ggml.c 337 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. #define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size)
  101. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  102. #endif
  103. #define UNUSED(x) (void)(x)
  104. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  105. #define GGML_ASSERT(x) \
  106. do { \
  107. if (!(x)) { \
  108. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  109. abort(); \
  110. } \
  111. } while (0)
  112. #ifdef GGML_USE_ACCELERATE
  113. #include <Accelerate/Accelerate.h>
  114. #elif GGML_USE_OPENBLAS
  115. #include <cblas.h>
  116. #endif
  117. #undef MIN
  118. #undef MAX
  119. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  120. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  121. // floating point type used to accumulate sums
  122. typedef double ggml_float;
  123. // 16-bit float
  124. // on Arm, we use __fp16
  125. // on x86, we use uint16_t
  126. #ifdef __ARM_NEON
  127. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  128. //
  129. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  130. //
  131. #include <arm_neon.h>
  132. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  133. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  134. #define GGML_FP16_TO_FP32(x) ((float) (x))
  135. #define GGML_FP32_TO_FP16(x) (x)
  136. #else
  137. #ifdef __wasm_simd128__
  138. #include <wasm_simd128.h>
  139. #else
  140. #ifdef __POWER9_VECTOR__
  141. #include <altivec.h>
  142. #undef bool
  143. #define bool _Bool
  144. #else
  145. #include <immintrin.h>
  146. #endif
  147. #endif
  148. #ifdef __F16C__
  149. #ifdef _MSC_VER
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  152. #else
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  155. #endif
  156. #elif defined(__POWER9_VECTOR__)
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  159. /* the inline asm below is about 12% faster than the lookup method */
  160. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  161. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  162. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  163. register float f;
  164. register double d;
  165. __asm__(
  166. "mtfprd %0,%2\n"
  167. "xscvhpdp %0,%0\n"
  168. "frsp %1,%0\n" :
  169. /* temp */ "=d"(d),
  170. /* out */ "=f"(f):
  171. /* in */ "r"(h));
  172. return f;
  173. }
  174. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  175. register double d;
  176. register ggml_fp16_t r;
  177. __asm__( /* xscvdphp can work on double or single precision */
  178. "xscvdphp %0,%2\n"
  179. "mffprd %1,%0\n" :
  180. /* temp */ "=d"(d),
  181. /* out */ "=r"(r):
  182. /* in */ "f"(f));
  183. return r;
  184. }
  185. #else
  186. // FP16 <-> FP32
  187. // ref: https://github.com/Maratyszcza/FP16
  188. static inline float fp32_from_bits(uint32_t w) {
  189. union {
  190. uint32_t as_bits;
  191. float as_value;
  192. } fp32;
  193. fp32.as_bits = w;
  194. return fp32.as_value;
  195. }
  196. static inline uint32_t fp32_to_bits(float f) {
  197. union {
  198. float as_value;
  199. uint32_t as_bits;
  200. } fp32;
  201. fp32.as_value = f;
  202. return fp32.as_bits;
  203. }
  204. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  205. const uint32_t w = (uint32_t) h << 16;
  206. const uint32_t sign = w & UINT32_C(0x80000000);
  207. const uint32_t two_w = w + w;
  208. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  209. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  210. const float exp_scale = 0x1.0p-112f;
  211. #else
  212. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  213. #endif
  214. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  215. const uint32_t magic_mask = UINT32_C(126) << 23;
  216. const float magic_bias = 0.5f;
  217. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  218. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  219. const uint32_t result = sign |
  220. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  221. return fp32_from_bits(result);
  222. }
  223. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  224. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  225. const float scale_to_inf = 0x1.0p+112f;
  226. const float scale_to_zero = 0x1.0p-110f;
  227. #else
  228. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  229. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  230. #endif
  231. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  232. const uint32_t w = fp32_to_bits(f);
  233. const uint32_t shl1_w = w + w;
  234. const uint32_t sign = w & UINT32_C(0x80000000);
  235. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  236. if (bias < UINT32_C(0x71000000)) {
  237. bias = UINT32_C(0x71000000);
  238. }
  239. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  240. const uint32_t bits = fp32_to_bits(base);
  241. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  242. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  243. const uint32_t nonsign = exp_bits + mantissa_bits;
  244. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  245. }
  246. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  247. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  248. #endif // __F16C__
  249. #endif // __ARM_NEON
  250. //
  251. // global data
  252. //
  253. // precomputed gelu table for f16 (128 KB)
  254. static ggml_fp16_t table_gelu_f16[1 << 16];
  255. // precomputed silu table for f16 (128 KB)
  256. static ggml_fp16_t table_silu_f16[1 << 16];
  257. // precomputed exp table for f16 (128 KB)
  258. static ggml_fp16_t table_exp_f16[1 << 16];
  259. // precomputed f32 table for f16 (256 KB)
  260. static float table_f32_f16[1 << 16];
  261. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  262. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  263. // This is also true for POWER9.
  264. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  265. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  266. uint16_t s;
  267. memcpy(&s, &f, sizeof(uint16_t));
  268. return table_f32_f16[s];
  269. }
  270. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. #endif
  273. // note: do not use these inside ggml.c
  274. // these are meant to be used via the ggml.h API
  275. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  276. return (float) GGML_FP16_TO_FP32(x);
  277. }
  278. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  279. return GGML_FP32_TO_FP16(x);
  280. }
  281. //
  282. // timing
  283. //
  284. #if defined(_MSC_VER) || defined(__MINGW32__)
  285. static int64_t timer_freq;
  286. void ggml_time_init(void) {
  287. LARGE_INTEGER frequency;
  288. QueryPerformanceFrequency(&frequency);
  289. timer_freq = frequency.QuadPart;
  290. }
  291. int64_t ggml_time_ms(void) {
  292. LARGE_INTEGER t;
  293. QueryPerformanceCounter(&t);
  294. return (t.QuadPart * 1000) / timer_freq;
  295. }
  296. int64_t ggml_time_us(void) {
  297. LARGE_INTEGER t;
  298. QueryPerformanceCounter(&t);
  299. return (t.QuadPart * 1000000) / timer_freq;
  300. }
  301. #else
  302. void ggml_time_init(void) {}
  303. int64_t ggml_time_ms(void) {
  304. struct timespec ts;
  305. clock_gettime(CLOCK_MONOTONIC, &ts);
  306. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  307. }
  308. int64_t ggml_time_us(void) {
  309. struct timespec ts;
  310. clock_gettime(CLOCK_MONOTONIC, &ts);
  311. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  312. }
  313. #endif
  314. int64_t ggml_cycles(void) {
  315. return clock();
  316. }
  317. int64_t ggml_cycles_per_ms(void) {
  318. return CLOCKS_PER_SEC/1000;
  319. }
  320. #ifdef GGML_PERF
  321. #define ggml_perf_time_ms() ggml_time_ms()
  322. #define ggml_perf_time_us() ggml_time_us()
  323. #define ggml_perf_cycles() ggml_cycles()
  324. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  325. #else
  326. #define ggml_perf_time_ms() 0
  327. #define ggml_perf_time_us() 0
  328. #define ggml_perf_cycles() 0
  329. #define ggml_perf_cycles_per_ms() 0
  330. #endif
  331. //
  332. // cache line
  333. //
  334. #if defined(__cpp_lib_hardware_interference_size)
  335. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  336. #else
  337. #if defined(__POWER9_VECTOR__)
  338. #define CACHE_LINE_SIZE 128
  339. #else
  340. #define CACHE_LINE_SIZE 64
  341. #endif
  342. #endif
  343. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  344. //
  345. // quantization
  346. //
  347. #define QK 32
  348. // AVX routines provided by GH user Const-me
  349. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  350. #if __AVX2__ || __AVX512F__
  351. // Unpack 32 4-bit fields into 32 bytes
  352. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  353. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  354. {
  355. // Load 16 bytes from memory
  356. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  357. // Expand bytes into uint16_t values
  358. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  359. // Unpack values into individual bytes
  360. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  361. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  362. __m256i low = _mm256_and_si256( lowMask, bytes );
  363. high = _mm256_slli_epi16( high, 4 );
  364. bytes = _mm256_or_si256( low, high );
  365. return bytes;
  366. }
  367. static inline __m128i packNibbles( __m256i bytes )
  368. {
  369. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  370. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  371. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  372. __m256i low = _mm256_and_si256( lowByte, bytes );
  373. high = _mm256_srli_epi16( high, 4 );
  374. bytes = _mm256_or_si256( low, high );
  375. // Compress uint16_t lanes into bytes
  376. __m128i r0 = _mm256_castsi256_si128( bytes );
  377. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  378. return _mm_packus_epi16( r0, r1 );
  379. }
  380. #elif __AVX__
  381. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  382. {
  383. // Load 8 bytes from memory
  384. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  385. // Expand bytes into uint16_t values
  386. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  387. // Unpack values into individual bytes
  388. const __m128i lowMask = _mm_set1_epi8( 0xF );
  389. __m128i high = _mm_andnot_si128( lowMask, bytes );
  390. __m128i low = _mm_and_si128( lowMask, bytes );
  391. high = _mm_slli_epi16( high, 4 );
  392. bytes = _mm_or_si128( low, high );
  393. return bytes;
  394. }
  395. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  396. {
  397. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  398. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  399. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  400. __m128i low = _mm_and_si128( lowByte, bytes1 );
  401. high = _mm_srli_epi16( high, 4 );
  402. bytes1 = _mm_or_si128( low, high );
  403. high = _mm_andnot_si128( lowByte, bytes2 );
  404. low = _mm_and_si128( lowByte, bytes2 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes2 = _mm_or_si128( low, high );
  407. return _mm_packus_epi16( bytes1, bytes2);
  408. }
  409. #endif
  410. #if __ARM_NEON
  411. #if !defined(__aarch64__)
  412. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  413. return
  414. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  415. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  416. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  417. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  418. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  419. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  420. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  421. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  422. }
  423. inline static int32_t vaddvq_s16(int16x8_t v) {
  424. return
  425. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  426. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  427. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  428. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  429. }
  430. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  431. return
  432. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  433. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  434. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  435. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  436. }
  437. inline static int32_t vaddvq_s32(int32x4_t v) {
  438. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  439. }
  440. inline static float vaddvq_f32(float32x4_t v) {
  441. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  442. }
  443. inline float vminvq_f32(float32x4_t v) {
  444. return
  445. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  446. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  447. }
  448. inline float vmaxvq_f32(float32x4_t v) {
  449. return
  450. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  451. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  452. }
  453. inline int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  454. return vget_low_s8(vcombine_s8(a, b));
  455. }
  456. inline int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  457. return vget_high_s8(vcombine_s8(a, b));
  458. }
  459. inline uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  460. return vget_low_u8(vcombine_u8(a, b));
  461. }
  462. inline uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  463. return vget_high_u8(vcombine_u8(a, b));
  464. }
  465. #endif
  466. #endif
  467. // method 5
  468. // blocks of QK elements
  469. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  470. typedef struct {
  471. float d; // delta
  472. uint8_t qs[QK / 2]; // nibbles / quants
  473. } block_q4_0;
  474. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  475. // method 4
  476. // blocks of QK elements
  477. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  478. typedef struct {
  479. float d;
  480. float m;
  481. uint8_t qs[QK / 2]; // nibbles / quants
  482. } block_q4_1;
  483. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  484. // reference implementation for deterministic creation of model files
  485. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  486. assert(k % QK == 0);
  487. const int nb = k / QK;
  488. uint8_t pp[QK/2];
  489. for (int i = 0; i < nb; i++) {
  490. float amax = 0.0f; // absolute max
  491. for (int l = 0; l < QK; l++) {
  492. const float v = x[i*QK + l];
  493. amax = MAX(amax, fabsf(v));
  494. }
  495. const float d = amax / ((1 << 3) - 1);
  496. const float id = d ? 1.0f/d : 0.0f;
  497. y[i].d = d;
  498. for (int l = 0; l < QK; l += 2) {
  499. const float v0 = x[i*QK + l + 0]*id;
  500. const float v1 = x[i*QK + l + 1]*id;
  501. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  502. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  503. assert(vi0 < 16);
  504. assert(vi1 < 16);
  505. pp[l/2] = vi0 | (vi1 << 4);
  506. }
  507. memcpy(y[i].qs, pp, sizeof(pp));
  508. }
  509. }
  510. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  511. assert(k % QK == 0);
  512. const int nb = k / QK;
  513. block_q4_0 * restrict y = vy;
  514. #if defined(__POWER9_VECTOR__)
  515. const vector float v85 = vec_splats(8.5f);
  516. for (int i = 0; i < nb; i++) {
  517. float amax = 0.0f; // absolute max
  518. vector float srcv [8];
  519. vector float asrcv[8];
  520. vector float amaxv[8];
  521. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  522. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  523. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  524. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  525. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  526. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  527. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  528. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  529. amax = MAX(
  530. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  531. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  532. const float d = amax / ((1 << 3) - 1);
  533. const float id = d ? 1.0/d : 0.0;
  534. y[i].d = d;
  535. const vector float vid = vec_splats(id);
  536. uint8_t * restrict pb = y[i].qs;
  537. for (int l = 0; l < 8; l++) {
  538. const vector float vf = vec_madd(srcv[l], vid, v85);
  539. const vector signed int vi = vec_signed(vf);
  540. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  541. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  542. }
  543. }
  544. #elif __ARM_NEON
  545. for (int i = 0; i < nb; i++) {
  546. float32x4_t srcv [8];
  547. float32x4_t asrcv[8];
  548. float32x4_t amaxv[8];
  549. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  550. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  551. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  552. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  553. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  554. const float amax = vmaxvq_f32(amaxv[0]);
  555. const float d = amax / ((1 << 3) - 1);
  556. const float id = d ? 1.0f/d : 0.0f;
  557. y[i].d = d;
  558. for (int l = 0; l < 8; l++) {
  559. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  560. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  561. const int32x4_t vi = vcvtq_s32_f32(vf);
  562. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  563. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  564. }
  565. }
  566. #elif defined(__AVX2__)
  567. for (int i = 0; i < nb; i++) {
  568. // Load elements into 4 AVX vectors
  569. __m256 v0 = _mm256_loadu_ps( x );
  570. __m256 v1 = _mm256_loadu_ps( x + 8 );
  571. __m256 v2 = _mm256_loadu_ps( x + 16 );
  572. __m256 v3 = _mm256_loadu_ps( x + 24 );
  573. x += 32;
  574. // Compute max(abs(e)) for the block
  575. const __m256 signBit = _mm256_set1_ps( -0.0f );
  576. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  577. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  578. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  579. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  580. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  581. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  582. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  583. const float maxScalar = _mm_cvtss_f32( max4 );
  584. // Quantize these floats
  585. const float d = maxScalar / 7.0f;
  586. y[i].d = d;
  587. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  588. const __m256 mul = _mm256_set1_ps( id );
  589. // Apply the multiplier
  590. v0 = _mm256_mul_ps( v0, mul );
  591. v1 = _mm256_mul_ps( v1, mul );
  592. v2 = _mm256_mul_ps( v2, mul );
  593. v3 = _mm256_mul_ps( v3, mul );
  594. // Round to nearest integer
  595. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  596. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  597. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  598. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  599. // Convert floats to integers
  600. __m256i i0 = _mm256_cvtps_epi32( v0 );
  601. __m256i i1 = _mm256_cvtps_epi32( v1 );
  602. __m256i i2 = _mm256_cvtps_epi32( v2 );
  603. __m256i i3 = _mm256_cvtps_epi32( v3 );
  604. // Convert int32 to int16
  605. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  606. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  607. // Convert int16 to int8
  608. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  609. // We got our precious signed bytes, but the order is now wrong
  610. // These AVX2 pack instructions process 16-byte pieces independently
  611. // The following instruction is fixing the order
  612. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  613. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  614. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  615. const __m256i off = _mm256_set1_epi8( 8 );
  616. i0 = _mm256_add_epi8( i0, off );
  617. // Compress the vector into 4 bit/value, and store
  618. __m128i res = packNibbles( i0 );
  619. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  620. }
  621. #elif defined(__AVX__)
  622. for (int i = 0; i < nb; i++) {
  623. // Load elements into 4 AVX vectors
  624. __m256 v0 = _mm256_loadu_ps( x );
  625. __m256 v1 = _mm256_loadu_ps( x + 8 );
  626. __m256 v2 = _mm256_loadu_ps( x + 16 );
  627. __m256 v3 = _mm256_loadu_ps( x + 24 );
  628. x += 32;
  629. // Compute max(abs(e)) for the block
  630. const __m256 signBit = _mm256_set1_ps( -0.0f );
  631. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  632. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  633. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  634. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  635. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  636. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  637. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  638. const float maxScalar = _mm_cvtss_f32( max4 );
  639. // Quantize these floats
  640. const float d = maxScalar / 7.0f;
  641. y[i].d = d;
  642. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  643. const __m256 mul = _mm256_set1_ps( id );
  644. // Apply the multiplier
  645. v0 = _mm256_mul_ps( v0, mul );
  646. v1 = _mm256_mul_ps( v1, mul );
  647. v2 = _mm256_mul_ps( v2, mul );
  648. v3 = _mm256_mul_ps( v3, mul );
  649. // Round to nearest integer
  650. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  651. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  652. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  653. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  654. // Convert floats to integers
  655. __m256i i0 = _mm256_cvtps_epi32( v0 );
  656. __m256i i1 = _mm256_cvtps_epi32( v1 );
  657. __m256i i2 = _mm256_cvtps_epi32( v2 );
  658. __m256i i3 = _mm256_cvtps_epi32( v3 );
  659. // Since we don't have in AVX some necessary functions,
  660. // we split the registers in half and call AVX2 analogs from SSE
  661. __m128i ni0 = _mm256_castsi256_si128( i0 );
  662. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  663. __m128i ni2 = _mm256_castsi256_si128( i1 );
  664. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  665. __m128i ni4 = _mm256_castsi256_si128( i2 );
  666. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  667. __m128i ni6 = _mm256_castsi256_si128( i3 );
  668. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  669. // Convert int32 to int16
  670. ni0 = _mm_packs_epi32( ni0, ni1 );
  671. ni2 = _mm_packs_epi32( ni2, ni3 );
  672. ni4 = _mm_packs_epi32( ni4, ni5 );
  673. ni6 = _mm_packs_epi32( ni6, ni7 );
  674. // Convert int16 to int8
  675. ni0 = _mm_packs_epi16( ni0, ni2 );
  676. ni4 = _mm_packs_epi16( ni4, ni6 );
  677. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  678. const __m128i off = _mm_set1_epi8( 8);
  679. ni0 = _mm_add_epi8( ni0, off );
  680. ni4 = _mm_add_epi8( ni4, off );
  681. // Compress the vector into 4 bit/value, and store
  682. __m128i res = packNibbles( ni0, ni4 );
  683. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  684. }
  685. #elif defined(__wasm_simd128__)
  686. for (int i = 0; i < nb; i++) {
  687. float amax = 0.0f; // absolute max
  688. v128_t srcv [8];
  689. v128_t asrcv[8];
  690. v128_t amaxv[8];
  691. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  692. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  693. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  694. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  695. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  696. amax = MAX(
  697. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  698. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  699. const float d = amax / ((1 << 3) - 1);
  700. const float id = d ? 1.0/d : 0.0;
  701. y[i].d = d;
  702. for (int l = 0; l < 8; l++) {
  703. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  704. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  705. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  706. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  707. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  708. }
  709. }
  710. #else
  711. // scalar
  712. quantize_row_q4_0_reference(x, y, k);
  713. #endif
  714. }
  715. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  716. assert(k % QK == 0);
  717. const int nb = k / QK;
  718. block_q4_1 * restrict y = vy;
  719. uint8_t pp[QK/2];
  720. for (int i = 0; i < nb; i++) {
  721. float min = FLT_MAX;
  722. float max = -FLT_MAX;
  723. for (int l = 0; l < QK; l++) {
  724. const float v = x[i*QK + l];
  725. if (v < min) min = v;
  726. if (v > max) max = v;
  727. }
  728. const float d = (max - min) / ((1 << 4) - 1);
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = d;
  731. y[i].m = min;
  732. for (int l = 0; l < QK; l += 2) {
  733. const float v0 = (x[i*QK + l + 0] - min)*id;
  734. const float v1 = (x[i*QK + l + 1] - min)*id;
  735. const uint8_t vi0 = roundf(v0);
  736. const uint8_t vi1 = roundf(v1);
  737. assert(vi0 < 16);
  738. assert(vi1 < 16);
  739. pp[l/2] = vi0 | (vi1 << 4);
  740. }
  741. memcpy(y[i].qs, pp, sizeof(pp));
  742. }
  743. }
  744. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  745. assert(k % QK == 0);
  746. const int nb = k / QK;
  747. block_q4_1 * restrict y = vy;
  748. #if defined(__AVX2__)
  749. for (int i = 0; i < nb; i++) {
  750. // Load elements into 4 AVX vectors
  751. __m256 v0 = _mm256_loadu_ps( x );
  752. __m256 v1 = _mm256_loadu_ps( x + 8 );
  753. __m256 v2 = _mm256_loadu_ps( x + 16 );
  754. __m256 v3 = _mm256_loadu_ps( x + 24 );
  755. x += 32;
  756. // Compute max for the block
  757. __m256 vmax;
  758. vmax = _mm256_max_ps( v0, v1 );
  759. vmax = _mm256_max_ps( vmax, v2 );
  760. vmax = _mm256_max_ps( vmax, v3 );
  761. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  762. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  763. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  764. const float maxScalar = _mm_cvtss_f32( max4 );
  765. // Compute min for the block
  766. __m256 vmin;
  767. vmin = _mm256_min_ps( v0, v1 );
  768. vmin = _mm256_min_ps( vmin, v2 );
  769. vmin = _mm256_min_ps( vmin, v3 );
  770. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  771. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  772. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  773. const float minScalar = _mm_cvtss_f32( min4 );
  774. // Quantize these floats
  775. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  776. const float id = d ? 1.0f/d : 0.0f;
  777. y[i].m = minScalar;
  778. y[i].d = d;
  779. // x = (x-min)*id
  780. const __m256 mul = _mm256_set1_ps( id );
  781. const __m256 off = _mm256_set1_ps( minScalar );
  782. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  783. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  784. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  785. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  786. // Round to nearest integer
  787. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  788. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  789. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  790. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  791. // Convert floats to integers
  792. __m256i i0 = _mm256_cvtps_epi32( v0 );
  793. __m256i i1 = _mm256_cvtps_epi32( v1 );
  794. __m256i i2 = _mm256_cvtps_epi32( v2 );
  795. __m256i i3 = _mm256_cvtps_epi32( v3 );
  796. // Convert int32 to int16
  797. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  798. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  799. // Convert int16 to int8
  800. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  801. // We got our precious signed bytes, but the order is now wrong
  802. // These AVX2 pack instructions process 16-byte pieces independently
  803. // The following instruction is fixing the order
  804. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  805. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  806. // Compress the vector into 4 bit/value, and store
  807. __m128i res = packNibbles( i0 );
  808. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  809. }
  810. #elif __ARM_NEON
  811. for (int i = 0; i < nb; i++) {
  812. float32x4_t srcv[8];
  813. float32x4_t minv[8];
  814. float32x4_t maxv[8];
  815. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  816. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  817. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  818. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  819. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  820. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  821. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  822. const float min = vminvq_f32(minv[0]);
  823. const float max = vmaxvq_f32(maxv[0]);
  824. const float d = (max - min) / ((1 << 4) - 1);
  825. const float id = d ? 1.0f/d : 0.0f;
  826. y[i].d = d;
  827. y[i].m = min;
  828. const float32x4_t minv0 = vdupq_n_f32(min);
  829. for (int l = 0; l < 8; l++) {
  830. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  831. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  832. const int32x4_t vi = vcvtq_s32_f32(vf);
  833. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  834. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  835. }
  836. }
  837. #else
  838. // scalar
  839. quantize_row_q4_1_reference(x, vy, k);
  840. #endif
  841. }
  842. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  843. assert(k % QK == 0);
  844. const int nb = k / QK;
  845. const block_q4_0 * restrict x = vx;
  846. #if defined(__AVX2__)
  847. for (int i = 0; i < nb; i++) {
  848. // scale factor
  849. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  850. const uint8_t * restrict pp = x[i].qs;
  851. for (int l = 0; l < QK; l += 32) {
  852. // Load 32x4-bit integers into 32x8-bit integers
  853. __m256i vx8 = bytesFromNibbles(pp+l/2);
  854. // Subtract 8 from the integers
  855. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  856. // Convert to 16-bit int
  857. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  858. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  859. // Convert to 32-bit int -> float 32
  860. const __m256 vf[4] = {
  861. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  862. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  863. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  864. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  865. };
  866. // Scale and store
  867. for (int j = 0; j < 4; j++) {
  868. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  869. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  870. }
  871. }
  872. }
  873. #elif defined(__ARM_NEON)
  874. for (int i = 0; i < nb; i++) {
  875. const float32x4_t vd = vdupq_n_f32(x[i].d);
  876. const uint8_t * restrict pp = x[i].qs;
  877. for (int l = 0; l < QK; l += 16) {
  878. // Load 16x4-bit integers into 8x8-bit integers
  879. const uint8x8_t v8 = vld1_u8(pp + l/2);
  880. // Expand 4-bit qs to 8-bit bytes
  881. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  882. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  883. // Convert to signed 8-bit integers
  884. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  885. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  886. // Subtract 8 from each byte
  887. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  888. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  889. // Interleave and combine
  890. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  891. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  892. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  893. // convert to 2x int16x8_t
  894. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  895. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  896. // convert to 4x float32x4_t
  897. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  898. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  899. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  900. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  901. // Multiply by d
  902. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  903. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  904. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  905. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  906. // Store
  907. vst1q_f32(y + i*QK + l + 0, r0);
  908. vst1q_f32(y + i*QK + l + 4, r1);
  909. vst1q_f32(y + i*QK + l + 8, r2);
  910. vst1q_f32(y + i*QK + l + 12, r3);
  911. }
  912. }
  913. #else
  914. // scalar
  915. for (int i = 0; i < nb; i++) {
  916. const float d = x[i].d;
  917. const uint8_t * restrict pp = x[i].qs;
  918. for (int l = 0; l < QK; l += 2) {
  919. const uint8_t vi = pp[l/2];
  920. const int8_t vi0 = vi & 0xf;
  921. const int8_t vi1 = vi >> 4;
  922. const float v0 = (vi0 - 8)*d;
  923. const float v1 = (vi1 - 8)*d;
  924. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  925. y[i*QK + l + 0] = v0;
  926. y[i*QK + l + 1] = v1;
  927. assert(!isnan(y[i*QK + l + 0]));
  928. assert(!isnan(y[i*QK + l + 1]));
  929. }
  930. }
  931. #endif
  932. }
  933. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  934. assert(k % QK == 0);
  935. const int nb = k / QK;
  936. const block_q4_1 * restrict x = vx;
  937. #if defined(__AVX2__)
  938. for (int i = 0; i < nb; i++) {
  939. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  940. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  941. const uint8_t * restrict pp = x[i].qs;
  942. for (int l = 0; l < QK; l += 32) {
  943. // Load 32x4-bit integers into 32x8-bit integers
  944. __m256i vx8 = bytesFromNibbles(pp+l/2);
  945. // Convert to 16-bit int
  946. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  947. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  948. // Convert to 32-bit int -> float 32
  949. const __m256 vf[4] = {
  950. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  951. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  952. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  953. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  954. };
  955. // Scale, add m and store
  956. for (int j = 0; j < 4; j++) {
  957. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  958. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  959. }
  960. }
  961. }
  962. #elif defined(__ARM_NEON)
  963. for (int i = 0; i < nb; i++) {
  964. const float32x4_t vd = vdupq_n_f32(x[i].d);
  965. const float32x4_t vm = vdupq_n_f32(x[i].m);
  966. const uint8_t * restrict pp = x[i].qs;
  967. for (int l = 0; l < QK; l += 16) {
  968. // Load 16x4-bit integers into 8x8-bit integers
  969. const uint8x8_t v8 = vld1_u8(pp + l/2);
  970. // Expand 4-bit qs to 8-bit bytes
  971. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  972. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  973. // Interleave and combine
  974. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  975. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  976. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  977. // convert to 2x uint16x8_t
  978. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  979. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  980. // convert to 4x float32x4_t
  981. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  982. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  983. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  984. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  985. // multiply by d and add m
  986. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  987. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  988. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  989. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  990. // Store
  991. vst1q_f32(y + i*QK + l + 0, r0);
  992. vst1q_f32(y + i*QK + l + 4, r1);
  993. vst1q_f32(y + i*QK + l + 8, r2);
  994. vst1q_f32(y + i*QK + l + 12, r3);
  995. }
  996. }
  997. #else
  998. for (int i = 0; i < nb; i++) {
  999. const float d = x[i].d;
  1000. const float m = x[i].m;
  1001. const uint8_t * restrict pp = x[i].qs;
  1002. for (int l = 0; l < QK; l += 2) {
  1003. const uint8_t vi = pp[l/2];
  1004. const int8_t vi0 = vi & 0xf;
  1005. const int8_t vi1 = vi >> 4;
  1006. const float v0 = vi0*d + m;
  1007. const float v1 = vi1*d + m;
  1008. y[i*QK + l + 0] = v0;
  1009. y[i*QK + l + 1] = v1;
  1010. assert(!isnan(y[i*QK + l + 0]));
  1011. assert(!isnan(y[i*QK + l + 1]));
  1012. }
  1013. }
  1014. #endif
  1015. }
  1016. //
  1017. // simd mappings
  1018. //
  1019. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1020. // we then implement the fundamental computation operations below using only these macros
  1021. // adding support for new architectures requires to define the corresponding SIMD macros
  1022. //
  1023. // GGML_F32_STEP / GGML_F16_STEP
  1024. // number of elements to process in a single step
  1025. //
  1026. // GGML_F32_EPR / GGML_F16_EPR
  1027. // number of elements to fit in a single register
  1028. //
  1029. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1030. #define GGML_SIMD
  1031. // F32 NEON
  1032. #define GGML_F32_STEP 16
  1033. #define GGML_F32_EPR 4
  1034. #define GGML_F32x4 float32x4_t
  1035. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1036. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1037. #define GGML_F32x4_LOAD vld1q_f32
  1038. #define GGML_F32x4_STORE vst1q_f32
  1039. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1040. #define GGML_F32x4_ADD vaddq_f32
  1041. #define GGML_F32x4_MUL vmulq_f32
  1042. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1043. #define GGML_F32x4_REDUCE(res, x) \
  1044. { \
  1045. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1046. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1047. } \
  1048. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1049. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1050. } \
  1051. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1052. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1053. } \
  1054. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1055. }
  1056. #define GGML_F32_VEC GGML_F32x4
  1057. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1065. // F16 NEON
  1066. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1067. #define GGML_F16_STEP 32
  1068. #define GGML_F16_EPR 8
  1069. #define GGML_F16x8 float16x8_t
  1070. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1071. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1072. #define GGML_F16x8_LOAD vld1q_f16
  1073. #define GGML_F16x8_STORE vst1q_f16
  1074. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1075. #define GGML_F16x8_ADD vaddq_f16
  1076. #define GGML_F16x8_MUL vmulq_f16
  1077. #define GGML_F16x8_REDUCE(res, x) \
  1078. { \
  1079. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1080. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1081. } \
  1082. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1083. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1084. } \
  1085. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1086. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1087. } \
  1088. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1089. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1090. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1091. }
  1092. #define GGML_F16_VEC GGML_F16x8
  1093. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1094. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1095. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1096. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1097. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1098. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1099. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1100. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1101. #else
  1102. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1103. // and take advantage of the vcvt_ functions to convert to/from FP16
  1104. #define GGML_F16_STEP 16
  1105. #define GGML_F16_EPR 4
  1106. #define GGML_F32Cx4 float32x4_t
  1107. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1108. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1109. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1110. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1111. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1112. #define GGML_F32Cx4_ADD vaddq_f32
  1113. #define GGML_F32Cx4_MUL vmulq_f32
  1114. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1115. #define GGML_F16_VEC GGML_F32Cx4
  1116. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1117. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1118. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1119. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1120. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1121. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1122. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1123. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1124. #endif
  1125. #elif defined(__AVX__)
  1126. #define GGML_SIMD
  1127. // F32 AVX
  1128. #define GGML_F32_STEP 32
  1129. #define GGML_F32_EPR 8
  1130. #define GGML_F32x8 __m256
  1131. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1132. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1133. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1134. #define GGML_F32x8_STORE _mm256_storeu_ps
  1135. #if defined(__FMA__)
  1136. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1137. #else
  1138. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1139. #endif
  1140. #define GGML_F32x8_ADD _mm256_add_ps
  1141. #define GGML_F32x8_MUL _mm256_mul_ps
  1142. #define GGML_F32x8_REDUCE(res, x) \
  1143. { \
  1144. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1145. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1146. } \
  1147. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1148. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1149. } \
  1150. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1151. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1152. } \
  1153. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1154. _mm256_extractf128_ps(x[0], 1)); \
  1155. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1156. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1157. }
  1158. // TODO: is this optimal ?
  1159. #define GGML_F32_VEC GGML_F32x8
  1160. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1161. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1162. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1163. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1164. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1165. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1166. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1167. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1168. // F16 AVX
  1169. #define GGML_F16_STEP 32
  1170. #define GGML_F16_EPR 8
  1171. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1172. #define GGML_F32Cx8 __m256
  1173. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1174. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1175. #if defined(__F16C__)
  1176. // the _mm256_cvt intrinsics require F16C
  1177. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1178. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1179. #else
  1180. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1181. float tmp[8];
  1182. for (int i = 0; i < 8; i++)
  1183. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1184. return _mm256_loadu_ps(tmp);
  1185. }
  1186. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1187. float arr[8];
  1188. _mm256_storeu_ps(arr, y);
  1189. for (int i = 0; i < 8; i++)
  1190. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1191. }
  1192. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1193. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1194. #endif
  1195. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1196. #define GGML_F32Cx8_ADD _mm256_add_ps
  1197. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1198. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1199. #define GGML_F16_VEC GGML_F32Cx8
  1200. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1201. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1202. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1203. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1204. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1205. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1206. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1207. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1208. #elif defined(__POWER9_VECTOR__)
  1209. #define GGML_SIMD
  1210. // F32 POWER9
  1211. #define GGML_F32_STEP 32
  1212. #define GGML_F32_EPR 4
  1213. #define GGML_F32x4 vector float
  1214. #define GGML_F32x4_ZERO 0.0f
  1215. #define GGML_F32x4_SET1 vec_splats
  1216. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1217. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1218. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1219. #define GGML_F32x4_ADD vec_add
  1220. #define GGML_F32x4_MUL vec_mul
  1221. #define GGML_F32x4_REDUCE(res, x) \
  1222. { \
  1223. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1224. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1225. } \
  1226. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1227. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1228. } \
  1229. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1230. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1231. } \
  1232. res = vec_extract(x[0], 0) + \
  1233. vec_extract(x[0], 1) + \
  1234. vec_extract(x[0], 2) + \
  1235. vec_extract(x[0], 3); \
  1236. }
  1237. #define GGML_F32_VEC GGML_F32x4
  1238. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1239. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1240. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1241. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1242. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1243. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1244. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1245. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1246. // F16 POWER9
  1247. #define GGML_F16_STEP GGML_F32_STEP
  1248. #define GGML_F16_EPR GGML_F32_EPR
  1249. #define GGML_F16_VEC GGML_F32x4
  1250. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1251. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1252. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1253. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1254. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1255. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1256. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1257. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1258. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1259. #define GGML_F16_VEC_STORE(p, r, i) \
  1260. if (i & 0x1) \
  1261. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1262. r[i - GGML_ENDIAN_BYTE(0)]), \
  1263. 0, p - GGML_F16_EPR)
  1264. #elif defined(__wasm_simd128__)
  1265. #define GGML_SIMD
  1266. // F32 WASM
  1267. #define GGML_F32_STEP 16
  1268. #define GGML_F32_EPR 4
  1269. #define GGML_F32x4 v128_t
  1270. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1271. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1272. #define GGML_F32x4_LOAD wasm_v128_load
  1273. #define GGML_F32x4_STORE wasm_v128_store
  1274. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1275. #define GGML_F32x4_ADD wasm_f32x4_add
  1276. #define GGML_F32x4_MUL wasm_f32x4_mul
  1277. #define GGML_F32x4_REDUCE(res, x) \
  1278. { \
  1279. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1280. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1281. } \
  1282. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1283. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1284. } \
  1285. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1286. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1287. } \
  1288. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1289. wasm_f32x4_extract_lane(x[0], 1) + \
  1290. wasm_f32x4_extract_lane(x[0], 2) + \
  1291. wasm_f32x4_extract_lane(x[0], 3); \
  1292. }
  1293. #define GGML_F32_VEC GGML_F32x4
  1294. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1295. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1296. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1297. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1298. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1299. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1300. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1301. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1302. // F16 WASM
  1303. #define GGML_F16_STEP 16
  1304. #define GGML_F16_EPR 4
  1305. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1306. float tmp[4];
  1307. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1308. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1309. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1310. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1311. return wasm_v128_load(tmp);
  1312. }
  1313. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1314. float tmp[4];
  1315. wasm_v128_store(tmp, x);
  1316. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1317. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1318. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1319. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1320. }
  1321. #define GGML_F16x4 v128_t
  1322. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1323. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1324. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1325. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1326. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1327. #define GGML_F16x4_ADD wasm_f32x4_add
  1328. #define GGML_F16x4_MUL wasm_f32x4_mul
  1329. #define GGML_F16x4_REDUCE(res, x) \
  1330. { \
  1331. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1332. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1333. } \
  1334. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1335. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1336. } \
  1337. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1338. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1339. } \
  1340. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1341. wasm_f32x4_extract_lane(x[0], 1) + \
  1342. wasm_f32x4_extract_lane(x[0], 2) + \
  1343. wasm_f32x4_extract_lane(x[0], 3); \
  1344. }
  1345. #define GGML_F16_VEC GGML_F16x4
  1346. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1347. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1348. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1349. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1350. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1351. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1352. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1353. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1354. #elif defined(__SSE3__)
  1355. #define GGML_SIMD
  1356. // F32 SSE
  1357. #define GGML_F32_STEP 32
  1358. #define GGML_F32_EPR 4
  1359. #define GGML_F32x4 __m128
  1360. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1361. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1362. #define GGML_F32x4_LOAD _mm_loadu_ps
  1363. #define GGML_F32x4_STORE _mm_storeu_ps
  1364. #if defined(__FMA__)
  1365. // TODO: Does this work?
  1366. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1367. #else
  1368. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1369. #endif
  1370. #define GGML_F32x4_ADD _mm_add_ps
  1371. #define GGML_F32x4_MUL _mm_mul_ps
  1372. #define GGML_F32x4_REDUCE(res, x) \
  1373. { \
  1374. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1375. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1376. } \
  1377. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1378. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1379. } \
  1380. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1381. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1382. } \
  1383. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1384. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1385. }
  1386. // TODO: is this optimal ?
  1387. #define GGML_F32_VEC GGML_F32x4
  1388. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1389. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1390. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1391. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1392. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1393. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1394. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1395. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1396. // F16 SSE
  1397. #define GGML_F16_STEP 32
  1398. #define GGML_F16_EPR 4
  1399. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1400. float tmp[4];
  1401. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1402. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1403. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1404. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1405. return _mm_loadu_ps(tmp);
  1406. }
  1407. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1408. float arr[4];
  1409. _mm_storeu_ps(arr, y);
  1410. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1411. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1412. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1413. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1414. }
  1415. #define GGML_F32Cx4 __m128
  1416. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1417. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1418. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1419. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1420. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1421. #define GGML_F32Cx4_ADD _mm_add_ps
  1422. #define GGML_F32Cx4_MUL _mm_mul_ps
  1423. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1424. #define GGML_F16_VEC GGML_F32Cx4
  1425. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1426. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1427. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1428. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1429. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1430. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1431. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1432. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1433. #endif
  1434. // GGML_F32_ARR / GGML_F16_ARR
  1435. // number of registers to use per step
  1436. #ifdef GGML_SIMD
  1437. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1438. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1439. #endif
  1440. //
  1441. // fundamental operations
  1442. //
  1443. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1444. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1445. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1446. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1447. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1448. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1449. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1450. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1451. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1452. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1453. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1454. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1455. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1456. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1457. #ifdef GGML_SIMD
  1458. float sumf = 0.0f;
  1459. const int np = (n & ~(GGML_F32_STEP - 1));
  1460. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1461. GGML_F32_VEC ax[GGML_F32_ARR];
  1462. GGML_F32_VEC ay[GGML_F32_ARR];
  1463. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1464. for (int j = 0; j < GGML_F32_ARR; j++) {
  1465. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1466. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1467. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1468. }
  1469. }
  1470. // reduce sum0..sum3 to sum0
  1471. GGML_F32_VEC_REDUCE(sumf, sum);
  1472. // leftovers
  1473. for (int i = np; i < n; ++i) {
  1474. sumf += x[i]*y[i];
  1475. }
  1476. #else
  1477. // scalar
  1478. ggml_float sumf = 0.0;
  1479. for (int i = 0; i < n; ++i) {
  1480. sumf += (ggml_float)(x[i]*y[i]);
  1481. }
  1482. #endif
  1483. *s = sumf;
  1484. }
  1485. #if __AVX512F__ && QK == 32
  1486. static inline __m512 dot_q4_0_oneblock_avx512(
  1487. __m512 acc,
  1488. const block_q4_0 * restrict x,
  1489. const block_q4_0 * restrict y,
  1490. int i
  1491. ) {
  1492. // Compute combined scale for the block
  1493. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1494. __m256i bx = bytesFromNibbles( x[i].qs );
  1495. __m256i by = bytesFromNibbles( y[i].qs );
  1496. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1497. const __m256i off = _mm256_set1_epi8( 8 );
  1498. bx = _mm256_sub_epi8( bx, off );
  1499. by = _mm256_sub_epi8( by, off );
  1500. // Sign-extend 16 signed bytes into int16_t
  1501. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1502. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1503. // Compute products of int16_t integers, add pairwise
  1504. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1505. // Convert int32_t to float
  1506. __m512 p = _mm512_cvtepi32_ps( i64 );
  1507. // Apply the scale, and accumulate
  1508. return _mm512_fmadd_ps( d, p, acc );
  1509. }
  1510. #endif
  1511. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1512. ggml_float sumf = 0.0;
  1513. #if defined(GGML_SIMD)
  1514. const int np = (n & ~(GGML_F16_STEP - 1));
  1515. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1516. GGML_F16_VEC ax[GGML_F16_ARR];
  1517. GGML_F16_VEC ay[GGML_F16_ARR];
  1518. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1519. for (int j = 0; j < GGML_F16_ARR; j++) {
  1520. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1521. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1522. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1523. }
  1524. }
  1525. // reduce sum0..sum3 to sum0
  1526. GGML_F16_VEC_REDUCE(sumf, sum);
  1527. // leftovers
  1528. for (int i = np; i < n; ++i) {
  1529. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1530. }
  1531. #else
  1532. for (int i = 0; i < n; ++i) {
  1533. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1534. }
  1535. #endif
  1536. *s = sumf;
  1537. }
  1538. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1539. const int nb = n / QK;
  1540. assert(n % QK == 0);
  1541. assert(nb % 2 == 0);
  1542. const block_q4_0 * restrict x = vx;
  1543. const block_q4_0 * restrict y = vy;
  1544. float sumf = 0.0;
  1545. #if defined(__ARM_NEON)
  1546. float sum0 = 0.0f;
  1547. float sum1 = 0.0f;
  1548. for (int i = 0; i < nb; i += 2) {
  1549. const block_q4_0 * restrict x0 = &x[i + 0];
  1550. const block_q4_0 * restrict y0 = &y[i + 0];
  1551. const block_q4_0 * restrict x1 = &x[i + 1];
  1552. const block_q4_0 * restrict y1 = &y[i + 1];
  1553. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1554. const int8x16_t s8b = vdupq_n_s8(0x8);
  1555. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1556. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1557. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1558. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1559. // 4-bit -> 8-bit
  1560. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1561. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1562. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1563. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1564. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1565. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1566. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1567. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1568. // sub 8
  1569. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1570. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1571. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1572. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1573. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1574. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1575. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1576. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1577. #if defined(__ARM_FEATURE_DOTPROD)
  1578. // dot product into int32x4_t
  1579. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1580. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1581. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1582. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1583. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1584. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1585. #else
  1586. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1587. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1588. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1589. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1590. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1591. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1592. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1593. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1594. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1595. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1596. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1597. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1598. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1599. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1600. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1601. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1602. #endif
  1603. }
  1604. sumf = sum0 + sum1;
  1605. #elif defined(__AVX512F__)
  1606. // Initialize accumulator with zeros
  1607. __m512 acc0 = _mm512_setzero_ps();
  1608. __m512 acc1 = _mm512_setzero_ps();
  1609. const int superblock_size = 8;
  1610. const int superblock_count = nb / superblock_size;
  1611. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1612. int i = superblock_ix * superblock_size;
  1613. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1614. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1615. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1616. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1617. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1618. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1619. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1620. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1621. }
  1622. // Remainders
  1623. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1624. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1625. }
  1626. // Horizontal sum of all lanes of the accumulator
  1627. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1628. #elif defined(__AVX2__)
  1629. // Initialize accumulator with zeros
  1630. __m256 acc = _mm256_setzero_ps();
  1631. /* Prepare the constants we will need during execution */
  1632. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1633. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1634. #define UNROLL_COUNT 8
  1635. // make sure we only unroll multiples of the block count
  1636. assert(nb % UNROLL_COUNT == 0);
  1637. // Main loop
  1638. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1639. // This loop will be unrolled by the compiler
  1640. for (int u=0;u<UNROLL_COUNT;u++) {
  1641. /* Compute combined scale for the block */
  1642. const __m256 scale = _mm256_mul_ps(
  1643. _mm256_broadcast_ss( &x[i+u].d ),
  1644. _mm256_broadcast_ss( &y[i+u].d ) );
  1645. /* get input from x
  1646. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1647. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1648. /* Load 16 bytes from memory */
  1649. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1650. /* Expand bytes into uint16_t values */
  1651. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1652. /* Unpack values into individual bytes */
  1653. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1654. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1655. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1656. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1657. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1658. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1659. /* get input from y
  1660. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1661. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1662. /* Load 16 bytes from memory */
  1663. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1664. /* Expand bytes into uint16_t values */
  1665. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1666. /* Unpack values into individual bytes */
  1667. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1668. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1669. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1670. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1671. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1672. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1673. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1674. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1675. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1676. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1677. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1678. /* Convert to vectore of 8 int32_t to 8 floats */
  1679. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1680. /* Multiply q with scale and accumulate */
  1681. acc = _mm256_fmadd_ps( scale, q, acc );
  1682. }
  1683. }
  1684. // Return horizontal sum of the acc vector
  1685. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1686. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1687. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1688. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1689. sumf = _mm_cvtss_f32( res );
  1690. #elif defined(__AVX__)
  1691. // Initialize accumulator with zeros
  1692. __m256 acc = _mm256_setzero_ps();
  1693. // Main loop
  1694. for (int i = 0; i < nb; ++i) {
  1695. // Compute combined scale for the block
  1696. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1697. __m128i i32[2];
  1698. for (int j = 0; j < 2; ++j) {
  1699. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1700. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1701. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1702. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1703. const __m128i off = _mm_set1_epi8( 8 );
  1704. bx = _mm_sub_epi8( bx, off );
  1705. by = _mm_sub_epi8( by, off );
  1706. // Get absolute values of x vectors
  1707. const __m128i ax = _mm_sign_epi8(bx, bx);
  1708. // Sign the values of the y vectors
  1709. const __m128i sy = _mm_sign_epi8(by, bx);
  1710. // Perform multiplication and create 16-bit values
  1711. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1712. const __m128i ones = _mm_set1_epi16(1);
  1713. i32[j] = _mm_madd_epi16(ones, dot);
  1714. }
  1715. // Convert int32_t to float
  1716. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1717. // Apply the scale, and accumulate
  1718. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1719. }
  1720. // Return horizontal sum of the acc vector
  1721. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1722. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1723. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1724. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1725. sumf = _mm_cvtss_f32( res );
  1726. #elif defined(__wasm_simd128__)
  1727. // wasm simd
  1728. float sum0 = 0.0f;
  1729. float sum1 = 0.0f;
  1730. for (int i = 0; i < nb; i += 2) {
  1731. const block_q4_0 * restrict x0 = &x[i + 0];
  1732. const block_q4_0 * restrict y0 = &y[i + 0];
  1733. const block_q4_0 * restrict x1 = &x[i + 1];
  1734. const block_q4_0 * restrict y1 = &y[i + 1];
  1735. const v128_t m4b = wasm_u8x16_splat(0xf);
  1736. const v128_t s8b = wasm_i8x16_splat(0x8);
  1737. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1738. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1739. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1740. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1741. // 4-bit -> 8-bit
  1742. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1743. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1744. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1745. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1746. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1747. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1748. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1749. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1750. // sub 8
  1751. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1752. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1753. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1754. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1755. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1756. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1757. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1758. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1759. // dot product into int16x8_t
  1760. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1761. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1762. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1763. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1764. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1765. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1766. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1767. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1768. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1769. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1770. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1771. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1772. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1773. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1774. sum0 += x0->d * y0->d * (
  1775. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1776. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1777. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1778. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1779. sum1 += x1->d * y1->d * (
  1780. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1781. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1782. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1783. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1784. }
  1785. sumf = sum0 + sum1;
  1786. #else
  1787. // scalar
  1788. for (int i = 0; i < nb; i++) {
  1789. const float d0 = x[i].d;
  1790. const float d1 = y[i].d;
  1791. const uint8_t * restrict p0 = x[i].qs;
  1792. const uint8_t * restrict p1 = y[i].qs;
  1793. int sumi = 0;
  1794. for (int j = 0; j < QK/2; j++) {
  1795. const uint8_t v0 = p0[j];
  1796. const uint8_t v1 = p1[j];
  1797. const int8_t i0 = (int8_t) (v0 & 0xf) - 8;
  1798. const int8_t i1 = (int8_t) (v0 >> 4) - 8;
  1799. const int8_t i2 = (int8_t) (v1 & 0xf) - 8;
  1800. const int8_t i3 = (int8_t) (v1 >> 4) - 8;
  1801. sumi += i0*i2 + i1*i3;
  1802. }
  1803. sumf += d0 * d1 * sumi;
  1804. }
  1805. #endif
  1806. *s = sumf;
  1807. }
  1808. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1809. const int nb = n / QK;
  1810. const block_q4_1 * restrict x = vx;
  1811. const block_q4_1 * restrict y = vy;
  1812. float sumf = 0.0;
  1813. #if defined(__AVX2__)
  1814. // Initialize accumulator with zeros
  1815. __m256 acc = _mm256_setzero_ps();
  1816. // Accumulator for constant offsets
  1817. float acc_offset = 0.0f;
  1818. // Main loop
  1819. for (int i = 0; i < nb; ++i) {
  1820. const float * d0 = &x[i].d;
  1821. const float * d1 = &y[i].d;
  1822. const float * m0 = &x[i].m;
  1823. const float * m1 = &y[i].m;
  1824. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1825. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1826. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1827. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1828. // Compute combined scale for the block
  1829. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1830. // Compute cross scales for the block
  1831. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1832. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1833. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1834. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1835. __m256i bx = bytesFromNibbles( x[i].qs );
  1836. __m256i by = bytesFromNibbles( y[i].qs );
  1837. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1838. // Sign-extend first 16 signed bytes into int16_t
  1839. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1840. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1841. // Compute products of int16_t integers, add pairwise
  1842. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1843. // Sign-extend last 16 signed bytes into int16_t vectors
  1844. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1845. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1846. // Accumulate products of int16_t integers
  1847. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1848. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1849. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1850. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1851. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1852. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1853. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1854. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1855. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1856. // Convert int32_t to float
  1857. __m256 p = _mm256_cvtepi32_ps( i32 );
  1858. // Apply the scale, and accumulate
  1859. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1860. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1861. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1862. // acc_offset += m0*m1 (for each entry in the block)
  1863. acc_offset += (*m0)*(*m1);
  1864. }
  1865. // Return horizontal sum of the acc vector
  1866. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1867. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1868. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1869. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1870. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1871. #elif defined(__ARM_NEON)
  1872. float sum00 = 0.0f;
  1873. float sum01 = 0.0f;
  1874. float sum10 = 0.0f;
  1875. float sum11 = 0.0f;
  1876. for (int i = 0; i < nb; i += 2) {
  1877. const block_q4_1 * restrict x0 = &x[i + 0];
  1878. const block_q4_1 * restrict y0 = &y[i + 0];
  1879. const block_q4_1 * restrict x1 = &x[i + 1];
  1880. const block_q4_1 * restrict y1 = &y[i + 1];
  1881. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1882. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1883. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1884. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1885. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1886. // 4-bit -> 8-bit
  1887. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1888. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1889. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1890. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1891. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  1892. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  1893. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  1894. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  1895. sum00 += x0->m*y0->m;
  1896. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1897. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1898. sum00 += x1->m*y1->m;
  1899. sum01 += y1->m*x1->d*(vaddvq_u8(v0_1l) + vaddvq_u8(v0_1h));
  1900. sum10 += x1->m*y1->d*(vaddvq_u8(v1_1l) + vaddvq_u8(v1_1h));
  1901. #if defined(__ARM_FEATURE_DOTPROD)
  1902. // dot product into int32x4_t
  1903. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  1904. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  1905. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  1906. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  1907. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  1908. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  1909. #else
  1910. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1911. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1912. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1913. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1914. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  1915. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  1916. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  1917. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  1918. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  1919. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  1920. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  1921. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  1922. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  1923. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  1924. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  1925. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  1926. #endif
  1927. }
  1928. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1929. #else
  1930. // scalar
  1931. for (int i = 0; i < nb; i++) {
  1932. const float d0 = x[i].d;
  1933. const float d1 = y[i].d;
  1934. const float m0 = x[i].m;
  1935. const float m1 = y[i].m;
  1936. const uint8_t * restrict p0 = x[i].qs;
  1937. const uint8_t * restrict p1 = y[i].qs;
  1938. for (int j = 0; j < QK/2; j++) {
  1939. const uint8_t v0 = p0[j];
  1940. const uint8_t v1 = p1[j];
  1941. const float f0 = d0*(v0 & 0xf) + m0;
  1942. const float f1 = d0*(v0 >> 4) + m0;
  1943. const float f2 = d1*(v1 & 0xf) + m1;
  1944. const float f3 = d1*(v1 >> 4) + m1;
  1945. sumf += f0*f2 + f1*f3;
  1946. }
  1947. }
  1948. #endif
  1949. *s = sumf;
  1950. }
  1951. // compute GGML_VEC_DOT_UNROLL dot products at once
  1952. // xs - x row stride in bytes
  1953. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1954. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1955. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1956. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1957. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1958. }
  1959. #if defined(GGML_SIMD)
  1960. const int np = (n & ~(GGML_F16_STEP - 1));
  1961. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1962. GGML_F16_VEC ax[GGML_F16_ARR];
  1963. GGML_F16_VEC ay[GGML_F16_ARR];
  1964. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1965. for (int j = 0; j < GGML_F16_ARR; j++) {
  1966. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1967. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1968. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1969. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1970. }
  1971. }
  1972. }
  1973. // reduce sum0..sum3 to sum0
  1974. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1975. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1976. }
  1977. // leftovers
  1978. for (int i = np; i < n; ++i) {
  1979. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1980. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1981. }
  1982. }
  1983. #else
  1984. for (int i = 0; i < n; ++i) {
  1985. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1986. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1987. }
  1988. }
  1989. #endif
  1990. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1991. s[i] = sumf[i];
  1992. }
  1993. }
  1994. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1995. #if defined(GGML_SIMD)
  1996. const int np = (n & ~(GGML_F32_STEP - 1));
  1997. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1998. GGML_F32_VEC ax[GGML_F32_ARR];
  1999. GGML_F32_VEC ay[GGML_F32_ARR];
  2000. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2001. for (int j = 0; j < GGML_F32_ARR; j++) {
  2002. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2003. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2004. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2005. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2006. }
  2007. }
  2008. // leftovers
  2009. for (int i = np; i < n; ++i) {
  2010. y[i] += x[i]*v;
  2011. }
  2012. #else
  2013. // scalar
  2014. for (int i = 0; i < n; ++i) {
  2015. y[i] += x[i]*v;
  2016. }
  2017. #endif
  2018. }
  2019. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2020. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2021. #if defined(GGML_SIMD)
  2022. const int np = (n & ~(GGML_F32_STEP - 1));
  2023. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2024. GGML_F32_VEC ay[GGML_F32_ARR];
  2025. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2026. for (int j = 0; j < GGML_F32_ARR; j++) {
  2027. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2028. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2029. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2030. }
  2031. }
  2032. // leftovers
  2033. for (int i = np; i < n; ++i) {
  2034. y[i] *= v;
  2035. }
  2036. #else
  2037. // scalar
  2038. for (int i = 0; i < n; ++i) {
  2039. y[i] *= v;
  2040. }
  2041. #endif
  2042. }
  2043. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2044. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2045. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2046. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2047. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2048. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2049. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2050. static const float GELU_COEF_A = 0.044715f;
  2051. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2052. inline static float ggml_gelu_f32(float x) {
  2053. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2054. }
  2055. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2056. const uint16_t * i16 = (const uint16_t *) x;
  2057. for (int i = 0; i < n; ++i) {
  2058. y[i] = table_gelu_f16[i16[i]];
  2059. }
  2060. }
  2061. #ifdef GGML_GELU_FP16
  2062. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2063. uint16_t t;
  2064. for (int i = 0; i < n; ++i) {
  2065. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2066. memcpy(&t, &fp16, sizeof(uint16_t));
  2067. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2068. }
  2069. }
  2070. #else
  2071. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2072. for (int i = 0; i < n; ++i) {
  2073. y[i] = ggml_gelu_f32(x[i]);
  2074. }
  2075. }
  2076. #endif
  2077. // Sigmoid Linear Unit (SiLU) function
  2078. inline static float ggml_silu_f32(float x) {
  2079. return x/(1.0f + expf(-x));
  2080. }
  2081. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2082. const uint16_t * i16 = (const uint16_t *) x;
  2083. for (int i = 0; i < n; ++i) {
  2084. y[i] = table_silu_f16[i16[i]];
  2085. }
  2086. }
  2087. #ifdef GGML_SILU_FP16
  2088. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2089. uint16_t t;
  2090. for (int i = 0; i < n; ++i) {
  2091. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2092. memcpy(&t, &fp16, sizeof(uint16_t));
  2093. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2094. }
  2095. }
  2096. #else
  2097. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2098. for (int i = 0; i < n; ++i) {
  2099. y[i] = ggml_silu_f32(x[i]);
  2100. }
  2101. }
  2102. #endif
  2103. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2104. #ifndef GGML_USE_ACCELERATE
  2105. ggml_float sum = 0.0;
  2106. for (int i = 0; i < n; ++i) {
  2107. sum += (ggml_float)x[i];
  2108. }
  2109. *s = sum;
  2110. #else
  2111. vDSP_sve(x, 1, s, n);
  2112. #endif
  2113. }
  2114. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2115. #ifndef GGML_USE_ACCELERATE
  2116. float max = -INFINITY;
  2117. for (int i = 0; i < n; ++i) {
  2118. max = MAX(max, x[i]);
  2119. }
  2120. *s = max;
  2121. #else
  2122. vDSP_maxv(x, 1, s, n);
  2123. #endif
  2124. }
  2125. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2126. ggml_vec_norm_f32(n, s, x);
  2127. *s = 1.f/(*s);
  2128. }
  2129. //
  2130. // logging
  2131. //
  2132. #if (GGML_DEBUG >= 1)
  2133. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2134. #else
  2135. #define GGML_PRINT_DEBUG(...)
  2136. #endif
  2137. #if (GGML_DEBUG >= 5)
  2138. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2139. #else
  2140. #define GGML_PRINT_DEBUG_5(...)
  2141. #endif
  2142. #if (GGML_DEBUG >= 10)
  2143. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2144. #else
  2145. #define GGML_PRINT_DEBUG_10(...)
  2146. #endif
  2147. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2148. //
  2149. // data types
  2150. //
  2151. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2152. [GGML_TYPE_F32] = 1,
  2153. [GGML_TYPE_F16] = 1,
  2154. [GGML_TYPE_Q4_0] = QK,
  2155. [GGML_TYPE_Q4_1] = QK,
  2156. [GGML_TYPE_I8] = 1,
  2157. [GGML_TYPE_I16] = 1,
  2158. [GGML_TYPE_I32] = 1,
  2159. };
  2160. static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
  2161. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2162. [GGML_TYPE_F32] = sizeof(float),
  2163. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2164. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2165. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2166. [GGML_TYPE_I8] = sizeof(int8_t),
  2167. [GGML_TYPE_I16] = sizeof(int16_t),
  2168. [GGML_TYPE_I32] = sizeof(int32_t),
  2169. };
  2170. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
  2171. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2172. "NONE",
  2173. "DUP",
  2174. "ADD",
  2175. "SUB",
  2176. "MUL",
  2177. "DIV",
  2178. "SQR",
  2179. "SQRT",
  2180. "SUM",
  2181. "MEAN",
  2182. "REPEAT",
  2183. "ABS",
  2184. "SGN",
  2185. "NEG",
  2186. "STEP",
  2187. "RELU",
  2188. "GELU",
  2189. "SILU",
  2190. "NORM",
  2191. "RMS_NORM",
  2192. "MUL_MAT",
  2193. "SCALE",
  2194. "CPY",
  2195. "CONT",
  2196. "RESHAPE",
  2197. "VIEW",
  2198. "PERMUTE",
  2199. "TRANSPOSE",
  2200. "GET_ROWS",
  2201. "DIAG_MASK_INF",
  2202. "SOFT_MAX",
  2203. "ROPE",
  2204. "CONV_1D_1S",
  2205. "CONV_1D_2S",
  2206. "FLASH_ATTN",
  2207. "FLASH_FF",
  2208. };
  2209. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2210. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2211. "none",
  2212. "x",
  2213. "x+y",
  2214. "x-y",
  2215. "x*y",
  2216. "x/y",
  2217. "x^2",
  2218. "√x",
  2219. "Σx",
  2220. "Σx/n",
  2221. "repeat(x)",
  2222. "abs(x)",
  2223. "sgn(x)",
  2224. "-x",
  2225. "step(x)",
  2226. "relu(x)",
  2227. "gelu(x)",
  2228. "silu(x)",
  2229. "norm(x)",
  2230. "rms_norm(x)",
  2231. "X*Y",
  2232. "x*v",
  2233. "x-\\>y",
  2234. "cont(x)",
  2235. "reshape(x)",
  2236. "view(x)",
  2237. "permute(x)",
  2238. "transpose(x)",
  2239. "get_rows(x)",
  2240. "diag_mask_inf(x)",
  2241. "soft_max(x)",
  2242. "rope(x)",
  2243. "conv_1d_1s(x)",
  2244. "conv_1d_2s(x)",
  2245. "flash_attn(x)",
  2246. "flash_ff(x)",
  2247. };
  2248. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2249. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2250. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2251. //
  2252. // ggml context
  2253. //
  2254. struct ggml_context {
  2255. size_t mem_size;
  2256. void * mem_buffer;
  2257. bool mem_buffer_owned;
  2258. bool no_alloc;
  2259. int n_objects;
  2260. struct ggml_object * objects_begin;
  2261. struct ggml_object * objects_end;
  2262. struct ggml_scratch scratch;
  2263. struct ggml_scratch scratch_save;
  2264. };
  2265. struct ggml_context_container {
  2266. bool used;
  2267. struct ggml_context context;
  2268. };
  2269. //
  2270. // compute types
  2271. //
  2272. enum ggml_task_type {
  2273. GGML_TASK_INIT = 0,
  2274. GGML_TASK_COMPUTE,
  2275. GGML_TASK_FINALIZE,
  2276. };
  2277. struct ggml_compute_params {
  2278. enum ggml_task_type type;
  2279. int ith, nth;
  2280. // work buffer for all threads
  2281. size_t wsize;
  2282. void * wdata;
  2283. };
  2284. //
  2285. // ggml state
  2286. //
  2287. struct ggml_state {
  2288. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2289. };
  2290. // global state
  2291. static struct ggml_state g_state;
  2292. static atomic_int g_state_barrier = 0;
  2293. // barrier via spin lock
  2294. inline static void ggml_critical_section_start(void) {
  2295. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2296. while (processing > 0) {
  2297. // wait for other threads to finish
  2298. atomic_fetch_sub(&g_state_barrier, 1);
  2299. sched_yield(); // TODO: reconsider this
  2300. processing = atomic_fetch_add(&g_state_barrier, 1);
  2301. }
  2302. }
  2303. // TODO: make this somehow automatically executed
  2304. // some sort of "sentry" mechanism
  2305. inline static void ggml_critical_section_end(void) {
  2306. atomic_fetch_sub(&g_state_barrier, 1);
  2307. }
  2308. ////////////////////////////////////////////////////////////////////////////////
  2309. void ggml_print_object(const struct ggml_object * obj) {
  2310. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2311. obj->offs, obj->size, (const void *) obj->next);
  2312. }
  2313. void ggml_print_objects(const struct ggml_context * ctx) {
  2314. struct ggml_object * obj = ctx->objects_begin;
  2315. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2316. while (obj != NULL) {
  2317. ggml_print_object(obj);
  2318. obj = obj->next;
  2319. }
  2320. GGML_PRINT("%s: --- end ---\n", __func__);
  2321. }
  2322. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2323. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2324. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2325. }
  2326. int ggml_nrows(const struct ggml_tensor * tensor) {
  2327. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2328. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2329. }
  2330. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2331. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2332. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2333. }
  2334. int ggml_blck_size(enum ggml_type type) {
  2335. return GGML_BLCK_SIZE[type];
  2336. }
  2337. size_t ggml_type_size(enum ggml_type type) {
  2338. return GGML_TYPE_SIZE[type];
  2339. }
  2340. float ggml_type_sizef(enum ggml_type type) {
  2341. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2342. }
  2343. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2344. return GGML_TYPE_SIZE[tensor->type];
  2345. }
  2346. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2348. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2349. }
  2350. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2352. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2353. }
  2354. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2356. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2357. }
  2358. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2359. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2360. return
  2361. (t0->ne[0] == t1->ne[0]) &&
  2362. (t0->ne[2] == t1->ne[2]) &&
  2363. (t0->ne[3] == t1->ne[3]);
  2364. }
  2365. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2366. return tensor->nb[0] > tensor->nb[1];
  2367. }
  2368. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2369. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2370. return
  2371. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2372. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2373. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2374. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2375. }
  2376. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2377. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2378. return
  2379. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2380. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2381. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2382. }
  2383. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2384. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2385. return
  2386. (t0->ne[0] == t1->ne[0] ) &&
  2387. (t0->ne[1] == t1->ne[1] ) &&
  2388. (t0->ne[2] == t1->ne[2] ) &&
  2389. (t0->ne[3] == t1->ne[3] );
  2390. }
  2391. // check if t1 can be represented as a repeatition of t0
  2392. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2393. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2394. return
  2395. (t1->ne[0]%t0->ne[0] == 0) &&
  2396. (t1->ne[1]%t0->ne[1] == 0) &&
  2397. (t1->ne[2]%t0->ne[2] == 0) &&
  2398. (t1->ne[3]%t0->ne[3] == 0);
  2399. }
  2400. static inline int ggml_up32(int n) {
  2401. return (n + 31) & ~31;
  2402. }
  2403. static inline int ggml_up64(int n) {
  2404. return (n + 63) & ~63;
  2405. }
  2406. static inline int ggml_up(int n, int m) {
  2407. // assert m is a power of 2
  2408. GGML_ASSERT((m & (m - 1)) == 0);
  2409. return (n + m - 1) & ~(m - 1);
  2410. }
  2411. // assert that pointer is aligned to GGML_MEM_ALIGN
  2412. #define ggml_assert_aligned(ptr) \
  2413. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2414. ////////////////////////////////////////////////////////////////////////////////
  2415. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2416. // make this function thread safe
  2417. ggml_critical_section_start();
  2418. static bool is_first_call = true;
  2419. if (is_first_call) {
  2420. // initialize time system (required on Windows)
  2421. ggml_time_init();
  2422. // initialize GELU, SILU and EXP F32 tables
  2423. {
  2424. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2425. ggml_fp16_t ii;
  2426. for (int i = 0; i < (1 << 16); ++i) {
  2427. uint16_t ui = i;
  2428. memcpy(&ii, &ui, sizeof(ii));
  2429. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2430. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2431. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2432. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2433. }
  2434. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2435. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2436. }
  2437. // initialize g_state
  2438. {
  2439. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2440. g_state = (struct ggml_state) {
  2441. /*.contexts =*/ { { 0 } },
  2442. };
  2443. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2444. g_state.contexts[i].used = false;
  2445. }
  2446. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2447. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2448. }
  2449. is_first_call = false;
  2450. }
  2451. // find non-used context in g_state
  2452. struct ggml_context * ctx = NULL;
  2453. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2454. if (!g_state.contexts[i].used) {
  2455. g_state.contexts[i].used = true;
  2456. ctx = &g_state.contexts[i].context;
  2457. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2458. break;
  2459. }
  2460. }
  2461. if (ctx == NULL) {
  2462. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2463. ggml_critical_section_end();
  2464. return NULL;
  2465. }
  2466. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2467. *ctx = (struct ggml_context) {
  2468. /*.mem_size =*/ mem_size,
  2469. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2470. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2471. /*.no_alloc =*/ params.no_alloc,
  2472. /*.n_objects =*/ 0,
  2473. /*.objects_begin =*/ NULL,
  2474. /*.objects_end =*/ NULL,
  2475. /*.scratch =*/ { 0, 0, NULL, },
  2476. /*.scratch_save =*/ { 0, 0, NULL, },
  2477. };
  2478. GGML_ASSERT(ctx->mem_buffer != NULL);
  2479. ggml_assert_aligned(ctx->mem_buffer);
  2480. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2481. ggml_critical_section_end();
  2482. return ctx;
  2483. }
  2484. void ggml_free(struct ggml_context * ctx) {
  2485. // make this function thread safe
  2486. ggml_critical_section_start();
  2487. bool found = false;
  2488. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2489. if (&g_state.contexts[i].context == ctx) {
  2490. g_state.contexts[i].used = false;
  2491. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2492. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2493. if (ctx->mem_buffer_owned) {
  2494. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2495. }
  2496. found = true;
  2497. break;
  2498. }
  2499. }
  2500. if (!found) {
  2501. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2502. }
  2503. ggml_critical_section_end();
  2504. }
  2505. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2506. return ctx->objects_end->offs + ctx->objects_end->size;
  2507. }
  2508. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2509. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2510. ctx->scratch = scratch;
  2511. return result;
  2512. }
  2513. ////////////////////////////////////////////////////////////////////////////////
  2514. struct ggml_tensor * ggml_new_tensor_impl(
  2515. struct ggml_context * ctx,
  2516. enum ggml_type type,
  2517. int n_dims,
  2518. const int64_t* ne,
  2519. void* data) {
  2520. // always insert objects at the end of the context's memory pool
  2521. struct ggml_object * obj_cur = ctx->objects_end;
  2522. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2523. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2524. const size_t cur_end = cur_offs + cur_size;
  2525. size_t size_needed = 0;
  2526. if (data == NULL && !ctx->no_alloc) {
  2527. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2528. for (int i = 1; i < n_dims; i++) {
  2529. size_needed *= ne[i];
  2530. }
  2531. // align to GGML_MEM_ALIGN
  2532. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2533. }
  2534. char * const mem_buffer = ctx->mem_buffer;
  2535. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2536. if (ctx->scratch.data == NULL || data != NULL) {
  2537. size_needed += sizeof(struct ggml_tensor);
  2538. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2539. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2540. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2541. assert(false);
  2542. return NULL;
  2543. }
  2544. *obj_new = (struct ggml_object) {
  2545. .offs = cur_end + GGML_OBJECT_SIZE,
  2546. .size = size_needed,
  2547. .next = NULL,
  2548. };
  2549. } else {
  2550. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2551. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2552. assert(false);
  2553. return NULL;
  2554. }
  2555. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2556. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2557. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2558. assert(false);
  2559. return NULL;
  2560. }
  2561. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2562. *obj_new = (struct ggml_object) {
  2563. .offs = cur_end + GGML_OBJECT_SIZE,
  2564. .size = sizeof(struct ggml_tensor),
  2565. .next = NULL,
  2566. };
  2567. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2568. ctx->scratch.offs += size_needed;
  2569. }
  2570. if (obj_cur != NULL) {
  2571. obj_cur->next = obj_new;
  2572. } else {
  2573. // this is the first object in this context
  2574. ctx->objects_begin = obj_new;
  2575. }
  2576. ctx->objects_end = obj_new;
  2577. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2578. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2579. ggml_assert_aligned(result);
  2580. *result = (struct ggml_tensor) {
  2581. /*.type =*/ type,
  2582. /*.n_dims =*/ n_dims,
  2583. /*.ne =*/ { 1, 1, 1, 1 },
  2584. /*.nb =*/ { 0, 0, 0, 0 },
  2585. /*.op =*/ GGML_OP_NONE,
  2586. /*.is_param =*/ false,
  2587. /*.grad =*/ NULL,
  2588. /*.src0 =*/ NULL,
  2589. /*.src1 =*/ NULL,
  2590. /*.opt =*/ { NULL },
  2591. /*.n_tasks =*/ 0,
  2592. /*.perf_runs =*/ 0,
  2593. /*.perf_cycles =*/ 0,
  2594. /*.perf_time_us =*/ 0,
  2595. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2596. /*.pad =*/ { 0 },
  2597. };
  2598. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2599. //ggml_assert_aligned(result->data);
  2600. for (int i = 0; i < n_dims; i++) {
  2601. result->ne[i] = ne[i];
  2602. }
  2603. result->nb[0] = GGML_TYPE_SIZE[type];
  2604. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2605. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2606. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2607. }
  2608. ctx->n_objects++;
  2609. return result;
  2610. }
  2611. struct ggml_tensor * ggml_new_tensor(
  2612. struct ggml_context * ctx,
  2613. enum ggml_type type,
  2614. int n_dims,
  2615. const int64_t * ne) {
  2616. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2617. }
  2618. struct ggml_tensor * ggml_new_tensor_1d(
  2619. struct ggml_context * ctx,
  2620. enum ggml_type type,
  2621. int64_t ne0) {
  2622. return ggml_new_tensor(ctx, type, 1, &ne0);
  2623. }
  2624. struct ggml_tensor * ggml_new_tensor_2d(
  2625. struct ggml_context * ctx,
  2626. enum ggml_type type,
  2627. int64_t ne0,
  2628. int64_t ne1) {
  2629. const int64_t ne[2] = { ne0, ne1 };
  2630. return ggml_new_tensor(ctx, type, 2, ne);
  2631. }
  2632. struct ggml_tensor * ggml_new_tensor_3d(
  2633. struct ggml_context * ctx,
  2634. enum ggml_type type,
  2635. int64_t ne0,
  2636. int64_t ne1,
  2637. int64_t ne2) {
  2638. const int64_t ne[3] = { ne0, ne1, ne2 };
  2639. return ggml_new_tensor(ctx, type, 3, ne);
  2640. }
  2641. struct ggml_tensor * ggml_new_tensor_4d(
  2642. struct ggml_context * ctx,
  2643. enum ggml_type type,
  2644. int64_t ne0,
  2645. int64_t ne1,
  2646. int64_t ne2,
  2647. int64_t ne3) {
  2648. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2649. return ggml_new_tensor(ctx, type, 4, ne);
  2650. }
  2651. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2652. ctx->scratch_save = ctx->scratch;
  2653. ctx->scratch.data = NULL;
  2654. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2655. ctx->scratch = ctx->scratch_save;
  2656. ggml_set_i32(result, value);
  2657. return result;
  2658. }
  2659. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2660. ctx->scratch_save = ctx->scratch;
  2661. ctx->scratch.data = NULL;
  2662. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2663. ctx->scratch = ctx->scratch_save;
  2664. ggml_set_f32(result, value);
  2665. return result;
  2666. }
  2667. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2668. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2669. }
  2670. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2671. memset(tensor->data, 0, ggml_nbytes(tensor));
  2672. return tensor;
  2673. }
  2674. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2675. const int n = ggml_nrows(tensor);
  2676. const int nc = tensor->ne[0];
  2677. const size_t n1 = tensor->nb[1];
  2678. char * const data = tensor->data;
  2679. switch (tensor->type) {
  2680. case GGML_TYPE_Q4_0:
  2681. {
  2682. GGML_ASSERT(false);
  2683. } break;
  2684. case GGML_TYPE_Q4_1:
  2685. {
  2686. GGML_ASSERT(false);
  2687. } break;
  2688. case GGML_TYPE_I8:
  2689. {
  2690. assert(tensor->nb[0] == sizeof(int8_t));
  2691. for (int i = 0; i < n; i++) {
  2692. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2693. }
  2694. } break;
  2695. case GGML_TYPE_I16:
  2696. {
  2697. assert(tensor->nb[0] == sizeof(int16_t));
  2698. for (int i = 0; i < n; i++) {
  2699. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2700. }
  2701. } break;
  2702. case GGML_TYPE_I32:
  2703. {
  2704. assert(tensor->nb[0] == sizeof(int32_t));
  2705. for (int i = 0; i < n; i++) {
  2706. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2707. }
  2708. } break;
  2709. case GGML_TYPE_F16:
  2710. {
  2711. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2712. for (int i = 0; i < n; i++) {
  2713. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2714. }
  2715. } break;
  2716. case GGML_TYPE_F32:
  2717. {
  2718. assert(tensor->nb[0] == sizeof(float));
  2719. for (int i = 0; i < n; i++) {
  2720. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2721. }
  2722. } break;
  2723. case GGML_TYPE_COUNT:
  2724. {
  2725. GGML_ASSERT(false);
  2726. } break;
  2727. }
  2728. return tensor;
  2729. }
  2730. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2731. const int n = ggml_nrows(tensor);
  2732. const int nc = tensor->ne[0];
  2733. const size_t n1 = tensor->nb[1];
  2734. char * const data = tensor->data;
  2735. switch (tensor->type) {
  2736. case GGML_TYPE_Q4_0:
  2737. {
  2738. GGML_ASSERT(false);
  2739. } break;
  2740. case GGML_TYPE_Q4_1:
  2741. {
  2742. GGML_ASSERT(false);
  2743. } break;
  2744. case GGML_TYPE_I8:
  2745. {
  2746. assert(tensor->nb[0] == sizeof(int8_t));
  2747. for (int i = 0; i < n; i++) {
  2748. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2749. }
  2750. } break;
  2751. case GGML_TYPE_I16:
  2752. {
  2753. assert(tensor->nb[0] == sizeof(int16_t));
  2754. for (int i = 0; i < n; i++) {
  2755. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2756. }
  2757. } break;
  2758. case GGML_TYPE_I32:
  2759. {
  2760. assert(tensor->nb[0] == sizeof(int32_t));
  2761. for (int i = 0; i < n; i++) {
  2762. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2763. }
  2764. } break;
  2765. case GGML_TYPE_F16:
  2766. {
  2767. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2768. for (int i = 0; i < n; i++) {
  2769. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2770. }
  2771. } break;
  2772. case GGML_TYPE_F32:
  2773. {
  2774. assert(tensor->nb[0] == sizeof(float));
  2775. for (int i = 0; i < n; i++) {
  2776. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2777. }
  2778. } break;
  2779. case GGML_TYPE_COUNT:
  2780. {
  2781. GGML_ASSERT(false);
  2782. } break;
  2783. }
  2784. return tensor;
  2785. }
  2786. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2787. switch (tensor->type) {
  2788. case GGML_TYPE_Q4_0:
  2789. {
  2790. GGML_ASSERT(false);
  2791. } break;
  2792. case GGML_TYPE_Q4_1:
  2793. {
  2794. GGML_ASSERT(false);
  2795. } break;
  2796. case GGML_TYPE_I8:
  2797. {
  2798. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2799. return ((int8_t *)(tensor->data))[i];
  2800. } break;
  2801. case GGML_TYPE_I16:
  2802. {
  2803. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2804. return ((int16_t *)(tensor->data))[i];
  2805. } break;
  2806. case GGML_TYPE_I32:
  2807. {
  2808. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2809. return ((int32_t *)(tensor->data))[i];
  2810. } break;
  2811. case GGML_TYPE_F16:
  2812. {
  2813. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2814. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2815. } break;
  2816. case GGML_TYPE_F32:
  2817. {
  2818. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2819. return ((float *)(tensor->data))[i];
  2820. } break;
  2821. case GGML_TYPE_COUNT:
  2822. {
  2823. GGML_ASSERT(false);
  2824. } break;
  2825. }
  2826. return 0.0f;
  2827. }
  2828. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2829. switch (tensor->type) {
  2830. case GGML_TYPE_Q4_0:
  2831. {
  2832. GGML_ASSERT(false);
  2833. } break;
  2834. case GGML_TYPE_Q4_1:
  2835. {
  2836. GGML_ASSERT(false);
  2837. } break;
  2838. case GGML_TYPE_I8:
  2839. {
  2840. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2841. ((int8_t *)(tensor->data))[i] = value;
  2842. } break;
  2843. case GGML_TYPE_I16:
  2844. {
  2845. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2846. ((int16_t *)(tensor->data))[i] = value;
  2847. } break;
  2848. case GGML_TYPE_I32:
  2849. {
  2850. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2851. ((int32_t *)(tensor->data))[i] = value;
  2852. } break;
  2853. case GGML_TYPE_F16:
  2854. {
  2855. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2856. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2857. } break;
  2858. case GGML_TYPE_F32:
  2859. {
  2860. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2861. ((float *)(tensor->data))[i] = value;
  2862. } break;
  2863. case GGML_TYPE_COUNT:
  2864. {
  2865. GGML_ASSERT(false);
  2866. } break;
  2867. }
  2868. }
  2869. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2870. switch (tensor->type) {
  2871. case GGML_TYPE_Q4_0:
  2872. {
  2873. GGML_ASSERT(false);
  2874. } break;
  2875. case GGML_TYPE_Q4_1:
  2876. {
  2877. GGML_ASSERT(false);
  2878. } break;
  2879. case GGML_TYPE_I8:
  2880. {
  2881. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2882. return ((int8_t *)(tensor->data))[i];
  2883. } break;
  2884. case GGML_TYPE_I16:
  2885. {
  2886. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2887. return ((int16_t *)(tensor->data))[i];
  2888. } break;
  2889. case GGML_TYPE_I32:
  2890. {
  2891. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2892. return ((int32_t *)(tensor->data))[i];
  2893. } break;
  2894. case GGML_TYPE_F16:
  2895. {
  2896. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2897. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2898. } break;
  2899. case GGML_TYPE_F32:
  2900. {
  2901. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2902. return ((float *)(tensor->data))[i];
  2903. } break;
  2904. case GGML_TYPE_COUNT:
  2905. {
  2906. GGML_ASSERT(false);
  2907. } break;
  2908. }
  2909. return 0.0f;
  2910. }
  2911. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2912. switch (tensor->type) {
  2913. case GGML_TYPE_Q4_0:
  2914. {
  2915. GGML_ASSERT(false);
  2916. } break;
  2917. case GGML_TYPE_Q4_1:
  2918. {
  2919. GGML_ASSERT(false);
  2920. } break;
  2921. case GGML_TYPE_I8:
  2922. {
  2923. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2924. ((int8_t *)(tensor->data))[i] = value;
  2925. } break;
  2926. case GGML_TYPE_I16:
  2927. {
  2928. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2929. ((int16_t *)(tensor->data))[i] = value;
  2930. } break;
  2931. case GGML_TYPE_I32:
  2932. {
  2933. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2934. ((int32_t *)(tensor->data))[i] = value;
  2935. } break;
  2936. case GGML_TYPE_F16:
  2937. {
  2938. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2939. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2940. } break;
  2941. case GGML_TYPE_F32:
  2942. {
  2943. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2944. ((float *)(tensor->data))[i] = value;
  2945. } break;
  2946. case GGML_TYPE_COUNT:
  2947. {
  2948. GGML_ASSERT(false);
  2949. } break;
  2950. }
  2951. }
  2952. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2953. return tensor->data;
  2954. }
  2955. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2956. assert(tensor->type == GGML_TYPE_F32);
  2957. return (float *)(tensor->data);
  2958. }
  2959. struct ggml_tensor * ggml_view_tensor(
  2960. struct ggml_context * ctx,
  2961. const struct ggml_tensor * src) {
  2962. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2963. result->nb[0] = src->nb[0];
  2964. result->nb[1] = src->nb[1];
  2965. result->nb[2] = src->nb[2];
  2966. result->nb[3] = src->nb[3];
  2967. return result;
  2968. }
  2969. ////////////////////////////////////////////////////////////////////////////////
  2970. // ggml_dup
  2971. struct ggml_tensor * ggml_dup_impl(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. bool inplace) {
  2975. bool is_node = false;
  2976. if (!inplace && (a->grad)) {
  2977. is_node = true;
  2978. }
  2979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2980. result->op = GGML_OP_DUP;
  2981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2982. result->src0 = a;
  2983. result->src1 = NULL;
  2984. return result;
  2985. }
  2986. struct ggml_tensor * ggml_dup(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a) {
  2989. return ggml_dup_impl(ctx, a, false);
  2990. }
  2991. struct ggml_tensor * ggml_dup_inplace(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a) {
  2994. return ggml_dup_impl(ctx, a, true);
  2995. }
  2996. // ggml_add
  2997. struct ggml_tensor * ggml_add_impl(
  2998. struct ggml_context * ctx,
  2999. struct ggml_tensor * a,
  3000. struct ggml_tensor * b,
  3001. bool inplace) {
  3002. GGML_ASSERT(ggml_are_same_shape(a, b));
  3003. bool is_node = false;
  3004. if (!inplace && (a->grad || b->grad)) {
  3005. is_node = true;
  3006. }
  3007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3008. result->op = GGML_OP_ADD;
  3009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3010. result->src0 = a;
  3011. result->src1 = b;
  3012. return result;
  3013. }
  3014. struct ggml_tensor * ggml_add(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. struct ggml_tensor * b) {
  3018. return ggml_add_impl(ctx, a, b, false);
  3019. }
  3020. struct ggml_tensor * ggml_add_inplace(
  3021. struct ggml_context * ctx,
  3022. struct ggml_tensor * a,
  3023. struct ggml_tensor * b) {
  3024. return ggml_add_impl(ctx, a, b, true);
  3025. }
  3026. // ggml_sub
  3027. struct ggml_tensor * ggml_sub_impl(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a,
  3030. struct ggml_tensor * b,
  3031. bool inplace) {
  3032. GGML_ASSERT(ggml_are_same_shape(a, b));
  3033. bool is_node = false;
  3034. if (!inplace && (a->grad || b->grad)) {
  3035. is_node = true;
  3036. }
  3037. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3038. result->op = GGML_OP_SUB;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src0 = a;
  3041. result->src1 = b;
  3042. return result;
  3043. }
  3044. struct ggml_tensor * ggml_sub(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. struct ggml_tensor * b) {
  3048. return ggml_sub_impl(ctx, a, b, false);
  3049. }
  3050. struct ggml_tensor * ggml_sub_inplace(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a,
  3053. struct ggml_tensor * b) {
  3054. return ggml_sub_impl(ctx, a, b, true);
  3055. }
  3056. // ggml_mul
  3057. struct ggml_tensor * ggml_mul_impl(
  3058. struct ggml_context * ctx,
  3059. struct ggml_tensor * a,
  3060. struct ggml_tensor * b,
  3061. bool inplace) {
  3062. GGML_ASSERT(ggml_are_same_shape(a, b));
  3063. bool is_node = false;
  3064. if (!inplace && (a->grad || b->grad)) {
  3065. is_node = true;
  3066. }
  3067. if (inplace) {
  3068. GGML_ASSERT(is_node == false);
  3069. }
  3070. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3071. result->op = GGML_OP_MUL;
  3072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3073. result->src0 = a;
  3074. result->src1 = b;
  3075. return result;
  3076. }
  3077. struct ggml_tensor * ggml_mul(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. struct ggml_tensor * b) {
  3081. return ggml_mul_impl(ctx, a, b, false);
  3082. }
  3083. struct ggml_tensor * ggml_mul_inplace(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a,
  3086. struct ggml_tensor * b) {
  3087. return ggml_mul_impl(ctx, a, b, true);
  3088. }
  3089. // ggml_div
  3090. struct ggml_tensor * ggml_div_impl(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a,
  3093. struct ggml_tensor * b,
  3094. bool inplace) {
  3095. GGML_ASSERT(ggml_are_same_shape(a, b));
  3096. bool is_node = false;
  3097. if (!inplace && (a->grad || b->grad)) {
  3098. is_node = true;
  3099. }
  3100. if (inplace) {
  3101. GGML_ASSERT(is_node == false);
  3102. }
  3103. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3104. result->op = GGML_OP_DIV;
  3105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3106. result->src0 = a;
  3107. result->src1 = b;
  3108. return result;
  3109. }
  3110. struct ggml_tensor * ggml_div(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a,
  3113. struct ggml_tensor * b) {
  3114. return ggml_div_impl(ctx, a, b, false);
  3115. }
  3116. struct ggml_tensor * ggml_div_inplace(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a,
  3119. struct ggml_tensor * b) {
  3120. return ggml_div_impl(ctx, a, b, true);
  3121. }
  3122. // ggml_sqr
  3123. struct ggml_tensor * ggml_sqr_impl(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a,
  3126. bool inplace) {
  3127. bool is_node = false;
  3128. if (!inplace && (a->grad)) {
  3129. is_node = true;
  3130. }
  3131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3132. result->op = GGML_OP_SQR;
  3133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3134. result->src0 = a;
  3135. result->src1 = NULL;
  3136. return result;
  3137. }
  3138. struct ggml_tensor * ggml_sqr(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_sqr_impl(ctx, a, false);
  3142. }
  3143. struct ggml_tensor * ggml_sqr_inplace(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a) {
  3146. return ggml_sqr_impl(ctx, a, true);
  3147. }
  3148. // ggml_sqrt
  3149. struct ggml_tensor * ggml_sqrt_impl(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. bool inplace) {
  3153. bool is_node = false;
  3154. if (!inplace && (a->grad)) {
  3155. is_node = true;
  3156. }
  3157. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3158. result->op = GGML_OP_SQRT;
  3159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3160. result->src0 = a;
  3161. result->src1 = NULL;
  3162. return result;
  3163. }
  3164. struct ggml_tensor * ggml_sqrt(
  3165. struct ggml_context * ctx,
  3166. struct ggml_tensor * a) {
  3167. return ggml_sqrt_impl(ctx, a, false);
  3168. }
  3169. struct ggml_tensor * ggml_sqrt_inplace(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a) {
  3172. return ggml_sqrt_impl(ctx, a, true);
  3173. }
  3174. // ggml_sum
  3175. struct ggml_tensor * ggml_sum(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a) {
  3178. bool is_node = false;
  3179. if (a->grad) {
  3180. is_node = true;
  3181. }
  3182. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3183. result->op = GGML_OP_SUM;
  3184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3185. result->src0 = a;
  3186. result->src1 = NULL;
  3187. return result;
  3188. }
  3189. // ggml_mean
  3190. struct ggml_tensor * ggml_mean(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. bool is_node = false;
  3194. if (a->grad) {
  3195. GGML_ASSERT(false); // TODO: implement
  3196. is_node = true;
  3197. }
  3198. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3199. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3200. result->op = GGML_OP_MEAN;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src0 = a;
  3203. result->src1 = NULL;
  3204. return result;
  3205. }
  3206. // ggml_repeat
  3207. struct ggml_tensor * ggml_repeat(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. struct ggml_tensor * b) {
  3211. GGML_ASSERT(ggml_can_repeat(a, b));
  3212. bool is_node = false;
  3213. if (a->grad) {
  3214. is_node = true;
  3215. }
  3216. if (ggml_are_same_shape(a, b) && !is_node) {
  3217. return a;
  3218. }
  3219. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3220. result->op = GGML_OP_REPEAT;
  3221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3222. result->src0 = a;
  3223. result->src1 = b;
  3224. return result;
  3225. }
  3226. // ggml_abs
  3227. struct ggml_tensor * ggml_abs_impl(
  3228. struct ggml_context * ctx,
  3229. struct ggml_tensor * a,
  3230. bool inplace) {
  3231. bool is_node = false;
  3232. if (!inplace && (a->grad)) {
  3233. is_node = true;
  3234. }
  3235. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3236. result->op = GGML_OP_ABS;
  3237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3238. result->src0 = a;
  3239. result->src1 = NULL;
  3240. return result;
  3241. }
  3242. struct ggml_tensor * ggml_abs(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a) {
  3245. return ggml_abs_impl(ctx, a, false);
  3246. }
  3247. struct ggml_tensor * ggml_abs_inplace(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a) {
  3250. return ggml_abs_impl(ctx, a, true);
  3251. }
  3252. // ggml_sgn
  3253. struct ggml_tensor * ggml_sgn_impl(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. bool inplace) {
  3257. bool is_node = false;
  3258. if (!inplace && (a->grad)) {
  3259. is_node = true;
  3260. }
  3261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3262. result->op = GGML_OP_SGN;
  3263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3264. result->src0 = a;
  3265. result->src1 = NULL;
  3266. return result;
  3267. }
  3268. struct ggml_tensor * ggml_sgn(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a) {
  3271. return ggml_sgn_impl(ctx, a, false);
  3272. }
  3273. struct ggml_tensor * ggml_sgn_inplace(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a) {
  3276. return ggml_sgn_impl(ctx, a, true);
  3277. }
  3278. // ggml_neg
  3279. struct ggml_tensor * ggml_neg_impl(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a,
  3282. bool inplace) {
  3283. bool is_node = false;
  3284. if (!inplace && (a->grad)) {
  3285. is_node = true;
  3286. }
  3287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3288. result->op = GGML_OP_NEG;
  3289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3290. result->src0 = a;
  3291. result->src1 = NULL;
  3292. return result;
  3293. }
  3294. struct ggml_tensor * ggml_neg(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a) {
  3297. return ggml_neg_impl(ctx, a, false);
  3298. }
  3299. struct ggml_tensor * ggml_neg_inplace(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a) {
  3302. return ggml_neg_impl(ctx, a, true);
  3303. }
  3304. // ggml_step
  3305. struct ggml_tensor * ggml_step_impl(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a,
  3308. bool inplace) {
  3309. bool is_node = false;
  3310. if (!inplace && (a->grad)) {
  3311. is_node = true;
  3312. }
  3313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3314. result->op = GGML_OP_STEP;
  3315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3316. result->src0 = a;
  3317. result->src1 = NULL;
  3318. return result;
  3319. }
  3320. struct ggml_tensor * ggml_step(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a) {
  3323. return ggml_step_impl(ctx, a, false);
  3324. }
  3325. struct ggml_tensor * ggml_step_inplace(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a) {
  3328. return ggml_step_impl(ctx, a, true);
  3329. }
  3330. // ggml_relu
  3331. struct ggml_tensor * ggml_relu_impl(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. bool inplace) {
  3335. bool is_node = false;
  3336. if (!inplace && (a->grad)) {
  3337. is_node = true;
  3338. }
  3339. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3340. result->op = GGML_OP_RELU;
  3341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3342. result->src0 = a;
  3343. result->src1 = NULL;
  3344. return result;
  3345. }
  3346. struct ggml_tensor * ggml_relu(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a) {
  3349. return ggml_relu_impl(ctx, a, false);
  3350. }
  3351. struct ggml_tensor * ggml_relu_inplace(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a) {
  3354. return ggml_relu_impl(ctx, a, true);
  3355. }
  3356. // ggml_gelu
  3357. struct ggml_tensor * ggml_gelu_impl(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a,
  3360. bool inplace) {
  3361. bool is_node = false;
  3362. if (!inplace && (a->grad)) {
  3363. is_node = true;
  3364. }
  3365. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3366. result->op = GGML_OP_GELU;
  3367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3368. result->src0 = a;
  3369. result->src1 = NULL;
  3370. return result;
  3371. }
  3372. struct ggml_tensor * ggml_gelu(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a) {
  3375. return ggml_gelu_impl(ctx, a, false);
  3376. }
  3377. struct ggml_tensor * ggml_gelu_inplace(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_gelu_impl(ctx, a, true);
  3381. }
  3382. // ggml_silu
  3383. struct ggml_tensor * ggml_silu_impl(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. bool inplace) {
  3387. bool is_node = false;
  3388. if (!inplace && (a->grad)) {
  3389. is_node = true;
  3390. }
  3391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3392. result->op = GGML_OP_SILU;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = a;
  3395. result->src1 = NULL;
  3396. return result;
  3397. }
  3398. struct ggml_tensor * ggml_silu(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. return ggml_silu_impl(ctx, a, false);
  3402. }
  3403. struct ggml_tensor * ggml_silu_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. return ggml_silu_impl(ctx, a, true);
  3407. }
  3408. // ggml_norm
  3409. struct ggml_tensor * ggml_norm_impl(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. bool inplace) {
  3413. bool is_node = false;
  3414. if (!inplace && (a->grad)) {
  3415. GGML_ASSERT(false); // TODO: implement backward
  3416. is_node = true;
  3417. }
  3418. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3419. result->op = GGML_OP_NORM;
  3420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3421. result->src0 = a;
  3422. result->src1 = NULL; // TODO: maybe store epsilon here?
  3423. return result;
  3424. }
  3425. struct ggml_tensor * ggml_norm(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a) {
  3428. return ggml_norm_impl(ctx, a, false);
  3429. }
  3430. struct ggml_tensor * ggml_norm_inplace(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a) {
  3433. return ggml_norm_impl(ctx, a, true);
  3434. }
  3435. struct ggml_tensor * ggml_rms_norm_impl(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a,
  3438. bool inplace) {
  3439. bool is_node = false;
  3440. if (!inplace && (a->grad)) {
  3441. GGML_ASSERT(false); // TODO: implement backward
  3442. is_node = true;
  3443. }
  3444. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3445. result->op = GGML_OP_RMS_NORM;
  3446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3447. result->src0 = a;
  3448. result->src1 = NULL; // TODO: maybe store epsilon here?
  3449. return result;
  3450. }
  3451. struct ggml_tensor * ggml_rms_norm(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a) {
  3454. return ggml_rms_norm_impl(ctx, a, false);
  3455. }
  3456. struct ggml_tensor * ggml_rms_norm_inplace(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a) {
  3459. return ggml_rms_norm_impl(ctx, a, true);
  3460. }
  3461. // ggml_mul_mat
  3462. struct ggml_tensor * ggml_mul_mat(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b) {
  3466. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3467. GGML_ASSERT(!ggml_is_transposed(a));
  3468. bool is_node = false;
  3469. if (a->grad || b->grad) {
  3470. is_node = true;
  3471. }
  3472. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3473. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3474. result->op = GGML_OP_MUL_MAT;
  3475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3476. result->src0 = a;
  3477. result->src1 = b;
  3478. return result;
  3479. }
  3480. // ggml_scale
  3481. struct ggml_tensor * ggml_scale_impl(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a,
  3484. struct ggml_tensor * b,
  3485. bool inplace) {
  3486. GGML_ASSERT(ggml_is_scalar(b));
  3487. GGML_ASSERT(ggml_is_padded_1d(a));
  3488. bool is_node = false;
  3489. if (!inplace && (a->grad || b->grad)) {
  3490. GGML_ASSERT(false); // TODO: implement backward
  3491. is_node = true;
  3492. }
  3493. // TODO: when implement backward, fix this:
  3494. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3495. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3496. result->op = GGML_OP_SCALE;
  3497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3498. result->src0 = a;
  3499. result->src1 = b;
  3500. return result;
  3501. }
  3502. struct ggml_tensor * ggml_scale(
  3503. struct ggml_context * ctx,
  3504. struct ggml_tensor * a,
  3505. struct ggml_tensor * b) {
  3506. return ggml_scale_impl(ctx, a, b, false);
  3507. }
  3508. struct ggml_tensor * ggml_scale_inplace(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. struct ggml_tensor * b) {
  3512. return ggml_scale_impl(ctx, a, b, true);
  3513. }
  3514. // ggml_cpy
  3515. struct ggml_tensor * ggml_cpy_impl(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b,
  3519. bool inplace) {
  3520. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3521. bool is_node = false;
  3522. if (!inplace && (a->grad || b->grad)) {
  3523. GGML_ASSERT(false); // TODO: implement backward
  3524. is_node = true;
  3525. }
  3526. // make a view of the destination
  3527. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3528. result->op = GGML_OP_CPY;
  3529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3530. result->src0 = a;
  3531. result->src1 = b;
  3532. return result;
  3533. }
  3534. struct ggml_tensor * ggml_cpy(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. struct ggml_tensor * b) {
  3538. return ggml_cpy_impl(ctx, a, b, false);
  3539. }
  3540. struct ggml_tensor * ggml_cpy_inplace(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. struct ggml_tensor * b) {
  3544. return ggml_cpy_impl(ctx, a, b, true);
  3545. }
  3546. // ggml_cont
  3547. struct ggml_tensor * ggml_cont_impl(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. bool inplace) {
  3551. bool is_node = false;
  3552. if (!inplace && a->grad) {
  3553. GGML_ASSERT(false); // TODO: implement backward
  3554. is_node = true;
  3555. }
  3556. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3557. result->op = GGML_OP_CONT;
  3558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3559. result->src0 = a;
  3560. result->src1 = NULL;
  3561. return result;
  3562. }
  3563. struct ggml_tensor * ggml_cont(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a) {
  3566. return ggml_cont_impl(ctx, a, false);
  3567. }
  3568. struct ggml_tensor * ggml_cont_inplace(
  3569. struct ggml_context * ctx,
  3570. struct ggml_tensor * a) {
  3571. return ggml_cont_impl(ctx, a, true);
  3572. }
  3573. // ggml_reshape
  3574. struct ggml_tensor * ggml_reshape(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. struct ggml_tensor * b) {
  3578. GGML_ASSERT(ggml_is_contiguous(a));
  3579. GGML_ASSERT(ggml_is_contiguous(b));
  3580. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3581. bool is_node = false;
  3582. if (a->grad || b->grad) {
  3583. GGML_ASSERT(false); // TODO: implement backward
  3584. is_node = true;
  3585. }
  3586. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3587. result->op = GGML_OP_RESHAPE;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src0 = a;
  3590. result->src1 = NULL;
  3591. return result;
  3592. }
  3593. struct ggml_tensor * ggml_reshape_2d(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. int64_t ne0,
  3597. int64_t ne1) {
  3598. GGML_ASSERT(ggml_is_contiguous(a));
  3599. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3600. bool is_node = false;
  3601. if (a->grad) {
  3602. GGML_ASSERT(false); // TODO: implement backward
  3603. is_node = true;
  3604. }
  3605. const int64_t ne[2] = { ne0, ne1 };
  3606. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3607. result->op = GGML_OP_RESHAPE;
  3608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3609. result->src0 = a;
  3610. result->src1 = NULL;
  3611. return result;
  3612. }
  3613. struct ggml_tensor * ggml_reshape_3d(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a,
  3616. int64_t ne0,
  3617. int64_t ne1,
  3618. int64_t ne2) {
  3619. GGML_ASSERT(ggml_is_contiguous(a));
  3620. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3621. bool is_node = false;
  3622. if (a->grad) {
  3623. GGML_ASSERT(false); // TODO: implement backward
  3624. is_node = true;
  3625. }
  3626. const int64_t ne[3] = { ne0, ne1, ne2 };
  3627. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3628. result->op = GGML_OP_RESHAPE;
  3629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3630. result->src0 = a;
  3631. result->src1 = NULL;
  3632. return result;
  3633. }
  3634. // ggml_view_1d
  3635. struct ggml_tensor * ggml_view_1d(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. int64_t ne0,
  3639. size_t offset) {
  3640. if (a->grad) {
  3641. GGML_ASSERT(false); // gradient propagation is not supported
  3642. }
  3643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3644. result->op = GGML_OP_VIEW;
  3645. result->grad = NULL;
  3646. result->src0 = a;
  3647. result->src1 = NULL; // TODO: maybe store the offset here?
  3648. return result;
  3649. }
  3650. // ggml_view_2d
  3651. struct ggml_tensor * ggml_view_2d(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. int64_t ne0,
  3655. int64_t ne1,
  3656. size_t nb1,
  3657. size_t offset) {
  3658. if (a->grad) {
  3659. GGML_ASSERT(false); // gradient propagation is not supported
  3660. }
  3661. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3662. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3663. result->nb[1] = nb1;
  3664. result->nb[2] = result->nb[1]*ne1;
  3665. result->nb[3] = result->nb[2];
  3666. result->op = GGML_OP_VIEW;
  3667. result->grad = NULL;
  3668. result->src0 = a;
  3669. result->src1 = NULL; // TODO: maybe store the offset here?
  3670. return result;
  3671. }
  3672. // ggml_view_3d
  3673. struct ggml_tensor * ggml_view_3d(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * a,
  3676. int64_t ne0,
  3677. int64_t ne1,
  3678. int64_t ne2,
  3679. size_t nb1,
  3680. size_t nb2,
  3681. size_t offset) {
  3682. if (a->grad) {
  3683. GGML_ASSERT(false); // gradient propagation is not supported
  3684. }
  3685. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3686. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3687. result->nb[1] = nb1;
  3688. result->nb[2] = nb2;
  3689. result->nb[3] = result->nb[2]*ne2;
  3690. result->op = GGML_OP_VIEW;
  3691. result->grad = NULL;
  3692. result->src0 = a;
  3693. result->src1 = NULL; // TODO: maybe store the offset here?
  3694. return result;
  3695. }
  3696. // ggml_permute
  3697. struct ggml_tensor * ggml_permute(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. int axis0,
  3701. int axis1,
  3702. int axis2,
  3703. int axis3) {
  3704. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3705. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3706. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3707. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3708. GGML_ASSERT(axis0 != axis1);
  3709. GGML_ASSERT(axis0 != axis2);
  3710. GGML_ASSERT(axis0 != axis3);
  3711. GGML_ASSERT(axis1 != axis2);
  3712. GGML_ASSERT(axis1 != axis3);
  3713. GGML_ASSERT(axis2 != axis3);
  3714. bool is_node = false;
  3715. if (a->grad) {
  3716. GGML_ASSERT(false); // TODO: implement backward
  3717. is_node = true;
  3718. }
  3719. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3720. int ne[GGML_MAX_DIMS];
  3721. int nb[GGML_MAX_DIMS];
  3722. ne[axis0] = a->ne[0];
  3723. ne[axis1] = a->ne[1];
  3724. ne[axis2] = a->ne[2];
  3725. ne[axis3] = a->ne[3];
  3726. nb[axis0] = a->nb[0];
  3727. nb[axis1] = a->nb[1];
  3728. nb[axis2] = a->nb[2];
  3729. nb[axis3] = a->nb[3];
  3730. result->ne[0] = ne[0];
  3731. result->ne[1] = ne[1];
  3732. result->ne[2] = ne[2];
  3733. result->ne[3] = ne[3];
  3734. result->nb[0] = nb[0];
  3735. result->nb[1] = nb[1];
  3736. result->nb[2] = nb[2];
  3737. result->nb[3] = nb[3];
  3738. result->op = GGML_OP_PERMUTE;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src0 = a;
  3741. result->src1 = NULL; // TODO: maybe store the permutation here?
  3742. return result;
  3743. }
  3744. // ggml_transpose
  3745. struct ggml_tensor * ggml_transpose(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a) {
  3748. bool is_node = false;
  3749. if (a->grad) {
  3750. GGML_ASSERT(false); // TODO: implement backward
  3751. is_node = true;
  3752. }
  3753. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3754. result->ne[0] = a->ne[1];
  3755. result->ne[1] = a->ne[0];
  3756. result->nb[0] = a->nb[1];
  3757. result->nb[1] = a->nb[0];
  3758. result->op = GGML_OP_TRANSPOSE;
  3759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3760. result->src0 = a;
  3761. result->src1 = NULL;
  3762. return result;
  3763. }
  3764. // ggml_get_rows
  3765. struct ggml_tensor * ggml_get_rows(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a,
  3768. struct ggml_tensor * b) {
  3769. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3770. bool is_node = false;
  3771. if (a->grad || b->grad) {
  3772. GGML_ASSERT(false); // TODO: implement backward
  3773. is_node = true;
  3774. }
  3775. // TODO: implement non F32 return
  3776. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3777. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3778. result->op = GGML_OP_GET_ROWS;
  3779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3780. result->src0 = a;
  3781. result->src1 = b;
  3782. return result;
  3783. }
  3784. // ggml_diag_mask_inf
  3785. struct ggml_tensor * ggml_diag_mask_inf(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a,
  3788. int n_past) {
  3789. bool is_node = false;
  3790. if (a->grad) {
  3791. GGML_ASSERT(false); // TODO: implement backward
  3792. is_node = true;
  3793. }
  3794. // TODO: when implement backward, fix this:
  3795. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3796. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3797. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3798. result->op = GGML_OP_DIAG_MASK_INF;
  3799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3800. result->src0 = a;
  3801. result->src1 = b;
  3802. return result;
  3803. }
  3804. // ggml_soft_max
  3805. struct ggml_tensor * ggml_soft_max(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a) {
  3808. bool is_node = false;
  3809. if (a->grad) {
  3810. GGML_ASSERT(false); // TODO: implement backward
  3811. is_node = true;
  3812. }
  3813. // TODO: when implement backward, fix this:
  3814. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3815. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3816. result->op = GGML_OP_SOFT_MAX;
  3817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3818. result->src0 = a;
  3819. result->src1 = NULL;
  3820. return result;
  3821. }
  3822. // ggml_rope
  3823. struct ggml_tensor * ggml_rope(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a,
  3826. int n_past,
  3827. int n_dims,
  3828. int mode) {
  3829. GGML_ASSERT(n_past >= 0);
  3830. bool is_node = false;
  3831. if (a->grad) {
  3832. GGML_ASSERT(false); // TODO: implement backward
  3833. is_node = true;
  3834. }
  3835. // TODO: when implement backward, fix this:
  3836. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3837. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3838. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3839. ((int32_t *) b->data)[0] = n_past;
  3840. ((int32_t *) b->data)[1] = n_dims;
  3841. ((int32_t *) b->data)[2] = mode;
  3842. result->op = GGML_OP_ROPE;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src0 = a;
  3845. result->src1 = b;
  3846. return result;
  3847. }
  3848. // ggml_conv_1d_1s
  3849. struct ggml_tensor * ggml_conv_1d_1s(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. struct ggml_tensor * b) {
  3853. GGML_ASSERT(ggml_is_matrix(b));
  3854. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3855. GGML_ASSERT(a->ne[3] == 1);
  3856. bool is_node = false;
  3857. if (a->grad || b->grad) {
  3858. GGML_ASSERT(false); // TODO: implement backward
  3859. is_node = true;
  3860. }
  3861. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3862. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3863. result->op = GGML_OP_CONV_1D_1S;
  3864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3865. result->src0 = a;
  3866. result->src1 = b;
  3867. return result;
  3868. }
  3869. // ggml_conv_1d_2s
  3870. struct ggml_tensor * ggml_conv_1d_2s(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. struct ggml_tensor * b) {
  3874. GGML_ASSERT(ggml_is_matrix(b));
  3875. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3876. GGML_ASSERT(a->ne[3] == 1);
  3877. bool is_node = false;
  3878. if (a->grad || b->grad) {
  3879. GGML_ASSERT(false); // TODO: implement backward
  3880. is_node = true;
  3881. }
  3882. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3883. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3884. result->op = GGML_OP_CONV_1D_2S;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src0 = a;
  3887. result->src1 = b;
  3888. return result;
  3889. }
  3890. // ggml_flash_attn
  3891. struct ggml_tensor * ggml_flash_attn(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * q,
  3894. struct ggml_tensor * k,
  3895. struct ggml_tensor * v,
  3896. bool masked) {
  3897. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3898. // TODO: check if vT can be multiplied by (k*qT)
  3899. bool is_node = false;
  3900. if (q->grad || k->grad || v->grad) {
  3901. GGML_ASSERT(false); // TODO: implement backward
  3902. is_node = true;
  3903. }
  3904. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3905. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3906. result->op = GGML_OP_FLASH_ATTN;
  3907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3908. result->src0 = q;
  3909. result->src1 = k;
  3910. result->opt[0] = v;
  3911. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3912. return result;
  3913. }
  3914. // ggml_flash_ff
  3915. struct ggml_tensor * ggml_flash_ff(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. struct ggml_tensor * b0,
  3919. struct ggml_tensor * b1,
  3920. struct ggml_tensor * c0,
  3921. struct ggml_tensor * c1) {
  3922. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3923. // TODO: more checks
  3924. bool is_node = false;
  3925. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3926. GGML_ASSERT(false); // TODO: implement backward
  3927. is_node = true;
  3928. }
  3929. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3930. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3931. result->op = GGML_OP_FLASH_FF;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src0 = a;
  3934. result->src1 = b0;
  3935. result->opt[0] = b1;
  3936. result->opt[1] = c0;
  3937. result->opt[2] = c1;
  3938. return result;
  3939. }
  3940. ////////////////////////////////////////////////////////////////////////////////
  3941. void ggml_set_param(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * tensor) {
  3944. tensor->is_param = true;
  3945. GGML_ASSERT(tensor->grad == NULL);
  3946. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3947. }
  3948. // ggml_compute_forward_dup
  3949. static void ggml_compute_forward_dup_f16(
  3950. const struct ggml_compute_params * params,
  3951. const struct ggml_tensor * src0,
  3952. struct ggml_tensor * dst) {
  3953. GGML_ASSERT(params->ith == 0);
  3954. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3956. return;
  3957. }
  3958. const int64_t ne00 = src0->ne[0];
  3959. const int64_t ne01 = src0->ne[1];
  3960. const int64_t ne02 = src0->ne[2];
  3961. const int64_t ne03 = src0->ne[3];
  3962. const size_t nb00 = src0->nb[0];
  3963. const size_t nb01 = src0->nb[1];
  3964. const size_t nb02 = src0->nb[2];
  3965. const size_t nb03 = src0->nb[3];
  3966. const size_t nb0 = dst->nb[0];
  3967. const size_t nb1 = dst->nb[1];
  3968. const size_t nb2 = dst->nb[2];
  3969. const size_t nb3 = dst->nb[3];
  3970. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3971. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3972. return;
  3973. }
  3974. if (src0->type == dst->type &&
  3975. src0->ne[0] == dst->ne[0] &&
  3976. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3977. // copy by rows
  3978. const size_t rs = ne00*nb00;
  3979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3981. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3982. memcpy(
  3983. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3984. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3985. rs);
  3986. }
  3987. }
  3988. }
  3989. return;
  3990. }
  3991. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3992. if (ggml_is_contiguous(dst)) {
  3993. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3994. if (dst->type == GGML_TYPE_F16) {
  3995. size_t id = 0;
  3996. const size_t rs = ne00*nb00;
  3997. for (int i03 = 0; i03 < ne03; i03++) {
  3998. for (int i02 = 0; i02 < ne02; i02++) {
  3999. for (int i01 = 0; i01 < ne01; i01++) {
  4000. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4001. char * dst_ptr = (char *) dst->data + id*rs;
  4002. memcpy(dst_ptr, src0_ptr, rs);
  4003. id++;
  4004. }
  4005. }
  4006. }
  4007. } else if (dst->type == GGML_TYPE_F32) {
  4008. size_t id = 0;
  4009. float * dst_ptr = (float *) dst->data;
  4010. for (int i03 = 0; i03 < ne03; i03++) {
  4011. for (int i02 = 0; i02 < ne02; i02++) {
  4012. for (int i01 = 0; i01 < ne01; i01++) {
  4013. for (int i00 = 0; i00 < ne00; i00++) {
  4014. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4015. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4016. id++;
  4017. }
  4018. }
  4019. }
  4020. }
  4021. } else {
  4022. GGML_ASSERT(false); // TODO: implement
  4023. }
  4024. } else {
  4025. //printf("%s: this is not optimal - fix me\n", __func__);
  4026. if (dst->type == GGML_TYPE_F32) {
  4027. size_t id = 0;
  4028. float * dst_ptr = (float *) dst->data;
  4029. for (int i03 = 0; i03 < ne03; i03++) {
  4030. for (int i02 = 0; i02 < ne02; i02++) {
  4031. for (int i01 = 0; i01 < ne01; i01++) {
  4032. for (int i00 = 0; i00 < ne00; i00++) {
  4033. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4034. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4035. id++;
  4036. }
  4037. }
  4038. }
  4039. }
  4040. } else if (dst->type == GGML_TYPE_F16) {
  4041. size_t id = 0;
  4042. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4043. for (int i03 = 0; i03 < ne03; i03++) {
  4044. for (int i02 = 0; i02 < ne02; i02++) {
  4045. for (int i01 = 0; i01 < ne01; i01++) {
  4046. for (int i00 = 0; i00 < ne00; i00++) {
  4047. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4048. dst_ptr[id] = *src0_ptr;
  4049. id++;
  4050. }
  4051. }
  4052. }
  4053. }
  4054. } else {
  4055. GGML_ASSERT(false); // TODO: implement
  4056. }
  4057. }
  4058. return;
  4059. }
  4060. // dst counters
  4061. int64_t i10 = 0;
  4062. int64_t i11 = 0;
  4063. int64_t i12 = 0;
  4064. int64_t i13 = 0;
  4065. if (dst->type == GGML_TYPE_F16) {
  4066. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4067. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4068. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4069. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4070. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4071. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4072. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4073. if (++i10 == ne00) {
  4074. i10 = 0;
  4075. if (++i11 == ne01) {
  4076. i11 = 0;
  4077. if (++i12 == ne02) {
  4078. i12 = 0;
  4079. if (++i13 == ne03) {
  4080. i13 = 0;
  4081. }
  4082. }
  4083. }
  4084. }
  4085. }
  4086. }
  4087. }
  4088. }
  4089. } else if (dst->type == GGML_TYPE_F32) {
  4090. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4093. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4094. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4095. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4096. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4097. if (++i10 == ne00) {
  4098. i10 = 0;
  4099. if (++i11 == ne01) {
  4100. i11 = 0;
  4101. if (++i12 == ne02) {
  4102. i12 = 0;
  4103. if (++i13 == ne03) {
  4104. i13 = 0;
  4105. }
  4106. }
  4107. }
  4108. }
  4109. }
  4110. }
  4111. }
  4112. }
  4113. } else {
  4114. GGML_ASSERT(false); // TODO: implement
  4115. }
  4116. }
  4117. static void ggml_compute_forward_dup_f32(
  4118. const struct ggml_compute_params * params,
  4119. const struct ggml_tensor * src0,
  4120. struct ggml_tensor * dst) {
  4121. GGML_ASSERT(params->ith == 0);
  4122. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4124. return;
  4125. }
  4126. const int64_t ne00 = src0->ne[0];
  4127. const int64_t ne01 = src0->ne[1];
  4128. const int64_t ne02 = src0->ne[2];
  4129. const int64_t ne03 = src0->ne[3];
  4130. const size_t nb00 = src0->nb[0];
  4131. const size_t nb01 = src0->nb[1];
  4132. const size_t nb02 = src0->nb[2];
  4133. const size_t nb03 = src0->nb[3];
  4134. const size_t nb0 = dst->nb[0];
  4135. const size_t nb1 = dst->nb[1];
  4136. const size_t nb2 = dst->nb[2];
  4137. const size_t nb3 = dst->nb[3];
  4138. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4139. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4140. return;
  4141. }
  4142. if (src0->type == dst->type &&
  4143. src0->ne[0] == dst->ne[0] &&
  4144. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4145. // copy by rows
  4146. const size_t rs = ne00*nb00;
  4147. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4148. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4149. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4150. memcpy(
  4151. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4152. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4153. rs);
  4154. }
  4155. }
  4156. }
  4157. return;
  4158. }
  4159. if (ggml_is_contiguous(dst)) {
  4160. // TODO: simplify
  4161. if (src0->nb[0] == sizeof(float)) {
  4162. if (dst->type == GGML_TYPE_F32) {
  4163. size_t id = 0;
  4164. const size_t rs = ne00*nb00;
  4165. for (int i03 = 0; i03 < ne03; i03++) {
  4166. for (int i02 = 0; i02 < ne02; i02++) {
  4167. for (int i01 = 0; i01 < ne01; i01++) {
  4168. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4169. char * dst_ptr = (char *) dst->data + id*rs;
  4170. memcpy(dst_ptr, src0_ptr, rs);
  4171. id++;
  4172. }
  4173. }
  4174. }
  4175. } else if (dst->type == GGML_TYPE_F16) {
  4176. size_t id = 0;
  4177. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4178. for (int i03 = 0; i03 < ne03; i03++) {
  4179. for (int i02 = 0; i02 < ne02; i02++) {
  4180. for (int i01 = 0; i01 < ne01; i01++) {
  4181. for (int i00 = 0; i00 < ne00; i00++) {
  4182. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4183. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4184. id++;
  4185. }
  4186. }
  4187. }
  4188. }
  4189. } else {
  4190. GGML_ASSERT(false); // TODO: implement
  4191. }
  4192. } else {
  4193. //printf("%s: this is not optimal - fix me\n", __func__);
  4194. if (dst->type == GGML_TYPE_F32) {
  4195. size_t id = 0;
  4196. float * dst_ptr = (float *) dst->data;
  4197. for (int i03 = 0; i03 < ne03; i03++) {
  4198. for (int i02 = 0; i02 < ne02; i02++) {
  4199. for (int i01 = 0; i01 < ne01; i01++) {
  4200. for (int i00 = 0; i00 < ne00; i00++) {
  4201. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4202. dst_ptr[id] = *src0_ptr;
  4203. id++;
  4204. }
  4205. }
  4206. }
  4207. }
  4208. } else if (dst->type == GGML_TYPE_F16) {
  4209. size_t id = 0;
  4210. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4211. for (int i03 = 0; i03 < ne03; i03++) {
  4212. for (int i02 = 0; i02 < ne02; i02++) {
  4213. for (int i01 = 0; i01 < ne01; i01++) {
  4214. for (int i00 = 0; i00 < ne00; i00++) {
  4215. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4216. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4217. id++;
  4218. }
  4219. }
  4220. }
  4221. }
  4222. } else {
  4223. GGML_ASSERT(false); // TODO: implement
  4224. }
  4225. }
  4226. return;
  4227. }
  4228. // dst counters
  4229. int64_t i10 = 0;
  4230. int64_t i11 = 0;
  4231. int64_t i12 = 0;
  4232. int64_t i13 = 0;
  4233. if (dst->type == GGML_TYPE_F32) {
  4234. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4235. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4236. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4237. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4238. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4239. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4240. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4241. if (++i10 == dst->ne[0]) {
  4242. i10 = 0;
  4243. if (++i11 == dst->ne[1]) {
  4244. i11 = 0;
  4245. if (++i12 == dst->ne[2]) {
  4246. i12 = 0;
  4247. if (++i13 == dst->ne[3]) {
  4248. i13 = 0;
  4249. }
  4250. }
  4251. }
  4252. }
  4253. }
  4254. }
  4255. }
  4256. }
  4257. } else if (dst->type == GGML_TYPE_F16) {
  4258. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4259. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4260. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4261. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4262. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4263. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4264. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4265. if (++i10 == dst->ne[0]) {
  4266. i10 = 0;
  4267. if (++i11 == dst->ne[1]) {
  4268. i11 = 0;
  4269. if (++i12 == dst->ne[2]) {
  4270. i12 = 0;
  4271. if (++i13 == dst->ne[3]) {
  4272. i13 = 0;
  4273. }
  4274. }
  4275. }
  4276. }
  4277. }
  4278. }
  4279. }
  4280. }
  4281. } else {
  4282. GGML_ASSERT(false); // TODO: implement
  4283. }
  4284. }
  4285. static void ggml_compute_forward_dup(
  4286. const struct ggml_compute_params * params,
  4287. const struct ggml_tensor * src0,
  4288. struct ggml_tensor * dst) {
  4289. switch (src0->type) {
  4290. case GGML_TYPE_F16:
  4291. {
  4292. ggml_compute_forward_dup_f16(params, src0, dst);
  4293. } break;
  4294. case GGML_TYPE_F32:
  4295. {
  4296. ggml_compute_forward_dup_f32(params, src0, dst);
  4297. } break;
  4298. case GGML_TYPE_Q4_0:
  4299. case GGML_TYPE_Q4_1:
  4300. case GGML_TYPE_I8:
  4301. case GGML_TYPE_I16:
  4302. case GGML_TYPE_I32:
  4303. case GGML_TYPE_COUNT:
  4304. {
  4305. GGML_ASSERT(false);
  4306. } break;
  4307. }
  4308. }
  4309. // ggml_compute_forward_add
  4310. static void ggml_compute_forward_add_f32(
  4311. const struct ggml_compute_params * params,
  4312. const struct ggml_tensor * src0,
  4313. const struct ggml_tensor * src1,
  4314. struct ggml_tensor * dst) {
  4315. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4317. return;
  4318. }
  4319. const int ith = params->ith;
  4320. const int nth = params->nth;
  4321. const int n = ggml_nrows(src0);
  4322. const int nc = src0->ne[0];
  4323. const size_t nb00 = src0->nb[0];
  4324. const size_t nb01 = src0->nb[1];
  4325. const size_t nb10 = src1->nb[0];
  4326. const size_t nb11 = src1->nb[1];
  4327. const size_t nb0 = dst->nb[0];
  4328. const size_t nb1 = dst->nb[1];
  4329. GGML_ASSERT( nb0 == sizeof(float));
  4330. GGML_ASSERT(nb00 == sizeof(float));
  4331. if (nb10 == sizeof(float)) {
  4332. for (int j = ith; j < n; j += nth) {
  4333. #ifdef GGML_USE_ACCELERATE
  4334. vDSP_vadd(
  4335. (float *) ((char *) src0->data + j*nb01), 1,
  4336. (float *) ((char *) src1->data + j*nb11), 1,
  4337. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4338. #else
  4339. ggml_vec_add_f32(nc,
  4340. (float *) ((char *) dst->data + j*nb1),
  4341. (float *) ((char *) src0->data + j*nb01),
  4342. (float *) ((char *) src1->data + j*nb11));
  4343. #endif
  4344. }
  4345. } else {
  4346. // src1 is not contiguous
  4347. for (int j = ith; j < n; j += nth) {
  4348. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4349. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4350. for (int i = 0; i < nc; i++) {
  4351. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4352. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4353. }
  4354. }
  4355. }
  4356. }
  4357. static void ggml_compute_forward_add(
  4358. const struct ggml_compute_params * params,
  4359. const struct ggml_tensor * src0,
  4360. const struct ggml_tensor * src1,
  4361. struct ggml_tensor * dst) {
  4362. switch (src0->type) {
  4363. case GGML_TYPE_F32:
  4364. {
  4365. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4366. } break;
  4367. case GGML_TYPE_Q4_0:
  4368. case GGML_TYPE_Q4_1:
  4369. case GGML_TYPE_I8:
  4370. case GGML_TYPE_I16:
  4371. case GGML_TYPE_I32:
  4372. case GGML_TYPE_F16:
  4373. case GGML_TYPE_COUNT:
  4374. {
  4375. GGML_ASSERT(false);
  4376. } break;
  4377. }
  4378. }
  4379. // ggml_compute_forward_sub
  4380. static void ggml_compute_forward_sub_f32(
  4381. const struct ggml_compute_params * params,
  4382. const struct ggml_tensor * src0,
  4383. const struct ggml_tensor * src1,
  4384. struct ggml_tensor * dst) {
  4385. assert(params->ith == 0);
  4386. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4388. return;
  4389. }
  4390. const int n = ggml_nrows(src0);
  4391. const int nc = src0->ne[0];
  4392. assert( dst->nb[0] == sizeof(float));
  4393. assert(src0->nb[0] == sizeof(float));
  4394. assert(src1->nb[0] == sizeof(float));
  4395. for (int i = 0; i < n; i++) {
  4396. ggml_vec_sub_f32(nc,
  4397. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4398. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4399. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4400. }
  4401. }
  4402. static void ggml_compute_forward_sub(
  4403. const struct ggml_compute_params * params,
  4404. const struct ggml_tensor * src0,
  4405. const struct ggml_tensor * src1,
  4406. struct ggml_tensor * dst) {
  4407. switch (src0->type) {
  4408. case GGML_TYPE_F32:
  4409. {
  4410. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4411. } break;
  4412. case GGML_TYPE_Q4_0:
  4413. case GGML_TYPE_Q4_1:
  4414. case GGML_TYPE_I8:
  4415. case GGML_TYPE_I16:
  4416. case GGML_TYPE_I32:
  4417. case GGML_TYPE_F16:
  4418. case GGML_TYPE_COUNT:
  4419. {
  4420. GGML_ASSERT(false);
  4421. } break;
  4422. }
  4423. }
  4424. // ggml_compute_forward_mul
  4425. static void ggml_compute_forward_mul_f32(
  4426. const struct ggml_compute_params * params,
  4427. const struct ggml_tensor * src0,
  4428. const struct ggml_tensor * src1,
  4429. struct ggml_tensor * dst) {
  4430. assert(params->ith == 0);
  4431. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4433. return;
  4434. }
  4435. const int n = ggml_nrows(src0);
  4436. const int nc = src0->ne[0];
  4437. assert( dst->nb[0] == sizeof(float));
  4438. assert(src0->nb[0] == sizeof(float));
  4439. assert(src1->nb[0] == sizeof(float));
  4440. for (int i = 0; i < n; i++) {
  4441. ggml_vec_mul_f32(nc,
  4442. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4443. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4444. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4445. }
  4446. }
  4447. static void ggml_compute_forward_mul(
  4448. const struct ggml_compute_params * params,
  4449. const struct ggml_tensor * src0,
  4450. const struct ggml_tensor * src1,
  4451. struct ggml_tensor * dst) {
  4452. switch (src0->type) {
  4453. case GGML_TYPE_F32:
  4454. {
  4455. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4456. } break;
  4457. case GGML_TYPE_Q4_0:
  4458. case GGML_TYPE_Q4_1:
  4459. case GGML_TYPE_I8:
  4460. case GGML_TYPE_I16:
  4461. case GGML_TYPE_I32:
  4462. case GGML_TYPE_F16:
  4463. case GGML_TYPE_COUNT:
  4464. {
  4465. GGML_ASSERT(false);
  4466. } break;
  4467. }
  4468. }
  4469. // ggml_compute_forward_div
  4470. static void ggml_compute_forward_div_f32(
  4471. const struct ggml_compute_params * params,
  4472. const struct ggml_tensor * src0,
  4473. const struct ggml_tensor * src1,
  4474. struct ggml_tensor * dst) {
  4475. assert(params->ith == 0);
  4476. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4478. return;
  4479. }
  4480. const int n = ggml_nrows(src0);
  4481. const int nc = src0->ne[0];
  4482. assert( dst->nb[0] == sizeof(float));
  4483. assert(src0->nb[0] == sizeof(float));
  4484. assert(src1->nb[0] == sizeof(float));
  4485. for (int i = 0; i < n; i++) {
  4486. ggml_vec_div_f32(nc,
  4487. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4488. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4489. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4490. }
  4491. }
  4492. static void ggml_compute_forward_div(
  4493. const struct ggml_compute_params * params,
  4494. const struct ggml_tensor * src0,
  4495. const struct ggml_tensor * src1,
  4496. struct ggml_tensor * dst) {
  4497. switch (src0->type) {
  4498. case GGML_TYPE_F32:
  4499. {
  4500. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4501. } break;
  4502. case GGML_TYPE_Q4_0:
  4503. case GGML_TYPE_Q4_1:
  4504. case GGML_TYPE_I8:
  4505. case GGML_TYPE_I16:
  4506. case GGML_TYPE_I32:
  4507. case GGML_TYPE_F16:
  4508. case GGML_TYPE_COUNT:
  4509. {
  4510. GGML_ASSERT(false);
  4511. } break;
  4512. }
  4513. }
  4514. // ggml_compute_forward_sqr
  4515. static void ggml_compute_forward_sqr_f32(
  4516. const struct ggml_compute_params * params,
  4517. const struct ggml_tensor * src0,
  4518. struct ggml_tensor * dst) {
  4519. assert(params->ith == 0);
  4520. assert(ggml_are_same_shape(src0, dst));
  4521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4522. return;
  4523. }
  4524. const int n = ggml_nrows(src0);
  4525. const int nc = src0->ne[0];
  4526. assert( dst->nb[0] == sizeof(float));
  4527. assert(src0->nb[0] == sizeof(float));
  4528. for (int i = 0; i < n; i++) {
  4529. ggml_vec_sqr_f32(nc,
  4530. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4531. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4532. }
  4533. }
  4534. static void ggml_compute_forward_sqr(
  4535. const struct ggml_compute_params * params,
  4536. const struct ggml_tensor * src0,
  4537. struct ggml_tensor * dst) {
  4538. switch (src0->type) {
  4539. case GGML_TYPE_F32:
  4540. {
  4541. ggml_compute_forward_sqr_f32(params, src0, dst);
  4542. } break;
  4543. case GGML_TYPE_Q4_0:
  4544. case GGML_TYPE_Q4_1:
  4545. case GGML_TYPE_I8:
  4546. case GGML_TYPE_I16:
  4547. case GGML_TYPE_I32:
  4548. case GGML_TYPE_F16:
  4549. case GGML_TYPE_COUNT:
  4550. {
  4551. GGML_ASSERT(false);
  4552. } break;
  4553. }
  4554. }
  4555. // ggml_compute_forward_sqrt
  4556. static void ggml_compute_forward_sqrt_f32(
  4557. const struct ggml_compute_params * params,
  4558. const struct ggml_tensor * src0,
  4559. struct ggml_tensor * dst) {
  4560. assert(params->ith == 0);
  4561. assert(ggml_are_same_shape(src0, dst));
  4562. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4563. return;
  4564. }
  4565. const int n = ggml_nrows(src0);
  4566. const int nc = src0->ne[0];
  4567. assert( dst->nb[0] == sizeof(float));
  4568. assert(src0->nb[0] == sizeof(float));
  4569. for (int i = 0; i < n; i++) {
  4570. ggml_vec_sqrt_f32(nc,
  4571. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4572. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4573. }
  4574. }
  4575. static void ggml_compute_forward_sqrt(
  4576. const struct ggml_compute_params * params,
  4577. const struct ggml_tensor * src0,
  4578. struct ggml_tensor * dst) {
  4579. switch (src0->type) {
  4580. case GGML_TYPE_F32:
  4581. {
  4582. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4583. } break;
  4584. case GGML_TYPE_Q4_0:
  4585. case GGML_TYPE_Q4_1:
  4586. case GGML_TYPE_I8:
  4587. case GGML_TYPE_I16:
  4588. case GGML_TYPE_I32:
  4589. case GGML_TYPE_F16:
  4590. case GGML_TYPE_COUNT:
  4591. {
  4592. GGML_ASSERT(false);
  4593. } break;
  4594. }
  4595. }
  4596. // ggml_compute_forward_sum
  4597. static void ggml_compute_forward_sum_f32(
  4598. const struct ggml_compute_params * params,
  4599. const struct ggml_tensor * src0,
  4600. struct ggml_tensor * dst) {
  4601. assert(params->ith == 0);
  4602. assert(ggml_is_scalar(dst));
  4603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4604. return;
  4605. }
  4606. assert(ggml_is_scalar(dst));
  4607. assert(src0->nb[0] == sizeof(float));
  4608. const int64_t ne00 = src0->ne[0];
  4609. const int64_t ne01 = src0->ne[1];
  4610. const int64_t ne02 = src0->ne[2];
  4611. const int64_t ne03 = src0->ne[3];
  4612. const size_t nb01 = src0->nb[1];
  4613. const size_t nb02 = src0->nb[2];
  4614. const size_t nb03 = src0->nb[3];
  4615. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4616. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4617. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4618. ggml_vec_sum_f32(ne00,
  4619. (float *) (dst->data),
  4620. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4621. }
  4622. }
  4623. }
  4624. }
  4625. static void ggml_compute_forward_sum(
  4626. const struct ggml_compute_params * params,
  4627. const struct ggml_tensor * src0,
  4628. struct ggml_tensor * dst) {
  4629. switch (src0->type) {
  4630. case GGML_TYPE_F32:
  4631. {
  4632. ggml_compute_forward_sum_f32(params, src0, dst);
  4633. } break;
  4634. case GGML_TYPE_Q4_0:
  4635. case GGML_TYPE_Q4_1:
  4636. case GGML_TYPE_I8:
  4637. case GGML_TYPE_I16:
  4638. case GGML_TYPE_I32:
  4639. case GGML_TYPE_F16:
  4640. case GGML_TYPE_COUNT:
  4641. {
  4642. GGML_ASSERT(false);
  4643. } break;
  4644. }
  4645. }
  4646. // ggml_compute_forward_mean
  4647. static void ggml_compute_forward_mean_f32(
  4648. const struct ggml_compute_params * params,
  4649. const struct ggml_tensor * src0,
  4650. struct ggml_tensor * dst) {
  4651. assert(params->ith == 0);
  4652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4653. return;
  4654. }
  4655. assert(src0->nb[0] == sizeof(float));
  4656. const int64_t ne00 = src0->ne[0];
  4657. const int64_t ne01 = src0->ne[1];
  4658. const int64_t ne02 = src0->ne[2];
  4659. const int64_t ne03 = src0->ne[3];
  4660. const size_t nb01 = src0->nb[1];
  4661. const size_t nb02 = src0->nb[2];
  4662. const size_t nb03 = src0->nb[3];
  4663. const int64_t ne0 = dst->ne[0];
  4664. const int64_t ne1 = dst->ne[1];
  4665. const int64_t ne2 = dst->ne[2];
  4666. const int64_t ne3 = dst->ne[3];
  4667. assert(ne0 == 1);
  4668. assert(ne1 == ne01);
  4669. assert(ne2 == ne02);
  4670. assert(ne3 == ne03);
  4671. UNUSED(ne0);
  4672. UNUSED(ne1);
  4673. UNUSED(ne2);
  4674. UNUSED(ne3);
  4675. const size_t nb1 = dst->nb[1];
  4676. const size_t nb2 = dst->nb[2];
  4677. const size_t nb3 = dst->nb[3];
  4678. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4679. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4680. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4681. ggml_vec_sum_f32(ne00,
  4682. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4683. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4684. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4685. }
  4686. }
  4687. }
  4688. }
  4689. static void ggml_compute_forward_mean(
  4690. const struct ggml_compute_params * params,
  4691. const struct ggml_tensor * src0,
  4692. struct ggml_tensor * dst) {
  4693. switch (src0->type) {
  4694. case GGML_TYPE_F32:
  4695. {
  4696. ggml_compute_forward_mean_f32(params, src0, dst);
  4697. } break;
  4698. case GGML_TYPE_Q4_0:
  4699. case GGML_TYPE_Q4_1:
  4700. case GGML_TYPE_I8:
  4701. case GGML_TYPE_I16:
  4702. case GGML_TYPE_I32:
  4703. case GGML_TYPE_F16:
  4704. case GGML_TYPE_COUNT:
  4705. {
  4706. GGML_ASSERT(false);
  4707. } break;
  4708. }
  4709. }
  4710. // ggml_compute_forward_repeat
  4711. static void ggml_compute_forward_repeat_f32(
  4712. const struct ggml_compute_params * params,
  4713. const struct ggml_tensor * src0,
  4714. struct ggml_tensor * dst) {
  4715. assert(params->ith == 0);
  4716. assert(ggml_can_repeat(src0, dst));
  4717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4718. return;
  4719. }
  4720. // TODO: implement support for rank > 2 tensors
  4721. assert(src0->ne[2] == 1);
  4722. assert(src0->ne[3] == 1);
  4723. assert( dst->ne[2] == 1);
  4724. assert( dst->ne[3] == 1);
  4725. const int nc = dst->ne[0];
  4726. const int nr = dst->ne[1];
  4727. const int nc0 = src0->ne[0];
  4728. const int nr0 = src0->ne[1];
  4729. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4730. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4731. // TODO: support for transposed / permuted tensors
  4732. assert( dst->nb[0] == sizeof(float));
  4733. assert(src0->nb[0] == sizeof(float));
  4734. // TODO: maybe this is not optimal?
  4735. for (int i = 0; i < nrr; i++) {
  4736. for (int j = 0; j < ncr; j++) {
  4737. for (int k = 0; k < nr0; k++) {
  4738. ggml_vec_cpy_f32(nc0,
  4739. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4740. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4741. }
  4742. }
  4743. }
  4744. }
  4745. static void ggml_compute_forward_repeat(
  4746. const struct ggml_compute_params * params,
  4747. const struct ggml_tensor * src0,
  4748. struct ggml_tensor * dst) {
  4749. switch (src0->type) {
  4750. case GGML_TYPE_F32:
  4751. {
  4752. ggml_compute_forward_repeat_f32(params, src0, dst);
  4753. } break;
  4754. case GGML_TYPE_Q4_0:
  4755. case GGML_TYPE_Q4_1:
  4756. case GGML_TYPE_I8:
  4757. case GGML_TYPE_I16:
  4758. case GGML_TYPE_I32:
  4759. case GGML_TYPE_F16:
  4760. case GGML_TYPE_COUNT:
  4761. {
  4762. GGML_ASSERT(false);
  4763. } break;
  4764. }
  4765. }
  4766. // ggml_compute_forward_abs
  4767. static void ggml_compute_forward_abs_f32(
  4768. const struct ggml_compute_params * params,
  4769. const struct ggml_tensor * src0,
  4770. struct ggml_tensor * dst) {
  4771. assert(params->ith == 0);
  4772. assert(ggml_are_same_shape(src0, dst));
  4773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4774. return;
  4775. }
  4776. const int n = ggml_nrows(src0);
  4777. const int nc = src0->ne[0];
  4778. assert(dst->nb[0] == sizeof(float));
  4779. assert(src0->nb[0] == sizeof(float));
  4780. for (int i = 0; i < n; i++) {
  4781. ggml_vec_abs_f32(nc,
  4782. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4783. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4784. }
  4785. }
  4786. static void ggml_compute_forward_abs(
  4787. const struct ggml_compute_params * params,
  4788. const struct ggml_tensor * src0,
  4789. struct ggml_tensor * dst) {
  4790. switch (src0->type) {
  4791. case GGML_TYPE_F32:
  4792. {
  4793. ggml_compute_forward_abs_f32(params, src0, dst);
  4794. } break;
  4795. case GGML_TYPE_Q4_0:
  4796. case GGML_TYPE_Q4_1:
  4797. case GGML_TYPE_I8:
  4798. case GGML_TYPE_I16:
  4799. case GGML_TYPE_I32:
  4800. case GGML_TYPE_F16:
  4801. case GGML_TYPE_COUNT:
  4802. {
  4803. GGML_ASSERT(false);
  4804. } break;
  4805. }
  4806. }
  4807. // ggml_compute_forward_sgn
  4808. static void ggml_compute_forward_sgn_f32(
  4809. const struct ggml_compute_params * params,
  4810. const struct ggml_tensor * src0,
  4811. struct ggml_tensor * dst) {
  4812. assert(params->ith == 0);
  4813. assert(ggml_are_same_shape(src0, dst));
  4814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4815. return;
  4816. }
  4817. const int n = ggml_nrows(src0);
  4818. const int nc = src0->ne[0];
  4819. assert(dst->nb[0] == sizeof(float));
  4820. assert(src0->nb[0] == sizeof(float));
  4821. for (int i = 0; i < n; i++) {
  4822. ggml_vec_sgn_f32(nc,
  4823. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4824. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4825. }
  4826. }
  4827. static void ggml_compute_forward_sgn(
  4828. const struct ggml_compute_params * params,
  4829. const struct ggml_tensor * src0,
  4830. struct ggml_tensor * dst) {
  4831. switch (src0->type) {
  4832. case GGML_TYPE_F32:
  4833. {
  4834. ggml_compute_forward_sgn_f32(params, src0, dst);
  4835. } break;
  4836. case GGML_TYPE_Q4_0:
  4837. case GGML_TYPE_Q4_1:
  4838. case GGML_TYPE_I8:
  4839. case GGML_TYPE_I16:
  4840. case GGML_TYPE_I32:
  4841. case GGML_TYPE_F16:
  4842. case GGML_TYPE_COUNT:
  4843. {
  4844. GGML_ASSERT(false);
  4845. } break;
  4846. }
  4847. }
  4848. // ggml_compute_forward_neg
  4849. static void ggml_compute_forward_neg_f32(
  4850. const struct ggml_compute_params * params,
  4851. const struct ggml_tensor * src0,
  4852. struct ggml_tensor * dst) {
  4853. assert(params->ith == 0);
  4854. assert(ggml_are_same_shape(src0, dst));
  4855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4856. return;
  4857. }
  4858. const int n = ggml_nrows(src0);
  4859. const int nc = src0->ne[0];
  4860. assert(dst->nb[0] == sizeof(float));
  4861. assert(src0->nb[0] == sizeof(float));
  4862. for (int i = 0; i < n; i++) {
  4863. ggml_vec_neg_f32(nc,
  4864. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4865. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4866. }
  4867. }
  4868. static void ggml_compute_forward_neg(
  4869. const struct ggml_compute_params * params,
  4870. const struct ggml_tensor * src0,
  4871. struct ggml_tensor * dst) {
  4872. switch (src0->type) {
  4873. case GGML_TYPE_F32:
  4874. {
  4875. ggml_compute_forward_neg_f32(params, src0, dst);
  4876. } break;
  4877. case GGML_TYPE_Q4_0:
  4878. case GGML_TYPE_Q4_1:
  4879. case GGML_TYPE_I8:
  4880. case GGML_TYPE_I16:
  4881. case GGML_TYPE_I32:
  4882. case GGML_TYPE_F16:
  4883. case GGML_TYPE_COUNT:
  4884. {
  4885. GGML_ASSERT(false);
  4886. } break;
  4887. }
  4888. }
  4889. // ggml_compute_forward_step
  4890. static void ggml_compute_forward_step_f32(
  4891. const struct ggml_compute_params * params,
  4892. const struct ggml_tensor * src0,
  4893. struct ggml_tensor * dst) {
  4894. assert(params->ith == 0);
  4895. assert(ggml_are_same_shape(src0, dst));
  4896. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4897. return;
  4898. }
  4899. const int n = ggml_nrows(src0);
  4900. const int nc = src0->ne[0];
  4901. assert(dst->nb[0] == sizeof(float));
  4902. assert(src0->nb[0] == sizeof(float));
  4903. for (int i = 0; i < n; i++) {
  4904. ggml_vec_step_f32(nc,
  4905. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4906. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4907. }
  4908. }
  4909. static void ggml_compute_forward_step(
  4910. const struct ggml_compute_params * params,
  4911. const struct ggml_tensor * src0,
  4912. struct ggml_tensor * dst) {
  4913. switch (src0->type) {
  4914. case GGML_TYPE_F32:
  4915. {
  4916. ggml_compute_forward_step_f32(params, src0, dst);
  4917. } break;
  4918. case GGML_TYPE_Q4_0:
  4919. case GGML_TYPE_Q4_1:
  4920. case GGML_TYPE_I8:
  4921. case GGML_TYPE_I16:
  4922. case GGML_TYPE_I32:
  4923. case GGML_TYPE_F16:
  4924. case GGML_TYPE_COUNT:
  4925. {
  4926. GGML_ASSERT(false);
  4927. } break;
  4928. }
  4929. }
  4930. // ggml_compute_forward_relu
  4931. static void ggml_compute_forward_relu_f32(
  4932. const struct ggml_compute_params * params,
  4933. const struct ggml_tensor * src0,
  4934. struct ggml_tensor * dst) {
  4935. assert(params->ith == 0);
  4936. assert(ggml_are_same_shape(src0, dst));
  4937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4938. return;
  4939. }
  4940. const int n = ggml_nrows(src0);
  4941. const int nc = src0->ne[0];
  4942. assert(dst->nb[0] == sizeof(float));
  4943. assert(src0->nb[0] == sizeof(float));
  4944. for (int i = 0; i < n; i++) {
  4945. ggml_vec_relu_f32(nc,
  4946. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4947. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4948. }
  4949. }
  4950. static void ggml_compute_forward_relu(
  4951. const struct ggml_compute_params * params,
  4952. const struct ggml_tensor * src0,
  4953. struct ggml_tensor * dst) {
  4954. switch (src0->type) {
  4955. case GGML_TYPE_F32:
  4956. {
  4957. ggml_compute_forward_relu_f32(params, src0, dst);
  4958. } break;
  4959. case GGML_TYPE_Q4_0:
  4960. case GGML_TYPE_Q4_1:
  4961. case GGML_TYPE_I8:
  4962. case GGML_TYPE_I16:
  4963. case GGML_TYPE_I32:
  4964. case GGML_TYPE_F16:
  4965. case GGML_TYPE_COUNT:
  4966. {
  4967. GGML_ASSERT(false);
  4968. } break;
  4969. }
  4970. }
  4971. // ggml_compute_forward_gelu
  4972. static void ggml_compute_forward_gelu_f32(
  4973. const struct ggml_compute_params * params,
  4974. const struct ggml_tensor * src0,
  4975. struct ggml_tensor * dst) {
  4976. GGML_ASSERT(ggml_is_contiguous(src0));
  4977. GGML_ASSERT(ggml_is_contiguous(dst));
  4978. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4979. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4980. return;
  4981. }
  4982. const int ith = params->ith;
  4983. const int nth = params->nth;
  4984. const int nc = src0->ne[0];
  4985. const int nr = ggml_nrows(src0);
  4986. // rows per thread
  4987. const int dr = (nr + nth - 1)/nth;
  4988. // row range for this thread
  4989. const int ir0 = dr*ith;
  4990. const int ir1 = MIN(ir0 + dr, nr);
  4991. for (int i1 = ir0; i1 < ir1; i1++) {
  4992. ggml_vec_gelu_f32(nc,
  4993. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4994. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4995. #ifndef NDEBUG
  4996. for (int k = 0; k < nc; k++) {
  4997. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4998. UNUSED(x);
  4999. assert(!isnan(x));
  5000. assert(!isinf(x));
  5001. }
  5002. #endif
  5003. }
  5004. }
  5005. static void ggml_compute_forward_gelu(
  5006. const struct ggml_compute_params * params,
  5007. const struct ggml_tensor * src0,
  5008. struct ggml_tensor * dst) {
  5009. switch (src0->type) {
  5010. case GGML_TYPE_F32:
  5011. {
  5012. ggml_compute_forward_gelu_f32(params, src0, dst);
  5013. } break;
  5014. case GGML_TYPE_Q4_0:
  5015. case GGML_TYPE_Q4_1:
  5016. case GGML_TYPE_I8:
  5017. case GGML_TYPE_I16:
  5018. case GGML_TYPE_I32:
  5019. case GGML_TYPE_F16:
  5020. case GGML_TYPE_COUNT:
  5021. {
  5022. GGML_ASSERT(false);
  5023. } break;
  5024. }
  5025. //printf("XXXXXXXX gelu\n");
  5026. }
  5027. // ggml_compute_forward_silu
  5028. static void ggml_compute_forward_silu_f32(
  5029. const struct ggml_compute_params * params,
  5030. const struct ggml_tensor * src0,
  5031. struct ggml_tensor * dst) {
  5032. GGML_ASSERT(ggml_is_contiguous(src0));
  5033. GGML_ASSERT(ggml_is_contiguous(dst));
  5034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5036. return;
  5037. }
  5038. const int ith = params->ith;
  5039. const int nth = params->nth;
  5040. const int nc = src0->ne[0];
  5041. const int nr = ggml_nrows(src0);
  5042. // rows per thread
  5043. const int dr = (nr + nth - 1)/nth;
  5044. // row range for this thread
  5045. const int ir0 = dr*ith;
  5046. const int ir1 = MIN(ir0 + dr, nr);
  5047. for (int i1 = ir0; i1 < ir1; i1++) {
  5048. ggml_vec_silu_f32(nc,
  5049. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5050. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5051. #ifndef NDEBUG
  5052. for (int k = 0; k < nc; k++) {
  5053. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5054. UNUSED(x);
  5055. assert(!isnan(x));
  5056. assert(!isinf(x));
  5057. }
  5058. #endif
  5059. }
  5060. }
  5061. static void ggml_compute_forward_silu(
  5062. const struct ggml_compute_params * params,
  5063. const struct ggml_tensor * src0,
  5064. struct ggml_tensor * dst) {
  5065. switch (src0->type) {
  5066. case GGML_TYPE_F32:
  5067. {
  5068. ggml_compute_forward_silu_f32(params, src0, dst);
  5069. } break;
  5070. case GGML_TYPE_Q4_0:
  5071. case GGML_TYPE_Q4_1:
  5072. case GGML_TYPE_I8:
  5073. case GGML_TYPE_I16:
  5074. case GGML_TYPE_I32:
  5075. case GGML_TYPE_F16:
  5076. case GGML_TYPE_COUNT:
  5077. {
  5078. GGML_ASSERT(false);
  5079. } break;
  5080. }
  5081. }
  5082. // ggml_compute_forward_norm
  5083. static void ggml_compute_forward_norm_f32(
  5084. const struct ggml_compute_params * params,
  5085. const struct ggml_tensor * src0,
  5086. struct ggml_tensor * dst) {
  5087. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5089. return;
  5090. }
  5091. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5092. const int ith = params->ith;
  5093. const int nth = params->nth;
  5094. const int64_t ne00 = src0->ne[0];
  5095. const int64_t ne01 = src0->ne[1];
  5096. const int64_t ne02 = src0->ne[2];
  5097. const int64_t ne03 = src0->ne[3];
  5098. const size_t nb01 = src0->nb[1];
  5099. const size_t nb02 = src0->nb[2];
  5100. const size_t nb03 = src0->nb[3];
  5101. const size_t nb1 = dst->nb[1];
  5102. const size_t nb2 = dst->nb[2];
  5103. const size_t nb3 = dst->nb[3];
  5104. const float eps = 1e-5f; // TODO: make this a parameter
  5105. // TODO: optimize
  5106. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5108. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5109. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5110. ggml_float sum = 0.0;
  5111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5112. sum += (ggml_float)x[i00];
  5113. }
  5114. float mean = sum/ne00;
  5115. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5116. ggml_float sum2 = 0.0;
  5117. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5118. float v = x[i00] - mean;
  5119. y[i00] = v;
  5120. sum2 += (ggml_float)(v*v);
  5121. }
  5122. float variance = sum2/ne00;
  5123. const float scale = 1.0f/sqrtf(variance + eps);
  5124. ggml_vec_scale_f32(ne00, y, scale);
  5125. }
  5126. }
  5127. }
  5128. }
  5129. static void ggml_compute_forward_norm(
  5130. const struct ggml_compute_params * params,
  5131. const struct ggml_tensor * src0,
  5132. struct ggml_tensor * dst) {
  5133. switch (src0->type) {
  5134. case GGML_TYPE_F32:
  5135. {
  5136. ggml_compute_forward_norm_f32(params, src0, dst);
  5137. } break;
  5138. case GGML_TYPE_Q4_0:
  5139. case GGML_TYPE_Q4_1:
  5140. case GGML_TYPE_I8:
  5141. case GGML_TYPE_I16:
  5142. case GGML_TYPE_I32:
  5143. case GGML_TYPE_F16:
  5144. case GGML_TYPE_COUNT:
  5145. {
  5146. GGML_ASSERT(false);
  5147. } break;
  5148. }
  5149. }
  5150. static void ggml_compute_forward_rms_norm_f32(
  5151. const struct ggml_compute_params * params,
  5152. const struct ggml_tensor * src0,
  5153. struct ggml_tensor * dst) {
  5154. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5156. return;
  5157. }
  5158. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5159. const int ith = params->ith;
  5160. const int nth = params->nth;
  5161. const int64_t ne00 = src0->ne[0];
  5162. const int64_t ne01 = src0->ne[1];
  5163. const int64_t ne02 = src0->ne[2];
  5164. const int64_t ne03 = src0->ne[3];
  5165. const size_t nb01 = src0->nb[1];
  5166. const size_t nb02 = src0->nb[2];
  5167. const size_t nb03 = src0->nb[3];
  5168. const size_t nb1 = dst->nb[1];
  5169. const size_t nb2 = dst->nb[2];
  5170. const size_t nb3 = dst->nb[3];
  5171. const float eps = 1e-6f; // TODO: make this a parameter
  5172. // TODO: optimize
  5173. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5174. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5175. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5176. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5177. ggml_float sum = 0.0;
  5178. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5179. sum += (ggml_float)(x[i00] * x[i00]);
  5180. }
  5181. float mean = sum/ne00;
  5182. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5183. memcpy(y, x, ne00 * sizeof(float));
  5184. // for (int i00 = 0; i00 < ne00; i00++) {
  5185. // y[i00] = x[i00];
  5186. // }
  5187. const float scale = 1.0f/sqrtf(mean + eps);
  5188. ggml_vec_scale_f32(ne00, y, scale);
  5189. }
  5190. }
  5191. }
  5192. }
  5193. static void ggml_compute_forward_rms_norm(
  5194. const struct ggml_compute_params * params,
  5195. const struct ggml_tensor * src0,
  5196. struct ggml_tensor * dst) {
  5197. switch (src0->type) {
  5198. case GGML_TYPE_F32:
  5199. {
  5200. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5201. } break;
  5202. case GGML_TYPE_Q4_0:
  5203. case GGML_TYPE_Q4_1:
  5204. case GGML_TYPE_I8:
  5205. case GGML_TYPE_I16:
  5206. case GGML_TYPE_I32:
  5207. case GGML_TYPE_F16:
  5208. case GGML_TYPE_COUNT:
  5209. {
  5210. GGML_ASSERT(false);
  5211. } break;
  5212. }
  5213. }
  5214. // ggml_compute_forward_mul_mat
  5215. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5216. // helper function to determine if it is better to use BLAS or not
  5217. // for large matrices, BLAS is faster
  5218. static bool ggml_compute_forward_mul_mat_use_blas(
  5219. const struct ggml_tensor * src0,
  5220. const struct ggml_tensor * src1,
  5221. struct ggml_tensor * dst) {
  5222. //const int64_t ne00 = src0->ne[0];
  5223. //const int64_t ne01 = src0->ne[1];
  5224. const int64_t ne10 = src1->ne[0];
  5225. const int64_t ne0 = dst->ne[0];
  5226. const int64_t ne1 = dst->ne[1];
  5227. // TODO: find the optimal values for these
  5228. if (ggml_is_contiguous(src0) &&
  5229. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5230. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5231. return true;
  5232. }
  5233. return false;
  5234. }
  5235. #endif
  5236. static void ggml_compute_forward_mul_mat_f32(
  5237. const struct ggml_compute_params * params,
  5238. const struct ggml_tensor * src0,
  5239. const struct ggml_tensor * src1,
  5240. struct ggml_tensor * dst) {
  5241. int64_t t0 = ggml_perf_time_us();
  5242. UNUSED(t0);
  5243. const int64_t ne00 = src0->ne[0];
  5244. const int64_t ne01 = src0->ne[1];
  5245. const int64_t ne02 = src0->ne[2];
  5246. const int64_t ne03 = src0->ne[3];
  5247. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5248. const int64_t ne10 = src1->ne[0];
  5249. #endif
  5250. const int64_t ne11 = src1->ne[1];
  5251. #ifndef NDEBUG
  5252. const int64_t ne12 = src1->ne[2];
  5253. const int64_t ne13 = src1->ne[3];
  5254. const int64_t ne0 = dst->ne[0];
  5255. const int64_t ne1 = dst->ne[1];
  5256. const int64_t ne2 = dst->ne[2];
  5257. const int64_t ne3 = dst->ne[3];
  5258. const int nb00 = src0->nb[0];
  5259. #endif
  5260. const int nb01 = src0->nb[1];
  5261. const int nb02 = src0->nb[2];
  5262. const int nb03 = src0->nb[3];
  5263. #ifndef NDEBUG
  5264. const int nb10 = src1->nb[0];
  5265. #endif
  5266. const int nb11 = src1->nb[1];
  5267. const int nb12 = src1->nb[2];
  5268. const int nb13 = src1->nb[3];
  5269. const int nb0 = dst->nb[0];
  5270. const int nb1 = dst->nb[1];
  5271. const int nb2 = dst->nb[2];
  5272. const int nb3 = dst->nb[3];
  5273. const int ith = params->ith;
  5274. const int nth = params->nth;
  5275. assert(ne02 == ne12);
  5276. assert(ne03 == ne13);
  5277. assert(ne2 == ne12);
  5278. assert(ne3 == ne13);
  5279. // we don't support permuted src0 or src1
  5280. assert(nb00 == sizeof(float));
  5281. assert(nb10 == sizeof(float));
  5282. // dst cannot be transposed or permuted
  5283. assert(nb0 == sizeof(float));
  5284. assert(nb0 <= nb1);
  5285. assert(nb1 <= nb2);
  5286. assert(nb2 <= nb3);
  5287. assert(ne0 == ne01);
  5288. assert(ne1 == ne11);
  5289. assert(ne2 == ne02);
  5290. assert(ne3 == ne03);
  5291. // nb01 >= nb00 - src0 is not transposed
  5292. // compute by src0 rows
  5293. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5294. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5295. if (params->ith != 0) {
  5296. return;
  5297. }
  5298. if (params->type == GGML_TASK_INIT) {
  5299. return;
  5300. }
  5301. if (params->type == GGML_TASK_FINALIZE) {
  5302. return;
  5303. }
  5304. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5305. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5306. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5307. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5308. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5309. // zT = y * xT
  5310. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5311. ne11, ne01, ne10,
  5312. 1.0f, y, ne10,
  5313. x, ne00,
  5314. 0.0f, d, ne01);
  5315. }
  5316. }
  5317. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5318. return;
  5319. }
  5320. #endif
  5321. if (params->type == GGML_TASK_INIT) {
  5322. return;
  5323. }
  5324. if (params->type == GGML_TASK_FINALIZE) {
  5325. return;
  5326. }
  5327. // parallelize by src0 rows using ggml_vec_dot_f32
  5328. // total rows in src0
  5329. const int nr = ne01*ne02*ne03;
  5330. // rows per thread
  5331. const int dr = (nr + nth - 1)/nth;
  5332. // row range for this thread
  5333. const int ir0 = dr*ith;
  5334. const int ir1 = MIN(ir0 + dr, nr);
  5335. for (int ir = ir0; ir < ir1; ++ir) {
  5336. // src0 indices
  5337. const int i03 = ir/(ne02*ne01);
  5338. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5339. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5340. for (int64_t ic = 0; ic < ne11; ++ic) {
  5341. // src1 indices
  5342. const int i13 = i03;
  5343. const int i12 = i02;
  5344. const int i11 = ic;
  5345. // dst indices
  5346. const int i0 = i01;
  5347. const int i1 = i11;
  5348. const int i2 = i02;
  5349. const int i3 = i03;
  5350. ggml_vec_dot_f32(ne00,
  5351. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5352. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5353. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5354. }
  5355. }
  5356. //int64_t t1 = ggml_perf_time_us();
  5357. //static int64_t acc = 0;
  5358. //acc += t1 - t0;
  5359. //if (t1 - t0 > 10) {
  5360. // printf("\n");
  5361. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5362. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5363. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5364. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5365. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5366. //}
  5367. }
  5368. static void ggml_compute_forward_mul_mat_f16_f32(
  5369. const struct ggml_compute_params * params,
  5370. const struct ggml_tensor * src0,
  5371. const struct ggml_tensor * src1,
  5372. struct ggml_tensor * dst) {
  5373. int64_t t0 = ggml_perf_time_us();
  5374. UNUSED(t0);
  5375. const int64_t ne00 = src0->ne[0];
  5376. const int64_t ne01 = src0->ne[1];
  5377. const int64_t ne02 = src0->ne[2];
  5378. const int64_t ne03 = src0->ne[3];
  5379. const int64_t ne10 = src1->ne[0];
  5380. const int64_t ne11 = src1->ne[1];
  5381. const int64_t ne12 = src1->ne[2];
  5382. const int64_t ne13 = src1->ne[3];
  5383. const int64_t ne0 = dst->ne[0];
  5384. const int64_t ne1 = dst->ne[1];
  5385. const int64_t ne2 = dst->ne[2];
  5386. const int64_t ne3 = dst->ne[3];
  5387. //const int64_t ne = ne0*ne1*ne2*ne3;
  5388. const int nb00 = src0->nb[0];
  5389. const int nb01 = src0->nb[1];
  5390. const int nb02 = src0->nb[2];
  5391. const int nb03 = src0->nb[3];
  5392. const int nb10 = src1->nb[0];
  5393. const int nb11 = src1->nb[1];
  5394. const int nb12 = src1->nb[2];
  5395. const int nb13 = src1->nb[3];
  5396. const int nb0 = dst->nb[0];
  5397. const int nb1 = dst->nb[1];
  5398. const int nb2 = dst->nb[2];
  5399. const int nb3 = dst->nb[3];
  5400. const int ith = params->ith;
  5401. const int nth = params->nth;
  5402. GGML_ASSERT(ne02 == ne12);
  5403. GGML_ASSERT(ne03 == ne13);
  5404. GGML_ASSERT(ne2 == ne12);
  5405. GGML_ASSERT(ne3 == ne13);
  5406. // TODO: we don't support permuted src0
  5407. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5408. // dst cannot be transposed or permuted
  5409. GGML_ASSERT(nb0 == sizeof(float));
  5410. GGML_ASSERT(nb0 <= nb1);
  5411. GGML_ASSERT(nb1 <= nb2);
  5412. GGML_ASSERT(nb2 <= nb3);
  5413. GGML_ASSERT(ne0 == ne01);
  5414. GGML_ASSERT(ne1 == ne11);
  5415. GGML_ASSERT(ne2 == ne02);
  5416. GGML_ASSERT(ne3 == ne03);
  5417. // nb01 >= nb00 - src0 is not transposed
  5418. // compute by src0 rows
  5419. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5420. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5421. GGML_ASSERT(nb10 == sizeof(float));
  5422. if (params->ith != 0) {
  5423. return;
  5424. }
  5425. if (params->type == GGML_TASK_INIT) {
  5426. return;
  5427. }
  5428. if (params->type == GGML_TASK_FINALIZE) {
  5429. return;
  5430. }
  5431. float * const wdata = params->wdata;
  5432. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5433. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5434. {
  5435. size_t id = 0;
  5436. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5437. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5438. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5439. }
  5440. }
  5441. }
  5442. const float * x = wdata;
  5443. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5444. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5445. // zT = y * xT
  5446. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5447. ne11, ne01, ne10,
  5448. 1.0f, y, ne10,
  5449. x, ne00,
  5450. 0.0f, d, ne01);
  5451. }
  5452. }
  5453. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5454. return;
  5455. }
  5456. #endif
  5457. if (params->type == GGML_TASK_INIT) {
  5458. ggml_fp16_t * const wdata = params->wdata;
  5459. size_t id = 0;
  5460. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5461. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5462. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5463. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5464. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5465. }
  5466. }
  5467. }
  5468. }
  5469. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5470. return;
  5471. }
  5472. if (params->type == GGML_TASK_FINALIZE) {
  5473. return;
  5474. }
  5475. // fp16 -> half the size, so divide by 2
  5476. // TODO: do not support transposed src1
  5477. assert(nb10/2 == sizeof(ggml_fp16_t));
  5478. // parallelize by src0 rows using ggml_vec_dot_f16
  5479. // total rows in src0
  5480. const int nr = ne01*ne02*ne03;
  5481. // rows per thread
  5482. const int dr = (nr + nth - 1)/nth;
  5483. // row range for this thread
  5484. const int ir0 = dr*ith;
  5485. const int ir1 = MIN(ir0 + dr, nr);
  5486. ggml_fp16_t * wdata = params->wdata;
  5487. for (int ir = ir0; ir < ir1; ++ir) {
  5488. // src0 indices
  5489. const int i03 = ir/(ne02*ne01);
  5490. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5491. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5492. const int i13 = i03;
  5493. const int i12 = i02;
  5494. const int i0 = i01;
  5495. const int i2 = i02;
  5496. const int i3 = i03;
  5497. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5498. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5499. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5500. for (int64_t ic = 0; ic < ne11; ++ic) {
  5501. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5502. }
  5503. }
  5504. //int64_t t1 = ggml_time_us();
  5505. //static int64_t acc = 0;
  5506. //acc += t1 - t0;
  5507. //if (t1 - t0 > 10) {
  5508. // printf("\n");
  5509. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5510. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5511. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5512. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5513. //}
  5514. }
  5515. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5516. [GGML_TYPE_Q4_0] = {
  5517. .dequantize_row_q = dequantize_row_q4_0,
  5518. .quantize_row_q = quantize_row_q4_0,
  5519. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5520. .vec_dot_q = ggml_vec_dot_q4_0,
  5521. },
  5522. [GGML_TYPE_Q4_1] = {
  5523. .dequantize_row_q = dequantize_row_q4_1,
  5524. .quantize_row_q = quantize_row_q4_1,
  5525. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5526. .vec_dot_q = ggml_vec_dot_q4_1,
  5527. },
  5528. };
  5529. // For internal test use
  5530. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5531. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5532. return quantize_fns[i];
  5533. }
  5534. static void ggml_compute_forward_mul_mat_q_f32(
  5535. const struct ggml_compute_params * params,
  5536. const struct ggml_tensor * src0,
  5537. const struct ggml_tensor * src1,
  5538. struct ggml_tensor * dst) {
  5539. int64_t t0 = ggml_perf_time_us();
  5540. UNUSED(t0);
  5541. const int64_t ne00 = src0->ne[0];
  5542. const int64_t ne01 = src0->ne[1];
  5543. const int64_t ne02 = src0->ne[2];
  5544. const int64_t ne03 = src0->ne[3];
  5545. const int64_t ne10 = src1->ne[0];
  5546. const int64_t ne11 = src1->ne[1];
  5547. const int64_t ne12 = src1->ne[2];
  5548. const int64_t ne13 = src1->ne[3];
  5549. const int64_t ne0 = dst->ne[0];
  5550. const int64_t ne1 = dst->ne[1];
  5551. const int64_t ne2 = dst->ne[2];
  5552. const int64_t ne3 = dst->ne[3];
  5553. const int nb00 = src0->nb[0];
  5554. const int nb01 = src0->nb[1];
  5555. const int nb02 = src0->nb[2];
  5556. const int nb03 = src0->nb[3];
  5557. const int nb10 = src1->nb[0];
  5558. const int nb11 = src1->nb[1];
  5559. const int nb12 = src1->nb[2];
  5560. const int nb13 = src1->nb[3];
  5561. const int nb0 = dst->nb[0];
  5562. const int nb1 = dst->nb[1];
  5563. const int nb2 = dst->nb[2];
  5564. const int nb3 = dst->nb[3];
  5565. const int ith = params->ith;
  5566. const int nth = params->nth;
  5567. GGML_ASSERT(ne02 == ne12);
  5568. GGML_ASSERT(ne03 == ne13);
  5569. GGML_ASSERT(ne2 == ne12);
  5570. GGML_ASSERT(ne3 == ne13);
  5571. const enum ggml_type type = src0->type;
  5572. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5573. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5574. // we don't support permuted src0 or src1
  5575. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5576. GGML_ASSERT(nb10 == sizeof(float));
  5577. // dst cannot be transposed or permuted
  5578. GGML_ASSERT(nb0 == sizeof(float));
  5579. GGML_ASSERT(nb0 <= nb1);
  5580. GGML_ASSERT(nb1 <= nb2);
  5581. GGML_ASSERT(nb2 <= nb3);
  5582. GGML_ASSERT(ne0 == ne01);
  5583. GGML_ASSERT(ne1 == ne11);
  5584. GGML_ASSERT(ne2 == ne02);
  5585. GGML_ASSERT(ne3 == ne03);
  5586. // nb01 >= nb00 - src0 is not transposed
  5587. // compute by src0 rows
  5588. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5589. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5590. if (params->ith != 0) {
  5591. return;
  5592. }
  5593. if (params->type == GGML_TASK_INIT) {
  5594. return;
  5595. }
  5596. if (params->type == GGML_TASK_FINALIZE) {
  5597. return;
  5598. }
  5599. float * const wdata = params->wdata;
  5600. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5603. {
  5604. size_t id = 0;
  5605. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5606. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5607. id += ne00;
  5608. }
  5609. }
  5610. const float * x = wdata;
  5611. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5612. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5613. // zT = y * xT
  5614. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5615. ne11, ne01, ne10,
  5616. 1.0f, y, ne10,
  5617. x, ne00,
  5618. 0.0f, d, ne01);
  5619. }
  5620. }
  5621. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5622. return;
  5623. }
  5624. #endif
  5625. if (params->type == GGML_TASK_INIT) {
  5626. char * wdata = params->wdata;
  5627. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5628. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5629. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5630. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5631. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5632. wdata += row_size;
  5633. }
  5634. }
  5635. }
  5636. return;
  5637. }
  5638. if (params->type == GGML_TASK_FINALIZE) {
  5639. return;
  5640. }
  5641. // parallelize by src0 rows using ggml_vec_dot_q
  5642. // total rows in src0
  5643. const int nr = ne01*ne02*ne03;
  5644. // rows per thread
  5645. const int dr = (nr + nth - 1)/nth;
  5646. // row range for this thread
  5647. const int ir0 = dr*ith;
  5648. const int ir1 = MIN(ir0 + dr, nr);
  5649. void * wdata = params->wdata;
  5650. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5651. for (int ir = ir0; ir < ir1; ++ir) {
  5652. // src0 indices
  5653. const int i03 = ir/(ne02*ne01);
  5654. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5655. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5656. const int i13 = i03;
  5657. const int i12 = i02;
  5658. const int i0 = i01;
  5659. const int i2 = i02;
  5660. const int i3 = i03;
  5661. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5662. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5663. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5664. assert(ne00 % 32 == 0);
  5665. for (int64_t ic = 0; ic < ne11; ++ic) {
  5666. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5667. }
  5668. }
  5669. //int64_t t1 = ggml_time_us();
  5670. //static int64_t acc = 0;
  5671. //acc += t1 - t0;
  5672. //if (t1 - t0 > 10) {
  5673. // printf("\n");
  5674. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5675. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5676. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5677. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5678. //}
  5679. }
  5680. static void ggml_compute_forward_mul_mat(
  5681. const struct ggml_compute_params * params,
  5682. const struct ggml_tensor * src0,
  5683. const struct ggml_tensor * src1,
  5684. struct ggml_tensor * dst) {
  5685. switch (src0->type) {
  5686. case GGML_TYPE_Q4_0:
  5687. case GGML_TYPE_Q4_1:
  5688. {
  5689. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5690. } break;
  5691. case GGML_TYPE_F16:
  5692. {
  5693. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5694. } break;
  5695. case GGML_TYPE_F32:
  5696. {
  5697. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5698. } break;
  5699. case GGML_TYPE_I8:
  5700. case GGML_TYPE_I16:
  5701. case GGML_TYPE_I32:
  5702. case GGML_TYPE_COUNT:
  5703. {
  5704. GGML_ASSERT(false);
  5705. } break;
  5706. }
  5707. #if 0
  5708. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5709. static int first = 8;
  5710. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5711. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5712. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5713. if (first) {
  5714. --first;
  5715. } else {
  5716. for (int k = 0; k < dst->ne[1]; ++k) {
  5717. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5718. for (int i = 0; i < 16; ++i) {
  5719. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5720. }
  5721. printf("\n");
  5722. }
  5723. printf("\n");
  5724. }
  5725. printf("\n");
  5726. exit(0);
  5727. }
  5728. } else {
  5729. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5730. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5731. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5732. }
  5733. #endif
  5734. }
  5735. // ggml_compute_forward_scale
  5736. static void ggml_compute_forward_scale_f32(
  5737. const struct ggml_compute_params * params,
  5738. const struct ggml_tensor * src0,
  5739. const struct ggml_tensor * src1,
  5740. struct ggml_tensor * dst) {
  5741. GGML_ASSERT(ggml_is_contiguous(src0));
  5742. GGML_ASSERT(ggml_is_contiguous(dst));
  5743. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5744. GGML_ASSERT(ggml_is_scalar(src1));
  5745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5746. return;
  5747. }
  5748. // scale factor
  5749. const float v = *(float *) src1->data;
  5750. const int ith = params->ith;
  5751. const int nth = params->nth;
  5752. const int nc = src0->ne[0];
  5753. const int nr = ggml_nrows(src0);
  5754. // rows per thread
  5755. const int dr = (nr + nth - 1)/nth;
  5756. // row range for this thread
  5757. const int ir0 = dr*ith;
  5758. const int ir1 = MIN(ir0 + dr, nr);
  5759. for (int i1 = ir0; i1 < ir1; i1++) {
  5760. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5761. }
  5762. }
  5763. static void ggml_compute_forward_scale(
  5764. const struct ggml_compute_params * params,
  5765. const struct ggml_tensor * src0,
  5766. const struct ggml_tensor * src1,
  5767. struct ggml_tensor * dst) {
  5768. switch (src0->type) {
  5769. case GGML_TYPE_F32:
  5770. {
  5771. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5772. } break;
  5773. case GGML_TYPE_Q4_0:
  5774. case GGML_TYPE_Q4_1:
  5775. case GGML_TYPE_I8:
  5776. case GGML_TYPE_I16:
  5777. case GGML_TYPE_I32:
  5778. case GGML_TYPE_F16:
  5779. case GGML_TYPE_COUNT:
  5780. {
  5781. GGML_ASSERT(false);
  5782. } break;
  5783. }
  5784. }
  5785. // ggml_compute_forward_cpy
  5786. static void ggml_compute_forward_cpy(
  5787. const struct ggml_compute_params * params,
  5788. const struct ggml_tensor * src0,
  5789. struct ggml_tensor * dst) {
  5790. ggml_compute_forward_dup(params, src0, dst);
  5791. }
  5792. // ggml_compute_forward_cont
  5793. static void ggml_compute_forward_cont(
  5794. const struct ggml_compute_params * params,
  5795. const struct ggml_tensor * src0,
  5796. struct ggml_tensor * dst) {
  5797. ggml_compute_forward_dup(params, src0, dst);
  5798. }
  5799. // ggml_compute_forward_reshape
  5800. static void ggml_compute_forward_reshape(
  5801. const struct ggml_compute_params * params,
  5802. const struct ggml_tensor * src0,
  5803. struct ggml_tensor * dst) {
  5804. // NOP
  5805. UNUSED(params);
  5806. UNUSED(src0);
  5807. UNUSED(dst);
  5808. }
  5809. // ggml_compute_forward_view
  5810. static void ggml_compute_forward_view(
  5811. const struct ggml_compute_params * params,
  5812. const struct ggml_tensor * src0) {
  5813. // NOP
  5814. UNUSED(params);
  5815. UNUSED(src0);
  5816. }
  5817. // ggml_compute_forward_permute
  5818. static void ggml_compute_forward_permute(
  5819. const struct ggml_compute_params * params,
  5820. const struct ggml_tensor * src0) {
  5821. // NOP
  5822. UNUSED(params);
  5823. UNUSED(src0);
  5824. }
  5825. // ggml_compute_forward_transpose
  5826. static void ggml_compute_forward_transpose(
  5827. const struct ggml_compute_params * params,
  5828. const struct ggml_tensor * src0) {
  5829. // NOP
  5830. UNUSED(params);
  5831. UNUSED(src0);
  5832. }
  5833. // ggml_compute_forward_get_rows
  5834. static void ggml_compute_forward_get_rows_q(
  5835. const struct ggml_compute_params * params,
  5836. const struct ggml_tensor * src0,
  5837. const struct ggml_tensor * src1,
  5838. struct ggml_tensor * dst) {
  5839. assert(params->ith == 0);
  5840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5841. return;
  5842. }
  5843. const int nc = src0->ne[0];
  5844. const int nr = ggml_nelements(src1);
  5845. const enum ggml_type type = src0->type;
  5846. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5847. assert( dst->ne[0] == nc);
  5848. assert( dst->ne[1] == nr);
  5849. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5850. for (int i = 0; i < nr; ++i) {
  5851. const int r = ((int32_t *) src1->data)[i];
  5852. dequantize_row_q(
  5853. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5854. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5855. }
  5856. }
  5857. static void ggml_compute_forward_get_rows_f16(
  5858. const struct ggml_compute_params * params,
  5859. const struct ggml_tensor * src0,
  5860. const struct ggml_tensor * src1,
  5861. struct ggml_tensor * dst) {
  5862. assert(params->ith == 0);
  5863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5864. return;
  5865. }
  5866. const int nc = src0->ne[0];
  5867. const int nr = ggml_nelements(src1);
  5868. assert( dst->ne[0] == nc);
  5869. assert( dst->ne[1] == nr);
  5870. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5871. for (int i = 0; i < nr; ++i) {
  5872. const int r = ((int32_t *) src1->data)[i];
  5873. for (int j = 0; j < nc; ++j) {
  5874. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5875. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5876. }
  5877. }
  5878. }
  5879. static void ggml_compute_forward_get_rows_f32(
  5880. const struct ggml_compute_params * params,
  5881. const struct ggml_tensor * src0,
  5882. const struct ggml_tensor * src1,
  5883. struct ggml_tensor * dst) {
  5884. assert(params->ith == 0);
  5885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5886. return;
  5887. }
  5888. const int nc = src0->ne[0];
  5889. const int nr = ggml_nelements(src1);
  5890. assert( dst->ne[0] == nc);
  5891. assert( dst->ne[1] == nr);
  5892. assert(src0->nb[0] == sizeof(float));
  5893. for (int i = 0; i < nr; ++i) {
  5894. const int r = ((int32_t *) src1->data)[i];
  5895. ggml_vec_cpy_f32(nc,
  5896. (float *) ((char *) dst->data + i*dst->nb[1]),
  5897. (float *) ((char *) src0->data + r*src0->nb[1]));
  5898. }
  5899. }
  5900. static void ggml_compute_forward_get_rows(
  5901. const struct ggml_compute_params * params,
  5902. const struct ggml_tensor * src0,
  5903. const struct ggml_tensor * src1,
  5904. struct ggml_tensor * dst) {
  5905. switch (src0->type) {
  5906. case GGML_TYPE_Q4_0:
  5907. case GGML_TYPE_Q4_1:
  5908. {
  5909. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5910. } break;
  5911. case GGML_TYPE_F16:
  5912. {
  5913. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5914. } break;
  5915. case GGML_TYPE_F32:
  5916. {
  5917. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5918. } break;
  5919. case GGML_TYPE_I8:
  5920. case GGML_TYPE_I16:
  5921. case GGML_TYPE_I32:
  5922. case GGML_TYPE_COUNT:
  5923. {
  5924. GGML_ASSERT(false);
  5925. } break;
  5926. }
  5927. //static bool first = true;
  5928. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5929. //if (first) {
  5930. // first = false;
  5931. //} else {
  5932. // for (int k = 0; k < dst->ne[1]; ++k) {
  5933. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5934. // for (int i = 0; i < 16; ++i) {
  5935. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5936. // }
  5937. // printf("\n");
  5938. // }
  5939. // printf("\n");
  5940. // }
  5941. // printf("\n");
  5942. // exit(0);
  5943. //}
  5944. }
  5945. // ggml_compute_forward_diag_mask_inf
  5946. static void ggml_compute_forward_diag_mask_inf_f32(
  5947. const struct ggml_compute_params * params,
  5948. const struct ggml_tensor * src0,
  5949. const struct ggml_tensor * src1,
  5950. struct ggml_tensor * dst) {
  5951. assert(params->ith == 0);
  5952. assert(src1->type == GGML_TYPE_I32);
  5953. assert(ggml_nelements(src1) == 1);
  5954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5955. return;
  5956. }
  5957. const int n_past = ((int32_t *) src1->data)[0];
  5958. // TODO: handle transposed/permuted matrices
  5959. const int n = ggml_nrows(src0);
  5960. const int nc = src0->ne[0];
  5961. const int nr = src0->ne[1];
  5962. const int nz = n/nr;
  5963. assert( dst->nb[0] == sizeof(float));
  5964. assert(src0->nb[0] == sizeof(float));
  5965. for (int k = 0; k < nz; k++) {
  5966. for (int j = 0; j < nr; j++) {
  5967. for (int i = n_past; i < nc; i++) {
  5968. if (i > n_past + j) {
  5969. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. static void ggml_compute_forward_diag_mask_inf(
  5976. const struct ggml_compute_params * params,
  5977. const struct ggml_tensor * src0,
  5978. const struct ggml_tensor * src1,
  5979. struct ggml_tensor * dst) {
  5980. switch (src0->type) {
  5981. case GGML_TYPE_F32:
  5982. {
  5983. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5984. } break;
  5985. case GGML_TYPE_Q4_0:
  5986. case GGML_TYPE_Q4_1:
  5987. case GGML_TYPE_I8:
  5988. case GGML_TYPE_I16:
  5989. case GGML_TYPE_I32:
  5990. case GGML_TYPE_F16:
  5991. case GGML_TYPE_COUNT:
  5992. {
  5993. GGML_ASSERT(false);
  5994. } break;
  5995. }
  5996. }
  5997. // ggml_compute_forward_soft_max
  5998. static void ggml_compute_forward_soft_max_f32(
  5999. const struct ggml_compute_params * params,
  6000. const struct ggml_tensor * src0,
  6001. struct ggml_tensor * dst) {
  6002. GGML_ASSERT(ggml_is_contiguous(src0));
  6003. GGML_ASSERT(ggml_is_contiguous(dst));
  6004. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6005. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6006. return;
  6007. }
  6008. // TODO: handle transposed/permuted matrices
  6009. const int ith = params->ith;
  6010. const int nth = params->nth;
  6011. const int nc = src0->ne[0];
  6012. const int nr = ggml_nrows(src0);
  6013. // rows per thread
  6014. const int dr = (nr + nth - 1)/nth;
  6015. // row range for this thread
  6016. const int ir0 = dr*ith;
  6017. const int ir1 = MIN(ir0 + dr, nr);
  6018. for (int i1 = ir0; i1 < ir1; i1++) {
  6019. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6020. #ifndef NDEBUG
  6021. for (int i = 0; i < nc; ++i) {
  6022. //printf("p[%d] = %f\n", i, p[i]);
  6023. assert(!isnan(p[i]));
  6024. }
  6025. #endif
  6026. float max = -INFINITY;
  6027. ggml_vec_max_f32(nc, &max, p);
  6028. ggml_float sum = 0.0;
  6029. uint16_t scvt;
  6030. for (int i = 0; i < nc; i++) {
  6031. if (p[i] == -INFINITY) {
  6032. p[i] = 0.0f;
  6033. } else {
  6034. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6035. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6036. memcpy(&scvt, &s, sizeof(scvt));
  6037. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6038. sum += (ggml_float)val;
  6039. p[i] = val;
  6040. }
  6041. }
  6042. assert(sum > 0.0);
  6043. sum = 1.0/sum;
  6044. ggml_vec_scale_f32(nc, p, sum);
  6045. #ifndef NDEBUG
  6046. for (int i = 0; i < nc; ++i) {
  6047. assert(!isnan(p[i]));
  6048. assert(!isinf(p[i]));
  6049. }
  6050. #endif
  6051. }
  6052. }
  6053. static void ggml_compute_forward_soft_max(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. struct ggml_tensor * dst) {
  6057. switch (src0->type) {
  6058. case GGML_TYPE_F32:
  6059. {
  6060. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6061. } break;
  6062. case GGML_TYPE_Q4_0:
  6063. case GGML_TYPE_Q4_1:
  6064. case GGML_TYPE_I8:
  6065. case GGML_TYPE_I16:
  6066. case GGML_TYPE_I32:
  6067. case GGML_TYPE_F16:
  6068. case GGML_TYPE_COUNT:
  6069. {
  6070. GGML_ASSERT(false);
  6071. } break;
  6072. }
  6073. }
  6074. // ggml_compute_forward_rope
  6075. static void ggml_compute_forward_rope_f32(
  6076. const struct ggml_compute_params * params,
  6077. const struct ggml_tensor * src0,
  6078. const struct ggml_tensor * src1,
  6079. struct ggml_tensor * dst) {
  6080. assert(src1->type == GGML_TYPE_I32);
  6081. assert(ggml_nelements(src1) == 3);
  6082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6083. return;
  6084. }
  6085. const int n_past = ((int32_t *) src1->data)[0];
  6086. const int n_dims = ((int32_t *) src1->data)[1];
  6087. const int mode = ((int32_t *) src1->data)[2];
  6088. //const int64_t ne0 = src0->ne[0];
  6089. const int64_t ne1 = src0->ne[1];
  6090. const int64_t ne2 = src0->ne[2];
  6091. const int64_t ne3 = src0->ne[3];
  6092. const int nb0 = src0->nb[0];
  6093. const int nb1 = src0->nb[1];
  6094. const int nb2 = src0->nb[2];
  6095. const int nb3 = src0->nb[3];
  6096. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6097. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6098. assert(nb0 == sizeof(float));
  6099. const int ith = params->ith;
  6100. const int nth = params->nth;
  6101. const int nr = ggml_nrows(src0);
  6102. // rows per thread
  6103. const int dr = (nr + nth - 1)/nth;
  6104. // row range for this thread
  6105. const int ir0 = dr*ith;
  6106. const int ir1 = MIN(ir0 + dr, nr);
  6107. // row index used to determine which thread to use
  6108. int ir = 0;
  6109. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6110. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6111. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6112. const int p = (mode == 0 ? n_past + i2 : i2);
  6113. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6114. if (ir++ < ir0) continue;
  6115. if (ir > ir1) break;
  6116. float theta = (float)p;
  6117. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6118. const float cos_theta = cosf(theta);
  6119. const float sin_theta = sinf(theta);
  6120. theta *= theta_scale;
  6121. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6122. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6123. const float x0 = src[0];
  6124. const float x1 = src[1];
  6125. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6126. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6127. }
  6128. }
  6129. }
  6130. }
  6131. }
  6132. static void ggml_compute_forward_rope_f16(
  6133. const struct ggml_compute_params * params,
  6134. const struct ggml_tensor * src0,
  6135. const struct ggml_tensor * src1,
  6136. struct ggml_tensor * dst) {
  6137. assert(src1->type == GGML_TYPE_I32);
  6138. assert(ggml_nelements(src1) == 3);
  6139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6140. return;
  6141. }
  6142. const int n_past = ((int32_t *) src1->data)[0];
  6143. const int n_dims = ((int32_t *) src1->data)[1];
  6144. const int mode = ((int32_t *) src1->data)[2];
  6145. //const int64_t ne0 = src0->ne[0];
  6146. const int64_t ne1 = src0->ne[1];
  6147. const int64_t ne2 = src0->ne[2];
  6148. const int64_t ne3 = src0->ne[3];
  6149. const int nb0 = src0->nb[0];
  6150. const int nb1 = src0->nb[1];
  6151. const int nb2 = src0->nb[2];
  6152. const int nb3 = src0->nb[3];
  6153. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6154. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6155. assert(nb0 == sizeof(ggml_fp16_t));
  6156. const int ith = params->ith;
  6157. const int nth = params->nth;
  6158. const int nr = ggml_nrows(src0);
  6159. // rows per thread
  6160. const int dr = (nr + nth - 1)/nth;
  6161. // row range for this thread
  6162. const int ir0 = dr*ith;
  6163. const int ir1 = MIN(ir0 + dr, nr);
  6164. // row index used to determine which thread to use
  6165. int ir = 0;
  6166. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6167. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6168. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6169. const int p = (mode == 0 ? n_past + i2 : i2);
  6170. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6171. if (ir++ < ir0) continue;
  6172. if (ir > ir1) break;
  6173. float theta = (float)p;
  6174. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6175. const float cos_theta = cosf(theta);
  6176. const float sin_theta = sinf(theta);
  6177. theta *= theta_scale;
  6178. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6179. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6180. const float x0 = ggml_fp16_to_fp32(src[0]);
  6181. const float x1 = ggml_fp16_to_fp32(src[1]);
  6182. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6183. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6184. }
  6185. }
  6186. }
  6187. }
  6188. }
  6189. static void ggml_compute_forward_rope(
  6190. const struct ggml_compute_params * params,
  6191. const struct ggml_tensor * src0,
  6192. const struct ggml_tensor * src1,
  6193. struct ggml_tensor * dst) {
  6194. switch (src0->type) {
  6195. case GGML_TYPE_F16:
  6196. {
  6197. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6198. } break;
  6199. case GGML_TYPE_F32:
  6200. {
  6201. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6202. } break;
  6203. case GGML_TYPE_Q4_0:
  6204. case GGML_TYPE_Q4_1:
  6205. case GGML_TYPE_I8:
  6206. case GGML_TYPE_I16:
  6207. case GGML_TYPE_I32:
  6208. case GGML_TYPE_COUNT:
  6209. {
  6210. GGML_ASSERT(false);
  6211. } break;
  6212. }
  6213. }
  6214. // ggml_compute_forward_conv_1d_1s
  6215. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6216. const struct ggml_compute_params * params,
  6217. const struct ggml_tensor * src0,
  6218. const struct ggml_tensor * src1,
  6219. struct ggml_tensor * dst) {
  6220. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6221. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6222. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6223. int64_t t0 = ggml_perf_time_us();
  6224. UNUSED(t0);
  6225. const int64_t ne00 = src0->ne[0];
  6226. const int64_t ne01 = src0->ne[1];
  6227. const int64_t ne02 = src0->ne[2];
  6228. //const int64_t ne03 = src0->ne[3];
  6229. const int64_t ne10 = src1->ne[0];
  6230. const int64_t ne11 = src1->ne[1];
  6231. //const int64_t ne12 = src1->ne[2];
  6232. //const int64_t ne13 = src1->ne[3];
  6233. //const int64_t ne0 = dst->ne[0];
  6234. //const int64_t ne1 = dst->ne[1];
  6235. //const int64_t ne2 = dst->ne[2];
  6236. //const int64_t ne3 = dst->ne[3];
  6237. //const int64_t ne = ne0*ne1*ne2*ne3;
  6238. const int nb00 = src0->nb[0];
  6239. const int nb01 = src0->nb[1];
  6240. const int nb02 = src0->nb[2];
  6241. //const int nb03 = src0->nb[3];
  6242. const int nb10 = src1->nb[0];
  6243. const int nb11 = src1->nb[1];
  6244. //const int nb12 = src1->nb[2];
  6245. //const int nb13 = src1->nb[3];
  6246. //const int nb0 = dst->nb[0];
  6247. const int nb1 = dst->nb[1];
  6248. //const int nb2 = dst->nb[2];
  6249. //const int nb3 = dst->nb[3];
  6250. const int ith = params->ith;
  6251. const int nth = params->nth;
  6252. const int nk = ne00;
  6253. const int nh = nk/2;
  6254. const int ew0 = ggml_up32(ne01);
  6255. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6256. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6257. GGML_ASSERT(nb10 == sizeof(float));
  6258. if (params->type == GGML_TASK_INIT) {
  6259. // TODO: fix this memset (wsize is overestimated)
  6260. memset(params->wdata, 0, params->wsize);
  6261. // prepare kernel data (src0)
  6262. {
  6263. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6264. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6265. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6266. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6267. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6268. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6269. dst_data[i00*ew0 + i01] = src[i00];
  6270. }
  6271. }
  6272. }
  6273. }
  6274. // prepare source data (src1)
  6275. {
  6276. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6277. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6278. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6279. ggml_fp16_t * dst_data = wdata;
  6280. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6281. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6282. }
  6283. }
  6284. }
  6285. return;
  6286. }
  6287. if (params->type == GGML_TASK_FINALIZE) {
  6288. return;
  6289. }
  6290. // total rows in dst
  6291. const int nr = ne02;
  6292. // rows per thread
  6293. const int dr = (nr + nth - 1)/nth;
  6294. // row range for this thread
  6295. const int ir0 = dr*ith;
  6296. const int ir1 = MIN(ir0 + dr, nr);
  6297. for (int i1 = ir0; i1 < ir1; i1++) {
  6298. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6299. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6300. dst_data[i0] = 0;
  6301. for (int k = -nh; k <= nh; k++) {
  6302. float v = 0.0f;
  6303. ggml_vec_dot_f16(ew0, &v,
  6304. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6305. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6306. dst_data[i0] += v;
  6307. }
  6308. }
  6309. }
  6310. }
  6311. static void ggml_compute_forward_conv_1d_1s_f32(
  6312. const struct ggml_compute_params * params,
  6313. const struct ggml_tensor * src0,
  6314. const struct ggml_tensor * src1,
  6315. struct ggml_tensor * dst) {
  6316. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6317. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6318. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6319. int64_t t0 = ggml_perf_time_us();
  6320. UNUSED(t0);
  6321. const int64_t ne00 = src0->ne[0];
  6322. const int64_t ne01 = src0->ne[1];
  6323. const int64_t ne02 = src0->ne[2];
  6324. //const int64_t ne03 = src0->ne[3];
  6325. const int64_t ne10 = src1->ne[0];
  6326. const int64_t ne11 = src1->ne[1];
  6327. //const int64_t ne12 = src1->ne[2];
  6328. //const int64_t ne13 = src1->ne[3];
  6329. //const int64_t ne0 = dst->ne[0];
  6330. //const int64_t ne1 = dst->ne[1];
  6331. //const int64_t ne2 = dst->ne[2];
  6332. //const int64_t ne3 = dst->ne[3];
  6333. //const int64_t ne = ne0*ne1*ne2*ne3;
  6334. const int nb00 = src0->nb[0];
  6335. const int nb01 = src0->nb[1];
  6336. const int nb02 = src0->nb[2];
  6337. //const int nb03 = src0->nb[3];
  6338. const int nb10 = src1->nb[0];
  6339. const int nb11 = src1->nb[1];
  6340. //const int nb12 = src1->nb[2];
  6341. //const int nb13 = src1->nb[3];
  6342. //const int nb0 = dst->nb[0];
  6343. const int nb1 = dst->nb[1];
  6344. //const int nb2 = dst->nb[2];
  6345. //const int nb3 = dst->nb[3];
  6346. const int ith = params->ith;
  6347. const int nth = params->nth;
  6348. const int nk = ne00;
  6349. const int nh = nk/2;
  6350. const int ew0 = ggml_up32(ne01);
  6351. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6352. GGML_ASSERT(nb00 == sizeof(float));
  6353. GGML_ASSERT(nb10 == sizeof(float));
  6354. if (params->type == GGML_TASK_INIT) {
  6355. // TODO: fix this memset (wsize is overestimated)
  6356. memset(params->wdata, 0, params->wsize);
  6357. // prepare kernel data (src0)
  6358. {
  6359. float * const wdata = (float *) params->wdata + 0;
  6360. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6361. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6362. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6363. float * dst_data = wdata + i02*ew0*ne00;
  6364. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6365. dst_data[i00*ew0 + i01] = src[i00];
  6366. }
  6367. }
  6368. }
  6369. }
  6370. // prepare source data (src1)
  6371. {
  6372. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6373. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6374. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6375. float * dst_data = wdata;
  6376. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6377. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6378. }
  6379. }
  6380. }
  6381. return;
  6382. }
  6383. if (params->type == GGML_TASK_FINALIZE) {
  6384. return;
  6385. }
  6386. // total rows in dst
  6387. const int nr = ne02;
  6388. // rows per thread
  6389. const int dr = (nr + nth - 1)/nth;
  6390. // row range for this thread
  6391. const int ir0 = dr*ith;
  6392. const int ir1 = MIN(ir0 + dr, nr);
  6393. for (int i1 = ir0; i1 < ir1; i1++) {
  6394. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6395. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6396. dst_data[i0] = 0;
  6397. for (int k = -nh; k <= nh; k++) {
  6398. float v = 0.0f;
  6399. ggml_vec_dot_f32(ew0, &v,
  6400. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6401. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6402. dst_data[i0] += v;
  6403. }
  6404. }
  6405. }
  6406. }
  6407. static void ggml_compute_forward_conv_1d_1s(
  6408. const struct ggml_compute_params * params,
  6409. const struct ggml_tensor * src0,
  6410. const struct ggml_tensor * src1,
  6411. struct ggml_tensor * dst) {
  6412. switch (src0->type) {
  6413. case GGML_TYPE_F16:
  6414. {
  6415. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6416. } break;
  6417. case GGML_TYPE_F32:
  6418. {
  6419. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6420. } break;
  6421. case GGML_TYPE_Q4_0:
  6422. case GGML_TYPE_Q4_1:
  6423. case GGML_TYPE_I8:
  6424. case GGML_TYPE_I16:
  6425. case GGML_TYPE_I32:
  6426. case GGML_TYPE_COUNT:
  6427. {
  6428. GGML_ASSERT(false);
  6429. } break;
  6430. }
  6431. }
  6432. // ggml_compute_forward_conv_1d_2s
  6433. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6434. const struct ggml_compute_params * params,
  6435. const struct ggml_tensor * src0,
  6436. const struct ggml_tensor * src1,
  6437. struct ggml_tensor * dst) {
  6438. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6439. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6440. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6441. int64_t t0 = ggml_perf_time_us();
  6442. UNUSED(t0);
  6443. const int64_t ne00 = src0->ne[0];
  6444. const int64_t ne01 = src0->ne[1];
  6445. const int64_t ne02 = src0->ne[2];
  6446. //const int64_t ne03 = src0->ne[3];
  6447. const int64_t ne10 = src1->ne[0];
  6448. const int64_t ne11 = src1->ne[1];
  6449. //const int64_t ne12 = src1->ne[2];
  6450. //const int64_t ne13 = src1->ne[3];
  6451. //const int64_t ne0 = dst->ne[0];
  6452. //const int64_t ne1 = dst->ne[1];
  6453. //const int64_t ne2 = dst->ne[2];
  6454. //const int64_t ne3 = dst->ne[3];
  6455. //const int64_t ne = ne0*ne1*ne2*ne3;
  6456. const int nb00 = src0->nb[0];
  6457. const int nb01 = src0->nb[1];
  6458. const int nb02 = src0->nb[2];
  6459. //const int nb03 = src0->nb[3];
  6460. const int nb10 = src1->nb[0];
  6461. const int nb11 = src1->nb[1];
  6462. //const int nb12 = src1->nb[2];
  6463. //const int nb13 = src1->nb[3];
  6464. //const int nb0 = dst->nb[0];
  6465. const int nb1 = dst->nb[1];
  6466. //const int nb2 = dst->nb[2];
  6467. //const int nb3 = dst->nb[3];
  6468. const int ith = params->ith;
  6469. const int nth = params->nth;
  6470. const int nk = ne00;
  6471. const int nh = nk/2;
  6472. const int ew0 = ggml_up32(ne01);
  6473. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6474. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6475. GGML_ASSERT(nb10 == sizeof(float));
  6476. if (params->type == GGML_TASK_INIT) {
  6477. // TODO: fix this memset (wsize is overestimated)
  6478. memset(params->wdata, 0, params->wsize);
  6479. // prepare kernel data (src0)
  6480. {
  6481. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6483. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6484. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6485. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6486. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6487. dst_data[i00*ew0 + i01] = src[i00];
  6488. }
  6489. }
  6490. }
  6491. }
  6492. // prepare source data (src1)
  6493. {
  6494. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6495. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6496. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6497. ggml_fp16_t * dst_data = wdata;
  6498. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6499. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6500. }
  6501. }
  6502. }
  6503. return;
  6504. }
  6505. if (params->type == GGML_TASK_FINALIZE) {
  6506. return;
  6507. }
  6508. // total rows in dst
  6509. const int nr = ne02;
  6510. // rows per thread
  6511. const int dr = (nr + nth - 1)/nth;
  6512. // row range for this thread
  6513. const int ir0 = dr*ith;
  6514. const int ir1 = MIN(ir0 + dr, nr);
  6515. for (int i1 = ir0; i1 < ir1; i1++) {
  6516. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6517. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6518. dst_data[i0/2] = 0;
  6519. for (int k = -nh; k <= nh; k++) {
  6520. float v = 0.0f;
  6521. ggml_vec_dot_f16(ew0, &v,
  6522. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6523. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6524. dst_data[i0/2] += v;
  6525. }
  6526. }
  6527. }
  6528. }
  6529. static void ggml_compute_forward_conv_1d_2s_f32(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. const struct ggml_tensor * src1,
  6533. struct ggml_tensor * dst) {
  6534. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6535. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6536. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6537. int64_t t0 = ggml_perf_time_us();
  6538. UNUSED(t0);
  6539. const int64_t ne00 = src0->ne[0];
  6540. const int64_t ne01 = src0->ne[1];
  6541. const int64_t ne02 = src0->ne[2];
  6542. //const int64_t ne03 = src0->ne[3];
  6543. const int64_t ne10 = src1->ne[0];
  6544. const int64_t ne11 = src1->ne[1];
  6545. //const int64_t ne12 = src1->ne[2];
  6546. //const int64_t ne13 = src1->ne[3];
  6547. //const int64_t ne0 = dst->ne[0];
  6548. //const int64_t ne1 = dst->ne[1];
  6549. //const int64_t ne2 = dst->ne[2];
  6550. //const int64_t ne3 = dst->ne[3];
  6551. //const int64_t ne = ne0*ne1*ne2*ne3;
  6552. const int nb00 = src0->nb[0];
  6553. const int nb01 = src0->nb[1];
  6554. const int nb02 = src0->nb[2];
  6555. //const int nb03 = src0->nb[3];
  6556. const int nb10 = src1->nb[0];
  6557. const int nb11 = src1->nb[1];
  6558. //const int nb12 = src1->nb[2];
  6559. //const int nb13 = src1->nb[3];
  6560. //const int nb0 = dst->nb[0];
  6561. const int nb1 = dst->nb[1];
  6562. //const int nb2 = dst->nb[2];
  6563. //const int nb3 = dst->nb[3];
  6564. const int ith = params->ith;
  6565. const int nth = params->nth;
  6566. const int nk = ne00;
  6567. const int nh = nk/2;
  6568. const int ew0 = ggml_up32(ne01);
  6569. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6570. GGML_ASSERT(nb00 == sizeof(float));
  6571. GGML_ASSERT(nb10 == sizeof(float));
  6572. if (params->type == GGML_TASK_INIT) {
  6573. // TODO: fix this memset (wsize is overestimated)
  6574. memset(params->wdata, 0, params->wsize);
  6575. // prepare kernel data (src0)
  6576. {
  6577. float * const wdata = (float *) params->wdata + 0;
  6578. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6579. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6580. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6581. float * dst_data = wdata + i02*ew0*ne00;
  6582. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6583. dst_data[i00*ew0 + i01] = src[i00];
  6584. }
  6585. }
  6586. }
  6587. }
  6588. // prepare source data (src1)
  6589. {
  6590. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6591. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6592. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6593. float * dst_data = wdata;
  6594. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6595. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6596. }
  6597. }
  6598. }
  6599. return;
  6600. }
  6601. if (params->type == GGML_TASK_FINALIZE) {
  6602. return;
  6603. }
  6604. // total rows in dst
  6605. const int nr = ne02;
  6606. // rows per thread
  6607. const int dr = (nr + nth - 1)/nth;
  6608. // row range for this thread
  6609. const int ir0 = dr*ith;
  6610. const int ir1 = MIN(ir0 + dr, nr);
  6611. for (int i1 = ir0; i1 < ir1; i1++) {
  6612. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6613. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6614. dst_data[i0/2] = 0;
  6615. for (int k = -nh; k <= nh; k++) {
  6616. float v = 0.0f;
  6617. ggml_vec_dot_f32(ew0, &v,
  6618. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6619. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6620. dst_data[i0/2] += v;
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_conv_1d_2s(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. switch (src0->type) {
  6631. case GGML_TYPE_F16:
  6632. {
  6633. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6634. } break;
  6635. case GGML_TYPE_F32:
  6636. {
  6637. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6638. } break;
  6639. case GGML_TYPE_Q4_0:
  6640. case GGML_TYPE_Q4_1:
  6641. case GGML_TYPE_I8:
  6642. case GGML_TYPE_I16:
  6643. case GGML_TYPE_I32:
  6644. case GGML_TYPE_COUNT:
  6645. {
  6646. GGML_ASSERT(false);
  6647. } break;
  6648. }
  6649. }
  6650. // ggml_compute_forward_flash_attn
  6651. static void ggml_compute_forward_flash_attn_f32(
  6652. const struct ggml_compute_params * params,
  6653. const struct ggml_tensor * q,
  6654. const struct ggml_tensor * k,
  6655. const struct ggml_tensor * v,
  6656. const bool masked,
  6657. struct ggml_tensor * dst) {
  6658. int64_t t0 = ggml_perf_time_us();
  6659. UNUSED(t0);
  6660. const int64_t neq0 = q->ne[0];
  6661. const int64_t neq1 = q->ne[1];
  6662. const int64_t neq2 = q->ne[2];
  6663. const int64_t neq3 = q->ne[3];
  6664. const int64_t nek0 = k->ne[0];
  6665. const int64_t nek1 = k->ne[1];
  6666. //const int64_t nek2 = k->ne[2];
  6667. //const int64_t nek3 = k->ne[3];
  6668. //const int64_t nev0 = v->ne[0];
  6669. const int64_t nev1 = v->ne[1];
  6670. //const int64_t nev2 = v->ne[2];
  6671. //const int64_t nev3 = v->ne[3];
  6672. const int64_t ne0 = dst->ne[0];
  6673. const int64_t ne1 = dst->ne[1];
  6674. //const int64_t ne2 = dst->ne[2];
  6675. //const int64_t ne3 = dst->ne[3];
  6676. const int nbk0 = k->nb[0];
  6677. const int nbk1 = k->nb[1];
  6678. const int nbk2 = k->nb[2];
  6679. const int nbk3 = k->nb[3];
  6680. const int nbq0 = q->nb[0];
  6681. const int nbq1 = q->nb[1];
  6682. const int nbq2 = q->nb[2];
  6683. const int nbq3 = q->nb[3];
  6684. const int nbv0 = v->nb[0];
  6685. const int nbv1 = v->nb[1];
  6686. const int nbv2 = v->nb[2];
  6687. const int nbv3 = v->nb[3];
  6688. const int nb0 = dst->nb[0];
  6689. const int nb1 = dst->nb[1];
  6690. const int nb2 = dst->nb[2];
  6691. const int nb3 = dst->nb[3];
  6692. const int ith = params->ith;
  6693. const int nth = params->nth;
  6694. const int64_t D = neq0;
  6695. const int64_t N = neq1;
  6696. const int64_t P = nek1 - N;
  6697. const int64_t M = P + N;
  6698. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6699. GGML_ASSERT(ne0 == D);
  6700. GGML_ASSERT(ne1 == N);
  6701. GGML_ASSERT(P >= 0);
  6702. GGML_ASSERT(nbq0 == sizeof(float));
  6703. GGML_ASSERT(nbk0 == sizeof(float));
  6704. GGML_ASSERT(nbv0 == sizeof(float));
  6705. GGML_ASSERT(neq0 == D);
  6706. GGML_ASSERT(nek0 == D);
  6707. GGML_ASSERT(nev1 == D);
  6708. GGML_ASSERT(neq1 == N);
  6709. GGML_ASSERT(nek1 == N + P);
  6710. GGML_ASSERT(nev1 == D);
  6711. // dst cannot be transposed or permuted
  6712. GGML_ASSERT(nb0 == sizeof(float));
  6713. GGML_ASSERT(nb0 <= nb1);
  6714. GGML_ASSERT(nb1 <= nb2);
  6715. GGML_ASSERT(nb2 <= nb3);
  6716. if (params->type == GGML_TASK_INIT) {
  6717. return;
  6718. }
  6719. if (params->type == GGML_TASK_FINALIZE) {
  6720. return;
  6721. }
  6722. // parallelize by q rows using ggml_vec_dot_f32
  6723. // total rows in q
  6724. const int nr = neq1*neq2*neq3;
  6725. // rows per thread
  6726. const int dr = (nr + nth - 1)/nth;
  6727. // row range for this thread
  6728. const int ir0 = dr*ith;
  6729. const int ir1 = MIN(ir0 + dr, nr);
  6730. const float scale = 1.0f/sqrtf(D);
  6731. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6732. for (int ir = ir0; ir < ir1; ++ir) {
  6733. // q indices
  6734. const int iq3 = ir/(neq2*neq1);
  6735. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6736. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6737. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6738. for (int i = M; i < Mup; ++i) {
  6739. S[i] = -INFINITY;
  6740. }
  6741. for (int64_t ic = 0; ic < nek1; ++ic) {
  6742. // k indices
  6743. const int ik3 = iq3;
  6744. const int ik2 = iq2;
  6745. const int ik1 = ic;
  6746. // S indices
  6747. const int i1 = ik1;
  6748. ggml_vec_dot_f32(neq0,
  6749. S + i1,
  6750. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6751. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6752. }
  6753. // scale
  6754. ggml_vec_scale_f32(nek1, S, scale);
  6755. if (masked) {
  6756. for (int64_t i = P; i < M; i++) {
  6757. if (i > P + iq1) {
  6758. S[i] = -INFINITY;
  6759. }
  6760. }
  6761. }
  6762. // softmax
  6763. {
  6764. float max = -INFINITY;
  6765. ggml_vec_max_f32(M, &max, S);
  6766. ggml_float sum = 0.0;
  6767. {
  6768. #ifdef GGML_SOFT_MAX_ACCELERATE
  6769. max = -max;
  6770. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6771. vvexpf(S, S, &Mup);
  6772. ggml_vec_sum_f32(Mup, &sum, S);
  6773. #else
  6774. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6775. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6776. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6777. float * SS = S + i;
  6778. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6779. if (SS[j] == -INFINITY) {
  6780. SS[j] = 0.0f;
  6781. } else {
  6782. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6783. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6784. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6785. sump[j] += (ggml_float)val;
  6786. SS[j] = val;
  6787. }
  6788. }
  6789. }
  6790. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6791. sum += sump[i];
  6792. }
  6793. #endif
  6794. }
  6795. assert(sum > 0.0);
  6796. sum = 1.0/sum;
  6797. ggml_vec_scale_f32(M, S, sum);
  6798. #ifndef NDEBUG
  6799. for (int i = 0; i < M; ++i) {
  6800. assert(!isnan(S[i]));
  6801. assert(!isinf(S[i]));
  6802. }
  6803. #endif
  6804. }
  6805. for (int64_t ic = 0; ic < nev1; ++ic) {
  6806. // dst indices
  6807. const int i1 = iq1;
  6808. const int i2 = iq2;
  6809. const int i3 = iq3;
  6810. ggml_vec_dot_f32(nek1,
  6811. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6812. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6813. S);
  6814. }
  6815. }
  6816. }
  6817. static void ggml_compute_forward_flash_attn_f16(
  6818. const struct ggml_compute_params * params,
  6819. const struct ggml_tensor * q,
  6820. const struct ggml_tensor * k,
  6821. const struct ggml_tensor * v,
  6822. const bool masked,
  6823. struct ggml_tensor * dst) {
  6824. int64_t t0 = ggml_perf_time_us();
  6825. UNUSED(t0);
  6826. const int64_t neq0 = q->ne[0];
  6827. const int64_t neq1 = q->ne[1];
  6828. const int64_t neq2 = q->ne[2];
  6829. const int64_t neq3 = q->ne[3];
  6830. const int64_t nek0 = k->ne[0];
  6831. const int64_t nek1 = k->ne[1];
  6832. //const int64_t nek2 = k->ne[2];
  6833. //const int64_t nek3 = k->ne[3];
  6834. //const int64_t nev0 = v->ne[0];
  6835. const int64_t nev1 = v->ne[1];
  6836. //const int64_t nev2 = v->ne[2];
  6837. //const int64_t nev3 = v->ne[3];
  6838. const int64_t ne0 = dst->ne[0];
  6839. const int64_t ne1 = dst->ne[1];
  6840. //const int64_t ne2 = dst->ne[2];
  6841. //const int64_t ne3 = dst->ne[3];
  6842. const int nbk0 = k->nb[0];
  6843. const int nbk1 = k->nb[1];
  6844. const int nbk2 = k->nb[2];
  6845. const int nbk3 = k->nb[3];
  6846. const int nbq0 = q->nb[0];
  6847. const int nbq1 = q->nb[1];
  6848. const int nbq2 = q->nb[2];
  6849. const int nbq3 = q->nb[3];
  6850. const int nbv0 = v->nb[0];
  6851. const int nbv1 = v->nb[1];
  6852. const int nbv2 = v->nb[2];
  6853. const int nbv3 = v->nb[3];
  6854. const int nb0 = dst->nb[0];
  6855. const int nb1 = dst->nb[1];
  6856. const int nb2 = dst->nb[2];
  6857. const int nb3 = dst->nb[3];
  6858. const int ith = params->ith;
  6859. const int nth = params->nth;
  6860. const int64_t D = neq0;
  6861. const int64_t N = neq1;
  6862. const int64_t P = nek1 - N;
  6863. const int64_t M = P + N;
  6864. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6865. GGML_ASSERT(ne0 == D);
  6866. GGML_ASSERT(ne1 == N);
  6867. GGML_ASSERT(P >= 0);
  6868. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6869. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6870. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6871. GGML_ASSERT(neq0 == D);
  6872. GGML_ASSERT(nek0 == D);
  6873. GGML_ASSERT(nev1 == D);
  6874. GGML_ASSERT(neq1 == N);
  6875. GGML_ASSERT(nek1 == N + P);
  6876. GGML_ASSERT(nev1 == D);
  6877. // dst cannot be transposed or permuted
  6878. GGML_ASSERT(nb0 == sizeof(float));
  6879. GGML_ASSERT(nb0 <= nb1);
  6880. GGML_ASSERT(nb1 <= nb2);
  6881. GGML_ASSERT(nb2 <= nb3);
  6882. if (params->type == GGML_TASK_INIT) {
  6883. return;
  6884. }
  6885. if (params->type == GGML_TASK_FINALIZE) {
  6886. return;
  6887. }
  6888. // parallelize by q rows using ggml_vec_dot_f32
  6889. // total rows in q
  6890. const int nr = neq1*neq2*neq3;
  6891. // rows per thread
  6892. const int dr = (nr + nth - 1)/nth;
  6893. // row range for this thread
  6894. const int ir0 = dr*ith;
  6895. const int ir1 = MIN(ir0 + dr, nr);
  6896. const float scale = 1.0f/sqrtf(D);
  6897. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6898. for (int ir = ir0; ir < ir1; ++ir) {
  6899. // q indices
  6900. const int iq3 = ir/(neq2*neq1);
  6901. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6902. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6903. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6904. for (int i = M; i < Mup; ++i) {
  6905. S[i] = -INFINITY;
  6906. }
  6907. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6908. for (int64_t ic = 0; ic < nek1; ++ic) {
  6909. // k indices
  6910. const int ik3 = iq3;
  6911. const int ik2 = iq2;
  6912. const int ik1 = ic;
  6913. // S indices
  6914. const int i1 = ik1;
  6915. ggml_vec_dot_f16(neq0,
  6916. S + i1,
  6917. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6918. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6919. }
  6920. } else {
  6921. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6922. // k indices
  6923. const int ik3 = iq3;
  6924. const int ik2 = iq2;
  6925. const int ik1 = ic;
  6926. // S indices
  6927. const int i1 = ik1;
  6928. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6929. S + i1,
  6930. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6931. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6932. }
  6933. }
  6934. // scale
  6935. ggml_vec_scale_f32(nek1, S, scale);
  6936. if (masked) {
  6937. for (int64_t i = P; i < M; i++) {
  6938. if (i > P + iq1) {
  6939. S[i] = -INFINITY;
  6940. }
  6941. }
  6942. }
  6943. // softmax
  6944. {
  6945. float max = -INFINITY;
  6946. ggml_vec_max_f32(M, &max, S);
  6947. ggml_float sum = 0.0;
  6948. {
  6949. #ifdef GGML_SOFT_MAX_ACCELERATE
  6950. max = -max;
  6951. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6952. vvexpf(S, S, &Mup);
  6953. ggml_vec_sum_f32(Mup, &sum, S);
  6954. #else
  6955. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6956. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6957. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6958. float * SS = S + i;
  6959. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6960. if (SS[j] == -INFINITY) {
  6961. SS[j] = 0.0f;
  6962. } else {
  6963. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6964. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6965. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6966. sump[j] += (ggml_float)val;
  6967. SS[j] = val;
  6968. }
  6969. }
  6970. }
  6971. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6972. sum += sump[i];
  6973. }
  6974. #endif
  6975. }
  6976. assert(sum > 0.0);
  6977. sum = 1.0/sum;
  6978. ggml_vec_scale_f32(M, S, sum);
  6979. #ifndef NDEBUG
  6980. for (int i = 0; i < M; ++i) {
  6981. assert(!isnan(S[i]));
  6982. assert(!isinf(S[i]));
  6983. }
  6984. #endif
  6985. }
  6986. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6987. for (int64_t i = 0; i < M; i++) {
  6988. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6989. }
  6990. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6991. for (int64_t ic = 0; ic < nev1; ++ic) {
  6992. // dst indices
  6993. const int i1 = iq1;
  6994. const int i2 = iq2;
  6995. const int i3 = iq3;
  6996. ggml_vec_dot_f16(nek1,
  6997. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6998. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6999. S16);
  7000. }
  7001. } else {
  7002. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7003. // dst indices
  7004. const int i1 = iq1;
  7005. const int i2 = iq2;
  7006. const int i3 = iq3;
  7007. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7008. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7009. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7010. S16);
  7011. }
  7012. }
  7013. }
  7014. }
  7015. static void ggml_compute_forward_flash_attn(
  7016. const struct ggml_compute_params * params,
  7017. const struct ggml_tensor * q,
  7018. const struct ggml_tensor * k,
  7019. const struct ggml_tensor * v,
  7020. const bool masked,
  7021. struct ggml_tensor * dst) {
  7022. switch (q->type) {
  7023. case GGML_TYPE_F16:
  7024. {
  7025. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7026. } break;
  7027. case GGML_TYPE_F32:
  7028. {
  7029. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7030. } break;
  7031. case GGML_TYPE_Q4_0:
  7032. case GGML_TYPE_Q4_1:
  7033. case GGML_TYPE_I8:
  7034. case GGML_TYPE_I16:
  7035. case GGML_TYPE_I32:
  7036. case GGML_TYPE_COUNT:
  7037. {
  7038. GGML_ASSERT(false);
  7039. } break;
  7040. }
  7041. }
  7042. // ggml_compute_forward_flash_ff
  7043. static void ggml_compute_forward_flash_ff_f16(
  7044. const struct ggml_compute_params * params,
  7045. const struct ggml_tensor * a, // F16
  7046. const struct ggml_tensor * b0, // F16 fc_w
  7047. const struct ggml_tensor * b1, // F32 fc_b
  7048. const struct ggml_tensor * c0, // F16 proj_w
  7049. const struct ggml_tensor * c1, // F32 proj_b
  7050. struct ggml_tensor * dst) {
  7051. int64_t t0 = ggml_perf_time_us();
  7052. UNUSED(t0);
  7053. const int64_t nea0 = a->ne[0];
  7054. const int64_t nea1 = a->ne[1];
  7055. const int64_t nea2 = a->ne[2];
  7056. const int64_t nea3 = a->ne[3];
  7057. const int64_t neb00 = b0->ne[0];
  7058. const int64_t neb01 = b0->ne[1];
  7059. //const int64_t neb02 = b0->ne[2];
  7060. //const int64_t neb03 = b0->ne[3];
  7061. const int64_t neb10 = b1->ne[0];
  7062. const int64_t neb11 = b1->ne[1];
  7063. //const int64_t neb12 = b1->ne[2];
  7064. //const int64_t neb13 = b1->ne[3];
  7065. const int64_t nec00 = c0->ne[0];
  7066. const int64_t nec01 = c0->ne[1];
  7067. //const int64_t nec02 = c0->ne[2];
  7068. //const int64_t nec03 = c0->ne[3];
  7069. const int64_t nec10 = c1->ne[0];
  7070. const int64_t nec11 = c1->ne[1];
  7071. //const int64_t nec12 = c1->ne[2];
  7072. //const int64_t nec13 = c1->ne[3];
  7073. const int64_t ne0 = dst->ne[0];
  7074. const int64_t ne1 = dst->ne[1];
  7075. const int64_t ne2 = dst->ne[2];
  7076. //const int64_t ne3 = dst->ne[3];
  7077. const int nba0 = a->nb[0];
  7078. const int nba1 = a->nb[1];
  7079. const int nba2 = a->nb[2];
  7080. const int nba3 = a->nb[3];
  7081. const int nbb00 = b0->nb[0];
  7082. const int nbb01 = b0->nb[1];
  7083. const int nbb02 = b0->nb[2];
  7084. const int nbb03 = b0->nb[3];
  7085. const int nbb10 = b1->nb[0];
  7086. //const int nbb11 = b1->nb[1];
  7087. //const int nbb12 = b1->nb[2];
  7088. //const int nbb13 = b1->nb[3];
  7089. const int nbc00 = c0->nb[0];
  7090. const int nbc01 = c0->nb[1];
  7091. const int nbc02 = c0->nb[2];
  7092. const int nbc03 = c0->nb[3];
  7093. const int nbc10 = c1->nb[0];
  7094. //const int nbc11 = c1->nb[1];
  7095. //const int nbc12 = c1->nb[2];
  7096. //const int nbc13 = c1->nb[3];
  7097. const int nb0 = dst->nb[0];
  7098. const int nb1 = dst->nb[1];
  7099. const int nb2 = dst->nb[2];
  7100. const int nb3 = dst->nb[3];
  7101. const int ith = params->ith;
  7102. const int nth = params->nth;
  7103. const int64_t D = nea0;
  7104. //const int64_t N = nea1;
  7105. const int64_t M = neb01;
  7106. GGML_ASSERT(ne0 == nea0);
  7107. GGML_ASSERT(ne1 == nea1);
  7108. GGML_ASSERT(ne2 == nea2);
  7109. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7110. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7111. GGML_ASSERT(nbb10 == sizeof(float));
  7112. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7113. GGML_ASSERT(nbc10 == sizeof(float));
  7114. GGML_ASSERT(neb00 == D);
  7115. GGML_ASSERT(neb01 == M);
  7116. GGML_ASSERT(neb10 == M);
  7117. GGML_ASSERT(neb11 == 1);
  7118. GGML_ASSERT(nec00 == M);
  7119. GGML_ASSERT(nec01 == D);
  7120. GGML_ASSERT(nec10 == D);
  7121. GGML_ASSERT(nec11 == 1);
  7122. // dst cannot be transposed or permuted
  7123. GGML_ASSERT(nb0 == sizeof(float));
  7124. GGML_ASSERT(nb0 <= nb1);
  7125. GGML_ASSERT(nb1 <= nb2);
  7126. GGML_ASSERT(nb2 <= nb3);
  7127. if (params->type == GGML_TASK_INIT) {
  7128. return;
  7129. }
  7130. if (params->type == GGML_TASK_FINALIZE) {
  7131. return;
  7132. }
  7133. // parallelize by a rows using ggml_vec_dot_f32
  7134. // total rows in a
  7135. const int nr = nea1*nea2*nea3;
  7136. // rows per thread
  7137. const int dr = (nr + nth - 1)/nth;
  7138. // row range for this thread
  7139. const int ir0 = dr*ith;
  7140. const int ir1 = MIN(ir0 + dr, nr);
  7141. for (int ir = ir0; ir < ir1; ++ir) {
  7142. // a indices
  7143. const int ia3 = ir/(nea2*nea1);
  7144. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7145. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7146. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7147. for (int64_t ic = 0; ic < neb01; ++ic) {
  7148. // b0 indices
  7149. const int ib03 = ia3;
  7150. const int ib02 = ia2;
  7151. const int ib01 = ic;
  7152. // S indices
  7153. const int i1 = ib01;
  7154. ggml_vec_dot_f16(nea0,
  7155. S + i1,
  7156. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7157. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7158. }
  7159. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7160. //ggml_vec_gelu_f32(neb01, S, S);
  7161. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7162. for (int64_t i = 0; i < M; i++) {
  7163. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7164. }
  7165. ggml_vec_gelu_f16(neb01, S16, S16);
  7166. {
  7167. // dst indices
  7168. const int i1 = ia1;
  7169. const int i2 = ia2;
  7170. const int i3 = ia3;
  7171. for (int64_t ic = 0; ic < nec01; ++ic) {
  7172. ggml_vec_dot_f16(neb01,
  7173. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7174. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7175. S16);
  7176. }
  7177. ggml_vec_add_f32(nec01,
  7178. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7179. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7180. (float *) c1->data);
  7181. }
  7182. }
  7183. }
  7184. static void ggml_compute_forward_flash_ff(
  7185. const struct ggml_compute_params * params,
  7186. const struct ggml_tensor * a,
  7187. const struct ggml_tensor * b0,
  7188. const struct ggml_tensor * b1,
  7189. const struct ggml_tensor * c0,
  7190. const struct ggml_tensor * c1,
  7191. struct ggml_tensor * dst) {
  7192. switch (b0->type) {
  7193. case GGML_TYPE_F16:
  7194. {
  7195. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7196. } break;
  7197. case GGML_TYPE_F32:
  7198. {
  7199. GGML_ASSERT(false); // TODO
  7200. } break;
  7201. case GGML_TYPE_Q4_0:
  7202. case GGML_TYPE_Q4_1:
  7203. case GGML_TYPE_I8:
  7204. case GGML_TYPE_I16:
  7205. case GGML_TYPE_I32:
  7206. case GGML_TYPE_COUNT:
  7207. {
  7208. GGML_ASSERT(false);
  7209. } break;
  7210. }
  7211. }
  7212. /////////////////////////////////
  7213. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7214. GGML_ASSERT(params);
  7215. switch (tensor->op) {
  7216. case GGML_OP_DUP:
  7217. {
  7218. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7219. } break;
  7220. case GGML_OP_ADD:
  7221. {
  7222. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7223. } break;
  7224. case GGML_OP_SUB:
  7225. {
  7226. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7227. } break;
  7228. case GGML_OP_MUL:
  7229. {
  7230. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7231. } break;
  7232. case GGML_OP_DIV:
  7233. {
  7234. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7235. } break;
  7236. case GGML_OP_SQR:
  7237. {
  7238. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7239. } break;
  7240. case GGML_OP_SQRT:
  7241. {
  7242. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7243. } break;
  7244. case GGML_OP_SUM:
  7245. {
  7246. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7247. } break;
  7248. case GGML_OP_MEAN:
  7249. {
  7250. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7251. } break;
  7252. case GGML_OP_REPEAT:
  7253. {
  7254. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7255. } break;
  7256. case GGML_OP_ABS:
  7257. {
  7258. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7259. } break;
  7260. case GGML_OP_SGN:
  7261. {
  7262. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7263. } break;
  7264. case GGML_OP_NEG:
  7265. {
  7266. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7267. } break;
  7268. case GGML_OP_STEP:
  7269. {
  7270. ggml_compute_forward_step(params, tensor->src0, tensor);
  7271. } break;
  7272. case GGML_OP_RELU:
  7273. {
  7274. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7275. } break;
  7276. case GGML_OP_GELU:
  7277. {
  7278. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7279. } break;
  7280. case GGML_OP_SILU:
  7281. {
  7282. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7283. } break;
  7284. case GGML_OP_NORM:
  7285. {
  7286. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7287. } break;
  7288. case GGML_OP_RMS_NORM:
  7289. {
  7290. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7291. } break;
  7292. case GGML_OP_MUL_MAT:
  7293. {
  7294. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7295. } break;
  7296. case GGML_OP_SCALE:
  7297. {
  7298. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7299. } break;
  7300. case GGML_OP_CPY:
  7301. {
  7302. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7303. } break;
  7304. case GGML_OP_CONT:
  7305. {
  7306. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7307. } break;
  7308. case GGML_OP_RESHAPE:
  7309. {
  7310. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7311. } break;
  7312. case GGML_OP_VIEW:
  7313. {
  7314. ggml_compute_forward_view(params, tensor->src0);
  7315. } break;
  7316. case GGML_OP_PERMUTE:
  7317. {
  7318. ggml_compute_forward_permute(params, tensor->src0);
  7319. } break;
  7320. case GGML_OP_TRANSPOSE:
  7321. {
  7322. ggml_compute_forward_transpose(params, tensor->src0);
  7323. } break;
  7324. case GGML_OP_GET_ROWS:
  7325. {
  7326. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7327. } break;
  7328. case GGML_OP_DIAG_MASK_INF:
  7329. {
  7330. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7331. } break;
  7332. case GGML_OP_SOFT_MAX:
  7333. {
  7334. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7335. } break;
  7336. case GGML_OP_ROPE:
  7337. {
  7338. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7339. } break;
  7340. case GGML_OP_CONV_1D_1S:
  7341. {
  7342. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7343. } break;
  7344. case GGML_OP_CONV_1D_2S:
  7345. {
  7346. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7347. } break;
  7348. case GGML_OP_FLASH_ATTN:
  7349. {
  7350. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7351. GGML_ASSERT(t == 0 || t == 1);
  7352. bool masked = t != 0;
  7353. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7354. } break;
  7355. case GGML_OP_FLASH_FF:
  7356. {
  7357. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7358. } break;
  7359. case GGML_OP_NONE:
  7360. {
  7361. // nop
  7362. } break;
  7363. case GGML_OP_COUNT:
  7364. {
  7365. GGML_ASSERT(false);
  7366. } break;
  7367. }
  7368. }
  7369. ////////////////////////////////////////////////////////////////////////////////
  7370. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7371. struct ggml_tensor * src0 = tensor->src0;
  7372. struct ggml_tensor * src1 = tensor->src1;
  7373. switch (tensor->op) {
  7374. case GGML_OP_DUP:
  7375. {
  7376. if (src0->grad) {
  7377. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7378. }
  7379. } break;
  7380. case GGML_OP_ADD:
  7381. {
  7382. if (src0->grad) {
  7383. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7384. }
  7385. if (src1->grad) {
  7386. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7387. }
  7388. } break;
  7389. case GGML_OP_SUB:
  7390. {
  7391. if (src0->grad) {
  7392. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7393. }
  7394. if (src1->grad) {
  7395. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7396. }
  7397. } break;
  7398. case GGML_OP_MUL:
  7399. {
  7400. if (src0->grad) {
  7401. src0->grad =
  7402. ggml_add_impl(ctx,
  7403. src0->grad,
  7404. ggml_mul(ctx, src1, tensor->grad),
  7405. inplace);
  7406. }
  7407. if (src1->grad) {
  7408. src1->grad =
  7409. ggml_add_impl(ctx,
  7410. src1->grad,
  7411. ggml_mul(ctx, src0, tensor->grad),
  7412. inplace);
  7413. }
  7414. } break;
  7415. case GGML_OP_DIV:
  7416. {
  7417. if (src0->grad) {
  7418. src0->grad =
  7419. ggml_add_impl(ctx,
  7420. src0->grad,
  7421. ggml_div(ctx, tensor->grad, src1),
  7422. inplace);
  7423. }
  7424. if (src1->grad) {
  7425. src1->grad =
  7426. ggml_sub_impl(ctx,
  7427. src1->grad,
  7428. ggml_mul(ctx,
  7429. tensor->grad,
  7430. ggml_div(ctx, tensor, src1)),
  7431. inplace);
  7432. }
  7433. } break;
  7434. case GGML_OP_SQR:
  7435. {
  7436. if (src0->grad) {
  7437. src0->grad =
  7438. ggml_add_impl(ctx,
  7439. src0->grad,
  7440. ggml_mul(ctx,
  7441. ggml_mul(ctx, src0, tensor->grad),
  7442. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7443. inplace);
  7444. }
  7445. } break;
  7446. case GGML_OP_SQRT:
  7447. {
  7448. if (src0->grad) {
  7449. src0->grad =
  7450. ggml_add_impl(ctx,
  7451. src0->grad,
  7452. ggml_div(ctx,
  7453. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7454. tensor),
  7455. inplace);
  7456. }
  7457. } break;
  7458. case GGML_OP_SUM:
  7459. {
  7460. if (src0->grad) {
  7461. src0->grad =
  7462. ggml_add_impl(ctx,
  7463. src0->grad,
  7464. ggml_repeat(ctx, tensor->grad, src0->grad),
  7465. inplace);
  7466. }
  7467. } break;
  7468. case GGML_OP_MEAN:
  7469. {
  7470. GGML_ASSERT(false); // TODO: implement
  7471. } break;
  7472. case GGML_OP_REPEAT:
  7473. {
  7474. if (src0->grad) {
  7475. src0->grad =
  7476. ggml_add_impl(ctx,
  7477. src0->grad,
  7478. ggml_sum(ctx, tensor->grad),
  7479. inplace);
  7480. }
  7481. } break;
  7482. case GGML_OP_ABS:
  7483. {
  7484. if (src0->grad) {
  7485. src0->grad =
  7486. ggml_add_impl(ctx,
  7487. src0->grad,
  7488. ggml_mul(ctx,
  7489. ggml_sgn(ctx, src0),
  7490. tensor->grad),
  7491. inplace);
  7492. }
  7493. } break;
  7494. case GGML_OP_SGN:
  7495. {
  7496. if (src0->grad) {
  7497. // noop
  7498. }
  7499. } break;
  7500. case GGML_OP_NEG:
  7501. {
  7502. if (src0->grad) {
  7503. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7504. }
  7505. } break;
  7506. case GGML_OP_STEP:
  7507. {
  7508. if (src0->grad) {
  7509. // noop
  7510. }
  7511. } break;
  7512. case GGML_OP_RELU:
  7513. {
  7514. if (src0->grad) {
  7515. src0->grad = ggml_sub_impl(ctx,
  7516. src0->grad,
  7517. ggml_mul(ctx,
  7518. ggml_step(ctx, src0),
  7519. tensor->grad),
  7520. inplace);
  7521. }
  7522. } break;
  7523. case GGML_OP_GELU:
  7524. {
  7525. GGML_ASSERT(false); // TODO: not implemented
  7526. } break;
  7527. case GGML_OP_SILU:
  7528. {
  7529. GGML_ASSERT(false); // TODO: not implemented
  7530. } break;
  7531. case GGML_OP_NORM:
  7532. {
  7533. GGML_ASSERT(false); // TODO: not implemented
  7534. } break;
  7535. case GGML_OP_RMS_NORM:
  7536. {
  7537. GGML_ASSERT(false); // TODO: not implemented
  7538. } break;
  7539. case GGML_OP_MUL_MAT:
  7540. {
  7541. if (src0->grad) {
  7542. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7543. GGML_ASSERT(false);
  7544. }
  7545. if (src1->grad) {
  7546. src1->grad =
  7547. ggml_add_impl(ctx,
  7548. src1->grad,
  7549. ggml_mul_mat(ctx,
  7550. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7551. tensor->grad),
  7552. inplace);
  7553. }
  7554. } break;
  7555. case GGML_OP_SCALE:
  7556. {
  7557. GGML_ASSERT(false); // TODO: not implemented
  7558. } break;
  7559. case GGML_OP_CPY:
  7560. {
  7561. GGML_ASSERT(false); // TODO: not implemented
  7562. } break;
  7563. case GGML_OP_CONT:
  7564. {
  7565. GGML_ASSERT(false); // TODO: not implemented
  7566. } break;
  7567. case GGML_OP_RESHAPE:
  7568. {
  7569. GGML_ASSERT(false); // TODO: not implemented
  7570. } break;
  7571. case GGML_OP_VIEW:
  7572. {
  7573. GGML_ASSERT(false); // not supported
  7574. } break;
  7575. case GGML_OP_PERMUTE:
  7576. {
  7577. GGML_ASSERT(false); // TODO: not implemented
  7578. } break;
  7579. case GGML_OP_TRANSPOSE:
  7580. {
  7581. GGML_ASSERT(false); // TODO: not implemented
  7582. } break;
  7583. case GGML_OP_GET_ROWS:
  7584. {
  7585. GGML_ASSERT(false); // TODO: not implemented
  7586. } break;
  7587. case GGML_OP_DIAG_MASK_INF:
  7588. {
  7589. GGML_ASSERT(false); // TODO: not implemented
  7590. } break;
  7591. case GGML_OP_SOFT_MAX:
  7592. {
  7593. GGML_ASSERT(false); // TODO: not implemented
  7594. } break;
  7595. case GGML_OP_ROPE:
  7596. {
  7597. GGML_ASSERT(false); // TODO: not implemented
  7598. } break;
  7599. case GGML_OP_CONV_1D_1S:
  7600. {
  7601. GGML_ASSERT(false); // TODO: not implemented
  7602. } break;
  7603. case GGML_OP_CONV_1D_2S:
  7604. {
  7605. GGML_ASSERT(false); // TODO: not implemented
  7606. } break;
  7607. case GGML_OP_FLASH_ATTN:
  7608. {
  7609. GGML_ASSERT(false); // not supported
  7610. } break;
  7611. case GGML_OP_FLASH_FF:
  7612. {
  7613. GGML_ASSERT(false); // not supported
  7614. } break;
  7615. case GGML_OP_NONE:
  7616. {
  7617. // nop
  7618. } break;
  7619. case GGML_OP_COUNT:
  7620. {
  7621. GGML_ASSERT(false);
  7622. } break;
  7623. }
  7624. }
  7625. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7626. if (node->grad == NULL) {
  7627. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7628. // it can also happen during forward pass, if the user performs computations with constants
  7629. if (node->op != GGML_OP_NONE) {
  7630. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7631. }
  7632. }
  7633. // check if already visited
  7634. for (int i = 0; i < cgraph->n_nodes; i++) {
  7635. if (cgraph->nodes[i] == node) {
  7636. return;
  7637. }
  7638. }
  7639. for (int i = 0; i < cgraph->n_leafs; i++) {
  7640. if (cgraph->leafs[i] == node) {
  7641. return;
  7642. }
  7643. }
  7644. if (node->src0) {
  7645. ggml_visit_parents(cgraph, node->src0);
  7646. }
  7647. if (node->src1) {
  7648. ggml_visit_parents(cgraph, node->src1);
  7649. }
  7650. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7651. if (node->opt[i]) {
  7652. ggml_visit_parents(cgraph, node->opt[i]);
  7653. }
  7654. }
  7655. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7656. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7657. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7658. cgraph->leafs[cgraph->n_leafs] = node;
  7659. cgraph->n_leafs++;
  7660. } else {
  7661. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7662. cgraph->nodes[cgraph->n_nodes] = node;
  7663. cgraph->grads[cgraph->n_nodes] = node->grad;
  7664. cgraph->n_nodes++;
  7665. }
  7666. }
  7667. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7668. if (!expand) {
  7669. cgraph->n_nodes = 0;
  7670. cgraph->n_leafs = 0;
  7671. }
  7672. const int n0 = cgraph->n_nodes;
  7673. UNUSED(n0);
  7674. ggml_visit_parents(cgraph, tensor);
  7675. const int n_new = cgraph->n_nodes - n0;
  7676. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7677. if (n_new > 0) {
  7678. // the last added node should always be starting point
  7679. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7680. }
  7681. }
  7682. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7683. ggml_build_forward_impl(cgraph, tensor, true);
  7684. }
  7685. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7686. struct ggml_cgraph result = {
  7687. /*.n_nodes =*/ 0,
  7688. /*.n_leafs =*/ 0,
  7689. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  7690. /*.work_size =*/ 0,
  7691. /*.work =*/ NULL,
  7692. /*.nodes =*/ { NULL },
  7693. /*.grads =*/ { NULL },
  7694. /*.leafs =*/ { NULL },
  7695. /*.perf_runs =*/ 0,
  7696. /*.perf_cycles =*/ 0,
  7697. /*.perf_time_us =*/ 0,
  7698. };
  7699. ggml_build_forward_impl(&result, tensor, false);
  7700. return result;
  7701. }
  7702. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7703. struct ggml_cgraph result = *gf;
  7704. GGML_ASSERT(gf->n_nodes > 0);
  7705. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7706. if (keep) {
  7707. for (int i = 0; i < gf->n_nodes; i++) {
  7708. struct ggml_tensor * node = gf->nodes[i];
  7709. if (node->grad) {
  7710. node->grad = ggml_dup_tensor(ctx, node);
  7711. gf->grads[i] = node->grad;
  7712. }
  7713. }
  7714. }
  7715. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7716. struct ggml_tensor * node = gf->nodes[i];
  7717. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7718. if (node->grad) {
  7719. ggml_compute_backward(ctx, node, keep);
  7720. }
  7721. }
  7722. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7723. struct ggml_tensor * node = gf->nodes[i];
  7724. if (node->is_param) {
  7725. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7726. ggml_build_forward_impl(&result, node->grad, true);
  7727. }
  7728. }
  7729. return result;
  7730. }
  7731. //
  7732. // thread data
  7733. //
  7734. // synchronization is done via busy loops
  7735. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7736. //
  7737. #ifdef __APPLE__
  7738. //#include <os/lock.h>
  7739. //
  7740. //typedef os_unfair_lock ggml_lock_t;
  7741. //
  7742. //#define ggml_lock_init(x) UNUSED(x)
  7743. //#define ggml_lock_destroy(x) UNUSED(x)
  7744. //#define ggml_lock_lock os_unfair_lock_lock
  7745. //#define ggml_lock_unlock os_unfair_lock_unlock
  7746. //
  7747. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7748. typedef int ggml_lock_t;
  7749. #define ggml_lock_init(x) UNUSED(x)
  7750. #define ggml_lock_destroy(x) UNUSED(x)
  7751. #define ggml_lock_lock(x) UNUSED(x)
  7752. #define ggml_lock_unlock(x) UNUSED(x)
  7753. #define GGML_LOCK_INITIALIZER 0
  7754. typedef pthread_t ggml_thread_t;
  7755. #define ggml_thread_create pthread_create
  7756. #define ggml_thread_join pthread_join
  7757. #else
  7758. //typedef pthread_spinlock_t ggml_lock_t;
  7759. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7760. //#define ggml_lock_destroy pthread_spin_destroy
  7761. //#define ggml_lock_lock pthread_spin_lock
  7762. //#define ggml_lock_unlock pthread_spin_unlock
  7763. typedef int ggml_lock_t;
  7764. #define ggml_lock_init(x) UNUSED(x)
  7765. #define ggml_lock_destroy(x) UNUSED(x)
  7766. #define ggml_lock_lock(x) UNUSED(x)
  7767. #define ggml_lock_unlock(x) UNUSED(x)
  7768. #define GGML_LOCK_INITIALIZER 0
  7769. typedef pthread_t ggml_thread_t;
  7770. #define ggml_thread_create pthread_create
  7771. #define ggml_thread_join pthread_join
  7772. #endif
  7773. struct ggml_compute_state_shared {
  7774. ggml_lock_t spin;
  7775. int n_threads;
  7776. // synchronization primitives
  7777. atomic_int n_ready;
  7778. atomic_bool has_work;
  7779. atomic_bool stop; // stop all threads
  7780. };
  7781. struct ggml_compute_state {
  7782. ggml_thread_t thrd;
  7783. struct ggml_compute_params params;
  7784. struct ggml_tensor * node;
  7785. struct ggml_compute_state_shared * shared;
  7786. };
  7787. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7788. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7789. const int n_threads = state->shared->n_threads;
  7790. while (true) {
  7791. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7792. atomic_store(&state->shared->has_work, false);
  7793. } else {
  7794. while (atomic_load(&state->shared->has_work)) {
  7795. if (atomic_load(&state->shared->stop)) {
  7796. return 0;
  7797. }
  7798. ggml_lock_lock (&state->shared->spin);
  7799. ggml_lock_unlock(&state->shared->spin);
  7800. }
  7801. }
  7802. atomic_fetch_sub(&state->shared->n_ready, 1);
  7803. // wait for work
  7804. while (!atomic_load(&state->shared->has_work)) {
  7805. if (atomic_load(&state->shared->stop)) {
  7806. return 0;
  7807. }
  7808. ggml_lock_lock (&state->shared->spin);
  7809. ggml_lock_unlock(&state->shared->spin);
  7810. }
  7811. // check if we should stop
  7812. if (atomic_load(&state->shared->stop)) {
  7813. break;
  7814. }
  7815. if (state->node) {
  7816. if (state->params.ith < state->params.nth) {
  7817. ggml_compute_forward(&state->params, state->node);
  7818. }
  7819. state->node = NULL;
  7820. } else {
  7821. break;
  7822. }
  7823. }
  7824. return 0;
  7825. }
  7826. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7827. const int n_threads = cgraph->n_threads;
  7828. struct ggml_compute_state_shared state_shared = {
  7829. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7830. /*.n_threads =*/ n_threads,
  7831. /*.n_ready =*/ 0,
  7832. /*.has_work =*/ false,
  7833. /*.stop =*/ false,
  7834. };
  7835. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7836. // create thread pool
  7837. if (n_threads > 1) {
  7838. ggml_lock_init(&state_shared.spin);
  7839. atomic_store(&state_shared.has_work, true);
  7840. for (int j = 0; j < n_threads - 1; j++) {
  7841. workers[j] = (struct ggml_compute_state) {
  7842. .thrd = 0,
  7843. .params = {
  7844. .type = GGML_TASK_COMPUTE,
  7845. .ith = j + 1,
  7846. .nth = n_threads,
  7847. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7848. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7849. },
  7850. .node = NULL,
  7851. .shared = &state_shared,
  7852. };
  7853. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7854. GGML_ASSERT(rc == 0);
  7855. UNUSED(rc);
  7856. }
  7857. }
  7858. // initialize tasks + work buffer
  7859. {
  7860. size_t work_size = 0;
  7861. // thread scheduling for the different operations
  7862. for (int i = 0; i < cgraph->n_nodes; i++) {
  7863. struct ggml_tensor * node = cgraph->nodes[i];
  7864. switch (node->op) {
  7865. case GGML_OP_DUP:
  7866. {
  7867. node->n_tasks = 1;
  7868. } break;
  7869. case GGML_OP_ADD:
  7870. {
  7871. node->n_tasks = n_threads;
  7872. } break;
  7873. case GGML_OP_SUB:
  7874. case GGML_OP_MUL:
  7875. case GGML_OP_DIV:
  7876. case GGML_OP_SQR:
  7877. case GGML_OP_SQRT:
  7878. case GGML_OP_SUM:
  7879. case GGML_OP_MEAN:
  7880. case GGML_OP_REPEAT:
  7881. case GGML_OP_ABS:
  7882. case GGML_OP_SGN:
  7883. case GGML_OP_NEG:
  7884. case GGML_OP_STEP:
  7885. case GGML_OP_RELU:
  7886. {
  7887. node->n_tasks = 1;
  7888. } break;
  7889. case GGML_OP_GELU:
  7890. {
  7891. node->n_tasks = n_threads;
  7892. } break;
  7893. case GGML_OP_SILU:
  7894. {
  7895. node->n_tasks = n_threads;
  7896. } break;
  7897. case GGML_OP_NORM:
  7898. case GGML_OP_RMS_NORM:
  7899. {
  7900. node->n_tasks = n_threads;
  7901. } break;
  7902. case GGML_OP_MUL_MAT:
  7903. {
  7904. node->n_tasks = n_threads;
  7905. // TODO: use different scheduling for different matrix sizes
  7906. //const int nr0 = ggml_nrows(node->src0);
  7907. //const int nr1 = ggml_nrows(node->src1);
  7908. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7909. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7910. size_t cur = 0;
  7911. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7912. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7913. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7914. node->n_tasks = 1; // TODO: this actually is doing nothing
  7915. // the threads are still spinning
  7916. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7917. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7918. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7919. //printf("cur = %zu\n", cur);
  7920. } else {
  7921. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7922. }
  7923. #else
  7924. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7925. #endif
  7926. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7927. cur = 0;
  7928. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7929. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7930. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7931. node->n_tasks = 1;
  7932. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7933. } else
  7934. #endif
  7935. {
  7936. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7937. }
  7938. } else {
  7939. GGML_ASSERT(false);
  7940. }
  7941. work_size = MAX(work_size, cur);
  7942. } break;
  7943. case GGML_OP_SCALE:
  7944. {
  7945. node->n_tasks = n_threads;
  7946. } break;
  7947. case GGML_OP_CPY:
  7948. case GGML_OP_CONT:
  7949. case GGML_OP_RESHAPE:
  7950. case GGML_OP_VIEW:
  7951. case GGML_OP_PERMUTE:
  7952. case GGML_OP_TRANSPOSE:
  7953. case GGML_OP_GET_ROWS:
  7954. case GGML_OP_DIAG_MASK_INF:
  7955. {
  7956. node->n_tasks = 1;
  7957. } break;
  7958. case GGML_OP_SOFT_MAX:
  7959. {
  7960. node->n_tasks = n_threads;
  7961. } break;
  7962. case GGML_OP_ROPE:
  7963. {
  7964. node->n_tasks = n_threads;
  7965. } break;
  7966. case GGML_OP_CONV_1D_1S:
  7967. case GGML_OP_CONV_1D_2S:
  7968. {
  7969. node->n_tasks = n_threads;
  7970. GGML_ASSERT(node->src0->ne[3] == 1);
  7971. GGML_ASSERT(node->src1->ne[2] == 1);
  7972. GGML_ASSERT(node->src1->ne[3] == 1);
  7973. size_t cur = 0;
  7974. const int nk = node->src0->ne[0];
  7975. if (node->src0->type == GGML_TYPE_F16 &&
  7976. node->src1->type == GGML_TYPE_F32) {
  7977. cur = sizeof(ggml_fp16_t)*(
  7978. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7979. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7980. );
  7981. } else if (node->src0->type == GGML_TYPE_F32 &&
  7982. node->src1->type == GGML_TYPE_F32) {
  7983. cur = sizeof(float)*(
  7984. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7985. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7986. );
  7987. } else {
  7988. GGML_ASSERT(false);
  7989. }
  7990. work_size = MAX(work_size, cur);
  7991. } break;
  7992. case GGML_OP_FLASH_ATTN:
  7993. {
  7994. node->n_tasks = n_threads;
  7995. size_t cur = 0;
  7996. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7997. if (node->src1->type == GGML_TYPE_F32) {
  7998. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7999. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8000. }
  8001. if (node->src1->type == GGML_TYPE_F16) {
  8002. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8003. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8004. }
  8005. work_size = MAX(work_size, cur);
  8006. } break;
  8007. case GGML_OP_FLASH_FF:
  8008. {
  8009. node->n_tasks = n_threads;
  8010. size_t cur = 0;
  8011. if (node->src1->type == GGML_TYPE_F32) {
  8012. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8013. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8014. }
  8015. if (node->src1->type == GGML_TYPE_F16) {
  8016. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8017. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8018. }
  8019. work_size = MAX(work_size, cur);
  8020. } break;
  8021. case GGML_OP_NONE:
  8022. {
  8023. node->n_tasks = 1;
  8024. } break;
  8025. case GGML_OP_COUNT:
  8026. {
  8027. GGML_ASSERT(false);
  8028. } break;
  8029. }
  8030. }
  8031. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8032. GGML_ASSERT(false); // TODO: better handling
  8033. }
  8034. if (work_size > 0 && cgraph->work == NULL) {
  8035. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8036. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8037. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8038. }
  8039. }
  8040. const int64_t perf_start_cycles = ggml_perf_cycles();
  8041. const int64_t perf_start_time_us = ggml_perf_time_us();
  8042. for (int i = 0; i < cgraph->n_nodes; i++) {
  8043. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8044. struct ggml_tensor * node = cgraph->nodes[i];
  8045. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8046. //if (node->grad == NULL && node->perf_runs > 0) {
  8047. // continue;
  8048. //}
  8049. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8050. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8051. // INIT
  8052. struct ggml_compute_params params = {
  8053. /*.type =*/ GGML_TASK_INIT,
  8054. /*.ith =*/ 0,
  8055. /*.nth =*/ node->n_tasks,
  8056. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8057. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8058. };
  8059. ggml_compute_forward(&params, node);
  8060. // COMPUTE
  8061. if (node->n_tasks > 1) {
  8062. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8063. atomic_store(&state_shared.has_work, false);
  8064. }
  8065. while (atomic_load(&state_shared.has_work)) {
  8066. ggml_lock_lock (&state_shared.spin);
  8067. ggml_lock_unlock(&state_shared.spin);
  8068. }
  8069. // launch thread pool
  8070. for (int j = 0; j < n_threads - 1; j++) {
  8071. workers[j].params = (struct ggml_compute_params) {
  8072. .type = GGML_TASK_COMPUTE,
  8073. .ith = j + 1,
  8074. .nth = node->n_tasks,
  8075. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8076. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8077. };
  8078. workers[j].node = node;
  8079. }
  8080. atomic_fetch_sub(&state_shared.n_ready, 1);
  8081. while (atomic_load(&state_shared.n_ready) > 0) {
  8082. ggml_lock_lock (&state_shared.spin);
  8083. ggml_lock_unlock(&state_shared.spin);
  8084. }
  8085. atomic_store(&state_shared.has_work, true);
  8086. }
  8087. params.type = GGML_TASK_COMPUTE;
  8088. ggml_compute_forward(&params, node);
  8089. // wait for thread pool
  8090. if (node->n_tasks > 1) {
  8091. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8092. atomic_store(&state_shared.has_work, false);
  8093. }
  8094. while (atomic_load(&state_shared.has_work)) {
  8095. ggml_lock_lock (&state_shared.spin);
  8096. ggml_lock_unlock(&state_shared.spin);
  8097. }
  8098. atomic_fetch_sub(&state_shared.n_ready, 1);
  8099. while (atomic_load(&state_shared.n_ready) != 0) {
  8100. ggml_lock_lock (&state_shared.spin);
  8101. ggml_lock_unlock(&state_shared.spin);
  8102. }
  8103. }
  8104. // FINALIZE
  8105. if (node->n_tasks > 1) {
  8106. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8107. atomic_store(&state_shared.has_work, false);
  8108. }
  8109. while (atomic_load(&state_shared.has_work)) {
  8110. ggml_lock_lock (&state_shared.spin);
  8111. ggml_lock_unlock(&state_shared.spin);
  8112. }
  8113. // launch thread pool
  8114. for (int j = 0; j < n_threads - 1; j++) {
  8115. workers[j].params = (struct ggml_compute_params) {
  8116. .type = GGML_TASK_FINALIZE,
  8117. .ith = j + 1,
  8118. .nth = node->n_tasks,
  8119. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8120. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8121. };
  8122. workers[j].node = node;
  8123. }
  8124. atomic_fetch_sub(&state_shared.n_ready, 1);
  8125. while (atomic_load(&state_shared.n_ready) > 0) {
  8126. ggml_lock_lock (&state_shared.spin);
  8127. ggml_lock_unlock(&state_shared.spin);
  8128. }
  8129. atomic_store(&state_shared.has_work, true);
  8130. }
  8131. params.type = GGML_TASK_FINALIZE;
  8132. ggml_compute_forward(&params, node);
  8133. // wait for thread pool
  8134. if (node->n_tasks > 1) {
  8135. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8136. atomic_store(&state_shared.has_work, false);
  8137. }
  8138. while (atomic_load(&state_shared.has_work)) {
  8139. ggml_lock_lock (&state_shared.spin);
  8140. ggml_lock_unlock(&state_shared.spin);
  8141. }
  8142. atomic_fetch_sub(&state_shared.n_ready, 1);
  8143. while (atomic_load(&state_shared.n_ready) != 0) {
  8144. ggml_lock_lock (&state_shared.spin);
  8145. ggml_lock_unlock(&state_shared.spin);
  8146. }
  8147. }
  8148. // performance stats (node)
  8149. {
  8150. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8151. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8152. node->perf_runs++;
  8153. node->perf_cycles += perf_cycles_cur;
  8154. node->perf_time_us += perf_time_us_cur;
  8155. }
  8156. }
  8157. // join thread pool
  8158. if (n_threads > 1) {
  8159. atomic_store(&state_shared.stop, true);
  8160. atomic_store(&state_shared.has_work, true);
  8161. for (int j = 0; j < n_threads - 1; j++) {
  8162. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8163. GGML_ASSERT(rc == 0);
  8164. UNUSED(rc);
  8165. }
  8166. ggml_lock_destroy(&state_shared.spin);
  8167. }
  8168. // performance stats (graph)
  8169. {
  8170. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8171. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8172. cgraph->perf_runs++;
  8173. cgraph->perf_cycles += perf_cycles_cur;
  8174. cgraph->perf_time_us += perf_time_us_cur;
  8175. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8176. __func__, cgraph->perf_runs,
  8177. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8178. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8179. (double) perf_time_us_cur / 1000.0,
  8180. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8181. }
  8182. }
  8183. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8184. for (int i = 0; i < cgraph->n_nodes; i++) {
  8185. struct ggml_tensor * grad = cgraph->grads[i];
  8186. if (grad) {
  8187. ggml_set_zero(grad);
  8188. }
  8189. }
  8190. }
  8191. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8192. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8193. GGML_PRINT("=== GRAPH ===\n");
  8194. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8195. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8196. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8197. for (int i = 0; i < cgraph->n_nodes; i++) {
  8198. struct ggml_tensor * node = cgraph->nodes[i];
  8199. perf_total_per_op_us[node->op] += node->perf_time_us;
  8200. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8201. i,
  8202. node->ne[0], node->ne[1], node->ne[2],
  8203. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8204. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8205. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8206. (double) node->perf_time_us / 1000.0,
  8207. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8208. }
  8209. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8210. for (int i = 0; i < cgraph->n_leafs; i++) {
  8211. struct ggml_tensor * node = cgraph->leafs[i];
  8212. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8213. i,
  8214. node->ne[0], node->ne[1],
  8215. GGML_OP_LABEL[node->op]);
  8216. }
  8217. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8218. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8219. }
  8220. GGML_PRINT("========================================\n");
  8221. }
  8222. // check if node is part of the graph
  8223. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8224. if (cgraph == NULL) {
  8225. return true;
  8226. }
  8227. for (int i = 0; i < cgraph->n_nodes; i++) {
  8228. if (cgraph->nodes[i] == node) {
  8229. return true;
  8230. }
  8231. }
  8232. return false;
  8233. }
  8234. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8235. for (int i = 0; i < cgraph->n_nodes; i++) {
  8236. struct ggml_tensor * parent = cgraph->nodes[i];
  8237. if (parent->grad == node) {
  8238. return parent;
  8239. }
  8240. }
  8241. return NULL;
  8242. }
  8243. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8244. char color[16];
  8245. FILE * fp = fopen(filename, "w");
  8246. GGML_ASSERT(fp);
  8247. fprintf(fp, "digraph G {\n");
  8248. fprintf(fp, " newrank = true;\n");
  8249. fprintf(fp, " rankdir = LR;\n");
  8250. for (int i = 0; i < gb->n_nodes; i++) {
  8251. struct ggml_tensor * node = gb->nodes[i];
  8252. if (ggml_graph_get_parent(gb, node) != NULL) {
  8253. continue;
  8254. }
  8255. if (node->is_param) {
  8256. snprintf(color, sizeof(color), "yellow");
  8257. } else if (node->grad) {
  8258. if (ggml_graph_find(gf, node)) {
  8259. snprintf(color, sizeof(color), "green");
  8260. } else {
  8261. snprintf(color, sizeof(color), "lightblue");
  8262. }
  8263. } else {
  8264. snprintf(color, sizeof(color), "white");
  8265. }
  8266. fprintf(fp, " \"%p\" [ \
  8267. style = filled; fillcolor = %s; shape = record; \
  8268. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8269. (void *) node, color,
  8270. i, node->ne[0], node->ne[1],
  8271. GGML_OP_SYMBOL[node->op]);
  8272. if (node->grad) {
  8273. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8274. } else {
  8275. fprintf(fp, "\"; ]\n");
  8276. }
  8277. }
  8278. for (int i = 0; i < gb->n_leafs; i++) {
  8279. struct ggml_tensor * node = gb->leafs[i];
  8280. snprintf(color, sizeof(color), "pink");
  8281. if (ggml_nelements(node) == 1) {
  8282. fprintf(fp, " \"%p\" [ \
  8283. style = filled; fillcolor = %s; shape = record; \
  8284. label=\"<x>%.1e\"; ]\n",
  8285. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8286. } else {
  8287. fprintf(fp, " \"%p\" [ \
  8288. style = filled; fillcolor = %s; shape = record; \
  8289. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8290. (void *) node, color,
  8291. i, node->ne[0], node->ne[1]);
  8292. }
  8293. }
  8294. for (int i = 0; i < gb->n_nodes; i++) {
  8295. struct ggml_tensor * node = gb->nodes[i];
  8296. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8297. if (node->src0) {
  8298. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8299. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8300. parent0 ? (void *) parent0 : (void *) node->src0,
  8301. parent0 ? "g" : "x",
  8302. parent ? (void *) parent : (void *) node,
  8303. parent ? "g" : "x",
  8304. parent ? "empty" : "vee",
  8305. parent ? "dashed" : "solid");
  8306. }
  8307. if (node->src1) {
  8308. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8309. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8310. parent1 ? (void *) parent1 : (void *) node->src1,
  8311. parent1 ? "g" : "x",
  8312. parent ? (void *) parent : (void *) node,
  8313. parent ? "g" : "x",
  8314. parent ? "empty" : "vee",
  8315. parent ? "dashed" : "solid");
  8316. }
  8317. }
  8318. for (int i = 0; i < gb->n_leafs; i++) {
  8319. struct ggml_tensor * node = gb->leafs[i];
  8320. if (node->src0) {
  8321. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8322. (void *) node->src0, "x",
  8323. (void *) node, "x");
  8324. }
  8325. if (node->src1) {
  8326. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8327. (void *) node->src1, "x",
  8328. (void *) node, "x");
  8329. }
  8330. }
  8331. fprintf(fp, "}\n");
  8332. fclose(fp);
  8333. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8334. }
  8335. ////////////////////////////////////////////////////////////////////////////////
  8336. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8337. int i = 0;
  8338. for (int p = 0; p < np; ++p) {
  8339. const int64_t ne = ggml_nelements(ps[p]) ;
  8340. // TODO: add function to set tensor from array
  8341. for (int64_t j = 0; j < ne; ++j) {
  8342. ggml_set_f32_1d(ps[p], j, x[i++]);
  8343. }
  8344. }
  8345. }
  8346. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8347. int i = 0;
  8348. for (int p = 0; p < np; ++p) {
  8349. const int64_t ne = ggml_nelements(ps[p]) ;
  8350. // TODO: add function to get all elements at once
  8351. for (int64_t j = 0; j < ne; ++j) {
  8352. x[i++] = ggml_get_f32_1d(ps[p], j);
  8353. }
  8354. }
  8355. }
  8356. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8357. int i = 0;
  8358. for (int p = 0; p < np; ++p) {
  8359. const int64_t ne = ggml_nelements(ps[p]) ;
  8360. // TODO: add function to get all elements at once
  8361. for (int64_t j = 0; j < ne; ++j) {
  8362. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8363. }
  8364. }
  8365. }
  8366. //
  8367. // ADAM
  8368. //
  8369. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8370. //
  8371. static enum ggml_opt_result ggml_opt_adam(
  8372. struct ggml_context * ctx,
  8373. struct ggml_opt_params params,
  8374. struct ggml_tensor * f,
  8375. struct ggml_cgraph * gf,
  8376. struct ggml_cgraph * gb) {
  8377. GGML_ASSERT(ggml_is_scalar(f));
  8378. gf->n_threads = params.n_threads;
  8379. gb->n_threads = params.n_threads;
  8380. // these will store the parameters we want to optimize
  8381. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8382. int np = 0;
  8383. int nx = 0;
  8384. for (int i = 0; i < gf->n_nodes; ++i) {
  8385. if (gf->nodes[i]->is_param) {
  8386. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8387. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8388. ps[np++] = gf->nodes[i];
  8389. nx += ggml_nelements(gf->nodes[i]);
  8390. }
  8391. }
  8392. // constants
  8393. const float alpha = params.adam.alpha;
  8394. const float beta1 = params.adam.beta1;
  8395. const float beta2 = params.adam.beta2;
  8396. const float eps = params.adam.eps;
  8397. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8398. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8399. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8400. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8401. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8402. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8403. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8404. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8405. // initialize
  8406. ggml_vec_set_f32(nx, m, 0.0f);
  8407. ggml_vec_set_f32(nx, v, 0.0f);
  8408. // update view
  8409. ggml_opt_get_params(np, ps, x);
  8410. // compute the function value
  8411. ggml_graph_reset (gf);
  8412. ggml_set_f32 (f->grad, 1.0f);
  8413. ggml_graph_compute(ctx, gb);
  8414. float fx_prev = ggml_get_f32_1d(f, 0);
  8415. if (pf) {
  8416. pf[0] = fx_prev;
  8417. }
  8418. int n_no_improvement = 0;
  8419. float fx_best = fx_prev;
  8420. // run the optimizer
  8421. for (int t = 0; t < params.adam.n_iter; ++t) {
  8422. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8423. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8424. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8425. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8426. for (int i = 0; i < np; ++i) {
  8427. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8428. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8429. }
  8430. const int64_t t_start_wall = ggml_time_us();
  8431. const int64_t t_start_cpu = ggml_cycles();
  8432. UNUSED(t_start_wall);
  8433. UNUSED(t_start_cpu);
  8434. {
  8435. // update the gradient
  8436. ggml_opt_get_grad(np, ps, g1);
  8437. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8438. ggml_vec_scale_f32(nx, m, beta1);
  8439. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8440. // g2 = g1^2
  8441. ggml_vec_sqr_f32 (nx, g2, g1);
  8442. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8443. ggml_vec_scale_f32(nx, v, beta2);
  8444. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8445. // m^hat = m_t / (1 - beta1^t)
  8446. // v^hat = v_t / (1 - beta2^t)
  8447. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8448. ggml_vec_cpy_f32 (nx, mh, m);
  8449. ggml_vec_cpy_f32 (nx, vh, v);
  8450. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8451. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8452. ggml_vec_sqrt_f32 (nx, vh, vh);
  8453. ggml_vec_acc1_f32 (nx, vh, eps);
  8454. ggml_vec_div_f32 (nx, mh, mh, vh);
  8455. ggml_vec_sub_f32 (nx, x, x, mh);
  8456. // update the parameters
  8457. ggml_opt_set_params(np, ps, x);
  8458. }
  8459. ggml_graph_reset (gf);
  8460. ggml_set_f32 (f->grad, 1.0f);
  8461. ggml_graph_compute(ctx, gb);
  8462. const float fx = ggml_get_f32_1d(f, 0);
  8463. // check convergence
  8464. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8465. GGML_PRINT_DEBUG("converged\n");
  8466. return GGML_OPT_OK;
  8467. }
  8468. // delta-based convergence test
  8469. if (pf != NULL) {
  8470. // need at least params.past iterations to start checking for convergence
  8471. if (params.past <= t) {
  8472. const float rate = (pf[t%params.past] - fx)/fx;
  8473. if (fabsf(rate) < params.delta) {
  8474. return GGML_OPT_OK;
  8475. }
  8476. }
  8477. pf[t%params.past] = fx;
  8478. }
  8479. // check for improvement
  8480. if (params.max_no_improvement > 0) {
  8481. if (fx_best > fx) {
  8482. fx_best = fx;
  8483. n_no_improvement = 0;
  8484. } else {
  8485. ++n_no_improvement;
  8486. if (n_no_improvement >= params.max_no_improvement) {
  8487. return GGML_OPT_OK;
  8488. }
  8489. }
  8490. }
  8491. fx_prev = fx;
  8492. {
  8493. const int64_t t_end_cpu = ggml_cycles();
  8494. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8495. UNUSED(t_end_cpu);
  8496. const int64_t t_end_wall = ggml_time_us();
  8497. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8498. UNUSED(t_end_wall);
  8499. }
  8500. }
  8501. return GGML_OPT_DID_NOT_CONVERGE;
  8502. }
  8503. //
  8504. // L-BFGS
  8505. //
  8506. // the L-BFGS implementation below is based on the following implementation:
  8507. //
  8508. // https://github.com/chokkan/liblbfgs
  8509. //
  8510. struct ggml_lbfgs_iteration_data {
  8511. float alpha;
  8512. float ys;
  8513. float * s;
  8514. float * y;
  8515. };
  8516. static enum ggml_opt_result linesearch_backtracking(
  8517. struct ggml_context * ctx,
  8518. const struct ggml_opt_params * params,
  8519. int nx,
  8520. float * x,
  8521. float * fx,
  8522. float * g,
  8523. float * d,
  8524. float * step,
  8525. const float * xp,
  8526. struct ggml_tensor * f,
  8527. struct ggml_cgraph * gf,
  8528. struct ggml_cgraph * gb,
  8529. const int np,
  8530. struct ggml_tensor * ps[]) {
  8531. int count = 0;
  8532. float width = 0.0f;
  8533. float dg = 0.0f;
  8534. float finit = 0.0f;
  8535. float dginit = 0.0f;
  8536. float dgtest = 0.0f;
  8537. const float dec = 0.5f;
  8538. const float inc = 2.1f;
  8539. if (*step <= 0.f) {
  8540. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8541. }
  8542. // compute the initial gradient in the search direction
  8543. ggml_vec_dot_f32(nx, &dginit, g, d);
  8544. // make sure that d points to a descent direction
  8545. if (0 < dginit) {
  8546. return GGML_LINESEARCH_FAIL;
  8547. }
  8548. // initialize local variables
  8549. finit = *fx;
  8550. dgtest = params->lbfgs.ftol*dginit;
  8551. while (true) {
  8552. ggml_vec_cpy_f32(nx, x, xp);
  8553. ggml_vec_mad_f32(nx, x, d, *step);
  8554. // evaluate the function and gradient values
  8555. {
  8556. ggml_opt_set_params(np, ps, x);
  8557. ggml_graph_reset (gf);
  8558. ggml_set_f32 (f->grad, 1.0f);
  8559. ggml_graph_compute(ctx, gb);
  8560. ggml_opt_get_grad(np, ps, g);
  8561. *fx = ggml_get_f32_1d(f, 0);
  8562. }
  8563. ++count;
  8564. if (*fx > finit + (*step)*dgtest) {
  8565. width = dec;
  8566. } else {
  8567. // Armijo condition is satisfied
  8568. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8569. return count;
  8570. }
  8571. ggml_vec_dot_f32(nx, &dg, g, d);
  8572. // check the Wolfe condition
  8573. if (dg < params->lbfgs.wolfe * dginit) {
  8574. width = inc;
  8575. } else {
  8576. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8577. // regular Wolfe conditions
  8578. return count;
  8579. }
  8580. if(dg > -params->lbfgs.wolfe*dginit) {
  8581. width = dec;
  8582. } else {
  8583. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8584. return count;
  8585. }
  8586. return count;
  8587. }
  8588. }
  8589. if (*step < params->lbfgs.min_step) {
  8590. return GGML_LINESEARCH_MINIMUM_STEP;
  8591. }
  8592. if (*step > params->lbfgs.max_step) {
  8593. return GGML_LINESEARCH_MAXIMUM_STEP;
  8594. }
  8595. if (params->lbfgs.max_linesearch <= count) {
  8596. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8597. }
  8598. (*step) *= width;
  8599. }
  8600. return GGML_LINESEARCH_FAIL;
  8601. }
  8602. static enum ggml_opt_result ggml_opt_lbfgs(
  8603. struct ggml_context * ctx,
  8604. struct ggml_opt_params params,
  8605. struct ggml_tensor * f,
  8606. struct ggml_cgraph * gf,
  8607. struct ggml_cgraph * gb) {
  8608. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8609. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8610. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8611. return GGML_OPT_INVALID_WOLFE;
  8612. }
  8613. }
  8614. gf->n_threads = params.n_threads;
  8615. gb->n_threads = params.n_threads;
  8616. const int m = params.lbfgs.m;
  8617. // these will store the parameters we want to optimize
  8618. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8619. int np = 0;
  8620. int nx = 0;
  8621. for (int i = 0; i < gf->n_nodes; ++i) {
  8622. if (gf->nodes[i]->is_param) {
  8623. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8624. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8625. ps[np++] = gf->nodes[i];
  8626. nx += ggml_nelements(gf->nodes[i]);
  8627. }
  8628. }
  8629. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8630. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8631. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8632. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8633. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8634. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8635. float fx = 0.0f; // cost function value
  8636. float xnorm = 0.0f; // ||x||
  8637. float gnorm = 0.0f; // ||g||
  8638. float step = 0.0f;
  8639. // initialize x from the graph nodes
  8640. ggml_opt_get_params(np, ps, x);
  8641. // the L-BFGS memory
  8642. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8643. for (int i = 0; i < m; ++i) {
  8644. lm[i].alpha = 0.0f;
  8645. lm[i].ys = 0.0f;
  8646. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8647. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8648. }
  8649. // evaluate the function value and its gradient
  8650. {
  8651. ggml_opt_set_params(np, ps, x);
  8652. ggml_graph_reset (gf);
  8653. ggml_set_f32 (f->grad, 1.0f);
  8654. ggml_graph_compute(ctx, gb);
  8655. ggml_opt_get_grad(np, ps, g);
  8656. fx = ggml_get_f32_1d(f, 0);
  8657. }
  8658. if (pf) {
  8659. pf[0] = fx;
  8660. }
  8661. float fx_best = fx;
  8662. // search direction = -gradient
  8663. ggml_vec_neg_f32(nx, d, g);
  8664. // ||x||, ||g||
  8665. ggml_vec_norm_f32(nx, &xnorm, x);
  8666. ggml_vec_norm_f32(nx, &gnorm, g);
  8667. if (xnorm < 1.0f) {
  8668. xnorm = 1.0f;
  8669. }
  8670. // already optimized
  8671. if (gnorm/xnorm <= params.lbfgs.eps) {
  8672. return GGML_OPT_OK;
  8673. }
  8674. // initial step
  8675. ggml_vec_norm_inv_f32(nx, &step, d);
  8676. int j = 0;
  8677. int k = 1;
  8678. int ls = 0;
  8679. int end = 0;
  8680. int bound = 0;
  8681. int n_no_improvement = 0;
  8682. float ys = 0.0f;
  8683. float yy = 0.0f;
  8684. float beta = 0.0f;
  8685. while (true) {
  8686. // store the current position and gradient vectors
  8687. ggml_vec_cpy_f32(nx, xp, x);
  8688. ggml_vec_cpy_f32(nx, gp, g);
  8689. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8690. if (ls < 0) {
  8691. // linesearch failed - go back to the previous point and return
  8692. ggml_vec_cpy_f32(nx, x, xp);
  8693. ggml_vec_cpy_f32(nx, g, gp);
  8694. return ls;
  8695. }
  8696. ggml_vec_norm_f32(nx, &xnorm, x);
  8697. ggml_vec_norm_f32(nx, &gnorm, g);
  8698. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8699. if (xnorm < 1.0f) {
  8700. xnorm = 1.0f;
  8701. }
  8702. if (gnorm/xnorm <= params.lbfgs.eps) {
  8703. // converged
  8704. return GGML_OPT_OK;
  8705. }
  8706. // delta-based convergence test
  8707. if (pf != NULL) {
  8708. // need at least params.past iterations to start checking for convergence
  8709. if (params.past <= k) {
  8710. const float rate = (pf[k%params.past] - fx)/fx;
  8711. if (fabsf(rate) < params.delta) {
  8712. return GGML_OPT_OK;
  8713. }
  8714. }
  8715. pf[k%params.past] = fx;
  8716. }
  8717. // check for improvement
  8718. if (params.max_no_improvement > 0) {
  8719. if (fx < fx_best) {
  8720. fx_best = fx;
  8721. n_no_improvement = 0;
  8722. } else {
  8723. n_no_improvement++;
  8724. if (n_no_improvement >= params.max_no_improvement) {
  8725. return GGML_OPT_OK;
  8726. }
  8727. }
  8728. }
  8729. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8730. // reached the maximum number of iterations
  8731. return GGML_OPT_DID_NOT_CONVERGE;
  8732. }
  8733. // update vectors s and y:
  8734. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8735. // y_{k+1} = g_{k+1} - g_{k}.
  8736. //
  8737. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8738. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8739. // compute scalars ys and yy:
  8740. // ys = y^t \cdot s -> 1 / \rho.
  8741. // yy = y^t \cdot y.
  8742. //
  8743. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8744. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8745. lm[end].ys = ys;
  8746. // find new search direction
  8747. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8748. bound = (m <= k) ? m : k;
  8749. k++;
  8750. end = (end + 1)%m;
  8751. // initialize search direction with -g
  8752. ggml_vec_neg_f32(nx, d, g);
  8753. j = end;
  8754. for (int i = 0; i < bound; ++i) {
  8755. j = (j + m - 1) % m;
  8756. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8757. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8758. lm[j].alpha /= lm[j].ys;
  8759. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8760. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8761. }
  8762. ggml_vec_scale_f32(nx, d, ys/yy);
  8763. for (int i = 0; i < bound; ++i) {
  8764. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8765. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8766. beta /= lm[j].ys;
  8767. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8768. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8769. j = (j + 1)%m;
  8770. }
  8771. step = 1.0;
  8772. }
  8773. return GGML_OPT_DID_NOT_CONVERGE;
  8774. }
  8775. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8776. struct ggml_opt_params result;
  8777. switch (type) {
  8778. case GGML_OPT_ADAM:
  8779. {
  8780. result = (struct ggml_opt_params) {
  8781. .type = GGML_OPT_ADAM,
  8782. .n_threads = 1,
  8783. .past = 0,
  8784. .delta = 1e-5f,
  8785. .max_no_improvement = 100,
  8786. .print_forward_graph = true,
  8787. .print_backward_graph = true,
  8788. .adam = {
  8789. .n_iter = 10000,
  8790. .alpha = 0.001f,
  8791. .beta1 = 0.9f,
  8792. .beta2 = 0.999f,
  8793. .eps = 1e-8f,
  8794. .eps_f = 1e-5f,
  8795. .eps_g = 1e-3f,
  8796. },
  8797. };
  8798. } break;
  8799. case GGML_OPT_LBFGS:
  8800. {
  8801. result = (struct ggml_opt_params) {
  8802. .type = GGML_OPT_LBFGS,
  8803. .n_threads = 1,
  8804. .past = 0,
  8805. .delta = 1e-5f,
  8806. .max_no_improvement = 0,
  8807. .print_forward_graph = true,
  8808. .print_backward_graph = true,
  8809. .lbfgs = {
  8810. .m = 6,
  8811. .n_iter = 100,
  8812. .max_linesearch = 20,
  8813. .eps = 1e-5f,
  8814. .ftol = 1e-4f,
  8815. .wolfe = 0.9f,
  8816. .min_step = 1e-20f,
  8817. .max_step = 1e+20f,
  8818. .linesearch = GGML_LINESEARCH_DEFAULT,
  8819. },
  8820. };
  8821. } break;
  8822. }
  8823. return result;
  8824. }
  8825. enum ggml_opt_result ggml_opt(
  8826. struct ggml_context * ctx,
  8827. struct ggml_opt_params params,
  8828. struct ggml_tensor * f) {
  8829. bool free_ctx = false;
  8830. if (ctx == NULL) {
  8831. struct ggml_init_params params_ctx = {
  8832. .mem_size = 16*1024*1024,
  8833. .mem_buffer = NULL,
  8834. .no_alloc = false,
  8835. };
  8836. ctx = ggml_init(params_ctx);
  8837. if (ctx == NULL) {
  8838. return GGML_OPT_NO_CONTEXT;
  8839. }
  8840. free_ctx = true;
  8841. }
  8842. enum ggml_opt_result result = GGML_OPT_OK;
  8843. // build forward + backward compute graphs
  8844. struct ggml_cgraph gf = ggml_build_forward (f);
  8845. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8846. switch (params.type) {
  8847. case GGML_OPT_ADAM:
  8848. {
  8849. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8850. } break;
  8851. case GGML_OPT_LBFGS:
  8852. {
  8853. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8854. } break;
  8855. }
  8856. if (params.print_forward_graph) {
  8857. ggml_graph_print (&gf);
  8858. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8859. }
  8860. if (params.print_backward_graph) {
  8861. ggml_graph_print (&gb);
  8862. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8863. }
  8864. if (free_ctx) {
  8865. ggml_free(ctx);
  8866. }
  8867. return result;
  8868. }
  8869. ////////////////////////////////////////////////////////////////////////////////
  8870. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8871. assert(k % QK == 0);
  8872. const int nb = k / QK;
  8873. for (int j = 0; j < n; j += k) {
  8874. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8875. quantize_row_q4_0_reference(src + j, y, k);
  8876. for (int i = 0; i < nb; i++) {
  8877. for (int l = 0; l < QK; l += 2) {
  8878. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8879. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8880. hist[vi0]++;
  8881. hist[vi1]++;
  8882. }
  8883. }
  8884. }
  8885. return (n/QK*sizeof(block_q4_0));
  8886. }
  8887. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8888. assert(k % QK == 0);
  8889. const int nb = k / QK;
  8890. for (int j = 0; j < n; j += k) {
  8891. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8892. quantize_row_q4_1_reference(src + j, y, k);
  8893. for (int i = 0; i < nb; i++) {
  8894. for (int l = 0; l < QK; l += 2) {
  8895. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8896. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8897. hist[vi0]++;
  8898. hist[vi1]++;
  8899. }
  8900. }
  8901. }
  8902. return (n/QK*sizeof(block_q4_1));
  8903. }
  8904. ////////////////////////////////////////////////////////////////////////////////
  8905. int ggml_cpu_has_avx(void) {
  8906. #if defined(__AVX__)
  8907. return 1;
  8908. #else
  8909. return 0;
  8910. #endif
  8911. }
  8912. int ggml_cpu_has_avx2(void) {
  8913. #if defined(__AVX2__)
  8914. return 1;
  8915. #else
  8916. return 0;
  8917. #endif
  8918. }
  8919. int ggml_cpu_has_avx512(void) {
  8920. #if defined(__AVX512F__)
  8921. return 1;
  8922. #else
  8923. return 0;
  8924. #endif
  8925. }
  8926. int ggml_cpu_has_fma(void) {
  8927. #if defined(__FMA__)
  8928. return 1;
  8929. #else
  8930. return 0;
  8931. #endif
  8932. }
  8933. int ggml_cpu_has_neon(void) {
  8934. #if defined(__ARM_NEON)
  8935. return 1;
  8936. #else
  8937. return 0;
  8938. #endif
  8939. }
  8940. int ggml_cpu_has_arm_fma(void) {
  8941. #if defined(__ARM_FEATURE_FMA)
  8942. return 1;
  8943. #else
  8944. return 0;
  8945. #endif
  8946. }
  8947. int ggml_cpu_has_f16c(void) {
  8948. #if defined(__F16C__)
  8949. return 1;
  8950. #else
  8951. return 0;
  8952. #endif
  8953. }
  8954. int ggml_cpu_has_fp16_va(void) {
  8955. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8956. return 1;
  8957. #else
  8958. return 0;
  8959. #endif
  8960. }
  8961. int ggml_cpu_has_wasm_simd(void) {
  8962. #if defined(__wasm_simd128__)
  8963. return 1;
  8964. #else
  8965. return 0;
  8966. #endif
  8967. }
  8968. int ggml_cpu_has_blas(void) {
  8969. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8970. return 1;
  8971. #else
  8972. return 0;
  8973. #endif
  8974. }
  8975. int ggml_cpu_has_sse3(void) {
  8976. #if defined(__SSE3__)
  8977. return 1;
  8978. #else
  8979. return 0;
  8980. #endif
  8981. }
  8982. int ggml_cpu_has_vsx(void) {
  8983. #if defined(__POWER9_VECTOR__)
  8984. return 1;
  8985. #else
  8986. return 0;
  8987. #endif
  8988. }
  8989. ////////////////////////////////////////////////////////////////////////////////