ggml-quants.c 519 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318
  1. #include "ggml-quants.h"
  2. #include "ggml-impl.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #include <float.h>
  7. #include <stdlib.h> // for qsort
  8. #include <stdio.h> // for GGML_ASSERT
  9. #ifdef __ARM_NEON
  10. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  11. //
  12. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  13. //
  14. #include <arm_neon.h>
  15. #else
  16. #ifdef __wasm_simd128__
  17. #include <wasm_simd128.h>
  18. #else
  19. #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
  20. #include <altivec.h>
  21. #undef bool
  22. #define bool _Bool
  23. #else
  24. #if defined(_MSC_VER) || defined(__MINGW32__)
  25. #include <intrin.h>
  26. #else
  27. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  28. #if !defined(__riscv)
  29. #include <immintrin.h>
  30. #endif
  31. #endif
  32. #endif
  33. #endif
  34. #endif
  35. #endif
  36. #ifdef __riscv_v_intrinsic
  37. #include <riscv_vector.h>
  38. #endif
  39. #undef MIN
  40. #undef MAX
  41. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  42. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  43. #define UNUSED GGML_UNUSED
  44. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  45. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  46. // multiply int8_t, add results pairwise twice
  47. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  48. // Get absolute values of x vectors
  49. const __m128i ax = _mm_sign_epi8(x, x);
  50. // Sign the values of the y vectors
  51. const __m128i sy = _mm_sign_epi8(y, x);
  52. // Perform multiplication and create 16-bit values
  53. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  54. const __m128i ones = _mm_set1_epi16(1);
  55. return _mm_madd_epi16(ones, dot);
  56. }
  57. #if __AVX__ || __AVX2__ || __AVX512F__
  58. // horizontally add 8 floats
  59. static inline float hsum_float_8(const __m256 x) {
  60. __m128 res = _mm256_extractf128_ps(x, 1);
  61. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  62. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  63. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  64. return _mm_cvtss_f32(res);
  65. }
  66. // horizontally add 8 int32_t
  67. static inline int hsum_i32_8(const __m256i a) {
  68. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  69. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  70. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  71. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  72. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  73. }
  74. // horizontally add 4 int32_t
  75. static inline int hsum_i32_4(const __m128i a) {
  76. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  77. const __m128i sum64 = _mm_add_epi32(hi64, a);
  78. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  79. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  80. }
  81. #if defined(__AVX2__) || defined(__AVX512F__)
  82. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  83. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  84. uint32_t x32;
  85. memcpy(&x32, x, sizeof(uint32_t));
  86. const __m256i shuf_mask = _mm256_set_epi64x(
  87. 0x0303030303030303, 0x0202020202020202,
  88. 0x0101010101010101, 0x0000000000000000);
  89. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  90. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  91. bytes = _mm256_or_si256(bytes, bit_mask);
  92. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  93. }
  94. // Unpack 32 4-bit fields into 32 bytes
  95. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  96. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  97. {
  98. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  99. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  100. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  101. return _mm256_and_si256(lowMask, bytes);
  102. }
  103. // add int16_t pairwise and return as float vector
  104. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  105. const __m256i ones = _mm256_set1_epi16(1);
  106. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  107. return _mm256_cvtepi32_ps(summed_pairs);
  108. }
  109. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  110. #if __AVXVNNI__
  111. const __m256i zero = _mm256_setzero_si256();
  112. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  113. return _mm256_cvtepi32_ps(summed_pairs);
  114. #else
  115. // Perform multiplication and create 16-bit values
  116. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  117. return sum_i16_pairs_float(dot);
  118. #endif
  119. }
  120. // multiply int8_t, add results pairwise twice and return as float vector
  121. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  122. #if __AVXVNNIINT8__
  123. const __m256i zero = _mm256_setzero_si256();
  124. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  125. return _mm256_cvtepi32_ps(summed_pairs);
  126. #else
  127. // Get absolute values of x vectors
  128. const __m256i ax = _mm256_sign_epi8(x, x);
  129. // Sign the values of the y vectors
  130. const __m256i sy = _mm256_sign_epi8(y, x);
  131. return mul_sum_us8_pairs_float(ax, sy);
  132. #endif
  133. }
  134. static inline __m128i packNibbles( __m256i bytes )
  135. {
  136. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  137. #if __AVX512F__
  138. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  139. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  140. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  141. #else
  142. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  143. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  144. __m256i low = _mm256_and_si256( lowByte, bytes );
  145. high = _mm256_srli_epi16( high, 4 );
  146. bytes = _mm256_or_si256( low, high );
  147. // Compress uint16_t lanes into bytes
  148. __m128i r0 = _mm256_castsi256_si128( bytes );
  149. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  150. return _mm_packus_epi16( r0, r1 );
  151. #endif
  152. }
  153. #elif defined(__AVX__)
  154. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  155. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  156. uint32_t x32;
  157. memcpy(&x32, x, sizeof(uint32_t));
  158. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  159. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  160. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  161. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  162. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  163. bytesl = _mm_or_si128(bytesl, bit_mask);
  164. bytesh = _mm_or_si128(bytesh, bit_mask);
  165. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  166. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  167. return MM256_SET_M128I(bytesh, bytesl);
  168. }
  169. // Unpack 32 4-bit fields into 32 bytes
  170. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  171. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  172. {
  173. // Load 16 bytes from memory
  174. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  175. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  176. const __m128i lowMask = _mm_set1_epi8(0xF);
  177. tmpl = _mm_and_si128(lowMask, tmpl);
  178. tmph = _mm_and_si128(lowMask, tmph);
  179. return MM256_SET_M128I(tmph, tmpl);
  180. }
  181. // add int16_t pairwise and return as float vector
  182. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  183. const __m128i ones = _mm_set1_epi16(1);
  184. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  185. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  186. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  187. return _mm256_cvtepi32_ps(summed_pairs);
  188. }
  189. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  190. const __m128i axl = _mm256_castsi256_si128(ax);
  191. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  192. const __m128i syl = _mm256_castsi256_si128(sy);
  193. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  194. // Perform multiplication and create 16-bit values
  195. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  196. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  197. return sum_i16_pairs_float(doth, dotl);
  198. }
  199. // multiply int8_t, add results pairwise twice and return as float vector
  200. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  201. const __m128i xl = _mm256_castsi256_si128(x);
  202. const __m128i xh = _mm256_extractf128_si256(x, 1);
  203. const __m128i yl = _mm256_castsi256_si128(y);
  204. const __m128i yh = _mm256_extractf128_si256(y, 1);
  205. // Get absolute values of x vectors
  206. const __m128i axl = _mm_sign_epi8(xl, xl);
  207. const __m128i axh = _mm_sign_epi8(xh, xh);
  208. // Sign the values of the y vectors
  209. const __m128i syl = _mm_sign_epi8(yl, xl);
  210. const __m128i syh = _mm_sign_epi8(yh, xh);
  211. // Perform multiplication and create 16-bit values
  212. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  213. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  214. return sum_i16_pairs_float(doth, dotl);
  215. }
  216. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  217. {
  218. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  219. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  220. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  221. __m128i low = _mm_and_si128( lowByte, bytes1 );
  222. high = _mm_srli_epi16( high, 4 );
  223. bytes1 = _mm_or_si128( low, high );
  224. high = _mm_andnot_si128( lowByte, bytes2 );
  225. low = _mm_and_si128( lowByte, bytes2 );
  226. high = _mm_srli_epi16( high, 4 );
  227. bytes2 = _mm_or_si128( low, high );
  228. return _mm_packus_epi16( bytes1, bytes2);
  229. }
  230. #endif
  231. #elif defined(__SSSE3__)
  232. // horizontally add 4x4 floats
  233. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  234. __m128 res_0 =_mm_hadd_ps(a, b);
  235. __m128 res_1 =_mm_hadd_ps(c, d);
  236. __m128 res =_mm_hadd_ps(res_0, res_1);
  237. res =_mm_hadd_ps(res, res);
  238. res =_mm_hadd_ps(res, res);
  239. return _mm_cvtss_f32(res);
  240. }
  241. #endif // __AVX__ || __AVX2__ || __AVX512F__
  242. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  243. #if defined(__ARM_NEON)
  244. #ifdef _MSC_VER
  245. #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
  246. #else
  247. #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
  248. #endif
  249. #if !defined(__aarch64__)
  250. // 64-bit compatibility
  251. // vaddvq_s16
  252. // vpaddq_s16
  253. // vpaddq_s32
  254. // vaddvq_s32
  255. // vaddvq_f32
  256. // vmaxvq_f32
  257. // vcvtnq_s32_f32
  258. // vzip1_u8
  259. // vzip2_u8
  260. inline static int32_t vaddvq_s16(int16x8_t v) {
  261. return
  262. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  263. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  264. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  265. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  266. }
  267. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  268. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  269. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  270. return vcombine_s16(a0, b0);
  271. }
  272. inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  273. int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  274. int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  275. return vcombine_s32(a0, b0);
  276. }
  277. inline static int32_t vaddvq_s32(int32x4_t v) {
  278. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  279. }
  280. inline static float vaddvq_f32(float32x4_t v) {
  281. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  282. }
  283. inline static float vmaxvq_f32(float32x4_t v) {
  284. return
  285. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  286. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  287. }
  288. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  289. int32x4_t res;
  290. res[0] = roundf(vgetq_lane_f32(v, 0));
  291. res[1] = roundf(vgetq_lane_f32(v, 1));
  292. res[2] = roundf(vgetq_lane_f32(v, 2));
  293. res[3] = roundf(vgetq_lane_f32(v, 3));
  294. return res;
  295. }
  296. inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  297. uint8x8_t res;
  298. res[0] = a[0]; res[1] = b[0];
  299. res[2] = a[1]; res[3] = b[1];
  300. res[4] = a[2]; res[5] = b[2];
  301. res[6] = a[3]; res[7] = b[3];
  302. return res;
  303. }
  304. inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  305. uint8x8_t res;
  306. res[0] = a[4]; res[1] = b[4];
  307. res[2] = a[5]; res[3] = b[5];
  308. res[4] = a[6]; res[5] = b[6];
  309. res[6] = a[7]; res[7] = b[7];
  310. return res;
  311. }
  312. // vld1q_s16_x2
  313. // vld1q_u8_x2
  314. // vld1q_u8_x4
  315. // vld1q_s8_x2
  316. // vld1q_s8_x4
  317. // TODO: double-check these work correctly
  318. typedef struct ggml_int16x8x2_t {
  319. int16x8_t val[2];
  320. } ggml_int16x8x2_t;
  321. inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
  322. ggml_int16x8x2_t res;
  323. res.val[0] = vld1q_s16(ptr + 0);
  324. res.val[1] = vld1q_s16(ptr + 8);
  325. return res;
  326. }
  327. typedef struct ggml_uint8x16x2_t {
  328. uint8x16_t val[2];
  329. } ggml_uint8x16x2_t;
  330. inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
  331. ggml_uint8x16x2_t res;
  332. res.val[0] = vld1q_u8(ptr + 0);
  333. res.val[1] = vld1q_u8(ptr + 16);
  334. return res;
  335. }
  336. typedef struct ggml_uint8x16x4_t {
  337. uint8x16_t val[4];
  338. } ggml_uint8x16x4_t;
  339. inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
  340. ggml_uint8x16x4_t res;
  341. res.val[0] = vld1q_u8(ptr + 0);
  342. res.val[1] = vld1q_u8(ptr + 16);
  343. res.val[2] = vld1q_u8(ptr + 32);
  344. res.val[3] = vld1q_u8(ptr + 48);
  345. return res;
  346. }
  347. typedef struct ggml_int8x16x2_t {
  348. int8x16_t val[2];
  349. } ggml_int8x16x2_t;
  350. inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
  351. ggml_int8x16x2_t res;
  352. res.val[0] = vld1q_s8(ptr + 0);
  353. res.val[1] = vld1q_s8(ptr + 16);
  354. return res;
  355. }
  356. typedef struct ggml_int8x16x4_t {
  357. int8x16_t val[4];
  358. } ggml_int8x16x4_t;
  359. inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
  360. ggml_int8x16x4_t res;
  361. res.val[0] = vld1q_s8(ptr + 0);
  362. res.val[1] = vld1q_s8(ptr + 16);
  363. res.val[2] = vld1q_s8(ptr + 32);
  364. res.val[3] = vld1q_s8(ptr + 48);
  365. return res;
  366. }
  367. // NOTE: not tested
  368. inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
  369. int8x16_t res;
  370. res[ 0] = a[b[ 0]];
  371. res[ 1] = a[b[ 1]];
  372. res[ 2] = a[b[ 2]];
  373. res[ 3] = a[b[ 3]];
  374. res[ 4] = a[b[ 4]];
  375. res[ 5] = a[b[ 5]];
  376. res[ 6] = a[b[ 6]];
  377. res[ 7] = a[b[ 7]];
  378. res[ 8] = a[b[ 8]];
  379. res[ 9] = a[b[ 9]];
  380. res[10] = a[b[10]];
  381. res[11] = a[b[11]];
  382. res[12] = a[b[12]];
  383. res[13] = a[b[13]];
  384. res[14] = a[b[14]];
  385. res[15] = a[b[15]];
  386. return res;
  387. }
  388. // NOTE: not tested
  389. inline static int8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
  390. int8x16_t res;
  391. res[ 0] = a[b[ 0]];
  392. res[ 1] = a[b[ 1]];
  393. res[ 2] = a[b[ 2]];
  394. res[ 3] = a[b[ 3]];
  395. res[ 4] = a[b[ 4]];
  396. res[ 5] = a[b[ 5]];
  397. res[ 6] = a[b[ 6]];
  398. res[ 7] = a[b[ 7]];
  399. res[ 8] = a[b[ 8]];
  400. res[ 9] = a[b[ 9]];
  401. res[10] = a[b[10]];
  402. res[11] = a[b[11]];
  403. res[12] = a[b[12]];
  404. res[13] = a[b[13]];
  405. res[14] = a[b[14]];
  406. res[15] = a[b[15]];
  407. return res;
  408. }
  409. #else
  410. #define ggml_int16x8x2_t int16x8x2_t
  411. #define ggml_uint8x16x2_t uint8x16x2_t
  412. #define ggml_uint8x16x4_t uint8x16x4_t
  413. #define ggml_int8x16x2_t int8x16x2_t
  414. #define ggml_int8x16x4_t int8x16x4_t
  415. #define ggml_vld1q_s16_x2 vld1q_s16_x2
  416. #define ggml_vld1q_u8_x2 vld1q_u8_x2
  417. #define ggml_vld1q_u8_x4 vld1q_u8_x4
  418. #define ggml_vld1q_s8_x2 vld1q_s8_x2
  419. #define ggml_vld1q_s8_x4 vld1q_s8_x4
  420. #define ggml_vqtbl1q_s8 vqtbl1q_s8
  421. #define ggml_vqtbl1q_u8 vqtbl1q_u8
  422. #endif
  423. #if !defined(__ARM_FEATURE_DOTPROD)
  424. inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
  425. const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
  426. const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
  427. return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
  428. }
  429. #else
  430. #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
  431. #endif
  432. #endif
  433. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  434. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  435. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  436. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  437. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  438. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  439. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  440. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  441. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  442. // precomputed tables for expanding 8bits to 8 bytes:
  443. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  444. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  445. #endif
  446. // reference implementation for deterministic creation of model files
  447. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  448. static const int qk = QK4_0;
  449. assert(k % qk == 0);
  450. const int nb = k / qk;
  451. for (int i = 0; i < nb; i++) {
  452. float amax = 0.0f; // absolute max
  453. float max = 0.0f;
  454. for (int j = 0; j < qk; j++) {
  455. const float v = x[i*qk + j];
  456. if (amax < fabsf(v)) {
  457. amax = fabsf(v);
  458. max = v;
  459. }
  460. }
  461. const float d = max / -8;
  462. const float id = d ? 1.0f/d : 0.0f;
  463. y[i].d = GGML_FP32_TO_FP16(d);
  464. for (int j = 0; j < qk/2; ++j) {
  465. const float x0 = x[i*qk + 0 + j]*id;
  466. const float x1 = x[i*qk + qk/2 + j]*id;
  467. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  468. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  469. y[i].qs[j] = xi0;
  470. y[i].qs[j] |= xi1 << 4;
  471. }
  472. }
  473. }
  474. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  475. quantize_row_q4_0_reference(x, y, k);
  476. }
  477. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  478. const int qk = QK4_1;
  479. assert(k % qk == 0);
  480. const int nb = k / qk;
  481. for (int i = 0; i < nb; i++) {
  482. float min = FLT_MAX;
  483. float max = -FLT_MAX;
  484. for (int j = 0; j < qk; j++) {
  485. const float v = x[i*qk + j];
  486. if (v < min) min = v;
  487. if (v > max) max = v;
  488. }
  489. const float d = (max - min) / ((1 << 4) - 1);
  490. const float id = d ? 1.0f/d : 0.0f;
  491. y[i].d = GGML_FP32_TO_FP16(d);
  492. y[i].m = GGML_FP32_TO_FP16(min);
  493. for (int j = 0; j < qk/2; ++j) {
  494. const float x0 = (x[i*qk + 0 + j] - min)*id;
  495. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  496. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  497. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  498. y[i].qs[j] = xi0;
  499. y[i].qs[j] |= xi1 << 4;
  500. }
  501. }
  502. }
  503. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  504. quantize_row_q4_1_reference(x, y, k);
  505. }
  506. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  507. static const int qk = QK5_0;
  508. assert(k % qk == 0);
  509. const int nb = k / qk;
  510. for (int i = 0; i < nb; i++) {
  511. float amax = 0.0f; // absolute max
  512. float max = 0.0f;
  513. for (int j = 0; j < qk; j++) {
  514. const float v = x[i*qk + j];
  515. if (amax < fabsf(v)) {
  516. amax = fabsf(v);
  517. max = v;
  518. }
  519. }
  520. const float d = max / -16;
  521. const float id = d ? 1.0f/d : 0.0f;
  522. y[i].d = GGML_FP32_TO_FP16(d);
  523. uint32_t qh = 0;
  524. for (int j = 0; j < qk/2; ++j) {
  525. const float x0 = x[i*qk + 0 + j]*id;
  526. const float x1 = x[i*qk + qk/2 + j]*id;
  527. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  528. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  529. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  530. // get the 5-th bit and store it in qh at the right position
  531. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  532. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  533. }
  534. memcpy(&y[i].qh, &qh, sizeof(qh));
  535. }
  536. }
  537. void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  538. quantize_row_q5_0_reference(x, y, k);
  539. }
  540. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  541. const int qk = QK5_1;
  542. assert(k % qk == 0);
  543. const int nb = k / qk;
  544. for (int i = 0; i < nb; i++) {
  545. float min = FLT_MAX;
  546. float max = -FLT_MAX;
  547. for (int j = 0; j < qk; j++) {
  548. const float v = x[i*qk + j];
  549. if (v < min) min = v;
  550. if (v > max) max = v;
  551. }
  552. const float d = (max - min) / ((1 << 5) - 1);
  553. const float id = d ? 1.0f/d : 0.0f;
  554. y[i].d = GGML_FP32_TO_FP16(d);
  555. y[i].m = GGML_FP32_TO_FP16(min);
  556. uint32_t qh = 0;
  557. for (int j = 0; j < qk/2; ++j) {
  558. const float x0 = (x[i*qk + 0 + j] - min)*id;
  559. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  560. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  561. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  562. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  563. // get the 5-th bit and store it in qh at the right position
  564. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  565. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  566. }
  567. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  568. }
  569. }
  570. void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  571. quantize_row_q5_1_reference(x, y, k);
  572. }
  573. // reference implementation for deterministic creation of model files
  574. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  575. assert(k % QK8_0 == 0);
  576. const int nb = k / QK8_0;
  577. for (int i = 0; i < nb; i++) {
  578. float amax = 0.0f; // absolute max
  579. for (int j = 0; j < QK8_0; j++) {
  580. const float v = x[i*QK8_0 + j];
  581. amax = MAX(amax, fabsf(v));
  582. }
  583. const float d = amax / ((1 << 7) - 1);
  584. const float id = d ? 1.0f/d : 0.0f;
  585. y[i].d = GGML_FP32_TO_FP16(d);
  586. for (int j = 0; j < QK8_0; ++j) {
  587. const float x0 = x[i*QK8_0 + j]*id;
  588. y[i].qs[j] = roundf(x0);
  589. }
  590. }
  591. }
  592. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  593. assert(QK8_0 == 32);
  594. assert(k % QK8_0 == 0);
  595. const int nb = k / QK8_0;
  596. block_q8_0 * restrict y = vy;
  597. #if defined(__ARM_NEON)
  598. for (int i = 0; i < nb; i++) {
  599. float32x4_t srcv [8];
  600. float32x4_t asrcv[8];
  601. float32x4_t amaxv[8];
  602. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  603. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  604. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  605. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  606. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  607. const float amax = vmaxvq_f32(amaxv[0]);
  608. const float d = amax / ((1 << 7) - 1);
  609. const float id = d ? 1.0f/d : 0.0f;
  610. y[i].d = GGML_FP32_TO_FP16(d);
  611. for (int j = 0; j < 8; j++) {
  612. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  613. const int32x4_t vi = vcvtnq_s32_f32(v);
  614. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  615. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  616. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  617. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  618. }
  619. }
  620. #elif defined(__wasm_simd128__)
  621. for (int i = 0; i < nb; i++) {
  622. v128_t srcv [8];
  623. v128_t asrcv[8];
  624. v128_t amaxv[8];
  625. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  626. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  627. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  628. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  629. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  630. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  631. wasm_f32x4_extract_lane(amaxv[0], 1)),
  632. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  633. wasm_f32x4_extract_lane(amaxv[0], 3)));
  634. const float d = amax / ((1 << 7) - 1);
  635. const float id = d ? 1.0f/d : 0.0f;
  636. y[i].d = GGML_FP32_TO_FP16(d);
  637. for (int j = 0; j < 8; j++) {
  638. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  639. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  640. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  641. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  642. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  643. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  644. }
  645. }
  646. #elif defined(__AVX2__) || defined(__AVX__)
  647. for (int i = 0; i < nb; i++) {
  648. // Load elements into 4 AVX vectors
  649. __m256 v0 = _mm256_loadu_ps( x );
  650. __m256 v1 = _mm256_loadu_ps( x + 8 );
  651. __m256 v2 = _mm256_loadu_ps( x + 16 );
  652. __m256 v3 = _mm256_loadu_ps( x + 24 );
  653. x += 32;
  654. // Compute max(abs(e)) for the block
  655. const __m256 signBit = _mm256_set1_ps( -0.0f );
  656. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  657. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  658. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  659. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  660. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  661. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  662. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  663. const float maxScalar = _mm_cvtss_f32( max4 );
  664. // Quantize these floats
  665. const float d = maxScalar / 127.f;
  666. y[i].d = GGML_FP32_TO_FP16(d);
  667. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  668. const __m256 mul = _mm256_set1_ps( id );
  669. // Apply the multiplier
  670. v0 = _mm256_mul_ps( v0, mul );
  671. v1 = _mm256_mul_ps( v1, mul );
  672. v2 = _mm256_mul_ps( v2, mul );
  673. v3 = _mm256_mul_ps( v3, mul );
  674. // Round to nearest integer
  675. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  676. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  677. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  678. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  679. // Convert floats to integers
  680. __m256i i0 = _mm256_cvtps_epi32( v0 );
  681. __m256i i1 = _mm256_cvtps_epi32( v1 );
  682. __m256i i2 = _mm256_cvtps_epi32( v2 );
  683. __m256i i3 = _mm256_cvtps_epi32( v3 );
  684. #if defined(__AVX2__)
  685. // Convert int32 to int16
  686. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  687. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  688. // Convert int16 to int8
  689. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  690. // We got our precious signed bytes, but the order is now wrong
  691. // These AVX2 pack instructions process 16-byte pieces independently
  692. // The following instruction is fixing the order
  693. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  694. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  695. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  696. #else
  697. // Since we don't have in AVX some necessary functions,
  698. // we split the registers in half and call AVX2 analogs from SSE
  699. __m128i ni0 = _mm256_castsi256_si128( i0 );
  700. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  701. __m128i ni2 = _mm256_castsi256_si128( i1 );
  702. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  703. __m128i ni4 = _mm256_castsi256_si128( i2 );
  704. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  705. __m128i ni6 = _mm256_castsi256_si128( i3 );
  706. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  707. // Convert int32 to int16
  708. ni0 = _mm_packs_epi32( ni0, ni1 );
  709. ni2 = _mm_packs_epi32( ni2, ni3 );
  710. ni4 = _mm_packs_epi32( ni4, ni5 );
  711. ni6 = _mm_packs_epi32( ni6, ni7 );
  712. // Convert int16 to int8
  713. ni0 = _mm_packs_epi16( ni0, ni2 );
  714. ni4 = _mm_packs_epi16( ni4, ni6 );
  715. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  716. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  717. #endif
  718. }
  719. #elif defined(__riscv_v_intrinsic)
  720. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  721. for (int i = 0; i < nb; i++) {
  722. // load elements
  723. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  724. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  725. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  726. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  727. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  728. const float d = amax / ((1 << 7) - 1);
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = GGML_FP32_TO_FP16(d);
  731. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  732. // convert to integer
  733. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  734. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  735. // store result
  736. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  737. }
  738. #else
  739. GGML_UNUSED(nb);
  740. // scalar
  741. quantize_row_q8_0_reference(x, y, k);
  742. #endif
  743. }
  744. // reference implementation for deterministic creation of model files
  745. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  746. assert(QK8_1 == 32);
  747. assert(k % QK8_1 == 0);
  748. const int nb = k / QK8_1;
  749. for (int i = 0; i < nb; i++) {
  750. float amax = 0.0f; // absolute max
  751. for (int j = 0; j < QK8_1; j++) {
  752. const float v = x[i*QK8_1 + j];
  753. amax = MAX(amax, fabsf(v));
  754. }
  755. const float d = amax / ((1 << 7) - 1);
  756. const float id = d ? 1.0f/d : 0.0f;
  757. y[i].d = d;
  758. int sum = 0;
  759. for (int j = 0; j < QK8_1/2; ++j) {
  760. const float v0 = x[i*QK8_1 + j]*id;
  761. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  762. y[i].qs[ j] = roundf(v0);
  763. y[i].qs[QK8_1/2 + j] = roundf(v1);
  764. sum += y[i].qs[ j];
  765. sum += y[i].qs[QK8_1/2 + j];
  766. }
  767. y[i].s = sum*d;
  768. }
  769. }
  770. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  771. assert(k % QK8_1 == 0);
  772. const int nb = k / QK8_1;
  773. block_q8_1 * restrict y = vy;
  774. #if defined(__ARM_NEON)
  775. for (int i = 0; i < nb; i++) {
  776. float32x4_t srcv [8];
  777. float32x4_t asrcv[8];
  778. float32x4_t amaxv[8];
  779. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  780. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  781. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  782. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  783. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  784. const float amax = vmaxvq_f32(amaxv[0]);
  785. const float d = amax / ((1 << 7) - 1);
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].d = d;
  788. int32x4_t accv = vdupq_n_s32(0);
  789. for (int j = 0; j < 8; j++) {
  790. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  791. const int32x4_t vi = vcvtnq_s32_f32(v);
  792. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  793. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  794. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  795. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  796. accv = vaddq_s32(accv, vi);
  797. }
  798. y[i].s = d * vaddvq_s32(accv);
  799. }
  800. #elif defined(__wasm_simd128__)
  801. for (int i = 0; i < nb; i++) {
  802. v128_t srcv [8];
  803. v128_t asrcv[8];
  804. v128_t amaxv[8];
  805. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  806. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  807. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  808. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  809. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  810. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  811. wasm_f32x4_extract_lane(amaxv[0], 1)),
  812. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  813. wasm_f32x4_extract_lane(amaxv[0], 3)));
  814. const float d = amax / ((1 << 7) - 1);
  815. const float id = d ? 1.0f/d : 0.0f;
  816. y[i].d = d;
  817. v128_t accv = wasm_i32x4_splat(0);
  818. for (int j = 0; j < 8; j++) {
  819. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  820. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  821. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  822. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  823. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  824. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  825. accv = wasm_i32x4_add(accv, vi);
  826. }
  827. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  828. wasm_i32x4_extract_lane(accv, 1) +
  829. wasm_i32x4_extract_lane(accv, 2) +
  830. wasm_i32x4_extract_lane(accv, 3));
  831. }
  832. #elif defined(__AVX2__) || defined(__AVX__)
  833. for (int i = 0; i < nb; i++) {
  834. // Load elements into 4 AVX vectors
  835. __m256 v0 = _mm256_loadu_ps( x );
  836. __m256 v1 = _mm256_loadu_ps( x + 8 );
  837. __m256 v2 = _mm256_loadu_ps( x + 16 );
  838. __m256 v3 = _mm256_loadu_ps( x + 24 );
  839. x += 32;
  840. // Compute max(abs(e)) for the block
  841. const __m256 signBit = _mm256_set1_ps( -0.0f );
  842. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  843. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  844. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  845. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  846. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  847. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  848. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  849. const float maxScalar = _mm_cvtss_f32( max4 );
  850. // Quantize these floats
  851. const float d = maxScalar / 127.f;
  852. y[i].d = d;
  853. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  854. const __m256 mul = _mm256_set1_ps( id );
  855. // Apply the multiplier
  856. v0 = _mm256_mul_ps( v0, mul );
  857. v1 = _mm256_mul_ps( v1, mul );
  858. v2 = _mm256_mul_ps( v2, mul );
  859. v3 = _mm256_mul_ps( v3, mul );
  860. // Round to nearest integer
  861. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  862. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  863. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  864. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  865. // Convert floats to integers
  866. __m256i i0 = _mm256_cvtps_epi32( v0 );
  867. __m256i i1 = _mm256_cvtps_epi32( v1 );
  868. __m256i i2 = _mm256_cvtps_epi32( v2 );
  869. __m256i i3 = _mm256_cvtps_epi32( v3 );
  870. #if defined(__AVX2__)
  871. // Compute the sum of the quants and set y[i].s
  872. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  873. // Convert int32 to int16
  874. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  875. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  876. // Convert int16 to int8
  877. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  878. // We got our precious signed bytes, but the order is now wrong
  879. // These AVX2 pack instructions process 16-byte pieces independently
  880. // The following instruction is fixing the order
  881. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  882. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  883. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  884. #else
  885. // Since we don't have in AVX some necessary functions,
  886. // we split the registers in half and call AVX2 analogs from SSE
  887. __m128i ni0 = _mm256_castsi256_si128( i0 );
  888. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  889. __m128i ni2 = _mm256_castsi256_si128( i1 );
  890. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  891. __m128i ni4 = _mm256_castsi256_si128( i2 );
  892. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  893. __m128i ni6 = _mm256_castsi256_si128( i3 );
  894. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  895. // Compute the sum of the quants and set y[i].s
  896. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  897. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  898. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  899. // Convert int32 to int16
  900. ni0 = _mm_packs_epi32( ni0, ni1 );
  901. ni2 = _mm_packs_epi32( ni2, ni3 );
  902. ni4 = _mm_packs_epi32( ni4, ni5 );
  903. ni6 = _mm_packs_epi32( ni6, ni7 );
  904. // Convert int16 to int8
  905. ni0 = _mm_packs_epi16( ni0, ni2 );
  906. ni4 = _mm_packs_epi16( ni4, ni6 );
  907. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  908. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  909. #endif
  910. }
  911. #elif defined(__riscv_v_intrinsic)
  912. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  913. for (int i = 0; i < nb; i++) {
  914. // load elements
  915. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  916. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  917. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  918. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  919. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  920. const float d = amax / ((1 << 7) - 1);
  921. const float id = d ? 1.0f/d : 0.0f;
  922. y[i].d = d;
  923. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  924. // convert to integer
  925. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  926. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  927. // store result
  928. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  929. // compute sum for y[i].s
  930. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  931. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  932. // set y[i].s
  933. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  934. y[i].s = sum*d;
  935. }
  936. #else
  937. GGML_UNUSED(nb);
  938. // scalar
  939. quantize_row_q8_1_reference(x, y, k);
  940. #endif
  941. }
  942. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  943. static const int qk = QK4_0;
  944. assert(k % qk == 0);
  945. const int nb = k / qk;
  946. for (int i = 0; i < nb; i++) {
  947. const float d = GGML_FP16_TO_FP32(x[i].d);
  948. for (int j = 0; j < qk/2; ++j) {
  949. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  950. const int x1 = (x[i].qs[j] >> 4) - 8;
  951. y[i*qk + j + 0 ] = x0*d;
  952. y[i*qk + j + qk/2] = x1*d;
  953. }
  954. }
  955. }
  956. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  957. static const int qk = QK4_1;
  958. assert(k % qk == 0);
  959. const int nb = k / qk;
  960. for (int i = 0; i < nb; i++) {
  961. const float d = GGML_FP16_TO_FP32(x[i].d);
  962. const float m = GGML_FP16_TO_FP32(x[i].m);
  963. for (int j = 0; j < qk/2; ++j) {
  964. const int x0 = (x[i].qs[j] & 0x0F);
  965. const int x1 = (x[i].qs[j] >> 4);
  966. y[i*qk + j + 0 ] = x0*d + m;
  967. y[i*qk + j + qk/2] = x1*d + m;
  968. }
  969. }
  970. }
  971. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  972. static const int qk = QK5_0;
  973. assert(k % qk == 0);
  974. const int nb = k / qk;
  975. for (int i = 0; i < nb; i++) {
  976. const float d = GGML_FP16_TO_FP32(x[i].d);
  977. uint32_t qh;
  978. memcpy(&qh, x[i].qh, sizeof(qh));
  979. for (int j = 0; j < qk/2; ++j) {
  980. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  981. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  982. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  983. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  984. y[i*qk + j + 0 ] = x0*d;
  985. y[i*qk + j + qk/2] = x1*d;
  986. }
  987. }
  988. }
  989. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  990. static const int qk = QK5_1;
  991. assert(k % qk == 0);
  992. const int nb = k / qk;
  993. for (int i = 0; i < nb; i++) {
  994. const float d = GGML_FP16_TO_FP32(x[i].d);
  995. const float m = GGML_FP16_TO_FP32(x[i].m);
  996. uint32_t qh;
  997. memcpy(&qh, x[i].qh, sizeof(qh));
  998. for (int j = 0; j < qk/2; ++j) {
  999. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1000. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1001. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1002. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1003. y[i*qk + j + 0 ] = x0*d + m;
  1004. y[i*qk + j + qk/2] = x1*d + m;
  1005. }
  1006. }
  1007. }
  1008. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
  1009. static const int qk = QK8_0;
  1010. assert(k % qk == 0);
  1011. const int nb = k / qk;
  1012. for (int i = 0; i < nb; i++) {
  1013. const float d = GGML_FP16_TO_FP32(x[i].d);
  1014. for (int j = 0; j < qk; ++j) {
  1015. y[i*qk + j] = x[i].qs[j]*d;
  1016. }
  1017. }
  1018. }
  1019. //
  1020. // 2-6 bit quantization in super-blocks
  1021. //
  1022. //
  1023. // ===================== Helper functions
  1024. //
  1025. static inline int nearest_int(float fval) {
  1026. assert(fval <= 4194303.f);
  1027. float val = fval + 12582912.f;
  1028. int i; memcpy(&i, &val, sizeof(int));
  1029. return (i & 0x007fffff) - 0x00400000;
  1030. }
  1031. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1032. const float * restrict qw) {
  1033. float max = 0;
  1034. float amax = 0;
  1035. for (int i = 0; i < n; ++i) {
  1036. float ax = fabsf(x[i]);
  1037. if (ax > amax) { amax = ax; max = x[i]; }
  1038. }
  1039. if (amax < 1e-30f) { // all zero
  1040. for (int i = 0; i < n; ++i) {
  1041. L[i] = 0;
  1042. }
  1043. return 0.f;
  1044. }
  1045. float iscale = -nmax / max;
  1046. if (rmse_type == 0) {
  1047. for (int i = 0; i < n; ++i) {
  1048. int l = nearest_int(iscale * x[i]);
  1049. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1050. }
  1051. return 1/iscale;
  1052. }
  1053. bool return_early = false;
  1054. if (rmse_type < 0) {
  1055. rmse_type = -rmse_type;
  1056. return_early = true;
  1057. }
  1058. float sumlx = 0;
  1059. float suml2 = 0;
  1060. #ifdef HAVE_BUGGY_APPLE_LINKER
  1061. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1062. for (volatile int i = 0; i < n; ++i) {
  1063. #else
  1064. for (int i = 0; i < n; ++i) {
  1065. #endif
  1066. int l = nearest_int(iscale * x[i]);
  1067. l = MAX(-nmax, MIN(nmax-1, l));
  1068. L[i] = l + nmax;
  1069. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1070. sumlx += w*x[i]*l;
  1071. suml2 += w*l*l;
  1072. }
  1073. float scale = sumlx/suml2;
  1074. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1075. float best = scale * sumlx;
  1076. for (int is = -9; is <= 9; ++is) {
  1077. if (is == 0) {
  1078. continue;
  1079. }
  1080. iscale = -(nmax + 0.1f*is) / max;
  1081. sumlx = suml2 = 0;
  1082. for (int i = 0; i < n; ++i) {
  1083. int l = nearest_int(iscale * x[i]);
  1084. l = MAX(-nmax, MIN(nmax-1, l));
  1085. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1086. sumlx += w*x[i]*l;
  1087. suml2 += w*l*l;
  1088. }
  1089. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1090. for (int i = 0; i < n; ++i) {
  1091. int l = nearest_int(iscale * x[i]);
  1092. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1093. }
  1094. scale = sumlx/suml2; best = scale*sumlx;
  1095. }
  1096. }
  1097. return scale;
  1098. }
  1099. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1100. float max = 0;
  1101. float amax = 0;
  1102. for (int i = 0; i < n; ++i) {
  1103. float ax = fabsf(x[i]);
  1104. if (ax > amax) { amax = ax; max = x[i]; }
  1105. }
  1106. if (!amax) { // all zero
  1107. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1108. return 0.f;
  1109. }
  1110. float iscale = -nmax / max;
  1111. if (do_rmse) {
  1112. float sumlx = 0;
  1113. float suml2 = 0;
  1114. for (int i = 0; i < n; ++i) {
  1115. int l = nearest_int(iscale * x[i]);
  1116. l = MAX(-nmax, MIN(nmax-1, l));
  1117. L[i] = l;
  1118. float w = x[i]*x[i];
  1119. sumlx += w*x[i]*l;
  1120. suml2 += w*l*l;
  1121. }
  1122. for (int itry = 0; itry < 5; ++itry) {
  1123. int n_changed = 0;
  1124. for (int i = 0; i < n; ++i) {
  1125. float w = x[i]*x[i];
  1126. float slx = sumlx - w*x[i]*L[i];
  1127. if (slx > 0) {
  1128. float sl2 = suml2 - w*L[i]*L[i];
  1129. int new_l = nearest_int(x[i] * sl2 / slx);
  1130. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1131. if (new_l != L[i]) {
  1132. slx += w*x[i]*new_l;
  1133. sl2 += w*new_l*new_l;
  1134. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1135. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1136. ++n_changed;
  1137. }
  1138. }
  1139. }
  1140. }
  1141. if (!n_changed) {
  1142. break;
  1143. }
  1144. }
  1145. for (int i = 0; i < n; ++i) {
  1146. L[i] += nmax;
  1147. }
  1148. return sumlx / suml2;
  1149. }
  1150. for (int i = 0; i < n; ++i) {
  1151. int l = nearest_int(iscale * x[i]);
  1152. l = MAX(-nmax, MIN(nmax-1, l));
  1153. L[i] = l + nmax;
  1154. }
  1155. return 1/iscale;
  1156. }
  1157. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1158. int ntry, float alpha) {
  1159. float min = x[0];
  1160. float max = x[0];
  1161. for (int i = 1; i < n; ++i) {
  1162. if (x[i] < min) min = x[i];
  1163. if (x[i] > max) max = x[i];
  1164. }
  1165. if (max == min) {
  1166. for (int i = 0; i < n; ++i) L[i] = 0;
  1167. *the_min = 0;
  1168. return 0.f;
  1169. }
  1170. if (min > 0) min = 0;
  1171. float iscale = nmax/(max - min);
  1172. float scale = 1/iscale;
  1173. for (int itry = 0; itry < ntry; ++itry) {
  1174. float sumlx = 0; int suml2 = 0;
  1175. bool did_change = false;
  1176. for (int i = 0; i < n; ++i) {
  1177. int l = nearest_int(iscale*(x[i] - min));
  1178. l = MAX(0, MIN(nmax, l));
  1179. if (l != L[i]) {
  1180. L[i] = l;
  1181. did_change = true;
  1182. }
  1183. sumlx += (x[i] - min)*l;
  1184. suml2 += l*l;
  1185. }
  1186. scale = sumlx/suml2;
  1187. float sum = 0;
  1188. for (int i = 0; i < n; ++i) {
  1189. sum += x[i] - scale*L[i];
  1190. }
  1191. min = alpha*min + (1 - alpha)*sum/n;
  1192. if (min > 0) min = 0;
  1193. iscale = 1/scale;
  1194. if (!did_change) break;
  1195. }
  1196. *the_min = -min;
  1197. return scale;
  1198. }
  1199. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1200. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1201. float rmin, float rdelta, int nstep, bool use_mad) {
  1202. float min = x[0];
  1203. float max = x[0];
  1204. float sum_w = weights[0];
  1205. float sum_x = sum_w * x[0];
  1206. #ifdef HAVE_BUGGY_APPLE_LINKER
  1207. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1208. for (volatile int i = 1; i < n; ++i) {
  1209. #else
  1210. for (int i = 1; i < n; ++i) {
  1211. #endif
  1212. if (x[i] < min) min = x[i];
  1213. if (x[i] > max) max = x[i];
  1214. float w = weights[i];
  1215. sum_w += w;
  1216. sum_x += w * x[i];
  1217. }
  1218. if (min > 0) min = 0;
  1219. if (max == min) {
  1220. for (int i = 0; i < n; ++i) L[i] = 0;
  1221. *the_min = -min;
  1222. return 0.f;
  1223. }
  1224. float iscale = nmax/(max - min);
  1225. float scale = 1/iscale;
  1226. float best_mad = 0;
  1227. for (int i = 0; i < n; ++i) {
  1228. int l = nearest_int(iscale*(x[i] - min));
  1229. L[i] = MAX(0, MIN(nmax, l));
  1230. float diff = scale * L[i] + min - x[i];
  1231. diff = use_mad ? fabsf(diff) : diff * diff;
  1232. float w = weights[i];
  1233. best_mad += w * diff;
  1234. }
  1235. if (nstep < 1) {
  1236. *the_min = -min;
  1237. return scale;
  1238. }
  1239. for (int is = 0; is <= nstep; ++is) {
  1240. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1241. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1242. for (int i = 0; i < n; ++i) {
  1243. int l = nearest_int(iscale*(x[i] - min));
  1244. l = MAX(0, MIN(nmax, l));
  1245. Laux[i] = l;
  1246. float w = weights[i];
  1247. sum_l += w*l;
  1248. sum_l2 += w*l*l;
  1249. sum_xl += w*l*x[i];
  1250. }
  1251. float D = sum_w * sum_l2 - sum_l * sum_l;
  1252. if (D > 0) {
  1253. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1254. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1255. if (this_min > 0) {
  1256. this_min = 0;
  1257. this_scale = sum_xl / sum_l2;
  1258. }
  1259. float mad = 0;
  1260. for (int i = 0; i < n; ++i) {
  1261. float diff = this_scale * Laux[i] + this_min - x[i];
  1262. diff = use_mad ? fabsf(diff) : diff * diff;
  1263. float w = weights[i];
  1264. mad += w * diff;
  1265. }
  1266. if (mad < best_mad) {
  1267. for (int i = 0; i < n; ++i) {
  1268. L[i] = Laux[i];
  1269. }
  1270. best_mad = mad;
  1271. scale = this_scale;
  1272. min = this_min;
  1273. }
  1274. }
  1275. }
  1276. *the_min = -min;
  1277. return scale;
  1278. }
  1279. #if QK_K == 256
  1280. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1281. if (j < 4) {
  1282. *d = q[j] & 63; *m = q[j + 4] & 63;
  1283. } else {
  1284. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1285. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1286. }
  1287. }
  1288. #endif
  1289. //========================- 2-bit (de)-quantization
  1290. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  1291. assert(k % QK_K == 0);
  1292. const int nb = k / QK_K;
  1293. uint8_t L[QK_K];
  1294. uint8_t Laux[16];
  1295. float weights[16];
  1296. float mins[QK_K/16];
  1297. float scales[QK_K/16];
  1298. const float q4scale = 15.f;
  1299. for (int i = 0; i < nb; i++) {
  1300. float max_scale = 0; // as we are deducting the min, scales are always positive
  1301. float max_min = 0;
  1302. for (int j = 0; j < QK_K/16; ++j) {
  1303. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1304. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1305. float scale = scales[j];
  1306. if (scale > max_scale) {
  1307. max_scale = scale;
  1308. }
  1309. float min = mins[j];
  1310. if (min > max_min) {
  1311. max_min = min;
  1312. }
  1313. }
  1314. if (max_scale > 0) {
  1315. float iscale = q4scale/max_scale;
  1316. for (int j = 0; j < QK_K/16; ++j) {
  1317. int l = nearest_int(iscale*scales[j]);
  1318. y[i].scales[j] = l;
  1319. }
  1320. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1321. } else {
  1322. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1323. y[i].d = GGML_FP32_TO_FP16(0.f);
  1324. }
  1325. if (max_min > 0) {
  1326. float iscale = q4scale/max_min;
  1327. for (int j = 0; j < QK_K/16; ++j) {
  1328. int l = nearest_int(iscale*mins[j]);
  1329. y[i].scales[j] |= (l << 4);
  1330. }
  1331. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1332. } else {
  1333. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1334. }
  1335. for (int j = 0; j < QK_K/16; ++j) {
  1336. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1337. if (!d) continue;
  1338. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1339. for (int ii = 0; ii < 16; ++ii) {
  1340. int l = nearest_int((x[16*j + ii] + dm)/d);
  1341. l = MAX(0, MIN(3, l));
  1342. L[16*j + ii] = l;
  1343. }
  1344. }
  1345. #if QK_K == 256
  1346. for (int j = 0; j < QK_K; j += 128) {
  1347. for (int l = 0; l < 32; ++l) {
  1348. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1349. }
  1350. }
  1351. #else
  1352. for (int l = 0; l < 16; ++l) {
  1353. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1354. }
  1355. #endif
  1356. x += QK_K;
  1357. }
  1358. }
  1359. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  1360. assert(k % QK_K == 0);
  1361. const int nb = k / QK_K;
  1362. for (int i = 0; i < nb; i++) {
  1363. const float d = GGML_FP16_TO_FP32(x[i].d);
  1364. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1365. const uint8_t * q = x[i].qs;
  1366. #if QK_K == 256
  1367. int is = 0;
  1368. float dl, ml;
  1369. for (int n = 0; n < QK_K; n += 128) {
  1370. int shift = 0;
  1371. for (int j = 0; j < 4; ++j) {
  1372. uint8_t sc = x[i].scales[is++];
  1373. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1374. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1375. sc = x[i].scales[is++];
  1376. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1377. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1378. shift += 2;
  1379. }
  1380. q += 32;
  1381. }
  1382. #else
  1383. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1384. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1385. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1386. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1387. for (int l = 0; l < 16; ++l) {
  1388. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1389. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1390. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1391. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1392. }
  1393. y += QK_K;
  1394. #endif
  1395. }
  1396. }
  1397. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  1398. quantize_row_q2_K_reference(x, vy, k);
  1399. }
  1400. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1401. (void)hist; // TODO: collect histograms
  1402. for (int j = 0; j < n; j += k) {
  1403. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  1404. quantize_row_q2_K_reference(src + j, y, k);
  1405. }
  1406. return (n/QK_K*sizeof(block_q2_K));
  1407. }
  1408. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1409. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1410. float rmin, float rdelta, int nstep, bool use_mad) {
  1411. float min = x[0];
  1412. float max = x[0];
  1413. float sum_w = weights ? weights[0] : x[0]*x[0];
  1414. float sum_x = sum_w * x[0];
  1415. #ifdef HAVE_BUGGY_APPLE_LINKER
  1416. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1417. for (volatile int i = 1; i < n; ++i) {
  1418. #else
  1419. for (int i = 1; i < n; ++i) {
  1420. #endif
  1421. if (x[i] < min) min = x[i];
  1422. if (x[i] > max) max = x[i];
  1423. float w = weights ? weights[i] : x[i]*x[i];
  1424. sum_w += w;
  1425. sum_x += w * x[i];
  1426. }
  1427. if (min > 0) {
  1428. min = 0;
  1429. }
  1430. if (max <= min) {
  1431. memset(L, 0, n);
  1432. *the_min = -min;
  1433. return 0.f;
  1434. }
  1435. float iscale = nmax/(max - min);
  1436. float scale = 1/iscale;
  1437. float best_mad = 0;
  1438. for (int i = 0; i < n; ++i) {
  1439. int l = nearest_int(iscale*(x[i] - min));
  1440. L[i] = MAX(0, MIN(nmax, l));
  1441. float diff = scale * L[i] + min - x[i];
  1442. diff = use_mad ? fabsf(diff) : diff*diff;
  1443. float w = weights ? weights[i] : x[i]*x[i];
  1444. best_mad += w * diff;
  1445. }
  1446. if (nstep < 1) {
  1447. *the_min = -min;
  1448. return scale;
  1449. }
  1450. for (int is = 0; is <= nstep; ++is) {
  1451. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1452. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1453. for (int i = 0; i < n; ++i) {
  1454. int l = nearest_int(iscale*(x[i] - min));
  1455. l = MAX(0, MIN(nmax, l));
  1456. Laux[i] = l;
  1457. float w = weights ? weights[i] : x[i]*x[i];
  1458. sum_l += w*l;
  1459. sum_l2 += w*l*l;
  1460. sum_xl += w*l*x[i];
  1461. }
  1462. float D = sum_w * sum_l2 - sum_l * sum_l;
  1463. if (D > 0) {
  1464. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1465. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1466. if (this_min > 0) {
  1467. this_min = 0;
  1468. this_scale = sum_xl / sum_l2;
  1469. }
  1470. float mad = 0;
  1471. for (int i = 0; i < n; ++i) {
  1472. float diff = this_scale * Laux[i] + this_min - x[i];
  1473. diff = use_mad ? fabsf(diff) : diff*diff;
  1474. float w = weights ? weights[i] : x[i]*x[i];
  1475. mad += w * diff;
  1476. }
  1477. if (mad < best_mad) {
  1478. for (int i = 0; i < n; ++i) {
  1479. L[i] = Laux[i];
  1480. }
  1481. best_mad = mad;
  1482. scale = this_scale;
  1483. min = this_min;
  1484. }
  1485. }
  1486. }
  1487. *the_min = -min;
  1488. return scale;
  1489. }
  1490. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1491. float max = 0;
  1492. for (int i = 0; i < n; ++i) {
  1493. max = MAX(max, x[i]);
  1494. }
  1495. if (!max) { // all zero
  1496. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1497. return 0.f;
  1498. }
  1499. float iscale = nmax / max;
  1500. for (int i = 0; i < n; ++i) {
  1501. L[i] = nearest_int(iscale * x[i]);
  1502. }
  1503. float scale = 1/iscale;
  1504. float best_mse = 0;
  1505. for (int i = 0; i < n; ++i) {
  1506. float diff = x[i] - scale*L[i];
  1507. float w = quant_weights[i];
  1508. best_mse += w*diff*diff;
  1509. }
  1510. for (int is = -4; is <= 4; ++is) {
  1511. if (is == 0) continue;
  1512. float iscale_is = (0.1f*is + nmax)/max;
  1513. float scale_is = 1/iscale_is;
  1514. float mse = 0;
  1515. for (int i = 0; i < n; ++i) {
  1516. int l = nearest_int(iscale_is*x[i]);
  1517. l = MIN(nmax, l);
  1518. float diff = x[i] - scale_is*l;
  1519. float w = quant_weights[i];
  1520. mse += w*diff*diff;
  1521. }
  1522. if (mse < best_mse) {
  1523. best_mse = mse;
  1524. iscale = iscale_is;
  1525. }
  1526. }
  1527. float sumlx = 0;
  1528. float suml2 = 0;
  1529. for (int i = 0; i < n; ++i) {
  1530. int l = nearest_int(iscale * x[i]);
  1531. l = MIN(nmax, l);
  1532. L[i] = l;
  1533. float w = quant_weights[i];
  1534. sumlx += w*x[i]*l;
  1535. suml2 += w*l*l;
  1536. }
  1537. for (int itry = 0; itry < 5; ++itry) {
  1538. int n_changed = 0;
  1539. for (int i = 0; i < n; ++i) {
  1540. float w = quant_weights[i];
  1541. float slx = sumlx - w*x[i]*L[i];
  1542. float sl2 = suml2 - w*L[i]*L[i];
  1543. if (slx > 0 && sl2 > 0) {
  1544. int new_l = nearest_int(x[i] * sl2 / slx);
  1545. new_l = MIN(nmax, new_l);
  1546. if (new_l != L[i]) {
  1547. slx += w*x[i]*new_l;
  1548. sl2 += w*new_l*new_l;
  1549. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1550. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1551. ++n_changed;
  1552. }
  1553. }
  1554. }
  1555. }
  1556. if (!n_changed) {
  1557. break;
  1558. }
  1559. }
  1560. return sumlx / suml2;
  1561. }
  1562. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1563. GGML_ASSERT(quant_weights);
  1564. assert(k % QK_K == 0);
  1565. const int nb = k / QK_K;
  1566. const bool requantize = true;
  1567. uint8_t L[QK_K];
  1568. uint8_t Laux[16];
  1569. float mins[QK_K/16];
  1570. float scales[QK_K/16];
  1571. float sw[QK_K/16];
  1572. float weight[QK_K/16];
  1573. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1574. for (int i = 0; i < nb; i++) {
  1575. memset(sw, 0, QK_K/16*sizeof(float));
  1576. float sumx2 = 0;
  1577. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1578. float sigma2 = sumx2/QK_K;
  1579. for (int j = 0; j < QK_K/16; ++j) {
  1580. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1581. for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1582. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1583. scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1584. }
  1585. float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1586. float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1587. y[i].d = GGML_FP32_TO_FP16(dm);
  1588. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1589. dm = GGML_FP16_TO_FP32(y[i].d);
  1590. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1591. for (int j = 0; j < QK_K/16; ++j) {
  1592. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1593. }
  1594. if (requantize) {
  1595. for (int j = 0; j < QK_K/16; ++j) {
  1596. const float d = dm * (y[i].scales[j] & 0xF);
  1597. if (!d) continue;
  1598. const float m = mm * (y[i].scales[j] >> 4);
  1599. for (int ii = 0; ii < 16; ++ii) {
  1600. int l = nearest_int((x[16*j + ii] + m)/d);
  1601. l = MAX(0, MIN(3, l));
  1602. L[16*j + ii] = l;
  1603. }
  1604. }
  1605. }
  1606. #if QK_K == 256
  1607. for (int j = 0; j < QK_K; j += 128) {
  1608. for (int l = 0; l < 32; ++l) {
  1609. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1610. }
  1611. }
  1612. #else
  1613. for (int l = 0; l < 16; ++l) {
  1614. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1615. }
  1616. #endif
  1617. x += QK_K;
  1618. }
  1619. }
  1620. size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1621. (void)hist;
  1622. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1623. if (!quant_weights) {
  1624. quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
  1625. }
  1626. else {
  1627. char * qrow = (char *)dst;
  1628. for (int row = 0; row < nrow; ++row) {
  1629. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1630. src += n_per_row;
  1631. qrow += row_size;
  1632. }
  1633. }
  1634. return nrow * row_size;
  1635. }
  1636. //========================= 3-bit (de)-quantization
  1637. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  1638. assert(k % QK_K == 0);
  1639. const int nb = k / QK_K;
  1640. int8_t L[QK_K];
  1641. float scales[QK_K / 16];
  1642. for (int i = 0; i < nb; i++) {
  1643. float max_scale = 0;
  1644. float amax = 0;
  1645. for (int j = 0; j < QK_K/16; ++j) {
  1646. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1647. float scale = fabsf(scales[j]);
  1648. if (scale > amax) {
  1649. amax = scale; max_scale = scales[j];
  1650. }
  1651. }
  1652. #if QK_K == 256
  1653. memset(y[i].scales, 0, 12);
  1654. if (max_scale) {
  1655. float iscale = -32.f/max_scale;
  1656. for (int j = 0; j < QK_K/16; ++j) {
  1657. int8_t l = nearest_int(iscale*scales[j]);
  1658. l = MAX(-32, MIN(31, l)) + 32;
  1659. if (j < 8) {
  1660. y[i].scales[j] = l & 0xF;
  1661. } else {
  1662. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1663. }
  1664. l >>= 4;
  1665. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1666. }
  1667. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1668. } else {
  1669. y[i].d = GGML_FP32_TO_FP16(0.f);
  1670. }
  1671. int8_t sc;
  1672. for (int j = 0; j < QK_K/16; ++j) {
  1673. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1674. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1675. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1676. if (!d) {
  1677. continue;
  1678. }
  1679. for (int ii = 0; ii < 16; ++ii) {
  1680. int l = nearest_int(x[16*j + ii]/d);
  1681. l = MAX(-4, MIN(3, l));
  1682. L[16*j + ii] = l + 4;
  1683. }
  1684. }
  1685. #else
  1686. if (max_scale) {
  1687. float iscale = -8.f/max_scale;
  1688. for (int j = 0; j < QK_K/16; j+=2) {
  1689. int l1 = nearest_int(iscale*scales[j]);
  1690. l1 = 8 + MAX(-8, MIN(7, l1));
  1691. int l2 = nearest_int(iscale*scales[j+1]);
  1692. l2 = 8 + MAX(-8, MIN(7, l2));
  1693. y[i].scales[j/2] = l1 | (l2 << 4);
  1694. }
  1695. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1696. } else {
  1697. for (int j = 0; j < QK_K/16; j+=2) {
  1698. y[i].scales[j/2] = 0;
  1699. }
  1700. y[i].d = GGML_FP32_TO_FP16(0.f);
  1701. }
  1702. for (int j = 0; j < QK_K/16; ++j) {
  1703. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  1704. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  1705. if (!d) {
  1706. continue;
  1707. }
  1708. for (int ii = 0; ii < 16; ++ii) {
  1709. int l = nearest_int(x[16*j + ii]/d);
  1710. l = MAX(-4, MIN(3, l));
  1711. L[16*j + ii] = l + 4;
  1712. }
  1713. }
  1714. #endif
  1715. memset(y[i].hmask, 0, QK_K/8);
  1716. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1717. int m = 0;
  1718. uint8_t hm = 1;
  1719. for (int j = 0; j < QK_K; ++j) {
  1720. if (L[j] > 3) {
  1721. y[i].hmask[m] |= hm;
  1722. L[j] -= 4;
  1723. }
  1724. if (++m == QK_K/8) {
  1725. m = 0; hm <<= 1;
  1726. }
  1727. }
  1728. #if QK_K == 256
  1729. for (int j = 0; j < QK_K; j += 128) {
  1730. for (int l = 0; l < 32; ++l) {
  1731. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1732. }
  1733. }
  1734. #else
  1735. for (int l = 0; l < 16; ++l) {
  1736. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1737. }
  1738. #endif
  1739. x += QK_K;
  1740. }
  1741. }
  1742. #if QK_K == 256
  1743. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1744. assert(k % QK_K == 0);
  1745. const int nb = k / QK_K;
  1746. const uint32_t kmask1 = 0x03030303;
  1747. const uint32_t kmask2 = 0x0f0f0f0f;
  1748. uint32_t aux[4];
  1749. const int8_t * scales = (const int8_t*)aux;
  1750. for (int i = 0; i < nb; i++) {
  1751. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1752. const uint8_t * restrict q = x[i].qs;
  1753. const uint8_t * restrict hm = x[i].hmask;
  1754. uint8_t m = 1;
  1755. memcpy(aux, x[i].scales, 12);
  1756. uint32_t tmp = aux[2];
  1757. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1758. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1759. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1760. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1761. int is = 0;
  1762. float dl;
  1763. for (int n = 0; n < QK_K; n += 128) {
  1764. int shift = 0;
  1765. for (int j = 0; j < 4; ++j) {
  1766. dl = d_all * (scales[is++] - 32);
  1767. for (int l = 0; l < 16; ++l) {
  1768. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1769. }
  1770. dl = d_all * (scales[is++] - 32);
  1771. for (int l = 0; l < 16; ++l) {
  1772. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  1773. }
  1774. shift += 2;
  1775. m <<= 1;
  1776. }
  1777. q += 32;
  1778. }
  1779. }
  1780. }
  1781. #else
  1782. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1783. assert(k % QK_K == 0);
  1784. assert(QK_K == 64);
  1785. const int nb = k / QK_K;
  1786. for (int i = 0; i < nb; i++) {
  1787. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1788. const uint8_t * restrict q = x[i].qs;
  1789. const uint8_t * restrict hm = x[i].hmask;
  1790. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1791. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1792. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1793. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1794. for (int l=0; l<8; ++l) {
  1795. uint8_t h = hm[l];
  1796. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  1797. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  1798. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  1799. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  1800. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  1801. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  1802. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  1803. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  1804. }
  1805. y += QK_K;
  1806. }
  1807. }
  1808. #endif
  1809. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  1810. quantize_row_q3_K_reference(x, vy, k);
  1811. }
  1812. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1813. (void)hist; // TODO: collect histograms
  1814. for (int j = 0; j < n; j += k) {
  1815. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  1816. quantize_row_q3_K_reference(src + j, y, k);
  1817. }
  1818. return (n/QK_K*sizeof(block_q3_K));
  1819. }
  1820. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
  1821. #if QK_K != 256
  1822. (void)quant_weights;
  1823. quantize_row_q3_K_reference(x, y, n_per_row);
  1824. #else
  1825. assert(n_per_row % QK_K == 0);
  1826. const int nb = n_per_row / QK_K;
  1827. int8_t L[QK_K];
  1828. float scales[QK_K / 16];
  1829. float weight[16];
  1830. float sw[QK_K / 16];
  1831. int8_t Ls[QK_K / 16];
  1832. for (int i = 0; i < nb; i++) {
  1833. float sumx2 = 0;
  1834. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1835. float sigma2 = 2*sumx2/QK_K;
  1836. for (int j = 0; j < QK_K/16; ++j) {
  1837. if (quant_weights) {
  1838. const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
  1839. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  1840. } else {
  1841. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  1842. }
  1843. float sumw = 0;
  1844. for (int l = 0; l < 16; ++l) sumw += weight[l];
  1845. sw[j] = sumw;
  1846. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  1847. }
  1848. memset(y[i].scales, 0, 12);
  1849. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  1850. for (int j = 0; j < QK_K/16; ++j) {
  1851. int l = Ls[j];
  1852. if (j < 8) {
  1853. y[i].scales[j] = l & 0xF;
  1854. } else {
  1855. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1856. }
  1857. l >>= 4;
  1858. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1859. }
  1860. y[i].d = GGML_FP32_TO_FP16(d_block);
  1861. int8_t sc;
  1862. for (int j = 0; j < QK_K/16; ++j) {
  1863. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1864. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1865. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1866. if (!d) {
  1867. continue;
  1868. }
  1869. for (int ii = 0; ii < 16; ++ii) {
  1870. int l = nearest_int(x[16*j + ii]/d);
  1871. l = MAX(-4, MIN(3, l));
  1872. L[16*j + ii] = l + 4;
  1873. }
  1874. }
  1875. memset(y[i].hmask, 0, QK_K/8);
  1876. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1877. int m = 0;
  1878. uint8_t hm = 1;
  1879. for (int j = 0; j < QK_K; ++j) {
  1880. if (L[j] > 3) {
  1881. y[i].hmask[m] |= hm;
  1882. L[j] -= 4;
  1883. }
  1884. if (++m == QK_K/8) {
  1885. m = 0; hm <<= 1;
  1886. }
  1887. }
  1888. for (int j = 0; j < QK_K; j += 128) {
  1889. for (int l = 0; l < 32; ++l) {
  1890. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1891. }
  1892. }
  1893. x += QK_K;
  1894. }
  1895. #endif
  1896. }
  1897. size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1898. (void)hist;
  1899. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  1900. if (!quant_weights) {
  1901. quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
  1902. }
  1903. else {
  1904. char * qrow = (char *)dst;
  1905. for (int row = 0; row < nrow; ++row) {
  1906. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  1907. src += n_per_row;
  1908. qrow += row_size;
  1909. }
  1910. }
  1911. return nrow * row_size;
  1912. }
  1913. // ====================== 4-bit (de)-quantization
  1914. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  1915. assert(k % QK_K == 0);
  1916. const int nb = k / QK_K;
  1917. uint8_t L[QK_K];
  1918. uint8_t Laux[32];
  1919. float weights[32];
  1920. float mins[QK_K/32];
  1921. float scales[QK_K/32];
  1922. for (int i = 0; i < nb; i++) {
  1923. float max_scale = 0; // as we are deducting the min, scales are always positive
  1924. float max_min = 0;
  1925. for (int j = 0; j < QK_K/32; ++j) {
  1926. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  1927. float sum_x2 = 0;
  1928. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  1929. float av_x = sqrtf(sum_x2/32);
  1930. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1931. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  1932. float scale = scales[j];
  1933. if (scale > max_scale) {
  1934. max_scale = scale;
  1935. }
  1936. float min = mins[j];
  1937. if (min > max_min) {
  1938. max_min = min;
  1939. }
  1940. }
  1941. #if QK_K == 256
  1942. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  1943. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  1944. for (int j = 0; j < QK_K/32; ++j) {
  1945. uint8_t ls = nearest_int(inv_scale*scales[j]);
  1946. uint8_t lm = nearest_int(inv_min*mins[j]);
  1947. ls = MIN(63, ls);
  1948. lm = MIN(63, lm);
  1949. if (j < 4) {
  1950. y[i].scales[j] = ls;
  1951. y[i].scales[j+4] = lm;
  1952. } else {
  1953. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1954. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1955. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1956. }
  1957. }
  1958. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  1959. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  1960. uint8_t sc, m;
  1961. for (int j = 0; j < QK_K/32; ++j) {
  1962. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1963. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1964. if (!d) continue;
  1965. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1966. for (int ii = 0; ii < 32; ++ii) {
  1967. int l = nearest_int((x[32*j + ii] + dm)/d);
  1968. l = MAX(0, MIN(15, l));
  1969. L[32*j + ii] = l;
  1970. }
  1971. }
  1972. #else
  1973. const float s_factor = 15.f;
  1974. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  1975. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  1976. int d1 = nearest_int(inv_scale*scales[0]);
  1977. int m1 = nearest_int(inv_min*mins[0]);
  1978. int d2 = nearest_int(inv_scale*scales[1]);
  1979. int m2 = nearest_int(inv_min*mins[1]);
  1980. y[i].scales[0] = d1 | (m1 << 4);
  1981. y[i].scales[1] = d2 | (m2 << 4);
  1982. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  1983. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  1984. float sumlx = 0;
  1985. int suml2 = 0;
  1986. for (int j = 0; j < QK_K/32; ++j) {
  1987. const uint8_t sd = y[i].scales[j] & 0xF;
  1988. const uint8_t sm = y[i].scales[j] >> 4;
  1989. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  1990. if (!d) continue;
  1991. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  1992. for (int ii = 0; ii < 32; ++ii) {
  1993. int l = nearest_int((x[32*j + ii] + m)/d);
  1994. l = MAX(0, MIN(15, l));
  1995. L[32*j + ii] = l;
  1996. sumlx += (x[32*j + ii] + m)*l*sd;
  1997. suml2 += l*l*sd*sd;
  1998. }
  1999. }
  2000. if (suml2) {
  2001. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  2002. }
  2003. #endif
  2004. uint8_t * q = y[i].qs;
  2005. for (int j = 0; j < QK_K; j += 64) {
  2006. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2007. q += 32;
  2008. }
  2009. x += QK_K;
  2010. }
  2011. }
  2012. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  2013. assert(k % QK_K == 0);
  2014. const int nb = k / QK_K;
  2015. for (int i = 0; i < nb; i++) {
  2016. const uint8_t * q = x[i].qs;
  2017. #if QK_K == 256
  2018. const float d = GGML_FP16_TO_FP32(x[i].d);
  2019. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2020. int is = 0;
  2021. uint8_t sc, m;
  2022. for (int j = 0; j < QK_K; j += 64) {
  2023. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2024. const float d1 = d * sc; const float m1 = min * m;
  2025. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2026. const float d2 = d * sc; const float m2 = min * m;
  2027. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2028. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2029. q += 32; is += 2;
  2030. }
  2031. #else
  2032. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  2033. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  2034. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  2035. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  2036. for (int l = 0; l < 32; ++l) {
  2037. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  2038. y[l+32] = d2 * (q[l] >> 4) - m2;
  2039. }
  2040. y += QK_K;
  2041. #endif
  2042. }
  2043. }
  2044. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  2045. assert(k % QK_K == 0);
  2046. block_q4_K * restrict y = vy;
  2047. quantize_row_q4_K_reference(x, y, k);
  2048. }
  2049. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2050. assert(k % QK_K == 0);
  2051. (void)hist; // TODO: collect histograms
  2052. for (int j = 0; j < n; j += k) {
  2053. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  2054. quantize_row_q4_K_reference(src + j, y, k);
  2055. }
  2056. return (n/QK_K*sizeof(block_q4_K));
  2057. }
  2058. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
  2059. #if QK_K != 256
  2060. (void)quant_weights;
  2061. quantize_row_q4_K_reference(x, y, n_per_row);
  2062. #else
  2063. assert(n_per_row % QK_K == 0);
  2064. const int nb = n_per_row / QK_K;
  2065. uint8_t L[QK_K];
  2066. uint8_t Laux[32];
  2067. uint8_t Ls[QK_K/32];
  2068. uint8_t Lm[QK_K/32];
  2069. float weights[32];
  2070. float sw[QK_K/32];
  2071. float mins[QK_K/32];
  2072. float scales[QK_K/32];
  2073. for (int i = 0; i < nb; i++) {
  2074. float sum_x2 = 0;
  2075. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2076. float sigma2 = 2*sum_x2/QK_K;
  2077. float av_x = sqrtf(sigma2);
  2078. for (int j = 0; j < QK_K/32; ++j) {
  2079. if (quant_weights) {
  2080. const float * qw = quant_weights + QK_K*i + 32*j;
  2081. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2082. } else {
  2083. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2084. }
  2085. float sumw = 0;
  2086. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2087. sw[j] = sumw;
  2088. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2089. }
  2090. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2091. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2092. for (int j = 0; j < QK_K/32; ++j) {
  2093. uint8_t ls = Ls[j];
  2094. uint8_t lm = Lm[j];
  2095. if (j < 4) {
  2096. y[i].scales[j] = ls;
  2097. y[i].scales[j+4] = lm;
  2098. } else {
  2099. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2100. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2101. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2102. }
  2103. }
  2104. y[i].d = GGML_FP32_TO_FP16(d_block);
  2105. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2106. uint8_t sc, m;
  2107. for (int j = 0; j < QK_K/32; ++j) {
  2108. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2109. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2110. if (!d) continue;
  2111. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2112. for (int ii = 0; ii < 32; ++ii) {
  2113. int l = nearest_int((x[32*j + ii] + dm)/d);
  2114. l = MAX(0, MIN(15, l));
  2115. L[32*j + ii] = l;
  2116. }
  2117. }
  2118. uint8_t * q = y[i].qs;
  2119. for (int j = 0; j < QK_K; j += 64) {
  2120. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2121. q += 32;
  2122. }
  2123. x += QK_K;
  2124. }
  2125. #endif
  2126. }
  2127. size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2128. (void)hist;
  2129. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2130. if (!quant_weights) {
  2131. quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
  2132. }
  2133. else {
  2134. char * qrow = (char *)dst;
  2135. for (int row = 0; row < nrow; ++row) {
  2136. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2137. src += n_per_row;
  2138. qrow += row_size;
  2139. }
  2140. }
  2141. return nrow * row_size;
  2142. }
  2143. // ====================== 5-bit (de)-quantization
  2144. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  2145. assert(k % QK_K == 0);
  2146. const int nb = k / QK_K;
  2147. #if QK_K == 256
  2148. uint8_t L[QK_K];
  2149. float mins[QK_K/32];
  2150. float scales[QK_K/32];
  2151. float weights[32];
  2152. uint8_t Laux[32];
  2153. #else
  2154. int8_t L[QK_K];
  2155. float scales[QK_K/16];
  2156. #endif
  2157. for (int i = 0; i < nb; i++) {
  2158. #if QK_K == 256
  2159. float max_scale = 0; // as we are deducting the min, scales are always positive
  2160. float max_min = 0;
  2161. for (int j = 0; j < QK_K/32; ++j) {
  2162. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2163. float sum_x2 = 0;
  2164. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2165. float av_x = sqrtf(sum_x2/32);
  2166. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2167. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2168. float scale = scales[j];
  2169. if (scale > max_scale) {
  2170. max_scale = scale;
  2171. }
  2172. float min = mins[j];
  2173. if (min > max_min) {
  2174. max_min = min;
  2175. }
  2176. }
  2177. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2178. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2179. for (int j = 0; j < QK_K/32; ++j) {
  2180. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2181. uint8_t lm = nearest_int(inv_min*mins[j]);
  2182. ls = MIN(63, ls);
  2183. lm = MIN(63, lm);
  2184. if (j < 4) {
  2185. y[i].scales[j] = ls;
  2186. y[i].scales[j+4] = lm;
  2187. } else {
  2188. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2189. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2190. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2191. }
  2192. }
  2193. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2194. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2195. uint8_t sc, m;
  2196. for (int j = 0; j < QK_K/32; ++j) {
  2197. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2198. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2199. if (!d) continue;
  2200. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2201. for (int ii = 0; ii < 32; ++ii) {
  2202. int l = nearest_int((x[32*j + ii] + dm)/d);
  2203. l = MAX(0, MIN(31, l));
  2204. L[32*j + ii] = l;
  2205. }
  2206. }
  2207. uint8_t * restrict qh = y[i].qh;
  2208. uint8_t * restrict ql = y[i].qs;
  2209. memset(qh, 0, QK_K/8);
  2210. uint8_t m1 = 1, m2 = 2;
  2211. for (int n = 0; n < QK_K; n += 64) {
  2212. for (int j = 0; j < 32; ++j) {
  2213. int l1 = L[n + j];
  2214. if (l1 > 15) {
  2215. l1 -= 16; qh[j] |= m1;
  2216. }
  2217. int l2 = L[n + j + 32];
  2218. if (l2 > 15) {
  2219. l2 -= 16; qh[j] |= m2;
  2220. }
  2221. ql[j] = l1 | (l2 << 4);
  2222. }
  2223. m1 <<= 2; m2 <<= 2;
  2224. ql += 32;
  2225. }
  2226. #else
  2227. float max_scale = 0, amax = 0;
  2228. for (int j = 0; j < QK_K/16; ++j) {
  2229. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2230. float abs_scale = fabsf(scales[j]);
  2231. if (abs_scale > amax) {
  2232. amax = abs_scale;
  2233. max_scale = scales[j];
  2234. }
  2235. }
  2236. float iscale = -128.f/max_scale;
  2237. for (int j = 0; j < QK_K/16; ++j) {
  2238. int l = nearest_int(iscale*scales[j]);
  2239. y[i].scales[j] = MAX(-128, MIN(127, l));
  2240. }
  2241. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2242. for (int j = 0; j < QK_K/16; ++j) {
  2243. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2244. if (!d) continue;
  2245. for (int ii = 0; ii < 16; ++ii) {
  2246. int l = nearest_int(x[16*j + ii]/d);
  2247. l = MAX(-16, MIN(15, l));
  2248. L[16*j + ii] = l + 16;
  2249. }
  2250. }
  2251. uint8_t * restrict qh = y[i].qh;
  2252. uint8_t * restrict ql = y[i].qs;
  2253. memset(qh, 0, QK_K/8);
  2254. for (int j = 0; j < 32; ++j) {
  2255. int jm = j%8;
  2256. int is = j/8;
  2257. int l1 = L[j];
  2258. if (l1 > 15) {
  2259. l1 -= 16; qh[jm] |= (1 << is);
  2260. }
  2261. int l2 = L[j + 32];
  2262. if (l2 > 15) {
  2263. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2264. }
  2265. ql[j] = l1 | (l2 << 4);
  2266. }
  2267. #endif
  2268. x += QK_K;
  2269. }
  2270. }
  2271. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  2272. assert(k % QK_K == 0);
  2273. const int nb = k / QK_K;
  2274. for (int i = 0; i < nb; i++) {
  2275. const uint8_t * ql = x[i].qs;
  2276. const uint8_t * qh = x[i].qh;
  2277. #if QK_K == 256
  2278. const float d = GGML_FP16_TO_FP32(x[i].d);
  2279. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2280. int is = 0;
  2281. uint8_t sc, m;
  2282. uint8_t u1 = 1, u2 = 2;
  2283. for (int j = 0; j < QK_K; j += 64) {
  2284. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2285. const float d1 = d * sc; const float m1 = min * m;
  2286. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2287. const float d2 = d * sc; const float m2 = min * m;
  2288. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2289. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2290. ql += 32; is += 2;
  2291. u1 <<= 2; u2 <<= 2;
  2292. }
  2293. #else
  2294. float d = GGML_FP16_TO_FP32(x[i].d);
  2295. const int8_t * restrict s = x[i].scales;
  2296. for (int l = 0; l < 8; ++l) {
  2297. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2298. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2299. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2300. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2301. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2302. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2303. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2304. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2305. }
  2306. y += QK_K;
  2307. #endif
  2308. }
  2309. }
  2310. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  2311. assert(k % QK_K == 0);
  2312. block_q5_K * restrict y = vy;
  2313. quantize_row_q5_K_reference(x, y, k);
  2314. }
  2315. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2316. assert(k % QK_K == 0);
  2317. (void)hist; // TODO: collect histograms
  2318. for (int j = 0; j < n; j += k) {
  2319. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  2320. quantize_row_q5_K_reference(src + j, y, k);
  2321. }
  2322. return (n/QK_K*sizeof(block_q5_K));
  2323. }
  2324. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
  2325. #if QK_K != 256
  2326. (void)quant_weights;
  2327. quantize_row_q5_K_reference(x, y, n_per_row);
  2328. #else
  2329. assert(n_per_row % QK_K == 0);
  2330. const int nb = n_per_row / QK_K;
  2331. uint8_t L[QK_K];
  2332. uint8_t Laux[32];
  2333. uint8_t Ls[QK_K/32];
  2334. uint8_t Lm[QK_K/32];
  2335. float mins[QK_K/32];
  2336. float scales[QK_K/32];
  2337. float sw[QK_K/32];
  2338. float weights[32];
  2339. for (int i = 0; i < nb; i++) {
  2340. float sum_x2 = 0;
  2341. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2342. float sigma2 = 2*sum_x2/QK_K;
  2343. float av_x = sqrtf(sigma2);
  2344. for (int j = 0; j < QK_K/32; ++j) {
  2345. if (quant_weights) {
  2346. const float * qw = quant_weights + QK_K*i + 32*j;
  2347. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2348. } else {
  2349. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2350. }
  2351. float sumw = 0;
  2352. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2353. sw[j] = sumw;
  2354. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2355. }
  2356. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2357. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2358. for (int j = 0; j < QK_K/32; ++j) {
  2359. uint8_t ls = Ls[j];
  2360. uint8_t lm = Lm[j];
  2361. ls = MIN(63, ls);
  2362. lm = MIN(63, lm);
  2363. if (j < 4) {
  2364. y[i].scales[j] = ls;
  2365. y[i].scales[j+4] = lm;
  2366. } else {
  2367. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2368. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2369. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2370. }
  2371. }
  2372. y[i].d = GGML_FP32_TO_FP16(d_block);
  2373. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2374. uint8_t sc, m;
  2375. for (int j = 0; j < QK_K/32; ++j) {
  2376. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2377. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2378. if (!d) continue;
  2379. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2380. for (int ii = 0; ii < 32; ++ii) {
  2381. int l = nearest_int((x[32*j + ii] + dm)/d);
  2382. l = MAX(0, MIN(31, l));
  2383. L[32*j + ii] = l;
  2384. }
  2385. }
  2386. uint8_t * restrict qh = y[i].qh;
  2387. uint8_t * restrict ql = y[i].qs;
  2388. memset(qh, 0, QK_K/8);
  2389. uint8_t m1 = 1, m2 = 2;
  2390. for (int n = 0; n < QK_K; n += 64) {
  2391. for (int j = 0; j < 32; ++j) {
  2392. int l1 = L[n + j];
  2393. if (l1 > 15) {
  2394. l1 -= 16; qh[j] |= m1;
  2395. }
  2396. int l2 = L[n + j + 32];
  2397. if (l2 > 15) {
  2398. l2 -= 16; qh[j] |= m2;
  2399. }
  2400. ql[j] = l1 | (l2 << 4);
  2401. }
  2402. m1 <<= 2; m2 <<= 2;
  2403. ql += 32;
  2404. }
  2405. x += QK_K;
  2406. }
  2407. #endif
  2408. }
  2409. size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2410. (void)hist;
  2411. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2412. if (!quant_weights) {
  2413. quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
  2414. }
  2415. else {
  2416. char * qrow = (char *)dst;
  2417. for (int row = 0; row < nrow; ++row) {
  2418. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2419. src += n_per_row;
  2420. qrow += row_size;
  2421. }
  2422. }
  2423. return nrow * row_size;
  2424. }
  2425. // ====================== 6-bit (de)-quantization
  2426. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  2427. assert(k % QK_K == 0);
  2428. const int nb = k / QK_K;
  2429. int8_t L[QK_K];
  2430. float scales[QK_K/16];
  2431. for (int i = 0; i < nb; i++) {
  2432. float max_scale = 0;
  2433. float max_abs_scale = 0;
  2434. for (int ib = 0; ib < QK_K/16; ++ib) {
  2435. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2436. scales[ib] = scale;
  2437. const float abs_scale = fabsf(scale);
  2438. if (abs_scale > max_abs_scale) {
  2439. max_abs_scale = abs_scale;
  2440. max_scale = scale;
  2441. }
  2442. }
  2443. if (!max_abs_scale) {
  2444. memset(&y[i], 0, sizeof(block_q6_K));
  2445. y[i].d = GGML_FP32_TO_FP16(0.f);
  2446. x += QK_K;
  2447. continue;
  2448. }
  2449. float iscale = -128.f/max_scale;
  2450. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2451. for (int ib = 0; ib < QK_K/16; ++ib) {
  2452. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2453. }
  2454. for (int j = 0; j < QK_K/16; ++j) {
  2455. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2456. if (!d) {
  2457. continue;
  2458. }
  2459. for (int ii = 0; ii < 16; ++ii) {
  2460. int l = nearest_int(x[16*j + ii]/d);
  2461. l = MAX(-32, MIN(31, l));
  2462. L[16*j + ii] = l + 32;
  2463. }
  2464. }
  2465. uint8_t * restrict ql = y[i].ql;
  2466. uint8_t * restrict qh = y[i].qh;
  2467. #if QK_K == 256
  2468. for (int j = 0; j < QK_K; j += 128) {
  2469. for (int l = 0; l < 32; ++l) {
  2470. const uint8_t q1 = L[j + l + 0] & 0xF;
  2471. const uint8_t q2 = L[j + l + 32] & 0xF;
  2472. const uint8_t q3 = L[j + l + 64] & 0xF;
  2473. const uint8_t q4 = L[j + l + 96] & 0xF;
  2474. ql[l+ 0] = q1 | (q3 << 4);
  2475. ql[l+32] = q2 | (q4 << 4);
  2476. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2477. }
  2478. ql += 64;
  2479. qh += 32;
  2480. }
  2481. #else
  2482. for (int l = 0; l < 32; ++l) {
  2483. const uint8_t q1 = L[l + 0] & 0xF;
  2484. const uint8_t q2 = L[l + 32] & 0xF;
  2485. ql[l] = q1 | (q2 << 4);
  2486. }
  2487. for (int l = 0; l < 16; ++l) {
  2488. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2489. }
  2490. #endif
  2491. x += QK_K;
  2492. }
  2493. }
  2494. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  2495. assert(k % QK_K == 0);
  2496. const int nb = k / QK_K;
  2497. for (int i = 0; i < nb; i++) {
  2498. const float d = GGML_FP16_TO_FP32(x[i].d);
  2499. const uint8_t * restrict ql = x[i].ql;
  2500. const uint8_t * restrict qh = x[i].qh;
  2501. const int8_t * restrict sc = x[i].scales;
  2502. #if QK_K == 256
  2503. for (int n = 0; n < QK_K; n += 128) {
  2504. for (int l = 0; l < 32; ++l) {
  2505. int is = l/16;
  2506. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2507. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2508. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2509. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2510. y[l + 0] = d * sc[is + 0] * q1;
  2511. y[l + 32] = d * sc[is + 2] * q2;
  2512. y[l + 64] = d * sc[is + 4] * q3;
  2513. y[l + 96] = d * sc[is + 6] * q4;
  2514. }
  2515. y += 128;
  2516. ql += 64;
  2517. qh += 32;
  2518. sc += 8;
  2519. }
  2520. #else
  2521. for (int l = 0; l < 16; ++l) {
  2522. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2523. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2524. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2525. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2526. y[l+ 0] = d * sc[0] * q1;
  2527. y[l+16] = d * sc[1] * q2;
  2528. y[l+32] = d * sc[2] * q3;
  2529. y[l+48] = d * sc[3] * q4;
  2530. }
  2531. y += 64;
  2532. #endif
  2533. }
  2534. }
  2535. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  2536. assert(k % QK_K == 0);
  2537. block_q6_K * restrict y = vy;
  2538. quantize_row_q6_K_reference(x, y, k);
  2539. }
  2540. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  2541. assert(k % QK_K == 0);
  2542. (void)hist; // TODO: collect histograms
  2543. for (int j = 0; j < n; j += k) {
  2544. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  2545. quantize_row_q6_K_reference(src + j, y, k);
  2546. }
  2547. return (n/QK_K*sizeof(block_q6_K));
  2548. }
  2549. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
  2550. #if QK_K != 256
  2551. (void)quant_weights;
  2552. quantize_row_q6_K_reference(x, y, n_per_row);
  2553. #else
  2554. assert(n_per_row % QK_K == 0);
  2555. const int nb = n_per_row / QK_K;
  2556. int8_t L[QK_K];
  2557. float scales[QK_K/16];
  2558. //float weights[16];
  2559. for (int i = 0; i < nb; i++) {
  2560. //float sum_x2 = 0;
  2561. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2562. //float sigma2 = sum_x2/QK_K;
  2563. float max_scale = 0;
  2564. float max_abs_scale = 0;
  2565. for (int ib = 0; ib < QK_K/16; ++ib) {
  2566. float scale;
  2567. if (quant_weights) {
  2568. const float * qw = quant_weights + QK_K*i + 16*ib;
  2569. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2570. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2571. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2572. } else {
  2573. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2574. }
  2575. scales[ib] = scale;
  2576. const float abs_scale = fabsf(scale);
  2577. if (abs_scale > max_abs_scale) {
  2578. max_abs_scale = abs_scale;
  2579. max_scale = scale;
  2580. }
  2581. }
  2582. if (!max_abs_scale) {
  2583. memset(&y[i], 0, sizeof(block_q6_K));
  2584. y[i].d = GGML_FP32_TO_FP16(0.f);
  2585. x += QK_K;
  2586. continue;
  2587. }
  2588. float iscale = -128.f/max_scale;
  2589. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2590. for (int ib = 0; ib < QK_K/16; ++ib) {
  2591. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2592. }
  2593. for (int j = 0; j < QK_K/16; ++j) {
  2594. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2595. if (!d) {
  2596. continue;
  2597. }
  2598. for (int ii = 0; ii < 16; ++ii) {
  2599. int l = nearest_int(x[16*j + ii]/d);
  2600. l = MAX(-32, MIN(31, l));
  2601. L[16*j + ii] = l + 32;
  2602. }
  2603. }
  2604. uint8_t * restrict ql = y[i].ql;
  2605. uint8_t * restrict qh = y[i].qh;
  2606. for (int j = 0; j < QK_K; j += 128) {
  2607. for (int l = 0; l < 32; ++l) {
  2608. const uint8_t q1 = L[j + l + 0] & 0xF;
  2609. const uint8_t q2 = L[j + l + 32] & 0xF;
  2610. const uint8_t q3 = L[j + l + 64] & 0xF;
  2611. const uint8_t q4 = L[j + l + 96] & 0xF;
  2612. ql[l+ 0] = q1 | (q3 << 4);
  2613. ql[l+32] = q2 | (q4 << 4);
  2614. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2615. }
  2616. ql += 64;
  2617. qh += 32;
  2618. }
  2619. x += QK_K;
  2620. }
  2621. #endif
  2622. }
  2623. size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2624. (void)hist;
  2625. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2626. if (!quant_weights) {
  2627. quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
  2628. }
  2629. else {
  2630. char * qrow = (char *)dst;
  2631. for (int row = 0; row < nrow; ++row) {
  2632. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2633. src += n_per_row;
  2634. qrow += row_size;
  2635. }
  2636. }
  2637. return nrow * row_size;
  2638. }
  2639. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
  2640. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2641. if (!quant_weights) {
  2642. quantize_row_q4_0_reference(x, y, n_per_row);
  2643. return;
  2644. }
  2645. float weight[QK4_0];
  2646. int8_t L[QK4_0];
  2647. float sum_x2 = 0;
  2648. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2649. float sigma2 = sum_x2/n_per_row;
  2650. const int nb = n_per_row/QK4_0;
  2651. for (int ib = 0; ib < nb; ++ib) {
  2652. const float * xb = x + QK4_0 * ib;
  2653. const float * qw = quant_weights + QK4_0 * ib;
  2654. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2655. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2656. y[ib].d = GGML_FP32_TO_FP16(d);
  2657. for (int j = 0; j < 16; ++j) {
  2658. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2659. }
  2660. }
  2661. }
  2662. size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2663. if (!quant_weights) {
  2664. return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2665. }
  2666. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2667. char * qrow = (char *)dst;
  2668. for (int row = 0; row < nrow; ++row) {
  2669. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2670. src += n_per_row;
  2671. qrow += row_size;
  2672. }
  2673. return nrow * row_size;
  2674. }
  2675. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
  2676. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2677. if (!quant_weights) {
  2678. quantize_row_q4_1_reference(x, y, n_per_row);
  2679. return;
  2680. }
  2681. float weight[QK4_1];
  2682. uint8_t L[QK4_1], Laux[QK4_1];
  2683. float sum_x2 = 0;
  2684. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2685. float sigma2 = sum_x2/n_per_row;
  2686. const int nb = n_per_row/QK4_1;
  2687. for (int ib = 0; ib < nb; ++ib) {
  2688. const float * xb = x + QK4_1 * ib;
  2689. const float * qw = quant_weights + QK4_1 * ib;
  2690. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2691. float min;
  2692. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2693. y[ib].d = GGML_FP32_TO_FP16(d);
  2694. y[ib].m = GGML_FP32_TO_FP16(-min);
  2695. for (int j = 0; j < 16; ++j) {
  2696. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2697. }
  2698. }
  2699. }
  2700. size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2701. if (!quant_weights) {
  2702. return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2703. }
  2704. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2705. char * qrow = (char *)dst;
  2706. for (int row = 0; row < nrow; ++row) {
  2707. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2708. src += n_per_row;
  2709. qrow += row_size;
  2710. }
  2711. return nrow * row_size;
  2712. }
  2713. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
  2714. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2715. if (!quant_weights) {
  2716. quantize_row_q5_0_reference(x, y, n_per_row);
  2717. return;
  2718. }
  2719. float weight[QK5_0];
  2720. int8_t L[QK5_0];
  2721. float sum_x2 = 0;
  2722. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2723. float sigma2 = sum_x2/n_per_row;
  2724. const int nb = n_per_row/QK5_0;
  2725. for (int ib = 0; ib < nb; ++ib) {
  2726. const float * xb = x + QK5_0 * ib;
  2727. const float * qw = quant_weights + QK5_0 * ib;
  2728. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2729. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2730. y[ib].d = GGML_FP32_TO_FP16(d);
  2731. uint32_t qh = 0;
  2732. for (int j = 0; j < 16; ++j) {
  2733. const uint8_t xi0 = L[j];
  2734. const uint8_t xi1 = L[j+16];
  2735. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2736. // get the 5-th bit and store it in qh at the right position
  2737. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2738. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2739. }
  2740. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2741. }
  2742. }
  2743. size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2744. if (!quant_weights) {
  2745. return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2746. }
  2747. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2748. char * qrow = (char *)dst;
  2749. for (int row = 0; row < nrow; ++row) {
  2750. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2751. src += n_per_row;
  2752. qrow += row_size;
  2753. }
  2754. return nrow * row_size;
  2755. }
  2756. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
  2757. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2758. if (!quant_weights) {
  2759. quantize_row_q5_1_reference(x, y, n_per_row);
  2760. return;
  2761. }
  2762. float weight[QK5_1];
  2763. uint8_t L[QK5_1], Laux[QK5_1];
  2764. float sum_x2 = 0;
  2765. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2766. float sigma2 = sum_x2/n_per_row;
  2767. const int nb = n_per_row/QK5_1;
  2768. for (int ib = 0; ib < nb; ++ib) {
  2769. const float * xb = x + QK5_1 * ib;
  2770. const float * qw = quant_weights + QK5_1 * ib;
  2771. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2772. float min;
  2773. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2774. y[ib].d = GGML_FP32_TO_FP16(d);
  2775. y[ib].m = GGML_FP32_TO_FP16(-min);
  2776. uint32_t qh = 0;
  2777. for (int j = 0; j < 16; ++j) {
  2778. const uint8_t xi0 = L[j];
  2779. const uint8_t xi1 = L[j+16];
  2780. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2781. // get the 5-th bit and store it in qh at the right position
  2782. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2783. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2784. }
  2785. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2786. }
  2787. }
  2788. size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2789. if (!quant_weights) {
  2790. return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2791. }
  2792. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2793. char * qrow = (char *)dst;
  2794. for (int row = 0; row < nrow; ++row) {
  2795. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2796. src += n_per_row;
  2797. qrow += row_size;
  2798. }
  2799. return nrow * row_size;
  2800. }
  2801. // ====================== "True" 2-bit (de)-quantization
  2802. static const uint64_t iq2xxs_grid[256] = {
  2803. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2804. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
  2805. 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
  2806. 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
  2807. 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
  2808. 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
  2809. 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
  2810. 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
  2811. 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
  2812. 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
  2813. 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
  2814. 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
  2815. 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
  2816. 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
  2817. 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
  2818. 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
  2819. 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
  2820. 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
  2821. 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
  2822. 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
  2823. 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
  2824. 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
  2825. 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
  2826. 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
  2827. 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
  2828. 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
  2829. 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
  2830. 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
  2831. 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
  2832. 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
  2833. 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
  2834. 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
  2835. 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
  2836. 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
  2837. 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
  2838. 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
  2839. 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
  2840. 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
  2841. 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
  2842. 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
  2843. 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
  2844. 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
  2845. 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
  2846. 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
  2847. 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
  2848. 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
  2849. 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
  2850. 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
  2851. 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
  2852. 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
  2853. 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
  2854. 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
  2855. 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
  2856. 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
  2857. 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
  2858. 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
  2859. 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
  2860. 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
  2861. 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
  2862. 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
  2863. 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
  2864. 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
  2865. 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
  2866. 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
  2867. };
  2868. static const uint64_t iq2xs_grid[512] = {
  2869. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2870. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
  2871. 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
  2872. 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
  2873. 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
  2874. 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
  2875. 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
  2876. 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
  2877. 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
  2878. 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
  2879. 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
  2880. 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
  2881. 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
  2882. 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
  2883. 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
  2884. 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
  2885. 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
  2886. 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
  2887. 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
  2888. 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
  2889. 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
  2890. 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
  2891. 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
  2892. 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
  2893. 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
  2894. 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
  2895. 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
  2896. 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
  2897. 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
  2898. 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
  2899. 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
  2900. 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
  2901. 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
  2902. 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
  2903. 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
  2904. 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
  2905. 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
  2906. 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
  2907. 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
  2908. 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
  2909. 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
  2910. 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
  2911. 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
  2912. 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
  2913. 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
  2914. 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
  2915. 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
  2916. 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
  2917. 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
  2918. 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
  2919. 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
  2920. 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
  2921. 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
  2922. 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
  2923. 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
  2924. 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
  2925. 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
  2926. 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
  2927. 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
  2928. 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
  2929. 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
  2930. 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
  2931. 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
  2932. 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
  2933. 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
  2934. 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
  2935. 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
  2936. 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
  2937. 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
  2938. 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
  2939. 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
  2940. 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
  2941. 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
  2942. 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
  2943. 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
  2944. 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
  2945. 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
  2946. 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
  2947. 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
  2948. 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
  2949. 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
  2950. 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
  2951. 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
  2952. 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
  2953. 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
  2954. 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
  2955. 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
  2956. 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
  2957. 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
  2958. 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
  2959. 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
  2960. 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
  2961. 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
  2962. 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
  2963. 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
  2964. 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
  2965. 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
  2966. 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
  2967. 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
  2968. 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
  2969. 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
  2970. 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
  2971. 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
  2972. 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
  2973. 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
  2974. 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
  2975. 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
  2976. 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
  2977. 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
  2978. 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
  2979. 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
  2980. 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
  2981. 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
  2982. 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
  2983. 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
  2984. 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
  2985. 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
  2986. 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
  2987. 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
  2988. 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
  2989. 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
  2990. 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
  2991. 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
  2992. 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
  2993. 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
  2994. 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
  2995. 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
  2996. 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
  2997. };
  2998. static const uint64_t iq2s_grid[1024] = {
  2999. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  3000. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
  3001. 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
  3002. 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
  3003. 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
  3004. 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b,
  3005. 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919,
  3006. 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808,
  3007. 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908,
  3008. 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b,
  3009. 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908,
  3010. 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08,
  3011. 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19,
  3012. 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819,
  3013. 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919,
  3014. 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b,
  3015. 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908,
  3016. 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908,
  3017. 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919,
  3018. 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908,
  3019. 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b,
  3020. 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919,
  3021. 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b,
  3022. 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919,
  3023. 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908,
  3024. 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b,
  3025. 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b,
  3026. 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08,
  3027. 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b,
  3028. 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819,
  3029. 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808,
  3030. 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908,
  3031. 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b,
  3032. 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908,
  3033. 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08,
  3034. 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819,
  3035. 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808,
  3036. 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08,
  3037. 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819,
  3038. 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b,
  3039. 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908,
  3040. 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919,
  3041. 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b,
  3042. 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919,
  3043. 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808,
  3044. 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819,
  3045. 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919,
  3046. 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919,
  3047. 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808,
  3048. 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819,
  3049. 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b,
  3050. 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908,
  3051. 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b,
  3052. 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908,
  3053. 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919,
  3054. 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b,
  3055. 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919,
  3056. 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b,
  3057. 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819,
  3058. 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919,
  3059. 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908,
  3060. 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b,
  3061. 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908,
  3062. 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b,
  3063. 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908,
  3064. 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08,
  3065. 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908,
  3066. 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819,
  3067. 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819,
  3068. 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808,
  3069. 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08,
  3070. 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19,
  3071. 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819,
  3072. 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808,
  3073. 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819,
  3074. 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919,
  3075. 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808,
  3076. 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19,
  3077. 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08,
  3078. 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b,
  3079. 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908,
  3080. 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808,
  3081. 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819,
  3082. 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908,
  3083. 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819,
  3084. 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808,
  3085. 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808,
  3086. 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819,
  3087. 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908,
  3088. 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08,
  3089. 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819,
  3090. 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b,
  3091. 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b,
  3092. 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08,
  3093. 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19,
  3094. 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819,
  3095. 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919,
  3096. 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908,
  3097. 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808,
  3098. 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808,
  3099. 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908,
  3100. 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808,
  3101. 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08,
  3102. 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08,
  3103. 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908,
  3104. 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919,
  3105. 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808,
  3106. 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819,
  3107. 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908,
  3108. 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08,
  3109. 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819,
  3110. 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808,
  3111. 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808,
  3112. 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819,
  3113. 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808,
  3114. 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908,
  3115. 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b,
  3116. 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819,
  3117. 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808,
  3118. 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b,
  3119. 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808,
  3120. 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b,
  3121. 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19,
  3122. 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819,
  3123. 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08,
  3124. 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b,
  3125. 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908,
  3126. 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b,
  3127. 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b,
  3128. 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919,
  3129. 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808,
  3130. 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819,
  3131. 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908,
  3132. 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08,
  3133. 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08,
  3134. 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819,
  3135. 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919,
  3136. 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908,
  3137. 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b,
  3138. 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908,
  3139. 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b,
  3140. 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908,
  3141. 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08,
  3142. 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819,
  3143. 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808,
  3144. 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819,
  3145. 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919,
  3146. 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808,
  3147. 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808,
  3148. 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08,
  3149. 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819,
  3150. 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919,
  3151. 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808,
  3152. 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819,
  3153. 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919,
  3154. 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808,
  3155. 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b,
  3156. 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908,
  3157. 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808,
  3158. 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908,
  3159. 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b,
  3160. 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908,
  3161. 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b,
  3162. 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908,
  3163. 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b,
  3164. 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908,
  3165. 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08,
  3166. 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908,
  3167. 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b,
  3168. 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908,
  3169. 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08,
  3170. 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819,
  3171. 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919,
  3172. 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808,
  3173. 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19,
  3174. 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b,
  3175. 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919,
  3176. 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808,
  3177. 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819,
  3178. 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908,
  3179. 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919,
  3180. 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808,
  3181. 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808,
  3182. 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b,
  3183. 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919,
  3184. 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808,
  3185. 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b,
  3186. 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808,
  3187. 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919,
  3188. 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b,
  3189. 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08,
  3190. 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919,
  3191. 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808,
  3192. 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b,
  3193. 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908,
  3194. 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808,
  3195. 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808,
  3196. 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808,
  3197. 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908,
  3198. 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808,
  3199. 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808,
  3200. 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b,
  3201. 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908,
  3202. 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808,
  3203. 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808,
  3204. 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819,
  3205. 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919,
  3206. 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b,
  3207. 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808,
  3208. 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819,
  3209. 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b,
  3210. 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908,
  3211. 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08,
  3212. 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908,
  3213. 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919,
  3214. 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819,
  3215. 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908,
  3216. 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b,
  3217. 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808,
  3218. 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819,
  3219. 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908,
  3220. 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919,
  3221. 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808,
  3222. 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808,
  3223. 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808,
  3224. 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919,
  3225. 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908,
  3226. 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908,
  3227. 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08,
  3228. 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819,
  3229. 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b,
  3230. 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808,
  3231. 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819,
  3232. 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908,
  3233. 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819,
  3234. 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808,
  3235. 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808,
  3236. 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b,
  3237. 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908,
  3238. 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808,
  3239. 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908,
  3240. 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819,
  3241. 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819,
  3242. 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808,
  3243. 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b,
  3244. 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b,
  3245. 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819,
  3246. 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b,
  3247. 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b,
  3248. 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b,
  3249. 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819,
  3250. 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19,
  3251. 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819,
  3252. 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908,
  3253. 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808,
  3254. 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b,
  3255. };
  3256. static const uint32_t iq3xxs_grid[256] = {
  3257. 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
  3258. 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
  3259. 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
  3260. 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
  3261. 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
  3262. 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
  3263. 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
  3264. 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
  3265. 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
  3266. 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
  3267. 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
  3268. 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
  3269. 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
  3270. 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
  3271. 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
  3272. 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
  3273. 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
  3274. 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
  3275. 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
  3276. 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
  3277. 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
  3278. 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
  3279. 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
  3280. 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
  3281. 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
  3282. 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
  3283. 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
  3284. 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
  3285. 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
  3286. 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
  3287. 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
  3288. 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
  3289. };
  3290. static const uint32_t iq3xs_grid[512] = {
  3291. 0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
  3292. 0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
  3293. 0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
  3294. 0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
  3295. 0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
  3296. 0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
  3297. 0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
  3298. 0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
  3299. 0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
  3300. 0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
  3301. 0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
  3302. 0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
  3303. 0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
  3304. 0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
  3305. 0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
  3306. 0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
  3307. 0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
  3308. 0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
  3309. 0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
  3310. 0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
  3311. 0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
  3312. 0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
  3313. 0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
  3314. 0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
  3315. 0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
  3316. 0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
  3317. 0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
  3318. 0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
  3319. 0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
  3320. 0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
  3321. 0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
  3322. 0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
  3323. 0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
  3324. 0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
  3325. 0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
  3326. 0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
  3327. 0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
  3328. 0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
  3329. 0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
  3330. 0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
  3331. 0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
  3332. 0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
  3333. 0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
  3334. 0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
  3335. 0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
  3336. 0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
  3337. 0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
  3338. 0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
  3339. 0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
  3340. 0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
  3341. 0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
  3342. 0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
  3343. 0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
  3344. 0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
  3345. 0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
  3346. 0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
  3347. 0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
  3348. 0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
  3349. 0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
  3350. 0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
  3351. 0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
  3352. 0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
  3353. 0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
  3354. 0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
  3355. };
  3356. #define NGRID_IQ2XXS 512
  3357. static const uint64_t iq1s_grid[NGRID_IQ2XXS] = {
  3358. 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
  3359. 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
  3360. 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
  3361. 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
  3362. 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
  3363. 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
  3364. 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
  3365. 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
  3366. 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
  3367. 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
  3368. 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
  3369. 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
  3370. 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
  3371. 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
  3372. 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
  3373. 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
  3374. 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
  3375. 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
  3376. 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
  3377. 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
  3378. 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
  3379. 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
  3380. 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
  3381. 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
  3382. 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
  3383. 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
  3384. 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
  3385. 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
  3386. 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
  3387. 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
  3388. 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
  3389. 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
  3390. 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
  3391. 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
  3392. 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
  3393. 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
  3394. 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
  3395. 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
  3396. 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
  3397. 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
  3398. 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
  3399. 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
  3400. 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
  3401. 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
  3402. 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
  3403. 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
  3404. 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
  3405. 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
  3406. 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
  3407. 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
  3408. 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
  3409. 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
  3410. 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
  3411. 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
  3412. 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
  3413. 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
  3414. 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
  3415. 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
  3416. 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
  3417. 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
  3418. 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
  3419. 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
  3420. 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
  3421. 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
  3422. 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
  3423. 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
  3424. 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
  3425. 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
  3426. 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
  3427. 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
  3428. 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
  3429. 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
  3430. 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
  3431. 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
  3432. 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
  3433. 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
  3434. 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
  3435. 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
  3436. 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
  3437. 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
  3438. 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
  3439. 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
  3440. 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
  3441. 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
  3442. 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
  3443. 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
  3444. 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
  3445. 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
  3446. 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
  3447. 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
  3448. 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
  3449. 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
  3450. 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
  3451. 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
  3452. 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
  3453. 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
  3454. 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
  3455. 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
  3456. 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
  3457. 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
  3458. 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
  3459. 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
  3460. 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
  3461. 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
  3462. 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
  3463. 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
  3464. 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
  3465. 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
  3466. 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
  3467. 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
  3468. 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
  3469. 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
  3470. 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
  3471. 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
  3472. 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
  3473. 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
  3474. 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
  3475. 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
  3476. 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
  3477. 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
  3478. 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
  3479. 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
  3480. 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
  3481. 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
  3482. 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
  3483. 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
  3484. 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
  3485. 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,
  3486. };
  3487. static const uint8_t ksigns_iq2xs[128] = {
  3488. 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
  3489. 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
  3490. 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
  3491. 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
  3492. 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
  3493. 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
  3494. 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
  3495. 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
  3496. };
  3497. static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
  3498. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
  3499. assert(k % QK_K == 0);
  3500. const int nb = k / QK_K;
  3501. uint32_t aux32[2];
  3502. const uint8_t * aux8 = (const uint8_t *)aux32;
  3503. for (int i = 0; i < nb; i++) {
  3504. const float d = GGML_FP16_TO_FP32(x[i].d);
  3505. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3506. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  3507. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  3508. for (int l = 0; l < 4; ++l) {
  3509. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  3510. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  3511. for (int j = 0; j < 8; ++j) {
  3512. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3513. }
  3514. y += 8;
  3515. }
  3516. }
  3517. }
  3518. }
  3519. // ====================== 2.3125 bpw (de)-quantization
  3520. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
  3521. assert(k % QK_K == 0);
  3522. const int nb = k / QK_K;
  3523. float db[2];
  3524. for (int i = 0; i < nb; i++) {
  3525. const float d = GGML_FP16_TO_FP32(x[i].d);
  3526. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3527. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3528. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3529. for (int l = 0; l < 4; ++l) {
  3530. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3531. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3532. for (int j = 0; j < 8; ++j) {
  3533. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3534. }
  3535. y += 8;
  3536. }
  3537. }
  3538. }
  3539. }
  3540. // ====================== 2.5625 bpw (de)-quantization
  3541. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int k) {
  3542. assert(k % QK_K == 0);
  3543. const int nb = k / QK_K;
  3544. float db[2];
  3545. for (int i = 0; i < nb; i++) {
  3546. const float d = GGML_FP16_TO_FP32(x[i].d);
  3547. const uint8_t * qs = x[i].qs;
  3548. const uint8_t * qh = x[i].qh;
  3549. const uint8_t * signs = qs + QK_K/8;
  3550. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3551. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3552. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3553. for (int l = 0; l < 4; ++l) {
  3554. const float dl = db[l/2];
  3555. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  3556. for (int j = 0; j < 8; ++j) {
  3557. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  3558. }
  3559. y += 8;
  3560. }
  3561. qs += 4;
  3562. signs += 4;
  3563. }
  3564. }
  3565. }
  3566. // ====================== 3.0625 bpw (de)-quantization
  3567. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
  3568. assert(k % QK_K == 0);
  3569. const int nb = k / QK_K;
  3570. uint32_t aux32;
  3571. for (int i = 0; i < nb; i++) {
  3572. const float d = GGML_FP16_TO_FP32(x[i].d);
  3573. const uint8_t * qs = x[i].qs;
  3574. const uint8_t * scales_and_signs = qs + QK_K/4;
  3575. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3576. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3577. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3578. for (int l = 0; l < 4; ++l) {
  3579. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3580. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3581. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3582. for (int j = 0; j < 4; ++j) {
  3583. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3584. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3585. }
  3586. y += 8;
  3587. }
  3588. qs += 8;
  3589. }
  3590. }
  3591. }
  3592. // ====================== 3.3125 bpw (de)-quantization
  3593. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) {
  3594. assert(k % QK_K == 0);
  3595. const int nb = k / QK_K;
  3596. for (int i = 0; i < nb; i++) {
  3597. const float d = GGML_FP16_TO_FP32(x[i].d);
  3598. const uint8_t * qs = x[i].qs;
  3599. const uint8_t * qh = x[i].qh;
  3600. const uint8_t * signs = x[i].signs;
  3601. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  3602. const float db1 = d * (0.5f + (x[i].scales[ib32/2] & 0xf)) * 0.5f;
  3603. const float db2 = d * (0.5f + (x[i].scales[ib32/2] >> 4)) * 0.5f;
  3604. for (int l = 0; l < 4; ++l) {
  3605. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  3606. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  3607. for (int j = 0; j < 4; ++j) {
  3608. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3609. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3610. }
  3611. y += 8;
  3612. }
  3613. qs += 8;
  3614. signs += 4;
  3615. for (int l = 0; l < 4; ++l) {
  3616. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  3617. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  3618. for (int j = 0; j < 4; ++j) {
  3619. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3620. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3621. }
  3622. y += 8;
  3623. }
  3624. qh += 2;
  3625. qs += 8;
  3626. signs += 4;
  3627. }
  3628. }
  3629. }
  3630. // ====================== 1.5625 bpw (de)-quantization
  3631. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
  3632. assert(k % QK_K == 0);
  3633. const int nb = k / QK_K;
  3634. float db[4];
  3635. uint16_t idx[4];
  3636. //const int8_t * grid[4];
  3637. for (int i = 0; i < nb; i++) {
  3638. const float d = GGML_FP16_TO_FP32(x[i].d);
  3639. const uint8_t * sc = x[i].scales;
  3640. const uint8_t * qs = x[i].qs;
  3641. for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
  3642. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  3643. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  3644. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  3645. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  3646. //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
  3647. //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
  3648. //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
  3649. //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
  3650. db[0] = d * (2*(sc[0] & 7) + 1);
  3651. db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
  3652. db[2] = d * (2*(sc[1] & 7) + 1);
  3653. db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
  3654. for (int l = 0; l < 4; ++l) {
  3655. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3656. for (int j = 0; j < 8; ++j) {
  3657. //y[j] = db[l] * grid[l][j];
  3658. y[j] = db[l] * grid[j];
  3659. }
  3660. y += 8;
  3661. }
  3662. qs += 4;
  3663. sc += 2;
  3664. }
  3665. }
  3666. }
  3667. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3668. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
  3669. assert(k % QK4_NL == 0);
  3670. const int nb = k / QK4_NL;
  3671. for (int i = 0; i < nb; i++) {
  3672. const uint8_t * qs = x[i].qs;
  3673. const float d = GGML_FP16_TO_FP32(x[i].d);
  3674. for (int j = 0; j < QK4_NL/2; ++j) {
  3675. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3676. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3677. }
  3678. y += QK4_NL;
  3679. qs += QK4_NL/2;
  3680. }
  3681. }
  3682. //===================================== Q8_K ==============================================
  3683. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  3684. assert(k % QK_K == 0);
  3685. const int nb = k / QK_K;
  3686. for (int i = 0; i < nb; i++) {
  3687. float max = 0;
  3688. float amax = 0;
  3689. for (int j = 0; j < QK_K; ++j) {
  3690. float ax = fabsf(x[j]);
  3691. if (ax > amax) {
  3692. amax = ax; max = x[j];
  3693. }
  3694. }
  3695. if (!amax) {
  3696. y[i].d = 0;
  3697. memset(y[i].qs, 0, QK_K);
  3698. x += QK_K;
  3699. continue;
  3700. }
  3701. //const float iscale = -128.f/max;
  3702. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3703. const float iscale = -127.f/max;
  3704. for (int j = 0; j < QK_K; ++j) {
  3705. int v = nearest_int(iscale*x[j]);
  3706. y[i].qs[j] = MIN(127, v);
  3707. }
  3708. for (int j = 0; j < QK_K/16; ++j) {
  3709. int sum = 0;
  3710. for (int ii = 0; ii < 16; ++ii) {
  3711. sum += y[i].qs[j*16 + ii];
  3712. }
  3713. y[i].bsums[j] = sum;
  3714. }
  3715. y[i].d = 1/iscale;
  3716. x += QK_K;
  3717. }
  3718. }
  3719. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  3720. assert(k % QK_K == 0);
  3721. const int nb = k / QK_K;
  3722. for (int i = 0; i < nb; i++) {
  3723. for (int j = 0; j < QK_K; ++j) {
  3724. *y++ = x[i].d * x[i].qs[j];
  3725. }
  3726. }
  3727. }
  3728. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  3729. quantize_row_q8_K_reference(x, y, k);
  3730. }
  3731. //===================================== Dot ptoducts =================================
  3732. //
  3733. // Helper functions
  3734. //
  3735. #if __AVX__ || __AVX2__ || __AVX512F__
  3736. // shuffles to pick the required scales in dot products
  3737. static inline __m256i get_scale_shuffle_q3k(int i) {
  3738. static const uint8_t k_shuffle[128] = {
  3739. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3740. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3741. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3742. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3743. };
  3744. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3745. }
  3746. static inline __m256i get_scale_shuffle_k4(int i) {
  3747. static const uint8_t k_shuffle[256] = {
  3748. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3749. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3750. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3751. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3752. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3753. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3754. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3755. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3756. };
  3757. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3758. }
  3759. static inline __m128i get_scale_shuffle(int i) {
  3760. static const uint8_t k_shuffle[128] = {
  3761. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3762. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3763. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3764. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3765. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3766. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3767. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3768. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3769. };
  3770. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3771. }
  3772. #endif
  3773. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3774. const int qk = QK8_0;
  3775. const int nb = n / qk;
  3776. assert(n % qk == 0);
  3777. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3778. assert((nrc == 2) || (nrc == 1));
  3779. #else
  3780. assert(nrc == 1);
  3781. #endif
  3782. UNUSED(nrc);
  3783. UNUSED(bx);
  3784. UNUSED(by);
  3785. UNUSED(bs);
  3786. const block_q4_0 * restrict x = vx;
  3787. const block_q8_0 * restrict y = vy;
  3788. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3789. if (nrc == 2) {
  3790. const block_q4_0 * restrict vx0 = vx;
  3791. const block_q4_0 * restrict vx1 = vx + bx;
  3792. const block_q8_0 * restrict vy0 = vy;
  3793. const block_q8_0 * restrict vy1 = vy + by;
  3794. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3795. for (int i = 0; i < nb; i++) {
  3796. const block_q4_0 * restrict b_x0 = &vx0[i];
  3797. const block_q4_0 * restrict b_x1 = &vx1[i];
  3798. const block_q8_0 * restrict b_y0 = &vy0[i];
  3799. const block_q8_0 * restrict b_y1 = &vy1[i];
  3800. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3801. const int8x16_t s8b = vdupq_n_s8(0x8);
  3802. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3803. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3804. // 4-bit -> 8-bit
  3805. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3806. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3807. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3808. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3809. // sub 8
  3810. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3811. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3812. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3813. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3814. // load y
  3815. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3816. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3817. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3818. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3819. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3820. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3821. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3822. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3823. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3824. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3825. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3826. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3827. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3828. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3829. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3830. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3831. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3832. l1, r1)), l2, r2)), l3, r3))), scale);
  3833. }
  3834. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3835. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3836. vst1_f32(s, vget_low_f32(sumv2));
  3837. vst1_f32(s + bs, vget_high_f32(sumv2));
  3838. return;
  3839. }
  3840. #endif
  3841. #if defined(__ARM_NEON)
  3842. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3843. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3844. assert(nb % 2 == 0); // TODO: handle odd nb
  3845. for (int i = 0; i < nb; i += 2) {
  3846. const block_q4_0 * restrict x0 = &x[i + 0];
  3847. const block_q4_0 * restrict x1 = &x[i + 1];
  3848. const block_q8_0 * restrict y0 = &y[i + 0];
  3849. const block_q8_0 * restrict y1 = &y[i + 1];
  3850. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3851. const int8x16_t s8b = vdupq_n_s8(0x8);
  3852. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3853. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3854. // 4-bit -> 8-bit
  3855. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3856. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3857. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3858. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3859. // sub 8
  3860. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3861. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3862. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3863. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3864. // load y
  3865. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3866. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3867. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3868. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3869. // dot product into int32x4_t
  3870. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3871. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3872. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3873. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3874. }
  3875. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3876. #elif defined(__AVX2__)
  3877. // Initialize accumulator with zeros
  3878. __m256 acc = _mm256_setzero_ps();
  3879. // Main loop
  3880. for (int i = 0; i < nb; ++i) {
  3881. /* Compute combined scale for the block */
  3882. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3883. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3884. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3885. const __m256i off = _mm256_set1_epi8( 8 );
  3886. qx = _mm256_sub_epi8( qx, off );
  3887. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3888. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3889. /* Multiply q with scale and accumulate */
  3890. acc = _mm256_fmadd_ps( d, q, acc );
  3891. }
  3892. *s = hsum_float_8(acc);
  3893. #elif defined(__AVX__)
  3894. // Initialize accumulator with zeros
  3895. __m256 acc = _mm256_setzero_ps();
  3896. // Main loop
  3897. for (int i = 0; i < nb; ++i) {
  3898. // Compute combined scale for the block
  3899. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3900. const __m128i lowMask = _mm_set1_epi8(0xF);
  3901. const __m128i off = _mm_set1_epi8(8);
  3902. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3903. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3904. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3905. bx_0 = _mm_sub_epi8(bx_0, off);
  3906. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3907. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3908. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3909. bx_0 = _mm_sub_epi8(bx_0, off);
  3910. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3911. // Convert int32_t to float
  3912. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3913. // Apply the scale, and accumulate
  3914. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3915. }
  3916. *s = hsum_float_8(acc);
  3917. #elif defined(__SSSE3__)
  3918. // set constants
  3919. const __m128i lowMask = _mm_set1_epi8(0xF);
  3920. const __m128i off = _mm_set1_epi8(8);
  3921. // Initialize accumulator with zeros
  3922. __m128 acc_0 = _mm_setzero_ps();
  3923. __m128 acc_1 = _mm_setzero_ps();
  3924. __m128 acc_2 = _mm_setzero_ps();
  3925. __m128 acc_3 = _mm_setzero_ps();
  3926. // First round without accumulation
  3927. {
  3928. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3929. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3930. // Compute combined scale for the block 0 and 1
  3931. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3932. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3933. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3934. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3935. bx_0 = _mm_sub_epi8(bx_0, off);
  3936. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3937. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3938. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3939. bx_1 = _mm_sub_epi8(bx_1, off);
  3940. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3941. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3942. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3943. // Compute combined scale for the block 2 and 3
  3944. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3945. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3946. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3947. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3948. bx_2 = _mm_sub_epi8(bx_2, off);
  3949. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3950. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3951. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3952. bx_3 = _mm_sub_epi8(bx_3, off);
  3953. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3954. // Convert int32_t to float
  3955. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3956. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3957. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3958. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3959. // Apply the scale
  3960. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3961. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3962. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3963. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3964. }
  3965. assert(nb % 2 == 0); // TODO: handle odd nb
  3966. // Main loop
  3967. for (int i = 2; i < nb; i+=2) {
  3968. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3969. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3970. // Compute combined scale for the block 0 and 1
  3971. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3972. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3973. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3974. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3975. bx_0 = _mm_sub_epi8(bx_0, off);
  3976. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3977. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3978. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3979. bx_1 = _mm_sub_epi8(bx_1, off);
  3980. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3981. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3982. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3983. // Compute combined scale for the block 2 and 3
  3984. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3985. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3986. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3987. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3988. bx_2 = _mm_sub_epi8(bx_2, off);
  3989. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3990. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3991. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3992. bx_3 = _mm_sub_epi8(bx_3, off);
  3993. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3994. // Convert int32_t to float
  3995. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3996. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3997. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3998. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3999. // Apply the scale
  4000. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  4001. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  4002. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  4003. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  4004. // Acummulate
  4005. acc_0 = _mm_add_ps(p0_d, acc_0);
  4006. acc_1 = _mm_add_ps(p1_d, acc_1);
  4007. acc_2 = _mm_add_ps(p2_d, acc_2);
  4008. acc_3 = _mm_add_ps(p3_d, acc_3);
  4009. }
  4010. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  4011. #elif defined(__riscv_v_intrinsic)
  4012. float sumf = 0.0;
  4013. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4014. for (int i = 0; i < nb; i++) {
  4015. // load elements
  4016. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4017. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4018. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4019. // mask and store lower part of x, and then upper part
  4020. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4021. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4022. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4023. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4024. // subtract offset
  4025. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  4026. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  4027. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4028. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4029. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4030. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4031. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4032. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4033. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  4034. }
  4035. *s = sumf;
  4036. #else
  4037. // scalar
  4038. float sumf = 0.0;
  4039. for (int i = 0; i < nb; i++) {
  4040. int sumi = 0;
  4041. for (int j = 0; j < qk/2; ++j) {
  4042. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  4043. const int v1 = (x[i].qs[j] >> 4) - 8;
  4044. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  4045. }
  4046. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  4047. }
  4048. *s = sumf;
  4049. #endif
  4050. }
  4051. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4052. const int qk = QK8_1;
  4053. const int nb = n / qk;
  4054. assert(n % qk == 0);
  4055. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4056. assert((nrc == 2) || (nrc == 1));
  4057. #else
  4058. assert(nrc == 1);
  4059. #endif
  4060. UNUSED(nrc);
  4061. UNUSED(bx);
  4062. UNUSED(by);
  4063. UNUSED(bs);
  4064. const block_q4_1 * restrict x = vx;
  4065. const block_q8_1 * restrict y = vy;
  4066. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4067. if (nrc == 2) {
  4068. const block_q4_1 * restrict vx0 = vx;
  4069. const block_q4_1 * restrict vx1 = vx + bx;
  4070. const block_q8_1 * restrict vy0 = vy;
  4071. const block_q8_1 * restrict vy1 = vy + by;
  4072. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4073. float32x4_t summs0 = vdupq_n_f32(0.0f);
  4074. for (int i = 0; i < nb; i++) {
  4075. const block_q4_1 * restrict b_x0 = &vx0[i];
  4076. const block_q4_1 * restrict b_x1 = &vx1[i];
  4077. const block_q8_1 * restrict b_y0 = &vy0[i];
  4078. const block_q8_1 * restrict b_y1 = &vy1[i];
  4079. float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
  4080. GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
  4081. GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
  4082. GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
  4083. summs0 += summs_t;
  4084. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4085. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  4086. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  4087. // 4-bit -> 8-bit
  4088. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4089. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4090. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4091. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4092. // load y
  4093. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4094. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4095. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4096. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4097. // mmla into int32x4_t
  4098. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4099. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4100. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4101. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4102. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4103. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4104. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4105. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4106. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4107. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4108. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4109. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4110. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4111. l1, r1)), l2, r2)), l3, r3))), scale);
  4112. }
  4113. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4114. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4115. sumv2 = sumv2 + summs0;
  4116. vst1_f32(s, vget_low_f32(sumv2));
  4117. vst1_f32(s + bs, vget_high_f32(sumv2));
  4118. return;
  4119. }
  4120. #endif
  4121. // TODO: add WASM SIMD
  4122. #if defined(__ARM_NEON)
  4123. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4124. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4125. float summs = 0;
  4126. assert(nb % 2 == 0); // TODO: handle odd nb
  4127. for (int i = 0; i < nb; i += 2) {
  4128. const block_q4_1 * restrict x0 = &x[i + 0];
  4129. const block_q4_1 * restrict x1 = &x[i + 1];
  4130. const block_q8_1 * restrict y0 = &y[i + 0];
  4131. const block_q8_1 * restrict y1 = &y[i + 1];
  4132. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  4133. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4134. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4135. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4136. // 4-bit -> 8-bit
  4137. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4138. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4139. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4140. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4141. // load y
  4142. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4143. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4144. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4145. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4146. // dot product into int32x4_t
  4147. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  4148. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  4149. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  4150. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  4151. }
  4152. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  4153. #elif defined(__AVX2__) || defined(__AVX__)
  4154. // Initialize accumulator with zeros
  4155. __m256 acc = _mm256_setzero_ps();
  4156. float summs = 0;
  4157. // Main loop
  4158. for (int i = 0; i < nb; ++i) {
  4159. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  4160. const float d1 = y[i].d;
  4161. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4162. const __m256 d0v = _mm256_set1_ps( d0 );
  4163. const __m256 d1v = _mm256_set1_ps( d1 );
  4164. // Compute combined scales
  4165. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  4166. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  4167. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4168. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  4169. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  4170. // Accumulate d0*d1*x*y
  4171. #if defined(__AVX2__)
  4172. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  4173. #else
  4174. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  4175. #endif
  4176. }
  4177. *s = hsum_float_8(acc) + summs;
  4178. #elif defined(__riscv_v_intrinsic)
  4179. float sumf = 0.0;
  4180. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4181. for (int i = 0; i < nb; i++) {
  4182. // load elements
  4183. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4184. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4185. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4186. // mask and store lower part of x, and then upper part
  4187. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4188. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4189. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4190. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4191. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4192. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4193. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4194. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4195. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4196. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4197. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4198. }
  4199. *s = sumf;
  4200. #else
  4201. // scalar
  4202. float sumf = 0.0;
  4203. for (int i = 0; i < nb; i++) {
  4204. int sumi = 0;
  4205. for (int j = 0; j < qk/2; ++j) {
  4206. const int v0 = (x[i].qs[j] & 0x0F);
  4207. const int v1 = (x[i].qs[j] >> 4);
  4208. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  4209. }
  4210. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4211. }
  4212. *s = sumf;
  4213. #endif
  4214. }
  4215. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4216. const int qk = QK8_0;
  4217. const int nb = n / qk;
  4218. assert(n % qk == 0);
  4219. assert(qk == QK5_0);
  4220. assert(nrc == 1);
  4221. UNUSED(nrc);
  4222. UNUSED(bx);
  4223. UNUSED(by);
  4224. UNUSED(bs);
  4225. const block_q5_0 * restrict x = vx;
  4226. const block_q8_0 * restrict y = vy;
  4227. #if defined(__ARM_NEON)
  4228. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4229. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4230. uint32_t qh0;
  4231. uint32_t qh1;
  4232. uint64_t tmp0[4];
  4233. uint64_t tmp1[4];
  4234. assert(nb % 2 == 0); // TODO: handle odd nb
  4235. for (int i = 0; i < nb; i += 2) {
  4236. const block_q5_0 * restrict x0 = &x[i];
  4237. const block_q5_0 * restrict x1 = &x[i + 1];
  4238. const block_q8_0 * restrict y0 = &y[i];
  4239. const block_q8_0 * restrict y1 = &y[i + 1];
  4240. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4241. // extract the 5th bit via lookup table ((!b) << 4)
  4242. memcpy(&qh0, x0->qh, sizeof(qh0));
  4243. memcpy(&qh1, x1->qh, sizeof(qh1));
  4244. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  4245. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  4246. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  4247. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  4248. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  4249. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  4250. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  4251. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  4252. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4253. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4254. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4255. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4256. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4257. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4258. // 4-bit -> 8-bit
  4259. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4260. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4261. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4262. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4263. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4264. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  4265. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  4266. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  4267. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  4268. // load y
  4269. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4270. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4271. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4272. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4273. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4274. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4275. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4276. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4277. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4278. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4279. }
  4280. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4281. #elif defined(__wasm_simd128__)
  4282. v128_t sumv = wasm_f32x4_splat(0.0f);
  4283. uint32_t qh;
  4284. uint64_t tmp[4];
  4285. // TODO: check if unrolling this is better
  4286. for (int i = 0; i < nb; ++i) {
  4287. const block_q5_0 * restrict x0 = &x[i];
  4288. const block_q8_0 * restrict y0 = &y[i];
  4289. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4290. // extract the 5th bit
  4291. memcpy(&qh, x0->qh, sizeof(qh));
  4292. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  4293. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  4294. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  4295. tmp[3] = table_b2b_1[(qh >> 24) ];
  4296. const v128_t qhl = wasm_v128_load(tmp + 0);
  4297. const v128_t qhh = wasm_v128_load(tmp + 2);
  4298. const v128_t v0 = wasm_v128_load(x0->qs);
  4299. // 4-bit -> 8-bit
  4300. const v128_t v0l = wasm_v128_and (v0, m4b);
  4301. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4302. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4303. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  4304. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  4305. // load y
  4306. const v128_t v1l = wasm_v128_load(y0->qs);
  4307. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4308. // int8x16 -> int16x8
  4309. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4310. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4311. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4312. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4313. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4314. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4315. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4316. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4317. // dot product
  4318. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  4319. wasm_i32x4_add(
  4320. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4321. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4322. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4323. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4324. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4325. }
  4326. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4327. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  4328. #elif defined(__AVX2__)
  4329. // Initialize accumulator with zeros
  4330. __m256 acc = _mm256_setzero_ps();
  4331. // Main loop
  4332. for (int i = 0; i < nb; i++) {
  4333. /* Compute combined scale for the block */
  4334. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4335. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4336. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4337. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  4338. qx = _mm256_or_si256(qx, bxhi);
  4339. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4340. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4341. /* Multiply q with scale and accumulate */
  4342. acc = _mm256_fmadd_ps(d, q, acc);
  4343. }
  4344. *s = hsum_float_8(acc);
  4345. #elif defined(__AVX__)
  4346. // Initialize accumulator with zeros
  4347. __m256 acc = _mm256_setzero_ps();
  4348. __m128i mask = _mm_set1_epi8((char)0xF0);
  4349. // Main loop
  4350. for (int i = 0; i < nb; i++) {
  4351. /* Compute combined scale for the block */
  4352. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4353. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4354. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4355. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4356. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4357. bxhil = _mm_andnot_si128(bxhil, mask);
  4358. bxhih = _mm_andnot_si128(bxhih, mask);
  4359. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4360. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4361. bxl = _mm_or_si128(bxl, bxhil);
  4362. bxh = _mm_or_si128(bxh, bxhih);
  4363. bx_0 = MM256_SET_M128I(bxh, bxl);
  4364. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4365. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  4366. /* Multiply q with scale and accumulate */
  4367. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  4368. }
  4369. *s = hsum_float_8(acc);
  4370. #elif defined(__riscv_v_intrinsic)
  4371. float sumf = 0.0;
  4372. uint32_t qh;
  4373. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4374. // These temporary registers are for masking and shift operations
  4375. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4376. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  4377. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  4378. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4379. for (int i = 0; i < nb; i++) {
  4380. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4381. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4382. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4383. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4384. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4385. // ((qh & (1u << (j + 16))) >> (j + 12));
  4386. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4387. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4388. // narrowing
  4389. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4390. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4391. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4392. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4393. // load
  4394. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4395. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4396. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4397. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4398. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4399. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4400. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4401. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4402. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4403. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4404. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4405. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4406. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4407. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4408. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4409. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4410. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4411. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4412. }
  4413. *s = sumf;
  4414. #else
  4415. // scalar
  4416. float sumf = 0.0;
  4417. for (int i = 0; i < nb; i++) {
  4418. uint32_t qh;
  4419. memcpy(&qh, x[i].qh, sizeof(qh));
  4420. int sumi = 0;
  4421. for (int j = 0; j < qk/2; ++j) {
  4422. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4423. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4424. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4425. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4426. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4427. }
  4428. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4429. }
  4430. *s = sumf;
  4431. #endif
  4432. }
  4433. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4434. const int qk = QK8_1;
  4435. const int nb = n / qk;
  4436. assert(n % qk == 0);
  4437. assert(qk == QK5_1);
  4438. assert(nrc == 1);
  4439. UNUSED(nrc);
  4440. UNUSED(bx);
  4441. UNUSED(by);
  4442. UNUSED(bs);
  4443. const block_q5_1 * restrict x = vx;
  4444. const block_q8_1 * restrict y = vy;
  4445. #if defined(__ARM_NEON)
  4446. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4447. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4448. float summs0 = 0.0f;
  4449. float summs1 = 0.0f;
  4450. uint32_t qh0;
  4451. uint32_t qh1;
  4452. uint64_t tmp0[4];
  4453. uint64_t tmp1[4];
  4454. assert(nb % 2 == 0); // TODO: handle odd nb
  4455. for (int i = 0; i < nb; i += 2) {
  4456. const block_q5_1 * restrict x0 = &x[i];
  4457. const block_q5_1 * restrict x1 = &x[i + 1];
  4458. const block_q8_1 * restrict y0 = &y[i];
  4459. const block_q8_1 * restrict y1 = &y[i + 1];
  4460. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4461. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4462. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  4463. // extract the 5th bit via lookup table ((b) << 4)
  4464. memcpy(&qh0, x0->qh, sizeof(qh0));
  4465. memcpy(&qh1, x1->qh, sizeof(qh1));
  4466. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4467. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4468. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4469. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4470. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4471. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4472. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4473. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4474. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4475. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4476. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4477. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4478. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4479. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4480. // 4-bit -> 8-bit
  4481. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4482. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4483. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4484. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4485. // add high bit
  4486. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4487. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4488. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4489. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4490. // load y
  4491. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4492. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4493. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4494. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4495. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4496. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4497. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  4498. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4499. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4500. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  4501. }
  4502. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4503. #elif defined(__wasm_simd128__)
  4504. v128_t sumv = wasm_f32x4_splat(0.0f);
  4505. float summs = 0.0f;
  4506. uint32_t qh;
  4507. uint64_t tmp[4];
  4508. // TODO: check if unrolling this is better
  4509. for (int i = 0; i < nb; ++i) {
  4510. const block_q5_1 * restrict x0 = &x[i];
  4511. const block_q8_1 * restrict y0 = &y[i];
  4512. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4513. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4514. // extract the 5th bit
  4515. memcpy(&qh, x0->qh, sizeof(qh));
  4516. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4517. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4518. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4519. tmp[3] = table_b2b_0[(qh >> 24) ];
  4520. const v128_t qhl = wasm_v128_load(tmp + 0);
  4521. const v128_t qhh = wasm_v128_load(tmp + 2);
  4522. const v128_t v0 = wasm_v128_load(x0->qs);
  4523. // 4-bit -> 8-bit
  4524. const v128_t v0l = wasm_v128_and (v0, m4b);
  4525. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4526. // add high bit
  4527. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4528. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4529. // load y
  4530. const v128_t v1l = wasm_v128_load(y0->qs);
  4531. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4532. // int8x16 -> int16x8
  4533. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4534. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4535. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4536. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4537. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4538. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4539. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4540. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4541. // dot product
  4542. sumv = wasm_f32x4_add(sumv,
  4543. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4544. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4545. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4546. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4547. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4548. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  4549. }
  4550. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4551. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4552. #elif defined(__AVX2__)
  4553. // Initialize accumulator with zeros
  4554. __m256 acc = _mm256_setzero_ps();
  4555. float summs = 0.0f;
  4556. // Main loop
  4557. for (int i = 0; i < nb; i++) {
  4558. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4559. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4560. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4561. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4562. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4563. qx = _mm256_or_si256(qx, bxhi);
  4564. const __m256 dy = _mm256_set1_ps(y[i].d);
  4565. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4566. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4567. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4568. }
  4569. *s = hsum_float_8(acc) + summs;
  4570. #elif defined(__AVX__)
  4571. // Initialize accumulator with zeros
  4572. __m256 acc = _mm256_setzero_ps();
  4573. __m128i mask = _mm_set1_epi8(0x10);
  4574. float summs = 0.0f;
  4575. // Main loop
  4576. for (int i = 0; i < nb; i++) {
  4577. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4578. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4579. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4580. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4581. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4582. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4583. bxhil = _mm_and_si128(bxhil, mask);
  4584. bxhih = _mm_and_si128(bxhih, mask);
  4585. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4586. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4587. bxl = _mm_or_si128(bxl, bxhil);
  4588. bxh = _mm_or_si128(bxh, bxhih);
  4589. bx_0 = MM256_SET_M128I(bxh, bxl);
  4590. const __m256 dy = _mm256_set1_ps(y[i].d);
  4591. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4592. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4593. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4594. }
  4595. *s = hsum_float_8(acc) + summs;
  4596. #elif defined(__riscv_v_intrinsic)
  4597. float sumf = 0.0;
  4598. uint32_t qh;
  4599. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4600. // temporary registers for shift operations
  4601. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4602. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4603. for (int i = 0; i < nb; i++) {
  4604. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4605. // load qh
  4606. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4607. // ((qh >> (j + 0)) << 4) & 0x10;
  4608. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4609. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4610. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4611. // ((qh >> (j + 12)) ) & 0x10;
  4612. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4613. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4614. // narrowing
  4615. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4616. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4617. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4618. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4619. // load
  4620. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4621. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4622. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4623. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4624. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4625. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4626. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4627. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4628. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4629. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4630. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4631. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4632. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4633. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4634. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4635. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4636. }
  4637. *s = sumf;
  4638. #else
  4639. // scalar
  4640. float sumf = 0.0;
  4641. for (int i = 0; i < nb; i++) {
  4642. uint32_t qh;
  4643. memcpy(&qh, x[i].qh, sizeof(qh));
  4644. int sumi = 0;
  4645. for (int j = 0; j < qk/2; ++j) {
  4646. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4647. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4648. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4649. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4650. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4651. }
  4652. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4653. }
  4654. *s = sumf;
  4655. #endif
  4656. }
  4657. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4658. const int qk = QK8_0;
  4659. const int nb = n / qk;
  4660. assert(n % qk == 0);
  4661. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4662. assert((nrc == 2) || (nrc == 1));
  4663. #else
  4664. assert(nrc == 1);
  4665. #endif
  4666. UNUSED(nrc);
  4667. UNUSED(bx);
  4668. UNUSED(by);
  4669. UNUSED(bs);
  4670. const block_q8_0 * restrict x = vx;
  4671. const block_q8_0 * restrict y = vy;
  4672. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4673. if (nrc == 2) {
  4674. const block_q8_0 * restrict vx0 = vx;
  4675. const block_q8_0 * restrict vx1 = vx + bx;
  4676. const block_q8_0 * restrict vy0 = vy;
  4677. const block_q8_0 * restrict vy1 = vy + by;
  4678. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4679. for (int i = 0; i < nb; i++) {
  4680. const block_q8_0 * restrict b_x0 = &vx0[i];
  4681. const block_q8_0 * restrict b_y0 = &vy0[i];
  4682. const block_q8_0 * restrict b_x1 = &vx1[i];
  4683. const block_q8_0 * restrict b_y1 = &vy1[i];
  4684. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4685. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4686. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4687. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4688. // load y
  4689. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4690. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4691. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4692. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4693. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4694. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4695. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4696. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4697. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4698. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4699. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4700. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4701. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4702. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4703. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4704. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4705. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4706. l1, r1)), l2, r2)), l3, r3))), scale);
  4707. }
  4708. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4709. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4710. vst1_f32(s, vget_low_f32(sumv2));
  4711. vst1_f32(s + bs, vget_high_f32(sumv2));
  4712. return;
  4713. }
  4714. #endif
  4715. #if defined(__ARM_NEON)
  4716. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4717. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4718. assert(nb % 2 == 0); // TODO: handle odd nb
  4719. for (int i = 0; i < nb; i += 2) {
  4720. const block_q8_0 * restrict x0 = &x[i + 0];
  4721. const block_q8_0 * restrict x1 = &x[i + 1];
  4722. const block_q8_0 * restrict y0 = &y[i + 0];
  4723. const block_q8_0 * restrict y1 = &y[i + 1];
  4724. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4725. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4726. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4727. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4728. // load y
  4729. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4730. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4731. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4732. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4733. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4734. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4735. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4736. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4737. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4738. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4739. }
  4740. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4741. #elif defined(__AVX2__) || defined(__AVX__)
  4742. // Initialize accumulator with zeros
  4743. __m256 acc = _mm256_setzero_ps();
  4744. // Main loop
  4745. for (int i = 0; i < nb; ++i) {
  4746. // Compute combined scale for the block
  4747. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4748. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4749. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4750. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4751. // Multiply q with scale and accumulate
  4752. #if defined(__AVX2__)
  4753. acc = _mm256_fmadd_ps( d, q, acc );
  4754. #else
  4755. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4756. #endif
  4757. }
  4758. *s = hsum_float_8(acc);
  4759. #elif defined(__riscv_v_intrinsic)
  4760. float sumf = 0.0;
  4761. size_t vl = __riscv_vsetvl_e8m1(qk);
  4762. for (int i = 0; i < nb; i++) {
  4763. // load elements
  4764. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4765. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4766. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4767. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4768. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4769. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4770. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4771. }
  4772. *s = sumf;
  4773. #else
  4774. // scalar
  4775. float sumf = 0.0;
  4776. for (int i = 0; i < nb; i++) {
  4777. int sumi = 0;
  4778. for (int j = 0; j < qk; j++) {
  4779. sumi += x[i].qs[j]*y[i].qs[j];
  4780. }
  4781. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4782. }
  4783. *s = sumf;
  4784. #endif
  4785. }
  4786. #if QK_K == 256
  4787. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4788. assert(nrc == 1);
  4789. UNUSED(nrc);
  4790. UNUSED(bx);
  4791. UNUSED(by);
  4792. UNUSED(bs);
  4793. const block_q2_K * restrict x = vx;
  4794. const block_q8_K * restrict y = vy;
  4795. const int nb = n / QK_K;
  4796. #ifdef __ARM_NEON
  4797. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4798. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4799. const int32x4_t vzero = vdupq_n_s32(0);
  4800. ggml_int8x16x2_t q2bytes;
  4801. uint8_t aux[16];
  4802. float sum = 0;
  4803. for (int i = 0; i < nb; ++i) {
  4804. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4805. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4806. const uint8_t * restrict q2 = x[i].qs;
  4807. const int8_t * restrict q8 = y[i].qs;
  4808. const uint8_t * restrict sc = x[i].scales;
  4809. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4810. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4811. vst1q_u8(aux, scales);
  4812. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4813. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4814. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4815. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4816. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4817. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4818. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4819. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4820. int isum = 0;
  4821. int is = 0;
  4822. // We use this macro instead of a function call because for some reason
  4823. // the code runs 2-3% slower, even if the function is declared inline
  4824. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4825. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4826. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4827. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4828. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4829. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4830. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4831. MULTIPLY_ACCUM_WITH_SCALE((index));
  4832. for (int j = 0; j < QK_K/128; ++j) {
  4833. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4834. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4835. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4836. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4837. MULTIPLY_ACCUM_WITH_SCALE(0);
  4838. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4839. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4840. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4841. is += 8;
  4842. }
  4843. sum += d * isum;
  4844. }
  4845. *s = sum;
  4846. #elif defined __AVX2__
  4847. const __m256i m3 = _mm256_set1_epi8(3);
  4848. const __m128i m4 = _mm_set1_epi8(0xF);
  4849. __m256 acc = _mm256_setzero_ps();
  4850. for (int i = 0; i < nb; ++i) {
  4851. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4852. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4853. const uint8_t * restrict q2 = x[i].qs;
  4854. const int8_t * restrict q8 = y[i].qs;
  4855. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4856. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4857. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4858. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4859. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4860. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4861. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4862. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4863. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4864. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4865. __m256i sumi = _mm256_setzero_si256();
  4866. for (int j = 0; j < QK_K/128; ++j) {
  4867. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4868. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4869. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4870. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4871. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4872. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4873. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4874. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4875. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4876. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4877. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4878. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4879. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4880. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4881. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4882. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4883. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4884. p0 = _mm256_add_epi32(p0, p1);
  4885. p2 = _mm256_add_epi32(p2, p3);
  4886. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4887. }
  4888. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4889. }
  4890. *s = hsum_float_8(acc);
  4891. #elif defined __AVX__
  4892. const __m128i m3 = _mm_set1_epi8(0x3);
  4893. const __m128i m4 = _mm_set1_epi8(0xF);
  4894. const __m128i m2 = _mm_set1_epi8(0x2);
  4895. __m256 acc = _mm256_setzero_ps();
  4896. for (int i = 0; i < nb; ++i) {
  4897. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4898. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4899. const uint8_t * restrict q2 = x[i].qs;
  4900. const int8_t * restrict q8 = y[i].qs;
  4901. // load mins and scales from block_q2_K.scales[QK_K/16]
  4902. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4903. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4904. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4905. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4906. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4907. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4908. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4909. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4910. // sumf += -dmin * summs in 32bits*8
  4911. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4912. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4913. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4914. const __m128i scales[2] = { scales_0, scales_1 };
  4915. __m128i sumi_0 = _mm_setzero_si128();
  4916. __m128i sumi_1 = _mm_setzero_si128();
  4917. for (int j = 0; j < QK_K/128; ++j) {
  4918. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4919. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4920. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4921. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4922. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4923. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4924. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4925. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4926. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4927. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4928. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4929. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4930. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4931. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4932. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4933. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4934. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4935. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4936. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4937. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4938. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4939. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4940. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4941. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4942. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4943. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4944. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4945. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4946. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4947. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4948. __m128i shuffle = _mm_set1_epi16(0x0100);
  4949. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4950. shuffle = _mm_add_epi16(shuffle, m2);
  4951. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4952. shuffle = _mm_add_epi16(shuffle, m2);
  4953. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4954. shuffle = _mm_add_epi16(shuffle, m2);
  4955. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4956. shuffle = _mm_add_epi16(shuffle, m2);
  4957. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4958. shuffle = _mm_add_epi16(shuffle, m2);
  4959. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4960. shuffle = _mm_add_epi16(shuffle, m2);
  4961. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4962. shuffle = _mm_add_epi16(shuffle, m2);
  4963. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4964. p0 = _mm_add_epi32(p0, p1);
  4965. p2 = _mm_add_epi32(p2, p3);
  4966. p4 = _mm_add_epi32(p4, p5);
  4967. p6 = _mm_add_epi32(p6, p7);
  4968. // isum in 32bits*4*2
  4969. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4970. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4971. }
  4972. // sumf += dall * isum - dmin * summs in 32bits
  4973. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4974. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4975. }
  4976. *s = hsum_float_8(acc);
  4977. #elif defined __riscv_v_intrinsic
  4978. float sumf = 0;
  4979. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4980. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4981. for (int i = 0; i < nb; ++i) {
  4982. const uint8_t * q2 = x[i].qs;
  4983. const int8_t * q8 = y[i].qs;
  4984. const uint8_t * sc = x[i].scales;
  4985. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4986. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4987. size_t vl = 16;
  4988. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4989. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4990. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4991. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4992. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4993. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4994. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4995. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4996. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4997. vl = 32;
  4998. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4999. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  5000. uint8_t is=0;
  5001. int isum=0;
  5002. for (int j = 0; j < QK_K/128; ++j) {
  5003. // load Q2
  5004. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  5005. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  5006. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  5007. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  5008. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  5009. // duplicate scale elements for product
  5010. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  5011. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  5012. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  5013. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  5014. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  5015. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  5016. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  5017. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  5018. // load Q8
  5019. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5020. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5021. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  5022. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  5023. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  5024. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  5025. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  5026. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  5027. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  5028. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  5029. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  5030. q2+=32; q8+=128; is=8;
  5031. }
  5032. sumf += dall * isum;
  5033. }
  5034. *s = sumf;
  5035. #else
  5036. float sumf = 0;
  5037. for (int i = 0; i < nb; ++i) {
  5038. const uint8_t * q2 = x[i].qs;
  5039. const int8_t * q8 = y[i].qs;
  5040. const uint8_t * sc = x[i].scales;
  5041. int summs = 0;
  5042. for (int j = 0; j < 16; ++j) {
  5043. summs += y[i].bsums[j] * (sc[j] >> 4);
  5044. }
  5045. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5046. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5047. int isum = 0;
  5048. int is = 0;
  5049. int d;
  5050. for (int k = 0; k < QK_K/128; ++k) {
  5051. int shift = 0;
  5052. for (int j = 0; j < 4; ++j) {
  5053. d = sc[is++] & 0xF;
  5054. int isuml = 0;
  5055. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5056. isum += d * isuml;
  5057. d = sc[is++] & 0xF;
  5058. isuml = 0;
  5059. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  5060. isum += d * isuml;
  5061. shift += 2;
  5062. q8 += 32;
  5063. }
  5064. q2 += 32;
  5065. }
  5066. sumf += dall * isum - dmin * summs;
  5067. }
  5068. *s = sumf;
  5069. #endif
  5070. }
  5071. #else
  5072. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5073. assert(nrc == 1);
  5074. UNUSED(nrc);
  5075. UNUSED(bx);
  5076. UNUSED(by);
  5077. UNUSED(bs);
  5078. const block_q2_K * restrict x = vx;
  5079. const block_q8_K * restrict y = vy;
  5080. const int nb = n / QK_K;
  5081. #ifdef __ARM_NEON
  5082. const uint8x16_t m3 = vdupq_n_u8(0x3);
  5083. const int32x4_t vzero = vdupq_n_s32(0);
  5084. ggml_int8x16x4_t q2bytes;
  5085. uint32_t aux32[2];
  5086. const uint8_t * scales = (const uint8_t *)aux32;
  5087. float sum = 0;
  5088. for (int i = 0; i < nb; ++i) {
  5089. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5090. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5091. const uint8_t * restrict q2 = x[i].qs;
  5092. const int8_t * restrict q8 = y[i].qs;
  5093. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5094. aux32[0] = sc[0] & 0x0f0f0f0f;
  5095. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  5096. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  5097. int isum1 = 0, isum2 = 0;
  5098. const uint8x16_t q2bits = vld1q_u8(q2);
  5099. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  5100. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  5101. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  5102. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  5103. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  5104. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  5105. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  5106. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  5107. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  5108. sum += d * (isum1 + isum2);
  5109. }
  5110. *s = sum;
  5111. #elif defined __AVX2__
  5112. const __m256i m3 = _mm256_set1_epi8(3);
  5113. __m256 acc = _mm256_setzero_ps();
  5114. uint32_t ud, um;
  5115. const uint8_t * restrict db = (const uint8_t *)&ud;
  5116. const uint8_t * restrict mb = (const uint8_t *)&um;
  5117. float summs = 0;
  5118. // TODO: optimize this
  5119. for (int i = 0; i < nb; ++i) {
  5120. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5121. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5122. const uint8_t * restrict q2 = x[i].qs;
  5123. const int8_t * restrict q8 = y[i].qs;
  5124. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5125. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  5126. um = (sc[0] >> 4) & 0x0f0f0f0f;
  5127. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  5128. summs += dmin * smin;
  5129. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  5130. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  5131. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  5132. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5133. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5134. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  5135. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  5136. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  5137. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  5138. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  5139. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  5140. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  5141. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  5142. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  5143. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  5144. }
  5145. *s = hsum_float_8(acc) + summs;
  5146. #elif defined __AVX__
  5147. const __m128i m3 = _mm_set1_epi8(3);
  5148. __m256 acc = _mm256_setzero_ps();
  5149. uint32_t ud, um;
  5150. const uint8_t * restrict db = (const uint8_t *)&ud;
  5151. const uint8_t * restrict mb = (const uint8_t *)&um;
  5152. float summs = 0;
  5153. // TODO: optimize this
  5154. for (int i = 0; i < nb; ++i) {
  5155. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5156. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5157. const uint8_t * restrict q2 = x[i].qs;
  5158. const int8_t * restrict q8 = y[i].qs;
  5159. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5160. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  5161. um = (sc[0] >> 4) & 0x0f0f0f0f;
  5162. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  5163. summs += dmin * smin;
  5164. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  5165. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  5166. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  5167. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  5168. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  5169. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5170. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5171. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  5172. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  5173. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  5174. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  5175. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  5176. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  5177. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  5178. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  5179. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  5180. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  5181. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  5182. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  5183. }
  5184. *s = hsum_float_8(acc) + summs;
  5185. #elif defined __riscv_v_intrinsic
  5186. uint32_t aux32[2];
  5187. const uint8_t * scales = (const uint8_t *)aux32;
  5188. float sumf = 0;
  5189. for (int i = 0; i < nb; ++i) {
  5190. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5191. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5192. const uint8_t * restrict q2 = x[i].qs;
  5193. const int8_t * restrict q8 = y[i].qs;
  5194. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  5195. aux32[0] = sc[0] & 0x0f0f0f0f;
  5196. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  5197. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  5198. int isum1 = 0;
  5199. int isum2 = 0;
  5200. size_t vl = 16;
  5201. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5202. // load Q2
  5203. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  5204. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  5205. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  5206. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  5207. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  5208. // load Q8, and take product with Q2
  5209. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5210. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5211. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5212. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5213. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  5214. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  5215. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  5216. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  5217. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  5218. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  5219. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  5220. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  5221. sumf += d * (isum1 + isum2);
  5222. }
  5223. *s = sumf;
  5224. #else
  5225. float sumf = 0;
  5226. int isum[4];
  5227. for (int i = 0; i < nb; ++i) {
  5228. const uint8_t * q2 = x[i].qs;
  5229. const int8_t * q8 = y[i].qs;
  5230. const uint8_t * sc = x[i].scales;
  5231. int summs = 0;
  5232. for (int j = 0; j < QK_K/16; ++j) {
  5233. summs += y[i].bsums[j] * (sc[j] >> 4);
  5234. }
  5235. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5236. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5237. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  5238. for (int l = 0; l < 16; ++l) {
  5239. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  5240. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  5241. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  5242. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  5243. }
  5244. for (int l = 0; l < 4; ++l) {
  5245. isum[l] *= (sc[l] & 0xF);
  5246. }
  5247. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  5248. }
  5249. *s = sumf;
  5250. #endif
  5251. }
  5252. #endif
  5253. #if QK_K == 256
  5254. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5255. assert(n % QK_K == 0);
  5256. assert(nrc == 1);
  5257. UNUSED(nrc);
  5258. UNUSED(bx);
  5259. UNUSED(by);
  5260. UNUSED(bs);
  5261. const uint32_t kmask1 = 0x03030303;
  5262. const uint32_t kmask2 = 0x0f0f0f0f;
  5263. const block_q3_K * restrict x = vx;
  5264. const block_q8_K * restrict y = vy;
  5265. const int nb = n / QK_K;
  5266. #ifdef __ARM_NEON
  5267. uint32_t aux[3];
  5268. uint32_t utmp[4];
  5269. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5270. const int32x4_t vzero = vdupq_n_s32(0);
  5271. const uint8x16_t m0 = vdupq_n_u8(1);
  5272. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5273. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5274. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5275. const int8_t m32 = 32;
  5276. ggml_int8x16x4_t q3bytes;
  5277. float sum = 0;
  5278. for (int i = 0; i < nb; ++i) {
  5279. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5280. const uint8_t * restrict q3 = x[i].qs;
  5281. const uint8_t * restrict qh = x[i].hmask;
  5282. const int8_t * restrict q8 = y[i].qs;
  5283. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5284. ggml_uint8x16x4_t q3h;
  5285. int32_t isum = 0;
  5286. // Set up scales
  5287. memcpy(aux, x[i].scales, 12);
  5288. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5289. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5290. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5291. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5292. int8_t * scale = (int8_t *)utmp;
  5293. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5294. for (int j = 0; j < QK_K/128; ++j) {
  5295. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5296. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5297. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5298. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5299. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5300. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5301. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5302. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5303. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5304. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5305. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5306. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5307. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5308. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5309. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5310. scale += 4;
  5311. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5312. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5313. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5314. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5315. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5316. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5317. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5318. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5319. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5320. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5321. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5322. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5323. scale += 4;
  5324. if (j == 0) {
  5325. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5326. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5327. }
  5328. }
  5329. sum += d * isum;
  5330. }
  5331. *s = sum;
  5332. #elif defined __AVX2__
  5333. const __m256i m3 = _mm256_set1_epi8(3);
  5334. const __m256i mone = _mm256_set1_epi8(1);
  5335. const __m128i m32 = _mm_set1_epi8(32);
  5336. __m256 acc = _mm256_setzero_ps();
  5337. uint32_t aux[3];
  5338. for (int i = 0; i < nb; ++i) {
  5339. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5340. const uint8_t * restrict q3 = x[i].qs;
  5341. const int8_t * restrict q8 = y[i].qs;
  5342. // Set up scales
  5343. memcpy(aux, x[i].scales, 12);
  5344. __m128i scales128 = _mm_set_epi32(
  5345. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5346. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5347. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5348. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5349. scales128 = _mm_sub_epi8(scales128, m32);
  5350. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5351. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5352. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5353. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5354. // high bit
  5355. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5356. // integer accumulator
  5357. __m256i sumi = _mm256_setzero_si256();
  5358. int bit = 0;
  5359. int is = 0;
  5360. for (int j = 0; j < QK_K/128; ++j) {
  5361. // load low 2 bits
  5362. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5363. // prepare low and high bits
  5364. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5365. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5366. ++bit;
  5367. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5368. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5369. ++bit;
  5370. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5371. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5372. ++bit;
  5373. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5374. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5375. ++bit;
  5376. // load Q8 quants
  5377. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5378. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5379. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5380. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5381. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5382. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5383. // and 2 if the high bit was set)
  5384. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5385. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5386. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5387. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5388. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5389. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5390. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5391. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5392. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5393. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5394. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5395. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5396. // multiply with scales
  5397. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5398. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5399. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5400. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5401. // accumulate
  5402. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5403. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5404. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5405. }
  5406. // multiply with block scale and accumulate
  5407. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5408. }
  5409. *s = hsum_float_8(acc);
  5410. #elif defined __AVX__
  5411. const __m128i m3 = _mm_set1_epi8(3);
  5412. const __m128i mone = _mm_set1_epi8(1);
  5413. const __m128i m32 = _mm_set1_epi8(32);
  5414. const __m128i m2 = _mm_set1_epi8(2);
  5415. __m256 acc = _mm256_setzero_ps();
  5416. const uint32_t *aux;
  5417. for (int i = 0; i < nb; ++i) {
  5418. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5419. const uint8_t * restrict q3 = x[i].qs;
  5420. const int8_t * restrict q8 = y[i].qs;
  5421. // Set up scales
  5422. aux = (const uint32_t *)x[i].scales;
  5423. __m128i scales128 = _mm_set_epi32(
  5424. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5425. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5426. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5427. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5428. scales128 = _mm_sub_epi8(scales128, m32);
  5429. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5430. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5431. const __m128i scales[2] = { scales_0, scales_1 };
  5432. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5433. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5434. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5435. // integer accumulator
  5436. __m128i sumi_0 = _mm_setzero_si128();
  5437. __m128i sumi_1 = _mm_setzero_si128();
  5438. for (int j = 0; j < QK_K/128; ++j) {
  5439. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5440. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5441. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5442. // prepare low and high bits
  5443. const int bit = j << 2;
  5444. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5445. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5446. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5447. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5448. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5449. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5450. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5451. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5452. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5453. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5454. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5455. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5456. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5457. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5458. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5459. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5460. // load Q8 quants from block_q8_K.qs[QK_K]
  5461. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5462. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5463. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5464. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5465. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5466. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5467. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5468. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5469. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5470. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5471. // and 2 if the high bit was set)
  5472. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5473. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5474. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5475. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5476. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5477. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5478. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5479. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5480. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5481. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5482. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5483. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5484. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5485. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5486. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5487. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5488. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5489. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5490. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5491. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5492. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5493. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5494. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5495. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5496. // multiply with scales
  5497. __m128i shuffle = _mm_set1_epi16(0x0100);
  5498. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5499. shuffle = _mm_add_epi16(shuffle, m2);
  5500. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5501. shuffle = _mm_add_epi16(shuffle, m2);
  5502. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5503. shuffle = _mm_add_epi16(shuffle, m2);
  5504. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5505. shuffle = _mm_add_epi16(shuffle, m2);
  5506. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5507. shuffle = _mm_add_epi16(shuffle, m2);
  5508. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5509. shuffle = _mm_add_epi16(shuffle, m2);
  5510. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5511. shuffle = _mm_add_epi16(shuffle, m2);
  5512. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5513. // accumulate
  5514. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5515. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5516. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5517. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5518. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5519. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5520. }
  5521. // multiply with block scale and accumulate
  5522. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5523. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5524. }
  5525. *s = hsum_float_8(acc);
  5526. #elif defined __riscv_v_intrinsic
  5527. uint32_t aux[3];
  5528. uint32_t utmp[4];
  5529. float sumf = 0;
  5530. for (int i = 0; i < nb; ++i) {
  5531. const uint8_t * restrict q3 = x[i].qs;
  5532. const uint8_t * restrict qh = x[i].hmask;
  5533. const int8_t * restrict q8 = y[i].qs;
  5534. memcpy(aux, x[i].scales, 12);
  5535. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5536. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5537. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5538. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5539. int8_t * scale = (int8_t *)utmp;
  5540. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5541. size_t vl = 32;
  5542. uint8_t m = 1;
  5543. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5544. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5545. int sum_t = 0;
  5546. for (int j = 0; j < QK_K; j += 128) {
  5547. vl = 32;
  5548. // load Q3
  5549. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5550. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5551. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5552. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5553. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5554. // compute mask for subtraction
  5555. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5556. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5557. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5558. m <<= 1;
  5559. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5560. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5561. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5562. m <<= 1;
  5563. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5564. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5565. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5566. m <<= 1;
  5567. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5568. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5569. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5570. m <<= 1;
  5571. // load Q8 and take product with Q3
  5572. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5573. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5574. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5575. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5576. vl = 16;
  5577. // retrieve lane to multiply with scale
  5578. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5579. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5580. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5581. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5582. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5583. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5584. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5585. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5586. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5587. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5588. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5589. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5590. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5591. q3 += 32; q8 += 128; scale += 8;
  5592. }
  5593. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5594. sumf += d*sum_t;
  5595. }
  5596. *s = sumf;
  5597. #else
  5598. // scalar version
  5599. // This function is written like this so the compiler can manage to vectorize most of it
  5600. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5601. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5602. // The ideal situation would be if we could just write the code once, and the compiler would
  5603. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5604. // write vectorized versions for AVX, ARM_NEON, etc.
  5605. int8_t aux8[QK_K];
  5606. int16_t aux16[8];
  5607. float sums [8];
  5608. int32_t aux32[8];
  5609. memset(sums, 0, 8*sizeof(float));
  5610. uint32_t auxs[4];
  5611. const int8_t * scales = (const int8_t*)auxs;
  5612. float sumf = 0;
  5613. for (int i = 0; i < nb; ++i) {
  5614. const uint8_t * restrict q3 = x[i].qs;
  5615. const uint8_t * restrict hm = x[i].hmask;
  5616. const int8_t * restrict q8 = y[i].qs;
  5617. memset(aux32, 0, 8*sizeof(int32_t));
  5618. int8_t * restrict a = aux8;
  5619. uint8_t m = 1;
  5620. for (int j = 0; j < QK_K; j += 128) {
  5621. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5622. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5623. a += 32; m <<= 1;
  5624. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5625. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5626. a += 32; m <<= 1;
  5627. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5628. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5629. a += 32; m <<= 1;
  5630. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5631. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5632. a += 32; m <<= 1;
  5633. q3 += 32;
  5634. }
  5635. a = aux8;
  5636. memcpy(auxs, x[i].scales, 12);
  5637. uint32_t tmp = auxs[2];
  5638. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5639. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5640. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5641. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5642. for (int j = 0; j < QK_K/16; ++j) {
  5643. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5644. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5645. q8 += 8; a += 8;
  5646. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5647. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5648. q8 += 8; a += 8;
  5649. }
  5650. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5651. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5652. }
  5653. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5654. *s = sumf;
  5655. #endif
  5656. }
  5657. #else
  5658. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5659. assert(n % QK_K == 0);
  5660. assert(nrc == 1);
  5661. UNUSED(nrc);
  5662. UNUSED(bx);
  5663. UNUSED(by);
  5664. UNUSED(bs);
  5665. const block_q3_K * restrict x = vx;
  5666. const block_q8_K * restrict y = vy;
  5667. const int nb = n / QK_K;
  5668. #ifdef __ARM_NEON
  5669. const int32x4_t vzero = vdupq_n_s32(0);
  5670. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5671. const uint8x16_t mh = vdupq_n_u8(4);
  5672. ggml_int8x16x4_t q3bytes;
  5673. uint16_t aux16[2];
  5674. int8_t * scales = (int8_t *)aux16;
  5675. float sum = 0;
  5676. for (int i = 0; i < nb; ++i) {
  5677. ggml_uint8x16x4_t q3h;
  5678. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  5679. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  5680. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  5681. const uint16_t a = *(const uint16_t *)x[i].scales;
  5682. aux16[0] = a & 0x0f0f;
  5683. aux16[1] = (a >> 4) & 0x0f0f;
  5684. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5685. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5686. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5687. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  5688. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  5689. q3h.val[1] = vandq_u8(mh, htmp);
  5690. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  5691. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  5692. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  5693. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  5694. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  5695. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  5696. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  5697. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  5698. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  5699. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  5700. sum += d * isum;
  5701. }
  5702. *s = sum;
  5703. #elif defined __AVX2__
  5704. const __m256i m3 = _mm256_set1_epi8(3);
  5705. const __m256i m1 = _mm256_set1_epi8(1);
  5706. __m256 acc = _mm256_setzero_ps();
  5707. uint64_t aux64;
  5708. uint16_t aux16[2];
  5709. const int8_t * aux8 = (const int8_t *)aux16;
  5710. for (int i = 0; i < nb; ++i) {
  5711. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5712. const uint8_t * restrict q3 = x[i].qs;
  5713. const int8_t * restrict q8 = y[i].qs;
  5714. const uint16_t a = *(const uint16_t *)x[i].scales;
  5715. aux16[0] = a & 0x0f0f;
  5716. aux16[1] = (a >> 4) & 0x0f0f;
  5717. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  5718. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  5719. memcpy(&aux64, x[i].hmask, 8);
  5720. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5721. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  5722. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  5723. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  5724. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  5725. // load low 2 bits
  5726. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5727. // prepare low and high bits
  5728. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  5729. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  5730. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  5731. // load Q8 quants
  5732. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5733. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5734. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5735. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5736. // and 2 if the high bit was set)
  5737. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5738. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5739. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5740. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5741. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5742. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5743. // multiply with scales
  5744. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5745. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5746. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5747. // multiply with block scale and accumulate
  5748. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  5749. }
  5750. *s = hsum_float_8(acc);
  5751. #elif defined __AVX__
  5752. const __m128i m3 = _mm_set1_epi8(3);
  5753. const __m128i m1 = _mm_set1_epi8(1);
  5754. __m256 acc = _mm256_setzero_ps();
  5755. uint64_t aux64;
  5756. uint16_t aux16[2];
  5757. const int8_t * aux8 = (const int8_t *)aux16;
  5758. for (int i = 0; i < nb; ++i) {
  5759. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5760. const uint8_t * restrict q3 = x[i].qs;
  5761. const int8_t * restrict q8 = y[i].qs;
  5762. const uint16_t a = *(const uint16_t *)x[i].scales;
  5763. aux16[0] = a & 0x0f0f;
  5764. aux16[1] = (a >> 4) & 0x0f0f;
  5765. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  5766. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  5767. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  5768. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  5769. memcpy(&aux64, x[i].hmask, 8);
  5770. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5771. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  5772. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  5773. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  5774. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  5775. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  5776. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  5777. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  5778. // load low 2 bits
  5779. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5780. // prepare low and high bits
  5781. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  5782. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  5783. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  5784. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  5785. // load Q8 quants
  5786. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5787. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5788. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  5789. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5790. // and 2 if the high bit was set)
  5791. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  5792. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  5793. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  5794. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  5795. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  5796. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  5797. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  5798. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  5799. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5800. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5801. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5802. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5803. // multiply with scales
  5804. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5805. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  5806. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  5807. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  5808. p16_0 = _mm_add_epi32(p16_0, p16_2);
  5809. p16_1 = _mm_add_epi32(p16_1, p16_3);
  5810. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  5811. // multiply with block scale and accumulate
  5812. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  5813. }
  5814. *s = hsum_float_8(acc);
  5815. #elif defined __riscv_v_intrinsic
  5816. uint16_t aux16[2];
  5817. int8_t * scales = (int8_t *)aux16;
  5818. float sumf = 0;
  5819. for (int i = 0; i < nb; ++i) {
  5820. const uint8_t * restrict q3 = x[i].qs;
  5821. const int8_t * restrict q8 = y[i].qs;
  5822. const uint16_t a = *(const uint16_t *)x[i].scales;
  5823. aux16[0] = a & 0x0f0f;
  5824. aux16[1] = (a >> 4) & 0x0f0f;
  5825. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5826. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5827. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5828. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5829. // load qh
  5830. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  5831. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  5832. size_t vl = 16;
  5833. // extend and combine both qh_x1 and qh_x2
  5834. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  5835. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5836. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  5837. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5838. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  5839. // load Q3
  5840. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  5841. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  5842. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  5843. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  5844. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  5845. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  5846. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  5847. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  5848. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  5849. // load Q8 and take product with Q3
  5850. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5851. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5852. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5853. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5854. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  5855. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  5856. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  5857. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  5858. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  5859. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  5860. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  5861. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  5862. sumf += d * isum;
  5863. }
  5864. *s = sumf;
  5865. #else
  5866. int8_t aux8[QK_K];
  5867. int16_t aux16[8];
  5868. float sums [8];
  5869. int32_t aux32[8];
  5870. int32_t scales[4];
  5871. memset(sums, 0, 8*sizeof(float));
  5872. float sumf = 0;
  5873. for (int i = 0; i < nb; ++i) {
  5874. const uint8_t * restrict q3 = x[i].qs;
  5875. const uint8_t * restrict hm = x[i].hmask;
  5876. const int8_t * restrict q8 = y[i].qs;
  5877. int8_t * restrict a = aux8;
  5878. for (int l = 0; l < 8; ++l) {
  5879. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  5880. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  5881. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  5882. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  5883. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  5884. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  5885. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  5886. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  5887. }
  5888. scales[0] = (x[i].scales[0] & 0xF) - 8;
  5889. scales[1] = (x[i].scales[0] >> 4) - 8;
  5890. scales[2] = (x[i].scales[1] & 0xF) - 8;
  5891. scales[3] = (x[i].scales[1] >> 4) - 8;
  5892. memset(aux32, 0, 8*sizeof(int32_t));
  5893. for (int j = 0; j < QK_K/16; ++j) {
  5894. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5895. q8 += 8; a += 8;
  5896. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  5897. q8 += 8; a += 8;
  5898. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  5899. }
  5900. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5901. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5902. }
  5903. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5904. *s = sumf;
  5905. #endif
  5906. }
  5907. #endif
  5908. #if QK_K == 256
  5909. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5910. assert(n % QK_K == 0);
  5911. assert(nrc == 1);
  5912. UNUSED(nrc);
  5913. UNUSED(bx);
  5914. UNUSED(by);
  5915. UNUSED(bs);
  5916. const block_q4_K * restrict x = vx;
  5917. const block_q8_K * restrict y = vy;
  5918. const int nb = n / QK_K;
  5919. static const uint32_t kmask1 = 0x3f3f3f3f;
  5920. static const uint32_t kmask2 = 0x0f0f0f0f;
  5921. static const uint32_t kmask3 = 0x03030303;
  5922. uint32_t utmp[4];
  5923. #ifdef __ARM_NEON
  5924. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5925. const int32x4_t mzero = vdupq_n_s32(0);
  5926. ggml_int8x16x2_t q4bytes;
  5927. ggml_int8x16x2_t q8bytes;
  5928. float sumf = 0;
  5929. for (int i = 0; i < nb; ++i) {
  5930. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5931. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5932. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5933. memcpy(utmp, x[i].scales, 12);
  5934. uint32x2_t mins8 = { 0 };
  5935. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5936. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5937. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5938. utmp[0] &= kmask1;
  5939. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5940. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5941. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5942. sumf -= dmin * vaddvq_s32(prod);
  5943. const uint8_t * scales = (const uint8_t *)utmp;
  5944. const uint8_t * restrict q4 = x[i].qs;
  5945. const int8_t * restrict q8 = y[i].qs;
  5946. int32_t sumi1 = 0;
  5947. int32_t sumi2 = 0;
  5948. for (int j = 0; j < QK_K/64; ++j) {
  5949. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5950. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5951. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5952. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5953. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5954. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5955. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5956. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5957. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5958. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5959. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5960. }
  5961. sumf += d * (sumi1 + sumi2);
  5962. }
  5963. *s = sumf;
  5964. #elif defined __AVX2__
  5965. const __m256i m4 = _mm256_set1_epi8(0xF);
  5966. __m256 acc = _mm256_setzero_ps();
  5967. __m128 acc_m = _mm_setzero_ps();
  5968. for (int i = 0; i < nb; ++i) {
  5969. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5970. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5971. memcpy(utmp, x[i].scales, 12);
  5972. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5973. const uint32_t uaux = utmp[1] & kmask1;
  5974. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5975. utmp[2] = uaux;
  5976. utmp[0] &= kmask1;
  5977. const uint8_t * restrict q4 = x[i].qs;
  5978. const int8_t * restrict q8 = y[i].qs;
  5979. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5980. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5981. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5982. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5983. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5984. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5985. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5986. __m256i sumi = _mm256_setzero_si256();
  5987. for (int j = 0; j < QK_K/64; ++j) {
  5988. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5989. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5990. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5991. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5992. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5993. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5994. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5995. p16l = _mm256_madd_epi16(scale_l, p16l);
  5996. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5997. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5998. p16h = _mm256_madd_epi16(scale_h, p16h);
  5999. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  6000. sumi = _mm256_add_epi32(sumi, sumj);
  6001. }
  6002. __m256 vd = _mm256_set1_ps(d);
  6003. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6004. }
  6005. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6006. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6007. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6008. #elif defined __AVX__
  6009. const __m128i m4 = _mm_set1_epi8(0xF);
  6010. const __m128i m2 = _mm_set1_epi8(0x2);
  6011. __m256 acc = _mm256_setzero_ps();
  6012. __m128 acc_m = _mm_setzero_ps();
  6013. for (int i = 0; i < nb; ++i) {
  6014. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6015. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6016. const uint8_t * restrict q4 = x[i].qs;
  6017. const int8_t * restrict q8 = y[i].qs;
  6018. memcpy(utmp, x[i].scales, 12);
  6019. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6020. const uint32_t uaux = utmp[1] & kmask1;
  6021. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6022. utmp[2] = uaux;
  6023. utmp[0] &= kmask1;
  6024. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6025. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6026. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6027. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6028. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6029. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6030. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6031. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  6032. __m128i sumi_0 = _mm_setzero_si128();
  6033. __m128i sumi_1 = _mm_setzero_si128();
  6034. __m128i shuffle = _mm_set1_epi16(0x0100);
  6035. for (int j = 0; j < QK_K/64; ++j) {
  6036. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  6037. shuffle = _mm_add_epi16(shuffle, m2);
  6038. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  6039. shuffle = _mm_add_epi16(shuffle, m2);
  6040. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6041. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  6042. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6043. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6044. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  6045. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  6046. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6047. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  6048. p16l = _mm_madd_epi16(scale_l, p16l);
  6049. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  6050. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6051. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  6052. p16l = _mm_madd_epi16(scale_l, p16l);
  6053. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  6054. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6055. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  6056. p16h = _mm_madd_epi16(scale_h, p16h);
  6057. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  6058. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6059. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  6060. p16h = _mm_madd_epi16(scale_h, p16h);
  6061. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  6062. }
  6063. __m256 vd = _mm256_set1_ps(d);
  6064. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6065. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6066. }
  6067. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  6068. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  6069. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  6070. #elif defined __riscv_v_intrinsic
  6071. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6072. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6073. float sumf = 0;
  6074. for (int i = 0; i < nb; ++i) {
  6075. size_t vl = 8;
  6076. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6077. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6078. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6079. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6080. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6081. memcpy(utmp, x[i].scales, 12);
  6082. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6083. const uint32_t uaux = utmp[1] & kmask1;
  6084. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6085. utmp[2] = uaux;
  6086. utmp[0] &= kmask1;
  6087. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6088. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6089. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6090. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6091. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6092. const uint8_t * restrict q4 = x[i].qs;
  6093. const int8_t * restrict q8 = y[i].qs;
  6094. vl = 32;
  6095. int32_t sum_1 = 0;
  6096. int32_t sum_2 = 0;
  6097. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6098. for (int j = 0; j < QK_K/64; ++j) {
  6099. // load Q4
  6100. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6101. // load Q8 and multiply it with lower Q4 nibble
  6102. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  6103. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6104. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  6105. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  6106. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  6107. // load Q8 and multiply it with upper Q4 nibble
  6108. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  6109. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6110. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  6111. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  6112. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  6113. q4 += 32; q8 += 64;
  6114. }
  6115. sumf += d*(sum_1 + sum_2);
  6116. }
  6117. *s = sumf;
  6118. #else
  6119. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6120. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6121. int8_t aux8[QK_K];
  6122. int16_t aux16[8];
  6123. float sums [8];
  6124. int32_t aux32[8];
  6125. memset(sums, 0, 8*sizeof(float));
  6126. float sumf = 0;
  6127. for (int i = 0; i < nb; ++i) {
  6128. const uint8_t * restrict q4 = x[i].qs;
  6129. const int8_t * restrict q8 = y[i].qs;
  6130. memset(aux32, 0, 8*sizeof(int32_t));
  6131. int8_t * restrict a = aux8;
  6132. for (int j = 0; j < QK_K/64; ++j) {
  6133. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6134. a += 32;
  6135. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6136. a += 32; q4 += 32;
  6137. }
  6138. memcpy(utmp, x[i].scales, 12);
  6139. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6140. const uint32_t uaux = utmp[1] & kmask1;
  6141. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6142. utmp[2] = uaux;
  6143. utmp[0] &= kmask1;
  6144. int sumi = 0;
  6145. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6146. a = aux8;
  6147. int is = 0;
  6148. for (int j = 0; j < QK_K/32; ++j) {
  6149. int32_t scale = scales[is++];
  6150. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6151. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6152. q8 += 8; a += 8;
  6153. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6154. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6155. q8 += 8; a += 8;
  6156. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6157. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6158. q8 += 8; a += 8;
  6159. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6160. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6161. q8 += 8; a += 8;
  6162. }
  6163. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6164. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6165. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6166. sumf -= dmin * sumi;
  6167. }
  6168. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6169. *s = sumf;
  6170. #endif
  6171. }
  6172. #else
  6173. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6174. assert(n % QK_K == 0);
  6175. assert(nrc == 1);
  6176. UNUSED(nrc);
  6177. UNUSED(bx);
  6178. UNUSED(by);
  6179. UNUSED(bs);
  6180. const block_q4_K * restrict x = vx;
  6181. const block_q8_K * restrict y = vy;
  6182. const int nb = n / QK_K;
  6183. #ifdef __ARM_NEON
  6184. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6185. const int32x4_t mzero = vdupq_n_s32(0);
  6186. float sumf = 0;
  6187. ggml_int8x16x2_t q4bytes;
  6188. ggml_int8x16x4_t q8bytes;
  6189. float sum_mins = 0.f;
  6190. uint16_t aux16[2];
  6191. const uint8_t * restrict scales = (const uint8_t *)aux16;
  6192. for (int i = 0; i < nb; ++i) {
  6193. const uint8_t * restrict q4 = x[i].qs;
  6194. const int8_t * restrict q8 = y[i].qs;
  6195. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  6196. aux16[0] = a[0] & 0x0f0f;
  6197. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6198. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  6199. sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
  6200. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6201. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  6202. q8bytes = ggml_vld1q_s8_x4(q8);
  6203. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  6204. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  6205. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  6206. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  6207. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  6208. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  6209. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  6210. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  6211. sumf += d * (sumi1 + sumi2);
  6212. }
  6213. *s = sumf - sum_mins;
  6214. #elif defined __AVX2__
  6215. const __m256i m4 = _mm256_set1_epi8(0xF);
  6216. __m256 acc = _mm256_setzero_ps();
  6217. float summs = 0;
  6218. uint16_t aux16[2];
  6219. const uint8_t * scales = (const uint8_t *)aux16;
  6220. for (int i = 0; i < nb; ++i) {
  6221. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  6222. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  6223. const __m256 vd = _mm256_set1_ps(d);
  6224. const uint16_t * a = (const uint16_t *)x[i].scales;
  6225. aux16[0] = a[0] & 0x0f0f;
  6226. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6227. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6228. const uint8_t * restrict q4 = x[i].qs;
  6229. const int8_t * restrict q8 = y[i].qs;
  6230. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  6231. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  6232. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  6233. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6234. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  6235. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  6236. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  6237. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  6238. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  6239. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  6240. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  6241. }
  6242. *s = hsum_float_8(acc) - summs;
  6243. #elif defined __AVX__
  6244. const __m128i m4 = _mm_set1_epi8(0xF);
  6245. __m256 acc = _mm256_setzero_ps();
  6246. float summs = 0;
  6247. uint16_t aux16[2];
  6248. const uint8_t * scales = (const uint8_t *)aux16;
  6249. for (int i = 0; i < nb; ++i) {
  6250. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  6251. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  6252. const __m256 vd = _mm256_set1_ps(d);
  6253. const uint16_t * a = (const uint16_t *)x[i].scales;
  6254. aux16[0] = a[0] & 0x0f0f;
  6255. aux16[1] = (a[0] >> 4) & 0x0f0f;
  6256. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6257. const uint8_t * restrict q4 = x[i].qs;
  6258. const int8_t * restrict q8 = y[i].qs;
  6259. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  6260. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  6261. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  6262. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  6263. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  6264. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  6265. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  6266. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6267. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6268. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  6269. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  6270. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  6271. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  6272. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  6273. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  6274. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  6275. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  6276. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  6277. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  6278. }
  6279. *s = hsum_float_8(acc) - summs;
  6280. #elif defined __riscv_v_intrinsic
  6281. uint16_t s16[2];
  6282. const uint8_t * restrict scales = (const uint8_t *)s16;
  6283. float sumf = 0;
  6284. for (int i = 0; i < nb; ++i) {
  6285. const uint8_t * restrict q4 = x[i].qs;
  6286. const int8_t * restrict q8 = y[i].qs;
  6287. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6288. s16[0] = b[0] & 0x0f0f;
  6289. s16[1] = (b[0] >> 4) & 0x0f0f;
  6290. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6291. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6292. size_t vl = 32;
  6293. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6294. // load Q4
  6295. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6296. // load Q8 and multiply it with lower Q4 nibble
  6297. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6298. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  6299. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  6300. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  6301. // load Q8 and multiply it with upper Q4 nibble
  6302. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6303. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6304. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  6305. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  6306. }
  6307. *s = sumf;
  6308. #else
  6309. uint8_t aux8[QK_K];
  6310. int16_t aux16[16];
  6311. float sums [8];
  6312. memset(sums, 0, 8*sizeof(float));
  6313. uint16_t s16[2];
  6314. const uint8_t * restrict scales = (const uint8_t *)s16;
  6315. float sumf = 0;
  6316. for (int i = 0; i < nb; ++i) {
  6317. const uint8_t * restrict q4 = x[i].qs;
  6318. const int8_t * restrict q8 = y[i].qs;
  6319. uint8_t * restrict a = aux8;
  6320. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  6321. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  6322. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6323. s16[0] = b[0] & 0x0f0f;
  6324. s16[1] = (b[0] >> 4) & 0x0f0f;
  6325. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6326. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6327. for (int j = 0; j < QK_K/32; ++j) {
  6328. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6329. q8 += 16; a += 16;
  6330. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  6331. q8 += 16; a += 16;
  6332. const float dl = d * scales[j];
  6333. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  6334. }
  6335. }
  6336. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6337. *s = sumf;
  6338. #endif
  6339. }
  6340. #endif
  6341. #if QK_K == 256
  6342. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6343. assert(n % QK_K == 0);
  6344. assert(nrc == 1);
  6345. UNUSED(nrc);
  6346. UNUSED(bx);
  6347. UNUSED(by);
  6348. UNUSED(bs);
  6349. const block_q5_K * restrict x = vx;
  6350. const block_q8_K * restrict y = vy;
  6351. const int nb = n / QK_K;
  6352. static const uint32_t kmask1 = 0x3f3f3f3f;
  6353. static const uint32_t kmask2 = 0x0f0f0f0f;
  6354. static const uint32_t kmask3 = 0x03030303;
  6355. uint32_t utmp[4];
  6356. #ifdef __ARM_NEON
  6357. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6358. const uint8x16_t mone = vdupq_n_u8(1);
  6359. const uint8x16_t mtwo = vdupq_n_u8(2);
  6360. const int32x4_t mzero = vdupq_n_s32(0);
  6361. ggml_int8x16x4_t q5bytes;
  6362. float sumf = 0;
  6363. for (int i = 0; i < nb; ++i) {
  6364. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6365. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6366. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6367. memcpy(utmp, x[i].scales, 12);
  6368. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6369. const uint32_t uaux = utmp[1] & kmask1;
  6370. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6371. utmp[2] = uaux;
  6372. utmp[0] &= kmask1;
  6373. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6374. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6375. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6376. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6377. int32_t sumi_mins = vaddvq_s32(prod);
  6378. const uint8_t * scales = (const uint8_t *)utmp;
  6379. const uint8_t * restrict q5 = x[i].qs;
  6380. const uint8_t * restrict qh = x[i].qh;
  6381. const int8_t * restrict q8 = y[i].qs;
  6382. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6383. ggml_uint8x16x4_t q5h;
  6384. int32_t sumi = 0;
  6385. for (int j = 0; j < QK_K/64; ++j) {
  6386. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6387. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6388. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6389. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6390. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6391. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6392. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6393. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6394. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6395. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6396. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6397. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6398. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6399. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6400. }
  6401. sumf += d * sumi - dmin * sumi_mins;
  6402. }
  6403. *s = sumf;
  6404. #elif defined __AVX2__
  6405. const __m256i m4 = _mm256_set1_epi8(0xF);
  6406. const __m128i mzero = _mm_setzero_si128();
  6407. const __m256i mone = _mm256_set1_epi8(1);
  6408. __m256 acc = _mm256_setzero_ps();
  6409. float summs = 0.f;
  6410. for (int i = 0; i < nb; ++i) {
  6411. const uint8_t * restrict q5 = x[i].qs;
  6412. const int8_t * restrict q8 = y[i].qs;
  6413. #if QK_K == 256
  6414. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6415. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6416. memcpy(utmp, x[i].scales, 12);
  6417. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6418. const uint32_t uaux = utmp[1] & kmask1;
  6419. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6420. utmp[2] = uaux;
  6421. utmp[0] &= kmask1;
  6422. #else
  6423. // TODO
  6424. const float d = 0, dmin = 0;
  6425. #endif
  6426. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6427. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6428. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6429. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6430. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6431. summs += dmin * _mm_extract_epi32(hsum, 0);
  6432. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6433. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6434. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6435. __m256i hmask = mone;
  6436. __m256i sumi = _mm256_setzero_si256();
  6437. int bit = 0;
  6438. for (int j = 0; j < QK_K/64; ++j) {
  6439. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6440. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6441. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6442. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6443. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6444. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6445. hmask = _mm256_slli_epi16(hmask, 1);
  6446. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6447. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6448. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6449. hmask = _mm256_slli_epi16(hmask, 1);
  6450. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6451. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6452. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6453. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6454. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6455. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6456. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6457. }
  6458. __m256 vd = _mm256_set1_ps(d);
  6459. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6460. }
  6461. *s = hsum_float_8(acc) + summs;
  6462. #elif defined __AVX__
  6463. const __m128i m4 = _mm_set1_epi8(0xF);
  6464. const __m128i mzero = _mm_setzero_si128();
  6465. const __m128i mone = _mm_set1_epi8(1);
  6466. const __m128i m2 = _mm_set1_epi8(2);
  6467. __m256 acc = _mm256_setzero_ps();
  6468. float summs = 0.f;
  6469. for (int i = 0; i < nb; ++i) {
  6470. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6471. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6472. const uint8_t * restrict q5 = x[i].qs;
  6473. const int8_t * restrict q8 = y[i].qs;
  6474. memcpy(utmp, x[i].scales, 12);
  6475. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6476. const uint32_t uaux = utmp[1] & kmask1;
  6477. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6478. utmp[2] = uaux;
  6479. utmp[0] &= kmask1;
  6480. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6481. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6482. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6483. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6484. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6485. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6486. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6487. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6488. summs += dmin * _mm_extract_epi32(hsum, 0);
  6489. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6490. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6491. __m128i hmask = mone;
  6492. __m128i sumi_0 = _mm_setzero_si128();
  6493. __m128i sumi_1 = _mm_setzero_si128();
  6494. int bit = 0;
  6495. __m128i shuffle = _mm_set1_epi16(0x0100);
  6496. for (int j = 0; j < QK_K/64; ++j) {
  6497. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6498. shuffle = _mm_add_epi16(shuffle, m2);
  6499. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6500. shuffle = _mm_add_epi16(shuffle, m2);
  6501. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6502. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6503. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6504. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6505. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6506. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6507. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6508. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6509. hmask = _mm_slli_epi16(hmask, 1);
  6510. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6511. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6512. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6513. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6514. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6515. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6516. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6517. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6518. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6519. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6520. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6521. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6522. hmask = _mm_slli_epi16(hmask, 1);
  6523. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6524. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6525. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6526. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6527. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6528. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6529. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6530. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6531. }
  6532. __m256 vd = _mm256_set1_ps(d);
  6533. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6534. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6535. }
  6536. *s = hsum_float_8(acc) + summs;
  6537. #elif defined __riscv_v_intrinsic
  6538. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6539. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6540. float sumf = 0;
  6541. float sums = 0.0;
  6542. size_t vl;
  6543. for (int i = 0; i < nb; ++i) {
  6544. vl = 8;
  6545. const uint8_t * restrict q5 = x[i].qs;
  6546. const uint8_t * restrict hm = x[i].qh;
  6547. const int8_t * restrict q8 = y[i].qs;
  6548. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6549. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6550. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6551. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6552. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6553. memcpy(utmp, x[i].scales, 12);
  6554. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6555. const uint32_t uaux = utmp[1] & kmask1;
  6556. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6557. utmp[2] = uaux;
  6558. utmp[0] &= kmask1;
  6559. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6560. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6561. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6562. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6563. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6564. vl = 32;
  6565. int32_t aux32 = 0;
  6566. int is = 0;
  6567. uint8_t m = 1;
  6568. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6569. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6570. for (int j = 0; j < QK_K/64; ++j) {
  6571. // load Q5 and Q8
  6572. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6573. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6574. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6575. // compute mask for addition
  6576. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6577. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6578. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6579. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6580. m <<= 1;
  6581. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6582. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6583. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6584. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6585. m <<= 1;
  6586. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6587. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6588. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6589. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6590. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6591. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6592. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6593. q5 += 32; q8 += 64;
  6594. }
  6595. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6596. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6597. }
  6598. *s = sumf+sums;
  6599. #else
  6600. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6601. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6602. int8_t aux8[QK_K];
  6603. int16_t aux16[8];
  6604. float sums [8];
  6605. int32_t aux32[8];
  6606. memset(sums, 0, 8*sizeof(float));
  6607. float sumf = 0;
  6608. for (int i = 0; i < nb; ++i) {
  6609. const uint8_t * restrict q4 = x[i].qs;
  6610. const uint8_t * restrict hm = x[i].qh;
  6611. const int8_t * restrict q8 = y[i].qs;
  6612. memset(aux32, 0, 8*sizeof(int32_t));
  6613. int8_t * restrict a = aux8;
  6614. uint8_t m = 1;
  6615. for (int j = 0; j < QK_K/64; ++j) {
  6616. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6617. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6618. a += 32; m <<= 1;
  6619. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6620. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6621. a += 32; m <<= 1;
  6622. q4 += 32;
  6623. }
  6624. memcpy(utmp, x[i].scales, 12);
  6625. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6626. const uint32_t uaux = utmp[1] & kmask1;
  6627. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6628. utmp[2] = uaux;
  6629. utmp[0] &= kmask1;
  6630. int sumi = 0;
  6631. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6632. a = aux8;
  6633. int is = 0;
  6634. for (int j = 0; j < QK_K/32; ++j) {
  6635. int32_t scale = scales[is++];
  6636. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6637. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6638. q8 += 8; a += 8;
  6639. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6640. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6641. q8 += 8; a += 8;
  6642. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6643. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6644. q8 += 8; a += 8;
  6645. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6646. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6647. q8 += 8; a += 8;
  6648. }
  6649. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6650. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6651. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6652. sumf -= dmin * sumi;
  6653. }
  6654. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6655. *s = sumf;
  6656. #endif
  6657. }
  6658. #else
  6659. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6660. assert(n % QK_K == 0);
  6661. assert(nrc == 1);
  6662. UNUSED(nrc);
  6663. UNUSED(bx);
  6664. UNUSED(by);
  6665. UNUSED(bs);
  6666. const block_q5_K * restrict x = vx;
  6667. const block_q8_K * restrict y = vy;
  6668. const int nb = n / QK_K;
  6669. #ifdef __ARM_NEON
  6670. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6671. const uint8x16_t mh = vdupq_n_u8(16);
  6672. const int32x4_t mzero = vdupq_n_s32(0);
  6673. ggml_int8x16x4_t q5bytes;
  6674. ggml_uint8x16x4_t q5h;
  6675. float sumf = 0;
  6676. for (int i = 0; i < nb; ++i) {
  6677. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6678. const int8_t * sc = x[i].scales;
  6679. const uint8_t * restrict q5 = x[i].qs;
  6680. const uint8_t * restrict qh = x[i].qh;
  6681. const int8_t * restrict q8 = y[i].qs;
  6682. const uint8x8_t qhbits = vld1_u8(qh);
  6683. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  6684. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6685. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  6686. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  6687. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  6688. q5h.val[2] = vbicq_u8(mh, htmp);
  6689. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  6690. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  6691. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  6692. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  6693. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  6694. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  6695. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  6696. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  6697. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  6698. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6699. }
  6700. *s = sumf;
  6701. #elif defined __AVX2__
  6702. const __m256i m4 = _mm256_set1_epi8(0xF);
  6703. const __m256i mone = _mm256_set1_epi8(1);
  6704. __m256 acc = _mm256_setzero_ps();
  6705. for (int i = 0; i < nb; ++i) {
  6706. const uint8_t * restrict q5 = x[i].qs;
  6707. const int8_t * restrict q8 = y[i].qs;
  6708. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6709. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6710. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  6711. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  6712. int64_t aux64;
  6713. memcpy(&aux64, x[i].qh, 8);
  6714. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  6715. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  6716. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  6717. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  6718. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6719. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6720. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6721. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6722. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  6723. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  6724. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  6725. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  6726. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  6727. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  6728. }
  6729. *s = hsum_float_8(acc);
  6730. #elif defined __AVX__
  6731. const __m128i m4 = _mm_set1_epi8(0xF);
  6732. const __m128i mone = _mm_set1_epi8(1);
  6733. __m256 acc = _mm256_setzero_ps();
  6734. for (int i = 0; i < nb; ++i) {
  6735. const uint8_t * restrict q5 = x[i].qs;
  6736. const int8_t * restrict q8 = y[i].qs;
  6737. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6738. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6739. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  6740. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  6741. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  6742. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  6743. int64_t aux64;
  6744. memcpy(&aux64, x[i].qh, 8);
  6745. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  6746. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  6747. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  6748. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  6749. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  6750. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  6751. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  6752. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  6753. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  6754. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  6755. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6756. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6757. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  6758. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  6759. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  6760. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  6761. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  6762. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  6763. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  6764. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  6765. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  6766. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  6767. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  6768. }
  6769. *s = hsum_float_8(acc);
  6770. #elif defined __riscv_v_intrinsic
  6771. float sumf = 0;
  6772. for (int i = 0; i < nb; ++i) {
  6773. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6774. const int8_t * sc = x[i].scales;
  6775. const uint8_t * restrict q5 = x[i].qs;
  6776. const uint8_t * restrict qh = x[i].qh;
  6777. const int8_t * restrict q8 = y[i].qs;
  6778. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6779. // load qh
  6780. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  6781. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6782. size_t vl = 16;
  6783. // combine both qh_1 and qh_2
  6784. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6785. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6786. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  6787. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  6788. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6789. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  6790. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  6791. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  6792. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  6793. // load q5
  6794. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  6795. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  6796. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  6797. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  6798. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  6799. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  6800. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  6801. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  6802. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  6803. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  6804. // load Q8 and multiply it with Q5
  6805. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6806. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6807. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6808. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6809. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6810. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6811. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6812. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6813. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  6814. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  6815. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  6816. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  6817. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6818. }
  6819. *s = sumf;
  6820. #else
  6821. int8_t aux8[QK_K];
  6822. int16_t aux16[16];
  6823. float sums [8];
  6824. memset(sums, 0, 8*sizeof(float));
  6825. float sumf = 0;
  6826. for (int i = 0; i < nb; ++i) {
  6827. const uint8_t * restrict q4 = x[i].qs;
  6828. const uint8_t * restrict hm = x[i].qh;
  6829. const int8_t * restrict q8 = y[i].qs;
  6830. int8_t * restrict a = aux8;
  6831. for (int l = 0; l < 32; ++l) {
  6832. a[l+ 0] = q4[l] & 0xF;
  6833. a[l+32] = q4[l] >> 4;
  6834. }
  6835. for (int is = 0; is < 8; ++is) {
  6836. uint8_t m = 1 << is;
  6837. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  6838. }
  6839. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6840. const int8_t * restrict sc = x[i].scales;
  6841. for (int j = 0; j < QK_K/16; ++j) {
  6842. const float dl = d * sc[j];
  6843. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6844. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  6845. q8 += 16; a += 16;
  6846. }
  6847. }
  6848. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6849. *s = sumf;
  6850. #endif
  6851. }
  6852. #endif
  6853. #if QK_K == 256
  6854. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6855. assert(n % QK_K == 0);
  6856. assert(nrc == 1);
  6857. UNUSED(nrc);
  6858. UNUSED(bx);
  6859. UNUSED(by);
  6860. UNUSED(bs);
  6861. const block_q6_K * restrict x = vx;
  6862. const block_q8_K * restrict y = vy;
  6863. const int nb = n / QK_K;
  6864. #ifdef __ARM_NEON
  6865. float sum = 0;
  6866. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6867. const int32x4_t vzero = vdupq_n_s32(0);
  6868. //const int8x16_t m32s = vdupq_n_s8(32);
  6869. const uint8x16_t mone = vdupq_n_u8(3);
  6870. ggml_int8x16x4_t q6bytes;
  6871. ggml_uint8x16x4_t q6h;
  6872. for (int i = 0; i < nb; ++i) {
  6873. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6874. const uint8_t * restrict q6 = x[i].ql;
  6875. const uint8_t * restrict qh = x[i].qh;
  6876. const int8_t * restrict q8 = y[i].qs;
  6877. const int8_t * restrict scale = x[i].scales;
  6878. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6879. const int8x16_t scales = vld1q_s8(scale);
  6880. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6881. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6882. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6883. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6884. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6885. int32_t isum_mins = vaddvq_s32(prod);
  6886. int32_t isum = 0;
  6887. for (int j = 0; j < QK_K/128; ++j) {
  6888. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6889. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6890. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6891. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6892. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6893. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6894. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6895. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6896. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6897. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6898. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6899. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6900. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6901. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6902. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6903. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6904. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6905. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6906. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6907. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6908. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6909. scale += 4;
  6910. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6911. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6912. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6913. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6914. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6915. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6916. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6917. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6918. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6919. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6920. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6921. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6922. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6923. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6924. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6925. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6926. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6927. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6928. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6929. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6930. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6931. scale += 4;
  6932. }
  6933. //sum += isum * d_all * y[i].d;
  6934. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6935. }
  6936. *s = sum;
  6937. #elif defined __AVX2__
  6938. const __m256i m4 = _mm256_set1_epi8(0xF);
  6939. const __m256i m2 = _mm256_set1_epi8(3);
  6940. const __m256i m32s = _mm256_set1_epi8(32);
  6941. __m256 acc = _mm256_setzero_ps();
  6942. for (int i = 0; i < nb; ++i) {
  6943. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6944. const uint8_t * restrict q4 = x[i].ql;
  6945. const uint8_t * restrict qh = x[i].qh;
  6946. const int8_t * restrict q8 = y[i].qs;
  6947. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6948. __m256i sumi = _mm256_setzero_si256();
  6949. int is = 0;
  6950. for (int j = 0; j < QK_K/128; ++j) {
  6951. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6952. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6953. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6954. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6955. is += 4;
  6956. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6957. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6958. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6959. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6960. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6961. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6962. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6963. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6964. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6965. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6966. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6967. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6968. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6969. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6970. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6971. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6972. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6973. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6974. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6975. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6976. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6977. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6978. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6979. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6980. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6981. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6982. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6983. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6984. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6985. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6986. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6987. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6988. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6989. }
  6990. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6991. }
  6992. *s = hsum_float_8(acc);
  6993. #elif defined __AVX__
  6994. const __m128i m4 = _mm_set1_epi8(0xF);
  6995. const __m128i m3 = _mm_set1_epi8(3);
  6996. const __m128i m32s = _mm_set1_epi8(32);
  6997. const __m128i m2 = _mm_set1_epi8(2);
  6998. __m256 acc = _mm256_setzero_ps();
  6999. for (int i = 0; i < nb; ++i) {
  7000. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7001. const uint8_t * restrict q4 = x[i].ql;
  7002. const uint8_t * restrict qh = x[i].qh;
  7003. const int8_t * restrict q8 = y[i].qs;
  7004. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  7005. __m128i sumi_0 = _mm_setzero_si128();
  7006. __m128i sumi_1 = _mm_setzero_si128();
  7007. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  7008. for (int j = 0; j < QK_K/128; ++j) {
  7009. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7010. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  7011. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  7012. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  7013. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  7014. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  7015. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  7016. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  7017. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  7018. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  7019. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7020. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7021. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7022. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  7023. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  7024. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  7025. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  7026. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  7027. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  7028. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  7029. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  7030. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  7031. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7032. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7033. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7034. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7035. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7036. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7037. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7038. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  7039. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  7040. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  7041. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  7042. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  7043. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  7044. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  7045. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  7046. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  7047. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  7048. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  7049. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  7050. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  7051. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  7052. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  7053. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  7054. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  7055. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7056. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7057. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7058. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7059. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  7060. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  7061. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  7062. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  7063. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  7064. shuffle = _mm_add_epi8(shuffle, m2);
  7065. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  7066. shuffle = _mm_add_epi8(shuffle, m2);
  7067. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  7068. shuffle = _mm_add_epi8(shuffle, m2);
  7069. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  7070. shuffle = _mm_add_epi8(shuffle, m2);
  7071. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7072. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7073. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7074. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7075. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  7076. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  7077. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  7078. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  7079. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7080. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7081. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  7082. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  7083. }
  7084. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  7085. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  7086. }
  7087. *s = hsum_float_8(acc);
  7088. #elif defined __riscv_v_intrinsic
  7089. float sumf = 0;
  7090. for (int i = 0; i < nb; ++i) {
  7091. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7092. const uint8_t * restrict q6 = x[i].ql;
  7093. const uint8_t * restrict qh = x[i].qh;
  7094. const int8_t * restrict q8 = y[i].qs;
  7095. const int8_t * restrict scale = x[i].scales;
  7096. size_t vl;
  7097. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7098. int sum_t = 0;
  7099. int is = 0;
  7100. for (int j = 0; j < QK_K/128; ++j) {
  7101. vl = 32;
  7102. // load qh
  7103. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  7104. // load Q6
  7105. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  7106. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  7107. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  7108. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  7109. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  7110. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  7111. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  7112. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  7113. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  7114. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  7115. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  7116. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  7117. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  7118. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  7119. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  7120. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  7121. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  7122. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  7123. // load Q8 and take product
  7124. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  7125. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  7126. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  7127. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  7128. vl = 16;
  7129. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  7130. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  7131. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  7132. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  7133. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  7134. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  7135. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  7136. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  7137. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  7138. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  7139. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  7140. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  7141. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  7142. q6 += 64; qh += 32; q8 += 128; is=8;
  7143. }
  7144. sumf += d * sum_t;
  7145. }
  7146. *s = sumf;
  7147. #else
  7148. int8_t aux8[QK_K];
  7149. int16_t aux16[8];
  7150. float sums [8];
  7151. int32_t aux32[8];
  7152. memset(sums, 0, 8*sizeof(float));
  7153. float sumf = 0;
  7154. for (int i = 0; i < nb; ++i) {
  7155. const uint8_t * restrict q4 = x[i].ql;
  7156. const uint8_t * restrict qh = x[i].qh;
  7157. const int8_t * restrict q8 = y[i].qs;
  7158. memset(aux32, 0, 8*sizeof(int32_t));
  7159. int8_t * restrict a = aux8;
  7160. for (int j = 0; j < QK_K; j += 128) {
  7161. for (int l = 0; l < 32; ++l) {
  7162. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7163. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7164. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7165. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7166. }
  7167. a += 128;
  7168. q4 += 64;
  7169. qh += 32;
  7170. }
  7171. a = aux8;
  7172. int is = 0;
  7173. for (int j = 0; j < QK_K/16; ++j) {
  7174. int scale = x[i].scales[is++];
  7175. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7176. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7177. q8 += 8; a += 8;
  7178. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7179. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7180. q8 += 8; a += 8;
  7181. }
  7182. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7183. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7184. }
  7185. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7186. *s = sumf;
  7187. #endif
  7188. }
  7189. #else
  7190. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7191. assert(n % QK_K == 0);
  7192. assert(nrc == 1);
  7193. UNUSED(nrc);
  7194. UNUSED(bx);
  7195. UNUSED(by);
  7196. UNUSED(bs);
  7197. const block_q6_K * restrict x = vx;
  7198. const block_q8_K * restrict y = vy;
  7199. const int nb = n / QK_K;
  7200. #ifdef __ARM_NEON
  7201. float sum = 0;
  7202. const uint8x16_t m4b = vdupq_n_u8(0xF);
  7203. const int8x16_t m32s = vdupq_n_s8(32);
  7204. const int32x4_t vzero = vdupq_n_s32(0);
  7205. const uint8x16_t mone = vdupq_n_u8(3);
  7206. ggml_int8x16x4_t q6bytes;
  7207. ggml_uint8x16x4_t q6h;
  7208. for (int i = 0; i < nb; ++i) {
  7209. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7210. const uint8_t * restrict q6 = x[i].ql;
  7211. const uint8_t * restrict qh = x[i].qh;
  7212. const int8_t * restrict q8 = y[i].qs;
  7213. const int8_t * restrict scale = x[i].scales;
  7214. int32_t isum = 0;
  7215. uint8x16_t qhbits = vld1q_u8(qh);
  7216. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  7217. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  7218. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  7219. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  7220. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7221. shifted = vshrq_n_u8(qhbits, 4);
  7222. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7223. shifted = vshrq_n_u8(qhbits, 6);
  7224. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  7225. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  7226. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  7227. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  7228. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  7229. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  7230. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  7231. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  7232. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  7233. sum += isum * d_all * y[i].d;
  7234. }
  7235. *s = sum;
  7236. #elif defined __AVX2__
  7237. const __m256i m4 = _mm256_set1_epi8(0xF);
  7238. const __m256i m2 = _mm256_set1_epi8(3);
  7239. const __m256i m32s = _mm256_set1_epi8(32);
  7240. __m256 acc = _mm256_setzero_ps();
  7241. for (int i = 0; i < nb; ++i) {
  7242. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7243. const uint8_t * restrict q4 = x[i].ql;
  7244. const uint8_t * restrict qh = x[i].qh;
  7245. const int8_t * restrict q8 = y[i].qs;
  7246. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  7247. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  7248. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  7249. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  7250. __m256i sumi = _mm256_setzero_si256();
  7251. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  7252. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  7253. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  7254. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  7255. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  7256. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  7257. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  7258. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  7259. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7260. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7261. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  7262. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  7263. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  7264. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  7265. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  7266. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  7267. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  7268. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  7269. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  7270. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  7271. }
  7272. *s = hsum_float_8(acc);
  7273. #elif defined __AVX__
  7274. const __m128i m4 = _mm_set1_epi8(0xF);
  7275. const __m128i m2 = _mm_set1_epi8(3);
  7276. const __m128i m32s = _mm_set1_epi8(32);
  7277. __m256 acc = _mm256_setzero_ps();
  7278. for (int i = 0; i < nb; ++i) {
  7279. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7280. const uint8_t * restrict q4 = x[i].ql;
  7281. const uint8_t * restrict qh = x[i].qh;
  7282. const int8_t * restrict q8 = y[i].qs;
  7283. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  7284. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  7285. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  7286. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  7287. __m128i sumi_0 = _mm_setzero_si128();
  7288. __m128i sumi_1 = _mm_setzero_si128();
  7289. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  7290. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  7291. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  7292. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  7293. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  7294. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  7295. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  7296. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  7297. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  7298. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  7299. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  7300. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  7301. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7302. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7303. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  7304. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  7305. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  7306. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  7307. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  7308. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  7309. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  7310. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  7311. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7312. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7313. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7314. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7315. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7316. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7317. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7318. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7319. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7320. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7321. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  7322. }
  7323. *s = hsum_float_8(acc);
  7324. #elif defined __riscv_v_intrinsic
  7325. float sumf = 0;
  7326. for (int i = 0; i < nb; ++i) {
  7327. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7328. const uint8_t * restrict q6 = x[i].ql;
  7329. const uint8_t * restrict qh = x[i].qh;
  7330. const int8_t * restrict q8 = y[i].qs;
  7331. const int8_t * restrict scale = x[i].scales;
  7332. int32_t isum = 0;
  7333. size_t vl = 16;
  7334. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7335. // load Q6
  7336. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  7337. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  7338. // load qh
  7339. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  7340. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7341. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7342. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7343. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7344. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7345. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7346. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7347. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  7348. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  7349. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  7350. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  7351. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  7352. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  7353. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  7354. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  7355. // load Q8 and take product
  7356. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  7357. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  7358. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  7359. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  7360. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  7361. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  7362. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  7363. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  7364. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  7365. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  7366. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  7367. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  7368. sumf += isum * d_all * y[i].d;
  7369. }
  7370. *s = sumf;
  7371. #else
  7372. int8_t aux8[QK_K];
  7373. int16_t aux16[8];
  7374. float sums [8];
  7375. int32_t aux32[8];
  7376. memset(sums, 0, 8*sizeof(float));
  7377. float sumf = 0;
  7378. for (int i = 0; i < nb; ++i) {
  7379. const uint8_t * restrict q4 = x[i].ql;
  7380. const uint8_t * restrict qh = x[i].qh;
  7381. const int8_t * restrict q8 = y[i].qs;
  7382. memset(aux32, 0, 8*sizeof(int32_t));
  7383. int8_t * restrict a = aux8;
  7384. for (int l = 0; l < 16; ++l) {
  7385. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7386. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7387. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7388. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7389. }
  7390. int is = 0;
  7391. for (int j = 0; j < QK_K/16; ++j) {
  7392. int scale = x[i].scales[is++];
  7393. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7394. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7395. q8 += 8; a += 8;
  7396. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7397. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7398. q8 += 8; a += 8;
  7399. }
  7400. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7401. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7402. }
  7403. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7404. *s = sumf;
  7405. #endif
  7406. }
  7407. #endif
  7408. #if defined (__AVX2__) || defined (__ARM_NEON)
  7409. static const int8_t keven_signs_q2xs[1024] = {
  7410. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7411. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7412. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7413. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7414. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7415. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7416. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7417. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7418. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7419. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7420. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7421. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7422. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7423. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7424. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7425. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7426. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7427. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7428. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7429. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7430. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7431. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7432. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7433. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7434. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7435. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7436. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7437. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7438. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7439. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7440. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7441. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7442. };
  7443. #endif
  7444. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7445. assert(n % QK_K == 0);
  7446. assert(nrc == 1);
  7447. UNUSED(nrc);
  7448. UNUSED(bx);
  7449. UNUSED(by);
  7450. UNUSED(bs);
  7451. const block_iq2_xxs * restrict x = vx;
  7452. const block_q8_K * restrict y = vy;
  7453. const int nb = n / QK_K;
  7454. #if defined(__ARM_NEON)
  7455. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7456. uint32_t aux32[4];
  7457. const uint8_t * aux8 = (const uint8_t *)aux32;
  7458. ggml_int8x16x4_t q2u;
  7459. ggml_int8x16x4_t q2s;
  7460. ggml_int8x16x4_t q8b;
  7461. float sumf = 0;
  7462. for (int i = 0; i < nb; ++i) {
  7463. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7464. const uint16_t * restrict q2 = x[i].qs;
  7465. const int8_t * restrict q8 = y[i].qs;
  7466. float sumf1 = 0, sumf2 = 0;
  7467. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7468. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7469. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7470. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7471. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7472. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7473. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7474. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7475. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7476. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7477. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7478. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7479. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7480. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7481. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7482. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7483. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7484. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7485. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7486. }
  7487. sumf += d*(sumf1 + sumf2);
  7488. }
  7489. *s = 0.25f * sumf;
  7490. #elif defined(__AVX2__)
  7491. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7492. uint32_t aux32[4];
  7493. const uint8_t * aux8 = (const uint8_t *)aux32;
  7494. __m256 accumf = _mm256_setzero_ps();
  7495. for (int i = 0; i < nb; ++i) {
  7496. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7497. const uint16_t * restrict q2 = x[i].qs;
  7498. const int8_t * restrict q8 = y[i].qs;
  7499. __m256i sumi1 = _mm256_setzero_si256();
  7500. __m256i sumi2 = _mm256_setzero_si256();
  7501. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7502. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7503. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7504. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7505. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7506. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7507. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7508. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7509. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7510. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7511. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7512. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7513. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7514. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7515. const uint16_t ls1 = aux32[1] >> 28;
  7516. const uint16_t ls2 = aux32[3] >> 28;
  7517. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7518. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7519. sumi1 = _mm256_add_epi32(sumi1, p1);
  7520. sumi2 = _mm256_add_epi32(sumi2, p2);
  7521. }
  7522. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7523. }
  7524. *s = 0.125f * hsum_float_8(accumf);
  7525. #else
  7526. uint32_t aux32[2];
  7527. const uint8_t * aux8 = (const uint8_t *)aux32;
  7528. float sumf = 0.f;
  7529. for (int i = 0; i < nb; ++i) {
  7530. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7531. const uint16_t * restrict q2 = x[i].qs;
  7532. const int8_t * restrict q8 = y[i].qs;
  7533. int32_t bsum = 0;
  7534. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7535. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7536. q2 += 4;
  7537. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7538. int32_t sumi = 0;
  7539. for (int l = 0; l < 4; ++l) {
  7540. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7541. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7542. for (int j = 0; j < 8; ++j) {
  7543. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7544. }
  7545. q8 += 8;
  7546. }
  7547. bsum += sumi * ls;
  7548. }
  7549. sumf += d * bsum;
  7550. }
  7551. *s = 0.125f * sumf;
  7552. #endif
  7553. }
  7554. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7555. assert(n % QK_K == 0);
  7556. assert(nrc == 1);
  7557. UNUSED(nrc);
  7558. UNUSED(bx);
  7559. UNUSED(by);
  7560. UNUSED(bs);
  7561. const block_iq2_xs * restrict x = vx;
  7562. const block_q8_K * restrict y = vy;
  7563. const int nb = n / QK_K;
  7564. #if defined(__ARM_NEON)
  7565. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7566. ggml_int8x16x4_t q2u;
  7567. ggml_int8x16x4_t q2s;
  7568. ggml_int8x16x4_t q8b;
  7569. int32x4x4_t scales32;
  7570. float sumf = 0;
  7571. for (int i = 0; i < nb; ++i) {
  7572. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7573. const uint16_t * restrict q2 = x[i].qs;
  7574. const int8_t * restrict q8 = y[i].qs;
  7575. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7576. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7577. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7578. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7579. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7580. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7581. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7582. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7583. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7584. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7585. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7586. int32x4_t sumi = vdupq_n_s32(0);
  7587. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7588. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7589. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7590. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7591. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7592. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7593. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7594. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7595. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7596. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7597. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7598. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7599. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7600. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7601. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7602. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7603. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7604. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7605. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7606. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7607. q2 += 8;
  7608. }
  7609. sumf += d*vaddvq_s32(sumi);
  7610. }
  7611. *s = 0.125f * sumf;
  7612. #elif defined(__AVX2__)
  7613. const __m128i m4 = _mm_set1_epi8(0xf);
  7614. const __m128i m1 = _mm_set1_epi8(1);
  7615. const __m256i m511 = _mm256_set1_epi16(511);
  7616. const __m256i mone = _mm256_set1_epi8(1);
  7617. static const uint8_t k_bit_helper[32] = {
  7618. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7619. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7620. };
  7621. static const char block_sign_shuffle_mask_1[32] = {
  7622. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7623. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7624. };
  7625. static const char block_sign_shuffle_mask_2[32] = {
  7626. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7627. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7628. };
  7629. static const uint8_t bit_selector_mask_bytes[32] = {
  7630. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7631. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7632. };
  7633. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7634. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7635. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7636. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7637. uint64_t aux64;
  7638. // somewhat hacky, but gives a significant boost in performance
  7639. __m256i aux_gindex;
  7640. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7641. __m256 accumf = _mm256_setzero_ps();
  7642. for (int i = 0; i < nb; ++i) {
  7643. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7644. const uint16_t * restrict q2 = x[i].qs;
  7645. const int8_t * restrict q8 = y[i].qs;
  7646. memcpy(&aux64, x[i].scales, 8);
  7647. __m128i stmp = _mm_set1_epi64x(aux64);
  7648. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7649. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7650. __m256i sumi1 = _mm256_setzero_si256();
  7651. __m256i sumi2 = _mm256_setzero_si256();
  7652. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7653. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7654. aux_gindex = _mm256_and_si256(q2_data, m511);
  7655. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7656. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7657. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7658. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7659. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7660. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7661. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7662. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7663. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7664. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7665. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7666. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7667. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7668. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7669. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7670. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7671. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7672. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7673. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7674. const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
  7675. const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
  7676. __m256i signs;
  7677. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7678. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7679. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7680. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7681. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7682. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7683. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7684. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7685. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7686. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7687. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7688. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7689. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7690. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7691. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7692. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7693. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7694. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7695. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7696. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7697. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7698. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7699. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7700. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7701. }
  7702. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7703. }
  7704. *s = 0.125f * hsum_float_8(accumf);
  7705. #else
  7706. float sumf = 0.f;
  7707. for (int i = 0; i < nb; ++i) {
  7708. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7709. const uint16_t * restrict q2 = x[i].qs;
  7710. const uint8_t * restrict sc = x[i].scales;
  7711. const int8_t * restrict q8 = y[i].qs;
  7712. int32_t bsum = 0;
  7713. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7714. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7715. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7716. int32_t sumi = 0;
  7717. for (int l = 0; l < 2; ++l) {
  7718. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7719. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7720. for (int j = 0; j < 8; ++j) {
  7721. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7722. }
  7723. q8 += 8;
  7724. }
  7725. bsum += sumi * ls1;
  7726. sumi = 0;
  7727. for (int l = 2; l < 4; ++l) {
  7728. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7729. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7730. for (int j = 0; j < 8; ++j) {
  7731. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7732. }
  7733. q8 += 8;
  7734. }
  7735. bsum += sumi * ls2;
  7736. q2 += 4;
  7737. }
  7738. sumf += d * bsum;
  7739. }
  7740. *s = 0.125f * sumf;
  7741. #endif
  7742. }
  7743. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7744. assert(n % QK_K == 0);
  7745. assert(nrc == 1);
  7746. UNUSED(nrc);
  7747. UNUSED(bx);
  7748. UNUSED(by);
  7749. UNUSED(bs);
  7750. const block_iq2_s * restrict x = vx;
  7751. const block_q8_K * restrict y = vy;
  7752. const int nb = n / QK_K;
  7753. #if defined(__ARM_NEON)
  7754. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7755. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7756. };
  7757. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7758. const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
  7759. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7760. const uint8x16_t m1 = vdupq_n_u8(1);
  7761. const int32x4_t vzero = vdupq_n_s32(0);
  7762. uint8x16x2_t vs;
  7763. ggml_int8x16x4_t q2s;
  7764. ggml_int8x16x4_t q8b;
  7765. float sumf = 0;
  7766. for (int i = 0; i < nb; ++i) {
  7767. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7768. const uint8_t * restrict qs = x[i].qs;
  7769. const uint8_t * restrict qh = x[i].qh;
  7770. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7771. const int8_t * restrict q8 = y[i].qs;
  7772. int sumi1 = 0, sumi2 = 0;
  7773. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7774. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7775. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  7776. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  7777. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  7778. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  7779. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  7780. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  7781. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  7782. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  7783. qs += 8;
  7784. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
  7785. vs.val[1] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7786. vs.val[0] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7787. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7788. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7789. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  7790. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  7791. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
  7792. vs.val[1] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7793. vs.val[0] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7794. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7795. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7796. signs += 4;
  7797. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  7798. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  7799. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  7800. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  7801. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  7802. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  7803. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  7804. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  7805. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  7806. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  7807. }
  7808. sumf += d*(sumi1 + sumi2);
  7809. }
  7810. *s = 0.125f * sumf;
  7811. #elif defined(__AVX2__)
  7812. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7813. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7814. };
  7815. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7816. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7817. };
  7818. const __m128i m4 = _mm_set1_epi8(0xf);
  7819. const __m128i m1 = _mm_set1_epi8(1);
  7820. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7821. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7822. uint64_t aux64;
  7823. __m256 accumf = _mm256_setzero_ps();
  7824. for (int i = 0; i < nb; ++i) {
  7825. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7826. const uint8_t * restrict qs = x[i].qs;
  7827. const uint8_t * restrict qh = x[i].qh;
  7828. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7829. const int8_t * restrict q8 = y[i].qs;
  7830. memcpy(&aux64, x[i].scales, 8);
  7831. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7832. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7833. __m256i sumi1 = _mm256_setzero_si256();
  7834. __m256i sumi2 = _mm256_setzero_si256();
  7835. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7836. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7837. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7838. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7839. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7840. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7841. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7842. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7843. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7844. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7845. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7846. qs += 8;
  7847. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7848. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7849. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7850. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7851. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7852. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7853. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7854. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7855. signs += 4;
  7856. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7857. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7858. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  7859. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  7860. sumi1 = _mm256_add_epi32(sumi1, p1);
  7861. sumi2 = _mm256_add_epi32(sumi2, p2);
  7862. }
  7863. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7864. }
  7865. *s = 0.125f * hsum_float_8(accumf);
  7866. #else
  7867. float sumf = 0;
  7868. for (int i = 0; i < nb; i++) {
  7869. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7870. const int8_t * q8 = y[i].qs;
  7871. const uint8_t * qs = x[i].qs;
  7872. const uint8_t * qh = x[i].qh;
  7873. const uint8_t * signs = qs + QK_K/8;
  7874. int bsum = 0;
  7875. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7876. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  7877. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  7878. int sumi1 = 0, sumi2 = 0;
  7879. for (int l = 0; l < 2; ++l) {
  7880. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7881. for (int j = 0; j < 8; ++j) {
  7882. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7883. }
  7884. q8 += 8;
  7885. }
  7886. for (int l = 2; l < 4; ++l) {
  7887. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7888. for (int j = 0; j < 8; ++j) {
  7889. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7890. }
  7891. q8 += 8;
  7892. }
  7893. bsum += ls1 * sumi1 + ls2 * sumi2;
  7894. qs += 4;
  7895. signs += 4;
  7896. }
  7897. sumf += d * bsum;
  7898. }
  7899. *s = 0.125f * sumf;
  7900. #endif
  7901. }
  7902. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7903. assert(n % QK_K == 0);
  7904. assert(nrc == 1);
  7905. UNUSED(nrc);
  7906. UNUSED(bx);
  7907. UNUSED(by);
  7908. UNUSED(bs);
  7909. const block_iq3_xxs * restrict x = vx;
  7910. const block_q8_K * restrict y = vy;
  7911. const int nb = n / QK_K;
  7912. #if defined(__ARM_NEON)
  7913. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7914. uint32_t aux32[2];
  7915. ggml_int8x16x4_t q3s;
  7916. ggml_int8x16x4_t q8b;
  7917. float sumf = 0;
  7918. for (int i = 0; i < nb; ++i) {
  7919. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7920. const uint8_t * restrict q3 = x[i].qs;
  7921. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7922. const int8_t * restrict q8 = y[i].qs;
  7923. float sumf1 = 0, sumf2 = 0;
  7924. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7925. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7926. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7927. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7928. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7929. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7930. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7931. q3 += 16;
  7932. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7933. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7934. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7935. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7936. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7937. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7938. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7939. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7940. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7941. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7942. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7943. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7944. }
  7945. sumf += d*(sumf1 + sumf2);
  7946. }
  7947. *s = 0.5f * sumf;
  7948. #elif defined(__AVX2__)
  7949. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7950. uint32_t aux32[2];
  7951. __m256 accumf = _mm256_setzero_ps();
  7952. for (int i = 0; i < nb; ++i) {
  7953. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7954. const uint8_t * restrict q3 = x[i].qs;
  7955. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7956. const int8_t * restrict q8 = y[i].qs;
  7957. __m256i sumi1 = _mm256_setzero_si256();
  7958. __m256i sumi2 = _mm256_setzero_si256();
  7959. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7960. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7961. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7962. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7963. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7964. q3 += 8;
  7965. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7966. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7967. q3 += 8;
  7968. memcpy(aux32, gas, 8); gas += 8;
  7969. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7970. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7971. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7972. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7973. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7974. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7975. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7976. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7977. const uint16_t ls1 = aux32[0] >> 28;
  7978. const uint16_t ls2 = aux32[1] >> 28;
  7979. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7980. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7981. sumi1 = _mm256_add_epi32(sumi1, p1);
  7982. sumi2 = _mm256_add_epi32(sumi2, p2);
  7983. }
  7984. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7985. }
  7986. *s = 0.25f * hsum_float_8(accumf);
  7987. #else
  7988. uint32_t aux32;
  7989. float sumf = 0.f;
  7990. for (int i = 0; i < nb; ++i) {
  7991. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7992. const uint8_t * restrict q3 = x[i].qs;
  7993. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7994. const int8_t * restrict q8 = y[i].qs;
  7995. int32_t bsum = 0;
  7996. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7997. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7998. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7999. int32_t sumi = 0;
  8000. for (int l = 0; l < 4; ++l) {
  8001. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  8002. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  8003. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  8004. for (int j = 0; j < 4; ++j) {
  8005. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  8006. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  8007. }
  8008. q8 += 8;
  8009. }
  8010. q3 += 8;
  8011. bsum += sumi * ls;
  8012. }
  8013. sumf += d * bsum;
  8014. }
  8015. *s = 0.25f * sumf;
  8016. #endif
  8017. }
  8018. void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  8019. assert(n % QK_K == 0);
  8020. assert(nrc == 1);
  8021. UNUSED(nrc);
  8022. UNUSED(bx);
  8023. UNUSED(by);
  8024. UNUSED(bs);
  8025. const block_iq3_s * restrict x = vx;
  8026. const block_q8_K * restrict y = vy;
  8027. const int nb = n / QK_K;
  8028. #if defined(__ARM_NEON)
  8029. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8030. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8031. };
  8032. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8033. const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
  8034. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8035. uint8x16x2_t vs;
  8036. ggml_int8x16x4_t q3s;
  8037. ggml_int8x16x4_t q8b;
  8038. float sumf = 0;
  8039. for (int i = 0; i < nb; ++i) {
  8040. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8041. const uint8_t * restrict qs = x[i].qs;
  8042. const uint8_t * restrict qh = x[i].qh;
  8043. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8044. const int8_t * restrict q8 = y[i].qs;
  8045. int sumi1 = 0, sumi2 = 0;
  8046. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8047. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8048. const uint32x4_t aux32x4_0 = {iq3xs_grid[qs[ 0] | ((qh[ib32+0] << 8) & 256)], iq3xs_grid[qs[ 1] | ((qh[ib32+0] << 7) & 256)],
  8049. iq3xs_grid[qs[ 2] | ((qh[ib32+0] << 6) & 256)], iq3xs_grid[qs[ 3] | ((qh[ib32+0] << 5) & 256)]};
  8050. const uint32x4_t aux32x4_1 = {iq3xs_grid[qs[ 4] | ((qh[ib32+0] << 4) & 256)], iq3xs_grid[qs[ 5] | ((qh[ib32+0] << 3) & 256)],
  8051. iq3xs_grid[qs[ 6] | ((qh[ib32+0] << 2) & 256)], iq3xs_grid[qs[ 7] | ((qh[ib32+0] << 1) & 256)]};
  8052. const uint32x4_t aux32x4_2 = {iq3xs_grid[qs[ 8] | ((qh[ib32+1] << 8) & 256)], iq3xs_grid[qs[ 9] | ((qh[ib32+1] << 7) & 256)],
  8053. iq3xs_grid[qs[10] | ((qh[ib32+1] << 6) & 256)], iq3xs_grid[qs[11] | ((qh[ib32+1] << 5) & 256)]};
  8054. const uint32x4_t aux32x4_3 = {iq3xs_grid[qs[12] | ((qh[ib32+1] << 4) & 256)], iq3xs_grid[qs[13] | ((qh[ib32+1] << 3) & 256)],
  8055. iq3xs_grid[qs[14] | ((qh[ib32+1] << 2) & 256)], iq3xs_grid[qs[15] | ((qh[ib32+1] << 1) & 256)]};
  8056. qs += 16;
  8057. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
  8058. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8059. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8060. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8061. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8062. q3s.val[0] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_0))), vreinterpretq_s8_u8(vs.val[0]));
  8063. q3s.val[1] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_1))), vreinterpretq_s8_u8(vs.val[1]));
  8064. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
  8065. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8066. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8067. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  8068. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  8069. signs += 4;
  8070. q3s.val[2] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_2))), vreinterpretq_s8_u8(vs.val[0]));
  8071. q3s.val[3] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_3))), vreinterpretq_s8_u8(vs.val[1]));
  8072. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8073. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8074. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  8075. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
  8076. }
  8077. sumf += d*(sumi1 + sumi2);
  8078. }
  8079. *s = 0.25f * sumf;
  8080. #elif defined(__AVX2__)
  8081. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8082. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8083. };
  8084. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8085. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8086. };
  8087. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8088. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8089. __m256 accumf = _mm256_setzero_ps();
  8090. for (int i = 0; i < nb; ++i) {
  8091. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8092. const uint8_t * restrict qs = x[i].qs;
  8093. const uint8_t * restrict qh = x[i].qh;
  8094. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8095. const int8_t * restrict q8 = y[i].qs;
  8096. __m256i sumi1 = _mm256_setzero_si256();
  8097. __m256i sumi2 = _mm256_setzero_si256();
  8098. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8099. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8100. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8101. const __m256i q2_1 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+0] << 1) & 256)],
  8102. iq3xs_grid[qs[6] | ((qh[ib32+0] << 2) & 256)],
  8103. iq3xs_grid[qs[5] | ((qh[ib32+0] << 3) & 256)],
  8104. iq3xs_grid[qs[4] | ((qh[ib32+0] << 4) & 256)],
  8105. iq3xs_grid[qs[3] | ((qh[ib32+0] << 5) & 256)],
  8106. iq3xs_grid[qs[2] | ((qh[ib32+0] << 6) & 256)],
  8107. iq3xs_grid[qs[1] | ((qh[ib32+0] << 7) & 256)],
  8108. iq3xs_grid[qs[0] | ((qh[ib32+0] << 8) & 256)]);
  8109. qs += 8;
  8110. const __m256i q2_2 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+1] << 1) & 256)],
  8111. iq3xs_grid[qs[6] | ((qh[ib32+1] << 2) & 256)],
  8112. iq3xs_grid[qs[5] | ((qh[ib32+1] << 3) & 256)],
  8113. iq3xs_grid[qs[4] | ((qh[ib32+1] << 4) & 256)],
  8114. iq3xs_grid[qs[3] | ((qh[ib32+1] << 5) & 256)],
  8115. iq3xs_grid[qs[2] | ((qh[ib32+1] << 6) & 256)],
  8116. iq3xs_grid[qs[1] | ((qh[ib32+1] << 7) & 256)],
  8117. iq3xs_grid[qs[0] | ((qh[ib32+1] << 8) & 256)]);
  8118. qs += 8;
  8119. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  8120. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8121. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8122. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8123. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  8124. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8125. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8126. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8127. signs += 4;
  8128. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8129. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8130. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8131. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8132. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8133. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8134. sumi1 = _mm256_add_epi32(sumi1, p1);
  8135. sumi2 = _mm256_add_epi32(sumi2, p2);
  8136. }
  8137. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8138. }
  8139. *s = 0.25f * hsum_float_8(accumf);
  8140. #else
  8141. float sumf = 0.f;
  8142. for (int i = 0; i < nb; ++i) {
  8143. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8144. const uint8_t * restrict qs = x[i].qs;
  8145. const uint8_t * restrict qh = x[i].qh;
  8146. const uint8_t * restrict signs = x[i].signs;
  8147. const int8_t * restrict q8 = y[i].qs;
  8148. int32_t bsum = 0;
  8149. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8150. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  8151. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  8152. int32_t sumi = 0;
  8153. for (int l = 0; l < 4; ++l) {
  8154. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  8155. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  8156. for (int j = 0; j < 4; ++j) {
  8157. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8158. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8159. }
  8160. q8 += 8;
  8161. }
  8162. qs += 8;
  8163. signs += 4;
  8164. bsum += sumi * ls1;
  8165. sumi = 0;
  8166. for (int l = 0; l < 4; ++l) {
  8167. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  8168. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  8169. for (int j = 0; j < 4; ++j) {
  8170. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8171. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8172. }
  8173. q8 += 8;
  8174. }
  8175. qs += 8;
  8176. signs += 4;
  8177. bsum += sumi * ls2;
  8178. }
  8179. sumf += d * bsum;
  8180. }
  8181. *s = 0.25f * sumf;
  8182. #endif
  8183. }
  8184. #ifdef __AVX2__
  8185. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8186. const __m256i ax = _mm256_sign_epi8(x, x);
  8187. const __m256i sy = _mm256_sign_epi8(y, x);
  8188. return _mm256_maddubs_epi16(ax, sy);
  8189. }
  8190. #endif
  8191. void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  8192. assert(n % QK_K == 0);
  8193. assert(nrc == 1);
  8194. UNUSED(nrc);
  8195. UNUSED(bx);
  8196. UNUSED(by);
  8197. UNUSED(bs);
  8198. const block_iq1_s * restrict x = vx;
  8199. const block_q8_K * restrict y = vy;
  8200. const int nb = n / QK_K;
  8201. #if defined __ARM_NEON
  8202. const uint8x16_t m8 = vdupq_n_u8(0x08);
  8203. const uint8x16_t m7 = vdupq_n_u8(0x07);
  8204. const uint8x16_t m1 = vdupq_n_u8(0x01);
  8205. const int32x4_t vzero = vdupq_n_s32(0);
  8206. uint16_t gindex[8];
  8207. uint16x8x2_t vindex;
  8208. int8x16x4_t q1b;
  8209. ggml_int8x16x4_t q8b;
  8210. uint16x8x4_t scales;
  8211. int32x4x2_t sumi;
  8212. int32x4x2_t dotq;
  8213. float sumf = 0;
  8214. for (int i = 0; i < nb; ++i) {
  8215. const int8_t * q8 = y[i].qs;
  8216. const uint8_t * qs = x[i].qs;
  8217. const uint8_t * sc = x[i].scales;
  8218. sumi.val[0] = sumi.val[1] = vzero;
  8219. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  8220. const uint8x16_t ql = vld1q_u8(qs); qs += 16;
  8221. const uint8x8_t tm1 = vld1_u8 (sc); sc += 8;
  8222. const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
  8223. const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
  8224. const uint8x16_t hbit = vandq_u8(qh, m8);
  8225. vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
  8226. vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
  8227. const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
  8228. scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
  8229. scales.val[1] = vmovl_u8(vget_high_u8 (scales8));
  8230. for (int l = 0; l < 2; ++l) {
  8231. vst1q_u16(gindex+0, vindex.val[l]);
  8232. q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
  8233. q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
  8234. q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
  8235. q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
  8236. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8237. dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
  8238. dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));
  8239. sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
  8240. sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
  8241. }
  8242. }
  8243. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
  8244. }
  8245. *s = sumf;
  8246. #elif defined __AVX2__
  8247. const __m128i m8 = _mm_set1_epi8(0x08);
  8248. const __m128i m7 = _mm_set1_epi8(0x07);
  8249. const __m128i m1 = _mm_set1_epi8(0x01);
  8250. const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
  8251. const __m128i shuffle_s[4] = {
  8252. _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
  8253. _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
  8254. _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
  8255. _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
  8256. };
  8257. uint64_t aux64;
  8258. __m256i v_gindex;
  8259. const uint16_t * gindex = (const uint16_t *)&v_gindex;
  8260. __m256 accum = _mm256_setzero_ps();
  8261. for (int i = 0; i < nb; ++i) {
  8262. const int8_t * q8 = y[i].qs;
  8263. const uint8_t * qs = x[i].qs;
  8264. const uint8_t * sc = x[i].scales;
  8265. __m256i sumi = _mm256_setzero_si256();
  8266. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  8267. const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8268. memcpy(&aux64, sc, 8); sc += 8;
  8269. const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
  8270. const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
  8271. v_gindex = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
  8272. const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);
  8273. for (int i32 = 0; i32 < 4; ++i32) {
  8274. const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8275. const __m256i q1b = _mm256_set_epi64x(iq1s_grid[gindex[4*i32+3]], iq1s_grid[gindex[4*i32+2]],
  8276. iq1s_grid[gindex[4*i32+1]], iq1s_grid[gindex[4*i32+0]]);
  8277. const __m256i dot = mul_add_epi8(q1b, q8b);
  8278. const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
  8279. const __m256i p = _mm256_madd_epi16(s16, dot);
  8280. sumi = _mm256_add_epi32(sumi, p);
  8281. }
  8282. }
  8283. accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);
  8284. }
  8285. *s = hsum_float_8(accum);
  8286. #else
  8287. int db[4];
  8288. uint16_t idx[4];
  8289. float sumf = 0;
  8290. for (int i = 0; i < nb; ++i) {
  8291. const int8_t * q8 = y[i].qs;
  8292. const uint8_t * qs = x[i].qs;
  8293. const uint8_t * sc = x[i].scales;
  8294. int sumi = 0;
  8295. for (int i32 = 0; i32 < QK_K/32; ++i32) {
  8296. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  8297. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  8298. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  8299. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  8300. db[0] = (2*(sc[0] & 7) + 1);
  8301. db[1] = (2*((sc[0] >> 4) & 7) + 1);
  8302. db[2] = (2*(sc[1] & 7) + 1);
  8303. db[3] = (2*((sc[1] >> 4) & 7) + 1);
  8304. for (int l = 0; l < 4; ++l) {
  8305. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  8306. int suml = 0;
  8307. for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
  8308. sumi += db[l] * suml;
  8309. q8 += 8;
  8310. }
  8311. qs += 4;
  8312. sc += 2;
  8313. }
  8314. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
  8315. }
  8316. *s = sumf;
  8317. #endif
  8318. }
  8319. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8320. assert(nrc == 1);
  8321. UNUSED(nrc);
  8322. UNUSED(bx);
  8323. UNUSED(by);
  8324. UNUSED(bs);
  8325. assert(n % QK4_NL == 0);
  8326. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  8327. const block_iq4_nl * restrict x = vx;
  8328. const block_q8_0 * restrict y = vy;
  8329. const int nb = n / QK4_NL;
  8330. #if defined __ARM_NEON
  8331. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8332. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8333. uint8x16x2_t q4bits;
  8334. int8x16x4_t q4b;
  8335. int8x16x4_t q8b;
  8336. int32x4_t prod_1, prod_2;
  8337. float sumf = 0;
  8338. for (int ib = 0; ib < nb; ib += 2) {
  8339. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  8340. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  8341. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  8342. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  8343. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  8344. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  8345. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8346. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8347. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8348. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8349. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8350. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8351. sumf +=
  8352. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  8353. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  8354. }
  8355. *s = sumf;
  8356. #elif defined __AVX2__
  8357. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8358. const __m128i m4b = _mm_set1_epi8(0x0f);
  8359. const __m256i mone = _mm256_set1_epi16(1);
  8360. __m256 accum1 = _mm256_setzero_ps();
  8361. __m256 accum2 = _mm256_setzero_ps();
  8362. for (int ib = 0; ib < nb; ib += 2) {
  8363. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  8364. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  8365. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  8366. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  8367. const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8368. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8369. const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8370. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8371. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8372. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8373. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  8374. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  8375. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  8376. _mm256_cvtepi32_ps(p_1), accum1);
  8377. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  8378. _mm256_cvtepi32_ps(p_2), accum2);
  8379. y += 2;
  8380. x += 2;
  8381. }
  8382. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  8383. #else
  8384. float sumf = 0;
  8385. for (int ib = 0; ib < nb; ++ib) {
  8386. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  8387. int sumi1 = 0, sumi2 = 0;
  8388. for (int j = 0; j < QK4_NL/2; ++j) {
  8389. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  8390. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  8391. }
  8392. sumf += d * (sumi1 + sumi2);
  8393. }
  8394. *s = sumf;
  8395. #endif
  8396. }
  8397. // ================================ IQ2 quantization =============================================
  8398. typedef struct {
  8399. uint64_t * grid;
  8400. int * map;
  8401. uint16_t * neighbours;
  8402. } iq2_entry_t;
  8403. static iq2_entry_t iq2_data[4] = {
  8404. {NULL, NULL, NULL},
  8405. {NULL, NULL, NULL},
  8406. {NULL, NULL, NULL},
  8407. {NULL, NULL, NULL},
  8408. };
  8409. static inline int iq2_data_index(enum ggml_type type) {
  8410. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
  8411. return type == GGML_TYPE_IQ2_XXS ? 0 :
  8412. type == GGML_TYPE_IQ2_XS ? 1 :
  8413. type == GGML_TYPE_IQ1_S ? 2 : 3;
  8414. }
  8415. static inline int iq2_grid_size(enum ggml_type type) {
  8416. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
  8417. return type == GGML_TYPE_IQ2_XXS ? 256 :
  8418. type == GGML_TYPE_IQ2_XS ? 512 :
  8419. type == GGML_TYPE_IQ1_S ? 512 : 1024;
  8420. }
  8421. static int iq2_compare_func(const void * left, const void * right) {
  8422. const int * l = (const int *)left;
  8423. const int * r = (const int *)right;
  8424. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  8425. }
  8426. void iq2xs_init_impl(enum ggml_type type) {
  8427. const int gindex = iq2_data_index(type);
  8428. const int grid_size = iq2_grid_size(type);
  8429. if (iq2_data[gindex].grid) {
  8430. return;
  8431. }
  8432. static const uint16_t kgrid_2bit_256[256] = {
  8433. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  8434. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  8435. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  8436. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  8437. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  8438. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  8439. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  8440. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  8441. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  8442. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  8443. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  8444. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  8445. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  8446. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  8447. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  8448. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  8449. };
  8450. static const uint16_t kgrid_2bit_512[512] = {
  8451. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  8452. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  8453. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  8454. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  8455. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  8456. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  8457. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  8458. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  8459. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  8460. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  8461. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  8462. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  8463. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  8464. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  8465. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  8466. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  8467. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  8468. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  8469. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  8470. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  8471. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  8472. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  8473. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  8474. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  8475. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  8476. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  8477. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  8478. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  8479. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  8480. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  8481. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  8482. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  8483. };
  8484. static const uint16_t kgrid_1bit_512[512] = {
  8485. 10, 33, 41, 85, 132, 134, 160, 162, 277, 337, 340, 345, 357, 405, 516, 545,
  8486. 553, 598, 641, 650, 681, 1042, 1044, 1097, 1169, 1176, 1320, 1345, 1365, 1378, 1434, 1444,
  8487. 1545, 1617, 1642, 1685, 2053, 2080, 2089, 2133, 2176, 2182, 2208, 2214, 2306, 2384, 2393, 2440,
  8488. 2453, 2581, 2664, 2690, 2721, 4117, 4161, 4182, 4184, 4261, 4357, 4369, 4372, 4377, 4390, 4422,
  8489. 4432, 4437, 4449, 4457, 4485, 4497, 4505, 4629, 4677, 4696, 4774, 5205, 5217, 5225, 5386, 5397,
  8490. 5409, 5445, 5457, 5460, 5461, 5462, 5465, 5472, 5477, 5525, 5545, 5650, 5668, 5717, 5729, 5769,
  8491. 5777, 6212, 6234, 6244, 6293, 6424, 6482, 6485, 6502, 6505, 6529, 6538, 6565, 6656, 6682, 6788,
  8492. 6806, 6820, 8218, 8224, 8226, 8232, 8277, 8326, 8354, 8469, 8521, 8530, 8549, 8596, 8737, 8794,
  8493. 9221, 9253, 9348, 9369, 9380, 9474, 9557, 9633, 9732, 9753, 9793, 9830, 9862, 9880, 10240, 10272,
  8494. 10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
  8495. 16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
  8496. 17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
  8497. 18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
  8498. 20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
  8499. 20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
  8500. 21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
  8501. 21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
  8502. 21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
  8503. 22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
  8504. 23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
  8505. 25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
  8506. 25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
  8507. 26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
  8508. 32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
  8509. 33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
  8510. 34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
  8511. 37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
  8512. 38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
  8513. 38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
  8514. 39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
  8515. 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
  8516. 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
  8517. };
  8518. static const uint16_t kgrid_2bit_1024[1024] = {
  8519. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  8520. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  8521. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  8522. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  8523. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  8524. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  8525. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  8526. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  8527. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  8528. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  8529. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  8530. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  8531. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  8532. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  8533. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  8534. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  8535. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  8536. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  8537. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  8538. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  8539. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  8540. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  8541. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  8542. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  8543. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  8544. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  8545. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  8546. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  8547. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  8548. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  8549. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  8550. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  8551. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  8552. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  8553. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  8554. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  8555. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  8556. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  8557. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  8558. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  8559. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  8560. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  8561. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  8562. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  8563. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  8564. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  8565. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  8566. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  8567. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  8568. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  8569. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  8570. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  8571. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  8572. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  8573. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  8574. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  8575. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  8576. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  8577. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  8578. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  8579. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  8580. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  8581. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  8582. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  8583. };
  8584. const int kmap_size = 43692;
  8585. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  8586. const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  8587. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  8588. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  8589. type == GGML_TYPE_IQ1_S ? kgrid_1bit_512 : kgrid_2bit_1024;
  8590. uint64_t * kgrid_q2xs;
  8591. int * kmap_q2xs;
  8592. uint16_t * kneighbors_q2xs;
  8593. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8594. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  8595. for (int k = 0; k < grid_size; ++k) {
  8596. int8_t * pos = (int8_t *)(the_grid + k);
  8597. for (int i = 0; i < 8; ++i) {
  8598. int l = (kgrid[k] >> 2*i) & 0x3;
  8599. pos[i] = 2*l + 1;
  8600. }
  8601. }
  8602. kgrid_q2xs = the_grid;
  8603. iq2_data[gindex].grid = the_grid;
  8604. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  8605. iq2_data[gindex].map = kmap_q2xs;
  8606. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  8607. uint64_t aux64;
  8608. uint8_t * aux8 = (uint8_t *)&aux64;
  8609. for (int i = 0; i < grid_size; ++i) {
  8610. aux64 = kgrid_q2xs[i];
  8611. uint16_t index = 0;
  8612. for (int k=0; k<8; ++k) {
  8613. uint16_t q = (aux8[k] - 1)/2;
  8614. index |= (q << 2*k);
  8615. }
  8616. kmap_q2xs[index] = i;
  8617. }
  8618. int8_t pos[8];
  8619. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8620. int num_neighbors = 0, num_not_in_map = 0;
  8621. for (int i = 0; i < kmap_size; ++i) {
  8622. if (kmap_q2xs[i] >= 0) continue;
  8623. ++num_not_in_map;
  8624. for (int k = 0; k < 8; ++k) {
  8625. int l = (i >> 2*k) & 0x3;
  8626. pos[k] = 2*l + 1;
  8627. }
  8628. for (int j = 0; j < grid_size; ++j) {
  8629. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8630. int d2 = 0;
  8631. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8632. dist2[2*j+0] = d2;
  8633. dist2[2*j+1] = j;
  8634. }
  8635. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8636. int n = 0; int d2 = dist2[0];
  8637. int nhave = 1;
  8638. for (int j = 0; j < grid_size; ++j) {
  8639. if (dist2[2*j] > d2) {
  8640. if (nhave == nwant) break;
  8641. d2 = dist2[2*j];
  8642. ++nhave;
  8643. }
  8644. ++n;
  8645. }
  8646. num_neighbors += n;
  8647. }
  8648. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8649. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8650. iq2_data[gindex].neighbours = kneighbors_q2xs;
  8651. int counter = 0;
  8652. for (int i = 0; i < kmap_size; ++i) {
  8653. if (kmap_q2xs[i] >= 0) continue;
  8654. for (int k = 0; k < 8; ++k) {
  8655. int l = (i >> 2*k) & 0x3;
  8656. pos[k] = 2*l + 1;
  8657. }
  8658. for (int j = 0; j < grid_size; ++j) {
  8659. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8660. int d2 = 0;
  8661. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8662. dist2[2*j+0] = d2;
  8663. dist2[2*j+1] = j;
  8664. }
  8665. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8666. kmap_q2xs[i] = -(counter + 1);
  8667. int d2 = dist2[0];
  8668. uint16_t * start = &kneighbors_q2xs[counter++];
  8669. int n = 0, nhave = 1;
  8670. for (int j = 0; j < grid_size; ++j) {
  8671. if (dist2[2*j] > d2) {
  8672. if (nhave == nwant) break;
  8673. d2 = dist2[2*j];
  8674. ++nhave;
  8675. }
  8676. kneighbors_q2xs[counter++] = dist2[2*j+1];
  8677. ++n;
  8678. }
  8679. *start = n;
  8680. }
  8681. free(dist2);
  8682. }
  8683. void iq2xs_free_impl(enum ggml_type type) {
  8684. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
  8685. const int gindex = iq2_data_index(type);
  8686. if (iq2_data[gindex].grid) {
  8687. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  8688. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  8689. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  8690. }
  8691. }
  8692. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  8693. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8694. int num_neighbors = neighbours[0];
  8695. GGML_ASSERT(num_neighbors > 0);
  8696. float best_d2 = FLT_MAX;
  8697. int grid_index = -1;
  8698. for (int j = 1; j <= num_neighbors; ++j) {
  8699. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8700. float d2 = 0;
  8701. for (int i = 0; i < 8; ++i) {
  8702. float q = pg[i];
  8703. float diff = scale*q - xval[i];
  8704. d2 += weight[i]*diff*diff;
  8705. }
  8706. if (d2 < best_d2) {
  8707. best_d2 = d2; grid_index = neighbours[j];
  8708. }
  8709. }
  8710. GGML_ASSERT(grid_index >= 0);
  8711. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8712. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  8713. return grid_index;
  8714. }
  8715. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8716. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  8717. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8718. const int * kmap_q2xs = iq2_data[gindex].map;
  8719. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8720. GGML_ASSERT(quant_weights && "missing quantization weights");
  8721. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8722. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8723. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8724. GGML_ASSERT(n%QK_K == 0);
  8725. const int kMaxQ = 3;
  8726. const int nbl = n/256;
  8727. block_iq2_xxs * y = vy;
  8728. float scales[QK_K/32];
  8729. float weight[32];
  8730. float xval[32];
  8731. int8_t L[32];
  8732. int8_t Laux[32];
  8733. float waux[32];
  8734. uint8_t block_signs[4];
  8735. uint32_t q2[2*(QK_K/32)];
  8736. for (int ibl = 0; ibl < nbl; ++ibl) {
  8737. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8738. memset(q2, 0, QK_K/4);
  8739. float max_scale = 0;
  8740. const float * xbl = x + QK_K*ibl;
  8741. float sumx2 = 0;
  8742. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8743. float sigma2 = sumx2/QK_K;
  8744. for (int ib = 0; ib < QK_K/32; ++ib) {
  8745. const float * xb = xbl + 32*ib;
  8746. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8747. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8748. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8749. for (int k = 0; k < 4; ++k) {
  8750. int nflip = 0;
  8751. uint8_t s = 0;
  8752. for (int i = 0; i < 8; ++i) {
  8753. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8754. else {
  8755. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8756. }
  8757. }
  8758. if (nflip%2) {
  8759. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8760. for (int i = 1; i < 8; ++i) {
  8761. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8762. if (ax < min) {
  8763. min = ax; imin = i;
  8764. }
  8765. }
  8766. xval[8*k+imin] = -xval[8*k+imin];
  8767. s ^= (1 << imin);
  8768. }
  8769. block_signs[k] = s & 127;
  8770. }
  8771. float max = xval[0];
  8772. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8773. if (!max) {
  8774. scales[ib] = 0;
  8775. memset(L, 0, 32);
  8776. continue;
  8777. }
  8778. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  8779. float eff_max = scale*kMaxQ;
  8780. float best = 0;
  8781. for (int is = -6; is <= 6; ++is) {
  8782. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  8783. float this_scale = 1/id;
  8784. for (int k = 0; k < 4; ++k) {
  8785. for (int i = 0; i < 8; ++i) {
  8786. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8787. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8788. }
  8789. uint16_t u = 0;
  8790. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8791. int grid_index = kmap_q2xs[u];
  8792. if (grid_index < 0) {
  8793. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8794. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8795. }
  8796. }
  8797. float sumqx = 0, sumq2 = 0;
  8798. for (int i = 0; i < 32; ++i) {
  8799. float w = weight[i];
  8800. float q = 2*Laux[i] + 1;
  8801. sumqx += w*xval[i]*q;
  8802. sumq2 += w*q*q;
  8803. }
  8804. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8805. scale = sumqx/sumq2; best = scale*sumqx;
  8806. memcpy(L, Laux, 32);
  8807. }
  8808. }
  8809. if (scale > 0) {
  8810. float id = 1/scale;
  8811. for (int k = 0; k < 4; ++k) {
  8812. uint16_t u = 0;
  8813. for (int i = 0; i < 8; ++i) {
  8814. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8815. l = MAX(0, MIN(kMaxQ-1, l));
  8816. u |= (l << 2*i);
  8817. }
  8818. int grid_index = kmap_q2xs[u];
  8819. if (grid_index < 0) {
  8820. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8821. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8822. }
  8823. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  8824. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  8825. }
  8826. float sumqx = 0, sumq2 = 0;
  8827. for (int i = 0; i < 32; ++i) {
  8828. float w = weight[i];
  8829. float q = 2*L[i] + 1;
  8830. sumqx += w*xval[i]*q;
  8831. sumq2 += w*q*q;
  8832. }
  8833. if (sumq2 > 0) scale = sumqx/sumq2;
  8834. }
  8835. if (scale < 0) {
  8836. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8837. // and correspondingly flip quant signs.
  8838. scale = -scale;
  8839. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8840. }
  8841. for (int k = 0; k < 4; ++k) {
  8842. uint16_t u = 0;
  8843. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8844. int grid_index = kmap_q2xs[u];
  8845. if (grid_index < 0) {
  8846. printf("Oops: found point %u not on grid:", u);
  8847. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8848. printf("\n");
  8849. GGML_ASSERT(false);
  8850. }
  8851. q2[2*ib+0] |= (grid_index << 8*k);
  8852. q2[2*ib+1] |= (block_signs[k] << 7*k);
  8853. }
  8854. GGML_ASSERT(scale >= 0);
  8855. scales[ib] = scale;
  8856. max_scale = MAX(max_scale, scale);
  8857. }
  8858. if (!max_scale) {
  8859. memset(y[ibl].qs, 0, QK_K/4);
  8860. continue;
  8861. }
  8862. float d = max_scale/31;
  8863. y[ibl].d = GGML_FP32_TO_FP16(d);
  8864. float id = 1/d;
  8865. for (int ib = 0; ib < QK_K/32; ++ib) {
  8866. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8867. l = MAX(0, MIN(15, l));
  8868. q2[2*ib+1] |= ((uint32_t)l << 28);
  8869. }
  8870. memcpy(y[ibl].qs, q2, QK_K/4);
  8871. }
  8872. }
  8873. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8874. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  8875. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8876. const int * kmap_q2xs = iq2_data[gindex].map;
  8877. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8878. GGML_ASSERT(quant_weights && "missing quantization weights");
  8879. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8880. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8881. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8882. GGML_ASSERT(n%QK_K == 0);
  8883. const int kMaxQ = 3;
  8884. const int nbl = n/256;
  8885. block_iq2_xs * y = vy;
  8886. float scales[QK_K/16];
  8887. float weight[16];
  8888. float xval[16];
  8889. int8_t L[16];
  8890. int8_t Laux[16];
  8891. float waux[16];
  8892. bool is_on_grid[2];
  8893. bool is_on_grid_aux[2];
  8894. uint8_t block_signs[2];
  8895. uint16_t q2[2*(QK_K/16)];
  8896. for (int ibl = 0; ibl < nbl; ++ibl) {
  8897. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8898. memset(q2, 0, QK_K/4);
  8899. memset(y[ibl].scales, 0, QK_K/32);
  8900. float max_scale = 0;
  8901. const float * xbl = x + QK_K*ibl;
  8902. float sumx2 = 0;
  8903. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8904. float sigma2 = sumx2/QK_K;
  8905. for (int ib = 0; ib < QK_K/16; ++ib) {
  8906. const float * xb = xbl + 16*ib;
  8907. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  8908. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8909. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  8910. for (int k = 0; k < 2; ++k) {
  8911. int nflip = 0;
  8912. uint8_t s = 0;
  8913. for (int i = 0; i < 8; ++i) {
  8914. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8915. else {
  8916. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8917. }
  8918. }
  8919. if (nflip%2) {
  8920. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8921. for (int i = 1; i < 8; ++i) {
  8922. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8923. if (ax < min) {
  8924. min = ax; imin = i;
  8925. }
  8926. }
  8927. xval[8*k+imin] = -xval[8*k+imin];
  8928. s ^= (1 << imin);
  8929. }
  8930. block_signs[k] = s & 127;
  8931. }
  8932. float max = xval[0];
  8933. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  8934. if (!max) {
  8935. scales[ib] = 0;
  8936. memset(L, 0, 16);
  8937. continue;
  8938. }
  8939. float best = 0;
  8940. float scale = max/(2*kMaxQ-1);
  8941. is_on_grid[0] = is_on_grid[1] = true;
  8942. for (int is = -9; is <= 9; ++is) {
  8943. float id = (2*kMaxQ-1+is*0.1f)/max;
  8944. float this_scale = 1/id;
  8945. for (int k = 0; k < 2; ++k) {
  8946. for (int i = 0; i < 8; ++i) {
  8947. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8948. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8949. }
  8950. uint16_t u = 0;
  8951. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8952. int grid_index = kmap_q2xs[u];
  8953. is_on_grid_aux[k] = true;
  8954. if (grid_index < 0) {
  8955. is_on_grid_aux[k] = false;
  8956. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8957. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8958. }
  8959. }
  8960. float sumqx = 0, sumq2 = 0;
  8961. for (int i = 0; i < 16; ++i) {
  8962. float w = weight[i];
  8963. float q = 2*Laux[i] + 1;
  8964. sumqx += w*xval[i]*q;
  8965. sumq2 += w*q*q;
  8966. }
  8967. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8968. scale = sumqx/sumq2; best = scale*sumqx;
  8969. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  8970. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8971. }
  8972. }
  8973. int n_not_ongrid = 0;
  8974. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8975. if (n_not_ongrid > 0 && scale > 0) {
  8976. float id = 1/scale;
  8977. for (int k = 0; k < 2; ++k) {
  8978. if (is_on_grid[k]) continue;
  8979. uint16_t u = 0;
  8980. for (int i = 0; i < 8; ++i) {
  8981. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8982. l = MAX(0, MIN(kMaxQ-1, l));
  8983. u |= (l << 2*i);
  8984. L[8*k + i] = l;
  8985. }
  8986. int grid_index = kmap_q2xs[u];
  8987. if (grid_index < 0) {
  8988. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8989. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8990. }
  8991. }
  8992. float sumqx = 0, sumq2 = 0;
  8993. for (int i = 0; i < 16; ++i) {
  8994. float w = weight[i];
  8995. float q = 2*L[i] + 1;
  8996. sumqx += w*xval[i]*q;
  8997. sumq2 += w*q*q;
  8998. }
  8999. if (sumq2 > 0) scale = sumqx/sumq2;
  9000. }
  9001. if (scale < 0) {
  9002. scale = -scale;
  9003. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  9004. }
  9005. for (int k = 0; k < 2; ++k) {
  9006. uint16_t u = 0;
  9007. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  9008. int grid_index = kmap_q2xs[u];
  9009. if (grid_index < 0) {
  9010. printf("Oops: found point %u not on grid:", u);
  9011. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  9012. printf("\n");
  9013. GGML_ASSERT(false);
  9014. }
  9015. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  9016. }
  9017. GGML_ASSERT(scale >= 0);
  9018. scales[ib] = scale;
  9019. max_scale = MAX(max_scale, scale);
  9020. }
  9021. if (!max_scale) {
  9022. memset(y[ibl].qs, 0, QK_K/4);
  9023. continue;
  9024. }
  9025. float d = max_scale/31;
  9026. y[ibl].d = GGML_FP32_TO_FP16(d);
  9027. float id = 1/d;
  9028. for (int ib = 0; ib < QK_K/16; ++ib) {
  9029. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9030. l = MAX(0, MIN(15, l));
  9031. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  9032. else y[ibl].scales[ib/2] |= (l << 4);
  9033. }
  9034. memcpy(y[ibl].qs, q2, QK_K/4);
  9035. }
  9036. }
  9037. size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9038. (void)hist;
  9039. GGML_ASSERT(n_per_row%QK_K == 0);
  9040. int nblock = n_per_row/QK_K;
  9041. char * qrow = (char *)dst;
  9042. for (int row = 0; row < nrow; ++row) {
  9043. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  9044. src += n_per_row;
  9045. qrow += nblock*sizeof(block_iq2_xxs);
  9046. }
  9047. return nrow * nblock * sizeof(block_iq2_xxs);
  9048. }
  9049. size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9050. (void)hist;
  9051. GGML_ASSERT(n_per_row%QK_K == 0);
  9052. int nblock = n_per_row/QK_K;
  9053. char * qrow = (char *)dst;
  9054. for (int row = 0; row < nrow; ++row) {
  9055. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  9056. src += n_per_row;
  9057. qrow += nblock*sizeof(block_iq2_xs);
  9058. }
  9059. return nrow * nblock * sizeof(block_iq2_xs);
  9060. }
  9061. //
  9062. // ============================================= 3-bit using D4 lattice
  9063. //
  9064. typedef struct {
  9065. uint32_t * grid;
  9066. int * map;
  9067. uint16_t * neighbours;
  9068. } iq3_entry_t;
  9069. static iq3_entry_t iq3_data[2] = {
  9070. {NULL, NULL, NULL},
  9071. {NULL, NULL, NULL},
  9072. };
  9073. static inline int iq3_data_index(int grid_size) {
  9074. (void)grid_size;
  9075. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  9076. return grid_size == 256 ? 0 : 1;
  9077. }
  9078. static int iq3_compare_func(const void * left, const void * right) {
  9079. const int * l = (const int *)left;
  9080. const int * r = (const int *)right;
  9081. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  9082. }
  9083. void iq3xs_init_impl(int grid_size) {
  9084. const int gindex = iq3_data_index(grid_size);
  9085. if (iq3_data[gindex].grid) {
  9086. return;
  9087. }
  9088. static const uint16_t kgrid_256[256] = {
  9089. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  9090. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  9091. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  9092. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  9093. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  9094. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  9095. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  9096. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  9097. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  9098. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  9099. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  9100. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  9101. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  9102. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  9103. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  9104. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  9105. };
  9106. static const uint16_t kgrid_512[512] = {
  9107. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  9108. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  9109. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  9110. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  9111. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  9112. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  9113. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  9114. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  9115. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  9116. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  9117. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  9118. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  9119. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  9120. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  9121. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  9122. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  9123. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  9124. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  9125. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  9126. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  9127. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  9128. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  9129. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  9130. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  9131. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  9132. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  9133. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  9134. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  9135. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  9136. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  9137. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  9138. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  9139. };
  9140. const int kmap_size = 4096;
  9141. const int nwant = grid_size == 256 ? 2 : 3;
  9142. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  9143. uint32_t * kgrid_q3xs;
  9144. int * kmap_q3xs;
  9145. uint16_t * kneighbors_q3xs;
  9146. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  9147. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  9148. for (int k = 0; k < grid_size; ++k) {
  9149. int8_t * pos = (int8_t *)(the_grid + k);
  9150. for (int i = 0; i < 4; ++i) {
  9151. int l = (kgrid[k] >> 3*i) & 0x7;
  9152. pos[i] = 2*l + 1;
  9153. }
  9154. }
  9155. kgrid_q3xs = the_grid;
  9156. iq3_data[gindex].grid = the_grid;
  9157. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  9158. iq3_data[gindex].map = kmap_q3xs;
  9159. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  9160. uint32_t aux32;
  9161. uint8_t * aux8 = (uint8_t *)&aux32;
  9162. for (int i = 0; i < grid_size; ++i) {
  9163. aux32 = kgrid_q3xs[i];
  9164. uint16_t index = 0;
  9165. for (int k=0; k<4; ++k) {
  9166. uint16_t q = (aux8[k] - 1)/2;
  9167. index |= (q << 3*k);
  9168. }
  9169. kmap_q3xs[index] = i;
  9170. }
  9171. int8_t pos[4];
  9172. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  9173. int num_neighbors = 0, num_not_in_map = 0;
  9174. for (int i = 0; i < kmap_size; ++i) {
  9175. if (kmap_q3xs[i] >= 0) continue;
  9176. ++num_not_in_map;
  9177. for (int k = 0; k < 4; ++k) {
  9178. int l = (i >> 3*k) & 0x7;
  9179. pos[k] = 2*l + 1;
  9180. }
  9181. for (int j = 0; j < grid_size; ++j) {
  9182. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  9183. int d2 = 0;
  9184. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9185. dist2[2*j+0] = d2;
  9186. dist2[2*j+1] = j;
  9187. }
  9188. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  9189. int n = 0; int d2 = dist2[0];
  9190. int nhave = 1;
  9191. for (int j = 0; j < grid_size; ++j) {
  9192. if (dist2[2*j] > d2) {
  9193. if (nhave == nwant) break;
  9194. d2 = dist2[2*j];
  9195. ++nhave;
  9196. }
  9197. ++n;
  9198. }
  9199. num_neighbors += n;
  9200. }
  9201. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  9202. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  9203. iq3_data[gindex].neighbours = kneighbors_q3xs;
  9204. int counter = 0;
  9205. for (int i = 0; i < kmap_size; ++i) {
  9206. if (kmap_q3xs[i] >= 0) continue;
  9207. for (int k = 0; k < 4; ++k) {
  9208. int l = (i >> 3*k) & 0x7;
  9209. pos[k] = 2*l + 1;
  9210. }
  9211. for (int j = 0; j < grid_size; ++j) {
  9212. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  9213. int d2 = 0;
  9214. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  9215. dist2[2*j+0] = d2;
  9216. dist2[2*j+1] = j;
  9217. }
  9218. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  9219. kmap_q3xs[i] = -(counter + 1);
  9220. int d2 = dist2[0];
  9221. uint16_t * start = &kneighbors_q3xs[counter++];
  9222. int n = 0, nhave = 1;
  9223. for (int j = 0; j < grid_size; ++j) {
  9224. if (dist2[2*j] > d2) {
  9225. if (nhave == nwant) break;
  9226. d2 = dist2[2*j];
  9227. ++nhave;
  9228. }
  9229. kneighbors_q3xs[counter++] = dist2[2*j+1];
  9230. ++n;
  9231. }
  9232. *start = n;
  9233. }
  9234. free(dist2);
  9235. }
  9236. void iq3xs_free_impl(int grid_size) {
  9237. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  9238. const int gindex = iq3_data_index(grid_size);
  9239. if (iq3_data[gindex].grid) {
  9240. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  9241. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  9242. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  9243. }
  9244. }
  9245. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  9246. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  9247. int num_neighbors = neighbours[0];
  9248. GGML_ASSERT(num_neighbors > 0);
  9249. float best_d2 = FLT_MAX;
  9250. int grid_index = -1;
  9251. for (int j = 1; j <= num_neighbors; ++j) {
  9252. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9253. float d2 = 0;
  9254. for (int i = 0; i < 4; ++i) {
  9255. float q = pg[i];
  9256. float diff = scale*q - xval[i];
  9257. d2 += weight[i]*diff*diff;
  9258. }
  9259. if (d2 < best_d2) {
  9260. best_d2 = d2; grid_index = neighbours[j];
  9261. }
  9262. }
  9263. GGML_ASSERT(grid_index >= 0);
  9264. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9265. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  9266. return grid_index;
  9267. }
  9268. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n,
  9269. const float * restrict quant_weights) {
  9270. const int gindex = iq3_data_index(grid_size);
  9271. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  9272. const int * kmap_q3xs = iq3_data[gindex].map;
  9273. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  9274. //GGML_ASSERT(quant_weights && "missing quantization weights");
  9275. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  9276. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  9277. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  9278. GGML_ASSERT(n%QK_K == 0);
  9279. const int kMaxQ = 8;
  9280. const int nbl = n/QK_K;
  9281. ggml_fp16_t * dh;
  9282. uint8_t * qs;
  9283. int block_size;
  9284. if (grid_size == 256) {
  9285. block_iq3_xxs * y = vy;
  9286. dh = &y->d;
  9287. qs = y->qs;
  9288. block_size = sizeof(block_iq3_xxs);
  9289. } else {
  9290. block_iq3_s * y = vy;
  9291. dh = &y->d;
  9292. qs = y->qs;
  9293. block_size = sizeof(block_iq3_s);
  9294. }
  9295. int quant_size = block_size - sizeof(ggml_fp16_t);
  9296. float scales[QK_K/32];
  9297. float weight[32];
  9298. float xval[32];
  9299. int8_t L[32];
  9300. int8_t Laux[32];
  9301. float waux[32];
  9302. bool is_on_grid[8];
  9303. bool is_on_grid_aux[8];
  9304. uint8_t block_signs[8];
  9305. uint8_t q3[3*(QK_K/8)+QK_K/32];
  9306. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  9307. uint8_t * qh = q3 + 3*(QK_K/8);
  9308. for (int ibl = 0; ibl < nbl; ++ibl) {
  9309. dh[0] = GGML_FP32_TO_FP16(0.f);
  9310. memset(q3, 0, 3*QK_K/8+QK_K/32);
  9311. float max_scale = 0;
  9312. const float * xbl = x + QK_K*ibl;
  9313. float sumx2 = 0;
  9314. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9315. float sigma2 = 2*sumx2/QK_K;
  9316. for (int ib = 0; ib < QK_K/32; ++ib) {
  9317. const float * xb = xbl + 32*ib;
  9318. if (quant_weights) {
  9319. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  9320. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9321. } else {
  9322. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  9323. }
  9324. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  9325. for (int k = 0; k < 4; ++k) {
  9326. int nflip = 0;
  9327. uint8_t s = 0;
  9328. for (int i = 0; i < 8; ++i) {
  9329. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9330. else {
  9331. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  9332. }
  9333. }
  9334. if (nflip%2) {
  9335. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  9336. for (int i = 1; i < 8; ++i) {
  9337. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  9338. if (ax < min) {
  9339. min = ax; imin = i;
  9340. }
  9341. }
  9342. xval[8*k+imin] = -xval[8*k+imin];
  9343. s ^= (1 << imin);
  9344. }
  9345. block_signs[k] = s & 127;
  9346. }
  9347. float max = xval[0];
  9348. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  9349. if (!max) {
  9350. scales[ib] = 0;
  9351. memset(L, 0, 32);
  9352. continue;
  9353. }
  9354. float best = 0;
  9355. float scale = max/(2*kMaxQ-1);
  9356. for (int is = -15; is <= 15; ++is) {
  9357. float id = (2*kMaxQ-1+is*0.2f)/max;
  9358. float this_scale = 1/id;
  9359. for (int k = 0; k < 8; ++k) {
  9360. for (int i = 0; i < 4; ++i) {
  9361. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9362. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9363. }
  9364. uint16_t u = 0;
  9365. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  9366. int grid_index = kmap_q3xs[u];
  9367. is_on_grid_aux[k] = true;
  9368. if (grid_index < 0) {
  9369. is_on_grid_aux[k] = false;
  9370. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9371. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  9372. }
  9373. }
  9374. float sumqx = 0, sumq2 = 0;
  9375. for (int i = 0; i < 32; ++i) {
  9376. float w = weight[i];
  9377. float q = 2*Laux[i] + 1;
  9378. sumqx += w*xval[i]*q;
  9379. sumq2 += w*q*q;
  9380. }
  9381. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9382. scale = sumqx/sumq2; best = scale*sumqx;
  9383. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  9384. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9385. }
  9386. }
  9387. int n_not_ongrid = 0;
  9388. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9389. if (n_not_ongrid > 0 && scale > 0) {
  9390. float id = 1/scale;
  9391. for (int k = 0; k < 8; ++k) {
  9392. if (is_on_grid[k]) continue;
  9393. uint16_t u = 0;
  9394. for (int i = 0; i < 4; ++i) {
  9395. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9396. l = MAX(0, MIN(kMaxQ-1, l));
  9397. u |= (l << 3*i);
  9398. }
  9399. int grid_index = kmap_q3xs[u];
  9400. if (grid_index < 0) {
  9401. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9402. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  9403. }
  9404. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  9405. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  9406. }
  9407. float sumqx = 0, sumq2 = 0;
  9408. for (int i = 0; i < 32; ++i) {
  9409. float w = weight[i];
  9410. float q = 2*L[i] + 1;
  9411. sumqx += w*xval[i]*q;
  9412. sumq2 += w*q*q;
  9413. }
  9414. if (sumq2 > 0) scale = sumqx/sumq2;
  9415. }
  9416. if (scale < 0) {
  9417. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9418. // and correspondingly flip quant signs.
  9419. scale = -scale;
  9420. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  9421. }
  9422. for (int k = 0; k < 8; ++k) {
  9423. uint16_t u = 0;
  9424. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  9425. int grid_index = kmap_q3xs[u];
  9426. if (grid_index < 0) {
  9427. printf("Oops: found point %u not on grid:", u);
  9428. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  9429. printf("\n");
  9430. GGML_ASSERT(false);
  9431. }
  9432. if (grid_size == 256) {
  9433. q3[8*ib+k] = grid_index;
  9434. } else {
  9435. q3[8*ib+k] = grid_index & 255;
  9436. qh[ib] |= ((grid_index >> 8) << k);
  9437. }
  9438. }
  9439. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  9440. GGML_ASSERT(scale >= 0);
  9441. scales[ib] = scale;
  9442. max_scale = MAX(max_scale, scale);
  9443. }
  9444. if (!max_scale) {
  9445. memset(qs, 0, quant_size);
  9446. dh += block_size/sizeof(ggml_fp16_t);
  9447. qs += block_size;
  9448. continue;
  9449. }
  9450. float d = max_scale/31;
  9451. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  9452. float id = 1/d;
  9453. for (int ib = 0; ib < QK_K/32; ++ib) {
  9454. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9455. l = MAX(0, MIN(15, l));
  9456. scales_and_signs[ib] |= ((uint32_t)l << 28);
  9457. }
  9458. memcpy(qs, q3, quant_size);
  9459. dh += block_size/sizeof(ggml_fp16_t);
  9460. qs += block_size;
  9461. }
  9462. }
  9463. size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9464. (void)hist;
  9465. GGML_ASSERT(n_per_row%QK_K == 0);
  9466. int nblock = n_per_row/QK_K;
  9467. char * qrow = (char *)dst;
  9468. for (int row = 0; row < nrow; ++row) {
  9469. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  9470. src += n_per_row;
  9471. qrow += nblock*sizeof(block_iq3_xxs);
  9472. }
  9473. return nrow * nblock * sizeof(block_iq3_xxs);
  9474. }
  9475. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
  9476. assert(k % QK_K == 0);
  9477. block_iq3_xxs * restrict y = vy;
  9478. quantize_row_iq3_xxs_reference(x, y, k);
  9479. }
  9480. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
  9481. assert(k % QK_K == 0);
  9482. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  9483. }
  9484. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  9485. const float * restrict quant_weights,
  9486. float * scales,
  9487. float * weight,
  9488. float * xval,
  9489. int8_t * L,
  9490. int8_t * Laux,
  9491. float * waux,
  9492. bool * is_on_grid,
  9493. bool * is_on_grid_aux,
  9494. uint8_t * block_signs) {
  9495. const int gindex = iq3_data_index(512);
  9496. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  9497. const int * kmap_q3xs = iq3_data[gindex].map;
  9498. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  9499. //GGML_ASSERT(quant_weights && "missing quantization weights");
  9500. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  9501. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  9502. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  9503. GGML_ASSERT(n%QK_K == 0);
  9504. const int kMaxQ = 8;
  9505. const int nbl = n/QK_K;
  9506. block_iq3_s * y = vy;
  9507. const int bs4 = block_size/4;
  9508. const int bs8 = block_size/8;
  9509. for (int ibl = 0; ibl < nbl; ++ibl) {
  9510. memset(&y[ibl], 0, sizeof(block_iq3_s));
  9511. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9512. uint8_t * qs = y[ibl].qs;
  9513. uint8_t * qh = y[ibl].qh;
  9514. uint8_t * signs = y[ibl].signs;
  9515. float max_scale = 0;
  9516. const float * xbl = x + QK_K*ibl;
  9517. float sumx2 = 0;
  9518. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9519. float sigma2 = 2*sumx2/QK_K;
  9520. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  9521. const float * xb = xbl + block_size*ib;
  9522. if (quant_weights) {
  9523. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  9524. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9525. } else {
  9526. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  9527. }
  9528. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  9529. for (int k = 0; k < bs8; ++k) {
  9530. uint8_t s = 0;
  9531. for (int i = 0; i < 8; ++i) {
  9532. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9533. else {
  9534. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  9535. }
  9536. }
  9537. block_signs[k] = s;
  9538. }
  9539. float max = xval[0];
  9540. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  9541. if (!max) {
  9542. scales[ib] = 0;
  9543. continue;
  9544. }
  9545. float best = 0;
  9546. float scale = max/(2*kMaxQ-1);
  9547. for (int is = -15; is <= 15; ++is) {
  9548. float id = (2*kMaxQ-1+is*0.2f)/max;
  9549. float this_scale = 1/id;
  9550. for (int k = 0; k < bs4; ++k) {
  9551. for (int i = 0; i < 4; ++i) {
  9552. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9553. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9554. }
  9555. uint16_t u = 0;
  9556. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  9557. int grid_index = kmap_q3xs[u];
  9558. is_on_grid_aux[k] = true;
  9559. if (grid_index < 0) {
  9560. is_on_grid_aux[k] = false;
  9561. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9562. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  9563. }
  9564. }
  9565. float sumqx = 0, sumq2 = 0;
  9566. for (int i = 0; i < block_size; ++i) {
  9567. float w = weight[i];
  9568. float q = 2*Laux[i] + 1;
  9569. sumqx += w*xval[i]*q;
  9570. sumq2 += w*q*q;
  9571. }
  9572. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9573. scale = sumqx/sumq2; best = scale*sumqx;
  9574. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  9575. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9576. }
  9577. }
  9578. int n_not_ongrid = 0;
  9579. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9580. if (n_not_ongrid > 0 && scale > 0) {
  9581. float id = 1/scale;
  9582. for (int k = 0; k < bs4; ++k) {
  9583. if (is_on_grid[k]) continue;
  9584. uint16_t u = 0;
  9585. for (int i = 0; i < 4; ++i) {
  9586. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9587. l = MAX(0, MIN(kMaxQ-1, l));
  9588. u |= (l << 3*i);
  9589. }
  9590. int grid_index = kmap_q3xs[u];
  9591. if (grid_index < 0) {
  9592. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9593. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  9594. }
  9595. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  9596. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  9597. }
  9598. float sumqx = 0, sumq2 = 0;
  9599. for (int i = 0; i < block_size; ++i) {
  9600. float w = weight[i];
  9601. float q = 2*L[i] + 1;
  9602. sumqx += w*xval[i]*q;
  9603. sumq2 += w*q*q;
  9604. }
  9605. if (sumq2 > 0) scale = sumqx/sumq2;
  9606. }
  9607. if (scale < 0) {
  9608. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9609. // and correspondingly flip quant signs.
  9610. scale = -scale;
  9611. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  9612. }
  9613. for (int k = 0; k < bs4; ++k) {
  9614. uint16_t u = 0;
  9615. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  9616. int grid_index = kmap_q3xs[u];
  9617. if (grid_index < 0) {
  9618. printf("Oops: found point %u not on grid:", u);
  9619. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  9620. printf("\n");
  9621. GGML_ASSERT(false);
  9622. }
  9623. qs[k] = grid_index & 255;
  9624. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  9625. }
  9626. qs += bs4;
  9627. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  9628. signs += bs8;
  9629. GGML_ASSERT(scale >= 0);
  9630. scales[ib] = scale;
  9631. max_scale = MAX(max_scale, scale);
  9632. }
  9633. if (!max_scale) {
  9634. continue;
  9635. }
  9636. float d = max_scale/31;
  9637. y[ibl].d = GGML_FP32_TO_FP16(d);
  9638. float id = 1/d;
  9639. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  9640. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  9641. l1 = MAX(0, MIN(15, l1));
  9642. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  9643. l2 = MAX(0, MIN(15, l2));
  9644. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  9645. }
  9646. }
  9647. }
  9648. #define IQ3S_BLOCK_SIZE 32
  9649. size_t quantize_iq3_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9650. (void)hist;
  9651. GGML_ASSERT(n_per_row%QK_K == 0);
  9652. int nblock = n_per_row/QK_K;
  9653. float scales[QK_K/IQ3S_BLOCK_SIZE];
  9654. float weight[IQ3S_BLOCK_SIZE];
  9655. float xval[IQ3S_BLOCK_SIZE];
  9656. int8_t L[IQ3S_BLOCK_SIZE];
  9657. int8_t Laux[IQ3S_BLOCK_SIZE];
  9658. float waux[IQ3S_BLOCK_SIZE];
  9659. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  9660. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  9661. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  9662. char * qrow = (char *)dst;
  9663. for (int row = 0; row < nrow; ++row) {
  9664. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  9665. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  9666. src += n_per_row;
  9667. qrow += nblock*sizeof(block_iq3_s);
  9668. }
  9669. return nrow * nblock * sizeof(block_iq3_s);
  9670. }
  9671. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
  9672. assert(k % QK_K == 0);
  9673. block_iq3_s * restrict y = vy;
  9674. quantize_row_iq3_s_reference(x, y, k);
  9675. }
  9676. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
  9677. assert(k % QK_K == 0);
  9678. quantize_iq3_s(x, y, 1, k, NULL, NULL);
  9679. }
  9680. // =================================== 1.5 bpw ===================================================
  9681. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  9682. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  9683. int num_neighbors = neighbours[0];
  9684. GGML_ASSERT(num_neighbors > 0);
  9685. float best_score = 0;
  9686. int grid_index = -1;
  9687. for (int j = 1; j <= num_neighbors; ++j) {
  9688. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9689. float sumqx = 0, sumq2 = 0;
  9690. for (int i = 0; i < 8; ++i) {
  9691. float q = (pg[i] - 3)/2;
  9692. float w = weight[i];
  9693. sumqx += w*q*xval[i];
  9694. sumq2 += w*q*q;
  9695. }
  9696. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9697. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  9698. grid_index = neighbours[j];
  9699. }
  9700. }
  9701. if (grid_index < 0) {
  9702. for (int i = 0; i < ngrid; ++i) {
  9703. const int8_t * grid_i = (const int8_t *)(grid + i);
  9704. float sumqx = 0, sumq2 = 0;
  9705. for (int j = 0; j < 8; ++j) {
  9706. float w = weight[j];
  9707. float q = (grid_i[j] - 3)/2;
  9708. sumqx += w*q*xval[j];
  9709. sumq2 += w*q*q;
  9710. }
  9711. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9712. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  9713. grid_index = i;
  9714. }
  9715. }
  9716. }
  9717. if (grid_index < 0) {
  9718. printf("Oops, did not find grid point\n");
  9719. printf("Have %d neighbours\n", num_neighbors);
  9720. for (int j = 1; j <= num_neighbors; ++j) {
  9721. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9722. float sumqx = 0, sumq2 = 0;
  9723. for (int i = 0; i < 8; ++i) {
  9724. float q = (pg[i] - 3)/2;
  9725. float w = weight[i];
  9726. sumqx += w*q*xval[i];
  9727. sumq2 += w*q*q;
  9728. }
  9729. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  9730. }
  9731. }
  9732. GGML_ASSERT(grid_index >= 0);
  9733. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9734. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  9735. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9736. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9737. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  9738. return grid_index;
  9739. }
  9740. static int iq1_sort_helper(const void * left, const void * right) {
  9741. const float * l = left;
  9742. const float * r = right;
  9743. return *l < *r ? -1 : *l > *r ? 1 : 0;
  9744. }
  9745. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  9746. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  9747. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9748. const int * kmap_q2xs = iq2_data[gindex].map;
  9749. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9750. GGML_ASSERT(quant_weights && "missing quantization weights");
  9751. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9752. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9753. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9754. GGML_ASSERT(n%QK_K == 0);
  9755. const int nbl = n/256;
  9756. block_iq1_s * y = vy;
  9757. float scales[QK_K/8];
  9758. float weight[8];
  9759. int8_t L[8];
  9760. float sumx[9];
  9761. float sumw[9];
  9762. float pairs[16];
  9763. int * idx = (int *)(pairs + 1);
  9764. uint8_t hbit[QK_K/8];
  9765. for (int ibl = 0; ibl < nbl; ++ibl) {
  9766. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9767. memset(y[ibl].qs, 0, QK_K/8);
  9768. memset(y[ibl].scales, 0, QK_K/16);
  9769. float max_scale = 0;
  9770. const float * xbl = x + QK_K*ibl;
  9771. float sumx2 = 0;
  9772. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9773. float sigma2 = sumx2/QK_K;
  9774. for (int ib = 0; ib < QK_K/8; ++ib) {
  9775. const float * xb = xbl + 8*ib;
  9776. const float * qw = quant_weights + QK_K*ibl + 8*ib;
  9777. for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9778. float max = fabsf(xb[0]);
  9779. for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
  9780. if (!max) {
  9781. scales[ib] = 0;
  9782. memset(L, 1, 8);
  9783. continue;
  9784. }
  9785. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  9786. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  9787. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  9788. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  9789. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  9790. // for each possible and score for each split.
  9791. for (int j = 0; j < 8; ++j) {
  9792. pairs[2*j] = xb[j];
  9793. idx[2*j] = j;
  9794. }
  9795. qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
  9796. {
  9797. sumx[0] = sumw[0] = 0;
  9798. for (int j = 0; j < 8; ++j) {
  9799. int i = idx[2*j];
  9800. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  9801. sumw[j+1] = sumw[j] + weight[i];
  9802. }
  9803. }
  9804. float best_score = 0, scale = max;
  9805. int besti1 = 0, besti2 = 0;
  9806. for (int i1 = 0; i1 <= 8; ++i1) {
  9807. for (int i2 = i1; i2 <= 8; ++i2) {
  9808. float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
  9809. float sumq2 = (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
  9810. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9811. scale = sumqx/sumq2; best_score = scale*sumqx;
  9812. besti1 = i1; besti2 = i2;
  9813. }
  9814. }
  9815. }
  9816. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  9817. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  9818. for (int j = besti2; j < 8; ++j) L[idx[2*j]] = 2;
  9819. if (scale < 0) {
  9820. for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
  9821. scale = -scale;
  9822. }
  9823. // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
  9824. // grid point that minimizes SSD.
  9825. uint16_t u = 0;
  9826. for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
  9827. int grid_index = kmap_q2xs[u];
  9828. if (grid_index < 0) {
  9829. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9830. grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
  9831. GGML_ASSERT(grid_index >= 0);
  9832. }
  9833. y[ibl].qs[ib] = grid_index & 255;
  9834. hbit[ib] = grid_index >> 8;
  9835. GGML_ASSERT(scale >= 0);
  9836. scales[ib] = scale;
  9837. max_scale = MAX(max_scale, scale);
  9838. }
  9839. if (!max_scale) {
  9840. memset(y[ibl].qs, 0, QK_K/8);
  9841. continue;
  9842. }
  9843. float d = max_scale/15;
  9844. y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
  9845. float id = 1/d;
  9846. for (int ib = 0; ib < QK_K/8; ++ib) {
  9847. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9848. l = MAX(0, MIN(7, l));
  9849. if (hbit[ib]) l |= 8;
  9850. y[ibl].scales[ib/2] |= (l << 4*(ib%2));
  9851. }
  9852. }
  9853. }
  9854. size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9855. (void)hist;
  9856. GGML_ASSERT(n_per_row%QK_K == 0);
  9857. int nblock = n_per_row/QK_K;
  9858. char * qrow = (char *)dst;
  9859. for (int row = 0; row < nrow; ++row) {
  9860. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
  9861. src += n_per_row;
  9862. qrow += nblock*sizeof(block_iq1_s);
  9863. }
  9864. return nrow * nblock * sizeof(block_iq1_s);
  9865. }
  9866. // ============================ 4-bit non-linear quants
  9867. static inline int best_index_int8(int n, const int8_t * val, float x) {
  9868. if (x <= val[0]) return 0;
  9869. if (x >= val[n-1]) return n-1;
  9870. int ml = 0, mu = n-1;
  9871. while (mu-ml > 1) {
  9872. int mav = (ml+mu)/2;
  9873. if (x < val[mav]) mu = mav; else ml = mav;
  9874. }
  9875. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  9876. }
  9877. static void quantize_row_iq4_nl_impl(const int block_size, const float * GGML_RESTRICT x,
  9878. ggml_fp16_t * dh, uint8_t * q4,
  9879. float * weight, uint8_t * L,
  9880. const int8_t * values,
  9881. const float * quant_weights) {
  9882. const int ntry = 7;
  9883. float sigma2 = 0;
  9884. for (int j = 0; j < QK4_NL; ++j) sigma2 += x[j]*x[j];
  9885. sigma2 *= 2.f/QK4_NL;
  9886. const int nb = QK4_NL/block_size;
  9887. memset(q4, 0, QK4_NL/2);
  9888. for (int ib = 0; ib < nb; ++ib) {
  9889. dh[ib] = GGML_FP32_TO_FP16(0.f);
  9890. const float * xb = x + ib*block_size;
  9891. if (quant_weights) {
  9892. const float * qw = quant_weights + ib*block_size;
  9893. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  9894. } else {
  9895. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  9896. }
  9897. float amax = 0, max = 0;
  9898. for (int j = 0; j < block_size; ++j) {
  9899. float ax = fabsf(xb[j]);
  9900. if (ax > amax) {
  9901. amax = ax; max = xb[j];
  9902. }
  9903. }
  9904. if (!amax) {
  9905. continue;
  9906. }
  9907. float d = -max/values[0];
  9908. float id = 1/d;
  9909. float sumqx = 0, sumq2 = 0;
  9910. for (int j = 0; j < block_size; ++j) {
  9911. float al = id*xb[j];
  9912. int l = best_index_int8(16, values, al);
  9913. float q = values[l];
  9914. float w = weight[j];
  9915. sumqx += w*q*xb[j];
  9916. sumq2 += w*q*q;
  9917. }
  9918. float best_id = id;
  9919. d = sumqx/sumq2;
  9920. float best = d*sumqx;
  9921. for (int itry = -ntry; itry <= ntry; ++itry) {
  9922. id = (itry + values[0])/max;
  9923. sumqx = sumq2 = 0;
  9924. for (int j = 0; j < block_size; ++j) {
  9925. float al = id*xb[j];
  9926. int l = best_index_int8(16, values, al);
  9927. float q = values[l];
  9928. float w = weight[j];
  9929. sumqx += w*q*xb[j];
  9930. sumq2 += w*q*q;
  9931. }
  9932. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9933. d = sumqx/sumq2; best = d * sumqx;
  9934. best_id = id;
  9935. }
  9936. }
  9937. dh[ib] = GGML_FP32_TO_FP16(d);
  9938. for (int j = 0; j < block_size; ++j) {
  9939. L[ib*block_size + j] = best_index_int8(16, values, best_id*xb[j]);
  9940. }
  9941. }
  9942. for (int i = 0; i < QK4_NL/32; ++i) {
  9943. for (int j = 0; j < 16; ++j) {
  9944. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  9945. }
  9946. }
  9947. }
  9948. size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9949. (void)hist;
  9950. GGML_ASSERT(n_per_row%QK4_NL == 0);
  9951. int nblock = n_per_row/QK4_NL;
  9952. char * qrow = (char *)dst;
  9953. uint8_t L[QK4_NL];
  9954. float weight[32];
  9955. for (int row = 0; row < nrow; ++row) {
  9956. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  9957. for (int ibl = 0; ibl < nblock; ++ibl) {
  9958. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  9959. quantize_row_iq4_nl_impl(32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, weight, L, kvalues_iq4nl, qw);
  9960. }
  9961. src += n_per_row;
  9962. qrow += nblock*sizeof(block_iq4_nl);
  9963. }
  9964. return nrow * nblock * sizeof(block_iq4_nl);
  9965. }
  9966. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
  9967. assert(k % QK4_NL == 0);
  9968. block_iq4_nl * restrict y = vy;
  9969. quantize_row_iq4_nl_reference(x, y, k);
  9970. }
  9971. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
  9972. assert(k % QK4_NL == 0);
  9973. quantize_iq4_nl(x, y, 1, k, NULL, NULL);
  9974. }
  9975. // =============================== 2.5625 bpw
  9976. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  9977. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  9978. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9979. const int * kmap_q2xs = iq2_data[gindex].map;
  9980. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9981. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9982. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9983. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9984. GGML_ASSERT(n%QK_K == 0);
  9985. const int kMaxQ = 3;
  9986. const int nbl = n/256;
  9987. block_iq2_s * y = vy;
  9988. float scales[QK_K/16];
  9989. float weight[16];
  9990. float xval[16];
  9991. int8_t L[16];
  9992. int8_t Laux[16];
  9993. float waux[16];
  9994. bool is_on_grid[2];
  9995. bool is_on_grid_aux[2];
  9996. uint8_t block_signs[2];
  9997. for (int ibl = 0; ibl < nbl; ++ibl) {
  9998. memset(&y[ibl], 0, sizeof(block_iq2_s));
  9999. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10000. float max_scale = 0;
  10001. const float * xbl = x + QK_K*ibl;
  10002. float sumx2 = 0;
  10003. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10004. float sigma2 = 2*sumx2/QK_K;
  10005. for (int ib = 0; ib < QK_K/16; ++ib) {
  10006. const float * xb = xbl + 16*ib;
  10007. if (quant_weights) {
  10008. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  10009. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10010. } else {
  10011. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  10012. }
  10013. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  10014. for (int k = 0; k < 2; ++k) {
  10015. uint8_t s = 0;
  10016. for (int i = 0; i < 8; ++i) {
  10017. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10018. else {
  10019. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  10020. }
  10021. }
  10022. block_signs[k] = s;
  10023. }
  10024. float max = xval[0];
  10025. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  10026. if (!max) {
  10027. scales[ib] = 0;
  10028. continue;
  10029. }
  10030. float best = 0;
  10031. float scale = max/(2*kMaxQ-1);
  10032. is_on_grid[0] = is_on_grid[1] = true;
  10033. for (int is = -9; is <= 9; ++is) {
  10034. float id = (2*kMaxQ-1+is*0.1f)/max;
  10035. float this_scale = 1/id;
  10036. for (int k = 0; k < 2; ++k) {
  10037. for (int i = 0; i < 8; ++i) {
  10038. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10039. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10040. }
  10041. uint16_t u = 0;
  10042. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10043. int grid_index = kmap_q2xs[u];
  10044. is_on_grid_aux[k] = true;
  10045. if (grid_index < 0) {
  10046. is_on_grid_aux[k] = false;
  10047. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10048. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10049. }
  10050. }
  10051. float sumqx = 0, sumq2 = 0;
  10052. for (int i = 0; i < 16; ++i) {
  10053. float w = weight[i];
  10054. float q = 2*Laux[i] + 1;
  10055. sumqx += w*xval[i]*q;
  10056. sumq2 += w*q*q;
  10057. }
  10058. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10059. scale = sumqx/sumq2; best = scale*sumqx;
  10060. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  10061. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10062. }
  10063. }
  10064. int n_not_ongrid = 0;
  10065. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10066. if (n_not_ongrid > 0 && scale > 0) {
  10067. float id = 1/scale;
  10068. for (int k = 0; k < 2; ++k) {
  10069. if (is_on_grid[k]) continue;
  10070. uint16_t u = 0;
  10071. for (int i = 0; i < 8; ++i) {
  10072. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10073. l = MAX(0, MIN(kMaxQ-1, l));
  10074. u |= (l << 2*i);
  10075. L[8*k + i] = l;
  10076. }
  10077. int grid_index = kmap_q2xs[u];
  10078. if (grid_index < 0) {
  10079. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10080. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10081. }
  10082. }
  10083. float sumqx = 0, sumq2 = 0;
  10084. for (int i = 0; i < 16; ++i) {
  10085. float w = weight[i];
  10086. float q = 2*L[i] + 1;
  10087. sumqx += w*xval[i]*q;
  10088. sumq2 += w*q*q;
  10089. }
  10090. if (sumq2 > 0) scale = sumqx/sumq2;
  10091. }
  10092. if (scale < 0) {
  10093. scale = -scale;
  10094. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  10095. }
  10096. for (int k = 0; k < 2; ++k) {
  10097. uint16_t u = 0;
  10098. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10099. int grid_index = kmap_q2xs[u];
  10100. if (grid_index < 0) {
  10101. printf("Oops: found point %u not on grid:", u);
  10102. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10103. printf("\n");
  10104. GGML_ASSERT(false);
  10105. }
  10106. const int i8 = 2*ib + k;
  10107. y[ibl].qs[i8] = grid_index & 255;
  10108. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  10109. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  10110. }
  10111. GGML_ASSERT(scale >= 0);
  10112. scales[ib] = scale;
  10113. max_scale = MAX(max_scale, scale);
  10114. }
  10115. if (!max_scale) {
  10116. continue;
  10117. }
  10118. float d = max_scale/31;
  10119. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  10120. float id = 1/d;
  10121. for (int ib = 0; ib < QK_K/16; ++ib) {
  10122. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10123. l = MAX(0, MIN(15, l));
  10124. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  10125. else y[ibl].scales[ib/2] |= (l << 4);
  10126. }
  10127. }
  10128. }
  10129. size_t quantize_iq2_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  10130. (void)hist;
  10131. GGML_ASSERT(n_per_row%QK_K == 0);
  10132. int nblock = n_per_row/QK_K;
  10133. char * qrow = (char *)dst;
  10134. for (int row = 0; row < nrow; ++row) {
  10135. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  10136. src += n_per_row;
  10137. qrow += nblock*sizeof(block_iq2_s);
  10138. }
  10139. return nrow * nblock * sizeof(block_iq2_s);
  10140. }
  10141. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int k) {
  10142. assert(k % QK_K == 0);
  10143. quantize_iq2_s(x, y, 1, k, NULL, NULL);
  10144. }
  10145. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int k) {
  10146. assert(k % QK_K == 0);
  10147. block_iq2_s * restrict y = vy;
  10148. quantize_row_iq2_s_reference(x, y, k);
  10149. }