| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- #include "common.h"
- #include "llama.h"
- #include <cstdio>
- #include <cstring>
- #include <vector>
- #include <string>
- #include <unordered_map>
- #include <fstream>
- #include <cmath>
- #include <algorithm>
- struct quant_option {
- std::string name;
- llama_ftype ftype;
- std::string desc;
- };
- static const std::vector<struct quant_option> QUANT_OPTIONS = {
- { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
- { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
- { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
- { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
- { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
- { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
- { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
- { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
- { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
- { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
- { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
- { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
- { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
- { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
- { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
- { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , },
- { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
- { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
- { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
- { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.25 bpw non-linear quantization", },
- { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
- { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
- { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
- { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
- { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
- { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
- { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
- { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
- { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
- { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
- // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
- { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
- };
- static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
- std::string ftype_str;
- for (auto ch : ftype_str_in) {
- ftype_str.push_back(std::toupper(ch));
- }
- for (auto & it : QUANT_OPTIONS) {
- if (it.name == ftype_str) {
- ftype = it.ftype;
- ftype_str_out = it.name;
- return true;
- }
- }
- try {
- int ftype_int = std::stoi(ftype_str);
- for (auto & it : QUANT_OPTIONS) {
- if (it.ftype == ftype_int) {
- ftype = it.ftype;
- ftype_str_out = it.name;
- return true;
- }
- }
- }
- catch (...) {
- // stoi failed
- }
- return false;
- }
- // usage:
- // ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
- //
- [[noreturn]]
- static void usage(const char * executable) {
- printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
- printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
- printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
- printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
- printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
- printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
- printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
- printf("Note: --include-weights and --exclude-weights cannot be used together\n");
- printf("\nAllowed quantization types:\n");
- for (auto & it : QUANT_OPTIONS) {
- if (it.name != "COPY") {
- printf(" %2d or ", it.ftype);
- } else {
- printf(" ");
- }
- printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
- }
- exit(1);
- }
- static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
- std::ifstream in(imatrix_file.c_str(), std::ios::binary);
- if (!in) {
- printf("%s: failed to open %s\n",__func__,imatrix_file.c_str());
- return;
- }
- int n_entries;
- in.read((char*)&n_entries, sizeof(n_entries));
- if (in.fail() || n_entries < 1) {
- printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
- return;
- }
- for (int i = 0; i < n_entries; ++i) {
- int len; in.read((char *)&len, sizeof(len));
- std::vector<char> name_as_vec(len+1);
- in.read((char *)name_as_vec.data(), len);
- if (in.fail()) {
- printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str());
- return;
- }
- name_as_vec[len] = 0;
- std::string name{name_as_vec.data()};
- auto& e = imatrix_data[std::move(name)];
- int ncall;
- in.read((char*)&ncall, sizeof(ncall));
- int nval;
- in.read((char *)&nval, sizeof(nval));
- if (in.fail() || nval < 1) {
- printf("%s: failed reading number of values for entry %d\n",__func__,i);
- imatrix_data = {};
- return;
- }
- e.resize(nval);
- in.read((char*)e.data(), nval*sizeof(float));
- if (in.fail()) {
- printf("%s: failed reading data for entry %d\n",__func__,i);
- imatrix_data = {};
- return;
- }
- if (ncall > 0) {
- for (auto& v : e) v /= ncall;
- }
- }
- printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str());
- }
- static void prepare_imatrix(const std::string& imatrix_file,
- const std::vector<std::string>& included_weights,
- const std::vector<std::string>& excluded_weights,
- std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
- if (!imatrix_file.empty()) {
- load_imatrix(imatrix_file, imatrix_data);
- }
- if (imatrix_data.empty()) {
- return;
- }
- if (!excluded_weights.empty()) {
- for (auto& name : excluded_weights) {
- for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
- auto pos = it->first.find(name);
- if (pos != std::string::npos) it = imatrix_data.erase(it);
- else ++it;
- }
- }
- }
- if (!included_weights.empty()) {
- std::unordered_map<std::string, std::vector<float>> tmp;
- for (auto& name : included_weights) {
- for (auto& e : imatrix_data) {
- auto pos = e.first.find(name);
- if (pos != std::string::npos) {
- tmp.emplace(std::move(e));
- }
- }
- }
- imatrix_data = std::move(tmp);
- }
- if (!imatrix_data.empty()) {
- printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
- }
- }
- int main(int argc, char ** argv) {
- if (argc < 3) {
- usage(argv[0]);
- }
- llama_model_quantize_params params = llama_model_quantize_default_params();
- int arg_idx = 1;
- std::string imatrix_file;
- std::vector<std::string> included_weights, excluded_weights;
- for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
- if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
- params.quantize_output_tensor = false;
- } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
- params.allow_requantize = true;
- } else if (strcmp(argv[arg_idx], "--pure") == 0) {
- params.pure = true;
- } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
- if (arg_idx < argc-1) {
- imatrix_file = argv[++arg_idx];
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
- if (arg_idx < argc-1) {
- included_weights.emplace_back(argv[++arg_idx]);
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
- if (arg_idx < argc-1) {
- excluded_weights.emplace_back(argv[++arg_idx]);
- } else {
- usage(argv[0]);
- }
- } else {
- usage(argv[0]);
- }
- }
- if (argc - arg_idx < 2) {
- printf("%s: bad arguments\n", argv[0]);
- usage(argv[0]);
- }
- if (!included_weights.empty() && !excluded_weights.empty()) {
- usage(argv[0]);
- }
- std::unordered_map<std::string, std::vector<float>> imatrix_data;
- prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
- if (!imatrix_data.empty()) {
- params.imatrix = &imatrix_data;
- }
- llama_backend_init();
- // parse command line arguments
- const std::string fname_inp = argv[arg_idx];
- arg_idx++;
- std::string fname_out;
- std::string ftype_str;
- if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
- std::string fpath;
- const size_t pos = fname_inp.find_last_of("/\\");
- if (pos != std::string::npos) {
- fpath = fname_inp.substr(0, pos + 1);
- }
- // export as [inp path]/ggml-model-[ftype].gguf
- fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
- arg_idx++;
- if (ftype_str == "COPY") {
- params.only_copy = true;
- }
- }
- else {
- fname_out = argv[arg_idx];
- arg_idx++;
- if (argc <= arg_idx) {
- fprintf(stderr, "%s: missing ftype\n", __func__);
- return 1;
- }
- if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
- fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
- return 1;
- }
- if (ftype_str == "COPY") {
- params.only_copy = true;
- }
- arg_idx++;
- }
- // parse nthreads
- if (argc > arg_idx) {
- try {
- params.nthread = std::stoi(argv[arg_idx]);
- }
- catch (const std::exception & e) {
- fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
- return 1;
- }
- }
- if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
- params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
- params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
- fprintf(stderr, "\n===============================================================================================\n");
- fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
- fprintf(stderr, "===============================================================================================\n\n\n");
- return 1;
- }
- print_build_info();
- fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
- if (params.nthread > 0) {
- fprintf(stderr, " using %d threads", params.nthread);
- }
- fprintf(stderr, "\n");
- const int64_t t_main_start_us = llama_time_us();
- int64_t t_quantize_us = 0;
- // load the model
- {
- const int64_t t_start_us = llama_time_us();
- if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
- fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
- return 1;
- }
- t_quantize_us = llama_time_us() - t_start_us;
- }
- // report timing
- {
- const int64_t t_main_end_us = llama_time_us();
- printf("\n");
- printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
- }
- llama_backend_free();
- return 0;
- }
|