ggml.c 337 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. #define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size)
  101. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  102. #endif
  103. #define UNUSED(x) (void)(x)
  104. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  105. #define GGML_ASSERT(x) \
  106. do { \
  107. if (!(x)) { \
  108. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  109. abort(); \
  110. } \
  111. } while (0)
  112. #ifdef GGML_USE_ACCELERATE
  113. #include <Accelerate/Accelerate.h>
  114. #elif GGML_USE_OPENBLAS
  115. #include <cblas.h>
  116. #endif
  117. #undef MIN
  118. #undef MAX
  119. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  120. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  121. // floating point type used to accumulate sums
  122. typedef double ggml_float;
  123. // 16-bit float
  124. // on Arm, we use __fp16
  125. // on x86, we use uint16_t
  126. #ifdef __ARM_NEON
  127. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  128. //
  129. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  130. //
  131. #include <arm_neon.h>
  132. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  133. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  134. #define GGML_FP16_TO_FP32(x) ((float) (x))
  135. #define GGML_FP32_TO_FP16(x) (x)
  136. #else
  137. #ifdef __wasm_simd128__
  138. #include <wasm_simd128.h>
  139. #else
  140. #ifdef __POWER9_VECTOR__
  141. #include <altivec.h>
  142. #undef bool
  143. #define bool _Bool
  144. #else
  145. #include <immintrin.h>
  146. #endif
  147. #endif
  148. #ifdef __F16C__
  149. #ifdef _MSC_VER
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  152. #else
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  155. #endif
  156. #elif defined(__POWER9_VECTOR__)
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  159. /* the inline asm below is about 12% faster than the lookup method */
  160. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  161. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  162. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  163. register float f;
  164. register double d;
  165. __asm__(
  166. "mtfprd %0,%2\n"
  167. "xscvhpdp %0,%0\n"
  168. "frsp %1,%0\n" :
  169. /* temp */ "=d"(d),
  170. /* out */ "=f"(f):
  171. /* in */ "r"(h));
  172. return f;
  173. }
  174. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  175. register double d;
  176. register ggml_fp16_t r;
  177. __asm__( /* xscvdphp can work on double or single precision */
  178. "xscvdphp %0,%2\n"
  179. "mffprd %1,%0\n" :
  180. /* temp */ "=d"(d),
  181. /* out */ "=r"(r):
  182. /* in */ "f"(f));
  183. return r;
  184. }
  185. #else
  186. // FP16 <-> FP32
  187. // ref: https://github.com/Maratyszcza/FP16
  188. static inline float fp32_from_bits(uint32_t w) {
  189. union {
  190. uint32_t as_bits;
  191. float as_value;
  192. } fp32;
  193. fp32.as_bits = w;
  194. return fp32.as_value;
  195. }
  196. static inline uint32_t fp32_to_bits(float f) {
  197. union {
  198. float as_value;
  199. uint32_t as_bits;
  200. } fp32;
  201. fp32.as_value = f;
  202. return fp32.as_bits;
  203. }
  204. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  205. const uint32_t w = (uint32_t) h << 16;
  206. const uint32_t sign = w & UINT32_C(0x80000000);
  207. const uint32_t two_w = w + w;
  208. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  209. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  210. const float exp_scale = 0x1.0p-112f;
  211. #else
  212. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  213. #endif
  214. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  215. const uint32_t magic_mask = UINT32_C(126) << 23;
  216. const float magic_bias = 0.5f;
  217. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  218. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  219. const uint32_t result = sign |
  220. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  221. return fp32_from_bits(result);
  222. }
  223. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  224. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  225. const float scale_to_inf = 0x1.0p+112f;
  226. const float scale_to_zero = 0x1.0p-110f;
  227. #else
  228. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  229. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  230. #endif
  231. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  232. const uint32_t w = fp32_to_bits(f);
  233. const uint32_t shl1_w = w + w;
  234. const uint32_t sign = w & UINT32_C(0x80000000);
  235. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  236. if (bias < UINT32_C(0x71000000)) {
  237. bias = UINT32_C(0x71000000);
  238. }
  239. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  240. const uint32_t bits = fp32_to_bits(base);
  241. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  242. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  243. const uint32_t nonsign = exp_bits + mantissa_bits;
  244. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  245. }
  246. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  247. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  248. #endif // __F16C__
  249. #endif // __ARM_NEON
  250. //
  251. // global data
  252. //
  253. // precomputed gelu table for f16 (128 KB)
  254. static ggml_fp16_t table_gelu_f16[1 << 16];
  255. // precomputed silu table for f16 (128 KB)
  256. static ggml_fp16_t table_silu_f16[1 << 16];
  257. // precomputed exp table for f16 (128 KB)
  258. static ggml_fp16_t table_exp_f16[1 << 16];
  259. // precomputed f32 table for f16 (256 KB)
  260. static float table_f32_f16[1 << 16];
  261. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  262. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  263. // This is also true for POWER9.
  264. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  265. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  266. uint16_t s;
  267. memcpy(&s, &f, sizeof(uint16_t));
  268. return table_f32_f16[s];
  269. }
  270. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. #endif
  273. // note: do not use these inside ggml.c
  274. // these are meant to be used via the ggml.h API
  275. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  276. return (float) GGML_FP16_TO_FP32(x);
  277. }
  278. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  279. return GGML_FP32_TO_FP16(x);
  280. }
  281. //
  282. // timing
  283. //
  284. #if defined(_MSC_VER) || defined(__MINGW32__)
  285. static int64_t timer_freq;
  286. void ggml_time_init(void) {
  287. LARGE_INTEGER frequency;
  288. QueryPerformanceFrequency(&frequency);
  289. timer_freq = frequency.QuadPart;
  290. }
  291. int64_t ggml_time_ms(void) {
  292. LARGE_INTEGER t;
  293. QueryPerformanceCounter(&t);
  294. return (t.QuadPart * 1000) / timer_freq;
  295. }
  296. int64_t ggml_time_us(void) {
  297. LARGE_INTEGER t;
  298. QueryPerformanceCounter(&t);
  299. return (t.QuadPart * 1000000) / timer_freq;
  300. }
  301. #else
  302. void ggml_time_init(void) {}
  303. int64_t ggml_time_ms(void) {
  304. struct timespec ts;
  305. clock_gettime(CLOCK_MONOTONIC, &ts);
  306. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  307. }
  308. int64_t ggml_time_us(void) {
  309. struct timespec ts;
  310. clock_gettime(CLOCK_MONOTONIC, &ts);
  311. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  312. }
  313. #endif
  314. int64_t ggml_cycles(void) {
  315. return clock();
  316. }
  317. int64_t ggml_cycles_per_ms(void) {
  318. return CLOCKS_PER_SEC/1000;
  319. }
  320. #ifdef GGML_PERF
  321. #define ggml_perf_time_ms() ggml_time_ms()
  322. #define ggml_perf_time_us() ggml_time_us()
  323. #define ggml_perf_cycles() ggml_cycles()
  324. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  325. #else
  326. #define ggml_perf_time_ms() 0
  327. #define ggml_perf_time_us() 0
  328. #define ggml_perf_cycles() 0
  329. #define ggml_perf_cycles_per_ms() 0
  330. #endif
  331. //
  332. // cache line
  333. //
  334. #if defined(__cpp_lib_hardware_interference_size)
  335. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  336. #else
  337. #if defined(__POWER9_VECTOR__)
  338. #define CACHE_LINE_SIZE 128
  339. #else
  340. #define CACHE_LINE_SIZE 64
  341. #endif
  342. #endif
  343. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  344. //
  345. // quantization
  346. //
  347. #define QK 32
  348. // AVX routines provided by GH user Const-me
  349. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  350. #if __AVX2__ || __AVX512F__
  351. // Unpack 32 4-bit fields into 32 bytes
  352. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  353. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  354. {
  355. // Load 16 bytes from memory
  356. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  357. // Expand bytes into uint16_t values
  358. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  359. // Unpack values into individual bytes
  360. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  361. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  362. __m256i low = _mm256_and_si256( lowMask, bytes );
  363. high = _mm256_slli_epi16( high, 4 );
  364. bytes = _mm256_or_si256( low, high );
  365. return bytes;
  366. }
  367. static inline __m128i packNibbles( __m256i bytes )
  368. {
  369. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  370. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  371. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  372. __m256i low = _mm256_and_si256( lowByte, bytes );
  373. high = _mm256_srli_epi16( high, 4 );
  374. bytes = _mm256_or_si256( low, high );
  375. // Compress uint16_t lanes into bytes
  376. __m128i r0 = _mm256_castsi256_si128( bytes );
  377. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  378. return _mm_packus_epi16( r0, r1 );
  379. }
  380. #elif __AVX__
  381. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  382. {
  383. // Load 8 bytes from memory
  384. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  385. // Expand bytes into uint16_t values
  386. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  387. // Unpack values into individual bytes
  388. const __m128i lowMask = _mm_set1_epi8( 0xF );
  389. __m128i high = _mm_andnot_si128( lowMask, bytes );
  390. __m128i low = _mm_and_si128( lowMask, bytes );
  391. high = _mm_slli_epi16( high, 4 );
  392. bytes = _mm_or_si128( low, high );
  393. return bytes;
  394. }
  395. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  396. {
  397. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  398. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  399. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  400. __m128i low = _mm_and_si128( lowByte, bytes1 );
  401. high = _mm_srli_epi16( high, 4 );
  402. bytes1 = _mm_or_si128( low, high );
  403. high = _mm_andnot_si128( lowByte, bytes2 );
  404. low = _mm_and_si128( lowByte, bytes2 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes2 = _mm_or_si128( low, high );
  407. return _mm_packus_epi16( bytes1, bytes2);
  408. }
  409. #endif
  410. #if __ARM_NEON
  411. #if !defined(__aarch64__)
  412. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  413. return
  414. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  415. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  416. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  417. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  418. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  419. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  420. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  421. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  422. }
  423. inline static int32_t vaddvq_s16(int16x8_t v) {
  424. return
  425. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  426. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  427. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  428. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  429. }
  430. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  431. return
  432. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  433. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  434. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  435. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  436. }
  437. inline static int32_t vaddvq_s32(int32x4_t v) {
  438. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  439. }
  440. inline static float vaddvq_f32(float32x4_t v) {
  441. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  442. }
  443. inline float vminvq_f32(float32x4_t v) {
  444. return
  445. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  446. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  447. }
  448. inline float vmaxvq_f32(float32x4_t v) {
  449. return
  450. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  451. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  452. }
  453. inline int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  454. return vget_low_s8(vcombine_s8(a, b));
  455. }
  456. inline int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  457. return vget_high_s8(vcombine_s8(a, b));
  458. }
  459. inline uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  460. return vget_low_u8(vcombine_u8(a, b));
  461. }
  462. inline uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  463. return vget_high_u8(vcombine_u8(a, b));
  464. }
  465. #endif
  466. #endif
  467. // method 5
  468. // blocks of QK elements
  469. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  470. typedef struct {
  471. float d; // delta
  472. uint8_t qs[QK / 2]; // nibbles / quants
  473. } block_q4_0;
  474. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  475. // method 4
  476. // blocks of QK elements
  477. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  478. typedef struct {
  479. float d;
  480. float m;
  481. uint8_t qs[QK / 2]; // nibbles / quants
  482. } block_q4_1;
  483. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  484. // reference implementation for deterministic creation of model files
  485. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  486. assert(k % QK == 0);
  487. const int nb = k / QK;
  488. uint8_t pp[QK/2];
  489. for (int i = 0; i < nb; i++) {
  490. float amax = 0.0f; // absolute max
  491. for (int l = 0; l < QK; l++) {
  492. const float v = x[i*QK + l];
  493. amax = MAX(amax, fabsf(v));
  494. }
  495. const float d = amax / ((1 << 3) - 1);
  496. const float id = d ? 1.0f/d : 0.0f;
  497. y[i].d = d;
  498. for (int l = 0; l < QK; l += 2) {
  499. const float v0 = x[i*QK + l + 0]*id;
  500. const float v1 = x[i*QK + l + 1]*id;
  501. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  502. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  503. assert(vi0 < 16);
  504. assert(vi1 < 16);
  505. pp[l/2] = vi0 | (vi1 << 4);
  506. }
  507. memcpy(y[i].qs, pp, sizeof(pp));
  508. }
  509. }
  510. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  511. assert(k % QK == 0);
  512. const int nb = k / QK;
  513. block_q4_0 * restrict y = vy;
  514. #if defined(__POWER9_VECTOR__)
  515. const vector float v85 = vec_splats(8.5f);
  516. for (int i = 0; i < nb; i++) {
  517. float amax = 0.0f; // absolute max
  518. vector float srcv [8];
  519. vector float asrcv[8];
  520. vector float amaxv[8];
  521. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  522. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  523. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  524. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  525. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  526. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  527. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  528. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  529. amax = MAX(
  530. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  531. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  532. const float d = amax / ((1 << 3) - 1);
  533. const float id = d ? 1.0/d : 0.0;
  534. y[i].d = d;
  535. const vector float vid = vec_splats(id);
  536. uint8_t * restrict pb = y[i].qs;
  537. for (int l = 0; l < 8; l++) {
  538. const vector float vf = vec_madd(srcv[l], vid, v85);
  539. const vector signed int vi = vec_signed(vf);
  540. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  541. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  542. }
  543. }
  544. #elif __ARM_NEON
  545. for (int i = 0; i < nb; i++) {
  546. float32x4_t srcv [8];
  547. float32x4_t asrcv[8];
  548. float32x4_t amaxv[8];
  549. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  550. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  551. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  552. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  553. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  554. const float amax = vmaxvq_f32(amaxv[0]);
  555. const float d = amax / ((1 << 3) - 1);
  556. const float id = d ? 1.0f/d : 0.0f;
  557. y[i].d = d;
  558. for (int l = 0; l < 8; l++) {
  559. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  560. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  561. const int32x4_t vi = vcvtq_s32_f32(vf);
  562. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  563. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  564. }
  565. }
  566. #elif defined(__AVX2__)
  567. for (int i = 0; i < nb; i++) {
  568. // Load elements into 4 AVX vectors
  569. __m256 v0 = _mm256_loadu_ps( x );
  570. __m256 v1 = _mm256_loadu_ps( x + 8 );
  571. __m256 v2 = _mm256_loadu_ps( x + 16 );
  572. __m256 v3 = _mm256_loadu_ps( x + 24 );
  573. x += 32;
  574. // Compute max(abs(e)) for the block
  575. const __m256 signBit = _mm256_set1_ps( -0.0f );
  576. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  577. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  578. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  579. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  580. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  581. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  582. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  583. const float maxScalar = _mm_cvtss_f32( max4 );
  584. // Quantize these floats
  585. const float d = maxScalar / 7.0f;
  586. y[i].d = d;
  587. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  588. const __m256 mul = _mm256_set1_ps( id );
  589. // Apply the multiplier
  590. v0 = _mm256_mul_ps( v0, mul );
  591. v1 = _mm256_mul_ps( v1, mul );
  592. v2 = _mm256_mul_ps( v2, mul );
  593. v3 = _mm256_mul_ps( v3, mul );
  594. // Round to nearest integer
  595. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  596. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  597. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  598. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  599. // Convert floats to integers
  600. __m256i i0 = _mm256_cvtps_epi32( v0 );
  601. __m256i i1 = _mm256_cvtps_epi32( v1 );
  602. __m256i i2 = _mm256_cvtps_epi32( v2 );
  603. __m256i i3 = _mm256_cvtps_epi32( v3 );
  604. // Convert int32 to int16
  605. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  606. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  607. // Convert int16 to int8
  608. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  609. // We got our precious signed bytes, but the order is now wrong
  610. // These AVX2 pack instructions process 16-byte pieces independently
  611. // The following instruction is fixing the order
  612. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  613. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  614. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  615. const __m256i off = _mm256_set1_epi8( 8 );
  616. i0 = _mm256_add_epi8( i0, off );
  617. // Compress the vector into 4 bit/value, and store
  618. __m128i res = packNibbles( i0 );
  619. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  620. }
  621. #elif defined(__AVX__)
  622. for (int i = 0; i < nb; i++) {
  623. // Load elements into 4 AVX vectors
  624. __m256 v0 = _mm256_loadu_ps( x );
  625. __m256 v1 = _mm256_loadu_ps( x + 8 );
  626. __m256 v2 = _mm256_loadu_ps( x + 16 );
  627. __m256 v3 = _mm256_loadu_ps( x + 24 );
  628. x += 32;
  629. // Compute max(abs(e)) for the block
  630. const __m256 signBit = _mm256_set1_ps( -0.0f );
  631. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  632. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  633. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  634. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  635. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  636. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  637. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  638. const float maxScalar = _mm_cvtss_f32( max4 );
  639. // Quantize these floats
  640. const float d = maxScalar / 7.0f;
  641. y[i].d = d;
  642. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  643. const __m256 mul = _mm256_set1_ps( id );
  644. // Apply the multiplier
  645. v0 = _mm256_mul_ps( v0, mul );
  646. v1 = _mm256_mul_ps( v1, mul );
  647. v2 = _mm256_mul_ps( v2, mul );
  648. v3 = _mm256_mul_ps( v3, mul );
  649. // Round to nearest integer
  650. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  651. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  652. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  653. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  654. // Convert floats to integers
  655. __m256i i0 = _mm256_cvtps_epi32( v0 );
  656. __m256i i1 = _mm256_cvtps_epi32( v1 );
  657. __m256i i2 = _mm256_cvtps_epi32( v2 );
  658. __m256i i3 = _mm256_cvtps_epi32( v3 );
  659. // Since we don't have in AVX some necessary functions,
  660. // we split the registers in half and call AVX2 analogs from SSE
  661. __m128i ni0 = _mm256_castsi256_si128( i0 );
  662. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  663. __m128i ni2 = _mm256_castsi256_si128( i1 );
  664. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  665. __m128i ni4 = _mm256_castsi256_si128( i2 );
  666. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  667. __m128i ni6 = _mm256_castsi256_si128( i3 );
  668. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  669. // Convert int32 to int16
  670. ni0 = _mm_packs_epi32( ni0, ni1 );
  671. ni2 = _mm_packs_epi32( ni2, ni3 );
  672. ni4 = _mm_packs_epi32( ni4, ni5 );
  673. ni6 = _mm_packs_epi32( ni6, ni7 );
  674. // Convert int16 to int8
  675. ni0 = _mm_packs_epi16( ni0, ni2 );
  676. ni4 = _mm_packs_epi16( ni4, ni6 );
  677. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  678. const __m128i off = _mm_set1_epi8( 8);
  679. ni0 = _mm_add_epi8( ni0, off );
  680. ni4 = _mm_add_epi8( ni4, off );
  681. // Compress the vector into 4 bit/value, and store
  682. __m128i res = packNibbles( ni0, ni4 );
  683. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  684. }
  685. #elif defined(__wasm_simd128__)
  686. for (int i = 0; i < nb; i++) {
  687. float amax = 0.0f; // absolute max
  688. v128_t srcv [8];
  689. v128_t asrcv[8];
  690. v128_t amaxv[8];
  691. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  692. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  693. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  694. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  695. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  696. amax = MAX(
  697. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  698. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  699. const float d = amax / ((1 << 3) - 1);
  700. const float id = d ? 1.0/d : 0.0;
  701. y[i].d = d;
  702. for (int l = 0; l < 8; l++) {
  703. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  704. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  705. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  706. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  707. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  708. }
  709. }
  710. #else
  711. // scalar
  712. quantize_row_q4_0_reference(x, y, k);
  713. #endif
  714. }
  715. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  716. assert(k % QK == 0);
  717. const int nb = k / QK;
  718. block_q4_1 * restrict y = vy;
  719. uint8_t pp[QK/2];
  720. for (int i = 0; i < nb; i++) {
  721. float min = FLT_MAX;
  722. float max = -FLT_MAX;
  723. for (int l = 0; l < QK; l++) {
  724. const float v = x[i*QK + l];
  725. if (v < min) min = v;
  726. if (v > max) max = v;
  727. }
  728. const float d = (max - min) / ((1 << 4) - 1);
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = d;
  731. y[i].m = min;
  732. for (int l = 0; l < QK; l += 2) {
  733. const float v0 = (x[i*QK + l + 0] - min)*id;
  734. const float v1 = (x[i*QK + l + 1] - min)*id;
  735. const uint8_t vi0 = roundf(v0);
  736. const uint8_t vi1 = roundf(v1);
  737. assert(vi0 < 16);
  738. assert(vi1 < 16);
  739. pp[l/2] = vi0 | (vi1 << 4);
  740. }
  741. memcpy(y[i].qs, pp, sizeof(pp));
  742. }
  743. }
  744. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  745. assert(k % QK == 0);
  746. const int nb = k / QK;
  747. block_q4_1 * restrict y = vy;
  748. #if defined(__AVX2__)
  749. for (int i = 0; i < nb; i++) {
  750. // Load elements into 4 AVX vectors
  751. __m256 v0 = _mm256_loadu_ps( x );
  752. __m256 v1 = _mm256_loadu_ps( x + 8 );
  753. __m256 v2 = _mm256_loadu_ps( x + 16 );
  754. __m256 v3 = _mm256_loadu_ps( x + 24 );
  755. x += 32;
  756. // Compute max for the block
  757. __m256 vmax;
  758. vmax = _mm256_max_ps( v0, v1 );
  759. vmax = _mm256_max_ps( vmax, v2 );
  760. vmax = _mm256_max_ps( vmax, v3 );
  761. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  762. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  763. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  764. const float maxScalar = _mm_cvtss_f32( max4 );
  765. // Compute min for the block
  766. __m256 vmin;
  767. vmin = _mm256_min_ps( v0, v1 );
  768. vmin = _mm256_min_ps( vmin, v2 );
  769. vmin = _mm256_min_ps( vmin, v3 );
  770. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  771. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  772. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  773. const float minScalar = _mm_cvtss_f32( min4 );
  774. // Quantize these floats
  775. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  776. const float id = d ? 1.0f/d : 0.0f;
  777. y[i].m = minScalar;
  778. y[i].d = d;
  779. // x = (x-min)*id
  780. const __m256 mul = _mm256_set1_ps( id );
  781. const __m256 off = _mm256_set1_ps( minScalar );
  782. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  783. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  784. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  785. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  786. // Round to nearest integer
  787. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  788. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  789. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  790. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  791. // Convert floats to integers
  792. __m256i i0 = _mm256_cvtps_epi32( v0 );
  793. __m256i i1 = _mm256_cvtps_epi32( v1 );
  794. __m256i i2 = _mm256_cvtps_epi32( v2 );
  795. __m256i i3 = _mm256_cvtps_epi32( v3 );
  796. // Convert int32 to int16
  797. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  798. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  799. // Convert int16 to int8
  800. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  801. // We got our precious signed bytes, but the order is now wrong
  802. // These AVX2 pack instructions process 16-byte pieces independently
  803. // The following instruction is fixing the order
  804. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  805. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  806. // Compress the vector into 4 bit/value, and store
  807. __m128i res = packNibbles( i0 );
  808. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  809. }
  810. #elif __ARM_NEON
  811. for (int i = 0; i < nb; i++) {
  812. float32x4_t srcv[8];
  813. float32x4_t minv[8];
  814. float32x4_t maxv[8];
  815. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  816. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  817. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  818. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  819. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  820. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  821. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  822. const float min = vminvq_f32(minv[0]);
  823. const float max = vmaxvq_f32(maxv[0]);
  824. const float d = (max - min) / ((1 << 4) - 1);
  825. const float id = d ? 1.0f/d : 0.0f;
  826. y[i].d = d;
  827. y[i].m = min;
  828. const float32x4_t minv0 = vdupq_n_f32(min);
  829. for (int l = 0; l < 8; l++) {
  830. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  831. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  832. const int32x4_t vi = vcvtq_s32_f32(vf);
  833. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  834. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  835. }
  836. }
  837. #else
  838. // scalar
  839. quantize_row_q4_1_reference(x, vy, k);
  840. #endif
  841. }
  842. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  843. assert(k % QK == 0);
  844. const int nb = k / QK;
  845. const block_q4_0 * restrict x = vx;
  846. #if defined(__AVX2__)
  847. for (int i = 0; i < nb; i++) {
  848. // scale factor
  849. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  850. const uint8_t * restrict pp = x[i].qs;
  851. for (int l = 0; l < QK; l += 32) {
  852. // Load 32x4-bit integers into 32x8-bit integers
  853. __m256i vx8 = bytesFromNibbles(pp+l/2);
  854. // Subtract 8 from the integers
  855. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  856. // Convert to 16-bit int
  857. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  858. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  859. // Convert to 32-bit int -> float 32
  860. const __m256 vf[4] = {
  861. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  862. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  863. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  864. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  865. };
  866. // Scale and store
  867. for (int j = 0; j < 4; j++) {
  868. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  869. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  870. }
  871. }
  872. }
  873. #elif defined(__ARM_NEON)
  874. for (int i = 0; i < nb; i++) {
  875. const float32x4_t vd = vdupq_n_f32(x[i].d);
  876. const uint8_t * restrict pp = x[i].qs;
  877. for (int l = 0; l < QK; l += 16) {
  878. // Load 16x4-bit integers into 8x8-bit integers
  879. const uint8x8_t v8 = vld1_u8(pp + l/2);
  880. // Expand 4-bit qs to 8-bit bytes
  881. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  882. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  883. // Convert to signed 8-bit integers
  884. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  885. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  886. // Subtract 8 from each byte
  887. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  888. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  889. // Interleave and combine
  890. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  891. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  892. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  893. // convert to 2x int16x8_t
  894. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  895. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  896. // convert to 4x float32x4_t
  897. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  898. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  899. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  900. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  901. // Multiply by d
  902. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  903. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  904. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  905. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  906. // Store
  907. vst1q_f32(y + i*QK + l + 0, r0);
  908. vst1q_f32(y + i*QK + l + 4, r1);
  909. vst1q_f32(y + i*QK + l + 8, r2);
  910. vst1q_f32(y + i*QK + l + 12, r3);
  911. }
  912. }
  913. #else
  914. // scalar
  915. for (int i = 0; i < nb; i++) {
  916. const float d = x[i].d;
  917. const uint8_t * restrict pp = x[i].qs;
  918. for (int l = 0; l < QK; l += 2) {
  919. const uint8_t vi = pp[l/2];
  920. const int8_t vi0 = vi & 0xf;
  921. const int8_t vi1 = vi >> 4;
  922. const float v0 = (vi0 - 8)*d;
  923. const float v1 = (vi1 - 8)*d;
  924. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  925. y[i*QK + l + 0] = v0;
  926. y[i*QK + l + 1] = v1;
  927. assert(!isnan(y[i*QK + l + 0]));
  928. assert(!isnan(y[i*QK + l + 1]));
  929. }
  930. }
  931. #endif
  932. }
  933. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  934. assert(k % QK == 0);
  935. const int nb = k / QK;
  936. const block_q4_1 * restrict x = vx;
  937. #if defined(__AVX2__)
  938. for (int i = 0; i < nb; i++) {
  939. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  940. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  941. const uint8_t * restrict pp = x[i].qs;
  942. for (int l = 0; l < QK; l += 32) {
  943. // Load 32x4-bit integers into 32x8-bit integers
  944. __m256i vx8 = bytesFromNibbles(pp+l/2);
  945. // Convert to 16-bit int
  946. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  947. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  948. // Convert to 32-bit int -> float 32
  949. const __m256 vf[4] = {
  950. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  951. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  952. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  953. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  954. };
  955. // Scale, add m and store
  956. for (int j = 0; j < 4; j++) {
  957. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  958. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  959. }
  960. }
  961. }
  962. #elif defined(__ARM_NEON)
  963. for (int i = 0; i < nb; i++) {
  964. const float32x4_t vd = vdupq_n_f32(x[i].d);
  965. const float32x4_t vm = vdupq_n_f32(x[i].m);
  966. const uint8_t * restrict pp = x[i].qs;
  967. for (int l = 0; l < QK; l += 16) {
  968. // Load 16x4-bit integers into 8x8-bit integers
  969. const uint8x8_t v8 = vld1_u8(pp + l/2);
  970. // Expand 4-bit qs to 8-bit bytes
  971. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  972. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  973. // Interleave and combine
  974. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  975. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  976. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  977. // convert to 2x uint16x8_t
  978. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  979. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  980. // convert to 4x float32x4_t
  981. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  982. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  983. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  984. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  985. // multiply by d and add m
  986. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  987. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  988. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  989. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  990. // Store
  991. vst1q_f32(y + i*QK + l + 0, r0);
  992. vst1q_f32(y + i*QK + l + 4, r1);
  993. vst1q_f32(y + i*QK + l + 8, r2);
  994. vst1q_f32(y + i*QK + l + 12, r3);
  995. }
  996. }
  997. #else
  998. for (int i = 0; i < nb; i++) {
  999. const float d = x[i].d;
  1000. const float m = x[i].m;
  1001. const uint8_t * restrict pp = x[i].qs;
  1002. for (int l = 0; l < QK; l += 2) {
  1003. const uint8_t vi = pp[l/2];
  1004. const int8_t vi0 = vi & 0xf;
  1005. const int8_t vi1 = vi >> 4;
  1006. const float v0 = vi0*d + m;
  1007. const float v1 = vi1*d + m;
  1008. y[i*QK + l + 0] = v0;
  1009. y[i*QK + l + 1] = v1;
  1010. assert(!isnan(y[i*QK + l + 0]));
  1011. assert(!isnan(y[i*QK + l + 1]));
  1012. }
  1013. }
  1014. #endif
  1015. }
  1016. //
  1017. // simd mappings
  1018. //
  1019. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1020. // we then implement the fundamental computation operations below using only these macros
  1021. // adding support for new architectures requires to define the corresponding SIMD macros
  1022. //
  1023. // GGML_F32_STEP / GGML_F16_STEP
  1024. // number of elements to process in a single step
  1025. //
  1026. // GGML_F32_EPR / GGML_F16_EPR
  1027. // number of elements to fit in a single register
  1028. //
  1029. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1030. #define GGML_SIMD
  1031. // F32 NEON
  1032. #define GGML_F32_STEP 16
  1033. #define GGML_F32_EPR 4
  1034. #define GGML_F32x4 float32x4_t
  1035. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1036. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1037. #define GGML_F32x4_LOAD vld1q_f32
  1038. #define GGML_F32x4_STORE vst1q_f32
  1039. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1040. #define GGML_F32x4_ADD vaddq_f32
  1041. #define GGML_F32x4_MUL vmulq_f32
  1042. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1043. #define GGML_F32x4_REDUCE(res, x) \
  1044. { \
  1045. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1046. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1047. } \
  1048. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1049. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1050. } \
  1051. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1052. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1053. } \
  1054. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1055. }
  1056. #define GGML_F32_VEC GGML_F32x4
  1057. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1058. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1059. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1060. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1061. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1062. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1063. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1064. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1065. // F16 NEON
  1066. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1067. #define GGML_F16_STEP 32
  1068. #define GGML_F16_EPR 8
  1069. #define GGML_F16x8 float16x8_t
  1070. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1071. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1072. #define GGML_F16x8_LOAD vld1q_f16
  1073. #define GGML_F16x8_STORE vst1q_f16
  1074. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1075. #define GGML_F16x8_ADD vaddq_f16
  1076. #define GGML_F16x8_MUL vmulq_f16
  1077. #define GGML_F16x8_REDUCE(res, x) \
  1078. { \
  1079. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1080. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1081. } \
  1082. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1083. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1084. } \
  1085. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1086. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1087. } \
  1088. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1089. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1090. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1091. }
  1092. #define GGML_F16_VEC GGML_F16x8
  1093. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1094. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1095. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1096. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1097. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1098. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1099. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1100. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1101. #else
  1102. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1103. // and take advantage of the vcvt_ functions to convert to/from FP16
  1104. #define GGML_F16_STEP 16
  1105. #define GGML_F16_EPR 4
  1106. #define GGML_F32Cx4 float32x4_t
  1107. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1108. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1109. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1110. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1111. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1112. #define GGML_F32Cx4_ADD vaddq_f32
  1113. #define GGML_F32Cx4_MUL vmulq_f32
  1114. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1115. #define GGML_F16_VEC GGML_F32Cx4
  1116. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1117. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1118. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1119. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1120. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1121. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1122. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1123. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1124. #endif
  1125. #elif defined(__AVX__)
  1126. #define GGML_SIMD
  1127. // F32 AVX
  1128. #define GGML_F32_STEP 32
  1129. #define GGML_F32_EPR 8
  1130. #define GGML_F32x8 __m256
  1131. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1132. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1133. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1134. #define GGML_F32x8_STORE _mm256_storeu_ps
  1135. #if defined(__FMA__)
  1136. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1137. #else
  1138. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1139. #endif
  1140. #define GGML_F32x8_ADD _mm256_add_ps
  1141. #define GGML_F32x8_MUL _mm256_mul_ps
  1142. #define GGML_F32x8_REDUCE(res, x) \
  1143. { \
  1144. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1145. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1146. } \
  1147. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1148. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1149. } \
  1150. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1151. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1152. } \
  1153. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1154. _mm256_extractf128_ps(x[0], 1)); \
  1155. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1156. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1157. }
  1158. // TODO: is this optimal ?
  1159. #define GGML_F32_VEC GGML_F32x8
  1160. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1161. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1162. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1163. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1164. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1165. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1166. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1167. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1168. // F16 AVX
  1169. #define GGML_F16_STEP 32
  1170. #define GGML_F16_EPR 8
  1171. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1172. #define GGML_F32Cx8 __m256
  1173. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1174. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1175. #if defined(__F16C__)
  1176. // the _mm256_cvt intrinsics require F16C
  1177. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1178. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1179. #else
  1180. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1181. float tmp[8];
  1182. for (int i = 0; i < 8; i++)
  1183. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1184. return _mm256_loadu_ps(tmp);
  1185. }
  1186. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1187. float arr[8];
  1188. _mm256_storeu_ps(arr, y);
  1189. for (int i = 0; i < 8; i++)
  1190. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1191. }
  1192. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1193. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1194. #endif
  1195. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1196. #define GGML_F32Cx8_ADD _mm256_add_ps
  1197. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1198. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1199. #define GGML_F16_VEC GGML_F32Cx8
  1200. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1201. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1202. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1203. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1204. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1205. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1206. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1207. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1208. #elif defined(__POWER9_VECTOR__)
  1209. #define GGML_SIMD
  1210. // F32 POWER9
  1211. #define GGML_F32_STEP 32
  1212. #define GGML_F32_EPR 4
  1213. #define GGML_F32x4 vector float
  1214. #define GGML_F32x4_ZERO 0.0f
  1215. #define GGML_F32x4_SET1 vec_splats
  1216. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1217. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1218. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1219. #define GGML_F32x4_ADD vec_add
  1220. #define GGML_F32x4_MUL vec_mul
  1221. #define GGML_F32x4_REDUCE(res, x) \
  1222. { \
  1223. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1224. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1225. } \
  1226. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1227. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1228. } \
  1229. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1230. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1231. } \
  1232. res = vec_extract(x[0], 0) + \
  1233. vec_extract(x[0], 1) + \
  1234. vec_extract(x[0], 2) + \
  1235. vec_extract(x[0], 3); \
  1236. }
  1237. #define GGML_F32_VEC GGML_F32x4
  1238. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1239. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1240. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1241. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1242. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1243. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1244. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1245. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1246. // F16 POWER9
  1247. #define GGML_F16_STEP GGML_F32_STEP
  1248. #define GGML_F16_EPR GGML_F32_EPR
  1249. #define GGML_F16_VEC GGML_F32x4
  1250. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1251. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1252. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1253. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1254. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1255. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1256. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1257. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1258. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1259. #define GGML_F16_VEC_STORE(p, r, i) \
  1260. if (i & 0x1) \
  1261. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1262. r[i - GGML_ENDIAN_BYTE(0)]), \
  1263. 0, p - GGML_F16_EPR)
  1264. #elif defined(__wasm_simd128__)
  1265. #define GGML_SIMD
  1266. // F32 WASM
  1267. #define GGML_F32_STEP 16
  1268. #define GGML_F32_EPR 4
  1269. #define GGML_F32x4 v128_t
  1270. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1271. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1272. #define GGML_F32x4_LOAD wasm_v128_load
  1273. #define GGML_F32x4_STORE wasm_v128_store
  1274. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1275. #define GGML_F32x4_ADD wasm_f32x4_add
  1276. #define GGML_F32x4_MUL wasm_f32x4_mul
  1277. #define GGML_F32x4_REDUCE(res, x) \
  1278. { \
  1279. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1280. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1281. } \
  1282. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1283. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1284. } \
  1285. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1286. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1287. } \
  1288. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1289. wasm_f32x4_extract_lane(x[0], 1) + \
  1290. wasm_f32x4_extract_lane(x[0], 2) + \
  1291. wasm_f32x4_extract_lane(x[0], 3); \
  1292. }
  1293. #define GGML_F32_VEC GGML_F32x4
  1294. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1295. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1296. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1297. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1298. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1299. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1300. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1301. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1302. // F16 WASM
  1303. #define GGML_F16_STEP 16
  1304. #define GGML_F16_EPR 4
  1305. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1306. float tmp[4];
  1307. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1308. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1309. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1310. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1311. return wasm_v128_load(tmp);
  1312. }
  1313. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1314. float tmp[4];
  1315. wasm_v128_store(tmp, x);
  1316. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1317. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1318. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1319. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1320. }
  1321. #define GGML_F16x4 v128_t
  1322. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1323. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1324. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1325. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1326. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1327. #define GGML_F16x4_ADD wasm_f32x4_add
  1328. #define GGML_F16x4_MUL wasm_f32x4_mul
  1329. #define GGML_F16x4_REDUCE(res, x) \
  1330. { \
  1331. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1332. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1333. } \
  1334. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1335. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1336. } \
  1337. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1338. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1339. } \
  1340. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1341. wasm_f32x4_extract_lane(x[0], 1) + \
  1342. wasm_f32x4_extract_lane(x[0], 2) + \
  1343. wasm_f32x4_extract_lane(x[0], 3); \
  1344. }
  1345. #define GGML_F16_VEC GGML_F16x4
  1346. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1347. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1348. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1349. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1350. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1351. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1352. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1353. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1354. #elif defined(__SSE3__)
  1355. #define GGML_SIMD
  1356. // F32 SSE
  1357. #define GGML_F32_STEP 32
  1358. #define GGML_F32_EPR 4
  1359. #define GGML_F32x4 __m128
  1360. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1361. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1362. #define GGML_F32x4_LOAD _mm_loadu_ps
  1363. #define GGML_F32x4_STORE _mm_storeu_ps
  1364. #if defined(__FMA__)
  1365. // TODO: Does this work?
  1366. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1367. #else
  1368. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1369. #endif
  1370. #define GGML_F32x4_ADD _mm_add_ps
  1371. #define GGML_F32x4_MUL _mm_mul_ps
  1372. #define GGML_F32x4_REDUCE(res, x) \
  1373. { \
  1374. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1375. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1376. } \
  1377. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1378. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1379. } \
  1380. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1381. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1382. } \
  1383. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1384. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1385. }
  1386. // TODO: is this optimal ?
  1387. #define GGML_F32_VEC GGML_F32x4
  1388. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1389. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1390. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1391. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1392. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1393. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1394. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1395. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1396. // F16 SSE
  1397. #define GGML_F16_STEP 32
  1398. #define GGML_F16_EPR 4
  1399. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1400. float tmp[4];
  1401. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1402. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1403. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1404. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1405. return _mm_loadu_ps(tmp);
  1406. }
  1407. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1408. float arr[4];
  1409. _mm_storeu_ps(arr, y);
  1410. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1411. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1412. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1413. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1414. }
  1415. #define GGML_F32Cx4 __m128
  1416. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1417. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1418. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1419. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1420. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1421. #define GGML_F32Cx4_ADD _mm_add_ps
  1422. #define GGML_F32Cx4_MUL _mm_mul_ps
  1423. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1424. #define GGML_F16_VEC GGML_F32Cx4
  1425. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1426. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1427. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1428. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1429. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1430. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1431. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1432. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1433. #endif
  1434. // GGML_F32_ARR / GGML_F16_ARR
  1435. // number of registers to use per step
  1436. #ifdef GGML_SIMD
  1437. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1438. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1439. #endif
  1440. //
  1441. // fundamental operations
  1442. //
  1443. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1444. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1445. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1446. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1447. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1448. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1449. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1450. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1451. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1452. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1453. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1454. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1455. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1456. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1457. #ifdef GGML_SIMD
  1458. float sumf = 0.0f;
  1459. const int np = (n & ~(GGML_F32_STEP - 1));
  1460. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1461. GGML_F32_VEC ax[GGML_F32_ARR];
  1462. GGML_F32_VEC ay[GGML_F32_ARR];
  1463. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1464. for (int j = 0; j < GGML_F32_ARR; j++) {
  1465. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1466. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1467. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1468. }
  1469. }
  1470. // reduce sum0..sum3 to sum0
  1471. GGML_F32_VEC_REDUCE(sumf, sum);
  1472. // leftovers
  1473. for (int i = np; i < n; ++i) {
  1474. sumf += x[i]*y[i];
  1475. }
  1476. #else
  1477. // scalar
  1478. ggml_float sumf = 0.0;
  1479. for (int i = 0; i < n; ++i) {
  1480. sumf += (ggml_float)(x[i]*y[i]);
  1481. }
  1482. #endif
  1483. *s = sumf;
  1484. }
  1485. #if __AVX512F__ && QK == 32
  1486. static inline __m512 dot_q4_0_oneblock_avx512(
  1487. __m512 acc,
  1488. const block_q4_0 * restrict x,
  1489. const block_q4_0 * restrict y,
  1490. int i
  1491. ) {
  1492. // Compute combined scale for the block
  1493. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1494. __m256i bx = bytesFromNibbles( x[i].qs );
  1495. __m256i by = bytesFromNibbles( y[i].qs );
  1496. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1497. const __m256i off = _mm256_set1_epi8( 8 );
  1498. bx = _mm256_sub_epi8( bx, off );
  1499. by = _mm256_sub_epi8( by, off );
  1500. // Sign-extend 16 signed bytes into int16_t
  1501. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1502. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1503. // Compute products of int16_t integers, add pairwise
  1504. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1505. // Convert int32_t to float
  1506. __m512 p = _mm512_cvtepi32_ps( i64 );
  1507. // Apply the scale, and accumulate
  1508. return _mm512_fmadd_ps( d, p, acc );
  1509. }
  1510. #endif
  1511. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1512. ggml_float sumf = 0.0;
  1513. #if defined(GGML_SIMD)
  1514. const int np = (n & ~(GGML_F16_STEP - 1));
  1515. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1516. GGML_F16_VEC ax[GGML_F16_ARR];
  1517. GGML_F16_VEC ay[GGML_F16_ARR];
  1518. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1519. for (int j = 0; j < GGML_F16_ARR; j++) {
  1520. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1521. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1522. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1523. }
  1524. }
  1525. // reduce sum0..sum3 to sum0
  1526. GGML_F16_VEC_REDUCE(sumf, sum);
  1527. // leftovers
  1528. for (int i = np; i < n; ++i) {
  1529. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1530. }
  1531. #else
  1532. for (int i = 0; i < n; ++i) {
  1533. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1534. }
  1535. #endif
  1536. *s = sumf;
  1537. }
  1538. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1539. const int nb = n / QK;
  1540. assert(n % QK == 0);
  1541. assert(nb % 2 == 0);
  1542. const block_q4_0 * restrict x = vx;
  1543. const block_q4_0 * restrict y = vy;
  1544. float sumf = 0.0;
  1545. #if defined(__ARM_NEON)
  1546. float sum0 = 0.0f;
  1547. float sum1 = 0.0f;
  1548. for (int i = 0; i < nb; i += 2) {
  1549. const block_q4_0 * restrict x0 = &x[i + 0];
  1550. const block_q4_0 * restrict y0 = &y[i + 0];
  1551. const block_q4_0 * restrict x1 = &x[i + 1];
  1552. const block_q4_0 * restrict y1 = &y[i + 1];
  1553. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1554. const int8x16_t s8b = vdupq_n_s8(0x8);
  1555. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1556. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1557. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1558. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1559. // 4-bit -> 8-bit
  1560. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1561. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1562. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1563. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1564. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1565. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1566. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1567. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1568. // sub 8
  1569. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1570. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1571. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1572. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1573. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1574. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1575. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1576. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1577. #if defined(__ARM_FEATURE_DOTPROD)
  1578. // dot product into int32x4_t
  1579. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1580. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1581. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1582. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1583. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1584. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1585. #else
  1586. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1587. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1588. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1589. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1590. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1591. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1592. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1593. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1594. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1595. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1596. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1597. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1598. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1599. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1600. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1601. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1602. #endif
  1603. }
  1604. sumf = sum0 + sum1;
  1605. #elif defined(__AVX512F__)
  1606. // Initialize accumulator with zeros
  1607. __m512 acc0 = _mm512_setzero_ps();
  1608. __m512 acc1 = _mm512_setzero_ps();
  1609. const int superblock_size = 8;
  1610. const int superblock_count = nb / superblock_size;
  1611. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1612. int i = superblock_ix * superblock_size;
  1613. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1614. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1615. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1616. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1617. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1618. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1619. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1620. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1621. }
  1622. // Remainders
  1623. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1624. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1625. }
  1626. // Horizontal sum of all lanes of the accumulator
  1627. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1628. #elif defined(__AVX2__)
  1629. // Initialize accumulator with zeros
  1630. __m256 acc = _mm256_setzero_ps();
  1631. /* Prepare the constants we will need during execution */
  1632. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1633. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1634. #define UNROLL_COUNT 8
  1635. // make sure we only unroll multiples of the block count
  1636. assert(nb % UNROLL_COUNT == 0);
  1637. // Main loop
  1638. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1639. // This loop will be unrolled by the compiler
  1640. for (int u=0;u<UNROLL_COUNT;u++) {
  1641. /* Compute combined scale for the block */
  1642. const __m256 scale = _mm256_mul_ps(
  1643. _mm256_broadcast_ss( &x[i+u].d ),
  1644. _mm256_broadcast_ss( &y[i+u].d ) );
  1645. /* get input from x
  1646. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1647. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1648. /* Load 16 bytes from memory */
  1649. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1650. /* Expand bytes into uint16_t values */
  1651. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1652. /* Unpack values into individual bytes */
  1653. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1654. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1655. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1656. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1657. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1658. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1659. /* get input from y
  1660. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1661. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1662. /* Load 16 bytes from memory */
  1663. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1664. /* Expand bytes into uint16_t values */
  1665. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1666. /* Unpack values into individual bytes */
  1667. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1668. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1669. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1670. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1671. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1672. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1673. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1674. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1675. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1676. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1677. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1678. /* Convert to vectore of 8 int32_t to 8 floats */
  1679. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1680. /* Multiply q with scale and accumulate */
  1681. acc = _mm256_fmadd_ps( scale, q, acc );
  1682. }
  1683. }
  1684. // Return horizontal sum of the acc vector
  1685. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1686. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1687. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1688. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1689. sumf = _mm_cvtss_f32( res );
  1690. #elif defined(__AVX__)
  1691. // Initialize accumulator with zeros
  1692. __m256 acc = _mm256_setzero_ps();
  1693. // Main loop
  1694. for (int i = 0; i < nb; ++i) {
  1695. // Compute combined scale for the block
  1696. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1697. __m128i i32[2];
  1698. for (int j = 0; j < 2; ++j) {
  1699. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1700. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1701. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1702. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1703. const __m128i off = _mm_set1_epi8( 8 );
  1704. bx = _mm_sub_epi8( bx, off );
  1705. by = _mm_sub_epi8( by, off );
  1706. // Get absolute values of x vectors
  1707. const __m128i ax = _mm_sign_epi8(bx, bx);
  1708. // Sign the values of the y vectors
  1709. const __m128i sy = _mm_sign_epi8(by, bx);
  1710. // Perform multiplication and create 16-bit values
  1711. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1712. const __m128i ones = _mm_set1_epi16(1);
  1713. i32[j] = _mm_madd_epi16(ones, dot);
  1714. }
  1715. // Convert int32_t to float
  1716. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1717. // Apply the scale, and accumulate
  1718. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1719. }
  1720. // Return horizontal sum of the acc vector
  1721. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1722. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1723. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1724. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1725. sumf = _mm_cvtss_f32( res );
  1726. #elif defined(__wasm_simd128__)
  1727. // wasm simd
  1728. float sum0 = 0.0f;
  1729. float sum1 = 0.0f;
  1730. for (int i = 0; i < nb; i += 2) {
  1731. const block_q4_0 * restrict x0 = &x[i + 0];
  1732. const block_q4_0 * restrict y0 = &y[i + 0];
  1733. const block_q4_0 * restrict x1 = &x[i + 1];
  1734. const block_q4_0 * restrict y1 = &y[i + 1];
  1735. const v128_t m4b = wasm_u8x16_splat(0xf);
  1736. const v128_t s8b = wasm_i8x16_splat(0x8);
  1737. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1738. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1739. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1740. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1741. // 4-bit -> 8-bit
  1742. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1743. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1744. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1745. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1746. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1747. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1748. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1749. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1750. // sub 8
  1751. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1752. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1753. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1754. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1755. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1756. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1757. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1758. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1759. // dot product into int16x8_t
  1760. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1761. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1762. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1763. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1764. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1765. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1766. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1767. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1768. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1769. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1770. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1771. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1772. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1773. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1774. sum0 += x0->d * y0->d * (
  1775. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1776. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1777. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1778. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1779. sum1 += x1->d * y1->d * (
  1780. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1781. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1782. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1783. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1784. }
  1785. sumf = sum0 + sum1;
  1786. #else
  1787. // scalar
  1788. for (int i = 0; i < nb; i++) {
  1789. const float d0 = x[i].d;
  1790. const float d1 = y[i].d;
  1791. const uint8_t * restrict p0 = x[i].qs;
  1792. const uint8_t * restrict p1 = y[i].qs;
  1793. int sumi = 0;
  1794. for (int j = 0; j < QK/2; j++) {
  1795. const uint8_t v0 = p0[j];
  1796. const uint8_t v1 = p1[j];
  1797. const int8_t i0 = (int8_t) (v0 & 0xf) - 8;
  1798. const int8_t i1 = (int8_t) (v0 >> 4) - 8;
  1799. const int8_t i2 = (int8_t) (v1 & 0xf) - 8;
  1800. const int8_t i3 = (int8_t) (v1 >> 4) - 8;
  1801. sumi += i0*i2 + i1*i3;
  1802. }
  1803. sumf += d0 * d1 * sumi;
  1804. }
  1805. #endif
  1806. *s = sumf;
  1807. }
  1808. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1809. const int nb = n / QK;
  1810. const block_q4_1 * restrict x = vx;
  1811. const block_q4_1 * restrict y = vy;
  1812. float sumf = 0.0;
  1813. #if defined(__AVX2__)
  1814. // Initialize accumulator with zeros
  1815. __m256 acc = _mm256_setzero_ps();
  1816. // Accumulator for constant offsets
  1817. float acc_offset = 0.0f;
  1818. // Main loop
  1819. for (int i = 0; i < nb; ++i) {
  1820. const float * d0 = &x[i].d;
  1821. const float * d1 = &y[i].d;
  1822. const float * m0 = &x[i].m;
  1823. const float * m1 = &y[i].m;
  1824. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1825. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1826. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1827. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1828. // Compute combined scale for the block
  1829. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1830. // Compute cross scales for the block
  1831. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1832. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1833. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1834. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1835. __m256i bx = bytesFromNibbles( x[i].qs );
  1836. __m256i by = bytesFromNibbles( y[i].qs );
  1837. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1838. // Sign-extend first 16 signed bytes into int16_t
  1839. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1840. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1841. // Compute products of int16_t integers, add pairwise
  1842. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1843. // Sign-extend last 16 signed bytes into int16_t vectors
  1844. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1845. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1846. // Accumulate products of int16_t integers
  1847. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1848. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1849. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1850. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1851. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1852. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1853. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1854. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1855. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1856. // Convert int32_t to float
  1857. __m256 p = _mm256_cvtepi32_ps( i32 );
  1858. // Apply the scale, and accumulate
  1859. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1860. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1861. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1862. // acc_offset += m0*m1 (for each entry in the block)
  1863. acc_offset += (*m0)*(*m1);
  1864. }
  1865. // Return horizontal sum of the acc vector
  1866. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1867. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1868. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1869. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1870. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1871. #elif defined(__ARM_NEON)
  1872. float sum00 = 0.0f;
  1873. float sum01 = 0.0f;
  1874. float sum10 = 0.0f;
  1875. float sum11 = 0.0f;
  1876. for (int i = 0; i < nb; i += 2) {
  1877. const block_q4_1 * restrict x0 = &x[i + 0];
  1878. const block_q4_1 * restrict y0 = &y[i + 0];
  1879. const block_q4_1 * restrict x1 = &x[i + 1];
  1880. const block_q4_1 * restrict y1 = &y[i + 1];
  1881. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1882. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1883. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1884. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1885. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1886. // 4-bit -> 8-bit
  1887. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1888. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1889. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1890. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1891. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  1892. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  1893. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  1894. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  1895. sum00 += x0->m*y0->m;
  1896. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1897. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1898. sum00 += x1->m*y1->m;
  1899. sum01 += y1->m*x1->d*(vaddvq_u8(v0_1l) + vaddvq_u8(v0_1h));
  1900. sum10 += x1->m*y1->d*(vaddvq_u8(v1_1l) + vaddvq_u8(v1_1h));
  1901. #if defined(__ARM_FEATURE_DOTPROD)
  1902. // dot product into int32x4_t
  1903. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l);
  1904. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l);
  1905. p_0 = vdotq_s32(p_0, v0_0h, v1_0h);
  1906. p_1 = vdotq_s32(p_1, v0_1h, v1_1h);
  1907. sum11 += x0->d*y0->d*vaddvq_s32(p_0);
  1908. sum11 += x1->d*y1->d*vaddvq_s32(p_1);
  1909. #else
  1910. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1911. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1912. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1913. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1914. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  1915. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  1916. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  1917. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  1918. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  1919. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  1920. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  1921. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  1922. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  1923. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  1924. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  1925. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  1926. #endif
  1927. }
  1928. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1929. #else
  1930. // scalar
  1931. for (int i = 0; i < nb; i++) {
  1932. const float d0 = x[i].d;
  1933. const float d1 = y[i].d;
  1934. const float m0 = x[i].m;
  1935. const float m1 = y[i].m;
  1936. const uint8_t * restrict p0 = x[i].qs;
  1937. const uint8_t * restrict p1 = y[i].qs;
  1938. for (int j = 0; j < QK/2; j++) {
  1939. const uint8_t v0 = p0[j];
  1940. const uint8_t v1 = p1[j];
  1941. const float f0 = d0*(v0 & 0xf) + m0;
  1942. const float f1 = d0*(v0 >> 4) + m0;
  1943. const float f2 = d1*(v1 & 0xf) + m1;
  1944. const float f3 = d1*(v1 >> 4) + m1;
  1945. sumf += f0*f2 + f1*f3;
  1946. }
  1947. }
  1948. #endif
  1949. *s = sumf;
  1950. }
  1951. // compute GGML_VEC_DOT_UNROLL dot products at once
  1952. // xs - x row stride in bytes
  1953. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1954. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1955. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1956. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1957. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1958. }
  1959. #if defined(GGML_SIMD)
  1960. const int np = (n & ~(GGML_F16_STEP - 1));
  1961. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1962. GGML_F16_VEC ax[GGML_F16_ARR];
  1963. GGML_F16_VEC ay[GGML_F16_ARR];
  1964. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1965. for (int j = 0; j < GGML_F16_ARR; j++) {
  1966. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1967. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1968. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1969. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1970. }
  1971. }
  1972. }
  1973. // reduce sum0..sum3 to sum0
  1974. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1975. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1976. }
  1977. // leftovers
  1978. for (int i = np; i < n; ++i) {
  1979. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1980. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1981. }
  1982. }
  1983. #else
  1984. for (int i = 0; i < n; ++i) {
  1985. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1986. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1987. }
  1988. }
  1989. #endif
  1990. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1991. s[i] = sumf[i];
  1992. }
  1993. }
  1994. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1995. #if defined(GGML_SIMD)
  1996. const int np = (n & ~(GGML_F32_STEP - 1));
  1997. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1998. GGML_F32_VEC ax[GGML_F32_ARR];
  1999. GGML_F32_VEC ay[GGML_F32_ARR];
  2000. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2001. for (int j = 0; j < GGML_F32_ARR; j++) {
  2002. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2003. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2004. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2005. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2006. }
  2007. }
  2008. // leftovers
  2009. for (int i = np; i < n; ++i) {
  2010. y[i] += x[i]*v;
  2011. }
  2012. #else
  2013. // scalar
  2014. for (int i = 0; i < n; ++i) {
  2015. y[i] += x[i]*v;
  2016. }
  2017. #endif
  2018. }
  2019. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2020. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2021. #if defined(GGML_SIMD)
  2022. const int np = (n & ~(GGML_F32_STEP - 1));
  2023. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2024. GGML_F32_VEC ay[GGML_F32_ARR];
  2025. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2026. for (int j = 0; j < GGML_F32_ARR; j++) {
  2027. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2028. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2029. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2030. }
  2031. }
  2032. // leftovers
  2033. for (int i = np; i < n; ++i) {
  2034. y[i] *= v;
  2035. }
  2036. #else
  2037. // scalar
  2038. for (int i = 0; i < n; ++i) {
  2039. y[i] *= v;
  2040. }
  2041. #endif
  2042. }
  2043. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2044. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2045. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2046. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2047. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2048. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2049. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2050. static const float GELU_COEF_A = 0.044715f;
  2051. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2052. inline static float ggml_gelu_f32(float x) {
  2053. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2054. }
  2055. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2056. const uint16_t * i16 = (const uint16_t *) x;
  2057. for (int i = 0; i < n; ++i) {
  2058. y[i] = table_gelu_f16[i16[i]];
  2059. }
  2060. }
  2061. #ifdef GGML_GELU_FP16
  2062. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2063. uint16_t t;
  2064. for (int i = 0; i < n; ++i) {
  2065. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2066. memcpy(&t, &fp16, sizeof(uint16_t));
  2067. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2068. }
  2069. }
  2070. #else
  2071. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2072. for (int i = 0; i < n; ++i) {
  2073. y[i] = ggml_gelu_f32(x[i]);
  2074. }
  2075. }
  2076. #endif
  2077. // Sigmoid Linear Unit (SiLU) function
  2078. inline static float ggml_silu_f32(float x) {
  2079. return x/(1.0f + expf(-x));
  2080. }
  2081. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2082. const uint16_t * i16 = (const uint16_t *) x;
  2083. for (int i = 0; i < n; ++i) {
  2084. y[i] = table_silu_f16[i16[i]];
  2085. }
  2086. }
  2087. #ifdef GGML_SILU_FP16
  2088. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2089. uint16_t t;
  2090. for (int i = 0; i < n; ++i) {
  2091. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2092. memcpy(&t, &fp16, sizeof(uint16_t));
  2093. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2094. }
  2095. }
  2096. #else
  2097. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2098. for (int i = 0; i < n; ++i) {
  2099. y[i] = ggml_silu_f32(x[i]);
  2100. }
  2101. }
  2102. #endif
  2103. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2104. #ifndef GGML_USE_ACCELERATE
  2105. ggml_float sum = 0.0;
  2106. for (int i = 0; i < n; ++i) {
  2107. sum += (ggml_float)x[i];
  2108. }
  2109. *s = sum;
  2110. #else
  2111. vDSP_sve(x, 1, s, n);
  2112. #endif
  2113. }
  2114. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2115. #ifndef GGML_USE_ACCELERATE
  2116. float max = -INFINITY;
  2117. for (int i = 0; i < n; ++i) {
  2118. max = MAX(max, x[i]);
  2119. }
  2120. *s = max;
  2121. #else
  2122. vDSP_maxv(x, 1, s, n);
  2123. #endif
  2124. }
  2125. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2126. ggml_vec_norm_f32(n, s, x);
  2127. *s = 1.f/(*s);
  2128. }
  2129. //
  2130. // logging
  2131. //
  2132. #if (GGML_DEBUG >= 1)
  2133. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2134. #else
  2135. #define GGML_PRINT_DEBUG(...)
  2136. #endif
  2137. #if (GGML_DEBUG >= 5)
  2138. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2139. #else
  2140. #define GGML_PRINT_DEBUG_5(...)
  2141. #endif
  2142. #if (GGML_DEBUG >= 10)
  2143. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2144. #else
  2145. #define GGML_PRINT_DEBUG_10(...)
  2146. #endif
  2147. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2148. //
  2149. // data types
  2150. //
  2151. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2152. [GGML_TYPE_F32] = 1,
  2153. [GGML_TYPE_F16] = 1,
  2154. [GGML_TYPE_Q4_0] = QK,
  2155. [GGML_TYPE_Q4_1] = QK,
  2156. [GGML_TYPE_I8] = 1,
  2157. [GGML_TYPE_I16] = 1,
  2158. [GGML_TYPE_I32] = 1,
  2159. };
  2160. static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
  2161. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2162. [GGML_TYPE_F32] = sizeof(float),
  2163. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2164. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2165. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2166. [GGML_TYPE_I8] = sizeof(int8_t),
  2167. [GGML_TYPE_I16] = sizeof(int16_t),
  2168. [GGML_TYPE_I32] = sizeof(int32_t),
  2169. };
  2170. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
  2171. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2172. "NONE",
  2173. "DUP",
  2174. "ADD",
  2175. "SUB",
  2176. "MUL",
  2177. "DIV",
  2178. "SQR",
  2179. "SQRT",
  2180. "SUM",
  2181. "MEAN",
  2182. "REPEAT",
  2183. "ABS",
  2184. "SGN",
  2185. "NEG",
  2186. "STEP",
  2187. "RELU",
  2188. "GELU",
  2189. "SILU",
  2190. "NORM",
  2191. "RMS_NORM",
  2192. "MUL_MAT",
  2193. "SCALE",
  2194. "CPY",
  2195. "CONT",
  2196. "RESHAPE",
  2197. "VIEW",
  2198. "PERMUTE",
  2199. "TRANSPOSE",
  2200. "GET_ROWS",
  2201. "DIAG_MASK_INF",
  2202. "SOFT_MAX",
  2203. "ROPE",
  2204. "CONV_1D_1S",
  2205. "CONV_1D_2S",
  2206. "FLASH_ATTN",
  2207. "FLASH_FF",
  2208. };
  2209. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2210. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2211. "none",
  2212. "x",
  2213. "x+y",
  2214. "x-y",
  2215. "x*y",
  2216. "x/y",
  2217. "x^2",
  2218. "√x",
  2219. "Σx",
  2220. "Σx/n",
  2221. "repeat(x)",
  2222. "abs(x)",
  2223. "sgn(x)",
  2224. "-x",
  2225. "step(x)",
  2226. "relu(x)",
  2227. "gelu(x)",
  2228. "silu(x)",
  2229. "norm(x)",
  2230. "rms_norm(x)",
  2231. "X*Y",
  2232. "x*v",
  2233. "x-\\>y",
  2234. "cont(x)",
  2235. "reshape(x)",
  2236. "view(x)",
  2237. "permute(x)",
  2238. "transpose(x)",
  2239. "get_rows(x)",
  2240. "diag_mask_inf(x)",
  2241. "soft_max(x)",
  2242. "rope(x)",
  2243. "conv_1d_1s(x)",
  2244. "conv_1d_2s(x)",
  2245. "flash_attn(x)",
  2246. "flash_ff(x)",
  2247. };
  2248. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2249. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2250. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2251. //
  2252. // ggml context
  2253. //
  2254. struct ggml_context {
  2255. size_t mem_size;
  2256. void * mem_buffer;
  2257. bool mem_buffer_owned;
  2258. bool no_alloc;
  2259. int n_objects;
  2260. struct ggml_object * objects_begin;
  2261. struct ggml_object * objects_end;
  2262. struct ggml_scratch scratch;
  2263. struct ggml_scratch scratch_save;
  2264. };
  2265. struct ggml_context_container {
  2266. bool used;
  2267. struct ggml_context context;
  2268. };
  2269. //
  2270. // compute types
  2271. //
  2272. enum ggml_task_type {
  2273. GGML_TASK_INIT = 0,
  2274. GGML_TASK_COMPUTE,
  2275. GGML_TASK_FINALIZE,
  2276. };
  2277. struct ggml_compute_params {
  2278. enum ggml_task_type type;
  2279. int ith, nth;
  2280. // work buffer for all threads
  2281. size_t wsize;
  2282. void * wdata;
  2283. };
  2284. //
  2285. // ggml state
  2286. //
  2287. struct ggml_state {
  2288. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2289. };
  2290. // global state
  2291. static struct ggml_state g_state;
  2292. static atomic_int g_state_barrier = 0;
  2293. // barrier via spin lock
  2294. inline static void ggml_critical_section_start(void) {
  2295. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2296. while (processing > 0) {
  2297. // wait for other threads to finish
  2298. atomic_fetch_sub(&g_state_barrier, 1);
  2299. sched_yield(); // TODO: reconsider this
  2300. processing = atomic_fetch_add(&g_state_barrier, 1);
  2301. }
  2302. }
  2303. // TODO: make this somehow automatically executed
  2304. // some sort of "sentry" mechanism
  2305. inline static void ggml_critical_section_end(void) {
  2306. atomic_fetch_sub(&g_state_barrier, 1);
  2307. }
  2308. ////////////////////////////////////////////////////////////////////////////////
  2309. void ggml_print_object(const struct ggml_object * obj) {
  2310. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2311. obj->offs, obj->size, (const void *) obj->next);
  2312. }
  2313. void ggml_print_objects(const struct ggml_context * ctx) {
  2314. struct ggml_object * obj = ctx->objects_begin;
  2315. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2316. while (obj != NULL) {
  2317. ggml_print_object(obj);
  2318. obj = obj->next;
  2319. }
  2320. GGML_PRINT("%s: --- end ---\n", __func__);
  2321. }
  2322. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2323. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2324. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2325. }
  2326. int ggml_nrows(const struct ggml_tensor * tensor) {
  2327. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2328. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2329. }
  2330. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2331. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2332. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2333. }
  2334. int ggml_blck_size(enum ggml_type type) {
  2335. return GGML_BLCK_SIZE[type];
  2336. }
  2337. size_t ggml_type_size(enum ggml_type type) {
  2338. return GGML_TYPE_SIZE[type];
  2339. }
  2340. float ggml_type_sizef(enum ggml_type type) {
  2341. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2342. }
  2343. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2344. return GGML_TYPE_SIZE[tensor->type];
  2345. }
  2346. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2348. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2349. }
  2350. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2352. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2353. }
  2354. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2356. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2357. }
  2358. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2359. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2360. return
  2361. (t0->ne[0] == t1->ne[0]) &&
  2362. (t0->ne[2] == t1->ne[2]) &&
  2363. (t0->ne[3] == t1->ne[3]);
  2364. }
  2365. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2366. return tensor->nb[0] > tensor->nb[1];
  2367. }
  2368. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2369. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2370. return
  2371. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2372. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2373. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2374. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2375. }
  2376. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2377. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2378. return
  2379. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2380. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2381. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2382. }
  2383. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2384. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2385. return
  2386. (t0->ne[0] == t1->ne[0] ) &&
  2387. (t0->ne[1] == t1->ne[1] ) &&
  2388. (t0->ne[2] == t1->ne[2] ) &&
  2389. (t0->ne[3] == t1->ne[3] );
  2390. }
  2391. // check if t1 can be represented as a repeatition of t0
  2392. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2393. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2394. return
  2395. (t1->ne[0]%t0->ne[0] == 0) &&
  2396. (t1->ne[1]%t0->ne[1] == 0) &&
  2397. (t1->ne[2]%t0->ne[2] == 0) &&
  2398. (t1->ne[3]%t0->ne[3] == 0);
  2399. }
  2400. static inline int ggml_up32(int n) {
  2401. return (n + 31) & ~31;
  2402. }
  2403. static inline int ggml_up64(int n) {
  2404. return (n + 63) & ~63;
  2405. }
  2406. static inline int ggml_up(int n, int m) {
  2407. // assert m is a power of 2
  2408. GGML_ASSERT((m & (m - 1)) == 0);
  2409. return (n + m - 1) & ~(m - 1);
  2410. }
  2411. // assert that pointer is aligned to GGML_MEM_ALIGN
  2412. #define ggml_assert_aligned(ptr) \
  2413. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2414. ////////////////////////////////////////////////////////////////////////////////
  2415. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2416. // make this function thread safe
  2417. ggml_critical_section_start();
  2418. static bool is_first_call = true;
  2419. if (is_first_call) {
  2420. // initialize time system (required on Windows)
  2421. ggml_time_init();
  2422. // initialize GELU, SILU and EXP F32 tables
  2423. {
  2424. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2425. ggml_fp16_t ii;
  2426. for (int i = 0; i < (1 << 16); ++i) {
  2427. uint16_t ui = i;
  2428. memcpy(&ii, &ui, sizeof(ii));
  2429. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2430. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2431. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2432. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2433. }
  2434. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2435. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2436. }
  2437. // initialize g_state
  2438. {
  2439. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2440. g_state = (struct ggml_state) {
  2441. /*.contexts =*/ { { 0 } },
  2442. };
  2443. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2444. g_state.contexts[i].used = false;
  2445. }
  2446. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2447. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2448. }
  2449. is_first_call = false;
  2450. }
  2451. // find non-used context in g_state
  2452. struct ggml_context * ctx = NULL;
  2453. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2454. if (!g_state.contexts[i].used) {
  2455. g_state.contexts[i].used = true;
  2456. ctx = &g_state.contexts[i].context;
  2457. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2458. break;
  2459. }
  2460. }
  2461. if (ctx == NULL) {
  2462. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2463. ggml_critical_section_end();
  2464. return NULL;
  2465. }
  2466. *ctx = (struct ggml_context) {
  2467. /*.mem_size =*/ params.mem_size,
  2468. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size),
  2469. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2470. /*.no_alloc =*/ params.no_alloc,
  2471. /*.n_objects =*/ 0,
  2472. /*.objects_begin =*/ NULL,
  2473. /*.objects_end =*/ NULL,
  2474. /*.scratch =*/ { 0, 0, NULL, },
  2475. /*.scratch_save =*/ { 0, 0, NULL, },
  2476. };
  2477. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2478. ggml_assert_aligned(ctx->mem_buffer);
  2479. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2480. ggml_critical_section_end();
  2481. return ctx;
  2482. }
  2483. void ggml_free(struct ggml_context * ctx) {
  2484. // make this function thread safe
  2485. ggml_critical_section_start();
  2486. bool found = false;
  2487. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2488. if (&g_state.contexts[i].context == ctx) {
  2489. g_state.contexts[i].used = false;
  2490. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2491. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2492. if (ctx->mem_buffer_owned) {
  2493. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2494. }
  2495. found = true;
  2496. break;
  2497. }
  2498. }
  2499. if (!found) {
  2500. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2501. }
  2502. ggml_critical_section_end();
  2503. }
  2504. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2505. return ctx->objects_end->offs + ctx->objects_end->size;
  2506. }
  2507. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2508. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2509. ctx->scratch = scratch;
  2510. return result;
  2511. }
  2512. ////////////////////////////////////////////////////////////////////////////////
  2513. struct ggml_tensor * ggml_new_tensor_impl(
  2514. struct ggml_context * ctx,
  2515. enum ggml_type type,
  2516. int n_dims,
  2517. const int64_t* ne,
  2518. void* data) {
  2519. // always insert objects at the end of the context's memory pool
  2520. struct ggml_object * obj_cur = ctx->objects_end;
  2521. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2522. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2523. const size_t cur_end = cur_offs + cur_size;
  2524. size_t size_needed = 0;
  2525. if (data == NULL && !ctx->no_alloc) {
  2526. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2527. for (int i = 1; i < n_dims; i++) {
  2528. size_needed *= ne[i];
  2529. }
  2530. // align to GGML_MEM_ALIGN
  2531. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2532. }
  2533. char * const mem_buffer = ctx->mem_buffer;
  2534. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2535. if (ctx->scratch.data == NULL || data != NULL) {
  2536. size_needed += sizeof(struct ggml_tensor);
  2537. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2538. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2539. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2540. assert(false);
  2541. return NULL;
  2542. }
  2543. *obj_new = (struct ggml_object) {
  2544. .offs = cur_end + GGML_OBJECT_SIZE,
  2545. .size = size_needed,
  2546. .next = NULL,
  2547. };
  2548. } else {
  2549. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2550. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2551. assert(false);
  2552. return NULL;
  2553. }
  2554. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2555. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2556. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2557. assert(false);
  2558. return NULL;
  2559. }
  2560. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2561. *obj_new = (struct ggml_object) {
  2562. .offs = cur_end + GGML_OBJECT_SIZE,
  2563. .size = sizeof(struct ggml_tensor),
  2564. .next = NULL,
  2565. };
  2566. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2567. ctx->scratch.offs += size_needed;
  2568. }
  2569. if (obj_cur != NULL) {
  2570. obj_cur->next = obj_new;
  2571. } else {
  2572. // this is the first object in this context
  2573. ctx->objects_begin = obj_new;
  2574. }
  2575. ctx->objects_end = obj_new;
  2576. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2577. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2578. ggml_assert_aligned(result);
  2579. *result = (struct ggml_tensor) {
  2580. /*.type =*/ type,
  2581. /*.n_dims =*/ n_dims,
  2582. /*.ne =*/ { 1, 1, 1, 1 },
  2583. /*.nb =*/ { 0, 0, 0, 0 },
  2584. /*.op =*/ GGML_OP_NONE,
  2585. /*.is_param =*/ false,
  2586. /*.grad =*/ NULL,
  2587. /*.src0 =*/ NULL,
  2588. /*.src1 =*/ NULL,
  2589. /*.opt =*/ { NULL },
  2590. /*.n_tasks =*/ 0,
  2591. /*.perf_runs =*/ 0,
  2592. /*.perf_cycles =*/ 0,
  2593. /*.perf_time_us =*/ 0,
  2594. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2595. /*.pad =*/ { 0 },
  2596. };
  2597. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2598. //ggml_assert_aligned(result->data);
  2599. for (int i = 0; i < n_dims; i++) {
  2600. result->ne[i] = ne[i];
  2601. }
  2602. result->nb[0] = GGML_TYPE_SIZE[type];
  2603. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2604. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2605. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2606. }
  2607. ctx->n_objects++;
  2608. return result;
  2609. }
  2610. struct ggml_tensor * ggml_new_tensor(
  2611. struct ggml_context * ctx,
  2612. enum ggml_type type,
  2613. int n_dims,
  2614. const int64_t * ne) {
  2615. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2616. }
  2617. struct ggml_tensor * ggml_new_tensor_1d(
  2618. struct ggml_context * ctx,
  2619. enum ggml_type type,
  2620. int64_t ne0) {
  2621. return ggml_new_tensor(ctx, type, 1, &ne0);
  2622. }
  2623. struct ggml_tensor * ggml_new_tensor_2d(
  2624. struct ggml_context * ctx,
  2625. enum ggml_type type,
  2626. int64_t ne0,
  2627. int64_t ne1) {
  2628. const int64_t ne[2] = { ne0, ne1 };
  2629. return ggml_new_tensor(ctx, type, 2, ne);
  2630. }
  2631. struct ggml_tensor * ggml_new_tensor_3d(
  2632. struct ggml_context * ctx,
  2633. enum ggml_type type,
  2634. int64_t ne0,
  2635. int64_t ne1,
  2636. int64_t ne2) {
  2637. const int64_t ne[3] = { ne0, ne1, ne2 };
  2638. return ggml_new_tensor(ctx, type, 3, ne);
  2639. }
  2640. struct ggml_tensor * ggml_new_tensor_4d(
  2641. struct ggml_context * ctx,
  2642. enum ggml_type type,
  2643. int64_t ne0,
  2644. int64_t ne1,
  2645. int64_t ne2,
  2646. int64_t ne3) {
  2647. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2648. return ggml_new_tensor(ctx, type, 4, ne);
  2649. }
  2650. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2651. ctx->scratch_save = ctx->scratch;
  2652. ctx->scratch.data = NULL;
  2653. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2654. ctx->scratch = ctx->scratch_save;
  2655. ggml_set_i32(result, value);
  2656. return result;
  2657. }
  2658. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2659. ctx->scratch_save = ctx->scratch;
  2660. ctx->scratch.data = NULL;
  2661. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2662. ctx->scratch = ctx->scratch_save;
  2663. ggml_set_f32(result, value);
  2664. return result;
  2665. }
  2666. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2667. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2668. }
  2669. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2670. memset(tensor->data, 0, ggml_nbytes(tensor));
  2671. return tensor;
  2672. }
  2673. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2674. const int n = ggml_nrows(tensor);
  2675. const int nc = tensor->ne[0];
  2676. const size_t n1 = tensor->nb[1];
  2677. char * const data = tensor->data;
  2678. switch (tensor->type) {
  2679. case GGML_TYPE_Q4_0:
  2680. {
  2681. GGML_ASSERT(false);
  2682. } break;
  2683. case GGML_TYPE_Q4_1:
  2684. {
  2685. GGML_ASSERT(false);
  2686. } break;
  2687. case GGML_TYPE_I8:
  2688. {
  2689. assert(tensor->nb[0] == sizeof(int8_t));
  2690. for (int i = 0; i < n; i++) {
  2691. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2692. }
  2693. } break;
  2694. case GGML_TYPE_I16:
  2695. {
  2696. assert(tensor->nb[0] == sizeof(int16_t));
  2697. for (int i = 0; i < n; i++) {
  2698. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2699. }
  2700. } break;
  2701. case GGML_TYPE_I32:
  2702. {
  2703. assert(tensor->nb[0] == sizeof(int32_t));
  2704. for (int i = 0; i < n; i++) {
  2705. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2706. }
  2707. } break;
  2708. case GGML_TYPE_F16:
  2709. {
  2710. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2711. for (int i = 0; i < n; i++) {
  2712. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2713. }
  2714. } break;
  2715. case GGML_TYPE_F32:
  2716. {
  2717. assert(tensor->nb[0] == sizeof(float));
  2718. for (int i = 0; i < n; i++) {
  2719. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2720. }
  2721. } break;
  2722. case GGML_TYPE_COUNT:
  2723. {
  2724. GGML_ASSERT(false);
  2725. } break;
  2726. }
  2727. return tensor;
  2728. }
  2729. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2730. const int n = ggml_nrows(tensor);
  2731. const int nc = tensor->ne[0];
  2732. const size_t n1 = tensor->nb[1];
  2733. char * const data = tensor->data;
  2734. switch (tensor->type) {
  2735. case GGML_TYPE_Q4_0:
  2736. {
  2737. GGML_ASSERT(false);
  2738. } break;
  2739. case GGML_TYPE_Q4_1:
  2740. {
  2741. GGML_ASSERT(false);
  2742. } break;
  2743. case GGML_TYPE_I8:
  2744. {
  2745. assert(tensor->nb[0] == sizeof(int8_t));
  2746. for (int i = 0; i < n; i++) {
  2747. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2748. }
  2749. } break;
  2750. case GGML_TYPE_I16:
  2751. {
  2752. assert(tensor->nb[0] == sizeof(int16_t));
  2753. for (int i = 0; i < n; i++) {
  2754. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2755. }
  2756. } break;
  2757. case GGML_TYPE_I32:
  2758. {
  2759. assert(tensor->nb[0] == sizeof(int32_t));
  2760. for (int i = 0; i < n; i++) {
  2761. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2762. }
  2763. } break;
  2764. case GGML_TYPE_F16:
  2765. {
  2766. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2767. for (int i = 0; i < n; i++) {
  2768. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2769. }
  2770. } break;
  2771. case GGML_TYPE_F32:
  2772. {
  2773. assert(tensor->nb[0] == sizeof(float));
  2774. for (int i = 0; i < n; i++) {
  2775. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2776. }
  2777. } break;
  2778. case GGML_TYPE_COUNT:
  2779. {
  2780. GGML_ASSERT(false);
  2781. } break;
  2782. }
  2783. return tensor;
  2784. }
  2785. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2786. switch (tensor->type) {
  2787. case GGML_TYPE_Q4_0:
  2788. {
  2789. GGML_ASSERT(false);
  2790. } break;
  2791. case GGML_TYPE_Q4_1:
  2792. {
  2793. GGML_ASSERT(false);
  2794. } break;
  2795. case GGML_TYPE_I8:
  2796. {
  2797. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2798. return ((int8_t *)(tensor->data))[i];
  2799. } break;
  2800. case GGML_TYPE_I16:
  2801. {
  2802. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2803. return ((int16_t *)(tensor->data))[i];
  2804. } break;
  2805. case GGML_TYPE_I32:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2808. return ((int32_t *)(tensor->data))[i];
  2809. } break;
  2810. case GGML_TYPE_F16:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2813. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2814. } break;
  2815. case GGML_TYPE_F32:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2818. return ((float *)(tensor->data))[i];
  2819. } break;
  2820. case GGML_TYPE_COUNT:
  2821. {
  2822. GGML_ASSERT(false);
  2823. } break;
  2824. }
  2825. return 0.0f;
  2826. }
  2827. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2828. switch (tensor->type) {
  2829. case GGML_TYPE_Q4_0:
  2830. {
  2831. GGML_ASSERT(false);
  2832. } break;
  2833. case GGML_TYPE_Q4_1:
  2834. {
  2835. GGML_ASSERT(false);
  2836. } break;
  2837. case GGML_TYPE_I8:
  2838. {
  2839. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2840. ((int8_t *)(tensor->data))[i] = value;
  2841. } break;
  2842. case GGML_TYPE_I16:
  2843. {
  2844. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2845. ((int16_t *)(tensor->data))[i] = value;
  2846. } break;
  2847. case GGML_TYPE_I32:
  2848. {
  2849. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2850. ((int32_t *)(tensor->data))[i] = value;
  2851. } break;
  2852. case GGML_TYPE_F16:
  2853. {
  2854. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2855. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2856. } break;
  2857. case GGML_TYPE_F32:
  2858. {
  2859. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2860. ((float *)(tensor->data))[i] = value;
  2861. } break;
  2862. case GGML_TYPE_COUNT:
  2863. {
  2864. GGML_ASSERT(false);
  2865. } break;
  2866. }
  2867. }
  2868. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2869. switch (tensor->type) {
  2870. case GGML_TYPE_Q4_0:
  2871. {
  2872. GGML_ASSERT(false);
  2873. } break;
  2874. case GGML_TYPE_Q4_1:
  2875. {
  2876. GGML_ASSERT(false);
  2877. } break;
  2878. case GGML_TYPE_I8:
  2879. {
  2880. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2881. return ((int8_t *)(tensor->data))[i];
  2882. } break;
  2883. case GGML_TYPE_I16:
  2884. {
  2885. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2886. return ((int16_t *)(tensor->data))[i];
  2887. } break;
  2888. case GGML_TYPE_I32:
  2889. {
  2890. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2891. return ((int32_t *)(tensor->data))[i];
  2892. } break;
  2893. case GGML_TYPE_F16:
  2894. {
  2895. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2896. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2897. } break;
  2898. case GGML_TYPE_F32:
  2899. {
  2900. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2901. return ((float *)(tensor->data))[i];
  2902. } break;
  2903. case GGML_TYPE_COUNT:
  2904. {
  2905. GGML_ASSERT(false);
  2906. } break;
  2907. }
  2908. return 0.0f;
  2909. }
  2910. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2911. switch (tensor->type) {
  2912. case GGML_TYPE_Q4_0:
  2913. {
  2914. GGML_ASSERT(false);
  2915. } break;
  2916. case GGML_TYPE_Q4_1:
  2917. {
  2918. GGML_ASSERT(false);
  2919. } break;
  2920. case GGML_TYPE_I8:
  2921. {
  2922. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2923. ((int8_t *)(tensor->data))[i] = value;
  2924. } break;
  2925. case GGML_TYPE_I16:
  2926. {
  2927. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2928. ((int16_t *)(tensor->data))[i] = value;
  2929. } break;
  2930. case GGML_TYPE_I32:
  2931. {
  2932. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2933. ((int32_t *)(tensor->data))[i] = value;
  2934. } break;
  2935. case GGML_TYPE_F16:
  2936. {
  2937. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2938. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2939. } break;
  2940. case GGML_TYPE_F32:
  2941. {
  2942. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2943. ((float *)(tensor->data))[i] = value;
  2944. } break;
  2945. case GGML_TYPE_COUNT:
  2946. {
  2947. GGML_ASSERT(false);
  2948. } break;
  2949. }
  2950. }
  2951. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2952. return tensor->data;
  2953. }
  2954. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2955. assert(tensor->type == GGML_TYPE_F32);
  2956. return (float *)(tensor->data);
  2957. }
  2958. struct ggml_tensor * ggml_view_tensor(
  2959. struct ggml_context * ctx,
  2960. const struct ggml_tensor * src) {
  2961. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2962. result->nb[0] = src->nb[0];
  2963. result->nb[1] = src->nb[1];
  2964. result->nb[2] = src->nb[2];
  2965. result->nb[3] = src->nb[3];
  2966. return result;
  2967. }
  2968. ////////////////////////////////////////////////////////////////////////////////
  2969. // ggml_dup
  2970. struct ggml_tensor * ggml_dup_impl(
  2971. struct ggml_context * ctx,
  2972. struct ggml_tensor * a,
  2973. bool inplace) {
  2974. bool is_node = false;
  2975. if (!inplace && (a->grad)) {
  2976. is_node = true;
  2977. }
  2978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2979. result->op = GGML_OP_DUP;
  2980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2981. result->src0 = a;
  2982. result->src1 = NULL;
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_dup(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_dup_impl(ctx, a, false);
  2989. }
  2990. struct ggml_tensor * ggml_dup_inplace(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a) {
  2993. return ggml_dup_impl(ctx, a, true);
  2994. }
  2995. // ggml_add
  2996. struct ggml_tensor * ggml_add_impl(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a,
  2999. struct ggml_tensor * b,
  3000. bool inplace) {
  3001. GGML_ASSERT(ggml_are_same_shape(a, b));
  3002. bool is_node = false;
  3003. if (!inplace && (a->grad || b->grad)) {
  3004. is_node = true;
  3005. }
  3006. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3007. result->op = GGML_OP_ADD;
  3008. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3009. result->src0 = a;
  3010. result->src1 = b;
  3011. return result;
  3012. }
  3013. struct ggml_tensor * ggml_add(
  3014. struct ggml_context * ctx,
  3015. struct ggml_tensor * a,
  3016. struct ggml_tensor * b) {
  3017. return ggml_add_impl(ctx, a, b, false);
  3018. }
  3019. struct ggml_tensor * ggml_add_inplace(
  3020. struct ggml_context * ctx,
  3021. struct ggml_tensor * a,
  3022. struct ggml_tensor * b) {
  3023. return ggml_add_impl(ctx, a, b, true);
  3024. }
  3025. // ggml_sub
  3026. struct ggml_tensor * ggml_sub_impl(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a,
  3029. struct ggml_tensor * b,
  3030. bool inplace) {
  3031. GGML_ASSERT(ggml_are_same_shape(a, b));
  3032. bool is_node = false;
  3033. if (!inplace && (a->grad || b->grad)) {
  3034. is_node = true;
  3035. }
  3036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3037. result->op = GGML_OP_SUB;
  3038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3039. result->src0 = a;
  3040. result->src1 = b;
  3041. return result;
  3042. }
  3043. struct ggml_tensor * ggml_sub(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b) {
  3047. return ggml_sub_impl(ctx, a, b, false);
  3048. }
  3049. struct ggml_tensor * ggml_sub_inplace(
  3050. struct ggml_context * ctx,
  3051. struct ggml_tensor * a,
  3052. struct ggml_tensor * b) {
  3053. return ggml_sub_impl(ctx, a, b, true);
  3054. }
  3055. // ggml_mul
  3056. struct ggml_tensor * ggml_mul_impl(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. struct ggml_tensor * b,
  3060. bool inplace) {
  3061. GGML_ASSERT(ggml_are_same_shape(a, b));
  3062. bool is_node = false;
  3063. if (!inplace && (a->grad || b->grad)) {
  3064. is_node = true;
  3065. }
  3066. if (inplace) {
  3067. GGML_ASSERT(is_node == false);
  3068. }
  3069. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3070. result->op = GGML_OP_MUL;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src0 = a;
  3073. result->src1 = b;
  3074. return result;
  3075. }
  3076. struct ggml_tensor * ggml_mul(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. return ggml_mul_impl(ctx, a, b, false);
  3081. }
  3082. struct ggml_tensor * ggml_mul_inplace(
  3083. struct ggml_context * ctx,
  3084. struct ggml_tensor * a,
  3085. struct ggml_tensor * b) {
  3086. return ggml_mul_impl(ctx, a, b, true);
  3087. }
  3088. // ggml_div
  3089. struct ggml_tensor * ggml_div_impl(
  3090. struct ggml_context * ctx,
  3091. struct ggml_tensor * a,
  3092. struct ggml_tensor * b,
  3093. bool inplace) {
  3094. GGML_ASSERT(ggml_are_same_shape(a, b));
  3095. bool is_node = false;
  3096. if (!inplace && (a->grad || b->grad)) {
  3097. is_node = true;
  3098. }
  3099. if (inplace) {
  3100. GGML_ASSERT(is_node == false);
  3101. }
  3102. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3103. result->op = GGML_OP_DIV;
  3104. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3105. result->src0 = a;
  3106. result->src1 = b;
  3107. return result;
  3108. }
  3109. struct ggml_tensor * ggml_div(
  3110. struct ggml_context * ctx,
  3111. struct ggml_tensor * a,
  3112. struct ggml_tensor * b) {
  3113. return ggml_div_impl(ctx, a, b, false);
  3114. }
  3115. struct ggml_tensor * ggml_div_inplace(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. struct ggml_tensor * b) {
  3119. return ggml_div_impl(ctx, a, b, true);
  3120. }
  3121. // ggml_sqr
  3122. struct ggml_tensor * ggml_sqr_impl(
  3123. struct ggml_context * ctx,
  3124. struct ggml_tensor * a,
  3125. bool inplace) {
  3126. bool is_node = false;
  3127. if (!inplace && (a->grad)) {
  3128. is_node = true;
  3129. }
  3130. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3131. result->op = GGML_OP_SQR;
  3132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3133. result->src0 = a;
  3134. result->src1 = NULL;
  3135. return result;
  3136. }
  3137. struct ggml_tensor * ggml_sqr(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. return ggml_sqr_impl(ctx, a, false);
  3141. }
  3142. struct ggml_tensor * ggml_sqr_inplace(
  3143. struct ggml_context * ctx,
  3144. struct ggml_tensor * a) {
  3145. return ggml_sqr_impl(ctx, a, true);
  3146. }
  3147. // ggml_sqrt
  3148. struct ggml_tensor * ggml_sqrt_impl(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a,
  3151. bool inplace) {
  3152. bool is_node = false;
  3153. if (!inplace && (a->grad)) {
  3154. is_node = true;
  3155. }
  3156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3157. result->op = GGML_OP_SQRT;
  3158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3159. result->src0 = a;
  3160. result->src1 = NULL;
  3161. return result;
  3162. }
  3163. struct ggml_tensor * ggml_sqrt(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a) {
  3166. return ggml_sqrt_impl(ctx, a, false);
  3167. }
  3168. struct ggml_tensor * ggml_sqrt_inplace(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_sqrt_impl(ctx, a, true);
  3172. }
  3173. // ggml_sum
  3174. struct ggml_tensor * ggml_sum(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a) {
  3177. bool is_node = false;
  3178. if (a->grad) {
  3179. is_node = true;
  3180. }
  3181. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3182. result->op = GGML_OP_SUM;
  3183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3184. result->src0 = a;
  3185. result->src1 = NULL;
  3186. return result;
  3187. }
  3188. // ggml_mean
  3189. struct ggml_tensor * ggml_mean(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a) {
  3192. bool is_node = false;
  3193. if (a->grad) {
  3194. GGML_ASSERT(false); // TODO: implement
  3195. is_node = true;
  3196. }
  3197. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3198. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3199. result->op = GGML_OP_MEAN;
  3200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3201. result->src0 = a;
  3202. result->src1 = NULL;
  3203. return result;
  3204. }
  3205. // ggml_repeat
  3206. struct ggml_tensor * ggml_repeat(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a,
  3209. struct ggml_tensor * b) {
  3210. GGML_ASSERT(ggml_can_repeat(a, b));
  3211. bool is_node = false;
  3212. if (a->grad) {
  3213. is_node = true;
  3214. }
  3215. if (ggml_are_same_shape(a, b) && !is_node) {
  3216. return a;
  3217. }
  3218. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3219. result->op = GGML_OP_REPEAT;
  3220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3221. result->src0 = a;
  3222. result->src1 = b;
  3223. return result;
  3224. }
  3225. // ggml_abs
  3226. struct ggml_tensor * ggml_abs_impl(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a,
  3229. bool inplace) {
  3230. bool is_node = false;
  3231. if (!inplace && (a->grad)) {
  3232. is_node = true;
  3233. }
  3234. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3235. result->op = GGML_OP_ABS;
  3236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3237. result->src0 = a;
  3238. result->src1 = NULL;
  3239. return result;
  3240. }
  3241. struct ggml_tensor * ggml_abs(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. return ggml_abs_impl(ctx, a, false);
  3245. }
  3246. struct ggml_tensor * ggml_abs_inplace(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_abs_impl(ctx, a, true);
  3250. }
  3251. // ggml_sgn
  3252. struct ggml_tensor * ggml_sgn_impl(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. bool inplace) {
  3256. bool is_node = false;
  3257. if (!inplace && (a->grad)) {
  3258. is_node = true;
  3259. }
  3260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3261. result->op = GGML_OP_SGN;
  3262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3263. result->src0 = a;
  3264. result->src1 = NULL;
  3265. return result;
  3266. }
  3267. struct ggml_tensor * ggml_sgn(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a) {
  3270. return ggml_sgn_impl(ctx, a, false);
  3271. }
  3272. struct ggml_tensor * ggml_sgn_inplace(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a) {
  3275. return ggml_sgn_impl(ctx, a, true);
  3276. }
  3277. // ggml_neg
  3278. struct ggml_tensor * ggml_neg_impl(
  3279. struct ggml_context * ctx,
  3280. struct ggml_tensor * a,
  3281. bool inplace) {
  3282. bool is_node = false;
  3283. if (!inplace && (a->grad)) {
  3284. is_node = true;
  3285. }
  3286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3287. result->op = GGML_OP_NEG;
  3288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3289. result->src0 = a;
  3290. result->src1 = NULL;
  3291. return result;
  3292. }
  3293. struct ggml_tensor * ggml_neg(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a) {
  3296. return ggml_neg_impl(ctx, a, false);
  3297. }
  3298. struct ggml_tensor * ggml_neg_inplace(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a) {
  3301. return ggml_neg_impl(ctx, a, true);
  3302. }
  3303. // ggml_step
  3304. struct ggml_tensor * ggml_step_impl(
  3305. struct ggml_context * ctx,
  3306. struct ggml_tensor * a,
  3307. bool inplace) {
  3308. bool is_node = false;
  3309. if (!inplace && (a->grad)) {
  3310. is_node = true;
  3311. }
  3312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3313. result->op = GGML_OP_STEP;
  3314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3315. result->src0 = a;
  3316. result->src1 = NULL;
  3317. return result;
  3318. }
  3319. struct ggml_tensor * ggml_step(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a) {
  3322. return ggml_step_impl(ctx, a, false);
  3323. }
  3324. struct ggml_tensor * ggml_step_inplace(
  3325. struct ggml_context * ctx,
  3326. struct ggml_tensor * a) {
  3327. return ggml_step_impl(ctx, a, true);
  3328. }
  3329. // ggml_relu
  3330. struct ggml_tensor * ggml_relu_impl(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. bool inplace) {
  3334. bool is_node = false;
  3335. if (!inplace && (a->grad)) {
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3339. result->op = GGML_OP_RELU;
  3340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3341. result->src0 = a;
  3342. result->src1 = NULL;
  3343. return result;
  3344. }
  3345. struct ggml_tensor * ggml_relu(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a) {
  3348. return ggml_relu_impl(ctx, a, false);
  3349. }
  3350. struct ggml_tensor * ggml_relu_inplace(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a) {
  3353. return ggml_relu_impl(ctx, a, true);
  3354. }
  3355. // ggml_gelu
  3356. struct ggml_tensor * ggml_gelu_impl(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. bool inplace) {
  3360. bool is_node = false;
  3361. if (!inplace && (a->grad)) {
  3362. is_node = true;
  3363. }
  3364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3365. result->op = GGML_OP_GELU;
  3366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3367. result->src0 = a;
  3368. result->src1 = NULL;
  3369. return result;
  3370. }
  3371. struct ggml_tensor * ggml_gelu(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_gelu_impl(ctx, a, false);
  3375. }
  3376. struct ggml_tensor * ggml_gelu_inplace(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * a) {
  3379. return ggml_gelu_impl(ctx, a, true);
  3380. }
  3381. // ggml_silu
  3382. struct ggml_tensor * ggml_silu_impl(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a,
  3385. bool inplace) {
  3386. bool is_node = false;
  3387. if (!inplace && (a->grad)) {
  3388. is_node = true;
  3389. }
  3390. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3391. result->op = GGML_OP_SILU;
  3392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3393. result->src0 = a;
  3394. result->src1 = NULL;
  3395. return result;
  3396. }
  3397. struct ggml_tensor * ggml_silu(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a) {
  3400. return ggml_silu_impl(ctx, a, false);
  3401. }
  3402. struct ggml_tensor * ggml_silu_inplace(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a) {
  3405. return ggml_silu_impl(ctx, a, true);
  3406. }
  3407. // ggml_norm
  3408. struct ggml_tensor * ggml_norm_impl(
  3409. struct ggml_context * ctx,
  3410. struct ggml_tensor * a,
  3411. bool inplace) {
  3412. bool is_node = false;
  3413. if (!inplace && (a->grad)) {
  3414. GGML_ASSERT(false); // TODO: implement backward
  3415. is_node = true;
  3416. }
  3417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3418. result->op = GGML_OP_NORM;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src0 = a;
  3421. result->src1 = NULL; // TODO: maybe store epsilon here?
  3422. return result;
  3423. }
  3424. struct ggml_tensor * ggml_norm(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a) {
  3427. return ggml_norm_impl(ctx, a, false);
  3428. }
  3429. struct ggml_tensor * ggml_norm_inplace(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a) {
  3432. return ggml_norm_impl(ctx, a, true);
  3433. }
  3434. struct ggml_tensor * ggml_rms_norm_impl(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a,
  3437. bool inplace) {
  3438. bool is_node = false;
  3439. if (!inplace && (a->grad)) {
  3440. GGML_ASSERT(false); // TODO: implement backward
  3441. is_node = true;
  3442. }
  3443. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3444. result->op = GGML_OP_RMS_NORM;
  3445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3446. result->src0 = a;
  3447. result->src1 = NULL; // TODO: maybe store epsilon here?
  3448. return result;
  3449. }
  3450. struct ggml_tensor * ggml_rms_norm(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a) {
  3453. return ggml_rms_norm_impl(ctx, a, false);
  3454. }
  3455. struct ggml_tensor * ggml_rms_norm_inplace(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a) {
  3458. return ggml_rms_norm_impl(ctx, a, true);
  3459. }
  3460. // ggml_mul_mat
  3461. struct ggml_tensor * ggml_mul_mat(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3466. GGML_ASSERT(!ggml_is_transposed(a));
  3467. bool is_node = false;
  3468. if (a->grad || b->grad) {
  3469. is_node = true;
  3470. }
  3471. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3472. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3473. result->op = GGML_OP_MUL_MAT;
  3474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3475. result->src0 = a;
  3476. result->src1 = b;
  3477. return result;
  3478. }
  3479. // ggml_scale
  3480. struct ggml_tensor * ggml_scale_impl(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. struct ggml_tensor * b,
  3484. bool inplace) {
  3485. GGML_ASSERT(ggml_is_scalar(b));
  3486. GGML_ASSERT(ggml_is_padded_1d(a));
  3487. bool is_node = false;
  3488. if (!inplace && (a->grad || b->grad)) {
  3489. GGML_ASSERT(false); // TODO: implement backward
  3490. is_node = true;
  3491. }
  3492. // TODO: when implement backward, fix this:
  3493. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3494. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3495. result->op = GGML_OP_SCALE;
  3496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3497. result->src0 = a;
  3498. result->src1 = b;
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_scale(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a,
  3504. struct ggml_tensor * b) {
  3505. return ggml_scale_impl(ctx, a, b, false);
  3506. }
  3507. struct ggml_tensor * ggml_scale_inplace(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. struct ggml_tensor * b) {
  3511. return ggml_scale_impl(ctx, a, b, true);
  3512. }
  3513. // ggml_cpy
  3514. struct ggml_tensor * ggml_cpy_impl(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. struct ggml_tensor * b,
  3518. bool inplace) {
  3519. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3520. bool is_node = false;
  3521. if (!inplace && (a->grad || b->grad)) {
  3522. GGML_ASSERT(false); // TODO: implement backward
  3523. is_node = true;
  3524. }
  3525. // make a view of the destination
  3526. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3527. result->op = GGML_OP_CPY;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src0 = a;
  3530. result->src1 = b;
  3531. return result;
  3532. }
  3533. struct ggml_tensor * ggml_cpy(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. struct ggml_tensor * b) {
  3537. return ggml_cpy_impl(ctx, a, b, false);
  3538. }
  3539. struct ggml_tensor * ggml_cpy_inplace(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. struct ggml_tensor * b) {
  3543. return ggml_cpy_impl(ctx, a, b, true);
  3544. }
  3545. // ggml_cont
  3546. struct ggml_tensor * ggml_cont_impl(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. bool inplace) {
  3550. bool is_node = false;
  3551. if (!inplace && a->grad) {
  3552. GGML_ASSERT(false); // TODO: implement backward
  3553. is_node = true;
  3554. }
  3555. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3556. result->op = GGML_OP_CONT;
  3557. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3558. result->src0 = a;
  3559. result->src1 = NULL;
  3560. return result;
  3561. }
  3562. struct ggml_tensor * ggml_cont(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a) {
  3565. return ggml_cont_impl(ctx, a, false);
  3566. }
  3567. struct ggml_tensor * ggml_cont_inplace(
  3568. struct ggml_context * ctx,
  3569. struct ggml_tensor * a) {
  3570. return ggml_cont_impl(ctx, a, true);
  3571. }
  3572. // ggml_reshape
  3573. struct ggml_tensor * ggml_reshape(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a,
  3576. struct ggml_tensor * b) {
  3577. GGML_ASSERT(ggml_is_contiguous(a));
  3578. GGML_ASSERT(ggml_is_contiguous(b));
  3579. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3580. bool is_node = false;
  3581. if (a->grad || b->grad) {
  3582. GGML_ASSERT(false); // TODO: implement backward
  3583. is_node = true;
  3584. }
  3585. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3586. result->op = GGML_OP_RESHAPE;
  3587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3588. result->src0 = a;
  3589. result->src1 = NULL;
  3590. return result;
  3591. }
  3592. struct ggml_tensor * ggml_reshape_2d(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. int64_t ne0,
  3596. int64_t ne1) {
  3597. GGML_ASSERT(ggml_is_contiguous(a));
  3598. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3599. bool is_node = false;
  3600. if (a->grad) {
  3601. GGML_ASSERT(false); // TODO: implement backward
  3602. is_node = true;
  3603. }
  3604. const int64_t ne[2] = { ne0, ne1 };
  3605. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3606. result->op = GGML_OP_RESHAPE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src0 = a;
  3609. result->src1 = NULL;
  3610. return result;
  3611. }
  3612. struct ggml_tensor * ggml_reshape_3d(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. int64_t ne0,
  3616. int64_t ne1,
  3617. int64_t ne2) {
  3618. GGML_ASSERT(ggml_is_contiguous(a));
  3619. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3620. bool is_node = false;
  3621. if (a->grad) {
  3622. GGML_ASSERT(false); // TODO: implement backward
  3623. is_node = true;
  3624. }
  3625. const int64_t ne[3] = { ne0, ne1, ne2 };
  3626. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3627. result->op = GGML_OP_RESHAPE;
  3628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3629. result->src0 = a;
  3630. result->src1 = NULL;
  3631. return result;
  3632. }
  3633. // ggml_view_1d
  3634. struct ggml_tensor * ggml_view_1d(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a,
  3637. int64_t ne0,
  3638. size_t offset) {
  3639. if (a->grad) {
  3640. GGML_ASSERT(false); // gradient propagation is not supported
  3641. }
  3642. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3643. result->op = GGML_OP_VIEW;
  3644. result->grad = NULL;
  3645. result->src0 = a;
  3646. result->src1 = NULL; // TODO: maybe store the offset here?
  3647. return result;
  3648. }
  3649. // ggml_view_2d
  3650. struct ggml_tensor * ggml_view_2d(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. int64_t ne0,
  3654. int64_t ne1,
  3655. size_t nb1,
  3656. size_t offset) {
  3657. if (a->grad) {
  3658. GGML_ASSERT(false); // gradient propagation is not supported
  3659. }
  3660. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3661. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3662. result->nb[1] = nb1;
  3663. result->nb[2] = result->nb[1]*ne1;
  3664. result->nb[3] = result->nb[2];
  3665. result->op = GGML_OP_VIEW;
  3666. result->grad = NULL;
  3667. result->src0 = a;
  3668. result->src1 = NULL; // TODO: maybe store the offset here?
  3669. return result;
  3670. }
  3671. // ggml_view_3d
  3672. struct ggml_tensor * ggml_view_3d(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. int64_t ne0,
  3676. int64_t ne1,
  3677. int64_t ne2,
  3678. size_t nb1,
  3679. size_t nb2,
  3680. size_t offset) {
  3681. if (a->grad) {
  3682. GGML_ASSERT(false); // gradient propagation is not supported
  3683. }
  3684. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3685. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3686. result->nb[1] = nb1;
  3687. result->nb[2] = nb2;
  3688. result->nb[3] = result->nb[2]*ne2;
  3689. result->op = GGML_OP_VIEW;
  3690. result->grad = NULL;
  3691. result->src0 = a;
  3692. result->src1 = NULL; // TODO: maybe store the offset here?
  3693. return result;
  3694. }
  3695. // ggml_permute
  3696. struct ggml_tensor * ggml_permute(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. int axis0,
  3700. int axis1,
  3701. int axis2,
  3702. int axis3) {
  3703. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3704. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3705. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3706. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3707. GGML_ASSERT(axis0 != axis1);
  3708. GGML_ASSERT(axis0 != axis2);
  3709. GGML_ASSERT(axis0 != axis3);
  3710. GGML_ASSERT(axis1 != axis2);
  3711. GGML_ASSERT(axis1 != axis3);
  3712. GGML_ASSERT(axis2 != axis3);
  3713. bool is_node = false;
  3714. if (a->grad) {
  3715. GGML_ASSERT(false); // TODO: implement backward
  3716. is_node = true;
  3717. }
  3718. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3719. int ne[GGML_MAX_DIMS];
  3720. int nb[GGML_MAX_DIMS];
  3721. ne[axis0] = a->ne[0];
  3722. ne[axis1] = a->ne[1];
  3723. ne[axis2] = a->ne[2];
  3724. ne[axis3] = a->ne[3];
  3725. nb[axis0] = a->nb[0];
  3726. nb[axis1] = a->nb[1];
  3727. nb[axis2] = a->nb[2];
  3728. nb[axis3] = a->nb[3];
  3729. result->ne[0] = ne[0];
  3730. result->ne[1] = ne[1];
  3731. result->ne[2] = ne[2];
  3732. result->ne[3] = ne[3];
  3733. result->nb[0] = nb[0];
  3734. result->nb[1] = nb[1];
  3735. result->nb[2] = nb[2];
  3736. result->nb[3] = nb[3];
  3737. result->op = GGML_OP_PERMUTE;
  3738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3739. result->src0 = a;
  3740. result->src1 = NULL; // TODO: maybe store the permutation here?
  3741. return result;
  3742. }
  3743. // ggml_transpose
  3744. struct ggml_tensor * ggml_transpose(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a) {
  3747. bool is_node = false;
  3748. if (a->grad) {
  3749. GGML_ASSERT(false); // TODO: implement backward
  3750. is_node = true;
  3751. }
  3752. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3753. result->ne[0] = a->ne[1];
  3754. result->ne[1] = a->ne[0];
  3755. result->nb[0] = a->nb[1];
  3756. result->nb[1] = a->nb[0];
  3757. result->op = GGML_OP_TRANSPOSE;
  3758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3759. result->src0 = a;
  3760. result->src1 = NULL;
  3761. return result;
  3762. }
  3763. // ggml_get_rows
  3764. struct ggml_tensor * ggml_get_rows(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a,
  3767. struct ggml_tensor * b) {
  3768. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3769. bool is_node = false;
  3770. if (a->grad || b->grad) {
  3771. GGML_ASSERT(false); // TODO: implement backward
  3772. is_node = true;
  3773. }
  3774. // TODO: implement non F32 return
  3775. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3776. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3777. result->op = GGML_OP_GET_ROWS;
  3778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3779. result->src0 = a;
  3780. result->src1 = b;
  3781. return result;
  3782. }
  3783. // ggml_diag_mask_inf
  3784. struct ggml_tensor * ggml_diag_mask_inf(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a,
  3787. int n_past) {
  3788. bool is_node = false;
  3789. if (a->grad) {
  3790. GGML_ASSERT(false); // TODO: implement backward
  3791. is_node = true;
  3792. }
  3793. // TODO: when implement backward, fix this:
  3794. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3795. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3796. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3797. result->op = GGML_OP_DIAG_MASK_INF;
  3798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3799. result->src0 = a;
  3800. result->src1 = b;
  3801. return result;
  3802. }
  3803. // ggml_soft_max
  3804. struct ggml_tensor * ggml_soft_max(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a) {
  3807. bool is_node = false;
  3808. if (a->grad) {
  3809. GGML_ASSERT(false); // TODO: implement backward
  3810. is_node = true;
  3811. }
  3812. // TODO: when implement backward, fix this:
  3813. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3814. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3815. result->op = GGML_OP_SOFT_MAX;
  3816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3817. result->src0 = a;
  3818. result->src1 = NULL;
  3819. return result;
  3820. }
  3821. // ggml_rope
  3822. struct ggml_tensor * ggml_rope(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. int n_past,
  3826. int n_dims,
  3827. int mode) {
  3828. GGML_ASSERT(n_past >= 0);
  3829. bool is_node = false;
  3830. if (a->grad) {
  3831. GGML_ASSERT(false); // TODO: implement backward
  3832. is_node = true;
  3833. }
  3834. // TODO: when implement backward, fix this:
  3835. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3836. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3837. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3838. ((int32_t *) b->data)[0] = n_past;
  3839. ((int32_t *) b->data)[1] = n_dims;
  3840. ((int32_t *) b->data)[2] = mode;
  3841. result->op = GGML_OP_ROPE;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src0 = a;
  3844. result->src1 = b;
  3845. return result;
  3846. }
  3847. // ggml_conv_1d_1s
  3848. struct ggml_tensor * ggml_conv_1d_1s(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b) {
  3852. GGML_ASSERT(ggml_is_matrix(b));
  3853. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3854. GGML_ASSERT(a->ne[3] == 1);
  3855. bool is_node = false;
  3856. if (a->grad || b->grad) {
  3857. GGML_ASSERT(false); // TODO: implement backward
  3858. is_node = true;
  3859. }
  3860. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3861. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3862. result->op = GGML_OP_CONV_1D_1S;
  3863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3864. result->src0 = a;
  3865. result->src1 = b;
  3866. return result;
  3867. }
  3868. // ggml_conv_1d_2s
  3869. struct ggml_tensor * ggml_conv_1d_2s(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b) {
  3873. GGML_ASSERT(ggml_is_matrix(b));
  3874. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3875. GGML_ASSERT(a->ne[3] == 1);
  3876. bool is_node = false;
  3877. if (a->grad || b->grad) {
  3878. GGML_ASSERT(false); // TODO: implement backward
  3879. is_node = true;
  3880. }
  3881. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3883. result->op = GGML_OP_CONV_1D_2S;
  3884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3885. result->src0 = a;
  3886. result->src1 = b;
  3887. return result;
  3888. }
  3889. // ggml_flash_attn
  3890. struct ggml_tensor * ggml_flash_attn(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * q,
  3893. struct ggml_tensor * k,
  3894. struct ggml_tensor * v,
  3895. bool masked) {
  3896. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3897. // TODO: check if vT can be multiplied by (k*qT)
  3898. bool is_node = false;
  3899. if (q->grad || k->grad || v->grad) {
  3900. GGML_ASSERT(false); // TODO: implement backward
  3901. is_node = true;
  3902. }
  3903. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3904. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3905. result->op = GGML_OP_FLASH_ATTN;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src0 = q;
  3908. result->src1 = k;
  3909. result->opt[0] = v;
  3910. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3911. return result;
  3912. }
  3913. // ggml_flash_ff
  3914. struct ggml_tensor * ggml_flash_ff(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b0,
  3918. struct ggml_tensor * b1,
  3919. struct ggml_tensor * c0,
  3920. struct ggml_tensor * c1) {
  3921. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3922. // TODO: more checks
  3923. bool is_node = false;
  3924. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3925. GGML_ASSERT(false); // TODO: implement backward
  3926. is_node = true;
  3927. }
  3928. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3929. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3930. result->op = GGML_OP_FLASH_FF;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src0 = a;
  3933. result->src1 = b0;
  3934. result->opt[0] = b1;
  3935. result->opt[1] = c0;
  3936. result->opt[2] = c1;
  3937. return result;
  3938. }
  3939. ////////////////////////////////////////////////////////////////////////////////
  3940. void ggml_set_param(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * tensor) {
  3943. tensor->is_param = true;
  3944. GGML_ASSERT(tensor->grad == NULL);
  3945. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3946. }
  3947. // ggml_compute_forward_dup
  3948. static void ggml_compute_forward_dup_f16(
  3949. const struct ggml_compute_params * params,
  3950. const struct ggml_tensor * src0,
  3951. struct ggml_tensor * dst) {
  3952. GGML_ASSERT(params->ith == 0);
  3953. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3955. return;
  3956. }
  3957. const int64_t ne00 = src0->ne[0];
  3958. const int64_t ne01 = src0->ne[1];
  3959. const int64_t ne02 = src0->ne[2];
  3960. const int64_t ne03 = src0->ne[3];
  3961. const size_t nb00 = src0->nb[0];
  3962. const size_t nb01 = src0->nb[1];
  3963. const size_t nb02 = src0->nb[2];
  3964. const size_t nb03 = src0->nb[3];
  3965. const size_t nb0 = dst->nb[0];
  3966. const size_t nb1 = dst->nb[1];
  3967. const size_t nb2 = dst->nb[2];
  3968. const size_t nb3 = dst->nb[3];
  3969. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3970. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3971. return;
  3972. }
  3973. if (src0->type == dst->type &&
  3974. src0->ne[0] == dst->ne[0] &&
  3975. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3976. // copy by rows
  3977. const size_t rs = ne00*nb00;
  3978. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3979. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3980. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3981. memcpy(
  3982. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3983. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3984. rs);
  3985. }
  3986. }
  3987. }
  3988. return;
  3989. }
  3990. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3991. if (ggml_is_contiguous(dst)) {
  3992. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3993. if (dst->type == GGML_TYPE_F16) {
  3994. size_t id = 0;
  3995. const size_t rs = ne00*nb00;
  3996. for (int i03 = 0; i03 < ne03; i03++) {
  3997. for (int i02 = 0; i02 < ne02; i02++) {
  3998. for (int i01 = 0; i01 < ne01; i01++) {
  3999. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4000. char * dst_ptr = (char *) dst->data + id*rs;
  4001. memcpy(dst_ptr, src0_ptr, rs);
  4002. id++;
  4003. }
  4004. }
  4005. }
  4006. } else if (dst->type == GGML_TYPE_F32) {
  4007. size_t id = 0;
  4008. float * dst_ptr = (float *) dst->data;
  4009. for (int i03 = 0; i03 < ne03; i03++) {
  4010. for (int i02 = 0; i02 < ne02; i02++) {
  4011. for (int i01 = 0; i01 < ne01; i01++) {
  4012. for (int i00 = 0; i00 < ne00; i00++) {
  4013. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4014. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4015. id++;
  4016. }
  4017. }
  4018. }
  4019. }
  4020. } else {
  4021. GGML_ASSERT(false); // TODO: implement
  4022. }
  4023. } else {
  4024. //printf("%s: this is not optimal - fix me\n", __func__);
  4025. if (dst->type == GGML_TYPE_F32) {
  4026. size_t id = 0;
  4027. float * dst_ptr = (float *) dst->data;
  4028. for (int i03 = 0; i03 < ne03; i03++) {
  4029. for (int i02 = 0; i02 < ne02; i02++) {
  4030. for (int i01 = 0; i01 < ne01; i01++) {
  4031. for (int i00 = 0; i00 < ne00; i00++) {
  4032. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4033. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4034. id++;
  4035. }
  4036. }
  4037. }
  4038. }
  4039. } else if (dst->type == GGML_TYPE_F16) {
  4040. size_t id = 0;
  4041. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4042. for (int i03 = 0; i03 < ne03; i03++) {
  4043. for (int i02 = 0; i02 < ne02; i02++) {
  4044. for (int i01 = 0; i01 < ne01; i01++) {
  4045. for (int i00 = 0; i00 < ne00; i00++) {
  4046. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4047. dst_ptr[id] = *src0_ptr;
  4048. id++;
  4049. }
  4050. }
  4051. }
  4052. }
  4053. } else {
  4054. GGML_ASSERT(false); // TODO: implement
  4055. }
  4056. }
  4057. return;
  4058. }
  4059. // dst counters
  4060. int64_t i10 = 0;
  4061. int64_t i11 = 0;
  4062. int64_t i12 = 0;
  4063. int64_t i13 = 0;
  4064. if (dst->type == GGML_TYPE_F16) {
  4065. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4066. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4067. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4068. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4069. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4070. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4071. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4072. if (++i10 == ne00) {
  4073. i10 = 0;
  4074. if (++i11 == ne01) {
  4075. i11 = 0;
  4076. if (++i12 == ne02) {
  4077. i12 = 0;
  4078. if (++i13 == ne03) {
  4079. i13 = 0;
  4080. }
  4081. }
  4082. }
  4083. }
  4084. }
  4085. }
  4086. }
  4087. }
  4088. } else if (dst->type == GGML_TYPE_F32) {
  4089. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4090. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4091. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4092. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4093. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4094. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4095. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4096. if (++i10 == ne00) {
  4097. i10 = 0;
  4098. if (++i11 == ne01) {
  4099. i11 = 0;
  4100. if (++i12 == ne02) {
  4101. i12 = 0;
  4102. if (++i13 == ne03) {
  4103. i13 = 0;
  4104. }
  4105. }
  4106. }
  4107. }
  4108. }
  4109. }
  4110. }
  4111. }
  4112. } else {
  4113. GGML_ASSERT(false); // TODO: implement
  4114. }
  4115. }
  4116. static void ggml_compute_forward_dup_f32(
  4117. const struct ggml_compute_params * params,
  4118. const struct ggml_tensor * src0,
  4119. struct ggml_tensor * dst) {
  4120. GGML_ASSERT(params->ith == 0);
  4121. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4123. return;
  4124. }
  4125. const int64_t ne00 = src0->ne[0];
  4126. const int64_t ne01 = src0->ne[1];
  4127. const int64_t ne02 = src0->ne[2];
  4128. const int64_t ne03 = src0->ne[3];
  4129. const size_t nb00 = src0->nb[0];
  4130. const size_t nb01 = src0->nb[1];
  4131. const size_t nb02 = src0->nb[2];
  4132. const size_t nb03 = src0->nb[3];
  4133. const size_t nb0 = dst->nb[0];
  4134. const size_t nb1 = dst->nb[1];
  4135. const size_t nb2 = dst->nb[2];
  4136. const size_t nb3 = dst->nb[3];
  4137. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4138. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4139. return;
  4140. }
  4141. if (src0->type == dst->type &&
  4142. src0->ne[0] == dst->ne[0] &&
  4143. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4144. // copy by rows
  4145. const size_t rs = ne00*nb00;
  4146. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4147. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4148. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4149. memcpy(
  4150. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4151. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4152. rs);
  4153. }
  4154. }
  4155. }
  4156. return;
  4157. }
  4158. if (ggml_is_contiguous(dst)) {
  4159. // TODO: simplify
  4160. if (src0->nb[0] == sizeof(float)) {
  4161. if (dst->type == GGML_TYPE_F32) {
  4162. size_t id = 0;
  4163. const size_t rs = ne00*nb00;
  4164. for (int i03 = 0; i03 < ne03; i03++) {
  4165. for (int i02 = 0; i02 < ne02; i02++) {
  4166. for (int i01 = 0; i01 < ne01; i01++) {
  4167. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4168. char * dst_ptr = (char *) dst->data + id*rs;
  4169. memcpy(dst_ptr, src0_ptr, rs);
  4170. id++;
  4171. }
  4172. }
  4173. }
  4174. } else if (dst->type == GGML_TYPE_F16) {
  4175. size_t id = 0;
  4176. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4177. for (int i03 = 0; i03 < ne03; i03++) {
  4178. for (int i02 = 0; i02 < ne02; i02++) {
  4179. for (int i01 = 0; i01 < ne01; i01++) {
  4180. for (int i00 = 0; i00 < ne00; i00++) {
  4181. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4182. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4183. id++;
  4184. }
  4185. }
  4186. }
  4187. }
  4188. } else {
  4189. GGML_ASSERT(false); // TODO: implement
  4190. }
  4191. } else {
  4192. //printf("%s: this is not optimal - fix me\n", __func__);
  4193. if (dst->type == GGML_TYPE_F32) {
  4194. size_t id = 0;
  4195. float * dst_ptr = (float *) dst->data;
  4196. for (int i03 = 0; i03 < ne03; i03++) {
  4197. for (int i02 = 0; i02 < ne02; i02++) {
  4198. for (int i01 = 0; i01 < ne01; i01++) {
  4199. for (int i00 = 0; i00 < ne00; i00++) {
  4200. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4201. dst_ptr[id] = *src0_ptr;
  4202. id++;
  4203. }
  4204. }
  4205. }
  4206. }
  4207. } else if (dst->type == GGML_TYPE_F16) {
  4208. size_t id = 0;
  4209. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4210. for (int i03 = 0; i03 < ne03; i03++) {
  4211. for (int i02 = 0; i02 < ne02; i02++) {
  4212. for (int i01 = 0; i01 < ne01; i01++) {
  4213. for (int i00 = 0; i00 < ne00; i00++) {
  4214. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4215. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4216. id++;
  4217. }
  4218. }
  4219. }
  4220. }
  4221. } else {
  4222. GGML_ASSERT(false); // TODO: implement
  4223. }
  4224. }
  4225. return;
  4226. }
  4227. // dst counters
  4228. int64_t i10 = 0;
  4229. int64_t i11 = 0;
  4230. int64_t i12 = 0;
  4231. int64_t i13 = 0;
  4232. if (dst->type == GGML_TYPE_F32) {
  4233. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4234. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4235. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4236. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4237. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4238. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4239. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4240. if (++i10 == dst->ne[0]) {
  4241. i10 = 0;
  4242. if (++i11 == dst->ne[1]) {
  4243. i11 = 0;
  4244. if (++i12 == dst->ne[2]) {
  4245. i12 = 0;
  4246. if (++i13 == dst->ne[3]) {
  4247. i13 = 0;
  4248. }
  4249. }
  4250. }
  4251. }
  4252. }
  4253. }
  4254. }
  4255. }
  4256. } else if (dst->type == GGML_TYPE_F16) {
  4257. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4258. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4259. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4261. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4262. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4263. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4264. if (++i10 == dst->ne[0]) {
  4265. i10 = 0;
  4266. if (++i11 == dst->ne[1]) {
  4267. i11 = 0;
  4268. if (++i12 == dst->ne[2]) {
  4269. i12 = 0;
  4270. if (++i13 == dst->ne[3]) {
  4271. i13 = 0;
  4272. }
  4273. }
  4274. }
  4275. }
  4276. }
  4277. }
  4278. }
  4279. }
  4280. } else {
  4281. GGML_ASSERT(false); // TODO: implement
  4282. }
  4283. }
  4284. static void ggml_compute_forward_dup(
  4285. const struct ggml_compute_params * params,
  4286. const struct ggml_tensor * src0,
  4287. struct ggml_tensor * dst) {
  4288. switch (src0->type) {
  4289. case GGML_TYPE_F16:
  4290. {
  4291. ggml_compute_forward_dup_f16(params, src0, dst);
  4292. } break;
  4293. case GGML_TYPE_F32:
  4294. {
  4295. ggml_compute_forward_dup_f32(params, src0, dst);
  4296. } break;
  4297. case GGML_TYPE_Q4_0:
  4298. case GGML_TYPE_Q4_1:
  4299. case GGML_TYPE_I8:
  4300. case GGML_TYPE_I16:
  4301. case GGML_TYPE_I32:
  4302. case GGML_TYPE_COUNT:
  4303. {
  4304. GGML_ASSERT(false);
  4305. } break;
  4306. }
  4307. }
  4308. // ggml_compute_forward_add
  4309. static void ggml_compute_forward_add_f32(
  4310. const struct ggml_compute_params * params,
  4311. const struct ggml_tensor * src0,
  4312. const struct ggml_tensor * src1,
  4313. struct ggml_tensor * dst) {
  4314. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4316. return;
  4317. }
  4318. const int ith = params->ith;
  4319. const int nth = params->nth;
  4320. const int n = ggml_nrows(src0);
  4321. const int nc = src0->ne[0];
  4322. const size_t nb00 = src0->nb[0];
  4323. const size_t nb01 = src0->nb[1];
  4324. const size_t nb10 = src1->nb[0];
  4325. const size_t nb11 = src1->nb[1];
  4326. const size_t nb0 = dst->nb[0];
  4327. const size_t nb1 = dst->nb[1];
  4328. GGML_ASSERT( nb0 == sizeof(float));
  4329. GGML_ASSERT(nb00 == sizeof(float));
  4330. if (nb10 == sizeof(float)) {
  4331. for (int j = ith; j < n; j += nth) {
  4332. #ifdef GGML_USE_ACCELERATE
  4333. vDSP_vadd(
  4334. (float *) ((char *) src0->data + j*nb01), 1,
  4335. (float *) ((char *) src1->data + j*nb11), 1,
  4336. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4337. #else
  4338. ggml_vec_add_f32(nc,
  4339. (float *) ((char *) dst->data + j*nb1),
  4340. (float *) ((char *) src0->data + j*nb01),
  4341. (float *) ((char *) src1->data + j*nb11));
  4342. #endif
  4343. }
  4344. } else {
  4345. // src1 is not contiguous
  4346. for (int j = ith; j < n; j += nth) {
  4347. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4348. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4349. for (int i = 0; i < nc; i++) {
  4350. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4351. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4352. }
  4353. }
  4354. }
  4355. }
  4356. static void ggml_compute_forward_add(
  4357. const struct ggml_compute_params * params,
  4358. const struct ggml_tensor * src0,
  4359. const struct ggml_tensor * src1,
  4360. struct ggml_tensor * dst) {
  4361. switch (src0->type) {
  4362. case GGML_TYPE_F32:
  4363. {
  4364. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4365. } break;
  4366. case GGML_TYPE_Q4_0:
  4367. case GGML_TYPE_Q4_1:
  4368. case GGML_TYPE_I8:
  4369. case GGML_TYPE_I16:
  4370. case GGML_TYPE_I32:
  4371. case GGML_TYPE_F16:
  4372. case GGML_TYPE_COUNT:
  4373. {
  4374. GGML_ASSERT(false);
  4375. } break;
  4376. }
  4377. }
  4378. // ggml_compute_forward_sub
  4379. static void ggml_compute_forward_sub_f32(
  4380. const struct ggml_compute_params * params,
  4381. const struct ggml_tensor * src0,
  4382. const struct ggml_tensor * src1,
  4383. struct ggml_tensor * dst) {
  4384. assert(params->ith == 0);
  4385. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4387. return;
  4388. }
  4389. const int n = ggml_nrows(src0);
  4390. const int nc = src0->ne[0];
  4391. assert( dst->nb[0] == sizeof(float));
  4392. assert(src0->nb[0] == sizeof(float));
  4393. assert(src1->nb[0] == sizeof(float));
  4394. for (int i = 0; i < n; i++) {
  4395. ggml_vec_sub_f32(nc,
  4396. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4397. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4398. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4399. }
  4400. }
  4401. static void ggml_compute_forward_sub(
  4402. const struct ggml_compute_params * params,
  4403. const struct ggml_tensor * src0,
  4404. const struct ggml_tensor * src1,
  4405. struct ggml_tensor * dst) {
  4406. switch (src0->type) {
  4407. case GGML_TYPE_F32:
  4408. {
  4409. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4410. } break;
  4411. case GGML_TYPE_Q4_0:
  4412. case GGML_TYPE_Q4_1:
  4413. case GGML_TYPE_I8:
  4414. case GGML_TYPE_I16:
  4415. case GGML_TYPE_I32:
  4416. case GGML_TYPE_F16:
  4417. case GGML_TYPE_COUNT:
  4418. {
  4419. GGML_ASSERT(false);
  4420. } break;
  4421. }
  4422. }
  4423. // ggml_compute_forward_mul
  4424. static void ggml_compute_forward_mul_f32(
  4425. const struct ggml_compute_params * params,
  4426. const struct ggml_tensor * src0,
  4427. const struct ggml_tensor * src1,
  4428. struct ggml_tensor * dst) {
  4429. assert(params->ith == 0);
  4430. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4432. return;
  4433. }
  4434. const int n = ggml_nrows(src0);
  4435. const int nc = src0->ne[0];
  4436. assert( dst->nb[0] == sizeof(float));
  4437. assert(src0->nb[0] == sizeof(float));
  4438. assert(src1->nb[0] == sizeof(float));
  4439. for (int i = 0; i < n; i++) {
  4440. ggml_vec_mul_f32(nc,
  4441. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4442. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4443. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4444. }
  4445. }
  4446. static void ggml_compute_forward_mul(
  4447. const struct ggml_compute_params * params,
  4448. const struct ggml_tensor * src0,
  4449. const struct ggml_tensor * src1,
  4450. struct ggml_tensor * dst) {
  4451. switch (src0->type) {
  4452. case GGML_TYPE_F32:
  4453. {
  4454. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4455. } break;
  4456. case GGML_TYPE_Q4_0:
  4457. case GGML_TYPE_Q4_1:
  4458. case GGML_TYPE_I8:
  4459. case GGML_TYPE_I16:
  4460. case GGML_TYPE_I32:
  4461. case GGML_TYPE_F16:
  4462. case GGML_TYPE_COUNT:
  4463. {
  4464. GGML_ASSERT(false);
  4465. } break;
  4466. }
  4467. }
  4468. // ggml_compute_forward_div
  4469. static void ggml_compute_forward_div_f32(
  4470. const struct ggml_compute_params * params,
  4471. const struct ggml_tensor * src0,
  4472. const struct ggml_tensor * src1,
  4473. struct ggml_tensor * dst) {
  4474. assert(params->ith == 0);
  4475. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4477. return;
  4478. }
  4479. const int n = ggml_nrows(src0);
  4480. const int nc = src0->ne[0];
  4481. assert( dst->nb[0] == sizeof(float));
  4482. assert(src0->nb[0] == sizeof(float));
  4483. assert(src1->nb[0] == sizeof(float));
  4484. for (int i = 0; i < n; i++) {
  4485. ggml_vec_div_f32(nc,
  4486. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4487. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4488. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4489. }
  4490. }
  4491. static void ggml_compute_forward_div(
  4492. const struct ggml_compute_params * params,
  4493. const struct ggml_tensor * src0,
  4494. const struct ggml_tensor * src1,
  4495. struct ggml_tensor * dst) {
  4496. switch (src0->type) {
  4497. case GGML_TYPE_F32:
  4498. {
  4499. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4500. } break;
  4501. case GGML_TYPE_Q4_0:
  4502. case GGML_TYPE_Q4_1:
  4503. case GGML_TYPE_I8:
  4504. case GGML_TYPE_I16:
  4505. case GGML_TYPE_I32:
  4506. case GGML_TYPE_F16:
  4507. case GGML_TYPE_COUNT:
  4508. {
  4509. GGML_ASSERT(false);
  4510. } break;
  4511. }
  4512. }
  4513. // ggml_compute_forward_sqr
  4514. static void ggml_compute_forward_sqr_f32(
  4515. const struct ggml_compute_params * params,
  4516. const struct ggml_tensor * src0,
  4517. struct ggml_tensor * dst) {
  4518. assert(params->ith == 0);
  4519. assert(ggml_are_same_shape(src0, dst));
  4520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4521. return;
  4522. }
  4523. const int n = ggml_nrows(src0);
  4524. const int nc = src0->ne[0];
  4525. assert( dst->nb[0] == sizeof(float));
  4526. assert(src0->nb[0] == sizeof(float));
  4527. for (int i = 0; i < n; i++) {
  4528. ggml_vec_sqr_f32(nc,
  4529. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4530. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4531. }
  4532. }
  4533. static void ggml_compute_forward_sqr(
  4534. const struct ggml_compute_params * params,
  4535. const struct ggml_tensor * src0,
  4536. struct ggml_tensor * dst) {
  4537. switch (src0->type) {
  4538. case GGML_TYPE_F32:
  4539. {
  4540. ggml_compute_forward_sqr_f32(params, src0, dst);
  4541. } break;
  4542. case GGML_TYPE_Q4_0:
  4543. case GGML_TYPE_Q4_1:
  4544. case GGML_TYPE_I8:
  4545. case GGML_TYPE_I16:
  4546. case GGML_TYPE_I32:
  4547. case GGML_TYPE_F16:
  4548. case GGML_TYPE_COUNT:
  4549. {
  4550. GGML_ASSERT(false);
  4551. } break;
  4552. }
  4553. }
  4554. // ggml_compute_forward_sqrt
  4555. static void ggml_compute_forward_sqrt_f32(
  4556. const struct ggml_compute_params * params,
  4557. const struct ggml_tensor * src0,
  4558. struct ggml_tensor * dst) {
  4559. assert(params->ith == 0);
  4560. assert(ggml_are_same_shape(src0, dst));
  4561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4562. return;
  4563. }
  4564. const int n = ggml_nrows(src0);
  4565. const int nc = src0->ne[0];
  4566. assert( dst->nb[0] == sizeof(float));
  4567. assert(src0->nb[0] == sizeof(float));
  4568. for (int i = 0; i < n; i++) {
  4569. ggml_vec_sqrt_f32(nc,
  4570. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4571. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4572. }
  4573. }
  4574. static void ggml_compute_forward_sqrt(
  4575. const struct ggml_compute_params * params,
  4576. const struct ggml_tensor * src0,
  4577. struct ggml_tensor * dst) {
  4578. switch (src0->type) {
  4579. case GGML_TYPE_F32:
  4580. {
  4581. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4582. } break;
  4583. case GGML_TYPE_Q4_0:
  4584. case GGML_TYPE_Q4_1:
  4585. case GGML_TYPE_I8:
  4586. case GGML_TYPE_I16:
  4587. case GGML_TYPE_I32:
  4588. case GGML_TYPE_F16:
  4589. case GGML_TYPE_COUNT:
  4590. {
  4591. GGML_ASSERT(false);
  4592. } break;
  4593. }
  4594. }
  4595. // ggml_compute_forward_sum
  4596. static void ggml_compute_forward_sum_f32(
  4597. const struct ggml_compute_params * params,
  4598. const struct ggml_tensor * src0,
  4599. struct ggml_tensor * dst) {
  4600. assert(params->ith == 0);
  4601. assert(ggml_is_scalar(dst));
  4602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4603. return;
  4604. }
  4605. assert(ggml_is_scalar(dst));
  4606. assert(src0->nb[0] == sizeof(float));
  4607. const int64_t ne00 = src0->ne[0];
  4608. const int64_t ne01 = src0->ne[1];
  4609. const int64_t ne02 = src0->ne[2];
  4610. const int64_t ne03 = src0->ne[3];
  4611. const size_t nb01 = src0->nb[1];
  4612. const size_t nb02 = src0->nb[2];
  4613. const size_t nb03 = src0->nb[3];
  4614. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4615. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4616. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4617. ggml_vec_sum_f32(ne00,
  4618. (float *) (dst->data),
  4619. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4620. }
  4621. }
  4622. }
  4623. }
  4624. static void ggml_compute_forward_sum(
  4625. const struct ggml_compute_params * params,
  4626. const struct ggml_tensor * src0,
  4627. struct ggml_tensor * dst) {
  4628. switch (src0->type) {
  4629. case GGML_TYPE_F32:
  4630. {
  4631. ggml_compute_forward_sum_f32(params, src0, dst);
  4632. } break;
  4633. case GGML_TYPE_Q4_0:
  4634. case GGML_TYPE_Q4_1:
  4635. case GGML_TYPE_I8:
  4636. case GGML_TYPE_I16:
  4637. case GGML_TYPE_I32:
  4638. case GGML_TYPE_F16:
  4639. case GGML_TYPE_COUNT:
  4640. {
  4641. GGML_ASSERT(false);
  4642. } break;
  4643. }
  4644. }
  4645. // ggml_compute_forward_mean
  4646. static void ggml_compute_forward_mean_f32(
  4647. const struct ggml_compute_params * params,
  4648. const struct ggml_tensor * src0,
  4649. struct ggml_tensor * dst) {
  4650. assert(params->ith == 0);
  4651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4652. return;
  4653. }
  4654. assert(src0->nb[0] == sizeof(float));
  4655. const int64_t ne00 = src0->ne[0];
  4656. const int64_t ne01 = src0->ne[1];
  4657. const int64_t ne02 = src0->ne[2];
  4658. const int64_t ne03 = src0->ne[3];
  4659. const size_t nb01 = src0->nb[1];
  4660. const size_t nb02 = src0->nb[2];
  4661. const size_t nb03 = src0->nb[3];
  4662. const int64_t ne0 = dst->ne[0];
  4663. const int64_t ne1 = dst->ne[1];
  4664. const int64_t ne2 = dst->ne[2];
  4665. const int64_t ne3 = dst->ne[3];
  4666. assert(ne0 == 1);
  4667. assert(ne1 == ne01);
  4668. assert(ne2 == ne02);
  4669. assert(ne3 == ne03);
  4670. UNUSED(ne0);
  4671. UNUSED(ne1);
  4672. UNUSED(ne2);
  4673. UNUSED(ne3);
  4674. const size_t nb1 = dst->nb[1];
  4675. const size_t nb2 = dst->nb[2];
  4676. const size_t nb3 = dst->nb[3];
  4677. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4678. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4679. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4680. ggml_vec_sum_f32(ne00,
  4681. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4682. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4683. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4684. }
  4685. }
  4686. }
  4687. }
  4688. static void ggml_compute_forward_mean(
  4689. const struct ggml_compute_params * params,
  4690. const struct ggml_tensor * src0,
  4691. struct ggml_tensor * dst) {
  4692. switch (src0->type) {
  4693. case GGML_TYPE_F32:
  4694. {
  4695. ggml_compute_forward_mean_f32(params, src0, dst);
  4696. } break;
  4697. case GGML_TYPE_Q4_0:
  4698. case GGML_TYPE_Q4_1:
  4699. case GGML_TYPE_I8:
  4700. case GGML_TYPE_I16:
  4701. case GGML_TYPE_I32:
  4702. case GGML_TYPE_F16:
  4703. case GGML_TYPE_COUNT:
  4704. {
  4705. GGML_ASSERT(false);
  4706. } break;
  4707. }
  4708. }
  4709. // ggml_compute_forward_repeat
  4710. static void ggml_compute_forward_repeat_f32(
  4711. const struct ggml_compute_params * params,
  4712. const struct ggml_tensor * src0,
  4713. struct ggml_tensor * dst) {
  4714. assert(params->ith == 0);
  4715. assert(ggml_can_repeat(src0, dst));
  4716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4717. return;
  4718. }
  4719. // TODO: implement support for rank > 2 tensors
  4720. assert(src0->ne[2] == 1);
  4721. assert(src0->ne[3] == 1);
  4722. assert( dst->ne[2] == 1);
  4723. assert( dst->ne[3] == 1);
  4724. const int nc = dst->ne[0];
  4725. const int nr = dst->ne[1];
  4726. const int nc0 = src0->ne[0];
  4727. const int nr0 = src0->ne[1];
  4728. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4729. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4730. // TODO: support for transposed / permuted tensors
  4731. assert( dst->nb[0] == sizeof(float));
  4732. assert(src0->nb[0] == sizeof(float));
  4733. // TODO: maybe this is not optimal?
  4734. for (int i = 0; i < nrr; i++) {
  4735. for (int j = 0; j < ncr; j++) {
  4736. for (int k = 0; k < nr0; k++) {
  4737. ggml_vec_cpy_f32(nc0,
  4738. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4739. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4740. }
  4741. }
  4742. }
  4743. }
  4744. static void ggml_compute_forward_repeat(
  4745. const struct ggml_compute_params * params,
  4746. const struct ggml_tensor * src0,
  4747. struct ggml_tensor * dst) {
  4748. switch (src0->type) {
  4749. case GGML_TYPE_F32:
  4750. {
  4751. ggml_compute_forward_repeat_f32(params, src0, dst);
  4752. } break;
  4753. case GGML_TYPE_Q4_0:
  4754. case GGML_TYPE_Q4_1:
  4755. case GGML_TYPE_I8:
  4756. case GGML_TYPE_I16:
  4757. case GGML_TYPE_I32:
  4758. case GGML_TYPE_F16:
  4759. case GGML_TYPE_COUNT:
  4760. {
  4761. GGML_ASSERT(false);
  4762. } break;
  4763. }
  4764. }
  4765. // ggml_compute_forward_abs
  4766. static void ggml_compute_forward_abs_f32(
  4767. const struct ggml_compute_params * params,
  4768. const struct ggml_tensor * src0,
  4769. struct ggml_tensor * dst) {
  4770. assert(params->ith == 0);
  4771. assert(ggml_are_same_shape(src0, dst));
  4772. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4773. return;
  4774. }
  4775. const int n = ggml_nrows(src0);
  4776. const int nc = src0->ne[0];
  4777. assert(dst->nb[0] == sizeof(float));
  4778. assert(src0->nb[0] == sizeof(float));
  4779. for (int i = 0; i < n; i++) {
  4780. ggml_vec_abs_f32(nc,
  4781. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4782. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4783. }
  4784. }
  4785. static void ggml_compute_forward_abs(
  4786. const struct ggml_compute_params * params,
  4787. const struct ggml_tensor * src0,
  4788. struct ggml_tensor * dst) {
  4789. switch (src0->type) {
  4790. case GGML_TYPE_F32:
  4791. {
  4792. ggml_compute_forward_abs_f32(params, src0, dst);
  4793. } break;
  4794. case GGML_TYPE_Q4_0:
  4795. case GGML_TYPE_Q4_1:
  4796. case GGML_TYPE_I8:
  4797. case GGML_TYPE_I16:
  4798. case GGML_TYPE_I32:
  4799. case GGML_TYPE_F16:
  4800. case GGML_TYPE_COUNT:
  4801. {
  4802. GGML_ASSERT(false);
  4803. } break;
  4804. }
  4805. }
  4806. // ggml_compute_forward_sgn
  4807. static void ggml_compute_forward_sgn_f32(
  4808. const struct ggml_compute_params * params,
  4809. const struct ggml_tensor * src0,
  4810. struct ggml_tensor * dst) {
  4811. assert(params->ith == 0);
  4812. assert(ggml_are_same_shape(src0, dst));
  4813. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4814. return;
  4815. }
  4816. const int n = ggml_nrows(src0);
  4817. const int nc = src0->ne[0];
  4818. assert(dst->nb[0] == sizeof(float));
  4819. assert(src0->nb[0] == sizeof(float));
  4820. for (int i = 0; i < n; i++) {
  4821. ggml_vec_sgn_f32(nc,
  4822. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4823. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4824. }
  4825. }
  4826. static void ggml_compute_forward_sgn(
  4827. const struct ggml_compute_params * params,
  4828. const struct ggml_tensor * src0,
  4829. struct ggml_tensor * dst) {
  4830. switch (src0->type) {
  4831. case GGML_TYPE_F32:
  4832. {
  4833. ggml_compute_forward_sgn_f32(params, src0, dst);
  4834. } break;
  4835. case GGML_TYPE_Q4_0:
  4836. case GGML_TYPE_Q4_1:
  4837. case GGML_TYPE_I8:
  4838. case GGML_TYPE_I16:
  4839. case GGML_TYPE_I32:
  4840. case GGML_TYPE_F16:
  4841. case GGML_TYPE_COUNT:
  4842. {
  4843. GGML_ASSERT(false);
  4844. } break;
  4845. }
  4846. }
  4847. // ggml_compute_forward_neg
  4848. static void ggml_compute_forward_neg_f32(
  4849. const struct ggml_compute_params * params,
  4850. const struct ggml_tensor * src0,
  4851. struct ggml_tensor * dst) {
  4852. assert(params->ith == 0);
  4853. assert(ggml_are_same_shape(src0, dst));
  4854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4855. return;
  4856. }
  4857. const int n = ggml_nrows(src0);
  4858. const int nc = src0->ne[0];
  4859. assert(dst->nb[0] == sizeof(float));
  4860. assert(src0->nb[0] == sizeof(float));
  4861. for (int i = 0; i < n; i++) {
  4862. ggml_vec_neg_f32(nc,
  4863. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4864. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4865. }
  4866. }
  4867. static void ggml_compute_forward_neg(
  4868. const struct ggml_compute_params * params,
  4869. const struct ggml_tensor * src0,
  4870. struct ggml_tensor * dst) {
  4871. switch (src0->type) {
  4872. case GGML_TYPE_F32:
  4873. {
  4874. ggml_compute_forward_neg_f32(params, src0, dst);
  4875. } break;
  4876. case GGML_TYPE_Q4_0:
  4877. case GGML_TYPE_Q4_1:
  4878. case GGML_TYPE_I8:
  4879. case GGML_TYPE_I16:
  4880. case GGML_TYPE_I32:
  4881. case GGML_TYPE_F16:
  4882. case GGML_TYPE_COUNT:
  4883. {
  4884. GGML_ASSERT(false);
  4885. } break;
  4886. }
  4887. }
  4888. // ggml_compute_forward_step
  4889. static void ggml_compute_forward_step_f32(
  4890. const struct ggml_compute_params * params,
  4891. const struct ggml_tensor * src0,
  4892. struct ggml_tensor * dst) {
  4893. assert(params->ith == 0);
  4894. assert(ggml_are_same_shape(src0, dst));
  4895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4896. return;
  4897. }
  4898. const int n = ggml_nrows(src0);
  4899. const int nc = src0->ne[0];
  4900. assert(dst->nb[0] == sizeof(float));
  4901. assert(src0->nb[0] == sizeof(float));
  4902. for (int i = 0; i < n; i++) {
  4903. ggml_vec_step_f32(nc,
  4904. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4905. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4906. }
  4907. }
  4908. static void ggml_compute_forward_step(
  4909. const struct ggml_compute_params * params,
  4910. const struct ggml_tensor * src0,
  4911. struct ggml_tensor * dst) {
  4912. switch (src0->type) {
  4913. case GGML_TYPE_F32:
  4914. {
  4915. ggml_compute_forward_step_f32(params, src0, dst);
  4916. } break;
  4917. case GGML_TYPE_Q4_0:
  4918. case GGML_TYPE_Q4_1:
  4919. case GGML_TYPE_I8:
  4920. case GGML_TYPE_I16:
  4921. case GGML_TYPE_I32:
  4922. case GGML_TYPE_F16:
  4923. case GGML_TYPE_COUNT:
  4924. {
  4925. GGML_ASSERT(false);
  4926. } break;
  4927. }
  4928. }
  4929. // ggml_compute_forward_relu
  4930. static void ggml_compute_forward_relu_f32(
  4931. const struct ggml_compute_params * params,
  4932. const struct ggml_tensor * src0,
  4933. struct ggml_tensor * dst) {
  4934. assert(params->ith == 0);
  4935. assert(ggml_are_same_shape(src0, dst));
  4936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4937. return;
  4938. }
  4939. const int n = ggml_nrows(src0);
  4940. const int nc = src0->ne[0];
  4941. assert(dst->nb[0] == sizeof(float));
  4942. assert(src0->nb[0] == sizeof(float));
  4943. for (int i = 0; i < n; i++) {
  4944. ggml_vec_relu_f32(nc,
  4945. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4946. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4947. }
  4948. }
  4949. static void ggml_compute_forward_relu(
  4950. const struct ggml_compute_params * params,
  4951. const struct ggml_tensor * src0,
  4952. struct ggml_tensor * dst) {
  4953. switch (src0->type) {
  4954. case GGML_TYPE_F32:
  4955. {
  4956. ggml_compute_forward_relu_f32(params, src0, dst);
  4957. } break;
  4958. case GGML_TYPE_Q4_0:
  4959. case GGML_TYPE_Q4_1:
  4960. case GGML_TYPE_I8:
  4961. case GGML_TYPE_I16:
  4962. case GGML_TYPE_I32:
  4963. case GGML_TYPE_F16:
  4964. case GGML_TYPE_COUNT:
  4965. {
  4966. GGML_ASSERT(false);
  4967. } break;
  4968. }
  4969. }
  4970. // ggml_compute_forward_gelu
  4971. static void ggml_compute_forward_gelu_f32(
  4972. const struct ggml_compute_params * params,
  4973. const struct ggml_tensor * src0,
  4974. struct ggml_tensor * dst) {
  4975. GGML_ASSERT(ggml_is_contiguous(src0));
  4976. GGML_ASSERT(ggml_is_contiguous(dst));
  4977. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4979. return;
  4980. }
  4981. const int ith = params->ith;
  4982. const int nth = params->nth;
  4983. const int nc = src0->ne[0];
  4984. const int nr = ggml_nrows(src0);
  4985. // rows per thread
  4986. const int dr = (nr + nth - 1)/nth;
  4987. // row range for this thread
  4988. const int ir0 = dr*ith;
  4989. const int ir1 = MIN(ir0 + dr, nr);
  4990. for (int i1 = ir0; i1 < ir1; i1++) {
  4991. ggml_vec_gelu_f32(nc,
  4992. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4993. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4994. #ifndef NDEBUG
  4995. for (int k = 0; k < nc; k++) {
  4996. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4997. UNUSED(x);
  4998. assert(!isnan(x));
  4999. assert(!isinf(x));
  5000. }
  5001. #endif
  5002. }
  5003. }
  5004. static void ggml_compute_forward_gelu(
  5005. const struct ggml_compute_params * params,
  5006. const struct ggml_tensor * src0,
  5007. struct ggml_tensor * dst) {
  5008. switch (src0->type) {
  5009. case GGML_TYPE_F32:
  5010. {
  5011. ggml_compute_forward_gelu_f32(params, src0, dst);
  5012. } break;
  5013. case GGML_TYPE_Q4_0:
  5014. case GGML_TYPE_Q4_1:
  5015. case GGML_TYPE_I8:
  5016. case GGML_TYPE_I16:
  5017. case GGML_TYPE_I32:
  5018. case GGML_TYPE_F16:
  5019. case GGML_TYPE_COUNT:
  5020. {
  5021. GGML_ASSERT(false);
  5022. } break;
  5023. }
  5024. //printf("XXXXXXXX gelu\n");
  5025. }
  5026. // ggml_compute_forward_silu
  5027. static void ggml_compute_forward_silu_f32(
  5028. const struct ggml_compute_params * params,
  5029. const struct ggml_tensor * src0,
  5030. struct ggml_tensor * dst) {
  5031. GGML_ASSERT(ggml_is_contiguous(src0));
  5032. GGML_ASSERT(ggml_is_contiguous(dst));
  5033. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5035. return;
  5036. }
  5037. const int ith = params->ith;
  5038. const int nth = params->nth;
  5039. const int nc = src0->ne[0];
  5040. const int nr = ggml_nrows(src0);
  5041. // rows per thread
  5042. const int dr = (nr + nth - 1)/nth;
  5043. // row range for this thread
  5044. const int ir0 = dr*ith;
  5045. const int ir1 = MIN(ir0 + dr, nr);
  5046. for (int i1 = ir0; i1 < ir1; i1++) {
  5047. ggml_vec_silu_f32(nc,
  5048. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5049. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5050. #ifndef NDEBUG
  5051. for (int k = 0; k < nc; k++) {
  5052. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5053. UNUSED(x);
  5054. assert(!isnan(x));
  5055. assert(!isinf(x));
  5056. }
  5057. #endif
  5058. }
  5059. }
  5060. static void ggml_compute_forward_silu(
  5061. const struct ggml_compute_params * params,
  5062. const struct ggml_tensor * src0,
  5063. struct ggml_tensor * dst) {
  5064. switch (src0->type) {
  5065. case GGML_TYPE_F32:
  5066. {
  5067. ggml_compute_forward_silu_f32(params, src0, dst);
  5068. } break;
  5069. case GGML_TYPE_Q4_0:
  5070. case GGML_TYPE_Q4_1:
  5071. case GGML_TYPE_I8:
  5072. case GGML_TYPE_I16:
  5073. case GGML_TYPE_I32:
  5074. case GGML_TYPE_F16:
  5075. case GGML_TYPE_COUNT:
  5076. {
  5077. GGML_ASSERT(false);
  5078. } break;
  5079. }
  5080. }
  5081. // ggml_compute_forward_norm
  5082. static void ggml_compute_forward_norm_f32(
  5083. const struct ggml_compute_params * params,
  5084. const struct ggml_tensor * src0,
  5085. struct ggml_tensor * dst) {
  5086. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5087. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5088. return;
  5089. }
  5090. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5091. const int ith = params->ith;
  5092. const int nth = params->nth;
  5093. const int64_t ne00 = src0->ne[0];
  5094. const int64_t ne01 = src0->ne[1];
  5095. const int64_t ne02 = src0->ne[2];
  5096. const int64_t ne03 = src0->ne[3];
  5097. const size_t nb01 = src0->nb[1];
  5098. const size_t nb02 = src0->nb[2];
  5099. const size_t nb03 = src0->nb[3];
  5100. const size_t nb1 = dst->nb[1];
  5101. const size_t nb2 = dst->nb[2];
  5102. const size_t nb3 = dst->nb[3];
  5103. const float eps = 1e-5f; // TODO: make this a parameter
  5104. // TODO: optimize
  5105. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5106. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5107. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5108. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5109. ggml_float sum = 0.0;
  5110. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5111. sum += (ggml_float)x[i00];
  5112. }
  5113. float mean = sum/ne00;
  5114. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5115. ggml_float sum2 = 0.0;
  5116. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5117. float v = x[i00] - mean;
  5118. y[i00] = v;
  5119. sum2 += (ggml_float)(v*v);
  5120. }
  5121. float variance = sum2/ne00;
  5122. const float scale = 1.0f/sqrtf(variance + eps);
  5123. ggml_vec_scale_f32(ne00, y, scale);
  5124. }
  5125. }
  5126. }
  5127. }
  5128. static void ggml_compute_forward_norm(
  5129. const struct ggml_compute_params * params,
  5130. const struct ggml_tensor * src0,
  5131. struct ggml_tensor * dst) {
  5132. switch (src0->type) {
  5133. case GGML_TYPE_F32:
  5134. {
  5135. ggml_compute_forward_norm_f32(params, src0, dst);
  5136. } break;
  5137. case GGML_TYPE_Q4_0:
  5138. case GGML_TYPE_Q4_1:
  5139. case GGML_TYPE_I8:
  5140. case GGML_TYPE_I16:
  5141. case GGML_TYPE_I32:
  5142. case GGML_TYPE_F16:
  5143. case GGML_TYPE_COUNT:
  5144. {
  5145. GGML_ASSERT(false);
  5146. } break;
  5147. }
  5148. }
  5149. static void ggml_compute_forward_rms_norm_f32(
  5150. const struct ggml_compute_params * params,
  5151. const struct ggml_tensor * src0,
  5152. struct ggml_tensor * dst) {
  5153. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5155. return;
  5156. }
  5157. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5158. const int ith = params->ith;
  5159. const int nth = params->nth;
  5160. const int64_t ne00 = src0->ne[0];
  5161. const int64_t ne01 = src0->ne[1];
  5162. const int64_t ne02 = src0->ne[2];
  5163. const int64_t ne03 = src0->ne[3];
  5164. const size_t nb01 = src0->nb[1];
  5165. const size_t nb02 = src0->nb[2];
  5166. const size_t nb03 = src0->nb[3];
  5167. const size_t nb1 = dst->nb[1];
  5168. const size_t nb2 = dst->nb[2];
  5169. const size_t nb3 = dst->nb[3];
  5170. const float eps = 1e-6f; // TODO: make this a parameter
  5171. // TODO: optimize
  5172. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5173. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5174. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5175. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5176. ggml_float sum = 0.0;
  5177. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5178. sum += (ggml_float)(x[i00] * x[i00]);
  5179. }
  5180. float mean = sum/ne00;
  5181. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5182. memcpy(y, x, ne00 * sizeof(float));
  5183. // for (int i00 = 0; i00 < ne00; i00++) {
  5184. // y[i00] = x[i00];
  5185. // }
  5186. const float scale = 1.0f/sqrtf(mean + eps);
  5187. ggml_vec_scale_f32(ne00, y, scale);
  5188. }
  5189. }
  5190. }
  5191. }
  5192. static void ggml_compute_forward_rms_norm(
  5193. const struct ggml_compute_params * params,
  5194. const struct ggml_tensor * src0,
  5195. struct ggml_tensor * dst) {
  5196. switch (src0->type) {
  5197. case GGML_TYPE_F32:
  5198. {
  5199. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5200. } break;
  5201. case GGML_TYPE_Q4_0:
  5202. case GGML_TYPE_Q4_1:
  5203. case GGML_TYPE_I8:
  5204. case GGML_TYPE_I16:
  5205. case GGML_TYPE_I32:
  5206. case GGML_TYPE_F16:
  5207. case GGML_TYPE_COUNT:
  5208. {
  5209. GGML_ASSERT(false);
  5210. } break;
  5211. }
  5212. }
  5213. // ggml_compute_forward_mul_mat
  5214. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5215. // helper function to determine if it is better to use BLAS or not
  5216. // for large matrices, BLAS is faster
  5217. static bool ggml_compute_forward_mul_mat_use_blas(
  5218. const struct ggml_tensor * src0,
  5219. const struct ggml_tensor * src1,
  5220. struct ggml_tensor * dst) {
  5221. //const int64_t ne00 = src0->ne[0];
  5222. //const int64_t ne01 = src0->ne[1];
  5223. const int64_t ne10 = src1->ne[0];
  5224. const int64_t ne0 = dst->ne[0];
  5225. const int64_t ne1 = dst->ne[1];
  5226. // TODO: find the optimal values for these
  5227. if (ggml_is_contiguous(src0) &&
  5228. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5229. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5230. return true;
  5231. }
  5232. return false;
  5233. }
  5234. #endif
  5235. static void ggml_compute_forward_mul_mat_f32(
  5236. const struct ggml_compute_params * params,
  5237. const struct ggml_tensor * src0,
  5238. const struct ggml_tensor * src1,
  5239. struct ggml_tensor * dst) {
  5240. int64_t t0 = ggml_perf_time_us();
  5241. UNUSED(t0);
  5242. const int64_t ne00 = src0->ne[0];
  5243. const int64_t ne01 = src0->ne[1];
  5244. const int64_t ne02 = src0->ne[2];
  5245. const int64_t ne03 = src0->ne[3];
  5246. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5247. const int64_t ne10 = src1->ne[0];
  5248. #endif
  5249. const int64_t ne11 = src1->ne[1];
  5250. #ifndef NDEBUG
  5251. const int64_t ne12 = src1->ne[2];
  5252. const int64_t ne13 = src1->ne[3];
  5253. const int64_t ne0 = dst->ne[0];
  5254. const int64_t ne1 = dst->ne[1];
  5255. const int64_t ne2 = dst->ne[2];
  5256. const int64_t ne3 = dst->ne[3];
  5257. const int nb00 = src0->nb[0];
  5258. #endif
  5259. const int nb01 = src0->nb[1];
  5260. const int nb02 = src0->nb[2];
  5261. const int nb03 = src0->nb[3];
  5262. #ifndef NDEBUG
  5263. const int nb10 = src1->nb[0];
  5264. #endif
  5265. const int nb11 = src1->nb[1];
  5266. const int nb12 = src1->nb[2];
  5267. const int nb13 = src1->nb[3];
  5268. const int nb0 = dst->nb[0];
  5269. const int nb1 = dst->nb[1];
  5270. const int nb2 = dst->nb[2];
  5271. const int nb3 = dst->nb[3];
  5272. const int ith = params->ith;
  5273. const int nth = params->nth;
  5274. assert(ne02 == ne12);
  5275. assert(ne03 == ne13);
  5276. assert(ne2 == ne12);
  5277. assert(ne3 == ne13);
  5278. // we don't support permuted src0 or src1
  5279. assert(nb00 == sizeof(float));
  5280. assert(nb10 == sizeof(float));
  5281. // dst cannot be transposed or permuted
  5282. assert(nb0 == sizeof(float));
  5283. assert(nb0 <= nb1);
  5284. assert(nb1 <= nb2);
  5285. assert(nb2 <= nb3);
  5286. assert(ne0 == ne01);
  5287. assert(ne1 == ne11);
  5288. assert(ne2 == ne02);
  5289. assert(ne3 == ne03);
  5290. // nb01 >= nb00 - src0 is not transposed
  5291. // compute by src0 rows
  5292. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5293. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5294. if (params->ith != 0) {
  5295. return;
  5296. }
  5297. if (params->type == GGML_TASK_INIT) {
  5298. return;
  5299. }
  5300. if (params->type == GGML_TASK_FINALIZE) {
  5301. return;
  5302. }
  5303. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5304. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5305. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5306. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5307. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5308. // zT = y * xT
  5309. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5310. ne11, ne01, ne10,
  5311. 1.0f, y, ne10,
  5312. x, ne00,
  5313. 0.0f, d, ne01);
  5314. }
  5315. }
  5316. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5317. return;
  5318. }
  5319. #endif
  5320. if (params->type == GGML_TASK_INIT) {
  5321. return;
  5322. }
  5323. if (params->type == GGML_TASK_FINALIZE) {
  5324. return;
  5325. }
  5326. // parallelize by src0 rows using ggml_vec_dot_f32
  5327. // total rows in src0
  5328. const int nr = ne01*ne02*ne03;
  5329. // rows per thread
  5330. const int dr = (nr + nth - 1)/nth;
  5331. // row range for this thread
  5332. const int ir0 = dr*ith;
  5333. const int ir1 = MIN(ir0 + dr, nr);
  5334. for (int ir = ir0; ir < ir1; ++ir) {
  5335. // src0 indices
  5336. const int i03 = ir/(ne02*ne01);
  5337. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5338. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5339. for (int64_t ic = 0; ic < ne11; ++ic) {
  5340. // src1 indices
  5341. const int i13 = i03;
  5342. const int i12 = i02;
  5343. const int i11 = ic;
  5344. // dst indices
  5345. const int i0 = i01;
  5346. const int i1 = i11;
  5347. const int i2 = i02;
  5348. const int i3 = i03;
  5349. ggml_vec_dot_f32(ne00,
  5350. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5351. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5352. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5353. }
  5354. }
  5355. //int64_t t1 = ggml_perf_time_us();
  5356. //static int64_t acc = 0;
  5357. //acc += t1 - t0;
  5358. //if (t1 - t0 > 10) {
  5359. // printf("\n");
  5360. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5361. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5362. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5363. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5364. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5365. //}
  5366. }
  5367. static void ggml_compute_forward_mul_mat_f16_f32(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. const struct ggml_tensor * src1,
  5371. struct ggml_tensor * dst) {
  5372. int64_t t0 = ggml_perf_time_us();
  5373. UNUSED(t0);
  5374. const int64_t ne00 = src0->ne[0];
  5375. const int64_t ne01 = src0->ne[1];
  5376. const int64_t ne02 = src0->ne[2];
  5377. const int64_t ne03 = src0->ne[3];
  5378. const int64_t ne10 = src1->ne[0];
  5379. const int64_t ne11 = src1->ne[1];
  5380. const int64_t ne12 = src1->ne[2];
  5381. const int64_t ne13 = src1->ne[3];
  5382. const int64_t ne0 = dst->ne[0];
  5383. const int64_t ne1 = dst->ne[1];
  5384. const int64_t ne2 = dst->ne[2];
  5385. const int64_t ne3 = dst->ne[3];
  5386. //const int64_t ne = ne0*ne1*ne2*ne3;
  5387. const int nb00 = src0->nb[0];
  5388. const int nb01 = src0->nb[1];
  5389. const int nb02 = src0->nb[2];
  5390. const int nb03 = src0->nb[3];
  5391. const int nb10 = src1->nb[0];
  5392. const int nb11 = src1->nb[1];
  5393. const int nb12 = src1->nb[2];
  5394. const int nb13 = src1->nb[3];
  5395. const int nb0 = dst->nb[0];
  5396. const int nb1 = dst->nb[1];
  5397. const int nb2 = dst->nb[2];
  5398. const int nb3 = dst->nb[3];
  5399. const int ith = params->ith;
  5400. const int nth = params->nth;
  5401. GGML_ASSERT(ne02 == ne12);
  5402. GGML_ASSERT(ne03 == ne13);
  5403. GGML_ASSERT(ne2 == ne12);
  5404. GGML_ASSERT(ne3 == ne13);
  5405. // TODO: we don't support permuted src0
  5406. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5407. // dst cannot be transposed or permuted
  5408. GGML_ASSERT(nb0 == sizeof(float));
  5409. GGML_ASSERT(nb0 <= nb1);
  5410. GGML_ASSERT(nb1 <= nb2);
  5411. GGML_ASSERT(nb2 <= nb3);
  5412. GGML_ASSERT(ne0 == ne01);
  5413. GGML_ASSERT(ne1 == ne11);
  5414. GGML_ASSERT(ne2 == ne02);
  5415. GGML_ASSERT(ne3 == ne03);
  5416. // nb01 >= nb00 - src0 is not transposed
  5417. // compute by src0 rows
  5418. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5419. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5420. GGML_ASSERT(nb10 == sizeof(float));
  5421. if (params->ith != 0) {
  5422. return;
  5423. }
  5424. if (params->type == GGML_TASK_INIT) {
  5425. return;
  5426. }
  5427. if (params->type == GGML_TASK_FINALIZE) {
  5428. return;
  5429. }
  5430. float * const wdata = params->wdata;
  5431. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5432. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5433. {
  5434. size_t id = 0;
  5435. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5436. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5437. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5438. }
  5439. }
  5440. }
  5441. const float * x = wdata;
  5442. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5443. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5444. // zT = y * xT
  5445. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5446. ne11, ne01, ne10,
  5447. 1.0f, y, ne10,
  5448. x, ne00,
  5449. 0.0f, d, ne01);
  5450. }
  5451. }
  5452. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5453. return;
  5454. }
  5455. #endif
  5456. if (params->type == GGML_TASK_INIT) {
  5457. ggml_fp16_t * const wdata = params->wdata;
  5458. size_t id = 0;
  5459. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5460. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5461. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5462. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5463. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5464. }
  5465. }
  5466. }
  5467. }
  5468. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5469. return;
  5470. }
  5471. if (params->type == GGML_TASK_FINALIZE) {
  5472. return;
  5473. }
  5474. // fp16 -> half the size, so divide by 2
  5475. // TODO: do not support transposed src1
  5476. assert(nb10/2 == sizeof(ggml_fp16_t));
  5477. // parallelize by src0 rows using ggml_vec_dot_f16
  5478. // total rows in src0
  5479. const int nr = ne01*ne02*ne03;
  5480. // rows per thread
  5481. const int dr = (nr + nth - 1)/nth;
  5482. // row range for this thread
  5483. const int ir0 = dr*ith;
  5484. const int ir1 = MIN(ir0 + dr, nr);
  5485. ggml_fp16_t * wdata = params->wdata;
  5486. for (int ir = ir0; ir < ir1; ++ir) {
  5487. // src0 indices
  5488. const int i03 = ir/(ne02*ne01);
  5489. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5490. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5491. const int i13 = i03;
  5492. const int i12 = i02;
  5493. const int i0 = i01;
  5494. const int i2 = i02;
  5495. const int i3 = i03;
  5496. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5497. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5498. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5499. for (int64_t ic = 0; ic < ne11; ++ic) {
  5500. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5501. }
  5502. }
  5503. //int64_t t1 = ggml_time_us();
  5504. //static int64_t acc = 0;
  5505. //acc += t1 - t0;
  5506. //if (t1 - t0 > 10) {
  5507. // printf("\n");
  5508. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5509. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5510. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5511. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5512. //}
  5513. }
  5514. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5515. [GGML_TYPE_Q4_0] = {
  5516. .dequantize_row_q = dequantize_row_q4_0,
  5517. .quantize_row_q = quantize_row_q4_0,
  5518. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5519. .vec_dot_q = ggml_vec_dot_q4_0,
  5520. },
  5521. [GGML_TYPE_Q4_1] = {
  5522. .dequantize_row_q = dequantize_row_q4_1,
  5523. .quantize_row_q = quantize_row_q4_1,
  5524. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5525. .vec_dot_q = ggml_vec_dot_q4_1,
  5526. },
  5527. };
  5528. // For internal test use
  5529. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5530. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5531. return quantize_fns[i];
  5532. }
  5533. static void ggml_compute_forward_mul_mat_q_f32(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. const struct ggml_tensor * src1,
  5537. struct ggml_tensor * dst) {
  5538. int64_t t0 = ggml_perf_time_us();
  5539. UNUSED(t0);
  5540. const int64_t ne00 = src0->ne[0];
  5541. const int64_t ne01 = src0->ne[1];
  5542. const int64_t ne02 = src0->ne[2];
  5543. const int64_t ne03 = src0->ne[3];
  5544. const int64_t ne10 = src1->ne[0];
  5545. const int64_t ne11 = src1->ne[1];
  5546. const int64_t ne12 = src1->ne[2];
  5547. const int64_t ne13 = src1->ne[3];
  5548. const int64_t ne0 = dst->ne[0];
  5549. const int64_t ne1 = dst->ne[1];
  5550. const int64_t ne2 = dst->ne[2];
  5551. const int64_t ne3 = dst->ne[3];
  5552. const int nb00 = src0->nb[0];
  5553. const int nb01 = src0->nb[1];
  5554. const int nb02 = src0->nb[2];
  5555. const int nb03 = src0->nb[3];
  5556. const int nb10 = src1->nb[0];
  5557. const int nb11 = src1->nb[1];
  5558. const int nb12 = src1->nb[2];
  5559. const int nb13 = src1->nb[3];
  5560. const int nb0 = dst->nb[0];
  5561. const int nb1 = dst->nb[1];
  5562. const int nb2 = dst->nb[2];
  5563. const int nb3 = dst->nb[3];
  5564. const int ith = params->ith;
  5565. const int nth = params->nth;
  5566. GGML_ASSERT(ne02 == ne12);
  5567. GGML_ASSERT(ne03 == ne13);
  5568. GGML_ASSERT(ne2 == ne12);
  5569. GGML_ASSERT(ne3 == ne13);
  5570. const enum ggml_type type = src0->type;
  5571. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5572. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5573. // we don't support permuted src0 or src1
  5574. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5575. GGML_ASSERT(nb10 == sizeof(float));
  5576. // dst cannot be transposed or permuted
  5577. GGML_ASSERT(nb0 == sizeof(float));
  5578. GGML_ASSERT(nb0 <= nb1);
  5579. GGML_ASSERT(nb1 <= nb2);
  5580. GGML_ASSERT(nb2 <= nb3);
  5581. GGML_ASSERT(ne0 == ne01);
  5582. GGML_ASSERT(ne1 == ne11);
  5583. GGML_ASSERT(ne2 == ne02);
  5584. GGML_ASSERT(ne3 == ne03);
  5585. // nb01 >= nb00 - src0 is not transposed
  5586. // compute by src0 rows
  5587. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5588. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5589. if (params->ith != 0) {
  5590. return;
  5591. }
  5592. if (params->type == GGML_TASK_INIT) {
  5593. return;
  5594. }
  5595. if (params->type == GGML_TASK_FINALIZE) {
  5596. return;
  5597. }
  5598. float * const wdata = params->wdata;
  5599. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5600. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5601. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5602. {
  5603. size_t id = 0;
  5604. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5605. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5606. id += ne00;
  5607. }
  5608. }
  5609. const float * x = wdata;
  5610. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5611. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5612. // zT = y * xT
  5613. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5614. ne11, ne01, ne10,
  5615. 1.0f, y, ne10,
  5616. x, ne00,
  5617. 0.0f, d, ne01);
  5618. }
  5619. }
  5620. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5621. return;
  5622. }
  5623. #endif
  5624. if (params->type == GGML_TASK_INIT) {
  5625. char * wdata = params->wdata;
  5626. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5627. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5628. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5629. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5630. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5631. wdata += row_size;
  5632. }
  5633. }
  5634. }
  5635. return;
  5636. }
  5637. if (params->type == GGML_TASK_FINALIZE) {
  5638. return;
  5639. }
  5640. // parallelize by src0 rows using ggml_vec_dot_q
  5641. // total rows in src0
  5642. const int nr = ne01*ne02*ne03;
  5643. // rows per thread
  5644. const int dr = (nr + nth - 1)/nth;
  5645. // row range for this thread
  5646. const int ir0 = dr*ith;
  5647. const int ir1 = MIN(ir0 + dr, nr);
  5648. void * wdata = params->wdata;
  5649. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5650. for (int ir = ir0; ir < ir1; ++ir) {
  5651. // src0 indices
  5652. const int i03 = ir/(ne02*ne01);
  5653. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5654. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5655. const int i13 = i03;
  5656. const int i12 = i02;
  5657. const int i0 = i01;
  5658. const int i2 = i02;
  5659. const int i3 = i03;
  5660. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5661. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5662. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5663. assert(ne00 % 32 == 0);
  5664. for (int64_t ic = 0; ic < ne11; ++ic) {
  5665. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5666. }
  5667. }
  5668. //int64_t t1 = ggml_time_us();
  5669. //static int64_t acc = 0;
  5670. //acc += t1 - t0;
  5671. //if (t1 - t0 > 10) {
  5672. // printf("\n");
  5673. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5674. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5675. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5676. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5677. //}
  5678. }
  5679. static void ggml_compute_forward_mul_mat(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. const struct ggml_tensor * src1,
  5683. struct ggml_tensor * dst) {
  5684. switch (src0->type) {
  5685. case GGML_TYPE_Q4_0:
  5686. case GGML_TYPE_Q4_1:
  5687. {
  5688. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5689. } break;
  5690. case GGML_TYPE_F16:
  5691. {
  5692. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5693. } break;
  5694. case GGML_TYPE_F32:
  5695. {
  5696. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5697. } break;
  5698. case GGML_TYPE_I8:
  5699. case GGML_TYPE_I16:
  5700. case GGML_TYPE_I32:
  5701. case GGML_TYPE_COUNT:
  5702. {
  5703. GGML_ASSERT(false);
  5704. } break;
  5705. }
  5706. #if 0
  5707. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5708. static int first = 8;
  5709. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5710. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5711. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5712. if (first) {
  5713. --first;
  5714. } else {
  5715. for (int k = 0; k < dst->ne[1]; ++k) {
  5716. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5717. for (int i = 0; i < 16; ++i) {
  5718. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5719. }
  5720. printf("\n");
  5721. }
  5722. printf("\n");
  5723. }
  5724. printf("\n");
  5725. exit(0);
  5726. }
  5727. } else {
  5728. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5729. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5730. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5731. }
  5732. #endif
  5733. }
  5734. // ggml_compute_forward_scale
  5735. static void ggml_compute_forward_scale_f32(
  5736. const struct ggml_compute_params * params,
  5737. const struct ggml_tensor * src0,
  5738. const struct ggml_tensor * src1,
  5739. struct ggml_tensor * dst) {
  5740. GGML_ASSERT(ggml_is_contiguous(src0));
  5741. GGML_ASSERT(ggml_is_contiguous(dst));
  5742. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5743. GGML_ASSERT(ggml_is_scalar(src1));
  5744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5745. return;
  5746. }
  5747. // scale factor
  5748. const float v = *(float *) src1->data;
  5749. const int ith = params->ith;
  5750. const int nth = params->nth;
  5751. const int nc = src0->ne[0];
  5752. const int nr = ggml_nrows(src0);
  5753. // rows per thread
  5754. const int dr = (nr + nth - 1)/nth;
  5755. // row range for this thread
  5756. const int ir0 = dr*ith;
  5757. const int ir1 = MIN(ir0 + dr, nr);
  5758. for (int i1 = ir0; i1 < ir1; i1++) {
  5759. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5760. }
  5761. }
  5762. static void ggml_compute_forward_scale(
  5763. const struct ggml_compute_params * params,
  5764. const struct ggml_tensor * src0,
  5765. const struct ggml_tensor * src1,
  5766. struct ggml_tensor * dst) {
  5767. switch (src0->type) {
  5768. case GGML_TYPE_F32:
  5769. {
  5770. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5771. } break;
  5772. case GGML_TYPE_Q4_0:
  5773. case GGML_TYPE_Q4_1:
  5774. case GGML_TYPE_I8:
  5775. case GGML_TYPE_I16:
  5776. case GGML_TYPE_I32:
  5777. case GGML_TYPE_F16:
  5778. case GGML_TYPE_COUNT:
  5779. {
  5780. GGML_ASSERT(false);
  5781. } break;
  5782. }
  5783. }
  5784. // ggml_compute_forward_cpy
  5785. static void ggml_compute_forward_cpy(
  5786. const struct ggml_compute_params * params,
  5787. const struct ggml_tensor * src0,
  5788. struct ggml_tensor * dst) {
  5789. ggml_compute_forward_dup(params, src0, dst);
  5790. }
  5791. // ggml_compute_forward_cont
  5792. static void ggml_compute_forward_cont(
  5793. const struct ggml_compute_params * params,
  5794. const struct ggml_tensor * src0,
  5795. struct ggml_tensor * dst) {
  5796. ggml_compute_forward_dup(params, src0, dst);
  5797. }
  5798. // ggml_compute_forward_reshape
  5799. static void ggml_compute_forward_reshape(
  5800. const struct ggml_compute_params * params,
  5801. const struct ggml_tensor * src0,
  5802. struct ggml_tensor * dst) {
  5803. // NOP
  5804. UNUSED(params);
  5805. UNUSED(src0);
  5806. UNUSED(dst);
  5807. }
  5808. // ggml_compute_forward_view
  5809. static void ggml_compute_forward_view(
  5810. const struct ggml_compute_params * params,
  5811. const struct ggml_tensor * src0) {
  5812. // NOP
  5813. UNUSED(params);
  5814. UNUSED(src0);
  5815. }
  5816. // ggml_compute_forward_permute
  5817. static void ggml_compute_forward_permute(
  5818. const struct ggml_compute_params * params,
  5819. const struct ggml_tensor * src0) {
  5820. // NOP
  5821. UNUSED(params);
  5822. UNUSED(src0);
  5823. }
  5824. // ggml_compute_forward_transpose
  5825. static void ggml_compute_forward_transpose(
  5826. const struct ggml_compute_params * params,
  5827. const struct ggml_tensor * src0) {
  5828. // NOP
  5829. UNUSED(params);
  5830. UNUSED(src0);
  5831. }
  5832. // ggml_compute_forward_get_rows
  5833. static void ggml_compute_forward_get_rows_q(
  5834. const struct ggml_compute_params * params,
  5835. const struct ggml_tensor * src0,
  5836. const struct ggml_tensor * src1,
  5837. struct ggml_tensor * dst) {
  5838. assert(params->ith == 0);
  5839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5840. return;
  5841. }
  5842. const int nc = src0->ne[0];
  5843. const int nr = ggml_nelements(src1);
  5844. const enum ggml_type type = src0->type;
  5845. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5846. assert( dst->ne[0] == nc);
  5847. assert( dst->ne[1] == nr);
  5848. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5849. for (int i = 0; i < nr; ++i) {
  5850. const int r = ((int32_t *) src1->data)[i];
  5851. dequantize_row_q(
  5852. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5853. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5854. }
  5855. }
  5856. static void ggml_compute_forward_get_rows_f16(
  5857. const struct ggml_compute_params * params,
  5858. const struct ggml_tensor * src0,
  5859. const struct ggml_tensor * src1,
  5860. struct ggml_tensor * dst) {
  5861. assert(params->ith == 0);
  5862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5863. return;
  5864. }
  5865. const int nc = src0->ne[0];
  5866. const int nr = ggml_nelements(src1);
  5867. assert( dst->ne[0] == nc);
  5868. assert( dst->ne[1] == nr);
  5869. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5870. for (int i = 0; i < nr; ++i) {
  5871. const int r = ((int32_t *) src1->data)[i];
  5872. for (int j = 0; j < nc; ++j) {
  5873. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5874. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5875. }
  5876. }
  5877. }
  5878. static void ggml_compute_forward_get_rows_f32(
  5879. const struct ggml_compute_params * params,
  5880. const struct ggml_tensor * src0,
  5881. const struct ggml_tensor * src1,
  5882. struct ggml_tensor * dst) {
  5883. assert(params->ith == 0);
  5884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5885. return;
  5886. }
  5887. const int nc = src0->ne[0];
  5888. const int nr = ggml_nelements(src1);
  5889. assert( dst->ne[0] == nc);
  5890. assert( dst->ne[1] == nr);
  5891. assert(src0->nb[0] == sizeof(float));
  5892. for (int i = 0; i < nr; ++i) {
  5893. const int r = ((int32_t *) src1->data)[i];
  5894. ggml_vec_cpy_f32(nc,
  5895. (float *) ((char *) dst->data + i*dst->nb[1]),
  5896. (float *) ((char *) src0->data + r*src0->nb[1]));
  5897. }
  5898. }
  5899. static void ggml_compute_forward_get_rows(
  5900. const struct ggml_compute_params * params,
  5901. const struct ggml_tensor * src0,
  5902. const struct ggml_tensor * src1,
  5903. struct ggml_tensor * dst) {
  5904. switch (src0->type) {
  5905. case GGML_TYPE_Q4_0:
  5906. case GGML_TYPE_Q4_1:
  5907. {
  5908. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5909. } break;
  5910. case GGML_TYPE_F16:
  5911. {
  5912. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5913. } break;
  5914. case GGML_TYPE_F32:
  5915. {
  5916. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5917. } break;
  5918. case GGML_TYPE_I8:
  5919. case GGML_TYPE_I16:
  5920. case GGML_TYPE_I32:
  5921. case GGML_TYPE_COUNT:
  5922. {
  5923. GGML_ASSERT(false);
  5924. } break;
  5925. }
  5926. //static bool first = true;
  5927. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5928. //if (first) {
  5929. // first = false;
  5930. //} else {
  5931. // for (int k = 0; k < dst->ne[1]; ++k) {
  5932. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5933. // for (int i = 0; i < 16; ++i) {
  5934. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5935. // }
  5936. // printf("\n");
  5937. // }
  5938. // printf("\n");
  5939. // }
  5940. // printf("\n");
  5941. // exit(0);
  5942. //}
  5943. }
  5944. // ggml_compute_forward_diag_mask_inf
  5945. static void ggml_compute_forward_diag_mask_inf_f32(
  5946. const struct ggml_compute_params * params,
  5947. const struct ggml_tensor * src0,
  5948. const struct ggml_tensor * src1,
  5949. struct ggml_tensor * dst) {
  5950. assert(params->ith == 0);
  5951. assert(src1->type == GGML_TYPE_I32);
  5952. assert(ggml_nelements(src1) == 1);
  5953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5954. return;
  5955. }
  5956. const int n_past = ((int32_t *) src1->data)[0];
  5957. // TODO: handle transposed/permuted matrices
  5958. const int n = ggml_nrows(src0);
  5959. const int nc = src0->ne[0];
  5960. const int nr = src0->ne[1];
  5961. const int nz = n/nr;
  5962. assert( dst->nb[0] == sizeof(float));
  5963. assert(src0->nb[0] == sizeof(float));
  5964. for (int k = 0; k < nz; k++) {
  5965. for (int j = 0; j < nr; j++) {
  5966. for (int i = n_past; i < nc; i++) {
  5967. if (i > n_past + j) {
  5968. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5969. }
  5970. }
  5971. }
  5972. }
  5973. }
  5974. static void ggml_compute_forward_diag_mask_inf(
  5975. const struct ggml_compute_params * params,
  5976. const struct ggml_tensor * src0,
  5977. const struct ggml_tensor * src1,
  5978. struct ggml_tensor * dst) {
  5979. switch (src0->type) {
  5980. case GGML_TYPE_F32:
  5981. {
  5982. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5983. } break;
  5984. case GGML_TYPE_Q4_0:
  5985. case GGML_TYPE_Q4_1:
  5986. case GGML_TYPE_I8:
  5987. case GGML_TYPE_I16:
  5988. case GGML_TYPE_I32:
  5989. case GGML_TYPE_F16:
  5990. case GGML_TYPE_COUNT:
  5991. {
  5992. GGML_ASSERT(false);
  5993. } break;
  5994. }
  5995. }
  5996. // ggml_compute_forward_soft_max
  5997. static void ggml_compute_forward_soft_max_f32(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. struct ggml_tensor * dst) {
  6001. GGML_ASSERT(ggml_is_contiguous(src0));
  6002. GGML_ASSERT(ggml_is_contiguous(dst));
  6003. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6005. return;
  6006. }
  6007. // TODO: handle transposed/permuted matrices
  6008. const int ith = params->ith;
  6009. const int nth = params->nth;
  6010. const int nc = src0->ne[0];
  6011. const int nr = ggml_nrows(src0);
  6012. // rows per thread
  6013. const int dr = (nr + nth - 1)/nth;
  6014. // row range for this thread
  6015. const int ir0 = dr*ith;
  6016. const int ir1 = MIN(ir0 + dr, nr);
  6017. for (int i1 = ir0; i1 < ir1; i1++) {
  6018. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6019. #ifndef NDEBUG
  6020. for (int i = 0; i < nc; ++i) {
  6021. //printf("p[%d] = %f\n", i, p[i]);
  6022. assert(!isnan(p[i]));
  6023. }
  6024. #endif
  6025. float max = -INFINITY;
  6026. ggml_vec_max_f32(nc, &max, p);
  6027. ggml_float sum = 0.0;
  6028. uint16_t scvt;
  6029. for (int i = 0; i < nc; i++) {
  6030. if (p[i] == -INFINITY) {
  6031. p[i] = 0.0f;
  6032. } else {
  6033. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6034. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6035. memcpy(&scvt, &s, sizeof(scvt));
  6036. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6037. sum += (ggml_float)val;
  6038. p[i] = val;
  6039. }
  6040. }
  6041. assert(sum > 0.0);
  6042. sum = 1.0/sum;
  6043. ggml_vec_scale_f32(nc, p, sum);
  6044. #ifndef NDEBUG
  6045. for (int i = 0; i < nc; ++i) {
  6046. assert(!isnan(p[i]));
  6047. assert(!isinf(p[i]));
  6048. }
  6049. #endif
  6050. }
  6051. }
  6052. static void ggml_compute_forward_soft_max(
  6053. const struct ggml_compute_params * params,
  6054. const struct ggml_tensor * src0,
  6055. struct ggml_tensor * dst) {
  6056. switch (src0->type) {
  6057. case GGML_TYPE_F32:
  6058. {
  6059. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6060. } break;
  6061. case GGML_TYPE_Q4_0:
  6062. case GGML_TYPE_Q4_1:
  6063. case GGML_TYPE_I8:
  6064. case GGML_TYPE_I16:
  6065. case GGML_TYPE_I32:
  6066. case GGML_TYPE_F16:
  6067. case GGML_TYPE_COUNT:
  6068. {
  6069. GGML_ASSERT(false);
  6070. } break;
  6071. }
  6072. }
  6073. // ggml_compute_forward_rope
  6074. static void ggml_compute_forward_rope_f32(
  6075. const struct ggml_compute_params * params,
  6076. const struct ggml_tensor * src0,
  6077. const struct ggml_tensor * src1,
  6078. struct ggml_tensor * dst) {
  6079. assert(src1->type == GGML_TYPE_I32);
  6080. assert(ggml_nelements(src1) == 3);
  6081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6082. return;
  6083. }
  6084. const int n_past = ((int32_t *) src1->data)[0];
  6085. const int n_dims = ((int32_t *) src1->data)[1];
  6086. const int mode = ((int32_t *) src1->data)[2];
  6087. //const int64_t ne0 = src0->ne[0];
  6088. const int64_t ne1 = src0->ne[1];
  6089. const int64_t ne2 = src0->ne[2];
  6090. const int64_t ne3 = src0->ne[3];
  6091. const int nb0 = src0->nb[0];
  6092. const int nb1 = src0->nb[1];
  6093. const int nb2 = src0->nb[2];
  6094. const int nb3 = src0->nb[3];
  6095. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6096. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6097. assert(nb0 == sizeof(float));
  6098. const int ith = params->ith;
  6099. const int nth = params->nth;
  6100. const int nr = ggml_nrows(src0);
  6101. // rows per thread
  6102. const int dr = (nr + nth - 1)/nth;
  6103. // row range for this thread
  6104. const int ir0 = dr*ith;
  6105. const int ir1 = MIN(ir0 + dr, nr);
  6106. // row index used to determine which thread to use
  6107. int ir = 0;
  6108. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6109. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6110. const int p = (mode == 0 ? n_past + i2 : i2);
  6111. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6112. if (ir++ < ir0) continue;
  6113. if (ir > ir1) break;
  6114. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6115. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6116. const float cos_theta = cosf(p*theta);
  6117. const float sin_theta = sinf(p*theta);
  6118. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6119. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6120. const float x0 = src[0];
  6121. const float x1 = src[1];
  6122. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6123. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6124. }
  6125. }
  6126. }
  6127. }
  6128. }
  6129. static void ggml_compute_forward_rope_f16(
  6130. const struct ggml_compute_params * params,
  6131. const struct ggml_tensor * src0,
  6132. const struct ggml_tensor * src1,
  6133. struct ggml_tensor * dst) {
  6134. assert(src1->type == GGML_TYPE_I32);
  6135. assert(ggml_nelements(src1) == 3);
  6136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6137. return;
  6138. }
  6139. const int n_past = ((int32_t *) src1->data)[0];
  6140. const int n_dims = ((int32_t *) src1->data)[1];
  6141. const int mode = ((int32_t *) src1->data)[2];
  6142. //const int64_t ne0 = src0->ne[0];
  6143. const int64_t ne1 = src0->ne[1];
  6144. const int64_t ne2 = src0->ne[2];
  6145. const int64_t ne3 = src0->ne[3];
  6146. const int nb0 = src0->nb[0];
  6147. const int nb1 = src0->nb[1];
  6148. const int nb2 = src0->nb[2];
  6149. const int nb3 = src0->nb[3];
  6150. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6151. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6152. assert(nb0 == sizeof(ggml_fp16_t));
  6153. const int ith = params->ith;
  6154. const int nth = params->nth;
  6155. const int nr = ggml_nrows(src0);
  6156. // rows per thread
  6157. const int dr = (nr + nth - 1)/nth;
  6158. // row range for this thread
  6159. const int ir0 = dr*ith;
  6160. const int ir1 = MIN(ir0 + dr, nr);
  6161. // row index used to determine which thread to use
  6162. int ir = 0;
  6163. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6164. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6165. const int p = (mode == 0 ? n_past + i2 : i2);
  6166. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6167. if (ir++ < ir0) continue;
  6168. if (ir > ir1) break;
  6169. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6170. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6171. const float cos_theta = cosf(p*theta);
  6172. const float sin_theta = sinf(p*theta);
  6173. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6174. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6175. const float x0 = ggml_fp16_to_fp32(src[0]);
  6176. const float x1 = ggml_fp16_to_fp32(src[1]);
  6177. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6178. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6179. }
  6180. }
  6181. }
  6182. }
  6183. }
  6184. static void ggml_compute_forward_rope(
  6185. const struct ggml_compute_params * params,
  6186. const struct ggml_tensor * src0,
  6187. const struct ggml_tensor * src1,
  6188. struct ggml_tensor * dst) {
  6189. switch (src0->type) {
  6190. case GGML_TYPE_F16:
  6191. {
  6192. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6193. } break;
  6194. case GGML_TYPE_F32:
  6195. {
  6196. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6197. } break;
  6198. case GGML_TYPE_Q4_0:
  6199. case GGML_TYPE_Q4_1:
  6200. case GGML_TYPE_I8:
  6201. case GGML_TYPE_I16:
  6202. case GGML_TYPE_I32:
  6203. case GGML_TYPE_COUNT:
  6204. {
  6205. GGML_ASSERT(false);
  6206. } break;
  6207. }
  6208. }
  6209. // ggml_compute_forward_conv_1d_1s
  6210. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6211. const struct ggml_compute_params * params,
  6212. const struct ggml_tensor * src0,
  6213. const struct ggml_tensor * src1,
  6214. struct ggml_tensor * dst) {
  6215. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6216. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6217. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6218. int64_t t0 = ggml_perf_time_us();
  6219. UNUSED(t0);
  6220. const int64_t ne00 = src0->ne[0];
  6221. const int64_t ne01 = src0->ne[1];
  6222. const int64_t ne02 = src0->ne[2];
  6223. //const int64_t ne03 = src0->ne[3];
  6224. const int64_t ne10 = src1->ne[0];
  6225. const int64_t ne11 = src1->ne[1];
  6226. //const int64_t ne12 = src1->ne[2];
  6227. //const int64_t ne13 = src1->ne[3];
  6228. //const int64_t ne0 = dst->ne[0];
  6229. //const int64_t ne1 = dst->ne[1];
  6230. //const int64_t ne2 = dst->ne[2];
  6231. //const int64_t ne3 = dst->ne[3];
  6232. //const int64_t ne = ne0*ne1*ne2*ne3;
  6233. const int nb00 = src0->nb[0];
  6234. const int nb01 = src0->nb[1];
  6235. const int nb02 = src0->nb[2];
  6236. //const int nb03 = src0->nb[3];
  6237. const int nb10 = src1->nb[0];
  6238. const int nb11 = src1->nb[1];
  6239. //const int nb12 = src1->nb[2];
  6240. //const int nb13 = src1->nb[3];
  6241. //const int nb0 = dst->nb[0];
  6242. const int nb1 = dst->nb[1];
  6243. //const int nb2 = dst->nb[2];
  6244. //const int nb3 = dst->nb[3];
  6245. const int ith = params->ith;
  6246. const int nth = params->nth;
  6247. const int nk = ne00;
  6248. const int nh = nk/2;
  6249. const int ew0 = ggml_up32(ne01);
  6250. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6251. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6252. GGML_ASSERT(nb10 == sizeof(float));
  6253. if (params->type == GGML_TASK_INIT) {
  6254. // TODO: fix this memset (wsize is overestimated)
  6255. memset(params->wdata, 0, params->wsize);
  6256. // prepare kernel data (src0)
  6257. {
  6258. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6259. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6260. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6261. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6262. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6263. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6264. dst_data[i00*ew0 + i01] = src[i00];
  6265. }
  6266. }
  6267. }
  6268. }
  6269. // prepare source data (src1)
  6270. {
  6271. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6272. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6273. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6274. ggml_fp16_t * dst_data = wdata;
  6275. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6276. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6277. }
  6278. }
  6279. }
  6280. return;
  6281. }
  6282. if (params->type == GGML_TASK_FINALIZE) {
  6283. return;
  6284. }
  6285. // total rows in dst
  6286. const int nr = ne02;
  6287. // rows per thread
  6288. const int dr = (nr + nth - 1)/nth;
  6289. // row range for this thread
  6290. const int ir0 = dr*ith;
  6291. const int ir1 = MIN(ir0 + dr, nr);
  6292. for (int i1 = ir0; i1 < ir1; i1++) {
  6293. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6294. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6295. dst_data[i0] = 0;
  6296. for (int k = -nh; k <= nh; k++) {
  6297. float v = 0.0f;
  6298. ggml_vec_dot_f16(ew0, &v,
  6299. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6300. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6301. dst_data[i0] += v;
  6302. }
  6303. }
  6304. }
  6305. }
  6306. static void ggml_compute_forward_conv_1d_1s_f32(
  6307. const struct ggml_compute_params * params,
  6308. const struct ggml_tensor * src0,
  6309. const struct ggml_tensor * src1,
  6310. struct ggml_tensor * dst) {
  6311. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6312. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6313. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6314. int64_t t0 = ggml_perf_time_us();
  6315. UNUSED(t0);
  6316. const int64_t ne00 = src0->ne[0];
  6317. const int64_t ne01 = src0->ne[1];
  6318. const int64_t ne02 = src0->ne[2];
  6319. //const int64_t ne03 = src0->ne[3];
  6320. const int64_t ne10 = src1->ne[0];
  6321. const int64_t ne11 = src1->ne[1];
  6322. //const int64_t ne12 = src1->ne[2];
  6323. //const int64_t ne13 = src1->ne[3];
  6324. //const int64_t ne0 = dst->ne[0];
  6325. //const int64_t ne1 = dst->ne[1];
  6326. //const int64_t ne2 = dst->ne[2];
  6327. //const int64_t ne3 = dst->ne[3];
  6328. //const int64_t ne = ne0*ne1*ne2*ne3;
  6329. const int nb00 = src0->nb[0];
  6330. const int nb01 = src0->nb[1];
  6331. const int nb02 = src0->nb[2];
  6332. //const int nb03 = src0->nb[3];
  6333. const int nb10 = src1->nb[0];
  6334. const int nb11 = src1->nb[1];
  6335. //const int nb12 = src1->nb[2];
  6336. //const int nb13 = src1->nb[3];
  6337. //const int nb0 = dst->nb[0];
  6338. const int nb1 = dst->nb[1];
  6339. //const int nb2 = dst->nb[2];
  6340. //const int nb3 = dst->nb[3];
  6341. const int ith = params->ith;
  6342. const int nth = params->nth;
  6343. const int nk = ne00;
  6344. const int nh = nk/2;
  6345. const int ew0 = ggml_up32(ne01);
  6346. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6347. GGML_ASSERT(nb00 == sizeof(float));
  6348. GGML_ASSERT(nb10 == sizeof(float));
  6349. if (params->type == GGML_TASK_INIT) {
  6350. // TODO: fix this memset (wsize is overestimated)
  6351. memset(params->wdata, 0, params->wsize);
  6352. // prepare kernel data (src0)
  6353. {
  6354. float * const wdata = (float *) params->wdata + 0;
  6355. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6356. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6357. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6358. float * dst_data = wdata + i02*ew0*ne00;
  6359. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6360. dst_data[i00*ew0 + i01] = src[i00];
  6361. }
  6362. }
  6363. }
  6364. }
  6365. // prepare source data (src1)
  6366. {
  6367. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6368. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6369. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6370. float * dst_data = wdata;
  6371. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6372. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6373. }
  6374. }
  6375. }
  6376. return;
  6377. }
  6378. if (params->type == GGML_TASK_FINALIZE) {
  6379. return;
  6380. }
  6381. // total rows in dst
  6382. const int nr = ne02;
  6383. // rows per thread
  6384. const int dr = (nr + nth - 1)/nth;
  6385. // row range for this thread
  6386. const int ir0 = dr*ith;
  6387. const int ir1 = MIN(ir0 + dr, nr);
  6388. for (int i1 = ir0; i1 < ir1; i1++) {
  6389. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6390. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6391. dst_data[i0] = 0;
  6392. for (int k = -nh; k <= nh; k++) {
  6393. float v = 0.0f;
  6394. ggml_vec_dot_f32(ew0, &v,
  6395. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6396. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6397. dst_data[i0] += v;
  6398. }
  6399. }
  6400. }
  6401. }
  6402. static void ggml_compute_forward_conv_1d_1s(
  6403. const struct ggml_compute_params * params,
  6404. const struct ggml_tensor * src0,
  6405. const struct ggml_tensor * src1,
  6406. struct ggml_tensor * dst) {
  6407. switch (src0->type) {
  6408. case GGML_TYPE_F16:
  6409. {
  6410. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6411. } break;
  6412. case GGML_TYPE_F32:
  6413. {
  6414. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6415. } break;
  6416. case GGML_TYPE_Q4_0:
  6417. case GGML_TYPE_Q4_1:
  6418. case GGML_TYPE_I8:
  6419. case GGML_TYPE_I16:
  6420. case GGML_TYPE_I32:
  6421. case GGML_TYPE_COUNT:
  6422. {
  6423. GGML_ASSERT(false);
  6424. } break;
  6425. }
  6426. }
  6427. // ggml_compute_forward_conv_1d_2s
  6428. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6429. const struct ggml_compute_params * params,
  6430. const struct ggml_tensor * src0,
  6431. const struct ggml_tensor * src1,
  6432. struct ggml_tensor * dst) {
  6433. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6434. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6435. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6436. int64_t t0 = ggml_perf_time_us();
  6437. UNUSED(t0);
  6438. const int64_t ne00 = src0->ne[0];
  6439. const int64_t ne01 = src0->ne[1];
  6440. const int64_t ne02 = src0->ne[2];
  6441. //const int64_t ne03 = src0->ne[3];
  6442. const int64_t ne10 = src1->ne[0];
  6443. const int64_t ne11 = src1->ne[1];
  6444. //const int64_t ne12 = src1->ne[2];
  6445. //const int64_t ne13 = src1->ne[3];
  6446. //const int64_t ne0 = dst->ne[0];
  6447. //const int64_t ne1 = dst->ne[1];
  6448. //const int64_t ne2 = dst->ne[2];
  6449. //const int64_t ne3 = dst->ne[3];
  6450. //const int64_t ne = ne0*ne1*ne2*ne3;
  6451. const int nb00 = src0->nb[0];
  6452. const int nb01 = src0->nb[1];
  6453. const int nb02 = src0->nb[2];
  6454. //const int nb03 = src0->nb[3];
  6455. const int nb10 = src1->nb[0];
  6456. const int nb11 = src1->nb[1];
  6457. //const int nb12 = src1->nb[2];
  6458. //const int nb13 = src1->nb[3];
  6459. //const int nb0 = dst->nb[0];
  6460. const int nb1 = dst->nb[1];
  6461. //const int nb2 = dst->nb[2];
  6462. //const int nb3 = dst->nb[3];
  6463. const int ith = params->ith;
  6464. const int nth = params->nth;
  6465. const int nk = ne00;
  6466. const int nh = nk/2;
  6467. const int ew0 = ggml_up32(ne01);
  6468. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6469. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6470. GGML_ASSERT(nb10 == sizeof(float));
  6471. if (params->type == GGML_TASK_INIT) {
  6472. // TODO: fix this memset (wsize is overestimated)
  6473. memset(params->wdata, 0, params->wsize);
  6474. // prepare kernel data (src0)
  6475. {
  6476. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6477. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6478. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6479. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6480. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6481. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6482. dst_data[i00*ew0 + i01] = src[i00];
  6483. }
  6484. }
  6485. }
  6486. }
  6487. // prepare source data (src1)
  6488. {
  6489. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6490. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6491. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6492. ggml_fp16_t * dst_data = wdata;
  6493. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6494. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6495. }
  6496. }
  6497. }
  6498. return;
  6499. }
  6500. if (params->type == GGML_TASK_FINALIZE) {
  6501. return;
  6502. }
  6503. // total rows in dst
  6504. const int nr = ne02;
  6505. // rows per thread
  6506. const int dr = (nr + nth - 1)/nth;
  6507. // row range for this thread
  6508. const int ir0 = dr*ith;
  6509. const int ir1 = MIN(ir0 + dr, nr);
  6510. for (int i1 = ir0; i1 < ir1; i1++) {
  6511. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6512. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6513. dst_data[i0/2] = 0;
  6514. for (int k = -nh; k <= nh; k++) {
  6515. float v = 0.0f;
  6516. ggml_vec_dot_f16(ew0, &v,
  6517. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6518. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6519. dst_data[i0/2] += v;
  6520. }
  6521. }
  6522. }
  6523. }
  6524. static void ggml_compute_forward_conv_1d_2s_f32(
  6525. const struct ggml_compute_params * params,
  6526. const struct ggml_tensor * src0,
  6527. const struct ggml_tensor * src1,
  6528. struct ggml_tensor * dst) {
  6529. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6530. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6531. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6532. int64_t t0 = ggml_perf_time_us();
  6533. UNUSED(t0);
  6534. const int64_t ne00 = src0->ne[0];
  6535. const int64_t ne01 = src0->ne[1];
  6536. const int64_t ne02 = src0->ne[2];
  6537. //const int64_t ne03 = src0->ne[3];
  6538. const int64_t ne10 = src1->ne[0];
  6539. const int64_t ne11 = src1->ne[1];
  6540. //const int64_t ne12 = src1->ne[2];
  6541. //const int64_t ne13 = src1->ne[3];
  6542. //const int64_t ne0 = dst->ne[0];
  6543. //const int64_t ne1 = dst->ne[1];
  6544. //const int64_t ne2 = dst->ne[2];
  6545. //const int64_t ne3 = dst->ne[3];
  6546. //const int64_t ne = ne0*ne1*ne2*ne3;
  6547. const int nb00 = src0->nb[0];
  6548. const int nb01 = src0->nb[1];
  6549. const int nb02 = src0->nb[2];
  6550. //const int nb03 = src0->nb[3];
  6551. const int nb10 = src1->nb[0];
  6552. const int nb11 = src1->nb[1];
  6553. //const int nb12 = src1->nb[2];
  6554. //const int nb13 = src1->nb[3];
  6555. //const int nb0 = dst->nb[0];
  6556. const int nb1 = dst->nb[1];
  6557. //const int nb2 = dst->nb[2];
  6558. //const int nb3 = dst->nb[3];
  6559. const int ith = params->ith;
  6560. const int nth = params->nth;
  6561. const int nk = ne00;
  6562. const int nh = nk/2;
  6563. const int ew0 = ggml_up32(ne01);
  6564. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6565. GGML_ASSERT(nb00 == sizeof(float));
  6566. GGML_ASSERT(nb10 == sizeof(float));
  6567. if (params->type == GGML_TASK_INIT) {
  6568. // TODO: fix this memset (wsize is overestimated)
  6569. memset(params->wdata, 0, params->wsize);
  6570. // prepare kernel data (src0)
  6571. {
  6572. float * const wdata = (float *) params->wdata + 0;
  6573. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6574. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6575. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6576. float * dst_data = wdata + i02*ew0*ne00;
  6577. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6578. dst_data[i00*ew0 + i01] = src[i00];
  6579. }
  6580. }
  6581. }
  6582. }
  6583. // prepare source data (src1)
  6584. {
  6585. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6586. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6587. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6588. float * dst_data = wdata;
  6589. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6590. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6591. }
  6592. }
  6593. }
  6594. return;
  6595. }
  6596. if (params->type == GGML_TASK_FINALIZE) {
  6597. return;
  6598. }
  6599. // total rows in dst
  6600. const int nr = ne02;
  6601. // rows per thread
  6602. const int dr = (nr + nth - 1)/nth;
  6603. // row range for this thread
  6604. const int ir0 = dr*ith;
  6605. const int ir1 = MIN(ir0 + dr, nr);
  6606. for (int i1 = ir0; i1 < ir1; i1++) {
  6607. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6608. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6609. dst_data[i0/2] = 0;
  6610. for (int k = -nh; k <= nh; k++) {
  6611. float v = 0.0f;
  6612. ggml_vec_dot_f32(ew0, &v,
  6613. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6614. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6615. dst_data[i0/2] += v;
  6616. }
  6617. }
  6618. }
  6619. }
  6620. static void ggml_compute_forward_conv_1d_2s(
  6621. const struct ggml_compute_params * params,
  6622. const struct ggml_tensor * src0,
  6623. const struct ggml_tensor * src1,
  6624. struct ggml_tensor * dst) {
  6625. switch (src0->type) {
  6626. case GGML_TYPE_F16:
  6627. {
  6628. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6629. } break;
  6630. case GGML_TYPE_F32:
  6631. {
  6632. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6633. } break;
  6634. case GGML_TYPE_Q4_0:
  6635. case GGML_TYPE_Q4_1:
  6636. case GGML_TYPE_I8:
  6637. case GGML_TYPE_I16:
  6638. case GGML_TYPE_I32:
  6639. case GGML_TYPE_COUNT:
  6640. {
  6641. GGML_ASSERT(false);
  6642. } break;
  6643. }
  6644. }
  6645. // ggml_compute_forward_flash_attn
  6646. static void ggml_compute_forward_flash_attn_f32(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * q,
  6649. const struct ggml_tensor * k,
  6650. const struct ggml_tensor * v,
  6651. const bool masked,
  6652. struct ggml_tensor * dst) {
  6653. int64_t t0 = ggml_perf_time_us();
  6654. UNUSED(t0);
  6655. const int64_t neq0 = q->ne[0];
  6656. const int64_t neq1 = q->ne[1];
  6657. const int64_t neq2 = q->ne[2];
  6658. const int64_t neq3 = q->ne[3];
  6659. const int64_t nek0 = k->ne[0];
  6660. const int64_t nek1 = k->ne[1];
  6661. //const int64_t nek2 = k->ne[2];
  6662. //const int64_t nek3 = k->ne[3];
  6663. //const int64_t nev0 = v->ne[0];
  6664. const int64_t nev1 = v->ne[1];
  6665. //const int64_t nev2 = v->ne[2];
  6666. //const int64_t nev3 = v->ne[3];
  6667. const int64_t ne0 = dst->ne[0];
  6668. const int64_t ne1 = dst->ne[1];
  6669. //const int64_t ne2 = dst->ne[2];
  6670. //const int64_t ne3 = dst->ne[3];
  6671. const int nbk0 = k->nb[0];
  6672. const int nbk1 = k->nb[1];
  6673. const int nbk2 = k->nb[2];
  6674. const int nbk3 = k->nb[3];
  6675. const int nbq0 = q->nb[0];
  6676. const int nbq1 = q->nb[1];
  6677. const int nbq2 = q->nb[2];
  6678. const int nbq3 = q->nb[3];
  6679. const int nbv0 = v->nb[0];
  6680. const int nbv1 = v->nb[1];
  6681. const int nbv2 = v->nb[2];
  6682. const int nbv3 = v->nb[3];
  6683. const int nb0 = dst->nb[0];
  6684. const int nb1 = dst->nb[1];
  6685. const int nb2 = dst->nb[2];
  6686. const int nb3 = dst->nb[3];
  6687. const int ith = params->ith;
  6688. const int nth = params->nth;
  6689. const int64_t D = neq0;
  6690. const int64_t N = neq1;
  6691. const int64_t P = nek1 - N;
  6692. const int64_t M = P + N;
  6693. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6694. GGML_ASSERT(ne0 == D);
  6695. GGML_ASSERT(ne1 == N);
  6696. GGML_ASSERT(P >= 0);
  6697. GGML_ASSERT(nbq0 == sizeof(float));
  6698. GGML_ASSERT(nbk0 == sizeof(float));
  6699. GGML_ASSERT(nbv0 == sizeof(float));
  6700. GGML_ASSERT(neq0 == D);
  6701. GGML_ASSERT(nek0 == D);
  6702. GGML_ASSERT(nev1 == D);
  6703. GGML_ASSERT(neq1 == N);
  6704. GGML_ASSERT(nek1 == N + P);
  6705. GGML_ASSERT(nev1 == D);
  6706. // dst cannot be transposed or permuted
  6707. GGML_ASSERT(nb0 == sizeof(float));
  6708. GGML_ASSERT(nb0 <= nb1);
  6709. GGML_ASSERT(nb1 <= nb2);
  6710. GGML_ASSERT(nb2 <= nb3);
  6711. if (params->type == GGML_TASK_INIT) {
  6712. return;
  6713. }
  6714. if (params->type == GGML_TASK_FINALIZE) {
  6715. return;
  6716. }
  6717. // parallelize by q rows using ggml_vec_dot_f32
  6718. // total rows in q
  6719. const int nr = neq1*neq2*neq3;
  6720. // rows per thread
  6721. const int dr = (nr + nth - 1)/nth;
  6722. // row range for this thread
  6723. const int ir0 = dr*ith;
  6724. const int ir1 = MIN(ir0 + dr, nr);
  6725. const float scale = 1.0f/sqrtf(D);
  6726. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6727. for (int ir = ir0; ir < ir1; ++ir) {
  6728. // q indices
  6729. const int iq3 = ir/(neq2*neq1);
  6730. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6731. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6732. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6733. for (int i = M; i < Mup; ++i) {
  6734. S[i] = -INFINITY;
  6735. }
  6736. for (int64_t ic = 0; ic < nek1; ++ic) {
  6737. // k indices
  6738. const int ik3 = iq3;
  6739. const int ik2 = iq2;
  6740. const int ik1 = ic;
  6741. // S indices
  6742. const int i1 = ik1;
  6743. ggml_vec_dot_f32(neq0,
  6744. S + i1,
  6745. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6746. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6747. }
  6748. // scale
  6749. ggml_vec_scale_f32(nek1, S, scale);
  6750. if (masked) {
  6751. for (int64_t i = P; i < M; i++) {
  6752. if (i > P + iq1) {
  6753. S[i] = -INFINITY;
  6754. }
  6755. }
  6756. }
  6757. // softmax
  6758. {
  6759. float max = -INFINITY;
  6760. ggml_vec_max_f32(M, &max, S);
  6761. ggml_float sum = 0.0;
  6762. {
  6763. #ifdef GGML_SOFT_MAX_ACCELERATE
  6764. max = -max;
  6765. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6766. vvexpf(S, S, &Mup);
  6767. ggml_vec_sum_f32(Mup, &sum, S);
  6768. #else
  6769. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6770. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6771. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6772. float * SS = S + i;
  6773. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6774. if (SS[j] == -INFINITY) {
  6775. SS[j] = 0.0f;
  6776. } else {
  6777. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6778. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6779. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6780. sump[j] += (ggml_float)val;
  6781. SS[j] = val;
  6782. }
  6783. }
  6784. }
  6785. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6786. sum += sump[i];
  6787. }
  6788. #endif
  6789. }
  6790. assert(sum > 0.0);
  6791. sum = 1.0/sum;
  6792. ggml_vec_scale_f32(M, S, sum);
  6793. #ifndef NDEBUG
  6794. for (int i = 0; i < M; ++i) {
  6795. assert(!isnan(S[i]));
  6796. assert(!isinf(S[i]));
  6797. }
  6798. #endif
  6799. }
  6800. for (int64_t ic = 0; ic < nev1; ++ic) {
  6801. // dst indices
  6802. const int i1 = iq1;
  6803. const int i2 = iq2;
  6804. const int i3 = iq3;
  6805. ggml_vec_dot_f32(nek1,
  6806. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6807. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6808. S);
  6809. }
  6810. }
  6811. }
  6812. static void ggml_compute_forward_flash_attn_f16(
  6813. const struct ggml_compute_params * params,
  6814. const struct ggml_tensor * q,
  6815. const struct ggml_tensor * k,
  6816. const struct ggml_tensor * v,
  6817. const bool masked,
  6818. struct ggml_tensor * dst) {
  6819. int64_t t0 = ggml_perf_time_us();
  6820. UNUSED(t0);
  6821. const int64_t neq0 = q->ne[0];
  6822. const int64_t neq1 = q->ne[1];
  6823. const int64_t neq2 = q->ne[2];
  6824. const int64_t neq3 = q->ne[3];
  6825. const int64_t nek0 = k->ne[0];
  6826. const int64_t nek1 = k->ne[1];
  6827. //const int64_t nek2 = k->ne[2];
  6828. //const int64_t nek3 = k->ne[3];
  6829. //const int64_t nev0 = v->ne[0];
  6830. const int64_t nev1 = v->ne[1];
  6831. //const int64_t nev2 = v->ne[2];
  6832. //const int64_t nev3 = v->ne[3];
  6833. const int64_t ne0 = dst->ne[0];
  6834. const int64_t ne1 = dst->ne[1];
  6835. //const int64_t ne2 = dst->ne[2];
  6836. //const int64_t ne3 = dst->ne[3];
  6837. const int nbk0 = k->nb[0];
  6838. const int nbk1 = k->nb[1];
  6839. const int nbk2 = k->nb[2];
  6840. const int nbk3 = k->nb[3];
  6841. const int nbq0 = q->nb[0];
  6842. const int nbq1 = q->nb[1];
  6843. const int nbq2 = q->nb[2];
  6844. const int nbq3 = q->nb[3];
  6845. const int nbv0 = v->nb[0];
  6846. const int nbv1 = v->nb[1];
  6847. const int nbv2 = v->nb[2];
  6848. const int nbv3 = v->nb[3];
  6849. const int nb0 = dst->nb[0];
  6850. const int nb1 = dst->nb[1];
  6851. const int nb2 = dst->nb[2];
  6852. const int nb3 = dst->nb[3];
  6853. const int ith = params->ith;
  6854. const int nth = params->nth;
  6855. const int64_t D = neq0;
  6856. const int64_t N = neq1;
  6857. const int64_t P = nek1 - N;
  6858. const int64_t M = P + N;
  6859. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6860. GGML_ASSERT(ne0 == D);
  6861. GGML_ASSERT(ne1 == N);
  6862. GGML_ASSERT(P >= 0);
  6863. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6864. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6865. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6866. GGML_ASSERT(neq0 == D);
  6867. GGML_ASSERT(nek0 == D);
  6868. GGML_ASSERT(nev1 == D);
  6869. GGML_ASSERT(neq1 == N);
  6870. GGML_ASSERT(nek1 == N + P);
  6871. GGML_ASSERT(nev1 == D);
  6872. // dst cannot be transposed or permuted
  6873. GGML_ASSERT(nb0 == sizeof(float));
  6874. GGML_ASSERT(nb0 <= nb1);
  6875. GGML_ASSERT(nb1 <= nb2);
  6876. GGML_ASSERT(nb2 <= nb3);
  6877. if (params->type == GGML_TASK_INIT) {
  6878. return;
  6879. }
  6880. if (params->type == GGML_TASK_FINALIZE) {
  6881. return;
  6882. }
  6883. // parallelize by q rows using ggml_vec_dot_f32
  6884. // total rows in q
  6885. const int nr = neq1*neq2*neq3;
  6886. // rows per thread
  6887. const int dr = (nr + nth - 1)/nth;
  6888. // row range for this thread
  6889. const int ir0 = dr*ith;
  6890. const int ir1 = MIN(ir0 + dr, nr);
  6891. const float scale = 1.0f/sqrtf(D);
  6892. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6893. for (int ir = ir0; ir < ir1; ++ir) {
  6894. // q indices
  6895. const int iq3 = ir/(neq2*neq1);
  6896. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6897. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6898. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6899. for (int i = M; i < Mup; ++i) {
  6900. S[i] = -INFINITY;
  6901. }
  6902. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6903. for (int64_t ic = 0; ic < nek1; ++ic) {
  6904. // k indices
  6905. const int ik3 = iq3;
  6906. const int ik2 = iq2;
  6907. const int ik1 = ic;
  6908. // S indices
  6909. const int i1 = ik1;
  6910. ggml_vec_dot_f16(neq0,
  6911. S + i1,
  6912. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6913. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6914. }
  6915. } else {
  6916. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6917. // k indices
  6918. const int ik3 = iq3;
  6919. const int ik2 = iq2;
  6920. const int ik1 = ic;
  6921. // S indices
  6922. const int i1 = ik1;
  6923. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6924. S + i1,
  6925. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6926. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6927. }
  6928. }
  6929. // scale
  6930. ggml_vec_scale_f32(nek1, S, scale);
  6931. if (masked) {
  6932. for (int64_t i = P; i < M; i++) {
  6933. if (i > P + iq1) {
  6934. S[i] = -INFINITY;
  6935. }
  6936. }
  6937. }
  6938. // softmax
  6939. {
  6940. float max = -INFINITY;
  6941. ggml_vec_max_f32(M, &max, S);
  6942. ggml_float sum = 0.0;
  6943. {
  6944. #ifdef GGML_SOFT_MAX_ACCELERATE
  6945. max = -max;
  6946. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6947. vvexpf(S, S, &Mup);
  6948. ggml_vec_sum_f32(Mup, &sum, S);
  6949. #else
  6950. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6951. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6952. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6953. float * SS = S + i;
  6954. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6955. if (SS[j] == -INFINITY) {
  6956. SS[j] = 0.0f;
  6957. } else {
  6958. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6959. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6960. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6961. sump[j] += (ggml_float)val;
  6962. SS[j] = val;
  6963. }
  6964. }
  6965. }
  6966. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6967. sum += sump[i];
  6968. }
  6969. #endif
  6970. }
  6971. assert(sum > 0.0);
  6972. sum = 1.0/sum;
  6973. ggml_vec_scale_f32(M, S, sum);
  6974. #ifndef NDEBUG
  6975. for (int i = 0; i < M; ++i) {
  6976. assert(!isnan(S[i]));
  6977. assert(!isinf(S[i]));
  6978. }
  6979. #endif
  6980. }
  6981. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6982. for (int64_t i = 0; i < M; i++) {
  6983. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6984. }
  6985. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6986. for (int64_t ic = 0; ic < nev1; ++ic) {
  6987. // dst indices
  6988. const int i1 = iq1;
  6989. const int i2 = iq2;
  6990. const int i3 = iq3;
  6991. ggml_vec_dot_f16(nek1,
  6992. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6993. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6994. S16);
  6995. }
  6996. } else {
  6997. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6998. // dst indices
  6999. const int i1 = iq1;
  7000. const int i2 = iq2;
  7001. const int i3 = iq3;
  7002. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7003. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7004. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7005. S16);
  7006. }
  7007. }
  7008. }
  7009. }
  7010. static void ggml_compute_forward_flash_attn(
  7011. const struct ggml_compute_params * params,
  7012. const struct ggml_tensor * q,
  7013. const struct ggml_tensor * k,
  7014. const struct ggml_tensor * v,
  7015. const bool masked,
  7016. struct ggml_tensor * dst) {
  7017. switch (q->type) {
  7018. case GGML_TYPE_F16:
  7019. {
  7020. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7021. } break;
  7022. case GGML_TYPE_F32:
  7023. {
  7024. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7025. } break;
  7026. case GGML_TYPE_Q4_0:
  7027. case GGML_TYPE_Q4_1:
  7028. case GGML_TYPE_I8:
  7029. case GGML_TYPE_I16:
  7030. case GGML_TYPE_I32:
  7031. case GGML_TYPE_COUNT:
  7032. {
  7033. GGML_ASSERT(false);
  7034. } break;
  7035. }
  7036. }
  7037. // ggml_compute_forward_flash_ff
  7038. static void ggml_compute_forward_flash_ff_f16(
  7039. const struct ggml_compute_params * params,
  7040. const struct ggml_tensor * a, // F16
  7041. const struct ggml_tensor * b0, // F16 fc_w
  7042. const struct ggml_tensor * b1, // F32 fc_b
  7043. const struct ggml_tensor * c0, // F16 proj_w
  7044. const struct ggml_tensor * c1, // F32 proj_b
  7045. struct ggml_tensor * dst) {
  7046. int64_t t0 = ggml_perf_time_us();
  7047. UNUSED(t0);
  7048. const int64_t nea0 = a->ne[0];
  7049. const int64_t nea1 = a->ne[1];
  7050. const int64_t nea2 = a->ne[2];
  7051. const int64_t nea3 = a->ne[3];
  7052. const int64_t neb00 = b0->ne[0];
  7053. const int64_t neb01 = b0->ne[1];
  7054. //const int64_t neb02 = b0->ne[2];
  7055. //const int64_t neb03 = b0->ne[3];
  7056. const int64_t neb10 = b1->ne[0];
  7057. const int64_t neb11 = b1->ne[1];
  7058. //const int64_t neb12 = b1->ne[2];
  7059. //const int64_t neb13 = b1->ne[3];
  7060. const int64_t nec00 = c0->ne[0];
  7061. const int64_t nec01 = c0->ne[1];
  7062. //const int64_t nec02 = c0->ne[2];
  7063. //const int64_t nec03 = c0->ne[3];
  7064. const int64_t nec10 = c1->ne[0];
  7065. const int64_t nec11 = c1->ne[1];
  7066. //const int64_t nec12 = c1->ne[2];
  7067. //const int64_t nec13 = c1->ne[3];
  7068. const int64_t ne0 = dst->ne[0];
  7069. const int64_t ne1 = dst->ne[1];
  7070. const int64_t ne2 = dst->ne[2];
  7071. //const int64_t ne3 = dst->ne[3];
  7072. const int nba0 = a->nb[0];
  7073. const int nba1 = a->nb[1];
  7074. const int nba2 = a->nb[2];
  7075. const int nba3 = a->nb[3];
  7076. const int nbb00 = b0->nb[0];
  7077. const int nbb01 = b0->nb[1];
  7078. const int nbb02 = b0->nb[2];
  7079. const int nbb03 = b0->nb[3];
  7080. const int nbb10 = b1->nb[0];
  7081. //const int nbb11 = b1->nb[1];
  7082. //const int nbb12 = b1->nb[2];
  7083. //const int nbb13 = b1->nb[3];
  7084. const int nbc00 = c0->nb[0];
  7085. const int nbc01 = c0->nb[1];
  7086. const int nbc02 = c0->nb[2];
  7087. const int nbc03 = c0->nb[3];
  7088. const int nbc10 = c1->nb[0];
  7089. //const int nbc11 = c1->nb[1];
  7090. //const int nbc12 = c1->nb[2];
  7091. //const int nbc13 = c1->nb[3];
  7092. const int nb0 = dst->nb[0];
  7093. const int nb1 = dst->nb[1];
  7094. const int nb2 = dst->nb[2];
  7095. const int nb3 = dst->nb[3];
  7096. const int ith = params->ith;
  7097. const int nth = params->nth;
  7098. const int64_t D = nea0;
  7099. //const int64_t N = nea1;
  7100. const int64_t M = neb01;
  7101. GGML_ASSERT(ne0 == nea0);
  7102. GGML_ASSERT(ne1 == nea1);
  7103. GGML_ASSERT(ne2 == nea2);
  7104. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7105. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7106. GGML_ASSERT(nbb10 == sizeof(float));
  7107. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7108. GGML_ASSERT(nbc10 == sizeof(float));
  7109. GGML_ASSERT(neb00 == D);
  7110. GGML_ASSERT(neb01 == M);
  7111. GGML_ASSERT(neb10 == M);
  7112. GGML_ASSERT(neb11 == 1);
  7113. GGML_ASSERT(nec00 == M);
  7114. GGML_ASSERT(nec01 == D);
  7115. GGML_ASSERT(nec10 == D);
  7116. GGML_ASSERT(nec11 == 1);
  7117. // dst cannot be transposed or permuted
  7118. GGML_ASSERT(nb0 == sizeof(float));
  7119. GGML_ASSERT(nb0 <= nb1);
  7120. GGML_ASSERT(nb1 <= nb2);
  7121. GGML_ASSERT(nb2 <= nb3);
  7122. if (params->type == GGML_TASK_INIT) {
  7123. return;
  7124. }
  7125. if (params->type == GGML_TASK_FINALIZE) {
  7126. return;
  7127. }
  7128. // parallelize by a rows using ggml_vec_dot_f32
  7129. // total rows in a
  7130. const int nr = nea1*nea2*nea3;
  7131. // rows per thread
  7132. const int dr = (nr + nth - 1)/nth;
  7133. // row range for this thread
  7134. const int ir0 = dr*ith;
  7135. const int ir1 = MIN(ir0 + dr, nr);
  7136. for (int ir = ir0; ir < ir1; ++ir) {
  7137. // a indices
  7138. const int ia3 = ir/(nea2*nea1);
  7139. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7140. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7141. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7142. for (int64_t ic = 0; ic < neb01; ++ic) {
  7143. // b0 indices
  7144. const int ib03 = ia3;
  7145. const int ib02 = ia2;
  7146. const int ib01 = ic;
  7147. // S indices
  7148. const int i1 = ib01;
  7149. ggml_vec_dot_f16(nea0,
  7150. S + i1,
  7151. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7152. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7153. }
  7154. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7155. //ggml_vec_gelu_f32(neb01, S, S);
  7156. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7157. for (int64_t i = 0; i < M; i++) {
  7158. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7159. }
  7160. ggml_vec_gelu_f16(neb01, S16, S16);
  7161. {
  7162. // dst indices
  7163. const int i1 = ia1;
  7164. const int i2 = ia2;
  7165. const int i3 = ia3;
  7166. for (int64_t ic = 0; ic < nec01; ++ic) {
  7167. ggml_vec_dot_f16(neb01,
  7168. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7169. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7170. S16);
  7171. }
  7172. ggml_vec_add_f32(nec01,
  7173. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7174. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7175. (float *) c1->data);
  7176. }
  7177. }
  7178. }
  7179. static void ggml_compute_forward_flash_ff(
  7180. const struct ggml_compute_params * params,
  7181. const struct ggml_tensor * a,
  7182. const struct ggml_tensor * b0,
  7183. const struct ggml_tensor * b1,
  7184. const struct ggml_tensor * c0,
  7185. const struct ggml_tensor * c1,
  7186. struct ggml_tensor * dst) {
  7187. switch (b0->type) {
  7188. case GGML_TYPE_F16:
  7189. {
  7190. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7191. } break;
  7192. case GGML_TYPE_F32:
  7193. {
  7194. GGML_ASSERT(false); // TODO
  7195. } break;
  7196. case GGML_TYPE_Q4_0:
  7197. case GGML_TYPE_Q4_1:
  7198. case GGML_TYPE_I8:
  7199. case GGML_TYPE_I16:
  7200. case GGML_TYPE_I32:
  7201. case GGML_TYPE_COUNT:
  7202. {
  7203. GGML_ASSERT(false);
  7204. } break;
  7205. }
  7206. }
  7207. /////////////////////////////////
  7208. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7209. GGML_ASSERT(params);
  7210. switch (tensor->op) {
  7211. case GGML_OP_DUP:
  7212. {
  7213. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7214. } break;
  7215. case GGML_OP_ADD:
  7216. {
  7217. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7218. } break;
  7219. case GGML_OP_SUB:
  7220. {
  7221. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7222. } break;
  7223. case GGML_OP_MUL:
  7224. {
  7225. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7226. } break;
  7227. case GGML_OP_DIV:
  7228. {
  7229. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7230. } break;
  7231. case GGML_OP_SQR:
  7232. {
  7233. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7234. } break;
  7235. case GGML_OP_SQRT:
  7236. {
  7237. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7238. } break;
  7239. case GGML_OP_SUM:
  7240. {
  7241. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7242. } break;
  7243. case GGML_OP_MEAN:
  7244. {
  7245. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7246. } break;
  7247. case GGML_OP_REPEAT:
  7248. {
  7249. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7250. } break;
  7251. case GGML_OP_ABS:
  7252. {
  7253. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7254. } break;
  7255. case GGML_OP_SGN:
  7256. {
  7257. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7258. } break;
  7259. case GGML_OP_NEG:
  7260. {
  7261. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7262. } break;
  7263. case GGML_OP_STEP:
  7264. {
  7265. ggml_compute_forward_step(params, tensor->src0, tensor);
  7266. } break;
  7267. case GGML_OP_RELU:
  7268. {
  7269. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7270. } break;
  7271. case GGML_OP_GELU:
  7272. {
  7273. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7274. } break;
  7275. case GGML_OP_SILU:
  7276. {
  7277. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7278. } break;
  7279. case GGML_OP_NORM:
  7280. {
  7281. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7282. } break;
  7283. case GGML_OP_RMS_NORM:
  7284. {
  7285. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7286. } break;
  7287. case GGML_OP_MUL_MAT:
  7288. {
  7289. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7290. } break;
  7291. case GGML_OP_SCALE:
  7292. {
  7293. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7294. } break;
  7295. case GGML_OP_CPY:
  7296. {
  7297. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7298. } break;
  7299. case GGML_OP_CONT:
  7300. {
  7301. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7302. } break;
  7303. case GGML_OP_RESHAPE:
  7304. {
  7305. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7306. } break;
  7307. case GGML_OP_VIEW:
  7308. {
  7309. ggml_compute_forward_view(params, tensor->src0);
  7310. } break;
  7311. case GGML_OP_PERMUTE:
  7312. {
  7313. ggml_compute_forward_permute(params, tensor->src0);
  7314. } break;
  7315. case GGML_OP_TRANSPOSE:
  7316. {
  7317. ggml_compute_forward_transpose(params, tensor->src0);
  7318. } break;
  7319. case GGML_OP_GET_ROWS:
  7320. {
  7321. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7322. } break;
  7323. case GGML_OP_DIAG_MASK_INF:
  7324. {
  7325. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7326. } break;
  7327. case GGML_OP_SOFT_MAX:
  7328. {
  7329. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7330. } break;
  7331. case GGML_OP_ROPE:
  7332. {
  7333. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7334. } break;
  7335. case GGML_OP_CONV_1D_1S:
  7336. {
  7337. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7338. } break;
  7339. case GGML_OP_CONV_1D_2S:
  7340. {
  7341. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7342. } break;
  7343. case GGML_OP_FLASH_ATTN:
  7344. {
  7345. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7346. GGML_ASSERT(t == 0 || t == 1);
  7347. bool masked = t != 0;
  7348. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7349. } break;
  7350. case GGML_OP_FLASH_FF:
  7351. {
  7352. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7353. } break;
  7354. case GGML_OP_NONE:
  7355. {
  7356. // nop
  7357. } break;
  7358. case GGML_OP_COUNT:
  7359. {
  7360. GGML_ASSERT(false);
  7361. } break;
  7362. }
  7363. }
  7364. ////////////////////////////////////////////////////////////////////////////////
  7365. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7366. struct ggml_tensor * src0 = tensor->src0;
  7367. struct ggml_tensor * src1 = tensor->src1;
  7368. switch (tensor->op) {
  7369. case GGML_OP_DUP:
  7370. {
  7371. if (src0->grad) {
  7372. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7373. }
  7374. } break;
  7375. case GGML_OP_ADD:
  7376. {
  7377. if (src0->grad) {
  7378. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7379. }
  7380. if (src1->grad) {
  7381. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7382. }
  7383. } break;
  7384. case GGML_OP_SUB:
  7385. {
  7386. if (src0->grad) {
  7387. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7388. }
  7389. if (src1->grad) {
  7390. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7391. }
  7392. } break;
  7393. case GGML_OP_MUL:
  7394. {
  7395. if (src0->grad) {
  7396. src0->grad =
  7397. ggml_add_impl(ctx,
  7398. src0->grad,
  7399. ggml_mul(ctx, src1, tensor->grad),
  7400. inplace);
  7401. }
  7402. if (src1->grad) {
  7403. src1->grad =
  7404. ggml_add_impl(ctx,
  7405. src1->grad,
  7406. ggml_mul(ctx, src0, tensor->grad),
  7407. inplace);
  7408. }
  7409. } break;
  7410. case GGML_OP_DIV:
  7411. {
  7412. if (src0->grad) {
  7413. src0->grad =
  7414. ggml_add_impl(ctx,
  7415. src0->grad,
  7416. ggml_div(ctx, tensor->grad, src1),
  7417. inplace);
  7418. }
  7419. if (src1->grad) {
  7420. src1->grad =
  7421. ggml_sub_impl(ctx,
  7422. src1->grad,
  7423. ggml_mul(ctx,
  7424. tensor->grad,
  7425. ggml_div(ctx, tensor, src1)),
  7426. inplace);
  7427. }
  7428. } break;
  7429. case GGML_OP_SQR:
  7430. {
  7431. if (src0->grad) {
  7432. src0->grad =
  7433. ggml_add_impl(ctx,
  7434. src0->grad,
  7435. ggml_mul(ctx,
  7436. ggml_mul(ctx, src0, tensor->grad),
  7437. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7438. inplace);
  7439. }
  7440. } break;
  7441. case GGML_OP_SQRT:
  7442. {
  7443. if (src0->grad) {
  7444. src0->grad =
  7445. ggml_add_impl(ctx,
  7446. src0->grad,
  7447. ggml_div(ctx,
  7448. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7449. tensor),
  7450. inplace);
  7451. }
  7452. } break;
  7453. case GGML_OP_SUM:
  7454. {
  7455. if (src0->grad) {
  7456. src0->grad =
  7457. ggml_add_impl(ctx,
  7458. src0->grad,
  7459. ggml_repeat(ctx, tensor->grad, src0->grad),
  7460. inplace);
  7461. }
  7462. } break;
  7463. case GGML_OP_MEAN:
  7464. {
  7465. GGML_ASSERT(false); // TODO: implement
  7466. } break;
  7467. case GGML_OP_REPEAT:
  7468. {
  7469. if (src0->grad) {
  7470. src0->grad =
  7471. ggml_add_impl(ctx,
  7472. src0->grad,
  7473. ggml_sum(ctx, tensor->grad),
  7474. inplace);
  7475. }
  7476. } break;
  7477. case GGML_OP_ABS:
  7478. {
  7479. if (src0->grad) {
  7480. src0->grad =
  7481. ggml_add_impl(ctx,
  7482. src0->grad,
  7483. ggml_mul(ctx,
  7484. ggml_sgn(ctx, src0),
  7485. tensor->grad),
  7486. inplace);
  7487. }
  7488. } break;
  7489. case GGML_OP_SGN:
  7490. {
  7491. if (src0->grad) {
  7492. // noop
  7493. }
  7494. } break;
  7495. case GGML_OP_NEG:
  7496. {
  7497. if (src0->grad) {
  7498. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7499. }
  7500. } break;
  7501. case GGML_OP_STEP:
  7502. {
  7503. if (src0->grad) {
  7504. // noop
  7505. }
  7506. } break;
  7507. case GGML_OP_RELU:
  7508. {
  7509. if (src0->grad) {
  7510. src0->grad = ggml_sub_impl(ctx,
  7511. src0->grad,
  7512. ggml_mul(ctx,
  7513. ggml_step(ctx, src0),
  7514. tensor->grad),
  7515. inplace);
  7516. }
  7517. } break;
  7518. case GGML_OP_GELU:
  7519. {
  7520. GGML_ASSERT(false); // TODO: not implemented
  7521. } break;
  7522. case GGML_OP_SILU:
  7523. {
  7524. GGML_ASSERT(false); // TODO: not implemented
  7525. } break;
  7526. case GGML_OP_NORM:
  7527. {
  7528. GGML_ASSERT(false); // TODO: not implemented
  7529. } break;
  7530. case GGML_OP_RMS_NORM:
  7531. {
  7532. GGML_ASSERT(false); // TODO: not implemented
  7533. } break;
  7534. case GGML_OP_MUL_MAT:
  7535. {
  7536. if (src0->grad) {
  7537. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7538. GGML_ASSERT(false);
  7539. }
  7540. if (src1->grad) {
  7541. src1->grad =
  7542. ggml_add_impl(ctx,
  7543. src1->grad,
  7544. ggml_mul_mat(ctx,
  7545. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7546. tensor->grad),
  7547. inplace);
  7548. }
  7549. } break;
  7550. case GGML_OP_SCALE:
  7551. {
  7552. GGML_ASSERT(false); // TODO: not implemented
  7553. } break;
  7554. case GGML_OP_CPY:
  7555. {
  7556. GGML_ASSERT(false); // TODO: not implemented
  7557. } break;
  7558. case GGML_OP_CONT:
  7559. {
  7560. GGML_ASSERT(false); // TODO: not implemented
  7561. } break;
  7562. case GGML_OP_RESHAPE:
  7563. {
  7564. GGML_ASSERT(false); // TODO: not implemented
  7565. } break;
  7566. case GGML_OP_VIEW:
  7567. {
  7568. GGML_ASSERT(false); // not supported
  7569. } break;
  7570. case GGML_OP_PERMUTE:
  7571. {
  7572. GGML_ASSERT(false); // TODO: not implemented
  7573. } break;
  7574. case GGML_OP_TRANSPOSE:
  7575. {
  7576. GGML_ASSERT(false); // TODO: not implemented
  7577. } break;
  7578. case GGML_OP_GET_ROWS:
  7579. {
  7580. GGML_ASSERT(false); // TODO: not implemented
  7581. } break;
  7582. case GGML_OP_DIAG_MASK_INF:
  7583. {
  7584. GGML_ASSERT(false); // TODO: not implemented
  7585. } break;
  7586. case GGML_OP_SOFT_MAX:
  7587. {
  7588. GGML_ASSERT(false); // TODO: not implemented
  7589. } break;
  7590. case GGML_OP_ROPE:
  7591. {
  7592. GGML_ASSERT(false); // TODO: not implemented
  7593. } break;
  7594. case GGML_OP_CONV_1D_1S:
  7595. {
  7596. GGML_ASSERT(false); // TODO: not implemented
  7597. } break;
  7598. case GGML_OP_CONV_1D_2S:
  7599. {
  7600. GGML_ASSERT(false); // TODO: not implemented
  7601. } break;
  7602. case GGML_OP_FLASH_ATTN:
  7603. {
  7604. GGML_ASSERT(false); // not supported
  7605. } break;
  7606. case GGML_OP_FLASH_FF:
  7607. {
  7608. GGML_ASSERT(false); // not supported
  7609. } break;
  7610. case GGML_OP_NONE:
  7611. {
  7612. // nop
  7613. } break;
  7614. case GGML_OP_COUNT:
  7615. {
  7616. GGML_ASSERT(false);
  7617. } break;
  7618. }
  7619. }
  7620. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7621. if (node->grad == NULL) {
  7622. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7623. // it can also happen during forward pass, if the user performs computations with constants
  7624. if (node->op != GGML_OP_NONE) {
  7625. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7626. }
  7627. }
  7628. // check if already visited
  7629. for (int i = 0; i < cgraph->n_nodes; i++) {
  7630. if (cgraph->nodes[i] == node) {
  7631. return;
  7632. }
  7633. }
  7634. for (int i = 0; i < cgraph->n_leafs; i++) {
  7635. if (cgraph->leafs[i] == node) {
  7636. return;
  7637. }
  7638. }
  7639. if (node->src0) {
  7640. ggml_visit_parents(cgraph, node->src0);
  7641. }
  7642. if (node->src1) {
  7643. ggml_visit_parents(cgraph, node->src1);
  7644. }
  7645. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7646. if (node->opt[i]) {
  7647. ggml_visit_parents(cgraph, node->opt[i]);
  7648. }
  7649. }
  7650. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7651. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7652. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7653. cgraph->leafs[cgraph->n_leafs] = node;
  7654. cgraph->n_leafs++;
  7655. } else {
  7656. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7657. cgraph->nodes[cgraph->n_nodes] = node;
  7658. cgraph->grads[cgraph->n_nodes] = node->grad;
  7659. cgraph->n_nodes++;
  7660. }
  7661. }
  7662. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7663. if (!expand) {
  7664. cgraph->n_nodes = 0;
  7665. cgraph->n_leafs = 0;
  7666. }
  7667. const int n0 = cgraph->n_nodes;
  7668. UNUSED(n0);
  7669. ggml_visit_parents(cgraph, tensor);
  7670. const int n_new = cgraph->n_nodes - n0;
  7671. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7672. if (n_new > 0) {
  7673. // the last added node should always be starting point
  7674. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7675. }
  7676. }
  7677. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7678. ggml_build_forward_impl(cgraph, tensor, true);
  7679. }
  7680. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7681. struct ggml_cgraph result = {
  7682. /*.n_nodes =*/ 0,
  7683. /*.n_leafs =*/ 0,
  7684. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  7685. /*.work_size =*/ 0,
  7686. /*.work =*/ NULL,
  7687. /*.nodes =*/ { NULL },
  7688. /*.grads =*/ { NULL },
  7689. /*.leafs =*/ { NULL },
  7690. /*.perf_runs =*/ 0,
  7691. /*.perf_cycles =*/ 0,
  7692. /*.perf_time_us =*/ 0,
  7693. };
  7694. ggml_build_forward_impl(&result, tensor, false);
  7695. return result;
  7696. }
  7697. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7698. struct ggml_cgraph result = *gf;
  7699. GGML_ASSERT(gf->n_nodes > 0);
  7700. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7701. if (keep) {
  7702. for (int i = 0; i < gf->n_nodes; i++) {
  7703. struct ggml_tensor * node = gf->nodes[i];
  7704. if (node->grad) {
  7705. node->grad = ggml_dup_tensor(ctx, node);
  7706. gf->grads[i] = node->grad;
  7707. }
  7708. }
  7709. }
  7710. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7711. struct ggml_tensor * node = gf->nodes[i];
  7712. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7713. if (node->grad) {
  7714. ggml_compute_backward(ctx, node, keep);
  7715. }
  7716. }
  7717. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7718. struct ggml_tensor * node = gf->nodes[i];
  7719. if (node->is_param) {
  7720. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7721. ggml_build_forward_impl(&result, node->grad, true);
  7722. }
  7723. }
  7724. return result;
  7725. }
  7726. //
  7727. // thread data
  7728. //
  7729. // synchronization is done via busy loops
  7730. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7731. //
  7732. #ifdef __APPLE__
  7733. //#include <os/lock.h>
  7734. //
  7735. //typedef os_unfair_lock ggml_lock_t;
  7736. //
  7737. //#define ggml_lock_init(x) UNUSED(x)
  7738. //#define ggml_lock_destroy(x) UNUSED(x)
  7739. //#define ggml_lock_lock os_unfair_lock_lock
  7740. //#define ggml_lock_unlock os_unfair_lock_unlock
  7741. //
  7742. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7743. typedef int ggml_lock_t;
  7744. #define ggml_lock_init(x) UNUSED(x)
  7745. #define ggml_lock_destroy(x) UNUSED(x)
  7746. #define ggml_lock_lock(x) UNUSED(x)
  7747. #define ggml_lock_unlock(x) UNUSED(x)
  7748. #define GGML_LOCK_INITIALIZER 0
  7749. typedef pthread_t ggml_thread_t;
  7750. #define ggml_thread_create pthread_create
  7751. #define ggml_thread_join pthread_join
  7752. #else
  7753. //typedef pthread_spinlock_t ggml_lock_t;
  7754. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7755. //#define ggml_lock_destroy pthread_spin_destroy
  7756. //#define ggml_lock_lock pthread_spin_lock
  7757. //#define ggml_lock_unlock pthread_spin_unlock
  7758. typedef int ggml_lock_t;
  7759. #define ggml_lock_init(x) UNUSED(x)
  7760. #define ggml_lock_destroy(x) UNUSED(x)
  7761. #define ggml_lock_lock(x) UNUSED(x)
  7762. #define ggml_lock_unlock(x) UNUSED(x)
  7763. #define GGML_LOCK_INITIALIZER 0
  7764. typedef pthread_t ggml_thread_t;
  7765. #define ggml_thread_create pthread_create
  7766. #define ggml_thread_join pthread_join
  7767. #endif
  7768. struct ggml_compute_state_shared {
  7769. ggml_lock_t spin;
  7770. int n_threads;
  7771. // synchronization primitives
  7772. atomic_int n_ready;
  7773. atomic_bool has_work;
  7774. atomic_bool stop; // stop all threads
  7775. };
  7776. struct ggml_compute_state {
  7777. ggml_thread_t thrd;
  7778. struct ggml_compute_params params;
  7779. struct ggml_tensor * node;
  7780. struct ggml_compute_state_shared * shared;
  7781. };
  7782. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7783. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7784. const int n_threads = state->shared->n_threads;
  7785. while (true) {
  7786. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7787. atomic_store(&state->shared->has_work, false);
  7788. } else {
  7789. while (atomic_load(&state->shared->has_work)) {
  7790. if (atomic_load(&state->shared->stop)) {
  7791. return 0;
  7792. }
  7793. ggml_lock_lock (&state->shared->spin);
  7794. ggml_lock_unlock(&state->shared->spin);
  7795. }
  7796. }
  7797. atomic_fetch_sub(&state->shared->n_ready, 1);
  7798. // wait for work
  7799. while (!atomic_load(&state->shared->has_work)) {
  7800. if (atomic_load(&state->shared->stop)) {
  7801. return 0;
  7802. }
  7803. ggml_lock_lock (&state->shared->spin);
  7804. ggml_lock_unlock(&state->shared->spin);
  7805. }
  7806. // check if we should stop
  7807. if (atomic_load(&state->shared->stop)) {
  7808. break;
  7809. }
  7810. if (state->node) {
  7811. if (state->params.ith < state->params.nth) {
  7812. ggml_compute_forward(&state->params, state->node);
  7813. }
  7814. state->node = NULL;
  7815. } else {
  7816. break;
  7817. }
  7818. }
  7819. return 0;
  7820. }
  7821. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7822. const int n_threads = cgraph->n_threads;
  7823. struct ggml_compute_state_shared state_shared = {
  7824. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7825. /*.n_threads =*/ n_threads,
  7826. /*.n_ready =*/ 0,
  7827. /*.has_work =*/ false,
  7828. /*.stop =*/ false,
  7829. };
  7830. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7831. // create thread pool
  7832. if (n_threads > 1) {
  7833. ggml_lock_init(&state_shared.spin);
  7834. atomic_store(&state_shared.has_work, true);
  7835. for (int j = 0; j < n_threads - 1; j++) {
  7836. workers[j] = (struct ggml_compute_state) {
  7837. .thrd = 0,
  7838. .params = {
  7839. .type = GGML_TASK_COMPUTE,
  7840. .ith = j + 1,
  7841. .nth = n_threads,
  7842. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7843. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7844. },
  7845. .node = NULL,
  7846. .shared = &state_shared,
  7847. };
  7848. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7849. GGML_ASSERT(rc == 0);
  7850. UNUSED(rc);
  7851. }
  7852. }
  7853. // initialize tasks + work buffer
  7854. {
  7855. size_t work_size = 0;
  7856. // thread scheduling for the different operations
  7857. for (int i = 0; i < cgraph->n_nodes; i++) {
  7858. struct ggml_tensor * node = cgraph->nodes[i];
  7859. switch (node->op) {
  7860. case GGML_OP_DUP:
  7861. {
  7862. node->n_tasks = 1;
  7863. } break;
  7864. case GGML_OP_ADD:
  7865. {
  7866. node->n_tasks = n_threads;
  7867. } break;
  7868. case GGML_OP_SUB:
  7869. case GGML_OP_MUL:
  7870. case GGML_OP_DIV:
  7871. case GGML_OP_SQR:
  7872. case GGML_OP_SQRT:
  7873. case GGML_OP_SUM:
  7874. case GGML_OP_MEAN:
  7875. case GGML_OP_REPEAT:
  7876. case GGML_OP_ABS:
  7877. case GGML_OP_SGN:
  7878. case GGML_OP_NEG:
  7879. case GGML_OP_STEP:
  7880. case GGML_OP_RELU:
  7881. {
  7882. node->n_tasks = 1;
  7883. } break;
  7884. case GGML_OP_GELU:
  7885. {
  7886. node->n_tasks = n_threads;
  7887. } break;
  7888. case GGML_OP_SILU:
  7889. {
  7890. node->n_tasks = n_threads;
  7891. } break;
  7892. case GGML_OP_NORM:
  7893. case GGML_OP_RMS_NORM:
  7894. {
  7895. node->n_tasks = n_threads;
  7896. } break;
  7897. case GGML_OP_MUL_MAT:
  7898. {
  7899. node->n_tasks = n_threads;
  7900. // TODO: use different scheduling for different matrix sizes
  7901. //const int nr0 = ggml_nrows(node->src0);
  7902. //const int nr1 = ggml_nrows(node->src1);
  7903. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7904. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7905. size_t cur = 0;
  7906. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7907. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7908. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7909. node->n_tasks = 1; // TODO: this actually is doing nothing
  7910. // the threads are still spinning
  7911. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7912. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7913. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7914. //printf("cur = %zu\n", cur);
  7915. } else {
  7916. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7917. }
  7918. #else
  7919. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7920. #endif
  7921. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7922. cur = 0;
  7923. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7924. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7925. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7926. node->n_tasks = 1;
  7927. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7928. } else
  7929. #endif
  7930. {
  7931. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7932. }
  7933. } else {
  7934. GGML_ASSERT(false);
  7935. }
  7936. work_size = MAX(work_size, cur);
  7937. } break;
  7938. case GGML_OP_SCALE:
  7939. {
  7940. node->n_tasks = n_threads;
  7941. } break;
  7942. case GGML_OP_CPY:
  7943. case GGML_OP_CONT:
  7944. case GGML_OP_RESHAPE:
  7945. case GGML_OP_VIEW:
  7946. case GGML_OP_PERMUTE:
  7947. case GGML_OP_TRANSPOSE:
  7948. case GGML_OP_GET_ROWS:
  7949. case GGML_OP_DIAG_MASK_INF:
  7950. {
  7951. node->n_tasks = 1;
  7952. } break;
  7953. case GGML_OP_SOFT_MAX:
  7954. {
  7955. node->n_tasks = n_threads;
  7956. } break;
  7957. case GGML_OP_ROPE:
  7958. {
  7959. node->n_tasks = n_threads;
  7960. } break;
  7961. case GGML_OP_CONV_1D_1S:
  7962. case GGML_OP_CONV_1D_2S:
  7963. {
  7964. node->n_tasks = n_threads;
  7965. GGML_ASSERT(node->src0->ne[3] == 1);
  7966. GGML_ASSERT(node->src1->ne[2] == 1);
  7967. GGML_ASSERT(node->src1->ne[3] == 1);
  7968. size_t cur = 0;
  7969. const int nk = node->src0->ne[0];
  7970. if (node->src0->type == GGML_TYPE_F16 &&
  7971. node->src1->type == GGML_TYPE_F32) {
  7972. cur = sizeof(ggml_fp16_t)*(
  7973. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7974. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7975. );
  7976. } else if (node->src0->type == GGML_TYPE_F32 &&
  7977. node->src1->type == GGML_TYPE_F32) {
  7978. cur = sizeof(float)*(
  7979. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7980. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7981. );
  7982. } else {
  7983. GGML_ASSERT(false);
  7984. }
  7985. work_size = MAX(work_size, cur);
  7986. } break;
  7987. case GGML_OP_FLASH_ATTN:
  7988. {
  7989. node->n_tasks = n_threads;
  7990. size_t cur = 0;
  7991. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7992. if (node->src1->type == GGML_TYPE_F32) {
  7993. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7994. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7995. }
  7996. if (node->src1->type == GGML_TYPE_F16) {
  7997. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7998. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7999. }
  8000. work_size = MAX(work_size, cur);
  8001. } break;
  8002. case GGML_OP_FLASH_FF:
  8003. {
  8004. node->n_tasks = n_threads;
  8005. size_t cur = 0;
  8006. if (node->src1->type == GGML_TYPE_F32) {
  8007. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8008. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8009. }
  8010. if (node->src1->type == GGML_TYPE_F16) {
  8011. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8012. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8013. }
  8014. work_size = MAX(work_size, cur);
  8015. } break;
  8016. case GGML_OP_NONE:
  8017. {
  8018. node->n_tasks = 1;
  8019. } break;
  8020. case GGML_OP_COUNT:
  8021. {
  8022. GGML_ASSERT(false);
  8023. } break;
  8024. }
  8025. }
  8026. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8027. GGML_ASSERT(false); // TODO: better handling
  8028. }
  8029. if (work_size > 0 && cgraph->work == NULL) {
  8030. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8031. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8032. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8033. }
  8034. }
  8035. const int64_t perf_start_cycles = ggml_perf_cycles();
  8036. const int64_t perf_start_time_us = ggml_perf_time_us();
  8037. for (int i = 0; i < cgraph->n_nodes; i++) {
  8038. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8039. struct ggml_tensor * node = cgraph->nodes[i];
  8040. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8041. //if (node->grad == NULL && node->perf_runs > 0) {
  8042. // continue;
  8043. //}
  8044. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8045. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8046. // INIT
  8047. struct ggml_compute_params params = {
  8048. /*.type =*/ GGML_TASK_INIT,
  8049. /*.ith =*/ 0,
  8050. /*.nth =*/ node->n_tasks,
  8051. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8052. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8053. };
  8054. ggml_compute_forward(&params, node);
  8055. // COMPUTE
  8056. if (node->n_tasks > 1) {
  8057. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8058. atomic_store(&state_shared.has_work, false);
  8059. }
  8060. while (atomic_load(&state_shared.has_work)) {
  8061. ggml_lock_lock (&state_shared.spin);
  8062. ggml_lock_unlock(&state_shared.spin);
  8063. }
  8064. // launch thread pool
  8065. for (int j = 0; j < n_threads - 1; j++) {
  8066. workers[j].params = (struct ggml_compute_params) {
  8067. .type = GGML_TASK_COMPUTE,
  8068. .ith = j + 1,
  8069. .nth = node->n_tasks,
  8070. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8071. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8072. };
  8073. workers[j].node = node;
  8074. }
  8075. atomic_fetch_sub(&state_shared.n_ready, 1);
  8076. while (atomic_load(&state_shared.n_ready) > 0) {
  8077. ggml_lock_lock (&state_shared.spin);
  8078. ggml_lock_unlock(&state_shared.spin);
  8079. }
  8080. atomic_store(&state_shared.has_work, true);
  8081. }
  8082. params.type = GGML_TASK_COMPUTE;
  8083. ggml_compute_forward(&params, node);
  8084. // wait for thread pool
  8085. if (node->n_tasks > 1) {
  8086. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8087. atomic_store(&state_shared.has_work, false);
  8088. }
  8089. while (atomic_load(&state_shared.has_work)) {
  8090. ggml_lock_lock (&state_shared.spin);
  8091. ggml_lock_unlock(&state_shared.spin);
  8092. }
  8093. atomic_fetch_sub(&state_shared.n_ready, 1);
  8094. while (atomic_load(&state_shared.n_ready) != 0) {
  8095. ggml_lock_lock (&state_shared.spin);
  8096. ggml_lock_unlock(&state_shared.spin);
  8097. }
  8098. }
  8099. // FINALIZE
  8100. if (node->n_tasks > 1) {
  8101. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8102. atomic_store(&state_shared.has_work, false);
  8103. }
  8104. while (atomic_load(&state_shared.has_work)) {
  8105. ggml_lock_lock (&state_shared.spin);
  8106. ggml_lock_unlock(&state_shared.spin);
  8107. }
  8108. // launch thread pool
  8109. for (int j = 0; j < n_threads - 1; j++) {
  8110. workers[j].params = (struct ggml_compute_params) {
  8111. .type = GGML_TASK_FINALIZE,
  8112. .ith = j + 1,
  8113. .nth = node->n_tasks,
  8114. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8115. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8116. };
  8117. workers[j].node = node;
  8118. }
  8119. atomic_fetch_sub(&state_shared.n_ready, 1);
  8120. while (atomic_load(&state_shared.n_ready) > 0) {
  8121. ggml_lock_lock (&state_shared.spin);
  8122. ggml_lock_unlock(&state_shared.spin);
  8123. }
  8124. atomic_store(&state_shared.has_work, true);
  8125. }
  8126. params.type = GGML_TASK_FINALIZE;
  8127. ggml_compute_forward(&params, node);
  8128. // wait for thread pool
  8129. if (node->n_tasks > 1) {
  8130. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8131. atomic_store(&state_shared.has_work, false);
  8132. }
  8133. while (atomic_load(&state_shared.has_work)) {
  8134. ggml_lock_lock (&state_shared.spin);
  8135. ggml_lock_unlock(&state_shared.spin);
  8136. }
  8137. atomic_fetch_sub(&state_shared.n_ready, 1);
  8138. while (atomic_load(&state_shared.n_ready) != 0) {
  8139. ggml_lock_lock (&state_shared.spin);
  8140. ggml_lock_unlock(&state_shared.spin);
  8141. }
  8142. }
  8143. // performance stats (node)
  8144. {
  8145. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8146. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8147. node->perf_runs++;
  8148. node->perf_cycles += perf_cycles_cur;
  8149. node->perf_time_us += perf_time_us_cur;
  8150. }
  8151. }
  8152. // join thread pool
  8153. if (n_threads > 1) {
  8154. atomic_store(&state_shared.stop, true);
  8155. atomic_store(&state_shared.has_work, true);
  8156. for (int j = 0; j < n_threads - 1; j++) {
  8157. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8158. GGML_ASSERT(rc == 0);
  8159. UNUSED(rc);
  8160. }
  8161. ggml_lock_destroy(&state_shared.spin);
  8162. }
  8163. // performance stats (graph)
  8164. {
  8165. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8166. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8167. cgraph->perf_runs++;
  8168. cgraph->perf_cycles += perf_cycles_cur;
  8169. cgraph->perf_time_us += perf_time_us_cur;
  8170. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8171. __func__, cgraph->perf_runs,
  8172. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8173. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8174. (double) perf_time_us_cur / 1000.0,
  8175. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8176. }
  8177. }
  8178. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8179. for (int i = 0; i < cgraph->n_nodes; i++) {
  8180. struct ggml_tensor * grad = cgraph->grads[i];
  8181. if (grad) {
  8182. ggml_set_zero(grad);
  8183. }
  8184. }
  8185. }
  8186. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8187. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8188. GGML_PRINT("=== GRAPH ===\n");
  8189. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8190. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8191. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8192. for (int i = 0; i < cgraph->n_nodes; i++) {
  8193. struct ggml_tensor * node = cgraph->nodes[i];
  8194. perf_total_per_op_us[node->op] += node->perf_time_us;
  8195. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8196. i,
  8197. node->ne[0], node->ne[1], node->ne[2],
  8198. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8199. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8200. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8201. (double) node->perf_time_us / 1000.0,
  8202. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8203. }
  8204. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8205. for (int i = 0; i < cgraph->n_leafs; i++) {
  8206. struct ggml_tensor * node = cgraph->leafs[i];
  8207. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8208. i,
  8209. node->ne[0], node->ne[1],
  8210. GGML_OP_LABEL[node->op]);
  8211. }
  8212. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8213. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8214. }
  8215. GGML_PRINT("========================================\n");
  8216. }
  8217. // check if node is part of the graph
  8218. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8219. if (cgraph == NULL) {
  8220. return true;
  8221. }
  8222. for (int i = 0; i < cgraph->n_nodes; i++) {
  8223. if (cgraph->nodes[i] == node) {
  8224. return true;
  8225. }
  8226. }
  8227. return false;
  8228. }
  8229. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8230. for (int i = 0; i < cgraph->n_nodes; i++) {
  8231. struct ggml_tensor * parent = cgraph->nodes[i];
  8232. if (parent->grad == node) {
  8233. return parent;
  8234. }
  8235. }
  8236. return NULL;
  8237. }
  8238. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8239. char color[16];
  8240. FILE * fp = fopen(filename, "w");
  8241. GGML_ASSERT(fp);
  8242. fprintf(fp, "digraph G {\n");
  8243. fprintf(fp, " newrank = true;\n");
  8244. fprintf(fp, " rankdir = LR;\n");
  8245. for (int i = 0; i < gb->n_nodes; i++) {
  8246. struct ggml_tensor * node = gb->nodes[i];
  8247. if (ggml_graph_get_parent(gb, node) != NULL) {
  8248. continue;
  8249. }
  8250. if (node->is_param) {
  8251. snprintf(color, sizeof(color), "yellow");
  8252. } else if (node->grad) {
  8253. if (ggml_graph_find(gf, node)) {
  8254. snprintf(color, sizeof(color), "green");
  8255. } else {
  8256. snprintf(color, sizeof(color), "lightblue");
  8257. }
  8258. } else {
  8259. snprintf(color, sizeof(color), "white");
  8260. }
  8261. fprintf(fp, " \"%p\" [ \
  8262. style = filled; fillcolor = %s; shape = record; \
  8263. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8264. (void *) node, color,
  8265. i, node->ne[0], node->ne[1],
  8266. GGML_OP_SYMBOL[node->op]);
  8267. if (node->grad) {
  8268. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8269. } else {
  8270. fprintf(fp, "\"; ]\n");
  8271. }
  8272. }
  8273. for (int i = 0; i < gb->n_leafs; i++) {
  8274. struct ggml_tensor * node = gb->leafs[i];
  8275. snprintf(color, sizeof(color), "pink");
  8276. if (ggml_nelements(node) == 1) {
  8277. fprintf(fp, " \"%p\" [ \
  8278. style = filled; fillcolor = %s; shape = record; \
  8279. label=\"<x>%.1e\"; ]\n",
  8280. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8281. } else {
  8282. fprintf(fp, " \"%p\" [ \
  8283. style = filled; fillcolor = %s; shape = record; \
  8284. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8285. (void *) node, color,
  8286. i, node->ne[0], node->ne[1]);
  8287. }
  8288. }
  8289. for (int i = 0; i < gb->n_nodes; i++) {
  8290. struct ggml_tensor * node = gb->nodes[i];
  8291. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8292. if (node->src0) {
  8293. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8294. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8295. parent0 ? (void *) parent0 : (void *) node->src0,
  8296. parent0 ? "g" : "x",
  8297. parent ? (void *) parent : (void *) node,
  8298. parent ? "g" : "x",
  8299. parent ? "empty" : "vee",
  8300. parent ? "dashed" : "solid");
  8301. }
  8302. if (node->src1) {
  8303. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8304. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8305. parent1 ? (void *) parent1 : (void *) node->src1,
  8306. parent1 ? "g" : "x",
  8307. parent ? (void *) parent : (void *) node,
  8308. parent ? "g" : "x",
  8309. parent ? "empty" : "vee",
  8310. parent ? "dashed" : "solid");
  8311. }
  8312. }
  8313. for (int i = 0; i < gb->n_leafs; i++) {
  8314. struct ggml_tensor * node = gb->leafs[i];
  8315. if (node->src0) {
  8316. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8317. (void *) node->src0, "x",
  8318. (void *) node, "x");
  8319. }
  8320. if (node->src1) {
  8321. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8322. (void *) node->src1, "x",
  8323. (void *) node, "x");
  8324. }
  8325. }
  8326. fprintf(fp, "}\n");
  8327. fclose(fp);
  8328. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8329. }
  8330. ////////////////////////////////////////////////////////////////////////////////
  8331. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8332. int i = 0;
  8333. for (int p = 0; p < np; ++p) {
  8334. const int64_t ne = ggml_nelements(ps[p]) ;
  8335. // TODO: add function to set tensor from array
  8336. for (int64_t j = 0; j < ne; ++j) {
  8337. ggml_set_f32_1d(ps[p], j, x[i++]);
  8338. }
  8339. }
  8340. }
  8341. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8342. int i = 0;
  8343. for (int p = 0; p < np; ++p) {
  8344. const int64_t ne = ggml_nelements(ps[p]) ;
  8345. // TODO: add function to get all elements at once
  8346. for (int64_t j = 0; j < ne; ++j) {
  8347. x[i++] = ggml_get_f32_1d(ps[p], j);
  8348. }
  8349. }
  8350. }
  8351. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8352. int i = 0;
  8353. for (int p = 0; p < np; ++p) {
  8354. const int64_t ne = ggml_nelements(ps[p]) ;
  8355. // TODO: add function to get all elements at once
  8356. for (int64_t j = 0; j < ne; ++j) {
  8357. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8358. }
  8359. }
  8360. }
  8361. //
  8362. // ADAM
  8363. //
  8364. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8365. //
  8366. static enum ggml_opt_result ggml_opt_adam(
  8367. struct ggml_context * ctx,
  8368. struct ggml_opt_params params,
  8369. struct ggml_tensor * f,
  8370. struct ggml_cgraph * gf,
  8371. struct ggml_cgraph * gb) {
  8372. GGML_ASSERT(ggml_is_scalar(f));
  8373. gf->n_threads = params.n_threads;
  8374. gb->n_threads = params.n_threads;
  8375. // these will store the parameters we want to optimize
  8376. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8377. int np = 0;
  8378. int nx = 0;
  8379. for (int i = 0; i < gf->n_nodes; ++i) {
  8380. if (gf->nodes[i]->is_param) {
  8381. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8382. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8383. ps[np++] = gf->nodes[i];
  8384. nx += ggml_nelements(gf->nodes[i]);
  8385. }
  8386. }
  8387. // constants
  8388. const float alpha = params.adam.alpha;
  8389. const float beta1 = params.adam.beta1;
  8390. const float beta2 = params.adam.beta2;
  8391. const float eps = params.adam.eps;
  8392. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8393. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8394. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8395. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8396. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8397. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8398. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8399. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8400. // initialize
  8401. ggml_vec_set_f32(nx, m, 0.0f);
  8402. ggml_vec_set_f32(nx, v, 0.0f);
  8403. // update view
  8404. ggml_opt_get_params(np, ps, x);
  8405. // compute the function value
  8406. ggml_graph_reset (gf);
  8407. ggml_set_f32 (f->grad, 1.0f);
  8408. ggml_graph_compute(ctx, gb);
  8409. float fx_prev = ggml_get_f32_1d(f, 0);
  8410. if (pf) {
  8411. pf[0] = fx_prev;
  8412. }
  8413. int n_no_improvement = 0;
  8414. float fx_best = fx_prev;
  8415. // run the optimizer
  8416. for (int t = 0; t < params.adam.n_iter; ++t) {
  8417. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8418. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8419. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8420. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8421. for (int i = 0; i < np; ++i) {
  8422. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8423. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8424. }
  8425. const int64_t t_start_wall = ggml_time_us();
  8426. const int64_t t_start_cpu = ggml_cycles();
  8427. UNUSED(t_start_wall);
  8428. UNUSED(t_start_cpu);
  8429. {
  8430. // update the gradient
  8431. ggml_opt_get_grad(np, ps, g1);
  8432. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8433. ggml_vec_scale_f32(nx, m, beta1);
  8434. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8435. // g2 = g1^2
  8436. ggml_vec_sqr_f32 (nx, g2, g1);
  8437. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8438. ggml_vec_scale_f32(nx, v, beta2);
  8439. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8440. // m^hat = m_t / (1 - beta1^t)
  8441. // v^hat = v_t / (1 - beta2^t)
  8442. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8443. ggml_vec_cpy_f32 (nx, mh, m);
  8444. ggml_vec_cpy_f32 (nx, vh, v);
  8445. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8446. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8447. ggml_vec_sqrt_f32 (nx, vh, vh);
  8448. ggml_vec_acc1_f32 (nx, vh, eps);
  8449. ggml_vec_div_f32 (nx, mh, mh, vh);
  8450. ggml_vec_sub_f32 (nx, x, x, mh);
  8451. // update the parameters
  8452. ggml_opt_set_params(np, ps, x);
  8453. }
  8454. ggml_graph_reset (gf);
  8455. ggml_set_f32 (f->grad, 1.0f);
  8456. ggml_graph_compute(ctx, gb);
  8457. const float fx = ggml_get_f32_1d(f, 0);
  8458. // check convergence
  8459. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8460. GGML_PRINT_DEBUG("converged\n");
  8461. return GGML_OPT_OK;
  8462. }
  8463. // delta-based convergence test
  8464. if (pf != NULL) {
  8465. // need at least params.past iterations to start checking for convergence
  8466. if (params.past <= t) {
  8467. const float rate = (pf[t%params.past] - fx)/fx;
  8468. if (fabsf(rate) < params.delta) {
  8469. return GGML_OPT_OK;
  8470. }
  8471. }
  8472. pf[t%params.past] = fx;
  8473. }
  8474. // check for improvement
  8475. if (params.max_no_improvement > 0) {
  8476. if (fx_best > fx) {
  8477. fx_best = fx;
  8478. n_no_improvement = 0;
  8479. } else {
  8480. ++n_no_improvement;
  8481. if (n_no_improvement >= params.max_no_improvement) {
  8482. return GGML_OPT_OK;
  8483. }
  8484. }
  8485. }
  8486. fx_prev = fx;
  8487. {
  8488. const int64_t t_end_cpu = ggml_cycles();
  8489. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8490. UNUSED(t_end_cpu);
  8491. const int64_t t_end_wall = ggml_time_us();
  8492. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8493. UNUSED(t_end_wall);
  8494. }
  8495. }
  8496. return GGML_OPT_DID_NOT_CONVERGE;
  8497. }
  8498. //
  8499. // L-BFGS
  8500. //
  8501. // the L-BFGS implementation below is based on the following implementation:
  8502. //
  8503. // https://github.com/chokkan/liblbfgs
  8504. //
  8505. struct ggml_lbfgs_iteration_data {
  8506. float alpha;
  8507. float ys;
  8508. float * s;
  8509. float * y;
  8510. };
  8511. static enum ggml_opt_result linesearch_backtracking(
  8512. struct ggml_context * ctx,
  8513. const struct ggml_opt_params * params,
  8514. int nx,
  8515. float * x,
  8516. float * fx,
  8517. float * g,
  8518. float * d,
  8519. float * step,
  8520. const float * xp,
  8521. struct ggml_tensor * f,
  8522. struct ggml_cgraph * gf,
  8523. struct ggml_cgraph * gb,
  8524. const int np,
  8525. struct ggml_tensor * ps[]) {
  8526. int count = 0;
  8527. float width = 0.0f;
  8528. float dg = 0.0f;
  8529. float finit = 0.0f;
  8530. float dginit = 0.0f;
  8531. float dgtest = 0.0f;
  8532. const float dec = 0.5f;
  8533. const float inc = 2.1f;
  8534. if (*step <= 0.f) {
  8535. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8536. }
  8537. // compute the initial gradient in the search direction
  8538. ggml_vec_dot_f32(nx, &dginit, g, d);
  8539. // make sure that d points to a descent direction
  8540. if (0 < dginit) {
  8541. return GGML_LINESEARCH_FAIL;
  8542. }
  8543. // initialize local variables
  8544. finit = *fx;
  8545. dgtest = params->lbfgs.ftol*dginit;
  8546. while (true) {
  8547. ggml_vec_cpy_f32(nx, x, xp);
  8548. ggml_vec_mad_f32(nx, x, d, *step);
  8549. // evaluate the function and gradient values
  8550. {
  8551. ggml_opt_set_params(np, ps, x);
  8552. ggml_graph_reset (gf);
  8553. ggml_set_f32 (f->grad, 1.0f);
  8554. ggml_graph_compute(ctx, gb);
  8555. ggml_opt_get_grad(np, ps, g);
  8556. *fx = ggml_get_f32_1d(f, 0);
  8557. }
  8558. ++count;
  8559. if (*fx > finit + (*step)*dgtest) {
  8560. width = dec;
  8561. } else {
  8562. // Armijo condition is satisfied
  8563. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8564. return count;
  8565. }
  8566. ggml_vec_dot_f32(nx, &dg, g, d);
  8567. // check the Wolfe condition
  8568. if (dg < params->lbfgs.wolfe * dginit) {
  8569. width = inc;
  8570. } else {
  8571. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8572. // regular Wolfe conditions
  8573. return count;
  8574. }
  8575. if(dg > -params->lbfgs.wolfe*dginit) {
  8576. width = dec;
  8577. } else {
  8578. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8579. return count;
  8580. }
  8581. return count;
  8582. }
  8583. }
  8584. if (*step < params->lbfgs.min_step) {
  8585. return GGML_LINESEARCH_MINIMUM_STEP;
  8586. }
  8587. if (*step > params->lbfgs.max_step) {
  8588. return GGML_LINESEARCH_MAXIMUM_STEP;
  8589. }
  8590. if (params->lbfgs.max_linesearch <= count) {
  8591. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8592. }
  8593. (*step) *= width;
  8594. }
  8595. return GGML_LINESEARCH_FAIL;
  8596. }
  8597. static enum ggml_opt_result ggml_opt_lbfgs(
  8598. struct ggml_context * ctx,
  8599. struct ggml_opt_params params,
  8600. struct ggml_tensor * f,
  8601. struct ggml_cgraph * gf,
  8602. struct ggml_cgraph * gb) {
  8603. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8604. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8605. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8606. return GGML_OPT_INVALID_WOLFE;
  8607. }
  8608. }
  8609. gf->n_threads = params.n_threads;
  8610. gb->n_threads = params.n_threads;
  8611. const int m = params.lbfgs.m;
  8612. // these will store the parameters we want to optimize
  8613. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8614. int np = 0;
  8615. int nx = 0;
  8616. for (int i = 0; i < gf->n_nodes; ++i) {
  8617. if (gf->nodes[i]->is_param) {
  8618. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8619. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8620. ps[np++] = gf->nodes[i];
  8621. nx += ggml_nelements(gf->nodes[i]);
  8622. }
  8623. }
  8624. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8625. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8626. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8627. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8628. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8629. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8630. float fx = 0.0f; // cost function value
  8631. float xnorm = 0.0f; // ||x||
  8632. float gnorm = 0.0f; // ||g||
  8633. float step = 0.0f;
  8634. // initialize x from the graph nodes
  8635. ggml_opt_get_params(np, ps, x);
  8636. // the L-BFGS memory
  8637. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8638. for (int i = 0; i < m; ++i) {
  8639. lm[i].alpha = 0.0f;
  8640. lm[i].ys = 0.0f;
  8641. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8642. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8643. }
  8644. // evaluate the function value and its gradient
  8645. {
  8646. ggml_opt_set_params(np, ps, x);
  8647. ggml_graph_reset (gf);
  8648. ggml_set_f32 (f->grad, 1.0f);
  8649. ggml_graph_compute(ctx, gb);
  8650. ggml_opt_get_grad(np, ps, g);
  8651. fx = ggml_get_f32_1d(f, 0);
  8652. }
  8653. if (pf) {
  8654. pf[0] = fx;
  8655. }
  8656. float fx_best = fx;
  8657. // search direction = -gradient
  8658. ggml_vec_neg_f32(nx, d, g);
  8659. // ||x||, ||g||
  8660. ggml_vec_norm_f32(nx, &xnorm, x);
  8661. ggml_vec_norm_f32(nx, &gnorm, g);
  8662. if (xnorm < 1.0f) {
  8663. xnorm = 1.0f;
  8664. }
  8665. // already optimized
  8666. if (gnorm/xnorm <= params.lbfgs.eps) {
  8667. return GGML_OPT_OK;
  8668. }
  8669. // initial step
  8670. ggml_vec_norm_inv_f32(nx, &step, d);
  8671. int j = 0;
  8672. int k = 1;
  8673. int ls = 0;
  8674. int end = 0;
  8675. int bound = 0;
  8676. int n_no_improvement = 0;
  8677. float ys = 0.0f;
  8678. float yy = 0.0f;
  8679. float beta = 0.0f;
  8680. while (true) {
  8681. // store the current position and gradient vectors
  8682. ggml_vec_cpy_f32(nx, xp, x);
  8683. ggml_vec_cpy_f32(nx, gp, g);
  8684. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8685. if (ls < 0) {
  8686. // linesearch failed - go back to the previous point and return
  8687. ggml_vec_cpy_f32(nx, x, xp);
  8688. ggml_vec_cpy_f32(nx, g, gp);
  8689. return ls;
  8690. }
  8691. ggml_vec_norm_f32(nx, &xnorm, x);
  8692. ggml_vec_norm_f32(nx, &gnorm, g);
  8693. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8694. if (xnorm < 1.0f) {
  8695. xnorm = 1.0f;
  8696. }
  8697. if (gnorm/xnorm <= params.lbfgs.eps) {
  8698. // converged
  8699. return GGML_OPT_OK;
  8700. }
  8701. // delta-based convergence test
  8702. if (pf != NULL) {
  8703. // need at least params.past iterations to start checking for convergence
  8704. if (params.past <= k) {
  8705. const float rate = (pf[k%params.past] - fx)/fx;
  8706. if (fabsf(rate) < params.delta) {
  8707. return GGML_OPT_OK;
  8708. }
  8709. }
  8710. pf[k%params.past] = fx;
  8711. }
  8712. // check for improvement
  8713. if (params.max_no_improvement > 0) {
  8714. if (fx < fx_best) {
  8715. fx_best = fx;
  8716. n_no_improvement = 0;
  8717. } else {
  8718. n_no_improvement++;
  8719. if (n_no_improvement >= params.max_no_improvement) {
  8720. return GGML_OPT_OK;
  8721. }
  8722. }
  8723. }
  8724. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8725. // reached the maximum number of iterations
  8726. return GGML_OPT_DID_NOT_CONVERGE;
  8727. }
  8728. // update vectors s and y:
  8729. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8730. // y_{k+1} = g_{k+1} - g_{k}.
  8731. //
  8732. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8733. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8734. // compute scalars ys and yy:
  8735. // ys = y^t \cdot s -> 1 / \rho.
  8736. // yy = y^t \cdot y.
  8737. //
  8738. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8739. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8740. lm[end].ys = ys;
  8741. // find new search direction
  8742. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8743. bound = (m <= k) ? m : k;
  8744. k++;
  8745. end = (end + 1)%m;
  8746. // initialize search direction with -g
  8747. ggml_vec_neg_f32(nx, d, g);
  8748. j = end;
  8749. for (int i = 0; i < bound; ++i) {
  8750. j = (j + m - 1) % m;
  8751. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8752. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8753. lm[j].alpha /= lm[j].ys;
  8754. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8755. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8756. }
  8757. ggml_vec_scale_f32(nx, d, ys/yy);
  8758. for (int i = 0; i < bound; ++i) {
  8759. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8760. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8761. beta /= lm[j].ys;
  8762. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8763. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8764. j = (j + 1)%m;
  8765. }
  8766. step = 1.0;
  8767. }
  8768. return GGML_OPT_DID_NOT_CONVERGE;
  8769. }
  8770. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8771. struct ggml_opt_params result;
  8772. switch (type) {
  8773. case GGML_OPT_ADAM:
  8774. {
  8775. result = (struct ggml_opt_params) {
  8776. .type = GGML_OPT_ADAM,
  8777. .n_threads = 1,
  8778. .past = 0,
  8779. .delta = 1e-5f,
  8780. .max_no_improvement = 100,
  8781. .print_forward_graph = true,
  8782. .print_backward_graph = true,
  8783. .adam = {
  8784. .n_iter = 10000,
  8785. .alpha = 0.001f,
  8786. .beta1 = 0.9f,
  8787. .beta2 = 0.999f,
  8788. .eps = 1e-8f,
  8789. .eps_f = 1e-5f,
  8790. .eps_g = 1e-3f,
  8791. },
  8792. };
  8793. } break;
  8794. case GGML_OPT_LBFGS:
  8795. {
  8796. result = (struct ggml_opt_params) {
  8797. .type = GGML_OPT_LBFGS,
  8798. .n_threads = 1,
  8799. .past = 0,
  8800. .delta = 1e-5f,
  8801. .max_no_improvement = 0,
  8802. .print_forward_graph = true,
  8803. .print_backward_graph = true,
  8804. .lbfgs = {
  8805. .m = 6,
  8806. .n_iter = 100,
  8807. .max_linesearch = 20,
  8808. .eps = 1e-5f,
  8809. .ftol = 1e-4f,
  8810. .wolfe = 0.9f,
  8811. .min_step = 1e-20f,
  8812. .max_step = 1e+20f,
  8813. .linesearch = GGML_LINESEARCH_DEFAULT,
  8814. },
  8815. };
  8816. } break;
  8817. }
  8818. return result;
  8819. }
  8820. enum ggml_opt_result ggml_opt(
  8821. struct ggml_context * ctx,
  8822. struct ggml_opt_params params,
  8823. struct ggml_tensor * f) {
  8824. bool free_ctx = false;
  8825. if (ctx == NULL) {
  8826. struct ggml_init_params params_ctx = {
  8827. .mem_size = 16*1024*1024,
  8828. .mem_buffer = NULL,
  8829. .no_alloc = false,
  8830. };
  8831. ctx = ggml_init(params_ctx);
  8832. if (ctx == NULL) {
  8833. return GGML_OPT_NO_CONTEXT;
  8834. }
  8835. free_ctx = true;
  8836. }
  8837. enum ggml_opt_result result = GGML_OPT_OK;
  8838. // build forward + backward compute graphs
  8839. struct ggml_cgraph gf = ggml_build_forward (f);
  8840. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8841. switch (params.type) {
  8842. case GGML_OPT_ADAM:
  8843. {
  8844. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8845. } break;
  8846. case GGML_OPT_LBFGS:
  8847. {
  8848. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8849. } break;
  8850. }
  8851. if (params.print_forward_graph) {
  8852. ggml_graph_print (&gf);
  8853. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8854. }
  8855. if (params.print_backward_graph) {
  8856. ggml_graph_print (&gb);
  8857. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8858. }
  8859. if (free_ctx) {
  8860. ggml_free(ctx);
  8861. }
  8862. return result;
  8863. }
  8864. ////////////////////////////////////////////////////////////////////////////////
  8865. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8866. assert(k % QK == 0);
  8867. const int nb = k / QK;
  8868. for (int j = 0; j < n; j += k) {
  8869. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8870. quantize_row_q4_0_reference(src + j, y, k);
  8871. for (int i = 0; i < nb; i++) {
  8872. for (int l = 0; l < QK; l += 2) {
  8873. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8874. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8875. hist[vi0]++;
  8876. hist[vi1]++;
  8877. }
  8878. }
  8879. }
  8880. return (n/QK*sizeof(block_q4_0));
  8881. }
  8882. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8883. assert(k % QK == 0);
  8884. const int nb = k / QK;
  8885. for (int j = 0; j < n; j += k) {
  8886. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8887. quantize_row_q4_1_reference(src + j, y, k);
  8888. for (int i = 0; i < nb; i++) {
  8889. for (int l = 0; l < QK; l += 2) {
  8890. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8891. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8892. hist[vi0]++;
  8893. hist[vi1]++;
  8894. }
  8895. }
  8896. }
  8897. return (n/QK*sizeof(block_q4_1));
  8898. }
  8899. ////////////////////////////////////////////////////////////////////////////////
  8900. int ggml_cpu_has_avx(void) {
  8901. #if defined(__AVX__)
  8902. return 1;
  8903. #else
  8904. return 0;
  8905. #endif
  8906. }
  8907. int ggml_cpu_has_avx2(void) {
  8908. #if defined(__AVX2__)
  8909. return 1;
  8910. #else
  8911. return 0;
  8912. #endif
  8913. }
  8914. int ggml_cpu_has_avx512(void) {
  8915. #if defined(__AVX512F__)
  8916. return 1;
  8917. #else
  8918. return 0;
  8919. #endif
  8920. }
  8921. int ggml_cpu_has_fma(void) {
  8922. #if defined(__FMA__)
  8923. return 1;
  8924. #else
  8925. return 0;
  8926. #endif
  8927. }
  8928. int ggml_cpu_has_neon(void) {
  8929. #if defined(__ARM_NEON)
  8930. return 1;
  8931. #else
  8932. return 0;
  8933. #endif
  8934. }
  8935. int ggml_cpu_has_arm_fma(void) {
  8936. #if defined(__ARM_FEATURE_FMA)
  8937. return 1;
  8938. #else
  8939. return 0;
  8940. #endif
  8941. }
  8942. int ggml_cpu_has_f16c(void) {
  8943. #if defined(__F16C__)
  8944. return 1;
  8945. #else
  8946. return 0;
  8947. #endif
  8948. }
  8949. int ggml_cpu_has_fp16_va(void) {
  8950. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8951. return 1;
  8952. #else
  8953. return 0;
  8954. #endif
  8955. }
  8956. int ggml_cpu_has_wasm_simd(void) {
  8957. #if defined(__wasm_simd128__)
  8958. return 1;
  8959. #else
  8960. return 0;
  8961. #endif
  8962. }
  8963. int ggml_cpu_has_blas(void) {
  8964. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8965. return 1;
  8966. #else
  8967. return 0;
  8968. #endif
  8969. }
  8970. int ggml_cpu_has_sse3(void) {
  8971. #if defined(__SSE3__)
  8972. return 1;
  8973. #else
  8974. return 0;
  8975. #endif
  8976. }
  8977. int ggml_cpu_has_vsx(void) {
  8978. #if defined(__POWER9_VECTOR__)
  8979. return 1;
  8980. #else
  8981. return 0;
  8982. #endif
  8983. }
  8984. ////////////////////////////////////////////////////////////////////////////////