4190. }
  4191. }
  4192. // ggml_compute_forward_abs
  4193. static void ggml_compute_forward_abs_f32(
  4194. const struct ggml_compute_params * params,
  4195. const struct ggml_tensor * src0,
  4196. struct ggml_tensor * dst) {
  4197. assert(params->ith == 0);
  4198. assert(ggml_are_same_shape(src0, dst));
  4199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4200. return;
  4201. }
  4202. const int n = ggml_nrows(src0);
  4203. const int nc = src0->ne[0];
  4204. assert(dst->nb[0] == sizeof(float));
  4205. assert(src0->nb[0] == sizeof(float));
  4206. for (int i = 0; i < n; i++) {
  4207. ggml_vec_abs_f32(nc,
  4208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4210. }
  4211. }
  4212. static void ggml_compute_forward_abs(
  4213. const struct ggml_compute_params * params,
  4214. const struct ggml_tensor * src0,
  4215. struct ggml_tensor * dst) {
  4216. switch (src0->type) {
  4217. case GGML_TYPE_F32:
  4218. {
  4219. ggml_compute_forward_abs_f32(params, src0, dst);
  4220. } break;
  4221. case GGML_TYPE_Q4_0:
  4222. case GGML_TYPE_Q4_1:
  4223. case GGML_TYPE_I8:
  4224. case GGML_TYPE_I16:
  4225. case GGML_TYPE_I32:
  4226. case GGML_TYPE_F16:
  4227. case GGML_TYPE_COUNT:
  4228. {
  4229. GGML_ASSERT(false);
  4230. } break;
  4231. }
  4232. }
  4233. // ggml_compute_forward_sgn
  4234. static void ggml_compute_forward_sgn_f32(
  4235. const struct ggml_compute_params * params,
  4236. const struct ggml_tensor * src0,
  4237. struct ggml_tensor * dst) {
  4238. assert(params->ith == 0);
  4239. assert(ggml_are_same_shape(src0, dst));
  4240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4241. return;
  4242. }
  4243. const int n = ggml_nrows(src0);
  4244. const int nc = src0->ne[0];
  4245. assert(dst->nb[0] == sizeof(float));
  4246. assert(src0->nb[0] == sizeof(float));
  4247. for (int i = 0; i < n; i++) {
  4248. ggml_vec_sgn_f32(nc,
  4249. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4250. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4251. }
  4252. }
  4253. static void ggml_compute_forward_sgn(
  4254. const struct ggml_compute_params * params,
  4255. const struct ggml_tensor * src0,
  4256. struct ggml_tensor * dst) {
  4257. switch (src0->type) {
  4258. case GGML_TYPE_F32:
  4259. {
  4260. ggml_compute_forward_sgn_f32(params, src0, dst);
  4261. } break;
  4262. case GGML_TYPE_Q4_0:
  4263. case GGML_TYPE_Q4_1:
  4264. case GGML_TYPE_I8:
  4265. case GGML_TYPE_I16:
  4266. case GGML_TYPE_I32:
  4267. case GGML_TYPE_F16:
  4268. case GGML_TYPE_COUNT:
  4269. {
  4270. GGML_ASSERT(false);
  4271. } break;
  4272. }
  4273. }
  4274. // ggml_compute_forward_neg
  4275. static void ggml_compute_forward_neg_f32(
  4276. const struct ggml_compute_params * params,
  4277. const struct ggml_tensor * src0,
  4278. struct ggml_tensor * dst) {
  4279. assert(params->ith == 0);
  4280. assert(ggml_are_same_shape(src0, dst));
  4281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4282. return;
  4283. }
  4284. const int n = ggml_nrows(src0);
  4285. const int nc = src0->ne[0];
  4286. assert(dst->nb[0] == sizeof(float));
  4287. assert(src0->nb[0] == sizeof(float));
  4288. for (int i = 0; i < n; i++) {
  4289. ggml_vec_neg_f32(nc,
  4290. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4291. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4292. }
  4293. }
  4294. static void ggml_compute_forward_neg(
  4295. const struct ggml_compute_params * params,
  4296. const struct ggml_tensor * src0,
  4297. struct ggml_tensor * dst) {
  4298. switch (src0->type) {
  4299. case GGML_TYPE_F32:
  4300. {
  4301. ggml_compute_forward_neg_f32(params, src0, dst);
  4302. } break;
  4303. case GGML_TYPE_Q4_0:
  4304. case GGML_TYPE_Q4_1:
  4305. case GGML_TYPE_I8:
  4306. case GGML_TYPE_I16:
  4307. case GGML_TYPE_I32:
  4308. case GGML_TYPE_F16:
  4309. case GGML_TYPE_COUNT:
  4310. {
  4311. GGML_ASSERT(false);
  4312. } break;
  4313. }
  4314. }
  4315. // ggml_compute_forward_step
  4316. static void ggml_compute_forward_step_f32(
  4317. const struct ggml_compute_params * params,
  4318. const struct ggml_tensor * src0,
  4319. struct ggml_tensor * dst) {
  4320. assert(params->ith == 0);
  4321. assert(ggml_are_same_shape(src0, dst));
  4322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4323. return;
  4324. }
  4325. const int n = ggml_nrows(src0);
  4326. const int nc = src0->ne[0];
  4327. assert(dst->nb[0] == sizeof(float));
  4328. assert(src0->nb[0] == sizeof(float));
  4329. for (int i = 0; i < n; i++) {
  4330. ggml_vec_step_f32(nc,
  4331. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4332. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4333. }
  4334. }
  4335. static void ggml_compute_forward_step(
  4336. const struct ggml_compute_params * params,
  4337. const struct ggml_tensor * src0,
  4338. struct ggml_tensor * dst) {
  4339. switch (src0->type) {
  4340. case GGML_TYPE_F32:
  4341. {
  4342. ggml_compute_forward_step_f32(params, src0, dst);
  4343. } break;
  4344. case GGML_TYPE_Q4_0:
  4345. case GGML_TYPE_Q4_1:
  4346. case GGML_TYPE_I8:
  4347. case GGML_TYPE_I16:
  4348. case GGML_TYPE_I32:
  4349. case GGML_TYPE_F16:
  4350. case GGML_TYPE_COUNT:
  4351. {
  4352. GGML_ASSERT(false);
  4353. } break;
  4354. }
  4355. }
  4356. // ggml_compute_forward_relu
  4357. static void ggml_compute_forward_relu_f32(
  4358. const struct ggml_compute_params * params,
  4359. const struct ggml_tensor * src0,
  4360. struct ggml_tensor * dst) {
  4361. assert(params->ith == 0);
  4362. assert(ggml_are_same_shape(src0, dst));
  4363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4364. return;
  4365. }
  4366. const int n = ggml_nrows(src0);
  4367. const int nc = src0->ne[0];
  4368. assert(dst->nb[0] == sizeof(float));
  4369. assert(src0->nb[0] == sizeof(float));
  4370. for (int i = 0; i < n; i++) {
  4371. ggml_vec_relu_f32(nc,
  4372. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4373. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4374. }
  4375. }
  4376. static void ggml_compute_forward_relu(
  4377. const struct ggml_compute_params * params,
  4378. const struct ggml_tensor * src0,
  4379. struct ggml_tensor * dst) {
  4380. switch (src0->type) {
  4381. case GGML_TYPE_F32:
  4382. {
  4383. ggml_compute_forward_relu_f32(params, src0, dst);
  4384. } break;
  4385. case GGML_TYPE_Q4_0:
  4386. case GGML_TYPE_Q4_1:
  4387. case GGML_TYPE_I8:
  4388. case GGML_TYPE_I16:
  4389. case GGML_TYPE_I32:
  4390. case GGML_TYPE_F16:
  4391. case GGML_TYPE_COUNT:
  4392. {
  4393. GGML_ASSERT(false);
  4394. } break;
  4395. }
  4396. }
  4397. // ggml_compute_forward_gelu
  4398. static void ggml_compute_forward_gelu_f32(
  4399. const struct ggml_compute_params * params,
  4400. const struct ggml_tensor * src0,
  4401. struct ggml_tensor * dst) {
  4402. GGML_ASSERT(ggml_is_contiguous(src0));
  4403. GGML_ASSERT(ggml_is_contiguous(dst));
  4404. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4406. return;
  4407. }
  4408. const int ith = params->ith;
  4409. const int nth = params->nth;
  4410. const int nc = src0->ne[0];
  4411. const int nr = ggml_nrows(src0);
  4412. // rows per thread
  4413. const int dr = (nr + nth - 1)/nth;
  4414. // row range for this thread
  4415. const int ir0 = dr*ith;
  4416. const int ir1 = MIN(ir0 + dr, nr);
  4417. for (int i1 = ir0; i1 < ir1; i1++) {
  4418. ggml_vec_gelu_f32(nc,
  4419. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4420. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4421. #ifndef NDEBUG
  4422. for (int k = 0; k < nc; k++) {
  4423. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4424. UNUSED(x);
  4425. assert(!isnan(x));
  4426. assert(!isinf(x));
  4427. }
  4428. #endif
  4429. }
  4430. }
  4431. static void ggml_compute_forward_gelu(
  4432. const struct ggml_compute_params * params,
  4433. const struct ggml_tensor * src0,
  4434. struct ggml_tensor * dst) {
  4435. switch (src0->type) {
  4436. case GGML_TYPE_F32:
  4437. {
  4438. ggml_compute_forward_gelu_f32(params, src0, dst);
  4439. } break;
  4440. case GGML_TYPE_Q4_0:
  4441. case GGML_TYPE_Q4_1:
  4442. case GGML_TYPE_I8:
  4443. case GGML_TYPE_I16:
  4444. case GGML_TYPE_I32:
  4445. case GGML_TYPE_F16:
  4446. case GGML_TYPE_COUNT:
  4447. {
  4448. GGML_ASSERT(false);
  4449. } break;
  4450. }
  4451. //printf("XXXXXXXX gelu\n");
  4452. }
  4453. // ggml_compute_forward_silu
  4454. static void ggml_compute_forward_silu_f32(
  4455. const struct ggml_compute_params * params,
  4456. const struct ggml_tensor * src0,
  4457. struct ggml_tensor * dst) {
  4458. GGML_ASSERT(ggml_is_contiguous(src0));
  4459. GGML_ASSERT(ggml_is_contiguous(dst));
  4460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4462. return;
  4463. }
  4464. const int ith = params->ith;
  4465. const int nth = params->nth;
  4466. const int nc = src0->ne[0];
  4467. const int nr = ggml_nrows(src0);
  4468. // rows per thread
  4469. const int dr = (nr + nth - 1)/nth;
  4470. // row range for this thread
  4471. const int ir0 = dr*ith;
  4472. const int ir1 = MIN(ir0 + dr, nr);
  4473. for (int i1 = ir0; i1 < ir1; i1++) {
  4474. ggml_vec_silu_f32(nc,
  4475. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4476. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4477. #ifndef NDEBUG
  4478. for (int k = 0; k < nc; k++) {
  4479. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4480. UNUSED(x);
  4481. assert(!isnan(x));
  4482. assert(!isinf(x));
  4483. }
  4484. #endif
  4485. }
  4486. }
  4487. static void ggml_compute_forward_silu(
  4488. const struct ggml_compute_params * params,
  4489. const struct ggml_tensor * src0,
  4490. struct ggml_tensor * dst) {
  4491. switch (src0->type) {
  4492. case GGML_TYPE_F32:
  4493. {
  4494. ggml_compute_forward_silu_f32(params, src0, dst);
  4495. } break;
  4496. case GGML_TYPE_Q4_0:
  4497. case GGML_TYPE_Q4_1:
  4498. case GGML_TYPE_I8:
  4499. case GGML_TYPE_I16:
  4500. case GGML_TYPE_I32:
  4501. case GGML_TYPE_F16:
  4502. case GGML_TYPE_COUNT:
  4503. {
  4504. GGML_ASSERT(false);
  4505. } break;
  4506. }
  4507. }
  4508. // ggml_compute_forward_norm
  4509. static void ggml_compute_forward_norm_f32(
  4510. const struct ggml_compute_params * params,
  4511. const struct ggml_tensor * src0,
  4512. struct ggml_tensor * dst) {
  4513. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4515. return;
  4516. }
  4517. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4518. const int ith = params->ith;
  4519. const int nth = params->nth;
  4520. const int ne00 = src0->ne[0];
  4521. const int ne01 = src0->ne[1];
  4522. const int ne02 = src0->ne[2];
  4523. const int ne03 = src0->ne[3];
  4524. const size_t nb01 = src0->nb[1];
  4525. const size_t nb02 = src0->nb[2];
  4526. const size_t nb03 = src0->nb[3];
  4527. const size_t nb1 = dst->nb[1];
  4528. const size_t nb2 = dst->nb[2];
  4529. const size_t nb3 = dst->nb[3];
  4530. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4531. // TODO: optimize
  4532. for (int i03 = 0; i03 < ne03; i03++) {
  4533. for (int i02 = 0; i02 < ne02; i02++) {
  4534. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4535. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4536. ggml_float mean = 0.0;
  4537. for (int i00 = 0; i00 < ne00; i00++) {
  4538. mean += x[i00];
  4539. }
  4540. mean /= ne00;
  4541. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4542. ggml_float sum2 = 0.0;
  4543. for (int i00 = 0; i00 < ne00; i00++) {
  4544. ggml_float v = x[i00] - mean;
  4545. y[i00] = v;
  4546. sum2 += v*v;
  4547. }
  4548. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4549. ggml_vec_scale_f32(ne00, y, scale);
  4550. }
  4551. }
  4552. }
  4553. }
  4554. static void ggml_compute_forward_norm(
  4555. const struct ggml_compute_params * params,
  4556. const struct ggml_tensor * src0,
  4557. struct ggml_tensor * dst) {
  4558. switch (src0->type) {
  4559. case GGML_TYPE_F32:
  4560. {
  4561. ggml_compute_forward_norm_f32(params, src0, dst);
  4562. } break;
  4563. case GGML_TYPE_Q4_0:
  4564. case GGML_TYPE_Q4_1:
  4565. case GGML_TYPE_I8:
  4566. case GGML_TYPE_I16:
  4567. case GGML_TYPE_I32:
  4568. case GGML_TYPE_F16:
  4569. case GGML_TYPE_COUNT:
  4570. {
  4571. GGML_ASSERT(false);
  4572. } break;
  4573. }
  4574. }
  4575. static void ggml_compute_forward_rms_norm_f32(
  4576. const struct ggml_compute_params * params,
  4577. const struct ggml_tensor * src0,
  4578. struct ggml_tensor * dst) {
  4579. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4581. return;
  4582. }
  4583. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4584. const int ith = params->ith;
  4585. const int nth = params->nth;
  4586. const int ne00 = src0->ne[0];
  4587. const int ne01 = src0->ne[1];
  4588. const int ne02 = src0->ne[2];
  4589. const int ne03 = src0->ne[3];
  4590. const size_t nb01 = src0->nb[1];
  4591. const size_t nb02 = src0->nb[2];
  4592. const size_t nb03 = src0->nb[3];
  4593. const size_t nb1 = dst->nb[1];
  4594. const size_t nb2 = dst->nb[2];
  4595. const size_t nb3 = dst->nb[3];
  4596. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4597. // TODO: optimize
  4598. for (int i03 = 0; i03 < ne03; i03++) {
  4599. for (int i02 = 0; i02 < ne02; i02++) {
  4600. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4601. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4602. ggml_float mean = 0.0;
  4603. for (int i00 = 0; i00 < ne00; i00++) {
  4604. mean += x[i00] * x[i00];
  4605. }
  4606. mean /= ne00;
  4607. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4608. memcpy(y, x, ne00 * sizeof(float));
  4609. // for (int i00 = 0; i00 < ne00; i00++) {
  4610. // y[i00] = x[i00];
  4611. // }
  4612. const float scale = 1.0/sqrt(mean + eps);
  4613. ggml_vec_scale_f32(ne00, y, scale);
  4614. }
  4615. }
  4616. }
  4617. }
  4618. static void ggml_compute_forward_rms_norm(
  4619. const struct ggml_compute_params * params,
  4620. const struct ggml_tensor * src0,
  4621. struct ggml_tensor * dst) {
  4622. switch (src0->type) {
  4623. case GGML_TYPE_F32:
  4624. {
  4625. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4626. } break;
  4627. case GGML_TYPE_Q4_0:
  4628. case GGML_TYPE_Q4_1:
  4629. case GGML_TYPE_I8:
  4630. case GGML_TYPE_I16:
  4631. case GGML_TYPE_I32:
  4632. case GGML_TYPE_F16:
  4633. case GGML_TYPE_COUNT:
  4634. {
  4635. GGML_ASSERT(false);
  4636. } break;
  4637. }
  4638. }
  4639. // ggml_compute_forward_mul_mat
  4640. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4641. // helper function to determine if it is better to use BLAS or not
  4642. // for large matrices, BLAS is faster
  4643. static bool ggml_compute_forward_mul_mat_use_blas(
  4644. const struct ggml_tensor * src0,
  4645. const struct ggml_tensor * src1,
  4646. struct ggml_tensor * dst) {
  4647. //const int ne00 = src0->ne[0];
  4648. //const int ne01 = src0->ne[1];
  4649. const int ne10 = src1->ne[0];
  4650. const int ne0 = dst->ne[0];
  4651. const int ne1 = dst->ne[1];
  4652. // TODO: find the optimal values for these
  4653. if (ggml_is_contiguous(src0) &&
  4654. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4655. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4656. return true;
  4657. }
  4658. return false;
  4659. }
  4660. #endif
  4661. static void ggml_compute_forward_mul_mat_f32(
  4662. const struct ggml_compute_params * params,
  4663. const struct ggml_tensor * src0,
  4664. const struct ggml_tensor * src1,
  4665. struct ggml_tensor * dst) {
  4666. int64_t t0 = ggml_perf_time_us();
  4667. UNUSED(t0);
  4668. const int ne00 = src0->ne[0];
  4669. const int ne01 = src0->ne[1];
  4670. const int ne02 = src0->ne[2];
  4671. const int ne03 = src0->ne[3];
  4672. const int ne10 = src1->ne[0];
  4673. const int ne11 = src1->ne[1];
  4674. //const int ne12 = src1->ne[2];
  4675. //const int ne13 = src1->ne[3];
  4676. //const int ne0 = dst->ne[0];
  4677. //const int ne1 = dst->ne[1];
  4678. //const int ne2 = dst->ne[2];
  4679. //const int ne3 = dst->ne[3];
  4680. //const int ne = ne0*ne1*ne2*ne3;
  4681. //const int nb00 = src0->nb[0];
  4682. const int nb01 = src0->nb[1];
  4683. const int nb02 = src0->nb[2];
  4684. const int nb03 = src0->nb[3];
  4685. const int nb10 = src1->nb[0];
  4686. const int nb11 = src1->nb[1];
  4687. const int nb12 = src1->nb[2];
  4688. const int nb13 = src1->nb[3];
  4689. const int nb0 = dst->nb[0];
  4690. const int nb1 = dst->nb[1];
  4691. const int nb2 = dst->nb[2];
  4692. const int nb3 = dst->nb[3];
  4693. const int ith = params->ith;
  4694. const int nth = params->nth;
  4695. assert(ne02 == ne12);
  4696. assert(ne03 == ne13);
  4697. assert(ne2 == ne12);
  4698. assert(ne3 == ne13);
  4699. // TODO: we don't support permuted src0
  4700. assert(nb00 == sizeof(float));
  4701. // dst cannot be transposed or permuted
  4702. assert(nb0 == sizeof(float));
  4703. assert(nb0 <= nb1);
  4704. assert(nb1 <= nb2);
  4705. assert(nb2 <= nb3);
  4706. assert(ne0 == ne01);
  4707. assert(ne1 == ne11);
  4708. assert(ne2 == ne02);
  4709. assert(ne3 == ne03);
  4710. // nb01 >= nb00 - src0 is not transposed
  4711. // compute by src0 rows
  4712. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4713. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4714. GGML_ASSERT(nb10 == sizeof(float));
  4715. if (params->ith != 0) {
  4716. return;
  4717. }
  4718. if (params->type == GGML_TASK_INIT) {
  4719. return;
  4720. }
  4721. if (params->type == GGML_TASK_FINALIZE) {
  4722. return;
  4723. }
  4724. for (int i03 = 0; i03 < ne03; i03++) {
  4725. for (int i02 = 0; i02 < ne02; i02++) {
  4726. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4727. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4728. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4729. // zT = y * xT
  4730. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4731. ne11, ne01, ne10,
  4732. 1.0f, y, ne10,
  4733. x, ne10,
  4734. 0.0f, d, ne01);
  4735. }
  4736. }
  4737. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4738. return;
  4739. }
  4740. #endif
  4741. if (params->type == GGML_TASK_INIT) {
  4742. return;
  4743. }
  4744. if (params->type == GGML_TASK_FINALIZE) {
  4745. return;
  4746. }
  4747. // TODO: do not support transposed src1
  4748. assert(nb10 == sizeof(float));
  4749. // parallelize by src0 rows using ggml_vec_dot_f32
  4750. // total rows in src0
  4751. const int nr = ne01*ne02*ne03;
  4752. // rows per thread
  4753. const int dr = (nr + nth - 1)/nth;
  4754. // row range for this thread
  4755. const int ir0 = dr*ith;
  4756. const int ir1 = MIN(ir0 + dr, nr);
  4757. for (int ir = ir0; ir < ir1; ++ir) {
  4758. // src0 indices
  4759. const int i03 = ir/(ne02*ne01);
  4760. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4761. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4762. for (int ic = 0; ic < ne11; ++ic) {
  4763. // src1 indices
  4764. const int i13 = i03;
  4765. const int i12 = i02;
  4766. const int i11 = ic;
  4767. // dst indices
  4768. const int i0 = i01;
  4769. const int i1 = i11;
  4770. const int i2 = i02;
  4771. const int i3 = i03;
  4772. ggml_vec_dot_f32(ne00,
  4773. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4774. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4775. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4776. }
  4777. }
  4778. //int64_t t1 = ggml_perf_time_us();
  4779. //static int64_t acc = 0;
  4780. //acc += t1 - t0;
  4781. //if (t1 - t0 > 10) {
  4782. // printf("\n");
  4783. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4784. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4785. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4786. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4787. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4788. //}
  4789. }
  4790. static void ggml_compute_forward_mul_mat_f16_f32(
  4791. const struct ggml_compute_params * params,
  4792. const struct ggml_tensor * src0,
  4793. const struct ggml_tensor * src1,
  4794. struct ggml_tensor * dst) {
  4795. int64_t t0 = ggml_perf_time_us();
  4796. UNUSED(t0);
  4797. const int ne00 = src0->ne[0];
  4798. const int ne01 = src0->ne[1];
  4799. const int ne02 = src0->ne[2];
  4800. const int ne03 = src0->ne[3];
  4801. const int ne10 = src1->ne[0];
  4802. const int ne11 = src1->ne[1];
  4803. const int ne12 = src1->ne[2];
  4804. const int ne13 = src1->ne[3];
  4805. const int ne0 = dst->ne[0];
  4806. const int ne1 = dst->ne[1];
  4807. const int ne2 = dst->ne[2];
  4808. const int ne3 = dst->ne[3];
  4809. //const int ne = ne0*ne1*ne2*ne3;
  4810. const int nb00 = src0->nb[0];
  4811. const int nb01 = src0->nb[1];
  4812. const int nb02 = src0->nb[2];
  4813. const int nb03 = src0->nb[3];
  4814. const int nb10 = src1->nb[0];
  4815. const int nb11 = src1->nb[1];
  4816. const int nb12 = src1->nb[2];
  4817. const int nb13 = src1->nb[3];
  4818. const int nb0 = dst->nb[0];
  4819. const int nb1 = dst->nb[1];
  4820. const int nb2 = dst->nb[2];
  4821. const int nb3 = dst->nb[3];
  4822. const int ith = params->ith;
  4823. const int nth = params->nth;
  4824. GGML_ASSERT(ne02 == ne12);
  4825. GGML_ASSERT(ne03 == ne13);
  4826. GGML_ASSERT(ne2 == ne12);
  4827. GGML_ASSERT(ne3 == ne13);
  4828. // TODO: we don't support permuted src0
  4829. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4830. // dst cannot be transposed or permuted
  4831. GGML_ASSERT(nb0 == sizeof(float));
  4832. GGML_ASSERT(nb0 <= nb1);
  4833. GGML_ASSERT(nb1 <= nb2);
  4834. GGML_ASSERT(nb2 <= nb3);
  4835. GGML_ASSERT(ne0 == ne01);
  4836. GGML_ASSERT(ne1 == ne11);
  4837. GGML_ASSERT(ne2 == ne02);
  4838. GGML_ASSERT(ne3 == ne03);
  4839. // nb01 >= nb00 - src0 is not transposed
  4840. // compute by src0 rows
  4841. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4842. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4843. GGML_ASSERT(nb10 == sizeof(float));
  4844. if (params->ith != 0) {
  4845. return;
  4846. }
  4847. if (params->type == GGML_TASK_INIT) {
  4848. return;
  4849. }
  4850. if (params->type == GGML_TASK_FINALIZE) {
  4851. return;
  4852. }
  4853. float * const wdata = params->wdata;
  4854. for (int i03 = 0; i03 < ne03; i03++) {
  4855. for (int i02 = 0; i02 < ne02; i02++) {
  4856. {
  4857. size_t id = 0;
  4858. for (int i01 = 0; i01 < ne01; ++i01) {
  4859. for (int i00 = 0; i00 < ne00; ++i00) {
  4860. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4861. }
  4862. }
  4863. }
  4864. const float * x = wdata;
  4865. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4866. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4867. // zT = y * xT
  4868. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4869. ne11, ne01, ne10,
  4870. 1.0f, y, ne10,
  4871. x, ne10,
  4872. 0.0f, d, ne01);
  4873. }
  4874. }
  4875. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4876. return;
  4877. }
  4878. #endif
  4879. if (params->type == GGML_TASK_INIT) {
  4880. ggml_fp16_t * const wdata = params->wdata;
  4881. size_t id = 0;
  4882. for (int i13 = 0; i13 < ne13; ++i13) {
  4883. for (int i12 = 0; i12 < ne12; ++i12) {
  4884. for (int i11 = 0; i11 < ne11; ++i11) {
  4885. for (int i10 = 0; i10 < ne10; ++i10) {
  4886. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4887. }
  4888. }
  4889. }
  4890. }
  4891. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4892. return;
  4893. }
  4894. if (params->type == GGML_TASK_FINALIZE) {
  4895. return;
  4896. }
  4897. // fp16 -> half the size, so divide by 2
  4898. // TODO: do not support transposed src1
  4899. assert(nb10/2 == sizeof(ggml_fp16_t));
  4900. // parallelize by src0 rows using ggml_vec_dot_f16
  4901. // total rows in src0
  4902. const int nr = ne01*ne02*ne03;
  4903. // rows per thread
  4904. const int dr = (nr + nth - 1)/nth;
  4905. // row range for this thread
  4906. const int ir0 = dr*ith;
  4907. const int ir1 = MIN(ir0 + dr, nr);
  4908. ggml_fp16_t * wdata = params->wdata;
  4909. for (int ir = ir0; ir < ir1; ++ir) {
  4910. // src0 indices
  4911. const int i03 = ir/(ne02*ne01);
  4912. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4913. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4914. const int i13 = i03;
  4915. const int i12 = i02;
  4916. const int i0 = i01;
  4917. const int i2 = i02;
  4918. const int i3 = i03;
  4919. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4920. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4921. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4922. for (int ic = 0; ic < ne11; ++ic) {
  4923. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4924. }
  4925. }
  4926. //int64_t t1 = ggml_time_us();
  4927. //static int64_t acc = 0;
  4928. //acc += t1 - t0;
  4929. //if (t1 - t0 > 10) {
  4930. // printf("\n");
  4931. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4932. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4933. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4934. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4935. //}
  4936. }
  4937. static void ggml_compute_forward_mul_mat_q4_0_f32(
  4938. const struct ggml_compute_params * params,
  4939. const struct ggml_tensor * src0,
  4940. const struct ggml_tensor * src1,
  4941. struct ggml_tensor * dst) {
  4942. int64_t t0 = ggml_perf_time_us();
  4943. UNUSED(t0);
  4944. const int ne00 = src0->ne[0];
  4945. const int ne01 = src0->ne[1];
  4946. const int ne02 = src0->ne[2];
  4947. const int ne03 = src0->ne[3];
  4948. const int ne10 = src1->ne[0];
  4949. const int ne11 = src1->ne[1];
  4950. const int ne12 = src1->ne[2];
  4951. const int ne13 = src1->ne[3];
  4952. const int ne0 = dst->ne[0];
  4953. const int ne1 = dst->ne[1];
  4954. const int ne2 = dst->ne[2];
  4955. const int ne3 = dst->ne[3];
  4956. //const int ne = ne0*ne1*ne2*ne3;
  4957. const int nb00 = src0->nb[0];
  4958. const int nb01 = src0->nb[1];
  4959. const int nb02 = src0->nb[2];
  4960. const int nb03 = src0->nb[3];
  4961. const int nb10 = src1->nb[0];
  4962. const int nb11 = src1->nb[1];
  4963. const int nb12 = src1->nb[2];
  4964. const int nb13 = src1->nb[3];
  4965. const int nb0 = dst->nb[0];
  4966. const int nb1 = dst->nb[1];
  4967. const int nb2 = dst->nb[2];
  4968. const int nb3 = dst->nb[3];
  4969. const int ith = params->ith;
  4970. const int nth = params->nth;
  4971. GGML_ASSERT(ne02 == ne12);
  4972. GGML_ASSERT(ne03 == ne13);
  4973. GGML_ASSERT(ne2 == ne12);
  4974. GGML_ASSERT(ne3 == ne13);
  4975. // TODO: we don't support permuted src0
  4976. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  4977. // dst cannot be transposed or permuted
  4978. GGML_ASSERT(nb0 == sizeof(float));
  4979. GGML_ASSERT(nb0 <= nb1);
  4980. GGML_ASSERT(nb1 <= nb2);
  4981. GGML_ASSERT(nb2 <= nb3);
  4982. GGML_ASSERT(ne0 == ne01);
  4983. GGML_ASSERT(ne1 == ne11);
  4984. GGML_ASSERT(ne2 == ne02);
  4985. GGML_ASSERT(ne3 == ne03);
  4986. // nb01 >= nb00 - src0 is not transposed
  4987. // compute by src0 rows
  4988. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4989. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4990. GGML_ASSERT(nb10 == sizeof(float));
  4991. if (params->ith != 0) {
  4992. return;
  4993. }
  4994. if (params->type == GGML_TASK_INIT) {
  4995. return;
  4996. }
  4997. if (params->type == GGML_TASK_FINALIZE) {
  4998. return;
  4999. }
  5000. float * const wdata = params->wdata;
  5001. for (int i03 = 0; i03 < ne03; i03++) {
  5002. for (int i02 = 0; i02 < ne02; i02++) {
  5003. {
  5004. size_t id = 0;
  5005. for (int i01 = 0; i01 < ne01; ++i01) {
  5006. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5007. id += ne00;
  5008. }
  5009. }
  5010. const float * x = wdata;
  5011. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5012. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5013. // zT = y * xT
  5014. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5015. ne11, ne01, ne10,
  5016. 1.0f, y, ne10,
  5017. x, ne10,
  5018. 0.0f, d, ne01);
  5019. }
  5020. }
  5021. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5022. return;
  5023. }
  5024. #endif
  5025. if (params->type == GGML_TASK_INIT) {
  5026. char * wdata = params->wdata;
  5027. for (int i13 = 0; i13 < ne13; ++i13) {
  5028. for (int i12 = 0; i12 < ne12; ++i12) {
  5029. for (int i11 = 0; i11 < ne11; ++i11) {
  5030. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5031. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5032. }
  5033. }
  5034. }
  5035. return;
  5036. }
  5037. if (params->type == GGML_TASK_FINALIZE) {
  5038. return;
  5039. }
  5040. // TODO: do not support transposed src1
  5041. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5042. // total rows in src0
  5043. const int nr = ne01*ne02*ne03;
  5044. // rows per thread
  5045. const int dr = (nr + nth - 1)/nth;
  5046. // row range for this thread
  5047. const int ir0 = dr*ith;
  5048. const int ir1 = MIN(ir0 + dr, nr);
  5049. void * wdata = params->wdata;
  5050. for (int ir = ir0; ir < ir1; ++ir) {
  5051. // src0 indices
  5052. const int i03 = ir/(ne02*ne01);
  5053. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5054. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5055. const int i13 = i03;
  5056. const int i12 = i02;
  5057. const int i0 = i01;
  5058. const int i2 = i02;
  5059. const int i3 = i03;
  5060. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5061. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5062. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5063. assert(ne00 % 32 == 0);
  5064. for (int ic = 0; ic < ne11; ++ic) {
  5065. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5066. }
  5067. }
  5068. //int64_t t1 = ggml_time_us();
  5069. //static int64_t acc = 0;
  5070. //acc += t1 - t0;
  5071. //if (t1 - t0 > 10) {
  5072. // printf("\n");
  5073. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5074. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5075. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5076. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5077. //}
  5078. }
  5079. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5080. const struct ggml_compute_params * params,
  5081. const struct ggml_tensor * src0,
  5082. const struct ggml_tensor * src1,
  5083. struct ggml_tensor * dst) {
  5084. int64_t t0 = ggml_perf_time_us();
  5085. UNUSED(t0);
  5086. const int ne00 = src0->ne[0];
  5087. const int ne01 = src0->ne[1];
  5088. const int ne02 = src0->ne[2];
  5089. const int ne03 = src0->ne[3];
  5090. const int ne10 = src1->ne[0];
  5091. const int ne11 = src1->ne[1];
  5092. const int ne12 = src1->ne[2];
  5093. const int ne13 = src1->ne[3];
  5094. const int ne0 = dst->ne[0];
  5095. const int ne1 = dst->ne[1];
  5096. const int ne2 = dst->ne[2];
  5097. const int ne3 = dst->ne[3];
  5098. //const int ne = ne0*ne1*ne2*ne3;
  5099. const int nb00 = src0->nb[0];
  5100. const int nb01 = src0->nb[1];
  5101. const int nb02 = src0->nb[2];
  5102. const int nb03 = src0->nb[3];
  5103. const int nb10 = src1->nb[0];
  5104. const int nb11 = src1->nb[1];
  5105. const int nb12 = src1->nb[2];
  5106. const int nb13 = src1->nb[3];
  5107. const int nb0 = dst->nb[0];
  5108. const int nb1 = dst->nb[1];
  5109. const int nb2 = dst->nb[2];
  5110. const int nb3 = dst->nb[3];
  5111. const int ith = params->ith;
  5112. const int nth = params->nth;
  5113. GGML_ASSERT(ne02 == ne12);
  5114. GGML_ASSERT(ne03 == ne13);
  5115. GGML_ASSERT(ne2 == ne12);
  5116. GGML_ASSERT(ne3 == ne13);
  5117. // TODO: we don't support permuted src0
  5118. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5119. // dst cannot be transposed or permuted
  5120. GGML_ASSERT(nb0 == sizeof(float));
  5121. GGML_ASSERT(nb0 <= nb1);
  5122. GGML_ASSERT(nb1 <= nb2);
  5123. GGML_ASSERT(nb2 <= nb3);
  5124. GGML_ASSERT(ne0 == ne01);
  5125. GGML_ASSERT(ne1 == ne11);
  5126. GGML_ASSERT(ne2 == ne02);
  5127. GGML_ASSERT(ne3 == ne03);
  5128. // nb01 >= nb00 - src0 is not transposed
  5129. // compute by src0 rows
  5130. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5131. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5132. GGML_ASSERT(nb10 == sizeof(float));
  5133. if (params->ith != 0) {
  5134. return;
  5135. }
  5136. if (params->type == GGML_TASK_INIT) {
  5137. return;
  5138. }
  5139. if (params->type == GGML_TASK_FINALIZE) {
  5140. return;
  5141. }
  5142. float * const wdata = params->wdata;
  5143. for (int i03 = 0; i03 < ne03; i03++) {
  5144. for (int i02 = 0; i02 < ne02; i02++) {
  5145. {
  5146. size_t id = 0;
  5147. for (int i01 = 0; i01 < ne01; ++i01) {
  5148. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5149. id += ne00;
  5150. }
  5151. }
  5152. const float * x = wdata;
  5153. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5154. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5155. // zT = y * xT
  5156. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5157. ne11, ne01, ne10,
  5158. 1.0f, y, ne10,
  5159. x, ne10,
  5160. 0.0f, d, ne01);
  5161. }
  5162. }
  5163. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5164. return;
  5165. }
  5166. #endif
  5167. if (params->type == GGML_TASK_INIT) {
  5168. char * wdata = params->wdata;
  5169. for (int i13 = 0; i13 < ne13; ++i13) {
  5170. for (int i12 = 0; i12 < ne12; ++i12) {
  5171. for (int i11 = 0; i11 < ne11; ++i11) {
  5172. //for (int i10 = 0; i10 < ne10; ++i10) {
  5173. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5174. //}
  5175. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5176. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5177. }
  5178. }
  5179. }
  5180. return;
  5181. }
  5182. if (params->type == GGML_TASK_FINALIZE) {
  5183. return;
  5184. }
  5185. // TODO: do not support transposed src1
  5186. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5187. // total rows in src0
  5188. const int nr = ne01*ne02*ne03;
  5189. // rows per thread
  5190. const int dr = (nr + nth - 1)/nth;
  5191. // row range for this thread
  5192. const int ir0 = dr*ith;
  5193. const int ir1 = MIN(ir0 + dr, nr);
  5194. void * wdata = params->wdata;
  5195. for (int ir = ir0; ir < ir1; ++ir) {
  5196. // src0 indices
  5197. const int i03 = ir/(ne02*ne01);
  5198. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5199. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5200. const int i13 = i03;
  5201. const int i12 = i02;
  5202. const int i0 = i01;
  5203. const int i2 = i02;
  5204. const int i3 = i03;
  5205. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5206. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5207. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5208. assert(ne00 % 32 == 0);
  5209. for (int ic = 0; ic < ne11; ++ic) {
  5210. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5211. }
  5212. }
  5213. //int64_t t1 = ggml_time_us();
  5214. //static int64_t acc = 0;
  5215. //acc += t1 - t0;
  5216. //if (t1 - t0 > 10) {
  5217. // printf("\n");
  5218. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5219. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5220. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5221. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5222. //}
  5223. }
  5224. static void ggml_compute_forward_mul_mat(
  5225. const struct ggml_compute_params * params,
  5226. const struct ggml_tensor * src0,
  5227. const struct ggml_tensor * src1,
  5228. struct ggml_tensor * dst) {
  5229. switch (src0->type) {
  5230. case GGML_TYPE_Q4_0:
  5231. {
  5232. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5233. } break;
  5234. case GGML_TYPE_Q4_1:
  5235. {
  5236. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5237. } break;
  5238. case GGML_TYPE_F16:
  5239. {
  5240. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5241. } break;
  5242. case GGML_TYPE_F32:
  5243. {
  5244. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5245. } break;
  5246. case GGML_TYPE_I8:
  5247. case GGML_TYPE_I16:
  5248. case GGML_TYPE_I32:
  5249. case GGML_TYPE_COUNT:
  5250. {
  5251. GGML_ASSERT(false);
  5252. } break;
  5253. }
  5254. #if 0
  5255. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5256. static int first = 8;
  5257. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5258. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5259. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5260. if (first) {
  5261. --first;
  5262. } else {
  5263. for (int k = 0; k < dst->ne[1]; ++k) {
  5264. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5265. for (int i = 0; i < 16; ++i) {
  5266. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5267. }
  5268. printf("\n");
  5269. }
  5270. printf("\n");
  5271. }
  5272. printf("\n");
  5273. exit(0);
  5274. }
  5275. } else {
  5276. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5277. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5278. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5279. }
  5280. #endif
  5281. }
  5282. // ggml_compute_forward_scale
  5283. static void ggml_compute_forward_scale_f32(
  5284. const struct ggml_compute_params * params,
  5285. const struct ggml_tensor * src0,
  5286. const struct ggml_tensor * src1,
  5287. struct ggml_tensor * dst) {
  5288. GGML_ASSERT(ggml_is_contiguous(src0));
  5289. GGML_ASSERT(ggml_is_contiguous(dst));
  5290. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5291. GGML_ASSERT(ggml_is_scalar(src1));
  5292. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5293. return;
  5294. }
  5295. // scale factor
  5296. const float v = *(float *) src1->data;
  5297. const int ith = params->ith;
  5298. const int nth = params->nth;
  5299. const int nc = src0->ne[0];
  5300. const int nr = ggml_nrows(src0);
  5301. // rows per thread
  5302. const int dr = (nr + nth - 1)/nth;
  5303. // row range for this thread
  5304. const int ir0 = dr*ith;
  5305. const int ir1 = MIN(ir0 + dr, nr);
  5306. for (int i1 = ir0; i1 < ir1; i1++) {
  5307. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5308. }
  5309. }
  5310. static void ggml_compute_forward_scale(
  5311. const struct ggml_compute_params * params,
  5312. const struct ggml_tensor * src0,
  5313. const struct ggml_tensor * src1,
  5314. struct ggml_tensor * dst) {
  5315. switch (src0->type) {
  5316. case GGML_TYPE_F32:
  5317. {
  5318. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5319. } break;
  5320. case GGML_TYPE_Q4_0:
  5321. case GGML_TYPE_Q4_1:
  5322. case GGML_TYPE_I8:
  5323. case GGML_TYPE_I16:
  5324. case GGML_TYPE_I32:
  5325. case GGML_TYPE_F16:
  5326. case GGML_TYPE_COUNT:
  5327. {
  5328. GGML_ASSERT(false);
  5329. } break;
  5330. }
  5331. }
  5332. // ggml_compute_forward_cpy
  5333. static void ggml_compute_forward_cpy(
  5334. const struct ggml_compute_params * params,
  5335. const struct ggml_tensor * src0,
  5336. struct ggml_tensor * dst) {
  5337. ggml_compute_forward_dup(params, src0, dst);
  5338. }
  5339. // ggml_compute_forward_reshape
  5340. static void ggml_compute_forward_reshape(
  5341. const struct ggml_compute_params * params,
  5342. const struct ggml_tensor * src0,
  5343. struct ggml_tensor * dst) {
  5344. // NOP
  5345. UNUSED(params);
  5346. UNUSED(src0);
  5347. UNUSED(dst);
  5348. }
  5349. // ggml_compute_forward_view
  5350. static void ggml_compute_forward_view(
  5351. const struct ggml_compute_params * params,
  5352. const struct ggml_tensor * src0) {
  5353. // NOP
  5354. UNUSED(params);
  5355. UNUSED(src0);
  5356. }
  5357. // ggml_compute_forward_permute
  5358. static void ggml_compute_forward_permute(
  5359. const struct ggml_compute_params * params,
  5360. const struct ggml_tensor * src0) {
  5361. // NOP
  5362. UNUSED(params);
  5363. UNUSED(src0);
  5364. }
  5365. // ggml_compute_forward_transpose
  5366. static void ggml_compute_forward_transpose(
  5367. const struct ggml_compute_params * params,
  5368. const struct ggml_tensor * src0) {
  5369. // NOP
  5370. UNUSED(params);
  5371. UNUSED(src0);
  5372. }
  5373. // ggml_compute_forward_get_rows
  5374. static void ggml_compute_forward_get_rows_q4_0(
  5375. const struct ggml_compute_params * params,
  5376. const struct ggml_tensor * src0,
  5377. const struct ggml_tensor * src1,
  5378. struct ggml_tensor * dst) {
  5379. assert(params->ith == 0);
  5380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5381. return;
  5382. }
  5383. const int nc = src0->ne[0];
  5384. const int nr = ggml_nelements(src1);
  5385. assert( dst->ne[0] == nc);
  5386. assert( dst->ne[1] == nr);
  5387. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5388. for (int i = 0; i < nr; ++i) {
  5389. const int r = ((int32_t *) src1->data)[i];
  5390. dequantize_row_q4_0(
  5391. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5392. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5393. }
  5394. }
  5395. static void ggml_compute_forward_get_rows_q4_1(
  5396. const struct ggml_compute_params * params,
  5397. const struct ggml_tensor * src0,
  5398. const struct ggml_tensor * src1,
  5399. struct ggml_tensor * dst) {
  5400. assert(params->ith == 0);
  5401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5402. return;
  5403. }
  5404. const int nc = src0->ne[0];
  5405. const int nr = ggml_nelements(src1);
  5406. assert( dst->ne[0] == nc);
  5407. assert( dst->ne[1] == nr);
  5408. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5409. for (int i = 0; i < nr; ++i) {
  5410. const int r = ((int32_t *) src1->data)[i];
  5411. dequantize_row_q4_1(
  5412. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5413. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5414. }
  5415. }
  5416. static void ggml_compute_forward_get_rows_f16(
  5417. const struct ggml_compute_params * params,
  5418. const struct ggml_tensor * src0,
  5419. const struct ggml_tensor * src1,
  5420. struct ggml_tensor * dst) {
  5421. assert(params->ith == 0);
  5422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5423. return;
  5424. }
  5425. const int nc = src0->ne[0];
  5426. const int nr = ggml_nelements(src1);
  5427. assert( dst->ne[0] == nc);
  5428. assert( dst->ne[1] == nr);
  5429. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5430. for (int i = 0; i < nr; ++i) {
  5431. const int r = ((int32_t *) src1->data)[i];
  5432. for (int j = 0; j < nc; ++j) {
  5433. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5434. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5435. }
  5436. }
  5437. }
  5438. static void ggml_compute_forward_get_rows_f32(
  5439. const struct ggml_compute_params * params,
  5440. const struct ggml_tensor * src0,
  5441. const struct ggml_tensor * src1,
  5442. struct ggml_tensor * dst) {
  5443. assert(params->ith == 0);
  5444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5445. return;
  5446. }
  5447. const int nc = src0->ne[0];
  5448. const int nr = ggml_nelements(src1);
  5449. assert( dst->ne[0] == nc);
  5450. assert( dst->ne[1] == nr);
  5451. assert(src0->nb[0] == sizeof(float));
  5452. for (int i = 0; i < nr; ++i) {
  5453. const int r = ((int32_t *) src1->data)[i];
  5454. ggml_vec_cpy_f32(nc,
  5455. (float *) ((char *) dst->data + i*dst->nb[1]),
  5456. (float *) ((char *) src0->data + r*src0->nb[1]));
  5457. }
  5458. }
  5459. static void ggml_compute_forward_get_rows(
  5460. const struct ggml_compute_params * params,
  5461. const struct ggml_tensor * src0,
  5462. const struct ggml_tensor * src1,
  5463. struct ggml_tensor * dst) {
  5464. switch (src0->type) {
  5465. case GGML_TYPE_Q4_0:
  5466. {
  5467. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5468. } break;
  5469. case GGML_TYPE_Q4_1:
  5470. {
  5471. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5472. } break;
  5473. case GGML_TYPE_F16:
  5474. {
  5475. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5476. } break;
  5477. case GGML_TYPE_F32:
  5478. {
  5479. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5480. } break;
  5481. case GGML_TYPE_I8:
  5482. case GGML_TYPE_I16:
  5483. case GGML_TYPE_I32:
  5484. case GGML_TYPE_COUNT:
  5485. {
  5486. GGML_ASSERT(false);
  5487. } break;
  5488. }
  5489. //static bool first = true;
  5490. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5491. //if (first) {
  5492. // first = false;
  5493. //} else {
  5494. // for (int k = 0; k < dst->ne[1]; ++k) {
  5495. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5496. // for (int i = 0; i < 16; ++i) {
  5497. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5498. // }
  5499. // printf("\n");
  5500. // }
  5501. // printf("\n");
  5502. // }
  5503. // printf("\n");
  5504. // exit(0);
  5505. //}
  5506. }
  5507. // ggml_compute_forward_diag_mask_inf
  5508. static void ggml_compute_forward_diag_mask_inf_f32(
  5509. const struct ggml_compute_params * params,
  5510. const struct ggml_tensor * src0,
  5511. const struct ggml_tensor * src1,
  5512. struct ggml_tensor * dst) {
  5513. assert(params->ith == 0);
  5514. assert(src1->type == GGML_TYPE_I32);
  5515. assert(ggml_nelements(src1) == 1);
  5516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5517. return;
  5518. }
  5519. const int n_past = ((int32_t *) src1->data)[0];
  5520. // TODO: handle transposed/permuted matrices
  5521. const int n = ggml_nrows(src0);
  5522. const int nc = src0->ne[0];
  5523. const int nr = src0->ne[1];
  5524. const int nz = n/nr;
  5525. assert( dst->nb[0] == sizeof(float));
  5526. assert(src0->nb[0] == sizeof(float));
  5527. for (int k = 0; k < nz; k++) {
  5528. for (int j = 0; j < nr; j++) {
  5529. for (int i = n_past; i < nc; i++) {
  5530. if (i > n_past + j) {
  5531. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5532. }
  5533. }
  5534. }
  5535. }
  5536. }
  5537. static void ggml_compute_forward_diag_mask_inf(
  5538. const struct ggml_compute_params * params,
  5539. const struct ggml_tensor * src0,
  5540. const struct ggml_tensor * src1,
  5541. struct ggml_tensor * dst) {
  5542. switch (src0->type) {
  5543. case GGML_TYPE_F32:
  5544. {
  5545. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5546. } break;
  5547. case GGML_TYPE_Q4_0:
  5548. case GGML_TYPE_Q4_1:
  5549. case GGML_TYPE_I8:
  5550. case GGML_TYPE_I16:
  5551. case GGML_TYPE_I32:
  5552. case GGML_TYPE_F16:
  5553. case GGML_TYPE_COUNT:
  5554. {
  5555. GGML_ASSERT(false);
  5556. } break;
  5557. }
  5558. }
  5559. // ggml_compute_forward_soft_max
  5560. static void ggml_compute_forward_soft_max_f32(
  5561. const struct ggml_compute_params * params,
  5562. const struct ggml_tensor * src0,
  5563. struct ggml_tensor * dst) {
  5564. GGML_ASSERT(ggml_is_contiguous(src0));
  5565. GGML_ASSERT(ggml_is_contiguous(dst));
  5566. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5568. return;
  5569. }
  5570. // TODO: handle transposed/permuted matrices
  5571. const int ith = params->ith;
  5572. const int nth = params->nth;
  5573. const int nc = src0->ne[0];
  5574. const int nr = ggml_nrows(src0);
  5575. // rows per thread
  5576. const int dr = (nr + nth - 1)/nth;
  5577. // row range for this thread
  5578. const int ir0 = dr*ith;
  5579. const int ir1 = MIN(ir0 + dr, nr);
  5580. for (int i1 = ir0; i1 < ir1; i1++) {
  5581. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5582. #ifndef NDEBUG
  5583. for (int i = 0; i < nc; ++i) {
  5584. //printf("p[%d] = %f\n", i, p[i]);
  5585. assert(!isnan(p[i]));
  5586. }
  5587. #endif
  5588. float max = -INFINITY;
  5589. ggml_vec_max_f32(nc, &max, p);
  5590. ggml_float sum = 0.0;
  5591. uint16_t scvt;
  5592. for (int i = 0; i < nc; i++) {
  5593. if (p[i] == -INFINITY) {
  5594. p[i] = 0.0f;
  5595. } else {
  5596. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5597. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5598. memcpy(&scvt, &s, sizeof(scvt));
  5599. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5600. sum += val;
  5601. p[i] = val;
  5602. }
  5603. }
  5604. assert(sum > 0.0f);
  5605. sum = 1.0/sum;
  5606. ggml_vec_scale_f32(nc, p, sum);
  5607. #ifndef NDEBUG
  5608. for (int i = 0; i < nc; ++i) {
  5609. assert(!isnan(p[i]));
  5610. assert(!isinf(p[i]));
  5611. }
  5612. #endif
  5613. }
  5614. }
  5615. static void ggml_compute_forward_soft_max(
  5616. const struct ggml_compute_params * params,
  5617. const struct ggml_tensor * src0,
  5618. struct ggml_tensor * dst) {
  5619. switch (src0->type) {
  5620. case GGML_TYPE_F32:
  5621. {
  5622. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5623. } break;
  5624. case GGML_TYPE_Q4_0:
  5625. case GGML_TYPE_Q4_1:
  5626. case GGML_TYPE_I8:
  5627. case GGML_TYPE_I16:
  5628. case GGML_TYPE_I32:
  5629. case GGML_TYPE_F16:
  5630. case GGML_TYPE_COUNT:
  5631. {
  5632. GGML_ASSERT(false);
  5633. } break;
  5634. }
  5635. }
  5636. // ggml_compute_forward_rope
  5637. static void ggml_compute_forward_rope_f32(
  5638. const struct ggml_compute_params * params,
  5639. const struct ggml_tensor * src0,
  5640. const struct ggml_tensor * src1,
  5641. struct ggml_tensor * dst) {
  5642. assert(params->ith == 0);
  5643. assert(src1->type == GGML_TYPE_I32);
  5644. assert(ggml_nelements(src1) == 3);
  5645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5646. return;
  5647. }
  5648. const int n_past = ((int32_t *) src1->data)[0];
  5649. const int n_dims = ((int32_t *) src1->data)[1];
  5650. const int mode = ((int32_t *) src1->data)[2];
  5651. //const int ne0 = src0->ne[0];
  5652. const int ne1 = src0->ne[1];
  5653. const int ne2 = src0->ne[2];
  5654. const int ne3 = src0->ne[3];
  5655. const int nb0 = src0->nb[0];
  5656. const int nb1 = src0->nb[1];
  5657. const int nb2 = src0->nb[2];
  5658. const int nb3 = src0->nb[3];
  5659. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5660. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5661. assert(nb0 == sizeof(float));
  5662. // TODO: optimize
  5663. for (int i3 = 0; i3 < ne3; i3++) {
  5664. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5665. const int p = (mode == 0 ? n_past + i2 : i2);
  5666. for (int i1 = 0; i1 < ne1; i1++) {
  5667. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5668. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5669. const double cos_theta = cos(p*theta);
  5670. const double sin_theta = sin(p*theta);
  5671. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5672. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5673. double x0 = src[0];
  5674. double x1 = src[1];
  5675. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5676. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5677. }
  5678. }
  5679. }
  5680. }
  5681. }
  5682. static void ggml_compute_forward_rope_f16(
  5683. const struct ggml_compute_params * params,
  5684. const struct ggml_tensor * src0,
  5685. const struct ggml_tensor * src1,
  5686. struct ggml_tensor * dst) {
  5687. assert(params->ith == 0);
  5688. assert(src1->type == GGML_TYPE_I32);
  5689. assert(ggml_nelements(src1) == 3);
  5690. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5691. return;
  5692. }
  5693. const int n_past = ((int32_t *) src1->data)[0];
  5694. const int n_dims = ((int32_t *) src1->data)[1];
  5695. const int mode = ((int32_t *) src1->data)[2];
  5696. //const int ne0 = src0->ne[0];
  5697. const int ne1 = src0->ne[1];
  5698. const int ne2 = src0->ne[2];
  5699. const int ne3 = src0->ne[3];
  5700. const int nb0 = src0->nb[0];
  5701. const int nb1 = src0->nb[1];
  5702. const int nb2 = src0->nb[2];
  5703. const int nb3 = src0->nb[3];
  5704. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5705. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5706. assert(nb0 == sizeof(ggml_fp16_t));
  5707. for (int i3 = 0; i3 < ne3; i3++) {
  5708. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5709. const int p = (mode == 0 ? n_past + i2 : i2);
  5710. for (int i1 = 0; i1 < ne1; i1++) {
  5711. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5712. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5713. const double cos_theta = cos(p*theta);
  5714. const double sin_theta = sin(p*theta);
  5715. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5716. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5717. double x0 = ggml_fp16_to_fp32(src[0]);
  5718. double x1 = ggml_fp16_to_fp32(src[1]);
  5719. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5720. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5721. }
  5722. }
  5723. }
  5724. }
  5725. }
  5726. static void ggml_compute_forward_rope(
  5727. const struct ggml_compute_params * params,
  5728. const struct ggml_tensor * src0,
  5729. const struct ggml_tensor * src1,
  5730. struct ggml_tensor * dst) {
  5731. switch (src0->type) {
  5732. case GGML_TYPE_F16:
  5733. {
  5734. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5735. } break;
  5736. case GGML_TYPE_F32:
  5737. {
  5738. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5739. } break;
  5740. case GGML_TYPE_Q4_0:
  5741. case GGML_TYPE_Q4_1:
  5742. case GGML_TYPE_I8:
  5743. case GGML_TYPE_I16:
  5744. case GGML_TYPE_I32:
  5745. case GGML_TYPE_COUNT:
  5746. {
  5747. GGML_ASSERT(false);
  5748. } break;
  5749. }
  5750. }
  5751. // ggml_compute_forward_conv_1d_1s
  5752. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5753. const struct ggml_compute_params * params,
  5754. const struct ggml_tensor * src0,
  5755. const struct ggml_tensor * src1,
  5756. struct ggml_tensor * dst) {
  5757. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5758. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5759. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5760. int64_t t0 = ggml_perf_time_us();
  5761. UNUSED(t0);
  5762. const int ne00 = src0->ne[0];
  5763. const int ne01 = src0->ne[1];
  5764. const int ne02 = src0->ne[2];
  5765. //const int ne03 = src0->ne[3];
  5766. const int ne10 = src1->ne[0];
  5767. const int ne11 = src1->ne[1];
  5768. //const int ne12 = src1->ne[2];
  5769. //const int ne13 = src1->ne[3];
  5770. //const int ne0 = dst->ne[0];
  5771. //const int ne1 = dst->ne[1];
  5772. //const int ne2 = dst->ne[2];
  5773. //const int ne3 = dst->ne[3];
  5774. //const int ne = ne0*ne1*ne2*ne3;
  5775. const int nb00 = src0->nb[0];
  5776. const int nb01 = src0->nb[1];
  5777. const int nb02 = src0->nb[2];
  5778. //const int nb03 = src0->nb[3];
  5779. const int nb10 = src1->nb[0];
  5780. const int nb11 = src1->nb[1];
  5781. //const int nb12 = src1->nb[2];
  5782. //const int nb13 = src1->nb[3];
  5783. //const int nb0 = dst->nb[0];
  5784. const int nb1 = dst->nb[1];
  5785. //const int nb2 = dst->nb[2];
  5786. //const int nb3 = dst->nb[3];
  5787. const int ith = params->ith;
  5788. const int nth = params->nth;
  5789. const int nk = ne00;
  5790. const int nh = nk/2;
  5791. const int ew0 = ggml_up32(ne01);
  5792. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5793. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5794. GGML_ASSERT(nb10 == sizeof(float));
  5795. if (params->type == GGML_TASK_INIT) {
  5796. // TODO: fix this memset (wsize is overestimated)
  5797. memset(params->wdata, 0, params->wsize);
  5798. // prepare kernel data (src0)
  5799. {
  5800. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5801. for (int i02 = 0; i02 < ne02; i02++) {
  5802. for (int i01 = 0; i01 < ne01; i01++) {
  5803. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5804. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5805. for (int i00 = 0; i00 < ne00; i00++) {
  5806. dst_data[i00*ew0 + i01] = src[i00];
  5807. }
  5808. }
  5809. }
  5810. }
  5811. // prepare source data (src1)
  5812. {
  5813. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5814. for (int i11 = 0; i11 < ne11; i11++) {
  5815. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5816. ggml_fp16_t * dst_data = wdata;
  5817. for (int i10 = 0; i10 < ne10; i10++) {
  5818. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5819. }
  5820. }
  5821. }
  5822. return;
  5823. }
  5824. if (params->type == GGML_TASK_FINALIZE) {
  5825. return;
  5826. }
  5827. // total rows in dst
  5828. const int nr = ne02;
  5829. // rows per thread
  5830. const int dr = (nr + nth - 1)/nth;
  5831. // row range for this thread
  5832. const int ir0 = dr*ith;
  5833. const int ir1 = MIN(ir0 + dr, nr);
  5834. for (int i1 = ir0; i1 < ir1; i1++) {
  5835. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5836. for (int i0 = 0; i0 < ne10; ++i0) {
  5837. dst_data[i0] = 0;
  5838. for (int k = -nh; k <= nh; k++) {
  5839. float v = 0.0f;
  5840. ggml_vec_dot_f16(ew0, &v,
  5841. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5842. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5843. dst_data[i0] += v;
  5844. }
  5845. }
  5846. }
  5847. }
  5848. static void ggml_compute_forward_conv_1d_1s_f32(
  5849. const struct ggml_compute_params * params,
  5850. const struct ggml_tensor * src0,
  5851. const struct ggml_tensor * src1,
  5852. struct ggml_tensor * dst) {
  5853. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5854. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5855. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5856. int64_t t0 = ggml_perf_time_us();
  5857. UNUSED(t0);
  5858. const int ne00 = src0->ne[0];
  5859. const int ne01 = src0->ne[1];
  5860. const int ne02 = src0->ne[2];
  5861. //const int ne03 = src0->ne[3];
  5862. const int ne10 = src1->ne[0];
  5863. const int ne11 = src1->ne[1];
  5864. //const int ne12 = src1->ne[2];
  5865. //const int ne13 = src1->ne[3];
  5866. //const int ne0 = dst->ne[0];
  5867. //const int ne1 = dst->ne[1];
  5868. //const int ne2 = dst->ne[2];
  5869. //const int ne3 = dst->ne[3];
  5870. //const int ne = ne0*ne1*ne2*ne3;
  5871. const int nb00 = src0->nb[0];
  5872. const int nb01 = src0->nb[1];
  5873. const int nb02 = src0->nb[2];
  5874. //const int nb03 = src0->nb[3];
  5875. const int nb10 = src1->nb[0];
  5876. const int nb11 = src1->nb[1];
  5877. //const int nb12 = src1->nb[2];
  5878. //const int nb13 = src1->nb[3];
  5879. //const int nb0 = dst->nb[0];
  5880. const int nb1 = dst->nb[1];
  5881. //const int nb2 = dst->nb[2];
  5882. //const int nb3 = dst->nb[3];
  5883. const int ith = params->ith;
  5884. const int nth = params->nth;
  5885. const int nk = ne00;
  5886. const int nh = nk/2;
  5887. const int ew0 = ggml_up32(ne01);
  5888. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5889. GGML_ASSERT(nb00 == sizeof(float));
  5890. GGML_ASSERT(nb10 == sizeof(float));
  5891. if (params->type == GGML_TASK_INIT) {
  5892. // TODO: fix this memset (wsize is overestimated)
  5893. memset(params->wdata, 0, params->wsize);
  5894. // prepare kernel data (src0)
  5895. {
  5896. float * const wdata = (float *) params->wdata + 0;
  5897. for (int i02 = 0; i02 < ne02; i02++) {
  5898. for (int i01 = 0; i01 < ne01; i01++) {
  5899. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5900. float * dst_data = wdata + i02*ew0*ne00;
  5901. for (int i00 = 0; i00 < ne00; i00++) {
  5902. dst_data[i00*ew0 + i01] = src[i00];
  5903. }
  5904. }
  5905. }
  5906. }
  5907. // prepare source data (src1)
  5908. {
  5909. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5910. for (int i11 = 0; i11 < ne11; i11++) {
  5911. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5912. float * dst_data = wdata;
  5913. for (int i10 = 0; i10 < ne10; i10++) {
  5914. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5915. }
  5916. }
  5917. }
  5918. return;
  5919. }
  5920. if (params->type == GGML_TASK_FINALIZE) {
  5921. return;
  5922. }
  5923. // total rows in dst
  5924. const int nr = ne02;
  5925. // rows per thread
  5926. const int dr = (nr + nth - 1)/nth;
  5927. // row range for this thread
  5928. const int ir0 = dr*ith;
  5929. const int ir1 = MIN(ir0 + dr, nr);
  5930. for (int i1 = ir0; i1 < ir1; i1++) {
  5931. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5932. for (int i0 = 0; i0 < ne10; ++i0) {
  5933. dst_data[i0] = 0;
  5934. for (int k = -nh; k <= nh; k++) {
  5935. float v = 0.0f;
  5936. ggml_vec_dot_f32(ew0, &v,
  5937. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5938. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5939. dst_data[i0] += v;
  5940. }
  5941. }
  5942. }
  5943. }
  5944. static void ggml_compute_forward_conv_1d_1s(
  5945. const struct ggml_compute_params * params,
  5946. const struct ggml_tensor * src0,
  5947. const struct ggml_tensor * src1,
  5948. struct ggml_tensor * dst) {
  5949. switch (src0->type) {
  5950. case GGML_TYPE_F16:
  5951. {
  5952. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5953. } break;
  5954. case GGML_TYPE_F32:
  5955. {
  5956. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5957. } break;
  5958. case GGML_TYPE_Q4_0:
  5959. case GGML_TYPE_Q4_1:
  5960. case GGML_TYPE_I8:
  5961. case GGML_TYPE_I16:
  5962. case GGML_TYPE_I32:
  5963. case GGML_TYPE_COUNT:
  5964. {
  5965. GGML_ASSERT(false);
  5966. } break;
  5967. }
  5968. }
  5969. // ggml_compute_forward_conv_1d_2s
  5970. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5971. const struct ggml_compute_params * params,
  5972. const struct ggml_tensor * src0,
  5973. const struct ggml_tensor * src1,
  5974. struct ggml_tensor * dst) {
  5975. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5976. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5977. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5978. int64_t t0 = ggml_perf_time_us();
  5979. UNUSED(t0);
  5980. const int ne00 = src0->ne[0];
  5981. const int ne01 = src0->ne[1];
  5982. const int ne02 = src0->ne[2];
  5983. //const int ne03 = src0->ne[3];
  5984. const int ne10 = src1->ne[0];
  5985. const int ne11 = src1->ne[1];
  5986. //const int ne12 = src1->ne[2];
  5987. //const int ne13 = src1->ne[3];
  5988. //const int ne0 = dst->ne[0];
  5989. //const int ne1 = dst->ne[1];
  5990. //const int ne2 = dst->ne[2];
  5991. //const int ne3 = dst->ne[3];
  5992. //const int ne = ne0*ne1*ne2*ne3;
  5993. const int nb00 = src0->nb[0];
  5994. const int nb01 = src0->nb[1];
  5995. const int nb02 = src0->nb[2];
  5996. //const int nb03 = src0->nb[3];
  5997. const int nb10 = src1->nb[0];
  5998. const int nb11 = src1->nb[1];
  5999. //const int nb12 = src1->nb[2];
  6000. //const int nb13 = src1->nb[3];
  6001. //const int nb0 = dst->nb[0];
  6002. const int nb1 = dst->nb[1];
  6003. //const int nb2 = dst->nb[2];
  6004. //const int nb3 = dst->nb[3];
  6005. const int ith = params->ith;
  6006. const int nth = params->nth;
  6007. const int nk = ne00;
  6008. const int nh = nk/2;
  6009. const int ew0 = ggml_up32(ne01);
  6010. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6011. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6012. GGML_ASSERT(nb10 == sizeof(float));
  6013. if (params->type == GGML_TASK_INIT) {
  6014. // TODO: fix this memset (wsize is overestimated)
  6015. memset(params->wdata, 0, params->wsize);
  6016. // prepare kernel data (src0)
  6017. {
  6018. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6019. for (int i02 = 0; i02 < ne02; i02++) {
  6020. for (int i01 = 0; i01 < ne01; i01++) {
  6021. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6022. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6023. for (int i00 = 0; i00 < ne00; i00++) {
  6024. dst_data[i00*ew0 + i01] = src[i00];
  6025. }
  6026. }
  6027. }
  6028. }
  6029. // prepare source data (src1)
  6030. {
  6031. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6032. for (int i11 = 0; i11 < ne11; i11++) {
  6033. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6034. ggml_fp16_t * dst_data = wdata;
  6035. for (int i10 = 0; i10 < ne10; i10++) {
  6036. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6037. }
  6038. }
  6039. }
  6040. return;
  6041. }
  6042. if (params->type == GGML_TASK_FINALIZE) {
  6043. return;
  6044. }
  6045. // total rows in dst
  6046. const int nr = ne02;
  6047. // rows per thread
  6048. const int dr = (nr + nth - 1)/nth;
  6049. // row range for this thread
  6050. const int ir0 = dr*ith;
  6051. const int ir1 = MIN(ir0 + dr, nr);
  6052. for (int i1 = ir0; i1 < ir1; i1++) {
  6053. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6054. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6055. dst_data[i0/2] = 0;
  6056. for (int k = -nh; k <= nh; k++) {
  6057. float v = 0.0f;
  6058. ggml_vec_dot_f16(ew0, &v,
  6059. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6060. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6061. dst_data[i0/2] += v;
  6062. }
  6063. }
  6064. }
  6065. }
  6066. static void ggml_compute_forward_conv_1d_2s_f32(
  6067. const struct ggml_compute_params * params,
  6068. const struct ggml_tensor * src0,
  6069. const struct ggml_tensor * src1,
  6070. struct ggml_tensor * dst) {
  6071. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6072. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6073. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6074. int64_t t0 = ggml_perf_time_us();
  6075. UNUSED(t0);
  6076. const int ne00 = src0->ne[0];
  6077. const int ne01 = src0->ne[1];
  6078. const int ne02 = src0->ne[2];
  6079. //const int ne03 = src0->ne[3];
  6080. const int ne10 = src1->ne[0];
  6081. const int ne11 = src1->ne[1];
  6082. //const int ne12 = src1->ne[2];
  6083. //const int ne13 = src1->ne[3];
  6084. //const int ne0 = dst->ne[0];
  6085. //const int ne1 = dst->ne[1];
  6086. //const int ne2 = dst->ne[2];
  6087. //const int ne3 = dst->ne[3];
  6088. //const int ne = ne0*ne1*ne2*ne3;
  6089. const int nb00 = src0->nb[0];
  6090. const int nb01 = src0->nb[1];
  6091. const int nb02 = src0->nb[2];
  6092. //const int nb03 = src0->nb[3];
  6093. const int nb10 = src1->nb[0];
  6094. const int nb11 = src1->nb[1];
  6095. //const int nb12 = src1->nb[2];
  6096. //const int nb13 = src1->nb[3];
  6097. //const int nb0 = dst->nb[0];
  6098. const int nb1 = dst->nb[1];
  6099. //const int nb2 = dst->nb[2];
  6100. //const int nb3 = dst->nb[3];
  6101. const int ith = params->ith;
  6102. const int nth = params->nth;
  6103. const int nk = ne00;
  6104. const int nh = nk/2;
  6105. const int ew0 = ggml_up32(ne01);
  6106. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6107. GGML_ASSERT(nb00 == sizeof(float));
  6108. GGML_ASSERT(nb10 == sizeof(float));
  6109. if (params->type == GGML_TASK_INIT) {
  6110. // TODO: fix this memset (wsize is overestimated)
  6111. memset(params->wdata, 0, params->wsize);
  6112. // prepare kernel data (src0)
  6113. {
  6114. float * const wdata = (float *) params->wdata + 0;
  6115. for (int i02 = 0; i02 < ne02; i02++) {
  6116. for (int i01 = 0; i01 < ne01; i01++) {
  6117. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6118. float * dst_data = wdata + i02*ew0*ne00;
  6119. for (int i00 = 0; i00 < ne00; i00++) {
  6120. dst_data[i00*ew0 + i01] = src[i00];
  6121. }
  6122. }
  6123. }
  6124. }
  6125. // prepare source data (src1)
  6126. {
  6127. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6128. for (int i11 = 0; i11 < ne11; i11++) {
  6129. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6130. float * dst_data = wdata;
  6131. for (int i10 = 0; i10 < ne10; i10++) {
  6132. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6133. }
  6134. }
  6135. }
  6136. return;
  6137. }
  6138. if (params->type == GGML_TASK_FINALIZE) {
  6139. return;
  6140. }
  6141. // total rows in dst
  6142. const int nr = ne02;
  6143. // rows per thread
  6144. const int dr = (nr + nth - 1)/nth;
  6145. // row range for this thread
  6146. const int ir0 = dr*ith;
  6147. const int ir1 = MIN(ir0 + dr, nr);
  6148. for (int i1 = ir0; i1 < ir1; i1++) {
  6149. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6150. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6151. dst_data[i0/2] = 0;
  6152. for (int k = -nh; k <= nh; k++) {
  6153. float v = 0.0f;
  6154. ggml_vec_dot_f32(ew0, &v,
  6155. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6156. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6157. dst_data[i0/2] += v;
  6158. }
  6159. }
  6160. }
  6161. }
  6162. static void ggml_compute_forward_conv_1d_2s(
  6163. const struct ggml_compute_params * params,
  6164. const struct ggml_tensor * src0,
  6165. const struct ggml_tensor * src1,
  6166. struct ggml_tensor * dst) {
  6167. switch (src0->type) {
  6168. case GGML_TYPE_F16:
  6169. {
  6170. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6171. } break;
  6172. case GGML_TYPE_F32:
  6173. {
  6174. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6175. } break;
  6176. case GGML_TYPE_Q4_0:
  6177. case GGML_TYPE_Q4_1:
  6178. case GGML_TYPE_I8:
  6179. case GGML_TYPE_I16:
  6180. case GGML_TYPE_I32:
  6181. case GGML_TYPE_COUNT:
  6182. {
  6183. GGML_ASSERT(false);
  6184. } break;
  6185. }
  6186. }
  6187. // ggml_compute_forward_flash_attn
  6188. static void ggml_compute_forward_flash_attn_f32(
  6189. const struct ggml_compute_params * params,
  6190. const struct ggml_tensor * q,
  6191. const struct ggml_tensor * k,
  6192. const struct ggml_tensor * v,
  6193. const bool masked,
  6194. struct ggml_tensor * dst) {
  6195. int64_t t0 = ggml_perf_time_us();
  6196. UNUSED(t0);
  6197. const int neq0 = q->ne[0];
  6198. const int neq1 = q->ne[1];
  6199. const int neq2 = q->ne[2];
  6200. const int neq3 = q->ne[3];
  6201. const int nek0 = k->ne[0];
  6202. const int nek1 = k->ne[1];
  6203. //const int nek2 = k->ne[2];
  6204. //const int nek3 = k->ne[3];
  6205. //const int nev0 = v->ne[0];
  6206. const int nev1 = v->ne[1];
  6207. //const int nev2 = v->ne[2];
  6208. //const int nev3 = v->ne[3];
  6209. const int ne0 = dst->ne[0];
  6210. const int ne1 = dst->ne[1];
  6211. //const int ne2 = dst->ne[2];
  6212. //const int ne3 = dst->ne[3];
  6213. const int nbk0 = k->nb[0];
  6214. const int nbk1 = k->nb[1];
  6215. const int nbk2 = k->nb[2];
  6216. const int nbk3 = k->nb[3];
  6217. const int nbq0 = q->nb[0];
  6218. const int nbq1 = q->nb[1];
  6219. const int nbq2 = q->nb[2];
  6220. const int nbq3 = q->nb[3];
  6221. const int nbv0 = v->nb[0];
  6222. const int nbv1 = v->nb[1];
  6223. const int nbv2 = v->nb[2];
  6224. const int nbv3 = v->nb[3];
  6225. const int nb0 = dst->nb[0];
  6226. const int nb1 = dst->nb[1];
  6227. const int nb2 = dst->nb[2];
  6228. const int nb3 = dst->nb[3];
  6229. const int ith = params->ith;
  6230. const int nth = params->nth;
  6231. const int D = neq0;
  6232. const int N = neq1;
  6233. const int P = nek1 - N;
  6234. const int M = P + N;
  6235. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6236. GGML_ASSERT(ne0 == D);
  6237. GGML_ASSERT(ne1 == N);
  6238. GGML_ASSERT(P >= 0);
  6239. GGML_ASSERT(nbq0 == sizeof(float));
  6240. GGML_ASSERT(nbk0 == sizeof(float));
  6241. GGML_ASSERT(nbv0 == sizeof(float));
  6242. GGML_ASSERT(neq0 == D);
  6243. GGML_ASSERT(nek0 == D);
  6244. GGML_ASSERT(nev1 == D);
  6245. GGML_ASSERT(neq1 == N);
  6246. GGML_ASSERT(nek1 == N + P);
  6247. GGML_ASSERT(nev1 == D);
  6248. // dst cannot be transposed or permuted
  6249. GGML_ASSERT(nb0 == sizeof(float));
  6250. GGML_ASSERT(nb0 <= nb1);
  6251. GGML_ASSERT(nb1 <= nb2);
  6252. GGML_ASSERT(nb2 <= nb3);
  6253. if (params->type == GGML_TASK_INIT) {
  6254. return;
  6255. }
  6256. if (params->type == GGML_TASK_FINALIZE) {
  6257. return;
  6258. }
  6259. // parallelize by q rows using ggml_vec_dot_f32
  6260. // total rows in q
  6261. const int nr = neq1*neq2*neq3;
  6262. // rows per thread
  6263. const int dr = (nr + nth - 1)/nth;
  6264. // row range for this thread
  6265. const int ir0 = dr*ith;
  6266. const int ir1 = MIN(ir0 + dr, nr);
  6267. const float scale = 1.0/sqrt((double) D);
  6268. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6269. for (int ir = ir0; ir < ir1; ++ir) {
  6270. // q indices
  6271. const int iq3 = ir/(neq2*neq1);
  6272. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6273. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6274. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6275. for (int i = M; i < Mup; ++i) {
  6276. S[i] = -INFINITY;
  6277. }
  6278. for (int ic = 0; ic < nek1; ++ic) {
  6279. // k indices
  6280. const int ik3 = iq3;
  6281. const int ik2 = iq2;
  6282. const int ik1 = ic;
  6283. // S indices
  6284. const int i1 = ik1;
  6285. ggml_vec_dot_f32(neq0,
  6286. S + i1,
  6287. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6288. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6289. }
  6290. // scale
  6291. ggml_vec_scale_f32(nek1, S, scale);
  6292. if (masked) {
  6293. for (int i = P; i < M; i++) {
  6294. if (i > P + iq1) {
  6295. S[i] = -INFINITY;
  6296. }
  6297. }
  6298. }
  6299. // softmax
  6300. {
  6301. float max = -INFINITY;
  6302. ggml_vec_max_f32(M, &max, S);
  6303. float sum = 0.0f;
  6304. {
  6305. #ifdef GGML_SOFT_MAX_ACCELERATE
  6306. max = -max;
  6307. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6308. vvexpf(S, S, &Mup);
  6309. ggml_vec_sum_f32(Mup, &sum, S);
  6310. #else
  6311. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6312. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6313. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6314. float * SS = S + i;
  6315. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6316. if (SS[j] == -INFINITY) {
  6317. SS[j] = 0.0f;
  6318. } else {
  6319. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6320. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6321. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6322. sump[j] += val;
  6323. SS[j] = val;
  6324. }
  6325. }
  6326. }
  6327. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6328. sum += sump[i];
  6329. }
  6330. #endif
  6331. }
  6332. assert(sum > 0.0f);
  6333. sum = 1.0/sum;
  6334. ggml_vec_scale_f32(M, S, sum);
  6335. #ifndef NDEBUG
  6336. for (int i = 0; i < M; ++i) {
  6337. assert(!isnan(S[i]));
  6338. assert(!isinf(S[i]));
  6339. }
  6340. #endif
  6341. }
  6342. for (int ic = 0; ic < nev1; ++ic) {
  6343. // dst indices
  6344. const int i1 = iq1;
  6345. const int i2 = iq2;
  6346. const int i3 = iq3;
  6347. ggml_vec_dot_f32(nek1,
  6348. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6349. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6350. S);
  6351. }
  6352. }
  6353. }
  6354. static void ggml_compute_forward_flash_attn_f16(
  6355. const struct ggml_compute_params * params,
  6356. const struct ggml_tensor * q,
  6357. const struct ggml_tensor * k,
  6358. const struct ggml_tensor * v,
  6359. const bool masked,
  6360. struct ggml_tensor * dst) {
  6361. int64_t t0 = ggml_perf_time_us();
  6362. UNUSED(t0);
  6363. const int neq0 = q->ne[0];
  6364. const int neq1 = q->ne[1];
  6365. const int neq2 = q->ne[2];
  6366. const int neq3 = q->ne[3];
  6367. const int nek0 = k->ne[0];
  6368. const int nek1 = k->ne[1];
  6369. //const int nek2 = k->ne[2];
  6370. //const int nek3 = k->ne[3];
  6371. //const int nev0 = v->ne[0];
  6372. const int nev1 = v->ne[1];
  6373. //const int nev2 = v->ne[2];
  6374. //const int nev3 = v->ne[3];
  6375. const int ne0 = dst->ne[0];
  6376. const int ne1 = dst->ne[1];
  6377. //const int ne2 = dst->ne[2];
  6378. //const int ne3 = dst->ne[3];
  6379. const int nbk0 = k->nb[0];
  6380. const int nbk1 = k->nb[1];
  6381. const int nbk2 = k->nb[2];
  6382. const int nbk3 = k->nb[3];
  6383. const int nbq0 = q->nb[0];
  6384. const int nbq1 = q->nb[1];
  6385. const int nbq2 = q->nb[2];
  6386. const int nbq3 = q->nb[3];
  6387. const int nbv0 = v->nb[0];
  6388. const int nbv1 = v->nb[1];
  6389. const int nbv2 = v->nb[2];
  6390. const int nbv3 = v->nb[3];
  6391. const int nb0 = dst->nb[0];
  6392. const int nb1 = dst->nb[1];
  6393. const int nb2 = dst->nb[2];
  6394. const int nb3 = dst->nb[3];
  6395. const int ith = params->ith;
  6396. const int nth = params->nth;
  6397. const int D = neq0;
  6398. const int N = neq1;
  6399. const int P = nek1 - N;
  6400. const int M = P + N;
  6401. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6402. GGML_ASSERT(ne0 == D);
  6403. GGML_ASSERT(ne1 == N);
  6404. GGML_ASSERT(P >= 0);
  6405. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6406. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6407. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6408. GGML_ASSERT(neq0 == D);
  6409. GGML_ASSERT(nek0 == D);
  6410. GGML_ASSERT(nev1 == D);
  6411. GGML_ASSERT(neq1 == N);
  6412. GGML_ASSERT(nek1 == N + P);
  6413. GGML_ASSERT(nev1 == D);
  6414. // dst cannot be transposed or permuted
  6415. GGML_ASSERT(nb0 == sizeof(float));
  6416. GGML_ASSERT(nb0 <= nb1);
  6417. GGML_ASSERT(nb1 <= nb2);
  6418. GGML_ASSERT(nb2 <= nb3);
  6419. if (params->type == GGML_TASK_INIT) {
  6420. return;
  6421. }
  6422. if (params->type == GGML_TASK_FINALIZE) {
  6423. return;
  6424. }
  6425. // parallelize by q rows using ggml_vec_dot_f32
  6426. // total rows in q
  6427. const int nr = neq1*neq2*neq3;
  6428. // rows per thread
  6429. const int dr = (nr + nth - 1)/nth;
  6430. // row range for this thread
  6431. const int ir0 = dr*ith;
  6432. const int ir1 = MIN(ir0 + dr, nr);
  6433. const float scale = 1.0/sqrt((double) D);
  6434. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6435. for (int ir = ir0; ir < ir1; ++ir) {
  6436. // q indices
  6437. const int iq3 = ir/(neq2*neq1);
  6438. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6439. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6440. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6441. for (int i = M; i < Mup; ++i) {
  6442. S[i] = -INFINITY;
  6443. }
  6444. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6445. for (int ic = 0; ic < nek1; ++ic) {
  6446. // k indices
  6447. const int ik3 = iq3;
  6448. const int ik2 = iq2;
  6449. const int ik1 = ic;
  6450. // S indices
  6451. const int i1 = ik1;
  6452. ggml_vec_dot_f16(neq0,
  6453. S + i1,
  6454. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6455. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6456. }
  6457. } else {
  6458. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6459. // k indices
  6460. const int ik3 = iq3;
  6461. const int ik2 = iq2;
  6462. const int ik1 = ic;
  6463. // S indices
  6464. const int i1 = ik1;
  6465. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6466. S + i1,
  6467. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6468. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6469. }
  6470. }
  6471. // scale
  6472. ggml_vec_scale_f32(nek1, S, scale);
  6473. if (masked) {
  6474. for (int i = P; i < M; i++) {
  6475. if (i > P + iq1) {
  6476. S[i] = -INFINITY;
  6477. }
  6478. }
  6479. }
  6480. // softmax
  6481. {
  6482. float max = -INFINITY;
  6483. ggml_vec_max_f32(M, &max, S);
  6484. float sum = 0.0f;
  6485. {
  6486. #ifdef GGML_SOFT_MAX_ACCELERATE
  6487. max = -max;
  6488. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6489. vvexpf(S, S, &Mup);
  6490. ggml_vec_sum_f32(Mup, &sum, S);
  6491. #else
  6492. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6493. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6494. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6495. float * SS = S + i;
  6496. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6497. if (SS[j] == -INFINITY) {
  6498. SS[j] = 0.0f;
  6499. } else {
  6500. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6501. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6502. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6503. sump[j] += val;
  6504. SS[j] = val;
  6505. }
  6506. }
  6507. }
  6508. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6509. sum += sump[i];
  6510. }
  6511. #endif
  6512. }
  6513. assert(sum > 0.0f);
  6514. sum = 1.0/sum;
  6515. ggml_vec_scale_f32(M, S, sum);
  6516. #ifndef NDEBUG
  6517. for (int i = 0; i < M; ++i) {
  6518. assert(!isnan(S[i]));
  6519. assert(!isinf(S[i]));
  6520. }
  6521. #endif
  6522. }
  6523. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6524. for (int i = 0; i < M; i++) {
  6525. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6526. }
  6527. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6528. for (int ic = 0; ic < nev1; ++ic) {
  6529. // dst indices
  6530. const int i1 = iq1;
  6531. const int i2 = iq2;
  6532. const int i3 = iq3;
  6533. ggml_vec_dot_f16(nek1,
  6534. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6535. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6536. S16);
  6537. }
  6538. } else {
  6539. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6540. // dst indices
  6541. const int i1 = iq1;
  6542. const int i2 = iq2;
  6543. const int i3 = iq3;
  6544. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6545. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6546. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6547. S16);
  6548. }
  6549. }
  6550. }
  6551. }
  6552. static void ggml_compute_forward_flash_attn(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * q,
  6555. const struct ggml_tensor * k,
  6556. const struct ggml_tensor * v,
  6557. const bool masked,
  6558. struct ggml_tensor * dst) {
  6559. switch (q->type) {
  6560. case GGML_TYPE_F16:
  6561. {
  6562. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6563. } break;
  6564. case GGML_TYPE_F32:
  6565. {
  6566. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6567. } break;
  6568. case GGML_TYPE_Q4_0:
  6569. case GGML_TYPE_Q4_1:
  6570. case GGML_TYPE_I8:
  6571. case GGML_TYPE_I16:
  6572. case GGML_TYPE_I32:
  6573. case GGML_TYPE_COUNT:
  6574. {
  6575. GGML_ASSERT(false);
  6576. } break;
  6577. }
  6578. }
  6579. // ggml_compute_forward_flash_ff
  6580. static void ggml_compute_forward_flash_ff_f16(
  6581. const struct ggml_compute_params * params,
  6582. const struct ggml_tensor * a, // F16
  6583. const struct ggml_tensor * b0, // F16 fc_w
  6584. const struct ggml_tensor * b1, // F32 fc_b
  6585. const struct ggml_tensor * c0, // F16 proj_w
  6586. const struct ggml_tensor * c1, // F32 proj_b
  6587. struct ggml_tensor * dst) {
  6588. int64_t t0 = ggml_perf_time_us();
  6589. UNUSED(t0);
  6590. const int nea0 = a->ne[0];
  6591. const int nea1 = a->ne[1];
  6592. const int nea2 = a->ne[2];
  6593. const int nea3 = a->ne[3];
  6594. const int neb00 = b0->ne[0];
  6595. const int neb01 = b0->ne[1];
  6596. //const int neb02 = b0->ne[2];
  6597. //const int neb03 = b0->ne[3];
  6598. const int neb10 = b1->ne[0];
  6599. const int neb11 = b1->ne[1];
  6600. //const int neb12 = b1->ne[2];
  6601. //const int neb13 = b1->ne[3];
  6602. const int nec00 = c0->ne[0];
  6603. const int nec01 = c0->ne[1];
  6604. //const int nec02 = c0->ne[2];
  6605. //const int nec03 = c0->ne[3];
  6606. const int nec10 = c1->ne[0];
  6607. const int nec11 = c1->ne[1];
  6608. //const int nec12 = c1->ne[2];
  6609. //const int nec13 = c1->ne[3];
  6610. const int ne0 = dst->ne[0];
  6611. const int ne1 = dst->ne[1];
  6612. const int ne2 = dst->ne[2];
  6613. //const int ne3 = dst->ne[3];
  6614. const int nba0 = a->nb[0];
  6615. const int nba1 = a->nb[1];
  6616. const int nba2 = a->nb[2];
  6617. const int nba3 = a->nb[3];
  6618. const int nbb00 = b0->nb[0];
  6619. const int nbb01 = b0->nb[1];
  6620. const int nbb02 = b0->nb[2];
  6621. const int nbb03 = b0->nb[3];
  6622. const int nbb10 = b1->nb[0];
  6623. //const int nbb11 = b1->nb[1];
  6624. //const int nbb12 = b1->nb[2];
  6625. //const int nbb13 = b1->nb[3];
  6626. const int nbc00 = c0->nb[0];
  6627. const int nbc01 = c0->nb[1];
  6628. const int nbc02 = c0->nb[2];
  6629. const int nbc03 = c0->nb[3];
  6630. const int nbc10 = c1->nb[0];
  6631. //const int nbc11 = c1->nb[1];
  6632. //const int nbc12 = c1->nb[2];
  6633. //const int nbc13 = c1->nb[3];
  6634. const int nb0 = dst->nb[0];
  6635. const int nb1 = dst->nb[1];
  6636. const int nb2 = dst->nb[2];
  6637. const int nb3 = dst->nb[3];
  6638. const int ith = params->ith;
  6639. const int nth = params->nth;
  6640. const int D = nea0;
  6641. //const int N = nea1;
  6642. const int M = neb01;
  6643. GGML_ASSERT(ne0 == nea0);
  6644. GGML_ASSERT(ne1 == nea1);
  6645. GGML_ASSERT(ne2 == nea2);
  6646. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6647. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6648. GGML_ASSERT(nbb10 == sizeof(float));
  6649. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6650. GGML_ASSERT(nbc10 == sizeof(float));
  6651. GGML_ASSERT(neb00 == D);
  6652. GGML_ASSERT(neb01 == M);
  6653. GGML_ASSERT(neb10 == M);
  6654. GGML_ASSERT(neb11 == 1);
  6655. GGML_ASSERT(nec00 == M);
  6656. GGML_ASSERT(nec01 == D);
  6657. GGML_ASSERT(nec10 == D);
  6658. GGML_ASSERT(nec11 == 1);
  6659. // dst cannot be transposed or permuted
  6660. GGML_ASSERT(nb0 == sizeof(float));
  6661. GGML_ASSERT(nb0 <= nb1);
  6662. GGML_ASSERT(nb1 <= nb2);
  6663. GGML_ASSERT(nb2 <= nb3);
  6664. if (params->type == GGML_TASK_INIT) {
  6665. return;
  6666. }
  6667. if (params->type == GGML_TASK_FINALIZE) {
  6668. return;
  6669. }
  6670. // parallelize by a rows using ggml_vec_dot_f32
  6671. // total rows in a
  6672. const int nr = nea1*nea2*nea3;
  6673. // rows per thread
  6674. const int dr = (nr + nth - 1)/nth;
  6675. // row range for this thread
  6676. const int ir0 = dr*ith;
  6677. const int ir1 = MIN(ir0 + dr, nr);
  6678. for (int ir = ir0; ir < ir1; ++ir) {
  6679. // a indices
  6680. const int ia3 = ir/(nea2*nea1);
  6681. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6682. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6683. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6684. for (int ic = 0; ic < neb01; ++ic) {
  6685. // b0 indices
  6686. const int ib03 = ia3;
  6687. const int ib02 = ia2;
  6688. const int ib01 = ic;
  6689. // S indices
  6690. const int i1 = ib01;
  6691. ggml_vec_dot_f16(nea0,
  6692. S + i1,
  6693. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6694. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6695. }
  6696. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6697. //ggml_vec_gelu_f32(neb01, S, S);
  6698. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6699. for (int i = 0; i < M; i++) {
  6700. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6701. }
  6702. ggml_vec_gelu_f16(neb01, S16, S16);
  6703. {
  6704. // dst indices
  6705. const int i1 = ia1;
  6706. const int i2 = ia2;
  6707. const int i3 = ia3;
  6708. for (int ic = 0; ic < nec01; ++ic) {
  6709. ggml_vec_dot_f16(neb01,
  6710. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6711. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6712. S16);
  6713. }
  6714. ggml_vec_add_f32(nec01,
  6715. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6716. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6717. (float *) c1->data);
  6718. }
  6719. }
  6720. }
  6721. static void ggml_compute_forward_flash_ff(
  6722. const struct ggml_compute_params * params,
  6723. const struct ggml_tensor * a,
  6724. const struct ggml_tensor * b0,
  6725. const struct ggml_tensor * b1,
  6726. const struct ggml_tensor * c0,
  6727. const struct ggml_tensor * c1,
  6728. struct ggml_tensor * dst) {
  6729. switch (b0->type) {
  6730. case GGML_TYPE_F16:
  6731. {
  6732. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6733. } break;
  6734. case GGML_TYPE_F32:
  6735. {
  6736. GGML_ASSERT(false); // TODO
  6737. } break;
  6738. case GGML_TYPE_Q4_0:
  6739. case GGML_TYPE_Q4_1:
  6740. case GGML_TYPE_I8:
  6741. case GGML_TYPE_I16:
  6742. case GGML_TYPE_I32:
  6743. case GGML_TYPE_COUNT:
  6744. {
  6745. GGML_ASSERT(false);
  6746. } break;
  6747. }
  6748. }
  6749. /////////////////////////////////
  6750. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6751. GGML_ASSERT(params);
  6752. switch (tensor->op) {
  6753. case GGML_OP_DUP:
  6754. {
  6755. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6756. } break;
  6757. case GGML_OP_ADD:
  6758. {
  6759. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6760. } break;
  6761. case GGML_OP_SUB:
  6762. {
  6763. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6764. } break;
  6765. case GGML_OP_MUL:
  6766. {
  6767. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6768. } break;
  6769. case GGML_OP_DIV:
  6770. {
  6771. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6772. } break;
  6773. case GGML_OP_SQR:
  6774. {
  6775. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6776. } break;
  6777. case GGML_OP_SQRT:
  6778. {
  6779. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6780. } break;
  6781. case GGML_OP_SUM:
  6782. {
  6783. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6784. } break;
  6785. case GGML_OP_MEAN:
  6786. {
  6787. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6788. } break;
  6789. case GGML_OP_REPEAT:
  6790. {
  6791. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6792. } break;
  6793. case GGML_OP_ABS:
  6794. {
  6795. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6796. } break;
  6797. case GGML_OP_SGN:
  6798. {
  6799. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6800. } break;
  6801. case GGML_OP_NEG:
  6802. {
  6803. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6804. } break;
  6805. case GGML_OP_STEP:
  6806. {
  6807. ggml_compute_forward_step(params, tensor->src0, tensor);
  6808. } break;
  6809. case GGML_OP_RELU:
  6810. {
  6811. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6812. } break;
  6813. case GGML_OP_GELU:
  6814. {
  6815. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6816. } break;
  6817. case GGML_OP_SILU:
  6818. {
  6819. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6820. } break;
  6821. case GGML_OP_NORM:
  6822. {
  6823. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6824. } break;
  6825. case GGML_OP_RMS_NORM:
  6826. {
  6827. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6828. } break;
  6829. case GGML_OP_MUL_MAT:
  6830. {
  6831. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6832. } break;
  6833. case GGML_OP_SCALE:
  6834. {
  6835. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6836. } break;
  6837. case GGML_OP_CPY:
  6838. {
  6839. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6840. } break;
  6841. case GGML_OP_RESHAPE:
  6842. {
  6843. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6844. } break;
  6845. case GGML_OP_VIEW:
  6846. {
  6847. ggml_compute_forward_view(params, tensor->src0);
  6848. } break;
  6849. case GGML_OP_PERMUTE:
  6850. {
  6851. ggml_compute_forward_permute(params, tensor->src0);
  6852. } break;
  6853. case GGML_OP_TRANSPOSE:
  6854. {
  6855. ggml_compute_forward_transpose(params, tensor->src0);
  6856. } break;
  6857. case GGML_OP_GET_ROWS:
  6858. {
  6859. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6860. } break;
  6861. case GGML_OP_DIAG_MASK_INF:
  6862. {
  6863. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6864. } break;
  6865. case GGML_OP_SOFT_MAX:
  6866. {
  6867. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6868. } break;
  6869. case GGML_OP_ROPE:
  6870. {
  6871. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6872. } break;
  6873. case GGML_OP_CONV_1D_1S:
  6874. {
  6875. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6876. } break;
  6877. case GGML_OP_CONV_1D_2S:
  6878. {
  6879. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6880. } break;
  6881. case GGML_OP_FLASH_ATTN:
  6882. {
  6883. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6884. GGML_ASSERT(t == 0 || t == 1);
  6885. bool masked = t != 0;
  6886. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6887. } break;
  6888. case GGML_OP_FLASH_FF:
  6889. {
  6890. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6891. } break;
  6892. case GGML_OP_NONE:
  6893. {
  6894. // nop
  6895. } break;
  6896. case GGML_OP_COUNT:
  6897. {
  6898. GGML_ASSERT(false);
  6899. } break;
  6900. }
  6901. }
  6902. ////////////////////////////////////////////////////////////////////////////////
  6903. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6904. struct ggml_tensor * src0 = tensor->src0;
  6905. struct ggml_tensor * src1 = tensor->src1;
  6906. switch (tensor->op) {
  6907. case GGML_OP_DUP:
  6908. {
  6909. if (src0->grad) {
  6910. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6911. }
  6912. } break;
  6913. case GGML_OP_ADD:
  6914. {
  6915. if (src0->grad) {
  6916. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6917. }
  6918. if (src1->grad) {
  6919. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6920. }
  6921. } break;
  6922. case GGML_OP_SUB:
  6923. {
  6924. if (src0->grad) {
  6925. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6926. }
  6927. if (src1->grad) {
  6928. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6929. }
  6930. } break;
  6931. case GGML_OP_MUL:
  6932. {
  6933. if (src0->grad) {
  6934. src0->grad =
  6935. ggml_add_impl(ctx,
  6936. src0->grad,
  6937. ggml_mul(ctx, src1, tensor->grad),
  6938. inplace);
  6939. }
  6940. if (src1->grad) {
  6941. src1->grad =
  6942. ggml_add_impl(ctx,
  6943. src1->grad,
  6944. ggml_mul(ctx, src0, tensor->grad),
  6945. inplace);
  6946. }
  6947. } break;
  6948. case GGML_OP_DIV:
  6949. {
  6950. if (src0->grad) {
  6951. src0->grad =
  6952. ggml_add_impl(ctx,
  6953. src0->grad,
  6954. ggml_div(ctx, tensor->grad, src1),
  6955. inplace);
  6956. }
  6957. if (src1->grad) {
  6958. src1->grad =
  6959. ggml_sub_impl(ctx,
  6960. src1->grad,
  6961. ggml_mul(ctx,
  6962. tensor->grad,
  6963. ggml_div(ctx, tensor, src1)),
  6964. inplace);
  6965. }
  6966. } break;
  6967. case GGML_OP_SQR:
  6968. {
  6969. if (src0->grad) {
  6970. src0->grad =
  6971. ggml_add_impl(ctx,
  6972. src0->grad,
  6973. ggml_mul(ctx,
  6974. ggml_mul(ctx, src0, tensor->grad),
  6975. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  6976. inplace);
  6977. }
  6978. } break;
  6979. case GGML_OP_SQRT:
  6980. {
  6981. if (src0->grad) {
  6982. src0->grad =
  6983. ggml_add_impl(ctx,
  6984. src0->grad,
  6985. ggml_div(ctx,
  6986. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  6987. tensor),
  6988. inplace);
  6989. }
  6990. } break;
  6991. case GGML_OP_SUM:
  6992. {
  6993. if (src0->grad) {
  6994. src0->grad =
  6995. ggml_add_impl(ctx,
  6996. src0->grad,
  6997. ggml_repeat(ctx, tensor->grad, src0->grad),
  6998. inplace);
  6999. }
  7000. } break;
  7001. case GGML_OP_MEAN:
  7002. {
  7003. GGML_ASSERT(false); // TODO: implement
  7004. } break;
  7005. case GGML_OP_REPEAT:
  7006. {
  7007. if (src0->grad) {
  7008. src0->grad =
  7009. ggml_add_impl(ctx,
  7010. src0->grad,
  7011. ggml_sum(ctx, tensor->grad),
  7012. inplace);
  7013. }
  7014. } break;
  7015. case GGML_OP_ABS:
  7016. {
  7017. if (src0->grad) {
  7018. src0->grad =
  7019. ggml_add_impl(ctx,
  7020. src0->grad,
  7021. ggml_mul(ctx,
  7022. ggml_sgn(ctx, src0),
  7023. tensor->grad),
  7024. inplace);
  7025. }
  7026. } break;
  7027. case GGML_OP_SGN:
  7028. {
  7029. if (src0->grad) {
  7030. // noop
  7031. }
  7032. } break;
  7033. case GGML_OP_NEG:
  7034. {
  7035. if (src0->grad) {
  7036. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7037. }
  7038. } break;
  7039. case GGML_OP_STEP:
  7040. {
  7041. if (src0->grad) {
  7042. // noop
  7043. }
  7044. } break;
  7045. case GGML_OP_RELU:
  7046. {
  7047. if (src0->grad) {
  7048. src0->grad = ggml_sub_impl(ctx,
  7049. src0->grad,
  7050. ggml_mul(ctx,
  7051. ggml_step(ctx, src0),
  7052. tensor->grad),
  7053. inplace);
  7054. }
  7055. } break;
  7056. case GGML_OP_GELU:
  7057. {
  7058. GGML_ASSERT(false); // TODO: not implemented
  7059. } break;
  7060. case GGML_OP_SILU:
  7061. {
  7062. GGML_ASSERT(false); // TODO: not implemented
  7063. } break;
  7064. case GGML_OP_NORM:
  7065. {
  7066. GGML_ASSERT(false); // TODO: not implemented
  7067. } break;
  7068. case GGML_OP_RMS_NORM:
  7069. {
  7070. GGML_ASSERT(false); // TODO: not implemented
  7071. } break;
  7072. case GGML_OP_MUL_MAT:
  7073. {
  7074. if (src0->grad) {
  7075. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7076. GGML_ASSERT(false);
  7077. }
  7078. if (src1->grad) {
  7079. src1->grad =
  7080. ggml_add_impl(ctx,
  7081. src1->grad,
  7082. // TODO: fix transpose, the node will break the graph connections
  7083. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7084. inplace);
  7085. }
  7086. } break;
  7087. case GGML_OP_SCALE:
  7088. {
  7089. GGML_ASSERT(false); // TODO: not implemented
  7090. } break;
  7091. case GGML_OP_CPY:
  7092. {
  7093. GGML_ASSERT(false); // TODO: not implemented
  7094. } break;
  7095. case GGML_OP_RESHAPE:
  7096. {
  7097. GGML_ASSERT(false); // TODO: not implemented
  7098. } break;
  7099. case GGML_OP_VIEW:
  7100. {
  7101. GGML_ASSERT(false); // not supported
  7102. } break;
  7103. case GGML_OP_PERMUTE:
  7104. {
  7105. GGML_ASSERT(false); // TODO: not implemented
  7106. } break;
  7107. case GGML_OP_TRANSPOSE:
  7108. {
  7109. GGML_ASSERT(false); // TODO: not implemented
  7110. } break;
  7111. case GGML_OP_GET_ROWS:
  7112. {
  7113. GGML_ASSERT(false); // TODO: not implemented
  7114. } break;
  7115. case GGML_OP_DIAG_MASK_INF:
  7116. {
  7117. GGML_ASSERT(false); // TODO: not implemented
  7118. } break;
  7119. case GGML_OP_SOFT_MAX:
  7120. {
  7121. GGML_ASSERT(false); // TODO: not implemented
  7122. } break;
  7123. case GGML_OP_ROPE:
  7124. {
  7125. GGML_ASSERT(false); // TODO: not implemented
  7126. } break;
  7127. case GGML_OP_CONV_1D_1S:
  7128. {
  7129. GGML_ASSERT(false); // TODO: not implemented
  7130. } break;
  7131. case GGML_OP_CONV_1D_2S:
  7132. {
  7133. GGML_ASSERT(false); // TODO: not implemented
  7134. } break;
  7135. case GGML_OP_FLASH_ATTN:
  7136. {
  7137. GGML_ASSERT(false); // not supported
  7138. } break;
  7139. case GGML_OP_FLASH_FF:
  7140. {
  7141. GGML_ASSERT(false); // not supported
  7142. } break;
  7143. case GGML_OP_NONE:
  7144. {
  7145. // nop
  7146. } break;
  7147. case GGML_OP_COUNT:
  7148. {
  7149. GGML_ASSERT(false);
  7150. } break;
  7151. }
  7152. }
  7153. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7154. if (node->grad == NULL) {
  7155. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7156. // it can also happen during forward pass, if the user performs computations with constants
  7157. if (node->op != GGML_OP_NONE) {
  7158. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7159. }
  7160. }
  7161. // check if already visited
  7162. for (int i = 0; i < cgraph->n_nodes; i++) {
  7163. if (cgraph->nodes[i] == node) {
  7164. return;
  7165. }
  7166. }
  7167. for (int i = 0; i < cgraph->n_leafs; i++) {
  7168. if (cgraph->leafs[i] == node) {
  7169. return;
  7170. }
  7171. }
  7172. if (node->src0) {
  7173. ggml_visit_parents(cgraph, node->src0);
  7174. }
  7175. if (node->src1) {
  7176. ggml_visit_parents(cgraph, node->src1);
  7177. }
  7178. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7179. if (node->opt[i]) {
  7180. ggml_visit_parents(cgraph, node->opt[i]);
  7181. }
  7182. }
  7183. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7184. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7185. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7186. cgraph->leafs[cgraph->n_leafs] = node;
  7187. cgraph->n_leafs++;
  7188. } else {
  7189. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7190. cgraph->nodes[cgraph->n_nodes] = node;
  7191. cgraph->grads[cgraph->n_nodes] = node->grad;
  7192. cgraph->n_nodes++;
  7193. }
  7194. }
  7195. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7196. if (!expand) {
  7197. cgraph->n_nodes = 0;
  7198. cgraph->n_leafs = 0;
  7199. }
  7200. const int n0 = cgraph->n_nodes;
  7201. UNUSED(n0);
  7202. ggml_visit_parents(cgraph, tensor);
  7203. const int n_new = cgraph->n_nodes - n0;
  7204. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7205. if (n_new > 0) {
  7206. // the last added node should always be starting point
  7207. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7208. }
  7209. }
  7210. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7211. ggml_build_forward_impl(cgraph, tensor, true);
  7212. }
  7213. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7214. struct ggml_cgraph result = {
  7215. /*.n_nodes =*/ 0,
  7216. /*.n_leafs =*/ 0,
  7217. /*.n_threads =*/ 0,
  7218. /*.work_size =*/ 0,
  7219. /*.work =*/ NULL,
  7220. /*.nodes =*/ { NULL },
  7221. /*.grads =*/ { NULL },
  7222. /*.leafs =*/ { NULL },
  7223. /*.perf_runs =*/ 0,
  7224. /*.perf_cycles =*/ 0,
  7225. /*.perf_time_us =*/ 0,
  7226. };
  7227. ggml_build_forward_impl(&result, tensor, false);
  7228. return result;
  7229. }
  7230. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7231. struct ggml_cgraph result = *gf;
  7232. GGML_ASSERT(gf->n_nodes > 0);
  7233. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7234. if (keep) {
  7235. for (int i = 0; i < gf->n_nodes; i++) {
  7236. struct ggml_tensor * node = gf->nodes[i];
  7237. if (node->grad) {
  7238. node->grad = ggml_dup_tensor(ctx, node);
  7239. gf->grads[i] = node->grad;
  7240. }
  7241. }
  7242. }
  7243. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7244. struct ggml_tensor * node = gf->nodes[i];
  7245. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7246. if (node->grad) {
  7247. ggml_compute_backward(ctx, node, keep);
  7248. }
  7249. }
  7250. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7251. struct ggml_tensor * node = gf->nodes[i];
  7252. if (node->is_param) {
  7253. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7254. ggml_build_forward_impl(&result, node->grad, true);
  7255. }
  7256. }
  7257. return result;
  7258. }
  7259. //
  7260. // thread data
  7261. //
  7262. // synchronization is done via busy loops
  7263. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7264. //
  7265. #ifdef __APPLE__
  7266. //#include <os/lock.h>
  7267. //
  7268. //typedef os_unfair_lock ggml_lock_t;
  7269. //
  7270. //#define ggml_lock_init(x) UNUSED(x)
  7271. //#define ggml_lock_destroy(x) UNUSED(x)
  7272. //#define ggml_lock_lock os_unfair_lock_lock
  7273. //#define ggml_lock_unlock os_unfair_lock_unlock
  7274. //
  7275. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7276. typedef int ggml_lock_t;
  7277. #define ggml_lock_init(x) UNUSED(x)
  7278. #define ggml_lock_destroy(x) UNUSED(x)
  7279. #define ggml_lock_lock(x) UNUSED(x)
  7280. #define ggml_lock_unlock(x) UNUSED(x)
  7281. #define GGML_LOCK_INITIALIZER 0
  7282. typedef pthread_t ggml_thread_t;
  7283. #define ggml_thread_create pthread_create
  7284. #define ggml_thread_join pthread_join
  7285. #else
  7286. //typedef pthread_spinlock_t ggml_lock_t;
  7287. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7288. //#define ggml_lock_destroy pthread_spin_destroy
  7289. //#define ggml_lock_lock pthread_spin_lock
  7290. //#define ggml_lock_unlock pthread_spin_unlock
  7291. typedef int ggml_lock_t;
  7292. #define ggml_lock_init(x) UNUSED(x)
  7293. #define ggml_lock_destroy(x) UNUSED(x)
  7294. #define ggml_lock_lock(x) UNUSED(x)
  7295. #define ggml_lock_unlock(x) UNUSED(x)
  7296. #define GGML_LOCK_INITIALIZER 0
  7297. typedef pthread_t ggml_thread_t;
  7298. #define ggml_thread_create pthread_create
  7299. #define ggml_thread_join pthread_join
  7300. #endif
  7301. struct ggml_compute_state_shared {
  7302. ggml_lock_t spin;
  7303. int n_threads;
  7304. // synchronization primitives
  7305. atomic_int n_ready;
  7306. atomic_bool has_work;
  7307. atomic_bool stop; // stop all threads
  7308. };
  7309. struct ggml_compute_state {
  7310. ggml_thread_t thrd;
  7311. struct ggml_compute_params params;
  7312. struct ggml_tensor * node;
  7313. struct ggml_compute_state_shared * shared;
  7314. };
  7315. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7316. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7317. const int n_threads = state->shared->n_threads;
  7318. while (true) {
  7319. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7320. atomic_store(&state->shared->has_work, false);
  7321. } else {
  7322. while (atomic_load(&state->shared->has_work)) {
  7323. if (atomic_load(&state->shared->stop)) {
  7324. return 0;
  7325. }
  7326. ggml_lock_lock (&state->shared->spin);
  7327. ggml_lock_unlock(&state->shared->spin);
  7328. }
  7329. }
  7330. atomic_fetch_sub(&state->shared->n_ready, 1);
  7331. // wait for work
  7332. while (!atomic_load(&state->shared->has_work)) {
  7333. if (atomic_load(&state->shared->stop)) {
  7334. return 0;
  7335. }
  7336. ggml_lock_lock (&state->shared->spin);
  7337. ggml_lock_unlock(&state->shared->spin);
  7338. }
  7339. // check if we should stop
  7340. if (atomic_load(&state->shared->stop)) {
  7341. break;
  7342. }
  7343. if (state->node) {
  7344. if (state->params.ith < state->params.nth) {
  7345. ggml_compute_forward(&state->params, state->node);
  7346. }
  7347. state->node = NULL;
  7348. } else {
  7349. break;
  7350. }
  7351. }
  7352. return 0;
  7353. }
  7354. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7355. const int n_threads = cgraph->n_threads;
  7356. struct ggml_compute_state_shared state_shared = {
  7357. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7358. /*.n_threads =*/ n_threads,
  7359. /*.n_ready =*/ 0,
  7360. /*.has_work =*/ false,
  7361. /*.stop =*/ false,
  7362. };
  7363. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7364. // create thread pool
  7365. if (n_threads > 1) {
  7366. ggml_lock_init(&state_shared.spin);
  7367. atomic_store(&state_shared.has_work, true);
  7368. for (int j = 0; j < n_threads - 1; j++) {
  7369. workers[j] = (struct ggml_compute_state) {
  7370. .thrd = 0,
  7371. .params = {
  7372. .type = GGML_TASK_COMPUTE,
  7373. .ith = j + 1,
  7374. .nth = n_threads,
  7375. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7376. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7377. },
  7378. .node = NULL,
  7379. .shared = &state_shared,
  7380. };
  7381. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7382. GGML_ASSERT(rc == 0);
  7383. UNUSED(rc);
  7384. }
  7385. }
  7386. // initialize tasks + work buffer
  7387. {
  7388. size_t work_size = 0;
  7389. // thread scheduling for the different operations
  7390. for (int i = 0; i < cgraph->n_nodes; i++) {
  7391. struct ggml_tensor * node = cgraph->nodes[i];
  7392. switch (node->op) {
  7393. case GGML_OP_DUP:
  7394. {
  7395. node->n_tasks = 1;
  7396. } break;
  7397. case GGML_OP_ADD:
  7398. {
  7399. node->n_tasks = n_threads;
  7400. } break;
  7401. case GGML_OP_SUB:
  7402. case GGML_OP_MUL:
  7403. case GGML_OP_DIV:
  7404. case GGML_OP_SQR:
  7405. case GGML_OP_SQRT:
  7406. case GGML_OP_SUM:
  7407. case GGML_OP_MEAN:
  7408. case GGML_OP_REPEAT:
  7409. case GGML_OP_ABS:
  7410. case GGML_OP_SGN:
  7411. case GGML_OP_NEG:
  7412. case GGML_OP_STEP:
  7413. case GGML_OP_RELU:
  7414. {
  7415. node->n_tasks = 1;
  7416. } break;
  7417. case GGML_OP_GELU:
  7418. {
  7419. node->n_tasks = n_threads;
  7420. } break;
  7421. case GGML_OP_SILU:
  7422. {
  7423. node->n_tasks = n_threads;
  7424. } break;
  7425. case GGML_OP_NORM:
  7426. case GGML_OP_RMS_NORM:
  7427. {
  7428. node->n_tasks = n_threads;
  7429. } break;
  7430. case GGML_OP_MUL_MAT:
  7431. {
  7432. node->n_tasks = n_threads;
  7433. // TODO: use different scheduling for different matrix sizes
  7434. //const int nr0 = ggml_nrows(node->src0);
  7435. //const int nr1 = ggml_nrows(node->src1);
  7436. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7437. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7438. size_t cur = 0;
  7439. if (node->src0->type == GGML_TYPE_F16 &&
  7440. node->src1->type == GGML_TYPE_F32) {
  7441. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7442. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7443. node->n_tasks = 1; // TODO: this actually is doing nothing
  7444. // the threads are still spinning
  7445. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7446. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7447. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7448. //printf("cur = %zu\n", cur);
  7449. } else {
  7450. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7451. }
  7452. #else
  7453. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7454. #endif
  7455. } else if (node->src0->type == GGML_TYPE_F32 &&
  7456. node->src1->type == GGML_TYPE_F32) {
  7457. cur = 0;
  7458. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7459. node->src1->type == GGML_TYPE_F32) {
  7460. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7461. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7462. node->n_tasks = 1;
  7463. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7464. } else {
  7465. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7466. }
  7467. #else
  7468. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7469. #endif
  7470. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7471. node->src1->type == GGML_TYPE_F32) {
  7472. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7473. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7474. node->n_tasks = 1;
  7475. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7476. } else {
  7477. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7478. }
  7479. #else
  7480. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7481. #endif
  7482. } else {
  7483. GGML_ASSERT(false);
  7484. }
  7485. work_size = MAX(work_size, cur);
  7486. } break;
  7487. case GGML_OP_SCALE:
  7488. {
  7489. node->n_tasks = n_threads;
  7490. } break;
  7491. case GGML_OP_CPY:
  7492. case GGML_OP_RESHAPE:
  7493. case GGML_OP_VIEW:
  7494. case GGML_OP_PERMUTE:
  7495. case GGML_OP_TRANSPOSE:
  7496. case GGML_OP_GET_ROWS:
  7497. case GGML_OP_DIAG_MASK_INF:
  7498. {
  7499. node->n_tasks = 1;
  7500. } break;
  7501. case GGML_OP_SOFT_MAX:
  7502. {
  7503. node->n_tasks = n_threads;
  7504. } break;
  7505. case GGML_OP_ROPE:
  7506. {
  7507. node->n_tasks = 1;
  7508. } break;
  7509. case GGML_OP_CONV_1D_1S:
  7510. case GGML_OP_CONV_1D_2S:
  7511. {
  7512. node->n_tasks = n_threads;
  7513. GGML_ASSERT(node->src0->ne[3] == 1);
  7514. GGML_ASSERT(node->src1->ne[2] == 1);
  7515. GGML_ASSERT(node->src1->ne[3] == 1);
  7516. size_t cur = 0;
  7517. const int nk = node->src0->ne[0];
  7518. if (node->src0->type == GGML_TYPE_F16 &&
  7519. node->src1->type == GGML_TYPE_F32) {
  7520. cur = sizeof(ggml_fp16_t)*(
  7521. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7522. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7523. );
  7524. } else if (node->src0->type == GGML_TYPE_F32 &&
  7525. node->src1->type == GGML_TYPE_F32) {
  7526. cur = sizeof(float)*(
  7527. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7528. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7529. );
  7530. } else {
  7531. GGML_ASSERT(false);
  7532. }
  7533. work_size = MAX(work_size, cur);
  7534. } break;
  7535. case GGML_OP_FLASH_ATTN:
  7536. {
  7537. node->n_tasks = n_threads;
  7538. size_t cur = 0;
  7539. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7540. if (node->src1->type == GGML_TYPE_F32) {
  7541. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7542. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7543. }
  7544. if (node->src1->type == GGML_TYPE_F16) {
  7545. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7546. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7547. }
  7548. work_size = MAX(work_size, cur);
  7549. } break;
  7550. case GGML_OP_FLASH_FF:
  7551. {
  7552. node->n_tasks = n_threads;
  7553. size_t cur = 0;
  7554. if (node->src1->type == GGML_TYPE_F32) {
  7555. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7556. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7557. }
  7558. if (node->src1->type == GGML_TYPE_F16) {
  7559. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7560. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7561. }
  7562. work_size = MAX(work_size, cur);
  7563. } break;
  7564. case GGML_OP_NONE:
  7565. {
  7566. node->n_tasks = 1;
  7567. } break;
  7568. case GGML_OP_COUNT:
  7569. {
  7570. GGML_ASSERT(false);
  7571. } break;
  7572. }
  7573. }
  7574. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7575. GGML_ASSERT(false); // TODO: better handling
  7576. }
  7577. if (work_size > 0 && cgraph->work == NULL) {
  7578. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7579. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7580. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7581. }
  7582. }
  7583. const int64_t perf_start_cycles = ggml_perf_cycles();
  7584. const int64_t perf_start_time_us = ggml_perf_time_us();
  7585. for (int i = 0; i < cgraph->n_nodes; i++) {
  7586. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7587. struct ggml_tensor * node = cgraph->nodes[i];
  7588. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7589. //if (node->grad == NULL && node->perf_runs > 0) {
  7590. // continue;
  7591. //}
  7592. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7593. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7594. // INIT
  7595. struct ggml_compute_params params = {
  7596. /*.type =*/ GGML_TASK_INIT,
  7597. /*.ith =*/ 0,
  7598. /*.nth =*/ node->n_tasks,
  7599. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7600. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7601. };
  7602. ggml_compute_forward(&params, node);
  7603. // COMPUTE
  7604. if (node->n_tasks > 1) {
  7605. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7606. atomic_store(&state_shared.has_work, false);
  7607. }
  7608. while (atomic_load(&state_shared.has_work)) {
  7609. ggml_lock_lock (&state_shared.spin);
  7610. ggml_lock_unlock(&state_shared.spin);
  7611. }
  7612. // launch thread pool
  7613. for (int j = 0; j < n_threads - 1; j++) {
  7614. workers[j].params = (struct ggml_compute_params) {
  7615. .type = GGML_TASK_COMPUTE,
  7616. .ith = j + 1,
  7617. .nth = node->n_tasks,
  7618. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7619. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7620. };
  7621. workers[j].node = node;
  7622. }
  7623. atomic_fetch_sub(&state_shared.n_ready, 1);
  7624. while (atomic_load(&state_shared.n_ready) > 0) {
  7625. ggml_lock_lock (&state_shared.spin);
  7626. ggml_lock_unlock(&state_shared.spin);
  7627. }
  7628. atomic_store(&state_shared.has_work, true);
  7629. }
  7630. params.type = GGML_TASK_COMPUTE;
  7631. ggml_compute_forward(&params, node);
  7632. // wait for thread pool
  7633. if (node->n_tasks > 1) {
  7634. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7635. atomic_store(&state_shared.has_work, false);
  7636. }
  7637. while (atomic_load(&state_shared.has_work)) {
  7638. ggml_lock_lock (&state_shared.spin);
  7639. ggml_lock_unlock(&state_shared.spin);
  7640. }
  7641. atomic_fetch_sub(&state_shared.n_ready, 1);
  7642. while (atomic_load(&state_shared.n_ready) != 0) {
  7643. ggml_lock_lock (&state_shared.spin);
  7644. ggml_lock_unlock(&state_shared.spin);
  7645. }
  7646. }
  7647. // FINALIZE
  7648. if (node->n_tasks > 1) {
  7649. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7650. atomic_store(&state_shared.has_work, false);
  7651. }
  7652. while (atomic_load(&state_shared.has_work)) {
  7653. ggml_lock_lock (&state_shared.spin);
  7654. ggml_lock_unlock(&state_shared.spin);
  7655. }
  7656. // launch thread pool
  7657. for (int j = 0; j < n_threads - 1; j++) {
  7658. workers[j].params = (struct ggml_compute_params) {
  7659. .type = GGML_TASK_FINALIZE,
  7660. .ith = j + 1,
  7661. .nth = node->n_tasks,
  7662. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7663. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7664. };
  7665. workers[j].node = node;
  7666. }
  7667. atomic_fetch_sub(&state_shared.n_ready, 1);
  7668. while (atomic_load(&state_shared.n_ready) > 0) {
  7669. ggml_lock_lock (&state_shared.spin);
  7670. ggml_lock_unlock(&state_shared.spin);
  7671. }
  7672. atomic_store(&state_shared.has_work, true);
  7673. }
  7674. params.type = GGML_TASK_FINALIZE;
  7675. ggml_compute_forward(&params, node);
  7676. // wait for thread pool
  7677. if (node->n_tasks > 1) {
  7678. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7679. atomic_store(&state_shared.has_work, false);
  7680. }
  7681. while (atomic_load(&state_shared.has_work)) {
  7682. ggml_lock_lock (&state_shared.spin);
  7683. ggml_lock_unlock(&state_shared.spin);
  7684. }
  7685. atomic_fetch_sub(&state_shared.n_ready, 1);
  7686. while (atomic_load(&state_shared.n_ready) != 0) {
  7687. ggml_lock_lock (&state_shared.spin);
  7688. ggml_lock_unlock(&state_shared.spin);
  7689. }
  7690. }
  7691. // performance stats (node)
  7692. {
  7693. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7694. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7695. node->perf_runs++;
  7696. node->perf_cycles += perf_cycles_cur;
  7697. node->perf_time_us += perf_time_us_cur;
  7698. }
  7699. }
  7700. // join thread pool
  7701. if (n_threads > 1) {
  7702. atomic_store(&state_shared.stop, true);
  7703. atomic_store(&state_shared.has_work, true);
  7704. for (int j = 0; j < n_threads - 1; j++) {
  7705. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7706. GGML_ASSERT(rc == 0);
  7707. UNUSED(rc);
  7708. }
  7709. ggml_lock_destroy(&state_shared.spin);
  7710. }
  7711. // performance stats (graph)
  7712. {
  7713. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7714. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7715. cgraph->perf_runs++;
  7716. cgraph->perf_cycles += perf_cycles_cur;
  7717. cgraph->perf_time_us += perf_time_us_cur;
  7718. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7719. __func__, cgraph->perf_runs,
  7720. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7721. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7722. (double) perf_time_us_cur / 1000.0,
  7723. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7724. }
  7725. }
  7726. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7727. for (int i = 0; i < cgraph->n_nodes; i++) {
  7728. struct ggml_tensor * grad = cgraph->grads[i];
  7729. if (grad) {
  7730. ggml_set_zero(grad);
  7731. }
  7732. }
  7733. }
  7734. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7735. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7736. GGML_PRINT("=== GRAPH ===\n");
  7737. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7738. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7739. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7740. for (int i = 0; i < cgraph->n_nodes; i++) {
  7741. struct ggml_tensor * node = cgraph->nodes[i];
  7742. perf_total_per_op_us[node->op] += node->perf_time_us;
  7743. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7744. i,
  7745. node->ne[0], node->ne[1], node->ne[2],
  7746. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7747. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7748. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7749. (double) node->perf_time_us / 1000.0,
  7750. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7751. }
  7752. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7753. for (int i = 0; i < cgraph->n_leafs; i++) {
  7754. struct ggml_tensor * node = cgraph->leafs[i];
  7755. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7756. i,
  7757. node->ne[0], node->ne[1],
  7758. GGML_OP_LABEL[node->op]);
  7759. }
  7760. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7761. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7762. }
  7763. GGML_PRINT("========================================\n");
  7764. }
  7765. // check if node is part of the graph
  7766. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7767. if (cgraph == NULL) {
  7768. return true;
  7769. }
  7770. for (int i = 0; i < cgraph->n_nodes; i++) {
  7771. if (cgraph->nodes[i] == node) {
  7772. return true;
  7773. }
  7774. }
  7775. return false;
  7776. }
  7777. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7778. for (int i = 0; i < cgraph->n_nodes; i++) {
  7779. struct ggml_tensor * parent = cgraph->nodes[i];
  7780. if (parent->grad == node) {
  7781. return parent;
  7782. }
  7783. }
  7784. return NULL;
  7785. }
  7786. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7787. char color[16];
  7788. FILE * fp = fopen(filename, "w");
  7789. GGML_ASSERT(fp);
  7790. fprintf(fp, "digraph G {\n");
  7791. fprintf(fp, " newrank = true;\n");
  7792. fprintf(fp, " rankdir = LR;\n");
  7793. for (int i = 0; i < gb->n_nodes; i++) {
  7794. struct ggml_tensor * node = gb->nodes[i];
  7795. if (ggml_graph_get_parent(gb, node) != NULL) {
  7796. continue;
  7797. }
  7798. if (node->is_param) {
  7799. snprintf(color, sizeof(color), "yellow");
  7800. } else if (node->grad) {
  7801. if (ggml_graph_find(gf, node)) {
  7802. snprintf(color, sizeof(color), "green");
  7803. } else {
  7804. snprintf(color, sizeof(color), "lightblue");
  7805. }
  7806. } else {
  7807. snprintf(color, sizeof(color), "white");
  7808. }
  7809. fprintf(fp, " \"%p\" [ \
  7810. style = filled; fillcolor = %s; shape = record; \
  7811. label=\"%d [%d, %d] | <x>%s",
  7812. (void *) node, color,
  7813. i, node->ne[0], node->ne[1],
  7814. GGML_OP_SYMBOL[node->op]);
  7815. if (node->grad) {
  7816. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7817. } else {
  7818. fprintf(fp, "\"; ]\n");
  7819. }
  7820. }
  7821. for (int i = 0; i < gb->n_leafs; i++) {
  7822. struct ggml_tensor * node = gb->leafs[i];
  7823. snprintf(color, sizeof(color), "pink");
  7824. if (ggml_nelements(node) == 1) {
  7825. fprintf(fp, " \"%p\" [ \
  7826. style = filled; fillcolor = %s; shape = record; \
  7827. label=\"<x>%.1e\"; ]\n",
  7828. (void *) node, color, ggml_get_f32_1d(node, 0));
  7829. } else {
  7830. fprintf(fp, " \"%p\" [ \
  7831. style = filled; fillcolor = %s; shape = record; \
  7832. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7833. (void *) node, color,
  7834. i, node->ne[0], node->ne[1]);
  7835. }
  7836. }
  7837. for (int i = 0; i < gb->n_nodes; i++) {
  7838. struct ggml_tensor * node = gb->nodes[i];
  7839. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7840. if (node->src0) {
  7841. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7842. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7843. parent0 ? (void *) parent0 : (void *) node->src0,
  7844. parent0 ? "g" : "x",
  7845. parent ? (void *) parent : (void *) node,
  7846. parent ? "g" : "x",
  7847. parent ? "empty" : "vee",
  7848. parent ? "dashed" : "solid");
  7849. }
  7850. if (node->src1) {
  7851. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7852. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7853. parent1 ? (void *) parent1 : (void *) node->src1,
  7854. parent1 ? "g" : "x",
  7855. parent ? (void *) parent : (void *) node,
  7856. parent ? "g" : "x",
  7857. parent ? "empty" : "vee",
  7858. parent ? "dashed" : "solid");
  7859. }
  7860. }
  7861. for (int i = 0; i < gb->n_leafs; i++) {
  7862. struct ggml_tensor * node = gb->leafs[i];
  7863. if (node->src0) {
  7864. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7865. (void *) node->src0, "x",
  7866. (void *) node, "x");
  7867. }
  7868. if (node->src1) {
  7869. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7870. (void *) node->src1, "x",
  7871. (void *) node, "x");
  7872. }
  7873. }
  7874. fprintf(fp, "}\n");
  7875. fclose(fp);
  7876. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7877. }
  7878. ////////////////////////////////////////////////////////////////////////////////
  7879. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7880. int i = 0;
  7881. for (int p = 0; p < np; ++p) {
  7882. const int ne = ggml_nelements(ps[p]) ;
  7883. // TODO: add function to set tensor from array
  7884. for (int j = 0; j < ne; ++j) {
  7885. ggml_set_f32_1d(ps[p], j, x[i++]);
  7886. }
  7887. }
  7888. }
  7889. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7890. int i = 0;
  7891. for (int p = 0; p < np; ++p) {
  7892. const int ne = ggml_nelements(ps[p]) ;
  7893. // TODO: add function to get all elements at once
  7894. for (int j = 0; j < ne; ++j) {
  7895. x[i++] = ggml_get_f32_1d(ps[p], j);
  7896. }
  7897. }
  7898. }
  7899. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7900. int i = 0;
  7901. for (int p = 0; p < np; ++p) {
  7902. const int ne = ggml_nelements(ps[p]) ;
  7903. // TODO: add function to get all elements at once
  7904. for (int j = 0; j < ne; ++j) {
  7905. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7906. }
  7907. }
  7908. }
  7909. //
  7910. // ADAM
  7911. //
  7912. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7913. //
  7914. static enum ggml_opt_result ggml_opt_adam(
  7915. struct ggml_context * ctx,
  7916. struct ggml_opt_params params,
  7917. struct ggml_tensor * f,
  7918. struct ggml_cgraph * gf,
  7919. struct ggml_cgraph * gb) {
  7920. GGML_ASSERT(ggml_is_scalar(f));
  7921. gf->n_threads = params.n_threads;
  7922. gb->n_threads = params.n_threads;
  7923. // these will store the parameters we want to optimize
  7924. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7925. int np = 0;
  7926. int nx = 0;
  7927. for (int i = 0; i < gf->n_nodes; ++i) {
  7928. if (gf->nodes[i]->is_param) {
  7929. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7930. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7931. ps[np++] = gf->nodes[i];
  7932. nx += ggml_nelements(gf->nodes[i]);
  7933. }
  7934. }
  7935. // constants
  7936. const float alpha = params.adam.alpha;
  7937. const float beta1 = params.adam.beta1;
  7938. const float beta2 = params.adam.beta2;
  7939. const float eps = params.adam.eps;
  7940. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7941. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7942. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7943. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7944. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7945. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7946. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7947. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7948. // initialize
  7949. ggml_vec_set_f32(nx, m, 0.0f);
  7950. ggml_vec_set_f32(nx, v, 0.0f);
  7951. // update view
  7952. ggml_opt_get_params(np, ps, x);
  7953. // compute the function value
  7954. ggml_graph_reset (gf);
  7955. ggml_set_f32 (f->grad, 1.0f);
  7956. ggml_graph_compute(ctx, gb);
  7957. float fx_prev = ggml_get_f32_1d(f, 0);
  7958. if (pf) {
  7959. pf[0] = fx_prev;
  7960. }
  7961. int n_no_improvement = 0;
  7962. float fx_best = fx_prev;
  7963. // run the optimizer
  7964. for (int t = 0; t < params.adam.n_iter; ++t) {
  7965. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7966. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7967. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7968. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7969. for (int i = 0; i < np; ++i) {
  7970. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7971. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7972. }
  7973. const int64_t t_start_wall = ggml_time_us();
  7974. const int64_t t_start_cpu = ggml_cycles();
  7975. UNUSED(t_start_wall);
  7976. UNUSED(t_start_cpu);
  7977. {
  7978. // update the gradient
  7979. ggml_opt_get_grad(np, ps, g1);
  7980. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  7981. ggml_vec_scale_f32(nx, m, beta1);
  7982. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  7983. // g2 = g1^2
  7984. ggml_vec_sqr_f32 (nx, g2, g1);
  7985. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  7986. ggml_vec_scale_f32(nx, v, beta2);
  7987. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  7988. // m^hat = m_t / (1 - beta1^t)
  7989. // v^hat = v_t / (1 - beta2^t)
  7990. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  7991. ggml_vec_cpy_f32 (nx, mh, m);
  7992. ggml_vec_cpy_f32 (nx, vh, v);
  7993. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  7994. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  7995. ggml_vec_sqrt_f32 (nx, vh, vh);
  7996. ggml_vec_acc1_f32 (nx, vh, eps);
  7997. ggml_vec_div_f32 (nx, mh, mh, vh);
  7998. ggml_vec_sub_f32 (nx, x, x, mh);
  7999. // update the parameters
  8000. ggml_opt_set_params(np, ps, x);
  8001. }
  8002. ggml_graph_reset (gf);
  8003. ggml_set_f32 (f->grad, 1.0f);
  8004. ggml_graph_compute(ctx, gb);
  8005. const float fx = ggml_get_f32_1d(f, 0);
  8006. // check convergence
  8007. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8008. GGML_PRINT_DEBUG("converged\n");
  8009. return GGML_OPT_OK;
  8010. }
  8011. // delta-based convergence test
  8012. if (pf != NULL) {
  8013. // need at least params.past iterations to start checking for convergence
  8014. if (params.past <= t) {
  8015. const float rate = (pf[t%params.past] - fx)/fx;
  8016. if (fabs(rate) < params.delta) {
  8017. return GGML_OPT_OK;
  8018. }
  8019. }
  8020. pf[t%params.past] = fx;
  8021. }
  8022. // check for improvement
  8023. if (params.max_no_improvement > 0) {
  8024. if (fx_best > fx) {
  8025. fx_best = fx;
  8026. n_no_improvement = 0;
  8027. } else {
  8028. ++n_no_improvement;
  8029. if (n_no_improvement >= params.max_no_improvement) {
  8030. return GGML_OPT_OK;
  8031. }
  8032. }
  8033. }
  8034. fx_prev = fx;
  8035. {
  8036. const int64_t t_end_cpu = ggml_cycles();
  8037. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8038. UNUSED(t_end_cpu);
  8039. const int64_t t_end_wall = ggml_time_us();
  8040. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8041. UNUSED(t_end_wall);
  8042. }
  8043. }
  8044. return GGML_OPT_DID_NOT_CONVERGE;
  8045. }
  8046. //
  8047. // L-BFGS
  8048. //
  8049. // the L-BFGS implementation below is based on the following implementation:
  8050. //
  8051. // https://github.com/chokkan/liblbfgs
  8052. //
  8053. struct ggml_lbfgs_iteration_data {
  8054. float alpha;
  8055. float ys;
  8056. float * s;
  8057. float * y;
  8058. };
  8059. static enum ggml_opt_result linesearch_backtracking(
  8060. struct ggml_context * ctx,
  8061. const struct ggml_opt_params * params,
  8062. int nx,
  8063. float * x,
  8064. float * fx,
  8065. float * g,
  8066. float * d,
  8067. float * step,
  8068. const float * xp,
  8069. struct ggml_tensor * f,
  8070. struct ggml_cgraph * gf,
  8071. struct ggml_cgraph * gb,
  8072. const int np,
  8073. struct ggml_tensor * ps[]) {
  8074. int count = 0;
  8075. float width = 0.0f;
  8076. float dg = 0.0f;
  8077. float finit = 0.0f;
  8078. float dginit = 0.0f;
  8079. float dgtest = 0.0f;
  8080. const float dec = 0.5f;
  8081. const float inc = 2.1f;
  8082. if (*step <= 0.) {
  8083. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8084. }
  8085. // compute the initial gradient in the search direction
  8086. ggml_vec_dot_f32(nx, &dginit, g, d);
  8087. // make sure that d points to a descent direction
  8088. if (0 < dginit) {
  8089. return GGML_LINESEARCH_FAIL;
  8090. }
  8091. // initialize local variables
  8092. finit = *fx;
  8093. dgtest = params->lbfgs.ftol*dginit;
  8094. while (true) {
  8095. ggml_vec_cpy_f32(nx, x, xp);
  8096. ggml_vec_mad_f32(nx, x, d, *step);
  8097. // evaluate the function and gradient values
  8098. {
  8099. ggml_opt_set_params(np, ps, x);
  8100. ggml_graph_reset (gf);
  8101. ggml_set_f32 (f->grad, 1.0f);
  8102. ggml_graph_compute(ctx, gb);
  8103. ggml_opt_get_grad(np, ps, g);
  8104. *fx = ggml_get_f32_1d(f, 0);
  8105. }
  8106. ++count;
  8107. if (*fx > finit + (*step)*dgtest) {
  8108. width = dec;
  8109. } else {
  8110. // Armijo condition is satisfied
  8111. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8112. return count;
  8113. }
  8114. ggml_vec_dot_f32(nx, &dg, g, d);
  8115. // check the Wolfe condition
  8116. if (dg < params->lbfgs.wolfe * dginit) {
  8117. width = inc;
  8118. } else {
  8119. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8120. // regular Wolfe conditions
  8121. return count;
  8122. }
  8123. if(dg > -params->lbfgs.wolfe*dginit) {
  8124. width = dec;
  8125. } else {
  8126. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8127. return count;
  8128. }
  8129. return count;
  8130. }
  8131. }
  8132. if (*step < params->lbfgs.min_step) {
  8133. return GGML_LINESEARCH_MINIMUM_STEP;
  8134. }
  8135. if (*step > params->lbfgs.max_step) {
  8136. return GGML_LINESEARCH_MAXIMUM_STEP;
  8137. }
  8138. if (params->lbfgs.max_linesearch <= count) {
  8139. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8140. }
  8141. (*step) *= width;
  8142. }
  8143. return GGML_LINESEARCH_FAIL;
  8144. }
  8145. static enum ggml_opt_result ggml_opt_lbfgs(
  8146. struct ggml_context * ctx,
  8147. struct ggml_opt_params params,
  8148. struct ggml_tensor * f,
  8149. struct ggml_cgraph * gf,
  8150. struct ggml_cgraph * gb) {
  8151. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8152. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8153. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8154. return GGML_OPT_INVALID_WOLFE;
  8155. }
  8156. }
  8157. gf->n_threads = params.n_threads;
  8158. gb->n_threads = params.n_threads;
  8159. const int m = params.lbfgs.m;
  8160. // these will store the parameters we want to optimize
  8161. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8162. int np = 0;
  8163. int nx = 0;
  8164. for (int i = 0; i < gf->n_nodes; ++i) {
  8165. if (gf->nodes[i]->is_param) {
  8166. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8167. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8168. ps[np++] = gf->nodes[i];
  8169. nx += ggml_nelements(gf->nodes[i]);
  8170. }
  8171. }
  8172. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8173. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8174. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8175. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8176. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8177. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8178. float fx = 0.0f; // cost function value
  8179. float xnorm = 0.0f; // ||x||
  8180. float gnorm = 0.0f; // ||g||
  8181. float step = 0.0f;
  8182. // initialize x from the graph nodes
  8183. ggml_opt_get_params(np, ps, x);
  8184. // the L-BFGS memory
  8185. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8186. for (int i = 0; i < m; ++i) {
  8187. lm[i].alpha = 0.0f;
  8188. lm[i].ys = 0.0f;
  8189. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8190. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8191. }
  8192. // evaluate the function value and its gradient
  8193. {
  8194. ggml_opt_set_params(np, ps, x);
  8195. ggml_graph_reset (gf);
  8196. ggml_set_f32 (f->grad, 1.0f);
  8197. ggml_graph_compute(ctx, gb);
  8198. ggml_opt_get_grad(np, ps, g);
  8199. fx = ggml_get_f32_1d(f, 0);
  8200. }
  8201. if (pf) {
  8202. pf[0] = fx;
  8203. }
  8204. float fx_best = fx;
  8205. // search direction = -gradient
  8206. ggml_vec_neg_f32(nx, d, g);
  8207. // ||x||, ||g||
  8208. ggml_vec_norm_f32(nx, &xnorm, x);
  8209. ggml_vec_norm_f32(nx, &gnorm, g);
  8210. if (xnorm < 1.0f) {
  8211. xnorm = 1.0f;
  8212. }
  8213. // already optimized
  8214. if (gnorm/xnorm <= params.lbfgs.eps) {
  8215. return GGML_OPT_OK;
  8216. }
  8217. // initial step
  8218. ggml_vec_norm_inv_f32(nx, &step, d);
  8219. int j = 0;
  8220. int k = 1;
  8221. int ls = 0;
  8222. int end = 0;
  8223. int bound = 0;
  8224. int n_no_improvement = 0;
  8225. float ys = 0.0f;
  8226. float yy = 0.0f;
  8227. float beta = 0.0f;
  8228. while (true) {
  8229. // store the current position and gradient vectors
  8230. ggml_vec_cpy_f32(nx, xp, x);
  8231. ggml_vec_cpy_f32(nx, gp, g);
  8232. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8233. if (ls < 0) {
  8234. // linesearch failed - go back to the previous point and return
  8235. ggml_vec_cpy_f32(nx, x, xp);
  8236. ggml_vec_cpy_f32(nx, g, gp);
  8237. return ls;
  8238. }
  8239. ggml_vec_norm_f32(nx, &xnorm, x);
  8240. ggml_vec_norm_f32(nx, &gnorm, g);
  8241. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8242. if (xnorm < 1.0) {
  8243. xnorm = 1.0;
  8244. }
  8245. if (gnorm/xnorm <= params.lbfgs.eps) {
  8246. // converged
  8247. return GGML_OPT_OK;
  8248. }
  8249. // delta-based convergence test
  8250. if (pf != NULL) {
  8251. // need at least params.past iterations to start checking for convergence
  8252. if (params.past <= k) {
  8253. const float rate = (pf[k%params.past] - fx)/fx;
  8254. if (fabs(rate) < params.delta) {
  8255. return GGML_OPT_OK;
  8256. }
  8257. }
  8258. pf[k%params.past] = fx;
  8259. }
  8260. // check for improvement
  8261. if (params.max_no_improvement > 0) {
  8262. if (fx < fx_best) {
  8263. fx_best = fx;
  8264. n_no_improvement = 0;
  8265. } else {
  8266. n_no_improvement++;
  8267. if (n_no_improvement >= params.max_no_improvement) {
  8268. return GGML_OPT_OK;
  8269. }
  8270. }
  8271. }
  8272. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8273. // reached the maximum number of iterations
  8274. return GGML_OPT_DID_NOT_CONVERGE;
  8275. }
  8276. // update vectors s and y:
  8277. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8278. // y_{k+1} = g_{k+1} - g_{k}.
  8279. //
  8280. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8281. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8282. // compute scalars ys and yy:
  8283. // ys = y^t \cdot s -> 1 / \rho.
  8284. // yy = y^t \cdot y.
  8285. //
  8286. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8287. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8288. lm[end].ys = ys;
  8289. // find new search direction
  8290. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8291. bound = (m <= k) ? m : k;
  8292. k++;
  8293. end = (end + 1)%m;
  8294. // initialize search direction with -g
  8295. ggml_vec_neg_f32(nx, d, g);
  8296. j = end;
  8297. for (int i = 0; i < bound; ++i) {
  8298. j = (j + m - 1) % m;
  8299. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8300. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8301. lm[j].alpha /= lm[j].ys;
  8302. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8303. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8304. }
  8305. ggml_vec_scale_f32(nx, d, ys/yy);
  8306. for (int i = 0; i < bound; ++i) {
  8307. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8308. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8309. beta /= lm[j].ys;
  8310. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8311. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8312. j = (j + 1)%m;
  8313. }
  8314. step = 1.0;
  8315. }
  8316. return GGML_OPT_DID_NOT_CONVERGE;
  8317. }
  8318. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8319. struct ggml_opt_params result;
  8320. switch (type) {
  8321. case GGML_OPT_ADAM:
  8322. {
  8323. result = (struct ggml_opt_params) {
  8324. .type = GGML_OPT_ADAM,
  8325. .n_threads = 1,
  8326. .past = 0,
  8327. .delta = 1e-5f,
  8328. .max_no_improvement = 100,
  8329. .print_forward_graph = true,
  8330. .print_backward_graph = true,
  8331. .adam = {
  8332. .n_iter = 10000,
  8333. .alpha = 0.001f,
  8334. .beta1 = 0.9f,
  8335. .beta2 = 0.999f,
  8336. .eps = 1e-8f,
  8337. .eps_f = 1e-5f,
  8338. .eps_g = 1e-3f,
  8339. },
  8340. };
  8341. } break;
  8342. case GGML_OPT_LBFGS:
  8343. {
  8344. result = (struct ggml_opt_params) {
  8345. .type = GGML_OPT_LBFGS,
  8346. .n_threads = 1,
  8347. .past = 0,
  8348. .delta = 1e-5f,
  8349. .max_no_improvement = 0,
  8350. .print_forward_graph = true,
  8351. .print_backward_graph = true,
  8352. .lbfgs = {
  8353. .m = 6,
  8354. .n_iter = 100,
  8355. .max_linesearch = 20,
  8356. .eps = 1e-5f,
  8357. .ftol = 1e-4f,
  8358. .wolfe = 0.9f,
  8359. .min_step = 1e-20f,
  8360. .max_step = 1e+20f,
  8361. .linesearch = GGML_LINESEARCH_DEFAULT,
  8362. },
  8363. };
  8364. } break;
  8365. }
  8366. return result;
  8367. }
  8368. enum ggml_opt_result ggml_opt(
  8369. struct ggml_context * ctx,
  8370. struct ggml_opt_params params,
  8371. struct ggml_tensor * f) {
  8372. bool free_ctx = false;
  8373. if (ctx == NULL) {
  8374. struct ggml_init_params params_ctx = {
  8375. .mem_size = 16*1024*1024,
  8376. .mem_buffer = NULL,
  8377. };
  8378. ctx = ggml_init(params_ctx);
  8379. if (ctx == NULL) {
  8380. return GGML_OPT_NO_CONTEXT;
  8381. }
  8382. free_ctx = true;
  8383. }
  8384. enum ggml_opt_result result = GGML_OPT_OK;
  8385. // build forward + backward compute graphs
  8386. struct ggml_cgraph gf = ggml_build_forward (f);
  8387. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8388. switch (params.type) {
  8389. case GGML_OPT_ADAM:
  8390. {
  8391. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8392. } break;
  8393. case GGML_OPT_LBFGS:
  8394. {
  8395. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8396. } break;
  8397. }
  8398. if (params.print_forward_graph) {
  8399. ggml_graph_print (&gf);
  8400. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8401. }
  8402. if (params.print_backward_graph) {
  8403. ggml_graph_print (&gb);
  8404. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8405. }
  8406. if (free_ctx) {
  8407. ggml_free(ctx);
  8408. }
  8409. return result;
  8410. }
  8411. ////////////////////////////////////////////////////////////////////////////////
  8412. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8413. const int nb = k / qk;
  8414. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8415. const size_t row_size = nb*bs;
  8416. assert(k % qk == 0);
  8417. char * pdst = (char *) dst;
  8418. for (int j = 0; j < n; j += k) {
  8419. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8420. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8421. quantize_row_q4_0_reference(src + j, pd, k);
  8422. for (int i = 0; i < nb; i++) {
  8423. for (int l = 0; l < qk; l += 2) {
  8424. const uint8_t vi0 = pb[l/2] & 0xF;
  8425. const uint8_t vi1 = pb[l/2] >> 4;
  8426. hist[vi0]++;
  8427. hist[vi1]++;
  8428. }
  8429. pb += bs;
  8430. }
  8431. }
  8432. return (n/k)*row_size;
  8433. }
  8434. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8435. const int nb = k / qk;
  8436. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8437. const size_t row_size = nb*bs;
  8438. assert(k % qk == 0);
  8439. char * pdst = (char *) dst;
  8440. for (int j = 0; j < n; j += k) {
  8441. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8442. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8443. quantize_row_q4_1(src + j, pd, k);
  8444. for (int i = 0; i < nb; i++) {
  8445. for (int l = 0; l < qk; l += 2) {
  8446. const uint8_t vi0 = pb[l/2] & 0xF;
  8447. const uint8_t vi1 = pb[l/2] >> 4;
  8448. hist[vi0]++;
  8449. hist[vi1]++;
  8450. }
  8451. pb += bs;
  8452. }
  8453. }
  8454. return (n/k)*row_size;
  8455. }
  8456. ////////////////////////////////////////////////////////////////////////////////
  8457. int ggml_cpu_has_avx(void) {
  8458. #if defined(__AVX__)
  8459. return 1;
  8460. #else
  8461. return 0;
  8462. #endif
  8463. }
  8464. int ggml_cpu_has_avx2(void) {
  8465. #if defined(__AVX2__)
  8466. return 1;
  8467. #else
  8468. return 0;
  8469. #endif
  8470. }
  8471. int ggml_cpu_has_avx512(void) {
  8472. #if defined(__AVX512F__)
  8473. return 1;
  8474. #else
  8475. return 0;
  8476. #endif
  8477. }
  8478. int ggml_cpu_has_fma(void) {
  8479. #if defined(__FMA__)
  8480. return 1;
  8481. #else
  8482. return 0;
  8483. #endif
  8484. }
  8485. int ggml_cpu_has_neon(void) {
  8486. #if defined(__ARM_NEON)
  8487. return 1;
  8488. #else
  8489. return 0;
  8490. #endif
  8491. }
  8492. int ggml_cpu_has_arm_fma(void) {
  8493. #if defined(__ARM_FEATURE_FMA)
  8494. return 1;
  8495. #else
  8496. return 0;
  8497. #endif
  8498. }
  8499. int ggml_cpu_has_f16c(void) {
  8500. #if defined(__F16C__)
  8501. return 1;
  8502. #else
  8503. return 0;
  8504. #endif
  8505. }
  8506. int ggml_cpu_has_fp16_va(void) {
  8507. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8508. return 1;
  8509. #else
  8510. return 0;
  8511. #endif
  8512. }
  8513. int ggml_cpu_has_wasm_simd(void) {
  8514. #if defined(__wasm_simd128__)
  8515. return 1;
  8516. #else
  8517. return 0;
  8518. #endif
  8519. }
  8520. int ggml_cpu_has_blas(void) {
  8521. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8522. return 1;
  8523. #else
  8524. return 0;
  8525. #endif
  8526. }
  8527. int ggml_cpu_has_sse3(void) {
  8528. #if defined(__SSE3__)
  8529. return 1;
  8530. #else
  8531. return 0;
  8532. #endif
  8533. }
  8534. int ggml_cpu_has_vsx(void) {
  8535. #if defined(__POWER9_VECTOR__)
  8536. return 1;
  8537. #else
  8538. return 0;
  8539. #endif
  8540. }
  8541. ////////////////////////////////////////////////////////////////////////////////