| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880 |
- #include "utils.hpp"
- #include "arg.h"
- #include "common.h"
- #include "json-schema-to-grammar.h"
- #include "llama.h"
- #include "log.h"
- #include "sampling.h"
- #include "speculative.h"
- #include "mtmd.h"
- // Change JSON_ASSERT from assert() to GGML_ASSERT:
- #define JSON_ASSERT GGML_ASSERT
- #include "json.hpp"
- // mime type for sending response
- #define MIMETYPE_JSON "application/json; charset=utf-8"
- // auto generated files (see README.md for details)
- #include "index.html.gz.hpp"
- #include "loading.html.hpp"
- #include <atomic>
- #include <chrono>
- #include <condition_variable>
- #include <cstddef>
- #include <cinttypes>
- #include <deque>
- #include <memory>
- #include <mutex>
- #include <signal.h>
- #include <thread>
- #include <unordered_map>
- #include <unordered_set>
- using json = nlohmann::ordered_json;
- constexpr int HTTP_POLLING_SECONDS = 1;
- enum stop_type {
- STOP_TYPE_NONE,
- STOP_TYPE_EOS,
- STOP_TYPE_WORD,
- STOP_TYPE_LIMIT,
- };
- // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
- enum slot_state {
- SLOT_STATE_IDLE,
- SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
- SLOT_STATE_PROCESSING_PROMPT,
- SLOT_STATE_DONE_PROMPT,
- SLOT_STATE_GENERATING,
- };
- enum server_state {
- SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
- SERVER_STATE_READY, // Server is ready and model is loaded
- };
- enum server_task_type {
- SERVER_TASK_TYPE_COMPLETION,
- SERVER_TASK_TYPE_EMBEDDING,
- SERVER_TASK_TYPE_RERANK,
- SERVER_TASK_TYPE_INFILL,
- SERVER_TASK_TYPE_CANCEL,
- SERVER_TASK_TYPE_NEXT_RESPONSE,
- SERVER_TASK_TYPE_METRICS,
- SERVER_TASK_TYPE_SLOT_SAVE,
- SERVER_TASK_TYPE_SLOT_RESTORE,
- SERVER_TASK_TYPE_SLOT_ERASE,
- SERVER_TASK_TYPE_SET_LORA,
- };
- enum oaicompat_type {
- OAICOMPAT_TYPE_NONE,
- OAICOMPAT_TYPE_CHAT,
- OAICOMPAT_TYPE_COMPLETION,
- OAICOMPAT_TYPE_EMBEDDING,
- };
- // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
- enum error_type {
- ERROR_TYPE_INVALID_REQUEST,
- ERROR_TYPE_AUTHENTICATION,
- ERROR_TYPE_SERVER,
- ERROR_TYPE_NOT_FOUND,
- ERROR_TYPE_PERMISSION,
- ERROR_TYPE_UNAVAILABLE, // custom error
- ERROR_TYPE_NOT_SUPPORTED, // custom error
- };
- struct slot_params {
- bool stream = true;
- bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
- bool return_tokens = false;
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
- int32_t n_predict = -1; // new tokens to predict
- int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
- int64_t t_max_prompt_ms = -1; // TODO: implement
- int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
- std::vector<common_adapter_lora_info> lora;
- std::vector<std::string> antiprompt;
- std::vector<std::string> response_fields;
- bool timings_per_token = false;
- bool post_sampling_probs = false;
- bool ignore_eos = false;
- struct common_params_sampling sampling;
- struct common_params_speculative speculative;
- // OAI-compat fields
- bool verbose = false;
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
- std::string oaicompat_model;
- std::string oaicompat_cmpl_id;
- common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
- json to_json() const {
- std::vector<std::string> samplers;
- samplers.reserve(sampling.samplers.size());
- for (const auto & sampler : sampling.samplers) {
- samplers.emplace_back(common_sampler_type_to_str(sampler));
- }
- json lora = json::array();
- for (size_t i = 0; i < this->lora.size(); ++i) {
- lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
- }
- auto grammar_triggers = json::array();
- for (const auto & trigger : sampling.grammar_triggers) {
- server_grammar_trigger ct(std::move(trigger));
- grammar_triggers.push_back(ct.to_json());
- }
- return json {
- {"n_predict", n_predict}, // Server configured n_predict
- {"seed", sampling.seed},
- {"temperature", sampling.temp},
- {"dynatemp_range", sampling.dynatemp_range},
- {"dynatemp_exponent", sampling.dynatemp_exponent},
- {"top_k", sampling.top_k},
- {"top_p", sampling.top_p},
- {"min_p", sampling.min_p},
- {"top_n_sigma", sampling.top_n_sigma},
- {"xtc_probability", sampling.xtc_probability},
- {"xtc_threshold", sampling.xtc_threshold},
- {"typical_p", sampling.typ_p},
- {"repeat_last_n", sampling.penalty_last_n},
- {"repeat_penalty", sampling.penalty_repeat},
- {"presence_penalty", sampling.penalty_present},
- {"frequency_penalty", sampling.penalty_freq},
- {"dry_multiplier", sampling.dry_multiplier},
- {"dry_base", sampling.dry_base},
- {"dry_allowed_length", sampling.dry_allowed_length},
- {"dry_penalty_last_n", sampling.dry_penalty_last_n},
- {"dry_sequence_breakers", sampling.dry_sequence_breakers},
- {"mirostat", sampling.mirostat},
- {"mirostat_tau", sampling.mirostat_tau},
- {"mirostat_eta", sampling.mirostat_eta},
- {"stop", antiprompt},
- {"max_tokens", n_predict}, // User configured n_predict
- {"n_keep", n_keep},
- {"n_discard", n_discard},
- {"ignore_eos", sampling.ignore_eos},
- {"stream", stream},
- {"logit_bias", format_logit_bias(sampling.logit_bias)},
- {"n_probs", sampling.n_probs},
- {"min_keep", sampling.min_keep},
- {"grammar", sampling.grammar},
- {"grammar_lazy", sampling.grammar_lazy},
- {"grammar_triggers", grammar_triggers},
- {"preserved_tokens", sampling.preserved_tokens},
- {"chat_format", common_chat_format_name(oaicompat_chat_format)},
- {"samplers", samplers},
- {"speculative.n_max", speculative.n_max},
- {"speculative.n_min", speculative.n_min},
- {"speculative.p_min", speculative.p_min},
- {"timings_per_token", timings_per_token},
- {"post_sampling_probs", post_sampling_probs},
- {"lora", lora},
- };
- }
- };
- struct server_task {
- int id = -1; // to be filled by server_queue
- int index = -1; // used when there are multiple prompts (batch request)
- server_task_type type;
- // used by SERVER_TASK_TYPE_CANCEL
- int id_target = -1;
- // used by SERVER_TASK_TYPE_INFERENCE
- slot_params params;
- server_tokens prompt_tokens;
- int id_selected_slot = -1;
- // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
- struct slot_action {
- int slot_id;
- std::string filename;
- std::string filepath;
- };
- slot_action slot_action;
- // used by SERVER_TASK_TYPE_METRICS
- bool metrics_reset_bucket = false;
- // used by SERVER_TASK_TYPE_SET_LORA
- std::vector<common_adapter_lora_info> set_lora;
- server_task(server_task_type type) : type(type) {}
- static slot_params params_from_json_cmpl(
- const llama_context * ctx,
- const common_params & params_base,
- const json & data) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- slot_params params;
- // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
- slot_params defaults;
- defaults.sampling = params_base.sampling;
- defaults.speculative = params_base.speculative;
- // enabling this will output extra debug information in the HTTP responses from the server
- params.verbose = params_base.verbosity > 9;
- params.timings_per_token = json_value(data, "timings_per_token", false);
- params.stream = json_value(data, "stream", false);
- params.cache_prompt = json_value(data, "cache_prompt", true);
- params.return_tokens = json_value(data, "return_tokens", false);
- params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
- params.n_indent = json_value(data, "n_indent", defaults.n_indent);
- params.n_keep = json_value(data, "n_keep", defaults.n_keep);
- params.n_discard = json_value(data, "n_discard", defaults.n_discard);
- //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
- params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
- params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
- params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
- params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
- params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
- params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
- params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
- params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
- params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
- params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
- params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
- params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
- params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
- params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
- params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
- params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
- params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
- params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
- params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
- params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
- params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
- params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
- params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
- params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
- params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
- params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
- params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
- params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
- params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
- params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
- params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
- params.speculative.n_min = std::max(params.speculative.n_min, 0);
- params.speculative.n_max = std::max(params.speculative.n_max, 0);
- // Use OpenAI API logprobs only if n_probs wasn't provided
- if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
- params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
- }
- if (data.contains("lora")) {
- if (data.at("lora").is_array()) {
- params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
- } else {
- throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
- }
- } else {
- params.lora = params_base.lora_adapters;
- }
- // TODO: add more sanity checks for the input parameters
- if (params.sampling.penalty_last_n < -1) {
- throw std::runtime_error("Error: repeat_last_n must be >= -1");
- }
- if (params.sampling.dry_penalty_last_n < -1) {
- throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
- }
- if (params.sampling.penalty_last_n == -1) {
- // note: should be the slot's context and not the full context, but it's ok
- params.sampling.penalty_last_n = llama_n_ctx(ctx);
- }
- if (params.sampling.dry_penalty_last_n == -1) {
- params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
- }
- if (params.sampling.dry_base < 1.0f) {
- params.sampling.dry_base = defaults.sampling.dry_base;
- }
- // sequence breakers for DRY
- {
- // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
- // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
- if (data.contains("dry_sequence_breakers")) {
- params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
- if (params.sampling.dry_sequence_breakers.empty()) {
- throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
- }
- }
- }
- // process "json_schema" and "grammar"
- if (data.contains("json_schema") && !data.contains("grammar")) {
- try {
- auto schema = json_value(data, "json_schema", json::object());
- SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
- params.sampling.grammar = json_schema_to_grammar(schema);
- SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
- } catch (const std::exception & e) {
- throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
- }
- } else {
- params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
- SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
- params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
- SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
- }
- {
- auto it = data.find("chat_format");
- if (it != data.end()) {
- params.oaicompat_chat_format = static_cast<common_chat_format>(it->get<int>());
- SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_format).c_str());
- } else {
- params.oaicompat_chat_format = defaults.oaicompat_chat_format;
- }
- }
- {
- const auto preserved_tokens = data.find("preserved_tokens");
- if (preserved_tokens != data.end()) {
- for (const auto & t : *preserved_tokens) {
- auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
- if (ids.size() == 1) {
- SRV_DBG("Preserved token: %d\n", ids[0]);
- params.sampling.preserved_tokens.insert(ids[0]);
- } else {
- // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
- SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
- }
- }
- }
- const auto grammar_triggers = data.find("grammar_triggers");
- if (grammar_triggers != data.end()) {
- for (const auto & t : *grammar_triggers) {
- server_grammar_trigger ct(t);
- if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
- const auto & word = ct.value.value;
- auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
- if (ids.size() == 1) {
- auto token = ids[0];
- if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
- throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
- }
- SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
- common_grammar_trigger trigger;
- trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
- trigger.value = word;
- trigger.token = token;
- params.sampling.grammar_triggers.push_back(std::move(trigger));
- } else {
- SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
- params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
- }
- } else {
- params.sampling.grammar_triggers.push_back(std::move(ct.value));
- }
- }
- }
- if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
- throw std::runtime_error("Error: no triggers set for lazy grammar!");
- }
- }
- {
- params.sampling.logit_bias.clear();
- params.ignore_eos = json_value(data, "ignore_eos", false);
- const auto & logit_bias = data.find("logit_bias");
- if (logit_bias != data.end() && logit_bias->is_array()) {
- const int n_vocab = llama_vocab_n_tokens(vocab);
- for (const auto & el : *logit_bias) {
- // TODO: we may want to throw errors here, in case "el" is incorrect
- if (el.is_array() && el.size() == 2) {
- float bias;
- if (el[1].is_number()) {
- bias = el[1].get<float>();
- } else if (el[1].is_boolean() && !el[1].get<bool>()) {
- bias = -INFINITY;
- } else {
- continue;
- }
- if (el[0].is_number_integer()) {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab) {
- params.sampling.logit_bias.push_back({tok, bias});
- }
- } else if (el[0].is_string()) {
- auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
- for (auto tok : toks) {
- params.sampling.logit_bias.push_back({tok, bias});
- }
- }
- }
- }
- }
- }
- {
- params.antiprompt.clear();
- const auto & stop = data.find("stop");
- if (stop != data.end() && stop->is_array()) {
- for (const auto & word : *stop) {
- if (!word.empty()) {
- params.antiprompt.push_back(word);
- }
- }
- }
- }
- {
- const auto samplers = data.find("samplers");
- if (samplers != data.end()) {
- if (samplers->is_array()) {
- params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
- } else if (samplers->is_string()){
- params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
- }
- } else {
- params.sampling.samplers = defaults.sampling.samplers;
- }
- }
- std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
- params.oaicompat_model = json_value(data, "model", model_name);
- return params;
- }
- // utility function
- static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
- std::unordered_set<int> ids(tasks.size());
- for (size_t i = 0; i < tasks.size(); i++) {
- ids.insert(tasks[i].id);
- }
- return ids;
- }
- };
- struct result_timings {
- int32_t prompt_n = -1;
- double prompt_ms;
- double prompt_per_token_ms;
- double prompt_per_second;
- int32_t predicted_n = -1;
- double predicted_ms;
- double predicted_per_token_ms;
- double predicted_per_second;
- // Optional speculative metrics - only included when > 0
- int32_t draft_n = 0;
- int32_t draft_n_accepted = 0;
- json to_json() const {
- json base = {
- {"prompt_n", prompt_n},
- {"prompt_ms", prompt_ms},
- {"prompt_per_token_ms", prompt_per_token_ms},
- {"prompt_per_second", prompt_per_second},
- {"predicted_n", predicted_n},
- {"predicted_ms", predicted_ms},
- {"predicted_per_token_ms", predicted_per_token_ms},
- {"predicted_per_second", predicted_per_second},
- };
- if (draft_n > 0) {
- base["draft_n"] = draft_n;
- base["draft_n_accepted"] = draft_n_accepted;
- }
- return base;
- }
- };
- struct server_task_result {
- int id = -1;
- int id_slot = -1;
- virtual bool is_error() {
- // only used by server_task_result_error
- return false;
- }
- virtual bool is_stop() {
- // only used by server_task_result_cmpl_*
- return false;
- }
- virtual int get_index() {
- return -1;
- }
- virtual json to_json() = 0;
- virtual ~server_task_result() = default;
- };
- // using shared_ptr for polymorphism of server_task_result
- using server_task_result_ptr = std::unique_ptr<server_task_result>;
- inline std::string stop_type_to_str(stop_type type) {
- switch (type) {
- case STOP_TYPE_EOS: return "eos";
- case STOP_TYPE_WORD: return "word";
- case STOP_TYPE_LIMIT: return "limit";
- default: return "none";
- }
- }
- struct completion_token_output {
- llama_token tok;
- float prob;
- std::string text_to_send;
- struct prob_info {
- llama_token tok;
- std::string txt;
- float prob;
- };
- std::vector<prob_info> probs;
- json to_json(bool post_sampling_probs) const {
- json probs_for_token = json::array();
- for (const auto & p : probs) {
- std::string txt(p.txt);
- txt.resize(validate_utf8(txt));
- probs_for_token.push_back(json {
- {"id", p.tok},
- {"token", txt},
- {"bytes", str_to_bytes(p.txt)},
- {
- post_sampling_probs ? "prob" : "logprob",
- post_sampling_probs ? p.prob : logarithm(p.prob)
- },
- });
- }
- return probs_for_token;
- }
- static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
- json out = json::array();
- for (const auto & p : probs) {
- std::string txt(p.text_to_send);
- txt.resize(validate_utf8(txt));
- out.push_back(json {
- {"id", p.tok},
- {"token", txt},
- {"bytes", str_to_bytes(p.text_to_send)},
- {
- post_sampling_probs ? "prob" : "logprob",
- post_sampling_probs ? p.prob : logarithm(p.prob)
- },
- {
- post_sampling_probs ? "top_probs" : "top_logprobs",
- p.to_json(post_sampling_probs)
- },
- });
- }
- return out;
- }
- static float logarithm(float x) {
- // nlohmann::json converts -inf to null, so we need to prevent that
- return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
- }
- static std::vector<unsigned char> str_to_bytes(const std::string & str) {
- std::vector<unsigned char> bytes;
- for (unsigned char c : str) {
- bytes.push_back(c);
- }
- return bytes;
- }
- };
- struct server_task_result_cmpl_final : server_task_result {
- int index = 0;
- std::string content;
- llama_tokens tokens;
- bool stream;
- result_timings timings;
- std::string prompt;
- bool truncated;
- int32_t n_decoded;
- int32_t n_prompt_tokens;
- int32_t n_tokens_cached;
- bool has_new_line;
- std::string stopping_word;
- stop_type stop = STOP_TYPE_NONE;
- bool post_sampling_probs;
- std::vector<completion_token_output> probs_output;
- std::vector<std::string> response_fields;
- slot_params generation_params;
- // OAI-compat fields
- bool verbose = false;
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
- std::string oaicompat_model;
- std::string oaicompat_cmpl_id;
- common_chat_format oaicompat_chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
- virtual int get_index() override {
- return index;
- }
- virtual bool is_stop() override {
- return true; // in stream mode, final responses are considered stop
- }
- virtual json to_json() override {
- switch (oaicompat) {
- case OAICOMPAT_TYPE_NONE:
- return to_json_non_oaicompat();
- case OAICOMPAT_TYPE_COMPLETION:
- return to_json_oaicompat();
- case OAICOMPAT_TYPE_CHAT:
- return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
- default:
- GGML_ASSERT(false && "Invalid oaicompat_type");
- }
- }
- json to_json_non_oaicompat() {
- json res = json {
- {"index", index},
- {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
- {"tokens", stream ? llama_tokens {} : tokens},
- {"id_slot", id_slot},
- {"stop", true},
- {"model", oaicompat_model},
- {"tokens_predicted", n_decoded},
- {"tokens_evaluated", n_prompt_tokens},
- {"generation_settings", generation_params.to_json()},
- {"prompt", prompt},
- {"has_new_line", has_new_line},
- {"truncated", truncated},
- {"stop_type", stop_type_to_str(stop)},
- {"stopping_word", stopping_word},
- {"tokens_cached", n_tokens_cached},
- {"timings", timings.to_json()},
- };
- if (!stream && !probs_output.empty()) {
- res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
- }
- return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
- }
- json to_json_oaicompat() {
- std::time_t t = std::time(0);
- json logprobs = json(nullptr); // OAI default to null
- if (!stream && probs_output.size() > 0) {
- logprobs = json{
- {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
- };
- }
- json finish_reason = "length";
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- finish_reason = "stop";
- }
- json res = json {
- {"choices", json::array({
- json{
- {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
- {"index", index},
- {"logprobs", logprobs},
- {"finish_reason", finish_reason},
- }
- })},
- {"created", t},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "text_completion"},
- {"usage", json {
- {"completion_tokens", n_decoded},
- {"prompt_tokens", n_prompt_tokens},
- {"total_tokens", n_decoded + n_prompt_tokens}
- }},
- {"id", oaicompat_cmpl_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = to_json_non_oaicompat();
- }
- if (timings.prompt_n >= 0) {
- res.push_back({"timings", timings.to_json()});
- }
- return res;
- }
- json to_json_oaicompat_chat() {
- std::string finish_reason = "length";
- common_chat_msg msg;
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- SRV_DBG("Parsing chat message: %s\n", content.c_str());
- msg = common_chat_parse(content, oaicompat_chat_format);
- finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
- } else {
- msg.content = content;
- }
- json message {
- {"role", "assistant"},
- };
- if (!msg.reasoning_content.empty()) {
- message["reasoning_content"] = msg.reasoning_content;
- }
- if (msg.content.empty() && !msg.tool_calls.empty()) {
- message["content"] = json();
- } else {
- message["content"] = msg.content;
- }
- if (!msg.tool_calls.empty()) {
- auto tool_calls = json::array();
- for (const auto & tc : msg.tool_calls) {
- tool_calls.push_back({
- {"type", "function"},
- {"function", {
- {"name", tc.name},
- {"arguments", tc.arguments},
- }},
- // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
- // We only generate a random id for the ones that don't generate one by themselves
- // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
- {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
- });
- }
- message["tool_calls"] = tool_calls;
- }
- json choice {
- {"finish_reason", finish_reason},
- {"index", 0},
- {"message", message},
- };
- if (!stream && probs_output.size() > 0) {
- choice["logprobs"] = json{
- {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
- };
- }
- std::time_t t = std::time(0);
- json res = json {
- {"choices", json::array({choice})},
- {"created", t},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion"},
- {"usage", json {
- {"completion_tokens", n_decoded},
- {"prompt_tokens", n_prompt_tokens},
- {"total_tokens", n_decoded + n_prompt_tokens}
- }},
- {"id", oaicompat_cmpl_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = to_json_non_oaicompat();
- }
- if (timings.prompt_n >= 0) {
- res.push_back({"timings", timings.to_json()});
- }
- return res;
- }
- json to_json_oaicompat_chat_stream() {
- std::time_t t = std::time(0);
- std::string finish_reason = "length";
- if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
- finish_reason = "stop";
- }
- json choice = json {
- {"finish_reason", finish_reason},
- {"index", 0},
- {"delta", json::object()}
- };
- json ret = json {
- {"choices", json::array({choice})},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion.chunk"},
- {"usage", json {
- {"completion_tokens", n_decoded},
- {"prompt_tokens", n_prompt_tokens},
- {"total_tokens", n_decoded + n_prompt_tokens},
- }},
- };
- if (timings.prompt_n >= 0) {
- ret.push_back({"timings", timings.to_json()});
- }
- // extra fields for debugging purposes
- if (verbose) {
- ret["__verbose"] = to_json_non_oaicompat();
- }
- return ret;
- }
- };
- struct server_task_result_cmpl_partial : server_task_result {
- int index = 0;
- std::string content;
- llama_tokens tokens;
- int32_t n_decoded;
- int32_t n_prompt_tokens;
- bool post_sampling_probs;
- completion_token_output prob_output;
- result_timings timings;
- // OAI-compat fields
- bool verbose = false;
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
- std::string oaicompat_model;
- std::string oaicompat_cmpl_id;
- virtual int get_index() override {
- return index;
- }
- virtual bool is_stop() override {
- return false; // in stream mode, partial responses are not considered stop
- }
- virtual json to_json() override {
- switch (oaicompat) {
- case OAICOMPAT_TYPE_NONE:
- return to_json_non_oaicompat();
- case OAICOMPAT_TYPE_COMPLETION:
- return to_json_oaicompat();
- case OAICOMPAT_TYPE_CHAT:
- return to_json_oaicompat_chat();
- default:
- GGML_ASSERT(false && "Invalid oaicompat_type");
- }
- }
- json to_json_non_oaicompat() {
- // non-OAI-compat JSON
- json res = json {
- {"index", index},
- {"content", content},
- {"tokens", tokens},
- {"stop", false},
- {"id_slot", id_slot},
- {"tokens_predicted", n_decoded},
- {"tokens_evaluated", n_prompt_tokens},
- };
- // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
- if (timings.prompt_n > 0) {
- res.push_back({"timings", timings.to_json()});
- }
- if (!prob_output.probs.empty()) {
- res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
- }
- return res;
- }
- json to_json_oaicompat() {
- std::time_t t = std::time(0);
- json logprobs = json(nullptr); // OAI default to null
- if (prob_output.probs.size() > 0) {
- logprobs = json{
- {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
- };
- }
- json res = json {
- {"choices", json::array({
- json{
- {"text", content},
- {"index", index},
- {"logprobs", logprobs},
- {"finish_reason", nullptr},
- }
- })},
- {"created", t},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "text_completion"},
- {"id", oaicompat_cmpl_id}
- };
- // extra fields for debugging purposes
- if (verbose) {
- res["__verbose"] = to_json_non_oaicompat();
- }
- if (timings.prompt_n >= 0) {
- res.push_back({"timings", timings.to_json()});
- }
- return res;
- }
- json to_json_oaicompat_chat() {
- bool first = n_decoded == 0;
- std::time_t t = std::time(0);
- json choices;
- if (first) {
- if (content.empty()) {
- choices = json::array({json{{"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{{"role", "assistant"}}}}});
- } else {
- // We have to send this as two updates to conform to openai behavior
- json initial_ret = json{{"choices", json::array({json{
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{
- {"role", "assistant"}
- }}}})},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"object", "chat.completion.chunk"}};
- json second_ret = json{
- {"choices", json::array({json{{"finish_reason", nullptr},
- {"index", 0},
- {"delta", json {
- {"content", content}}}
- }})},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"object", "chat.completion.chunk"}};
- return std::vector<json>({initial_ret, second_ret});
- }
- } else {
- choices = json::array({json{
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta",
- json {
- {"content", content},
- }},
- }});
- }
- GGML_ASSERT(choices.size() >= 1);
- if (prob_output.probs.size() > 0) {
- choices[0]["logprobs"] = json{
- {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
- };
- }
- json ret = json {
- {"choices", choices},
- {"created", t},
- {"id", oaicompat_cmpl_id},
- {"model", oaicompat_model},
- {"system_fingerprint", build_info},
- {"object", "chat.completion.chunk"}
- };
- if (timings.prompt_n >= 0) {
- ret.push_back({"timings", timings.to_json()});
- }
- return std::vector<json>({ret});
- }
- };
- struct server_task_result_embd : server_task_result {
- int index = 0;
- std::vector<std::vector<float>> embedding;
- int32_t n_tokens;
- // OAI-compat fields
- oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
- virtual int get_index() override {
- return index;
- }
- virtual json to_json() override {
- return oaicompat == OAICOMPAT_TYPE_EMBEDDING
- ? to_json_oaicompat()
- : to_json_non_oaicompat();
- }
- json to_json_non_oaicompat() {
- return json {
- {"index", index},
- {"embedding", embedding},
- };
- }
- json to_json_oaicompat() {
- return json {
- {"index", index},
- {"embedding", embedding[0]},
- {"tokens_evaluated", n_tokens},
- };
- }
- };
- struct server_task_result_rerank : server_task_result {
- int index = 0;
- float score = -1e6;
- int32_t n_tokens;
- virtual int get_index() override {
- return index;
- }
- virtual json to_json() override {
- return json {
- {"index", index},
- {"score", score},
- {"tokens_evaluated", n_tokens},
- };
- }
- };
- // this function maybe used outside of server_task_result_error
- static json format_error_response(const std::string & message, const enum error_type type) {
- std::string type_str;
- int code = 500;
- switch (type) {
- case ERROR_TYPE_INVALID_REQUEST:
- type_str = "invalid_request_error";
- code = 400;
- break;
- case ERROR_TYPE_AUTHENTICATION:
- type_str = "authentication_error";
- code = 401;
- break;
- case ERROR_TYPE_NOT_FOUND:
- type_str = "not_found_error";
- code = 404;
- break;
- case ERROR_TYPE_SERVER:
- type_str = "server_error";
- code = 500;
- break;
- case ERROR_TYPE_PERMISSION:
- type_str = "permission_error";
- code = 403;
- break;
- case ERROR_TYPE_NOT_SUPPORTED:
- type_str = "not_supported_error";
- code = 501;
- break;
- case ERROR_TYPE_UNAVAILABLE:
- type_str = "unavailable_error";
- code = 503;
- break;
- }
- return json {
- {"code", code},
- {"message", message},
- {"type", type_str},
- };
- }
- struct server_task_result_error : server_task_result {
- int index = 0;
- error_type err_type = ERROR_TYPE_SERVER;
- std::string err_msg;
- virtual bool is_error() override {
- return true;
- }
- virtual json to_json() override {
- return format_error_response(err_msg, err_type);
- }
- };
- struct server_task_result_metrics : server_task_result {
- int n_idle_slots;
- int n_processing_slots;
- int n_tasks_deferred;
- int64_t t_start;
- int32_t kv_cache_tokens_count;
- int32_t kv_cache_used_cells;
- // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
- uint64_t n_prompt_tokens_processed_total = 0;
- uint64_t t_prompt_processing_total = 0;
- uint64_t n_tokens_predicted_total = 0;
- uint64_t t_tokens_generation_total = 0;
- uint64_t n_prompt_tokens_processed = 0;
- uint64_t t_prompt_processing = 0;
- uint64_t n_tokens_predicted = 0;
- uint64_t t_tokens_generation = 0;
- uint64_t n_decode_total = 0;
- uint64_t n_busy_slots_total = 0;
- // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
- // therefore, we use json to temporarily store the slot.to_json() result
- json slots_data = json::array();
- virtual json to_json() override {
- return json {
- { "idle", n_idle_slots },
- { "processing", n_processing_slots },
- { "deferred", n_tasks_deferred },
- { "t_start", t_start },
- { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
- { "t_tokens_generation_total", t_tokens_generation_total },
- { "n_tokens_predicted_total", n_tokens_predicted_total },
- { "t_prompt_processing_total", t_prompt_processing_total },
- { "n_prompt_tokens_processed", n_prompt_tokens_processed },
- { "t_prompt_processing", t_prompt_processing },
- { "n_tokens_predicted", n_tokens_predicted },
- { "t_tokens_generation", t_tokens_generation },
- { "n_decode_total", n_decode_total },
- { "n_busy_slots_total", n_busy_slots_total },
- { "kv_cache_tokens_count", kv_cache_tokens_count },
- { "kv_cache_used_cells", kv_cache_used_cells },
- { "slots", slots_data },
- };
- }
- };
- struct server_task_result_slot_save_load : server_task_result {
- std::string filename;
- bool is_save; // true = save, false = load
- size_t n_tokens;
- size_t n_bytes;
- double t_ms;
- virtual json to_json() override {
- if (is_save) {
- return json {
- { "id_slot", id_slot },
- { "filename", filename },
- { "n_saved", n_tokens },
- { "n_written", n_bytes },
- { "timings", {
- { "save_ms", t_ms }
- }},
- };
- } else {
- return json {
- { "id_slot", id_slot },
- { "filename", filename },
- { "n_restored", n_tokens },
- { "n_read", n_bytes },
- { "timings", {
- { "restore_ms", t_ms }
- }},
- };
- }
- }
- };
- struct server_task_result_slot_erase : server_task_result {
- size_t n_erased;
- virtual json to_json() override {
- return json {
- { "id_slot", id_slot },
- { "n_erased", n_erased },
- };
- }
- };
- struct server_task_result_apply_lora : server_task_result {
- virtual json to_json() override {
- return json {{ "success", true }};
- }
- };
- struct server_slot {
- int id;
- int id_task = -1;
- // only used for completion/embedding/infill/rerank
- server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
- llama_batch batch_spec = {};
- llama_context * ctx = nullptr;
- llama_context * ctx_dft = nullptr;
- // multimodal
- mtmd_context * mctx = nullptr;
- common_speculative * spec = nullptr;
- std::vector<common_adapter_lora_info> lora;
- // the index relative to completion multi-task request
- size_t index = 0;
- struct slot_params params;
- slot_state state = SLOT_STATE_IDLE;
- // used to determine the slot that has been used the longest
- int64_t t_last_used = -1;
- // generation props
- int32_t n_ctx = 0; // context size per slot
- int32_t n_past = 0;
- int32_t n_decoded = 0;
- int32_t n_remaining = -1;
- int32_t i_batch = -1;
- int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
- // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
- int32_t n_prompt_tokens = 0;
- int32_t n_prompt_tokens_processed = 0;
- // input prompt tokens
- server_tokens prompt_tokens;
- size_t last_nl_pos = 0;
- std::string generated_text;
- llama_tokens generated_tokens;
- server_tokens cache_tokens;
- std::vector<completion_token_output> generated_token_probs;
- bool has_next_token = true;
- bool has_new_line = false;
- bool truncated = false;
- stop_type stop;
- std::string stopping_word;
- // sampling
- json json_schema;
- struct common_sampler * smpl = nullptr;
- llama_token sampled;
- common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
- // stats
- size_t n_sent_text = 0; // number of sent text character
- int64_t t_start_process_prompt;
- int64_t t_start_generation;
- double t_prompt_processing; // ms
- double t_token_generation; // ms
- std::function<void(int)> callback_on_release;
- // Speculative decoding stats
- int32_t n_draft_total = 0; // Total draft tokens generated
- int32_t n_draft_accepted = 0; // Draft tokens actually accepted
- void reset() {
- SLT_DBG(*this, "%s", "\n");
- n_prompt_tokens = 0;
- last_nl_pos = 0;
- generated_text = "";
- has_new_line = false;
- truncated = false;
- stop = STOP_TYPE_NONE;
- stopping_word = "";
- n_past = 0;
- n_sent_text = 0;
- task_type = SERVER_TASK_TYPE_COMPLETION;
- generated_tokens.clear();
- generated_token_probs.clear();
- // clear speculative decoding stats
- n_draft_total = 0;
- n_draft_accepted = 0;
- }
- bool is_non_causal() const {
- return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
- }
- bool can_batch_with(server_slot & other_slot) const {
- return is_non_causal() == other_slot.is_non_causal()
- && are_lora_equal(lora, other_slot.lora);
- }
- bool has_budget(const common_params & global_params) {
- if (params.n_predict == -1 && global_params.n_predict == -1) {
- return true; // limitless
- }
- n_remaining = -1;
- if (params.n_predict != -1) {
- n_remaining = params.n_predict - n_decoded;
- } else if (global_params.n_predict != -1) {
- n_remaining = global_params.n_predict - n_decoded;
- }
- return n_remaining > 0; // no budget
- }
- bool is_processing() const {
- return state != SLOT_STATE_IDLE;
- }
- bool can_speculate() const {
- return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
- }
- void add_token(const completion_token_output & token) {
- if (!is_processing()) {
- SLT_WRN(*this, "%s", "slot is not processing\n");
- return;
- }
- generated_token_probs.push_back(token);
- }
- void release() {
- if (is_processing()) {
- SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
- t_last_used = ggml_time_us();
- t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
- state = SLOT_STATE_IDLE;
- callback_on_release(id);
- }
- }
- result_timings get_timings() const {
- result_timings timings;
- timings.prompt_n = n_prompt_tokens_processed;
- timings.prompt_ms = t_prompt_processing;
- timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
- timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- timings.predicted_n = n_decoded;
- timings.predicted_ms = t_token_generation;
- timings.predicted_per_token_ms = t_token_generation / n_decoded;
- timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
- // Add speculative metrics
- if (n_draft_total > 0) {
- timings.draft_n = n_draft_total;
- timings.draft_n_accepted = n_draft_accepted;
- }
- return timings;
- }
- size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
- size_t stop_pos = std::string::npos;
- for (const std::string & word : params.antiprompt) {
- size_t pos;
- if (is_full_stop) {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- } else {
- // otherwise, partial stop
- pos = string_find_partial_stop(text, word);
- }
- if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
- if (is_full_stop) {
- stop = STOP_TYPE_WORD;
- stopping_word = word;
- has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- void print_timings() const {
- const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
- const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- const double t_gen = t_token_generation / n_decoded;
- const double n_gen_second = 1e3 / t_token_generation * n_decoded;
- SLT_INF(*this,
- "\n"
- "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
- " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
- " total time = %10.2f ms / %5d tokens\n",
- t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
- t_token_generation, n_decoded, t_gen, n_gen_second,
- t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
- if (n_draft_total > 0) {
- const float draft_ratio = (float) n_draft_accepted / n_draft_total;
- SLT_INF(*this,
- "\n"
- "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
- draft_ratio, n_draft_accepted, n_draft_total
- );
- }
- }
- json to_json() const {
- return json {
- {"id", id},
- {"id_task", id_task},
- {"n_ctx", n_ctx},
- {"speculative", can_speculate()},
- {"is_processing", is_processing()},
- {"non_causal", is_non_causal()},
- {"params", params.to_json()},
- {"prompt", prompt_tokens.detokenize(ctx, true)},
- {"next_token",
- {
- {"has_next_token", has_next_token},
- {"has_new_line", has_new_line},
- {"n_remain", n_remaining},
- {"n_decoded", n_decoded},
- {"stopping_word", stopping_word},
- }
- },
- };
- }
- };
- struct server_metrics {
- int64_t t_start = 0;
- uint64_t n_prompt_tokens_processed_total = 0;
- uint64_t t_prompt_processing_total = 0;
- uint64_t n_tokens_predicted_total = 0;
- uint64_t t_tokens_generation_total = 0;
- uint64_t n_prompt_tokens_processed = 0;
- uint64_t t_prompt_processing = 0;
- uint64_t n_tokens_predicted = 0;
- uint64_t t_tokens_generation = 0;
- uint64_t n_decode_total = 0;
- uint64_t n_busy_slots_total = 0;
- void init() {
- t_start = ggml_time_us();
- }
- void on_prompt_eval(const server_slot & slot) {
- n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
- n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
- t_prompt_processing += slot.t_prompt_processing;
- t_prompt_processing_total += slot.t_prompt_processing;
- }
- void on_prediction(const server_slot & slot) {
- n_tokens_predicted_total += slot.n_decoded;
- n_tokens_predicted += slot.n_decoded;
- t_tokens_generation += slot.t_token_generation;
- t_tokens_generation_total += slot.t_token_generation;
- }
- void on_decoded(const std::vector<server_slot> & slots) {
- n_decode_total++;
- for (const auto & slot : slots) {
- if (slot.is_processing()) {
- n_busy_slots_total++;
- }
- }
- }
- void reset_bucket() {
- n_prompt_tokens_processed = 0;
- t_prompt_processing = 0;
- n_tokens_predicted = 0;
- t_tokens_generation = 0;
- }
- };
- struct server_queue {
- int id = 0;
- bool running;
- // queues
- std::deque<server_task> queue_tasks;
- std::deque<server_task> queue_tasks_deferred;
- std::mutex mutex_tasks;
- std::condition_variable condition_tasks;
- // callback functions
- std::function<void(server_task &&)> callback_new_task;
- std::function<void(void)> callback_update_slots;
- // Add a new task to the end of the queue
- int post(server_task && task, bool front = false) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- GGML_ASSERT(task.id != -1);
- // if this is cancel task make sure to clean up pending tasks
- if (task.type == SERVER_TASK_TYPE_CANCEL) {
- cleanup_pending_task(task.id_target);
- }
- const int task_id = task.id;
- QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
- if (front) {
- queue_tasks.push_front(std::move(task));
- } else {
- queue_tasks.push_back(std::move(task));
- }
- condition_tasks.notify_one();
- return task_id;
- }
- // multi-task version of post()
- int post(std::vector<server_task> && tasks, bool front = false) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- for (auto & task : tasks) {
- if (task.id == -1) {
- task.id = id++;
- }
- // if this is cancel task make sure to clean up pending tasks
- if (task.type == SERVER_TASK_TYPE_CANCEL) {
- cleanup_pending_task(task.id_target);
- }
- QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
- if (front) {
- queue_tasks.push_front(std::move(task));
- } else {
- queue_tasks.push_back(std::move(task));
- }
- }
- condition_tasks.notify_one();
- return 0;
- }
- // Add a new task, but defer until one slot is available
- void defer(server_task && task) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- QUE_DBG("defer task, id = %d\n", task.id);
- queue_tasks_deferred.push_back(std::move(task));
- condition_tasks.notify_one();
- }
- // Get the next id for creating a new task
- int get_new_id() {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- int new_id = id++;
- return new_id;
- }
- // Register function to process a new task
- void on_new_task(std::function<void(server_task &&)> callback) {
- callback_new_task = std::move(callback);
- }
- // Register the function to be called when all slots data is ready to be processed
- void on_update_slots(std::function<void(void)> callback) {
- callback_update_slots = std::move(callback);
- }
- // Call when the state of one slot is changed, it will move one task from deferred to main queue
- void pop_deferred_task() {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (!queue_tasks_deferred.empty()) {
- queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
- queue_tasks_deferred.pop_front();
- }
- condition_tasks.notify_one();
- }
- // end the start_loop routine
- void terminate() {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- running = false;
- condition_tasks.notify_all();
- }
- /**
- * Main loop consists of these steps:
- * - Wait until a new task arrives
- * - Process the task (i.e. maybe copy data into slot)
- * - Check if multitask is finished
- * - Update all slots
- */
- void start_loop() {
- running = true;
- while (true) {
- QUE_DBG("%s", "processing new tasks\n");
- while (true) {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (!running) {
- QUE_DBG("%s", "terminate\n");
- return;
- }
- if (queue_tasks.empty()) {
- lock.unlock();
- break;
- }
- server_task task = std::move(queue_tasks.front());
- queue_tasks.pop_front();
- lock.unlock();
- QUE_DBG("processing task, id = %d\n", task.id);
- callback_new_task(std::move(task));
- }
- // all tasks in the current loop is processed, slots data is now ready
- QUE_DBG("%s", "update slots\n");
- callback_update_slots();
- QUE_DBG("%s", "waiting for new tasks\n");
- {
- std::unique_lock<std::mutex> lock(mutex_tasks);
- if (!running) {
- QUE_DBG("%s", "terminate\n");
- return;
- }
- if (queue_tasks.empty()) {
- condition_tasks.wait(lock, [&]{
- return (!queue_tasks.empty() || !running);
- });
- }
- }
- }
- }
- private:
- void cleanup_pending_task(int id_target) {
- // no need lock because this is called exclusively by post()
- auto rm_func = [id_target](const server_task & task) {
- return task.id_target == id_target;
- };
- queue_tasks.erase(
- std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
- queue_tasks.end());
- queue_tasks_deferred.erase(
- std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
- queue_tasks_deferred.end());
- }
- };
- struct server_response {
- bool running = true;
- // for keeping track of all tasks waiting for the result
- std::unordered_set<int> waiting_task_ids;
- // the main result queue (using ptr for polymorphism)
- std::vector<server_task_result_ptr> queue_results;
- std::mutex mutex_results;
- std::condition_variable condition_results;
- // add the id_task to the list of tasks waiting for response
- void add_waiting_task_id(int id_task) {
- SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
- std::unique_lock<std::mutex> lock(mutex_results);
- waiting_task_ids.insert(id_task);
- }
- void add_waiting_tasks(const std::vector<server_task> & tasks) {
- std::unique_lock<std::mutex> lock(mutex_results);
- for (const auto & task : tasks) {
- SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
- waiting_task_ids.insert(task.id);
- }
- }
- // when the request is finished, we can remove task associated with it
- void remove_waiting_task_id(int id_task) {
- SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
- std::unique_lock<std::mutex> lock(mutex_results);
- waiting_task_ids.erase(id_task);
- // make sure to clean up all pending results
- queue_results.erase(
- std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
- return res->id == id_task;
- }),
- queue_results.end());
- }
- void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
- std::unique_lock<std::mutex> lock(mutex_results);
- for (const auto & id_task : id_tasks) {
- SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
- waiting_task_ids.erase(id_task);
- }
- }
- // This function blocks the thread until there is a response for one of the id_tasks
- server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
- while (true) {
- std::unique_lock<std::mutex> lock(mutex_results);
- condition_results.wait(lock, [&]{
- if (!running) {
- SRV_DBG("%s : queue result stop\n", __func__);
- std::terminate(); // we cannot return here since the caller is HTTP code
- }
- return !queue_results.empty();
- });
- for (size_t i = 0; i < queue_results.size(); i++) {
- if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
- server_task_result_ptr res = std::move(queue_results[i]);
- queue_results.erase(queue_results.begin() + i);
- return res;
- }
- }
- }
- // should never reach here
- }
- // same as recv(), but have timeout in seconds
- // if timeout is reached, nullptr is returned
- server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
- while (true) {
- std::unique_lock<std::mutex> lock(mutex_results);
- for (int i = 0; i < (int) queue_results.size(); i++) {
- if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
- server_task_result_ptr res = std::move(queue_results[i]);
- queue_results.erase(queue_results.begin() + i);
- return res;
- }
- }
- std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
- if (!running) {
- SRV_DBG("%s : queue result stop\n", __func__);
- std::terminate(); // we cannot return here since the caller is HTTP code
- }
- if (cr_res == std::cv_status::timeout) {
- return nullptr;
- }
- }
- // should never reach here
- }
- // single-task version of recv()
- server_task_result_ptr recv(int id_task) {
- std::unordered_set<int> id_tasks = {id_task};
- return recv(id_tasks);
- }
- // Send a new result to a waiting id_task
- void send(server_task_result_ptr && result) {
- SRV_DBG("sending result for task id = %d\n", result->id);
- std::unique_lock<std::mutex> lock(mutex_results);
- for (const auto & id_task : waiting_task_ids) {
- if (result->id == id_task) {
- SRV_DBG("task id = %d pushed to result queue\n", result->id);
- queue_results.emplace_back(std::move(result));
- condition_results.notify_all();
- return;
- }
- }
- }
- // terminate the waiting loop
- void terminate() {
- running = false;
- condition_results.notify_all();
- }
- };
- struct server_context {
- common_params params_base;
- // note: keep these alive - they determine the lifetime of the model, context, etc.
- common_init_result llama_init;
- common_init_result llama_init_dft;
- llama_model * model = nullptr;
- llama_context * ctx = nullptr;
- // multimodal
- mtmd_context * mctx = nullptr;
- const llama_vocab * vocab = nullptr;
- llama_model * model_dft = nullptr;
- llama_context_params cparams_dft;
- llama_batch batch {};
- bool clean_kv_cache = true;
- bool add_bos_token = true;
- bool has_eos_token = false;
- int32_t n_ctx; // total context for all clients / slots
- // slots / clients
- std::vector<server_slot> slots;
- json default_generation_settings_for_props;
- server_queue queue_tasks;
- server_response queue_results;
- server_metrics metrics;
- // Necessary similarity of prompt for slot selection
- float slot_prompt_similarity = 0.0f;
- common_chat_templates_ptr chat_templates;
- ~server_context() {
- mtmd_free(mctx);
- // Clear any sampling context
- for (server_slot & slot : slots) {
- common_sampler_free(slot.smpl);
- slot.smpl = nullptr;
- llama_free(slot.ctx_dft);
- slot.ctx_dft = nullptr;
- common_speculative_free(slot.spec);
- slot.spec = nullptr;
- llama_batch_free(slot.batch_spec);
- }
- llama_batch_free(batch);
- }
- bool load_model(const common_params & params) {
- SRV_INF("loading model '%s'\n", params.model.path.c_str());
- params_base = params;
- llama_init = common_init_from_params(params_base);
- model = llama_init.model.get();
- ctx = llama_init.context.get();
- if (model == nullptr) {
- SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
- return false;
- }
- vocab = llama_model_get_vocab(model);
- n_ctx = llama_n_ctx(ctx);
- add_bos_token = llama_vocab_get_add_bos(vocab);
- has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
- if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
- SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
- auto params_dft = params_base;
- params_dft.devices = params_base.speculative.devices;
- params_dft.model = params_base.speculative.model;
- params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
- params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
- params_dft.n_parallel = 1;
- // force F16 KV cache for the draft model for extra performance
- params_dft.cache_type_k = GGML_TYPE_F16;
- params_dft.cache_type_v = GGML_TYPE_F16;
- llama_init_dft = common_init_from_params(params_dft);
- model_dft = llama_init_dft.model.get();
- if (model_dft == nullptr) {
- SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
- return false;
- }
- if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
- SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
- return false;
- }
- const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
- cparams_dft = common_context_params_to_llama(params_dft);
- cparams_dft.n_batch = n_ctx_dft;
- // the context is not needed - we will create one for each slot
- llama_init_dft.context.reset();
- }
- chat_templates = common_chat_templates_init(model, params_base.chat_template);
- try {
- common_chat_format_example(chat_templates.get(), params.use_jinja);
- } catch (const std::exception & e) {
- SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
- SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
- chat_templates = common_chat_templates_init(model, "chatml");
- }
- std::string & mmproj_path = params_base.mmproj.path;
- if (!mmproj_path.empty()) {
- mtmd_context_params mparams = mtmd_context_params_default();
- mparams.use_gpu = params_base.mmproj_use_gpu;
- mparams.print_timings = false;
- mparams.n_threads = params_base.cpuparams.n_threads;
- mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
- mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
- if (mctx == nullptr) {
- SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
- return false;
- }
- SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
- if (params_base.ctx_shift) {
- params_base.ctx_shift = false;
- SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
- }
- if (params_base.n_cache_reuse) {
- params_base.n_cache_reuse = 0;
- SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
- }
- if (!params_base.speculative.model.path.empty()) {
- SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
- return false;
- }
- }
- if (!llama_kv_self_can_shift(ctx)) {
- if (params_base.ctx_shift) {
- params_base.ctx_shift = false;
- SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
- }
- if (params_base.n_cache_reuse) {
- params_base.n_cache_reuse = 0;
- SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
- }
- if (!params_base.speculative.model.path.empty()) {
- SRV_ERR("%s\n", "err: speculative decode is not supported by this context");
- return false;
- }
- }
- return true;
- }
- void init() {
- const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
- SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
- for (int i = 0; i < params_base.n_parallel; i++) {
- server_slot slot;
- slot.id = i;
- slot.ctx = ctx;
- slot.n_ctx = n_ctx_slot;
- slot.n_predict = params_base.n_predict;
- slot.mctx = mctx;
- slot.cache_tokens.has_mtmd = mctx != nullptr;
- if (model_dft) {
- slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
- slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
- if (slot.ctx_dft == nullptr) {
- SRV_ERR("%s", "failed to create draft context\n");
- return;
- }
- slot.spec = common_speculative_init(slot.ctx_dft);
- if (slot.spec == nullptr) {
- SRV_ERR("%s", "failed to create speculator\n");
- return;
- }
- }
- SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
- slot.params.sampling = params_base.sampling;
- slot.callback_on_release = [this](int) {
- queue_tasks.pop_deferred_task();
- };
- slot.reset();
- slots.push_back(std::move(slot));
- }
- default_generation_settings_for_props = slots[0].to_json();
- // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
- // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
- {
- const int32_t n_batch = llama_n_batch(ctx);
- batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
- }
- metrics.init();
- }
- server_slot * get_slot_by_id(int id) {
- for (server_slot & slot : slots) {
- if (slot.id == id) {
- return &slot;
- }
- }
- return nullptr;
- }
- server_slot * get_available_slot(const server_task & task) {
- server_slot * ret = nullptr;
- // find the slot that has at least n% prompt similarity
- if (ret == nullptr && slot_prompt_similarity != 0.0f) {
- int lcs_len = 0;
- float similarity = 0;
- for (server_slot & slot : slots) {
- // skip the slot if it is not available
- if (slot.is_processing()) {
- continue;
- }
- // skip the slot if it does not contains cached tokens
- if (slot.cache_tokens.empty()) {
- continue;
- }
- // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
- int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
- // fraction of the common subsequence length compared to the current slot's prompt length
- float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
- // select the current slot if the criteria match
- if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
- lcs_len = cur_lcs_len;
- similarity = cur_similarity;
- ret = &slot;
- }
- }
- if (ret != nullptr) {
- SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
- }
- }
- // find the slot that has been least recently used
- if (ret == nullptr) {
- int64_t t_last = ggml_time_us();
- for (server_slot & slot : slots) {
- // skip the slot if it is not available
- if (slot.is_processing()) {
- continue;
- }
- // select the current slot if the criteria match
- if (slot.t_last_used < t_last) {
- t_last = slot.t_last_used;
- ret = &slot;
- }
- }
- if (ret != nullptr) {
- SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
- }
- }
- return ret;
- }
- bool launch_slot_with_task(server_slot & slot, server_task && task) {
- slot.reset();
- slot.id_task = task.id;
- slot.index = task.index;
- slot.task_type = task.type;
- slot.params = std::move(task.params);
- slot.prompt_tokens = std::move(task.prompt_tokens);
- if (!are_lora_equal(slot.params.lora, slot.lora)) {
- // if lora is changed, we cannot reuse cached tokens
- slot.cache_tokens.clear();
- slot.lora = slot.params.lora;
- }
- if (!slot.prompt_tokens.validate(ctx)) {
- send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
- if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
- // Might be better to reject the request with a 400 ?
- SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
- slot.params.n_predict = slot.n_predict;
- }
- if (slot.params.ignore_eos && has_eos_token) {
- slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
- }
- {
- if (slot.smpl != nullptr) {
- common_sampler_free(slot.smpl);
- }
- slot.smpl = common_sampler_init(model, slot.params.sampling);
- if (slot.smpl == nullptr) {
- // for now, the only error that may happen here is invalid grammar
- send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- }
- if (slot.ctx_dft) {
- llama_batch_free(slot.batch_spec);
- slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
- }
- slot.state = SLOT_STATE_STARTED;
- SLT_INF(slot, "%s", "processing task\n");
- return true;
- }
- void kv_cache_clear() {
- SRV_DBG("%s", "clearing KV cache\n");
- // clear the entire KV cache
- llama_kv_self_clear(ctx);
- clean_kv_cache = false;
- }
- bool process_token(completion_token_output & result, server_slot & slot) {
- // remember which tokens were sampled - used for repetition penalties during sampling
- const std::string token_str = result.text_to_send;
- slot.sampled = result.tok;
- slot.generated_text += token_str;
- if (slot.params.return_tokens) {
- slot.generated_tokens.push_back(result.tok);
- }
- slot.has_next_token = true;
- // check if there is incomplete UTF-8 character at the end
- bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
- // search stop word and delete it
- if (!incomplete) {
- size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
- const std::string str_test = slot.generated_text.substr(pos);
- bool send_text = true;
- size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
- if (stop_pos != std::string::npos) {
- slot.generated_text.erase(
- slot.generated_text.begin() + pos + stop_pos,
- slot.generated_text.end());
- pos = std::min(slot.n_sent_text, slot.generated_text.size());
- } else if (slot.has_next_token) {
- stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
- send_text = stop_pos == std::string::npos;
- }
- // check if there is any token to predict
- if (send_text) {
- // no send the stop word in the response
- result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
- slot.n_sent_text += result.text_to_send.size();
- // add the token to slot queue and cache
- } else {
- result.text_to_send = "";
- }
- slot.add_token(result);
- if (slot.params.stream) {
- send_partial_response(slot, result);
- }
- }
- if (incomplete) {
- slot.has_next_token = true;
- }
- // if context shifting is disabled, make sure that we don't run out of context
- if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
- }
- // check the limits
- if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
- }
- if (slot.has_new_line) {
- // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
- if (slot.params.n_indent > 0) {
- // check the current indentation
- // TODO: improve by not doing it more than once for each new line
- if (slot.last_nl_pos > 0) {
- size_t pos = slot.last_nl_pos;
- int n_indent = 0;
- while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
- n_indent++;
- pos++;
- }
- if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- // cut the last line
- slot.generated_text.erase(pos, std::string::npos);
- SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
- }
- }
- // find the next new line
- {
- const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
- if (pos != std::string::npos) {
- slot.last_nl_pos = pos + 1;
- }
- }
- }
- }
- // check if there is a new line in the generated text
- if (result.text_to_send.find('\n') != std::string::npos) {
- slot.has_new_line = true;
- // if we have seen a new line, we stop after a certain time limit, but only upon another new line
- if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
- }
- }
- // if context shift is disabled, we stop when it reaches the context limit
- if (slot.n_past >= slot.n_ctx) {
- slot.truncated = true;
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
- slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
- }
- if (llama_vocab_is_eog(vocab, result.tok)) {
- slot.stop = STOP_TYPE_EOS;
- slot.has_next_token = false;
- SLT_DBG(slot, "%s", "stopped by EOS\n");
- }
- const auto n_ctx_train = llama_model_n_ctx_train(model);
- if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
- slot.truncated = true;
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false; // stop prediction
- SLT_WRN(slot,
- "n_predict (%d) is set for infinite generation. "
- "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
- slot.params.n_predict, n_ctx_train);
- }
- SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
- return slot.has_next_token; // continue
- }
- void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
- size_t n_probs = slot.params.sampling.n_probs;
- size_t n_vocab = llama_vocab_n_tokens(vocab);
- if (post_sampling) {
- const auto * cur_p = common_sampler_get_candidates(slot.smpl);
- const size_t max_probs = cur_p->size;
- // set probability for sampled token
- for (size_t i = 0; i < max_probs; i++) {
- if (cur_p->data[i].id == result.tok) {
- result.prob = cur_p->data[i].p;
- break;
- }
- }
- // set probability for top n_probs tokens
- result.probs.reserve(max_probs);
- for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
- result.probs.push_back({
- cur_p->data[i].id,
- common_token_to_piece(ctx, cur_p->data[i].id, special),
- cur_p->data[i].p
- });
- }
- } else {
- // TODO: optimize this with min-p optimization
- std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
- // set probability for sampled token
- for (size_t i = 0; i < n_vocab; i++) {
- // set probability for sampled token
- if (cur[i].id == result.tok) {
- result.prob = cur[i].p;
- break;
- }
- }
- // set probability for top n_probs tokens
- result.probs.reserve(n_probs);
- for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
- result.probs.push_back({
- cur[i].id,
- common_token_to_piece(ctx, cur[i].id, special),
- cur[i].p
- });
- }
- }
- }
- void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- send_error(task.id, error, type);
- }
- void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- send_error(slot.id_task, error, type);
- }
- void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
- auto res = std::make_unique<server_task_result_error>();
- res->id = id_task;
- res->err_type = type;
- res->err_msg = error;
- queue_results.send(std::move(res));
- }
- // if multimodal is enabled, send an error and return false
- bool ensure_no_mtmd(const int id_task) {
- if (mctx) {
- send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
- return false;
- }
- return true;
- }
- void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
- auto res = std::make_unique<server_task_result_cmpl_partial>();
- res->id = slot.id_task;
- res->index = slot.index;
- res->content = tkn.text_to_send;
- res->tokens = { tkn.tok };
- res->n_decoded = slot.n_decoded;
- res->n_prompt_tokens = slot.n_prompt_tokens;
- res->post_sampling_probs = slot.params.post_sampling_probs;
- res->verbose = slot.params.verbose;
- res->oaicompat = slot.params.oaicompat;
- res->oaicompat_model = slot.params.oaicompat_model;
- res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
- // populate res.probs_output
- if (slot.params.sampling.n_probs > 0) {
- res->prob_output = tkn; // copy the token probs
- }
- // populate timings if this is final response or timings_per_token is enabled
- if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
- res->timings = slot.get_timings();
- }
- queue_results.send(std::move(res));
- }
- void send_final_response(server_slot & slot) {
- auto res = std::make_unique<server_task_result_cmpl_final>();
- res->id = slot.id_task;
- res->id_slot = slot.id;
- res->index = slot.index;
- res->content = std::move(slot.generated_text);
- res->tokens = std::move(slot.generated_tokens);
- res->timings = slot.get_timings();
- res->prompt = slot.prompt_tokens.detokenize(ctx, true);
- res->response_fields = std::move(slot.params.response_fields);
- res->truncated = slot.truncated;
- res->n_decoded = slot.n_decoded;
- res->n_prompt_tokens = slot.n_prompt_tokens;
- res->n_tokens_cached = slot.n_past;
- res->has_new_line = slot.has_new_line;
- res->stopping_word = slot.stopping_word;
- res->stop = slot.stop;
- res->post_sampling_probs = slot.params.post_sampling_probs;
- res->verbose = slot.params.verbose;
- res->stream = slot.params.stream;
- res->oaicompat = slot.params.oaicompat;
- res->oaicompat_model = slot.params.oaicompat_model;
- res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
- res->oaicompat_chat_format = slot.params.oaicompat_chat_format;
- // populate res.probs_output
- if (slot.params.sampling.n_probs > 0) {
- if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
- const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
- size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
- res->probs_output = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end() - safe_offset);
- } else {
- res->probs_output = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end());
- }
- }
- res->generation_params = slot.params; // copy the parameters
- queue_results.send(std::move(res));
- }
- void send_embedding(const server_slot & slot, const llama_batch & batch) {
- auto res = std::make_unique<server_task_result_embd>();
- res->id = slot.id_task;
- res->index = slot.index;
- res->n_tokens = slot.n_prompt_tokens;
- res->oaicompat = slot.params.oaicompat;
- const int n_embd = llama_model_n_embd(model);
- std::vector<float> embd_res(n_embd, 0.0f);
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- }
- if (embd == NULL) {
- SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
- continue;
- }
- // normalize only when there is pooling
- // TODO: configurable
- if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
- common_embd_normalize(embd, embd_res.data(), n_embd, 2);
- res->embedding.push_back(embd_res);
- } else {
- res->embedding.push_back({ embd, embd + n_embd });
- }
- }
- SLT_DBG(slot, "%s", "sending embeddings\n");
- queue_results.send(std::move(res));
- }
- void send_rerank(const server_slot & slot, const llama_batch & batch) {
- auto res = std::make_unique<server_task_result_rerank>();
- res->id = slot.id_task;
- res->index = slot.index;
- res->n_tokens = slot.n_prompt_tokens;
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- }
- if (embd == NULL) {
- SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res->score = -1e6;
- continue;
- }
- res->score = embd[0];
- }
- SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
- queue_results.send(std::move(res));
- }
- //
- // Functions to create new task(s) and receive result(s)
- //
- void cancel_tasks(const std::unordered_set<int> & id_tasks) {
- std::vector<server_task> cancel_tasks;
- cancel_tasks.reserve(id_tasks.size());
- for (const auto & id_task : id_tasks) {
- SRV_WRN("cancel task, id_task = %d\n", id_task);
- server_task task(SERVER_TASK_TYPE_CANCEL);
- task.id_target = id_task;
- queue_results.remove_waiting_task_id(id_task);
- cancel_tasks.push_back(std::move(task));
- }
- // push to beginning of the queue, so it has highest priority
- queue_tasks.post(std::move(cancel_tasks), true);
- }
- // receive the results from task(s)
- void receive_multi_results(
- const std::unordered_set<int> & id_tasks,
- const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
- const std::function<void(json)> & error_handler,
- const std::function<bool()> & is_connection_closed) {
- std::vector<server_task_result_ptr> results(id_tasks.size());
- for (int i = 0; i < (int)id_tasks.size(); i++) {
- server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
- if (is_connection_closed()) {
- cancel_tasks(id_tasks);
- return;
- }
- if (result == nullptr) {
- i--; // retry
- continue;
- }
- if (result->is_error()) {
- error_handler(result->to_json());
- cancel_tasks(id_tasks);
- return;
- }
- GGML_ASSERT(
- dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
- || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
- || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
- );
- const size_t idx = result->get_index();
- GGML_ASSERT(idx < results.size() && "index out of range");
- results[idx] = std::move(result);
- }
- result_handler(results);
- }
- // receive the results from task(s), in stream mode
- void receive_cmpl_results_stream(
- const std::unordered_set<int> & id_tasks,
- const std::function<bool(server_task_result_ptr&)> & result_handler,
- const std::function<void(json)> & error_handler,
- const std::function<bool()> & is_connection_closed) {
- size_t n_finished = 0;
- while (true) {
- server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
- if (is_connection_closed()) {
- cancel_tasks(id_tasks);
- return;
- }
- if (result == nullptr) {
- continue; // retry
- }
- if (result->is_error()) {
- error_handler(result->to_json());
- cancel_tasks(id_tasks);
- return;
- }
- GGML_ASSERT(
- dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
- || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
- );
- if (!result_handler(result)) {
- cancel_tasks(id_tasks);
- break;
- }
- if (result->is_stop()) {
- if (++n_finished == id_tasks.size()) {
- break;
- }
- }
- }
- }
- //
- // Functions to process the task
- //
- void process_single_task(server_task && task) {
- switch (task.type) {
- case SERVER_TASK_TYPE_COMPLETION:
- case SERVER_TASK_TYPE_INFILL:
- case SERVER_TASK_TYPE_EMBEDDING:
- case SERVER_TASK_TYPE_RERANK:
- {
- const int id_slot = task.id_selected_slot;
- server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
- if (slot == nullptr) {
- // if no slot is available, we defer this task for processing later
- SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- if (!launch_slot_with_task(*slot, std::move(task))) {
- SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
- break;
- }
- } break;
- case SERVER_TASK_TYPE_CANCEL:
- {
- // release slot linked with the task id
- for (auto & slot : slots) {
- if (slot.id_task == task.id_target) {
- slot.release();
- break;
- }
- }
- } break;
- case SERVER_TASK_TYPE_NEXT_RESPONSE:
- {
- // do nothing
- } break;
- case SERVER_TASK_TYPE_METRICS:
- {
- json slots_data = json::array();
- int n_idle_slots = 0;
- int n_processing_slots = 0;
- for (server_slot & slot : slots) {
- json slot_data = slot.to_json();
- if (slot.is_processing()) {
- n_processing_slots++;
- } else {
- n_idle_slots++;
- }
- slots_data.push_back(slot_data);
- }
- SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
- auto res = std::make_unique<server_task_result_metrics>();
- res->id = task.id;
- res->slots_data = std::move(slots_data);
- res->n_idle_slots = n_idle_slots;
- res->n_processing_slots = n_processing_slots;
- res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
- res->t_start = metrics.t_start;
- res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
- res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
- res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
- res->t_prompt_processing_total = metrics.t_prompt_processing_total;
- res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
- res->t_tokens_generation_total = metrics.t_tokens_generation_total;
- res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
- res->t_prompt_processing = metrics.t_prompt_processing;
- res->n_tokens_predicted = metrics.n_tokens_predicted;
- res->t_tokens_generation = metrics.t_tokens_generation;
- res->n_decode_total = metrics.n_decode_total;
- res->n_busy_slots_total = metrics.n_busy_slots_total;
- if (task.metrics_reset_bucket) {
- metrics.reset_bucket();
- }
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SLOT_SAVE:
- {
- if (!ensure_no_mtmd(task.id)) {
- break;
- }
- int id_slot = task.slot_action.slot_id;
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- const size_t token_count = slot->cache_tokens.size();
- const int64_t t_start = ggml_time_us();
- std::string filename = task.slot_action.filename;
- std::string filepath = task.slot_action.filepath;
- const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
- const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
- const int64_t t_end = ggml_time_us();
- const double t_save_ms = (t_end - t_start) / 1000.0;
- auto res = std::make_unique<server_task_result_slot_save_load>();
- res->id = task.id;
- res->id_slot = id_slot;
- res->filename = filename;
- res->is_save = true;
- res->n_tokens = token_count;
- res->n_bytes = nwrite;
- res->t_ms = t_save_ms;
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SLOT_RESTORE:
- {
- if (!ensure_no_mtmd(task.id)) break;
- int id_slot = task.slot_action.slot_id;
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- const int64_t t_start = ggml_time_us();
- std::string filename = task.slot_action.filename;
- std::string filepath = task.slot_action.filepath;
- llama_tokens tokens;
- tokens.resize(slot->n_ctx);
- size_t token_count = 0;
- size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
- if (nread == 0) {
- slot->cache_tokens.clear(); // KV may already been invalidated?
- send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- tokens.resize(token_count);
- slot->cache_tokens.clear();
- slot->cache_tokens.insert(tokens);
- const int64_t t_end = ggml_time_us();
- const double t_restore_ms = (t_end - t_start) / 1000.0;
- auto res = std::make_unique<server_task_result_slot_save_load>();
- res->id = task.id;
- res->id_slot = id_slot;
- res->filename = filename;
- res->is_save = false;
- res->n_tokens = token_count;
- res->n_bytes = nread;
- res->t_ms = t_restore_ms;
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SLOT_ERASE:
- {
- if (!ensure_no_mtmd(task.id)) break;
- int id_slot = task.slot_action.slot_id;
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- // Erase token cache
- const size_t n_erased = slot->cache_tokens.size();
- llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
- slot->cache_tokens.clear();
- auto res = std::make_unique<server_task_result_slot_erase>();
- res->id = task.id;
- res->id_slot = id_slot;
- res->n_erased = n_erased;
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SET_LORA:
- {
- params_base.lora_adapters = std::move(task.set_lora);
- auto res = std::make_unique<server_task_result_apply_lora>();
- res->id = task.id;
- queue_results.send(std::move(res));
- } break;
- }
- }
- void update_slots() {
- // check if all slots are idle
- {
- bool all_idle = true;
- for (auto & slot : slots) {
- if (slot.is_processing()) {
- all_idle = false;
- break;
- }
- }
- if (all_idle) {
- SRV_INF("%s", "all slots are idle\n");
- if (clean_kv_cache) {
- kv_cache_clear();
- }
- return;
- }
- }
- {
- SRV_DBG("%s", "posting NEXT_RESPONSE\n");
- server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
- task.id = queue_tasks.get_new_id();
- queue_tasks.post(std::move(task));
- }
- // apply context-shift if needed
- // TODO: simplify and improve
- for (server_slot & slot : slots) {
- if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
- if (!params_base.ctx_shift) {
- // this check is redundant (for good)
- // we should never get here, because generation should already stopped in process_token()
- slot.release();
- send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
- continue;
- }
- if (mctx) {
- // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
- // we don't support ctx_shift because an image chunk may contains multiple tokens
- GGML_ABORT("not supported by multimodal");
- }
- // Shift context
- const int n_keep = slot.params.n_keep + add_bos_token;
- const int n_left = slot.n_past - n_keep;
- const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
- SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
- llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
- llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
- // add generated tokens to cache
- {
- llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
- for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
- new_tokens[i - n_discard] = new_tokens[i];
- }
- new_tokens.resize(slot.cache_tokens.size() - n_discard);
- slot.cache_tokens.clear();
- slot.cache_tokens.insert(new_tokens);
- }
- slot.n_past -= n_discard;
- slot.truncated = true;
- }
- }
- // start populating the batch for this iteration
- common_batch_clear(batch);
- // track if given slot can be batched with slots already in the batch
- server_slot * slot_batched = nullptr;
- auto accept_special_token = [&](server_slot & slot, llama_token token) {
- return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
- };
- // frist, add sampled tokens from any ongoing sequences
- for (auto & slot : slots) {
- if (slot.state != SLOT_STATE_GENERATING) {
- continue;
- }
- // check if we can batch this slot with the previous one
- if (!slot_batched) {
- slot_batched = &slot;
- } else if (!slot_batched->can_batch_with(slot)) {
- continue;
- }
- slot.i_batch = batch.n_tokens;
- common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
- slot.n_past += 1;
- slot.cache_tokens.push_back(slot.sampled);
- SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
- slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
- }
- // process in chunks of params.n_batch
- int32_t n_batch = llama_n_batch(ctx);
- int32_t n_ubatch = llama_n_ubatch(ctx);
- // next, batch any pending prompts without exceeding n_batch
- if (params_base.cont_batching || batch.n_tokens == 0) {
- for (auto & slot : slots) {
- // check if we can batch this slot with the previous one
- if (slot.is_processing()) {
- if (!slot_batched) {
- slot_batched = &slot;
- } else if (!slot_batched->can_batch_with(slot)) {
- continue;
- }
- }
- // this slot still has a prompt to be processed
- if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
- auto & prompt_tokens = slot.prompt_tokens;
- // TODO: maybe move branch to outside of this loop in the future
- if (slot.state == SLOT_STATE_STARTED) {
- slot.t_start_process_prompt = ggml_time_us();
- slot.t_start_generation = 0;
- slot.n_past = 0;
- slot.n_prompt_tokens = prompt_tokens.size();
- slot.state = SLOT_STATE_PROCESSING_PROMPT;
- SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
- // print prompt tokens (for debugging)
- /*if (1) {
- // first 16 tokens (avoid flooding logs)
- for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
- SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- }
- } else {
- // all
- for (int i = 0; i < (int) prompt_tokens.size(); i++) {
- SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- }
- }*/
- // empty prompt passed -> release the slot and send empty response
- if (prompt_tokens.empty()) {
- SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- continue;
- }
- if (slot.is_non_causal()) {
- if (slot.n_prompt_tokens > n_ubatch) {
- slot.release();
- send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
- continue;
- }
- if (slot.n_prompt_tokens > slot.n_ctx) {
- slot.release();
- send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
- continue;
- }
- } else {
- if (!params_base.ctx_shift) {
- // if context shift is disabled, we make sure prompt size is smaller than KV size
- // TODO: there should be a separate parameter that control prompt truncation
- // context shift should be applied only during the generation phase
- if (slot.n_prompt_tokens >= slot.n_ctx) {
- slot.release();
- send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
- continue;
- }
- }
- if (slot.params.n_keep < 0) {
- slot.params.n_keep = slot.n_prompt_tokens;
- }
- slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
- // if input prompt is too big, truncate it
- if (slot.n_prompt_tokens >= slot.n_ctx) {
- if (mctx) {
- // we should never reach this
- GGML_ABORT("not supported by multimodal");
- }
- const int n_left = slot.n_ctx - slot.params.n_keep;
- const int n_block_size = n_left / 2;
- const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
- const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
- llama_tokens new_tokens(
- curr_tokens.begin(),
- curr_tokens.begin() + slot.params.n_keep);
- new_tokens.insert(
- new_tokens.end(),
- curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
- curr_tokens.end());
- prompt_tokens.clear();
- prompt_tokens.insert(new_tokens);
- slot.truncated = true;
- slot.n_prompt_tokens = prompt_tokens.size();
- SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
- GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
- }
- if (slot.params.cache_prompt) {
- // reuse any previously computed tokens that are common with the new prompt
- slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
- // reuse chunks from the cached prompt by shifting their KV cache in the new position
- if (params_base.n_cache_reuse > 0) {
- size_t head_c = slot.n_past; // cache
- size_t head_p = slot.n_past; // current prompt
- if (mctx) {
- // we should never reach this
- GGML_ABORT("not supported by multimodal");
- }
- SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
- while (head_c < slot.cache_tokens.size() &&
- head_p < prompt_tokens.size()) {
- size_t n_match = 0;
- while (head_c + n_match < slot.cache_tokens.size() &&
- head_p + n_match < prompt_tokens.size() &&
- slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
- n_match++;
- }
- if (n_match >= (size_t) params_base.n_cache_reuse) {
- SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
- //for (size_t i = head_p; i < head_p + n_match; i++) {
- // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- //}
- const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
- llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
- llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
- for (size_t i = 0; i < n_match; i++) {
- slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
- slot.n_past++;
- }
- head_c += n_match;
- head_p += n_match;
- } else {
- head_c += 1;
- }
- }
- SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
- }
- } else {
- // if we don't cache the prompt, we have to remove the entire KV cache
- llama_kv_self_seq_rm(ctx, slot.id, 0, -1);
- slot.n_past = 0;
- slot.cache_tokens.clear(); // TODO: not needed, will be cleared later via "keep_first()"
- }
- if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
- if (llama_kv_self_seq_pos_min(ctx, slot.id) > 0) {
- SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
- "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
- slot.n_past = 0;
- }
- }
- }
- if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
- // we have to evaluate at least 1 token to generate logits.
- SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
- slot.n_past--;
- }
- slot.n_prompt_tokens_processed = 0;
- }
- // non-causal tasks require to fit the entire prompt in the physical batch
- if (slot.is_non_causal()) {
- // cannot fit the prompt in the current batch - will try next iter
- if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
- continue;
- }
- }
- // keep only the common part
- if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
- // could not partially delete (likely using a non-Transformer model)
- llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
- // there is no common part left
- slot.n_past = 0;
- }
- SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
- // remove the non-common part from the cache
- slot.cache_tokens.keep_first(slot.n_past);
- // check if we should process the image
- if (slot.n_past < slot.n_prompt_tokens
- && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
- // process the image
- int32_t new_n_past;
- int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
- int32_t n_pos = new_n_past - slot.n_past;
- if (res != 0) {
- SLT_ERR(slot, "failed to process image, res = %d\n", res);
- slot.release();
- send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
- continue;
- }
- // add the image chunk to cache
- {
- const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
- slot.cache_tokens.push_back(chunk.get()); // copy
- }
- slot.n_past += n_pos;
- slot.n_prompt_tokens_processed += n_pos;
- }
- // add prompt tokens for processing in the current batch
- while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
- // get next token to process
- llama_token cur_tok = slot.prompt_tokens[slot.n_past];
- if (cur_tok == LLAMA_TOKEN_NULL) {
- break; // end of text chunk
- }
- // without pooling, we want to output the embeddings for all the tokens in the batch
- const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
- common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
- slot.cache_tokens.push_back(cur_tok);
- slot.n_prompt_tokens_processed++;
- slot.n_past++;
- }
- // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
- SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
- // entire prompt has been processed
- if (slot.n_past == slot.n_prompt_tokens) {
- slot.state = SLOT_STATE_DONE_PROMPT;
- GGML_ASSERT(batch.n_tokens > 0);
- GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
- common_sampler_reset(slot.smpl);
- // Process all prompt tokens through sampler system
- for (int i = 0; i < slot.n_prompt_tokens; ++i) {
- llama_token id = slot.prompt_tokens[i];
- if (id != LLAMA_TOKEN_NULL) {
- common_sampler_accept(slot.smpl, id, false);
- }
- }
- // extract the logits only for the last token
- batch.logits[batch.n_tokens - 1] = true;
- slot.n_decoded = 0;
- slot.i_batch = batch.n_tokens - 1;
- SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
- }
- }
- if (batch.n_tokens >= n_batch) {
- break;
- }
- }
- }
- if (batch.n_tokens == 0) {
- SRV_WRN("%s", "no tokens to decode\n");
- return;
- }
- SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
- if (slot_batched) {
- // make sure we're in the right embedding mode
- llama_set_embeddings(ctx, slot_batched->is_non_causal());
- // apply lora, only need to do it once per batch
- common_set_adapter_lora(ctx, slot_batched->lora);
- }
- // process the created batch of tokens
- for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
- const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- };
- int ret = 0;
- if (params_base.embedding || params_base.reranking) {
- ret = llama_encode(ctx, batch_view);
- } else {
- ret = llama_decode(ctx, batch_view);
- }
- metrics.on_decoded(slots);
- if (ret != 0) {
- if (n_batch == 1 || ret < 0) {
- // if you get here, it means the KV cache is full - try increasing it via the context size
- SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
- for (auto & slot : slots) {
- slot.release();
- send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
- }
- break; // break loop of n_batch
- }
- // retry with half the batch size to try to find a free slot in the KV cache
- n_batch /= 2;
- i -= n_batch;
- SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
- continue; // continue loop of n_batch
- }
- for (auto & slot : slots) {
- if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
- continue; // continue loop of slots
- }
- if (slot.state == SLOT_STATE_DONE_PROMPT) {
- if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
- // prompt evaluated for embedding
- send_embedding(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue; // continue loop of slots
- }
- if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
- send_rerank(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue; // continue loop of slots
- }
- // prompt evaluated for next-token prediction
- slot.state = SLOT_STATE_GENERATING;
- } else if (slot.state != SLOT_STATE_GENERATING) {
- continue; // continue loop of slots
- }
- const int tok_idx = slot.i_batch - i;
- llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
- slot.i_batch = -1;
- common_sampler_accept(slot.smpl, id, true);
- slot.n_decoded += 1;
- const int64_t t_current = ggml_time_us();
- if (slot.n_decoded == 1) {
- slot.t_start_generation = t_current;
- slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
- metrics.on_prompt_eval(slot);
- }
- slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
- completion_token_output result;
- result.tok = id;
- result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
- result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
- if (slot.params.sampling.n_probs > 0) {
- populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
- }
- if (!process_token(result, slot)) {
- // release slot because of stop condition
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- continue;
- }
- }
- // do speculative decoding
- for (auto & slot : slots) {
- if (!slot.is_processing() || !slot.can_speculate()) {
- continue;
- }
- if (slot.state != SLOT_STATE_GENERATING) {
- continue;
- }
- if (mctx) {
- // we should never reach this, as speculative is automatically disabled if mmproj is loaded
- GGML_ABORT("not supported by multimodal");
- }
- // determine the max draft that fits the current slot state
- int n_draft_max = slot.params.speculative.n_max;
- // note: n_past is not yet increased for the `id` token sampled above
- // also, need to leave space for 1 extra token to allow context shifts
- n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
- if (slot.n_remaining > 0) {
- n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
- }
- SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
- if (n_draft_max < slot.params.speculative.n_min) {
- SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
- continue;
- }
- llama_token id = slot.sampled;
- struct common_speculative_params params_spec;
- params_spec.n_draft = n_draft_max;
- params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
- params_spec.p_min = slot.params.speculative.p_min;
- const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
- llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
- // keep track of total number of tokens generated in the draft
- slot.n_draft_total += draft.size();
- // ignore small drafts
- if (slot.params.speculative.n_min > (int) draft.size()) {
- SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
- continue;
- }
- // construct the speculation batch
- common_batch_clear(slot.batch_spec);
- common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
- for (size_t i = 0; i < draft.size(); ++i) {
- common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
- }
- SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
- llama_decode(ctx, slot.batch_spec);
- // the accepted tokens from the speculation
- const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
- slot.n_past += ids.size();
- slot.n_decoded += ids.size();
- // update how many tokens out of draft was accepted
- slot.n_draft_accepted += ids.size() - 1;
- slot.cache_tokens.push_back(id);
- slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
- llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
- for (size_t i = 0; i < ids.size(); ++i) {
- completion_token_output result;
- result.tok = ids[i];
- result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
- result.prob = 1.0f; // set later
- // TODO: set result.probs
- if (!process_token(result, slot)) {
- // release slot because of stop condition
- slot.release();
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- break;
- }
- }
- SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
- }
- }
- SRV_DBG("%s", "run slots completed\n");
- }
- json model_meta() const {
- return json {
- {"vocab_type", llama_vocab_type (vocab)},
- {"n_vocab", llama_vocab_n_tokens (vocab)},
- {"n_ctx_train", llama_model_n_ctx_train(model)},
- {"n_embd", llama_model_n_embd (model)},
- {"n_params", llama_model_n_params (model)},
- {"size", llama_model_size (model)},
- };
- }
- };
- static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
- // skip GH copilot requests when using default port
- if (req.path == "/v1/health" || req.path == "/v1/completions") {
- return;
- }
- // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
- SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
- SRV_DBG("request: %s\n", req.body.c_str());
- SRV_DBG("response: %s\n", res.body.c_str());
- }
- std::function<void(int)> shutdown_handler;
- std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
- inline void signal_handler(int signal) {
- if (is_terminating.test_and_set()) {
- // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
- // this is for better developer experience, we can remove when the server is stable enough
- fprintf(stderr, "Received second interrupt, terminating immediately.\n");
- exit(1);
- }
- shutdown_handler(signal);
- }
- int main(int argc, char ** argv) {
- // own arguments required by this example
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
- return 1;
- }
- common_init();
- // struct that contains llama context and inference
- server_context ctx_server;
- llama_backend_init();
- llama_numa_init(params.numa);
- LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- LOG_INF("\n");
- std::unique_ptr<httplib::Server> svr;
- #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
- if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
- LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
- svr.reset(
- new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
- );
- } else {
- LOG_INF("Running without SSL\n");
- svr.reset(new httplib::Server());
- }
- #else
- if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
- LOG_ERR("Server is built without SSL support\n");
- return 1;
- }
- svr.reset(new httplib::Server());
- #endif
- std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
- svr->set_default_headers({{"Server", "llama.cpp"}});
- svr->set_logger(log_server_request);
- auto res_error = [](httplib::Response & res, const json & error_data) {
- json final_response {{"error", error_data}};
- res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
- res.status = json_value(error_data, "code", 500);
- };
- auto res_ok = [](httplib::Response & res, const json & data) {
- res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
- res.status = 200;
- };
- svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
- std::string message;
- try {
- std::rethrow_exception(ep);
- } catch (const std::exception & e) {
- message = e.what();
- } catch (...) {
- message = "Unknown Exception";
- }
- try {
- json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
- LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
- res_error(res, formatted_error);
- } catch (const std::exception & e) {
- LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
- }
- });
- svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
- if (res.status == 404) {
- res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
- }
- // for other error codes, we skip processing here because it's already done by res_error()
- });
- // set timeouts and change hostname and port
- svr->set_read_timeout (params.timeout_read);
- svr->set_write_timeout(params.timeout_write);
- std::unordered_map<std::string, std::string> log_data;
- log_data["hostname"] = params.hostname;
- log_data["port"] = std::to_string(params.port);
- if (params.api_keys.size() == 1) {
- auto key = params.api_keys[0];
- log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
- } else if (params.api_keys.size() > 1) {
- log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
- }
- // Necessary similarity of prompt for slot selection
- ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
- //
- // Middlewares
- //
- auto middleware_validate_api_key = [¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
- static const std::unordered_set<std::string> public_endpoints = {
- "/health",
- "/models",
- "/v1/models",
- };
- // If API key is not set, skip validation
- if (params.api_keys.empty()) {
- return true;
- }
- // If path is public or is static file, skip validation
- if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
- return true;
- }
- // Check for API key in the header
- auto auth_header = req.get_header_value("Authorization");
- std::string prefix = "Bearer ";
- if (auth_header.substr(0, prefix.size()) == prefix) {
- std::string received_api_key = auth_header.substr(prefix.size());
- if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
- return true; // API key is valid
- }
- }
- // API key is invalid or not provided
- res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
- LOG_WRN("Unauthorized: Invalid API Key\n");
- return false;
- };
- auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
- server_state current_state = state.load();
- if (current_state == SERVER_STATE_LOADING_MODEL) {
- auto tmp = string_split<std::string>(req.path, '.');
- if (req.path == "/" || tmp.back() == "html") {
- res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
- res.status = 503;
- } else if (req.path == "/models" || req.path == "/v1/models") {
- // allow the models endpoint to be accessed during loading
- return true;
- } else {
- res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
- }
- return false;
- }
- return true;
- };
- // register server middlewares
- svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
- res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
- // If this is OPTIONS request, skip validation because browsers don't include Authorization header
- if (req.method == "OPTIONS") {
- res.set_header("Access-Control-Allow-Credentials", "true");
- res.set_header("Access-Control-Allow-Methods", "GET, POST");
- res.set_header("Access-Control-Allow-Headers", "*");
- res.set_content("", "text/html"); // blank response, no data
- return httplib::Server::HandlerResponse::Handled; // skip further processing
- }
- if (!middleware_server_state(req, res)) {
- return httplib::Server::HandlerResponse::Handled;
- }
- if (!middleware_validate_api_key(req, res)) {
- return httplib::Server::HandlerResponse::Handled;
- }
- return httplib::Server::HandlerResponse::Unhandled;
- });
- //
- // Route handlers (or controllers)
- //
- const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
- // error and loading states are handled by middleware
- json health = {{"status", "ok"}};
- res_ok(res, health);
- };
- const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
- if (!params.endpoint_slots) {
- res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- // request slots data using task queue
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_METRICS);
- task.id = task_id;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
- }
- // get the result
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res_error(res, result->to_json());
- return;
- }
- // TODO: get rid of this dynamic_cast
- auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
- GGML_ASSERT(res_metrics != nullptr);
- // optionally return "fail_on_no_slot" error
- if (req.has_param("fail_on_no_slot")) {
- if (res_metrics->n_idle_slots == 0) {
- res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
- return;
- }
- }
- res_ok(res, res_metrics->slots_data);
- };
- const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
- if (!params.endpoint_metrics) {
- res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- // request slots data using task queue
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_METRICS);
- task.id = task_id;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
- }
- // get the result
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res_error(res, result->to_json());
- return;
- }
- // TODO: get rid of this dynamic_cast
- auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
- GGML_ASSERT(res_metrics != nullptr);
- // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
- json all_metrics_def = json {
- {"counter", {{
- {"name", "prompt_tokens_total"},
- {"help", "Number of prompt tokens processed."},
- {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
- }, {
- {"name", "prompt_seconds_total"},
- {"help", "Prompt process time"},
- {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
- }, {
- {"name", "tokens_predicted_total"},
- {"help", "Number of generation tokens processed."},
- {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
- }, {
- {"name", "tokens_predicted_seconds_total"},
- {"help", "Predict process time"},
- {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
- }, {
- {"name", "n_decode_total"},
- {"help", "Total number of llama_decode() calls"},
- {"value", res_metrics->n_decode_total}
- }, {
- {"name", "n_busy_slots_per_decode"},
- {"help", "Average number of busy slots per llama_decode() call"},
- {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
- }}},
- {"gauge", {{
- {"name", "prompt_tokens_seconds"},
- {"help", "Average prompt throughput in tokens/s."},
- {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
- },{
- {"name", "predicted_tokens_seconds"},
- {"help", "Average generation throughput in tokens/s."},
- {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
- },{
- {"name", "kv_cache_usage_ratio"},
- {"help", "KV-cache usage. 1 means 100 percent usage."},
- {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
- },{
- {"name", "kv_cache_tokens"},
- {"help", "KV-cache tokens."},
- {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
- },{
- {"name", "requests_processing"},
- {"help", "Number of requests processing."},
- {"value", (uint64_t) res_metrics->n_processing_slots}
- },{
- {"name", "requests_deferred"},
- {"help", "Number of requests deferred."},
- {"value", (uint64_t) res_metrics->n_tasks_deferred}
- }}}
- };
- std::stringstream prometheus;
- for (const auto & el : all_metrics_def.items()) {
- const auto & type = el.key();
- const auto & metrics_def = el.value();
- for (const auto & metric_def : metrics_def) {
- const std::string name = metric_def.at("name");
- const std::string help = metric_def.at("help");
- auto value = json_value(metric_def, "value", 0.);
- prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
- << "# TYPE llamacpp:" << name << " " << type << "\n"
- << "llamacpp:" << name << " " << value << "\n";
- }
- }
- res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
- res.set_content(prometheus.str(), "text/plain; version=0.0.4");
- res.status = 200; // HTTP OK
- };
- const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
- json request_data = json::parse(req.body);
- std::string filename = request_data.at("filename");
- if (!fs_validate_filename(filename)) {
- res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::string filepath = params.slot_save_path + filename;
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
- task.id = task_id;
- task.slot_action.slot_id = id_slot;
- task.slot_action.filename = filename;
- task.slot_action.filepath = filepath;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res_error(res, result->to_json());
- return;
- }
- res_ok(res, result->to_json());
- };
- const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
- json request_data = json::parse(req.body);
- std::string filename = request_data.at("filename");
- if (!fs_validate_filename(filename)) {
- res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::string filepath = params.slot_save_path + filename;
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
- task.id = task_id;
- task.slot_action.slot_id = id_slot;
- task.slot_action.filename = filename;
- task.slot_action.filepath = filepath;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res_error(res, result->to_json());
- return;
- }
- GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
- res_ok(res, result->to_json());
- };
- const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
- task.id = task_id;
- task.slot_action.slot_id = id_slot;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res_error(res, result->to_json());
- return;
- }
- GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
- res_ok(res, result->to_json());
- };
- const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
- if (params.slot_save_path.empty()) {
- res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- std::string id_slot_str = req.path_params.at("id_slot");
- int id_slot;
- try {
- id_slot = std::stoi(id_slot_str);
- } catch (const std::exception &) {
- res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::string action = req.get_param_value("action");
- if (action == "save") {
- handle_slots_save(req, res, id_slot);
- } else if (action == "restore") {
- handle_slots_restore(req, res, id_slot);
- } else if (action == "erase") {
- handle_slots_erase(req, res, id_slot);
- } else {
- res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
- }
- };
- const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
- // this endpoint is publicly available, please only return what is safe to be exposed
- json data = {
- { "default_generation_settings", ctx_server.default_generation_settings_for_props },
- { "total_slots", ctx_server.params_base.n_parallel },
- { "model_path", ctx_server.params_base.model.path },
- { "modalities", json{{"vision", ctx_server.mctx != nullptr}} }, // TODO: add more in the future
- { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
- { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
- { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
- { "build_info", build_info },
- };
- if (ctx_server.params_base.use_jinja) {
- if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
- data["chat_template_tool_use"] = tool_use_src;
- }
- }
- res_ok(res, data);
- };
- const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
- if (!ctx_server.params_base.endpoint_props) {
- res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- json data = json::parse(req.body);
- // update any props here
- res_ok(res, {{ "success", true }});
- };
- const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
- json data = {
- {
- "template", common_chat_templates_source(ctx_server.chat_templates.get()),
- },
- {
- "model_info", {
- { "llama.context_length", ctx_server.slots.back().n_ctx, },
- }
- },
- };
- res_ok(res, data);
- };
- // handle completion-like requests (completion, chat, infill)
- // we can optionally provide a custom format for partial results and final results
- const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
- server_task_type type,
- json & data,
- const std::vector<raw_buffer> & files,
- const std::function<bool()> & is_connection_closed,
- httplib::Response & res,
- oaicompat_type oaicompat) -> void {
- GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
- if (ctx_server.params_base.embedding) {
- res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- auto completion_id = gen_chatcmplid();
- std::unordered_set<int> task_ids;
- try {
- std::vector<server_task> tasks;
- const auto & prompt = data.at("prompt");
- // TODO: this log can become very long, put it behind a flag or think about a more compact format
- //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
- // process files
- mtmd::bitmaps bitmaps;
- const bool has_mtmd = ctx_server.mctx != nullptr;
- {
- if (!has_mtmd && !files.empty()) {
- throw std::runtime_error("This server does not support multimodal");
- }
- for (auto & file : files) {
- mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(file.data(), file.size()));
- if (!bmp.ptr) {
- throw std::runtime_error("Failed to load image");
- }
- // calculate bitmap hash (for KV caching)
- std::string hash = fnv_hash(bmp.data(), bmp.nx()*bmp.ny()*3);
- bmp.set_id(hash.c_str());
- bitmaps.entries.push_back(std::move(bmp));
- }
- }
- // process prompt
- std::vector<server_tokens> inputs;
- if (oaicompat && !prompt.is_string()) {
- throw std::runtime_error("prompt must be a string");
- }
- if (oaicompat && has_mtmd) {
- // multimodal
- std::string prompt_str = prompt.get<std::string>();
- mtmd_input_text inp_txt = {
- prompt_str.c_str(),
- /* add_special */ true,
- /* parse_special */ true,
- };
- mtmd::input_chunks chunks(mtmd_input_chunks_init());
- auto bitmaps_c_ptr = bitmaps.c_ptr();
- int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
- chunks.ptr.get(),
- &inp_txt,
- bitmaps_c_ptr.data(),
- bitmaps_c_ptr.size());
- if (tokenized != 0) {
- throw std::runtime_error("Failed to tokenize prompt");
- }
- server_tokens tmp(chunks, true);
- inputs.push_back(std::move(tmp));
- } else {
- // non-multimodal version
- auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
- for (auto & p : tokenized_prompts) {
- auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
- inputs.push_back(std::move(tmp));
- }
- }
- tasks.reserve(inputs.size());
- for (size_t i = 0; i < inputs.size(); i++) {
- server_task task = server_task(type);
- task.id = ctx_server.queue_tasks.get_new_id();
- task.index = i;
- task.prompt_tokens = std::move(inputs[i]);
- task.params = server_task::params_from_json_cmpl(
- ctx_server.ctx,
- ctx_server.params_base,
- data);
- task.id_selected_slot = json_value(data, "id_slot", -1);
- // OAI-compat
- task.params.oaicompat = oaicompat;
- task.params.oaicompat_cmpl_id = completion_id;
- // oaicompat_model is already populated by params_from_json_cmpl
- tasks.push_back(std::move(task));
- }
- task_ids = server_task::get_list_id(tasks);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(std::move(tasks));
- } catch (const std::exception & e) {
- res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- bool stream = json_value(data, "stream", false);
- if (!stream) {
- ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
- if (results.size() == 1) {
- // single result
- res_ok(res, results[0]->to_json());
- } else {
- // multiple results (multitask)
- json arr = json::array();
- for (auto & res : results) {
- arr.push_back(res->to_json());
- }
- res_ok(res, arr);
- }
- }, [&](const json & error_data) {
- res_error(res, error_data);
- }, is_connection_closed);
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- } else {
- const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
- ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
- json res_json = result->to_json();
- if (res_json.is_array()) {
- for (const auto & res : res_json) {
- if (!server_sent_event(sink, "data", res)) {
- // sending failed (HTTP connection closed), cancel the generation
- return false;
- }
- }
- return true;
- } else {
- return server_sent_event(sink, "data", res_json);
- }
- }, [&](const json & error_data) {
- server_sent_event(sink, "error", error_data);
- }, [&sink]() {
- // note: do not use req.is_connection_closed here because req is already destroyed
- return !sink.is_writable();
- });
- if (oaicompat != OAICOMPAT_TYPE_NONE) {
- static const std::string ev_done = "data: [DONE]\n\n";
- sink.write(ev_done.data(), ev_done.size());
- }
- sink.done();
- return false;
- };
- auto on_complete = [task_ids, &ctx_server] (bool) {
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- };
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- }
- };
- const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
- json data = json::parse(req.body);
- std::vector<raw_buffer> files; // dummy
- handle_completions_impl(
- SERVER_TASK_TYPE_COMPLETION,
- data,
- files,
- req.is_connection_closed,
- res,
- OAICOMPAT_TYPE_NONE);
- };
- const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
- json data = oaicompat_completion_params_parse(json::parse(req.body));
- std::vector<raw_buffer> files; // dummy
- handle_completions_impl(
- SERVER_TASK_TYPE_COMPLETION,
- data,
- files,
- req.is_connection_closed,
- res,
- OAICOMPAT_TYPE_COMPLETION);
- };
- const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
- // check model compatibility
- std::string err;
- if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
- err += "prefix token is missing. ";
- }
- if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
- err += "suffix token is missing. ";
- }
- if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
- err += "middle token is missing. ";
- }
- if (!err.empty()) {
- res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- json data = json::parse(req.body);
- // validate input
- if (data.contains("prompt") && !data.at("prompt").is_string()) {
- // prompt is optional
- res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
- }
- if (!data.contains("input_prefix")) {
- res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
- }
- if (!data.contains("input_suffix")) {
- res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
- }
- if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
- // input_extra is optional
- res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- json input_extra = json_value(data, "input_extra", json::array());
- for (const auto & chunk : input_extra) {
- // { "text": string, "filename": string }
- if (!chunk.contains("text") || !chunk.at("text").is_string()) {
- res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- // filename is optional
- if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
- res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- }
- data["input_extra"] = input_extra; // default to empty array if it's not exist
- std::string prompt = json_value(data, "prompt", std::string());
- std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
- SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
- data["prompt"] = format_infill(
- ctx_server.vocab,
- data.at("input_prefix"),
- data.at("input_suffix"),
- data.at("input_extra"),
- ctx_server.params_base.n_batch,
- ctx_server.params_base.n_predict,
- ctx_server.slots[0].n_ctx, // TODO: there should be a better way
- ctx_server.params_base.spm_infill,
- tokenized_prompts[0]
- );
- std::vector<raw_buffer> files; // dummy
- handle_completions_impl(
- SERVER_TASK_TYPE_INFILL,
- data,
- files,
- req.is_connection_closed,
- res,
- OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
- };
- const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
- LOG_DBG("request: %s\n", req.body.c_str());
- if (ctx_server.params_base.embedding) {
- res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- auto body = json::parse(req.body);
- std::vector<raw_buffer> files;
- json data = oaicompat_completion_params_parse(
- body,
- params.use_jinja,
- params.prefill_assistant,
- params.reasoning_format,
- ctx_server.chat_templates.get(),
- ctx_server.mctx,
- files);
- handle_completions_impl(
- SERVER_TASK_TYPE_COMPLETION,
- data,
- files,
- req.is_connection_closed,
- res,
- OAICOMPAT_TYPE_CHAT);
- };
- // same with handle_chat_completions, but without inference part
- const auto handle_apply_template = [&ctx_server, ¶ms, &res_ok](const httplib::Request & req, httplib::Response & res) {
- auto body = json::parse(req.body);
- std::vector<raw_buffer> files; // dummy, unused
- json data = oaicompat_completion_params_parse(
- body,
- params.use_jinja,
- params.prefill_assistant,
- params.reasoning_format,
- ctx_server.chat_templates.get(),
- ctx_server.mctx,
- files);
- res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
- };
- const auto handle_models = [¶ms, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
- server_state current_state = state.load();
- json model_meta = nullptr;
- if (current_state == SERVER_STATE_READY) {
- model_meta = ctx_server.model_meta();
- }
- json models = {
- {"object", "list"},
- {"data", {
- {
- {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
- {"object", "model"},
- {"created", std::time(0)},
- {"owned_by", "llamacpp"},
- {"meta", model_meta},
- },
- }}
- };
- res_ok(res, models);
- };
- const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
- const json body = json::parse(req.body);
- json tokens_response = json::array();
- if (body.count("content") != 0) {
- const bool add_special = json_value(body, "add_special", false);
- const bool with_pieces = json_value(body, "with_pieces", false);
- llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
- if (with_pieces) {
- for (const auto& token : tokens) {
- std::string piece = common_token_to_piece(ctx_server.ctx, token);
- json piece_json;
- // Check if the piece is valid UTF-8
- if (is_valid_utf8(piece)) {
- piece_json = piece;
- } else {
- // If not valid UTF-8, store as array of byte values
- piece_json = json::array();
- for (unsigned char c : piece) {
- piece_json.push_back(static_cast<int>(c));
- }
- }
- tokens_response.push_back({
- {"id", token},
- {"piece", piece_json}
- });
- }
- } else {
- tokens_response = tokens;
- }
- }
- const json data = format_tokenizer_response(tokens_response);
- res_ok(res, data);
- };
- const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
- const json body = json::parse(req.body);
- std::string content;
- if (body.count("tokens") != 0) {
- const llama_tokens tokens = body.at("tokens");
- content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
- }
- const json data = format_detokenized_response(content);
- res_ok(res, data);
- };
- const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
- const json body = json::parse(req.body);
- if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
- res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- // for the shape of input/content, see tokenize_input_prompts()
- json prompt;
- if (body.count("input") != 0) {
- prompt = body.at("input");
- } else if (body.contains("content")) {
- oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
- prompt = body.at("content");
- } else {
- res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- bool use_base64 = false;
- if (body.count("encoding_format") != 0) {
- const std::string& format = body.at("encoding_format");
- if (format == "base64") {
- use_base64 = true;
- } else if (format != "float") {
- res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- }
- auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
- for (const auto & tokens : tokenized_prompts) {
- // this check is necessary for models that do not add BOS token to the input
- if (tokens.empty()) {
- res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- }
- // create and queue the task
- json responses = json::array();
- bool error = false;
- std::unordered_set<int> task_ids;
- {
- std::vector<server_task> tasks;
- for (size_t i = 0; i < tokenized_prompts.size(); i++) {
- server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
- task.id = ctx_server.queue_tasks.get_new_id();
- task.index = i;
- task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
- // OAI-compat
- task.params.oaicompat = oaicompat;
- tasks.push_back(std::move(task));
- }
- task_ids = server_task::get_list_id(tasks);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(std::move(tasks));
- }
- // get the result
- ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
- for (auto & res : results) {
- GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
- responses.push_back(res->to_json());
- }
- }, [&](const json & error_data) {
- res_error(res, error_data);
- error = true;
- }, req.is_connection_closed);
- ctx_server.queue_results.remove_waiting_task_ids(task_ids);
- if (error) {
- return;
- }
- // write JSON response
- json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
- ? format_embeddings_response_oaicompat(body, responses, use_base64)
- : json(responses);
- res_ok(res, root);
- };
- const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
- handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
- };
- const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
- handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
- };
- const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
- if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
- res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
- return;
- }
- const json body = json::parse(req.body);
- // TODO: implement
- //int top_n = 1;
- //if (body.count("top_n") != 1) {
- // top_n = body.at("top_n");
- //} else {
- // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- // return;
- //}
- // if true, use TEI API format, otherwise use Jina API format
- // Jina: https://jina.ai/reranker/
- // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
- bool is_tei_format = body.contains("texts");
- json query;
- if (body.count("query") == 1) {
- query = body.at("query");
- if (!query.is_string()) {
- res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- } else {
- res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- std::vector<std::string> documents = json_value(body, "documents",
- json_value(body, "texts", std::vector<std::string>()));
- if (documents.empty()) {
- res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
- // create and queue the task
- json responses = json::array();
- bool error = false;
- std::unordered_set<int> task_ids;
- {
- std::vector<server_task> tasks;
- auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
- tasks.reserve(tokenized_docs.size());
- for (size_t i = 0; i < tokenized_docs.size(); i++) {
- auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
- server_task task = server_task(SERVER_TASK_TYPE_RERANK);
- task.id = ctx_server.queue_tasks.get_new_id();
- task.index = i;
- task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
- tasks.push_back(std::move(task));
- }
- task_ids = server_task::get_list_id(tasks);
- ctx_server.queue_results.add_waiting_tasks(tasks);
- ctx_server.queue_tasks.post(std::move(tasks));
- }
- ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
- for (auto & res : results) {
- GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
- responses.push_back(res->to_json());
- }
- }, [&](const json & error_data) {
- res_error(res, error_data);
- error = true;
- }, req.is_connection_closed);
- if (error) {
- return;
- }
- // write JSON response
- json root = format_response_rerank(
- body,
- responses,
- is_tei_format,
- documents);
- res_ok(res, root);
- };
- const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
- json result = json::array();
- const auto & loras = ctx_server.params_base.lora_adapters;
- for (size_t i = 0; i < loras.size(); ++i) {
- auto & lora = loras[i];
- result.push_back({
- {"id", i},
- {"path", lora.path},
- {"scale", lora.scale},
- });
- }
- res_ok(res, result);
- res.status = 200; // HTTP OK
- };
- const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
- const json body = json::parse(req.body);
- if (!body.is_array()) {
- res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
- return;
- }
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SET_LORA);
- task.id = task_id;
- task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- // get the result
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res_error(res, result->to_json());
- return;
- }
- GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
- res_ok(res, result->to_json());
- };
- //
- // Router
- //
- if (!params.webui) {
- LOG_INF("Web UI is disabled\n");
- } else {
- // register static assets routes
- if (!params.public_path.empty()) {
- // Set the base directory for serving static files
- bool is_found = svr->set_mount_point("/", params.public_path);
- if (!is_found) {
- LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
- return 1;
- }
- } else {
- // using embedded static index.html
- svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
- if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
- res.set_content("Error: gzip is not supported by this browser", "text/plain");
- } else {
- res.set_header("Content-Encoding", "gzip");
- // COEP and COOP headers, required by pyodide (python interpreter)
- res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
- res.set_header("Cross-Origin-Opener-Policy", "same-origin");
- res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
- }
- return false;
- });
- }
- }
- // register API routes
- svr->Get ("/health", handle_health); // public endpoint (no API key check)
- svr->Get ("/metrics", handle_metrics);
- svr->Get ("/props", handle_props);
- svr->Post("/props", handle_props_change);
- svr->Post("/api/show", handle_api_show);
- svr->Get ("/models", handle_models); // public endpoint (no API key check)
- svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
- svr->Post("/completion", handle_completions); // legacy
- svr->Post("/completions", handle_completions);
- svr->Post("/v1/completions", handle_completions_oai);
- svr->Post("/chat/completions", handle_chat_completions);
- svr->Post("/v1/chat/completions", handle_chat_completions);
- svr->Post("/infill", handle_infill);
- svr->Post("/embedding", handle_embeddings); // legacy
- svr->Post("/embeddings", handle_embeddings);
- svr->Post("/v1/embeddings", handle_embeddings_oai);
- svr->Post("/rerank", handle_rerank);
- svr->Post("/reranking", handle_rerank);
- svr->Post("/v1/rerank", handle_rerank);
- svr->Post("/v1/reranking", handle_rerank);
- svr->Post("/tokenize", handle_tokenize);
- svr->Post("/detokenize", handle_detokenize);
- svr->Post("/apply-template", handle_apply_template);
- // LoRA adapters hotswap
- svr->Get ("/lora-adapters", handle_lora_adapters_list);
- svr->Post("/lora-adapters", handle_lora_adapters_apply);
- // Save & load slots
- svr->Get ("/slots", handle_slots);
- svr->Post("/slots/:id_slot", handle_slots_action);
- //
- // Start the server
- //
- if (params.n_threads_http < 1) {
- // +2 threads for monitoring endpoints
- params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
- }
- log_data["n_threads_http"] = std::to_string(params.n_threads_http);
- svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
- // clean up function, to be called before exit
- auto clean_up = [&svr, &ctx_server]() {
- SRV_INF("%s: cleaning up before exit...\n", __func__);
- svr->stop();
- ctx_server.queue_results.terminate();
- llama_backend_free();
- };
- bool was_bound = false;
- if (string_ends_with(std::string(params.hostname), ".sock")) {
- LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
- svr->set_address_family(AF_UNIX);
- // bind_to_port requires a second arg, any value other than 0 should
- // simply get ignored
- was_bound = svr->bind_to_port(params.hostname, 8080);
- } else {
- LOG_INF("%s: binding port with default address family\n", __func__);
- // bind HTTP listen port
- if (params.port == 0) {
- int bound_port = svr->bind_to_any_port(params.hostname);
- if ((was_bound = (bound_port >= 0))) {
- params.port = bound_port;
- }
- } else {
- was_bound = svr->bind_to_port(params.hostname, params.port);
- }
- }
- if (!was_bound) {
- LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
- clean_up();
- return 1;
- }
- // run the HTTP server in a thread
- std::thread t([&]() { svr->listen_after_bind(); });
- svr->wait_until_ready();
- LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
- // load the model
- LOG_INF("%s: loading model\n", __func__);
- if (!ctx_server.load_model(params)) {
- clean_up();
- t.join();
- LOG_ERR("%s: exiting due to model loading error\n", __func__);
- return 1;
- }
- ctx_server.init();
- state.store(SERVER_STATE_READY);
- LOG_INF("%s: model loaded\n", __func__);
- // print sample chat example to make it clear which template is used
- LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
- common_chat_templates_source(ctx_server.chat_templates.get()),
- common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
- ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
- ctx_server.process_single_task(std::move(task));
- });
- ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
- ctx_server.update_slots();
- });
- shutdown_handler = [&](int) {
- // this will unblock start_loop()
- ctx_server.queue_tasks.terminate();
- };
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = signal_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- sigaction(SIGTERM, &sigint_action, NULL);
- #elif defined (_WIN32)
- auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
- return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
- };
- SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
- #endif
- LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
- // this call blocks the main thread until queue_tasks.terminate() is called
- ctx_server.queue_tasks.start_loop();
- clean_up();
- t.join();
- return 0;
- }
|