server-context.cpp 158 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943
  1. #include "server-context.h"
  2. #include "server-common.h"
  3. #include "server-http.h"
  4. #include "server-task.h"
  5. #include "server-queue.h"
  6. #include "arg.h"
  7. #include "common.h"
  8. #include "llama.h"
  9. #include "log.h"
  10. #include "sampling.h"
  11. #include "speculative.h"
  12. #include "mtmd.h"
  13. #include "mtmd-helper.h"
  14. #include <cstddef>
  15. #include <cinttypes>
  16. #include <memory>
  17. #include <unordered_set>
  18. #include <filesystem>
  19. // fix problem with std::min and std::max
  20. #if defined(_WIN32)
  21. #define WIN32_LEAN_AND_MEAN
  22. #ifndef NOMINMAX
  23. # define NOMINMAX
  24. #endif
  25. #include <windows.h>
  26. #endif
  27. using json = nlohmann::ordered_json;
  28. constexpr int HTTP_POLLING_SECONDS = 1;
  29. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  30. enum slot_state {
  31. SLOT_STATE_IDLE,
  32. SLOT_STATE_WAIT_OTHER, // after assigning a task, but waiting for parent slot to process prompt
  33. SLOT_STATE_STARTED, // after assigning a task and about to process prompt
  34. SLOT_STATE_PROCESSING_PROMPT,
  35. SLOT_STATE_DONE_PROMPT,
  36. SLOT_STATE_GENERATING,
  37. };
  38. enum server_state {
  39. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  40. SERVER_STATE_READY, // Server is ready and model is loaded
  41. };
  42. static bool server_task_type_need_embd(server_task_type task_type) {
  43. switch (task_type) {
  44. case SERVER_TASK_TYPE_EMBEDDING:
  45. case SERVER_TASK_TYPE_RERANK:
  46. return true;
  47. default:
  48. return false;
  49. }
  50. }
  51. static bool server_task_type_need_logits(server_task_type task_type) {
  52. switch (task_type) {
  53. case SERVER_TASK_TYPE_COMPLETION:
  54. case SERVER_TASK_TYPE_INFILL:
  55. return true;
  56. default:
  57. return false;
  58. }
  59. }
  60. struct server_slot {
  61. int id;
  62. llama_batch batch_spec = {};
  63. // TODO: change to unique_ptrs for consistency:
  64. llama_context * ctx = nullptr;
  65. llama_context * ctx_dft = nullptr;
  66. // multimodal
  67. mtmd_context * mctx = nullptr;
  68. common_speculative * spec = nullptr;
  69. std::unique_ptr<const server_task> task;
  70. std::unique_ptr<const server_task> task_prev; // used for debugging
  71. // used to determine the slot that has been used the longest
  72. int64_t t_last_used = -1;
  73. // generation props
  74. int32_t n_ctx = 0; // context size per slot
  75. int32_t n_keep = 0;
  76. int32_t n_decoded = 0;
  77. int32_t n_remaining = -1;
  78. int32_t i_batch = -1;
  79. int32_t n_prompt_tokens_cache = 0;
  80. int32_t n_prompt_tokens_processed = 0;
  81. size_t last_nl_pos = 0;
  82. std::string generated_text;
  83. llama_tokens generated_tokens;
  84. // idx of draft tokens in the main batch
  85. // non-empty if we went to evaluate draft tokens
  86. // ref: https://github.com/ggml-org/llama.cpp/pull/17808
  87. std::vector<int32_t> i_batch_dft;
  88. std::vector<completion_token_output> generated_token_probs;
  89. bool has_next_token = true;
  90. bool has_new_line = false;
  91. bool truncated = false;
  92. stop_type stop;
  93. std::string stopping_word;
  94. // state
  95. slot_state state = SLOT_STATE_IDLE;
  96. server_prompt prompt;
  97. void prompt_save(server_prompt_cache & prompt_cache) const {
  98. GGML_ASSERT(prompt.data.size() == 0);
  99. const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0);
  100. SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n",
  101. (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0));
  102. auto * cur = prompt_cache.alloc(prompt, cur_size);
  103. if (cur == nullptr) {
  104. return;
  105. }
  106. llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0);
  107. }
  108. bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) {
  109. bool res = prompt_cache.load(prompt, tokens, ctx, id);
  110. if (!res) {
  111. SLT_WRN(*this, "%s", "failed to load prompt from cache\n");
  112. }
  113. return res;
  114. }
  115. std::vector<common_adapter_lora_info> lora;
  116. int32_t alora_invocation_start = -1;
  117. // sampling
  118. json json_schema;
  119. common_sampler_ptr smpl;
  120. llama_token sampled; // in speculative mode, this is the last accepted token
  121. llama_tokens drafted;
  122. // stats
  123. size_t n_sent_text = 0; // number of sent text character
  124. int64_t t_start_process_prompt;
  125. int64_t t_start_generation;
  126. double t_prompt_processing; // ms
  127. double t_token_generation; // ms
  128. std::function<void(int)> callback_on_release;
  129. // Speculative decoding stats
  130. int32_t n_draft_total = 0; // Total draft tokens generated
  131. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  132. void reset() {
  133. SLT_DBG(*this, "%s", "\n");
  134. n_prompt_tokens_cache = 0;
  135. last_nl_pos = 0;
  136. generated_text = "";
  137. has_new_line = false;
  138. truncated = false;
  139. stop = STOP_TYPE_NONE;
  140. stopping_word = "";
  141. n_sent_text = 0;
  142. drafted.clear();
  143. i_batch_dft.clear();
  144. generated_tokens.clear();
  145. generated_token_probs.clear();
  146. json_schema = json();
  147. // clear speculative decoding stats
  148. n_draft_total = 0;
  149. n_draft_accepted = 0;
  150. task.reset();
  151. task_prev.reset();
  152. // clear alora start
  153. alora_invocation_start = -1;
  154. }
  155. bool need_embd() const {
  156. GGML_ASSERT(task);
  157. return server_task_type_need_embd(task->type);
  158. }
  159. bool need_logits() const {
  160. GGML_ASSERT(task);
  161. return server_task_type_need_logits(task->type);
  162. }
  163. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  164. // also we cannot split if the pooling would require any past tokens
  165. bool can_split() const {
  166. return
  167. !need_embd() ||
  168. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  169. }
  170. bool can_batch_with(server_slot & other_slot) const {
  171. GGML_ASSERT(task);
  172. return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora);
  173. }
  174. bool has_budget(const common_params & global_params) {
  175. GGML_ASSERT(task);
  176. if (task->params.n_predict == -1 && global_params.n_predict == -1) {
  177. return true; // limitless
  178. }
  179. n_remaining = -1;
  180. if (task->params.n_predict != -1) {
  181. n_remaining = task->params.n_predict - n_decoded;
  182. } else if (global_params.n_predict != -1) {
  183. n_remaining = global_params.n_predict - n_decoded;
  184. }
  185. return n_remaining > 0; // no budget
  186. }
  187. bool is_processing() const {
  188. return state != SLOT_STATE_IDLE;
  189. }
  190. bool can_speculate() const {
  191. return ctx_dft;
  192. }
  193. void add_token(const completion_token_output & token) {
  194. if (!is_processing()) {
  195. SLT_WRN(*this, "%s", "slot is not processing\n");
  196. return;
  197. }
  198. generated_token_probs.push_back(token);
  199. }
  200. int get_n_draft_max() const {
  201. if (!can_speculate()) {
  202. return 0;
  203. }
  204. // determine the max draft that fits the current slot state
  205. int n_draft_max = task->params.speculative.n_max;
  206. // note: slot.prompt is not yet expanded with the `id` token sampled above
  207. // also, need to leave space for 1 extra token to allow context shifts
  208. n_draft_max = std::min(n_draft_max, n_ctx - prompt.n_tokens() - 2);
  209. if (n_remaining > 0) {
  210. n_draft_max = std::min(n_draft_max, n_remaining - 1);
  211. }
  212. SLT_DBG(*this, "max possible draft: %d\n", n_draft_max);
  213. if (n_draft_max < task->params.speculative.n_min) {
  214. SLT_DBG(*this, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, task->params.speculative.n_min);
  215. n_draft_max = 0;
  216. }
  217. return n_draft_max;
  218. }
  219. // note: a slot can also be either a parent or a child
  220. bool is_parent() const {
  221. return is_processing() && task->n_children > 0;
  222. }
  223. bool is_child() const {
  224. return is_processing() && task->id_parent >= 0;
  225. }
  226. void release() {
  227. if (is_processing()) {
  228. GGML_ASSERT(task);
  229. SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated);
  230. t_last_used = ggml_time_us();
  231. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  232. state = SLOT_STATE_IDLE;
  233. task_prev = std::move(task);
  234. task.reset();
  235. callback_on_release(id);
  236. }
  237. }
  238. result_timings get_timings() const {
  239. result_timings timings;
  240. timings.cache_n = n_prompt_tokens_cache;
  241. timings.prompt_n = n_prompt_tokens_processed;
  242. timings.prompt_ms = t_prompt_processing;
  243. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  244. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  245. timings.predicted_n = n_decoded;
  246. timings.predicted_ms = t_token_generation;
  247. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  248. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  249. // Add speculative metrics
  250. if (n_draft_total > 0) {
  251. timings.draft_n = n_draft_total;
  252. timings.draft_n_accepted = n_draft_accepted;
  253. }
  254. return timings;
  255. }
  256. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  257. GGML_ASSERT(task);
  258. size_t stop_pos = std::string::npos;
  259. for (const std::string & word : task->params.antiprompt) {
  260. size_t pos;
  261. if (is_full_stop) {
  262. const size_t tmp = word.size() + last_token_size;
  263. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  264. pos = text.find(word, from_pos);
  265. } else {
  266. // otherwise, partial stop
  267. pos = string_find_partial_stop(text, word);
  268. }
  269. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  270. if (is_full_stop) {
  271. stop = STOP_TYPE_WORD;
  272. stopping_word = word;
  273. has_next_token = false;
  274. }
  275. stop_pos = pos;
  276. }
  277. }
  278. return stop_pos;
  279. }
  280. void print_timings() const {
  281. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  282. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  283. const double t_gen = t_token_generation / n_decoded;
  284. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  285. SLT_INF(*this,
  286. "\n"
  287. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  288. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  289. " total time = %10.2f ms / %5d tokens\n",
  290. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  291. t_token_generation, n_decoded, t_gen, n_gen_second,
  292. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  293. if (n_draft_total > 0) {
  294. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  295. SLT_CNT(*this,
  296. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  297. draft_ratio, n_draft_accepted, n_draft_total
  298. );
  299. }
  300. }
  301. json to_json(bool only_metrics = false) const {
  302. json res;
  303. res = {
  304. {"id", id},
  305. {"n_ctx", n_ctx},
  306. {"speculative", can_speculate()},
  307. {"is_processing", is_processing()},
  308. };
  309. const auto & ptask = task ? task : task_prev;
  310. if (ptask) {
  311. res["id_task"] = ptask->id;
  312. res["params"] = ptask->params.to_json(only_metrics);
  313. res["next_token"] = {
  314. {
  315. {"has_next_token", has_next_token},
  316. {"has_new_line", has_new_line},
  317. {"n_remain", n_remaining},
  318. {"n_decoded", n_decoded},
  319. }
  320. };
  321. if (!only_metrics) {
  322. res["prompt"] = ptask->tokens.detokenize(ctx, true);
  323. res["generated"] = generated_text;
  324. }
  325. }
  326. return res;
  327. }
  328. void copy_state_to(server_slot & other) const {
  329. llama_memory_seq_rm(llama_get_memory(ctx), other.id, 0, -1);
  330. llama_memory_seq_cp(llama_get_memory(ctx), id, other.id, 0, -1);
  331. other.n_decoded = n_decoded;
  332. other.n_remaining = n_remaining;
  333. other.i_batch = i_batch;
  334. other.n_prompt_tokens_cache = n_prompt_tokens_cache;
  335. other.n_prompt_tokens_processed = n_prompt_tokens_processed;
  336. other.prompt = prompt.clone();
  337. }
  338. };
  339. //
  340. // server_metrics
  341. //
  342. struct server_metrics {
  343. int64_t t_start = 0;
  344. uint64_t n_prompt_tokens_processed_total = 0;
  345. uint64_t t_prompt_processing_total = 0;
  346. uint64_t n_tokens_predicted_total = 0;
  347. uint64_t t_tokens_generation_total = 0;
  348. uint64_t n_tokens_max = 0;
  349. uint64_t n_prompt_tokens_processed = 0;
  350. uint64_t t_prompt_processing = 0;
  351. uint64_t n_tokens_predicted = 0;
  352. uint64_t t_tokens_generation = 0;
  353. uint64_t n_decode_total = 0;
  354. uint64_t n_busy_slots_total = 0;
  355. void init() {
  356. t_start = ggml_time_us();
  357. }
  358. void on_prompt_eval(const server_slot & slot) {
  359. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  360. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  361. t_prompt_processing += slot.t_prompt_processing;
  362. t_prompt_processing_total += slot.t_prompt_processing;
  363. n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
  364. }
  365. void on_prediction(const server_slot & slot) {
  366. n_tokens_predicted_total += slot.n_decoded;
  367. n_tokens_predicted += slot.n_decoded;
  368. t_tokens_generation += slot.t_token_generation;
  369. t_tokens_generation_total += slot.t_token_generation;
  370. }
  371. void on_decoded(const std::vector<server_slot> & slots) {
  372. n_decode_total++;
  373. for (const auto & slot : slots) {
  374. if (slot.is_processing()) {
  375. n_busy_slots_total++;
  376. }
  377. n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
  378. }
  379. }
  380. void reset_bucket() {
  381. n_prompt_tokens_processed = 0;
  382. t_prompt_processing = 0;
  383. n_tokens_predicted = 0;
  384. t_tokens_generation = 0;
  385. }
  386. };
  387. //
  388. // server_context_impl (private implementation)
  389. //
  390. struct server_context_impl {
  391. friend struct server_context;
  392. public:
  393. // only use these pointers outside of this class:
  394. // - when not in sleeping state
  395. // - and, with thread-safe APIs (e.g., tokenizer calls)
  396. llama_model * model = nullptr;
  397. mtmd_context * mctx = nullptr;
  398. const llama_vocab * vocab = nullptr;
  399. server_queue queue_tasks;
  400. server_response queue_results;
  401. common_chat_templates_ptr chat_templates;
  402. oaicompat_parser_options oai_parser_opt;
  403. ~server_context_impl() {
  404. if (!sleeping) {
  405. // destroy() is already called when entering sleeping state
  406. // we don't call it again here to avoid double free
  407. destroy();
  408. }
  409. }
  410. private:
  411. // note: accessing these fields outside of this class is not thread-safe
  412. // use server_context methods instead
  413. common_params params_base;
  414. // note: keep these alive - they determine the lifetime of the model, context, etc.
  415. common_init_result_ptr llama_init;
  416. common_init_result_ptr llama_init_dft;
  417. llama_context * ctx = nullptr;
  418. bool vocab_dft_compatible = true;
  419. llama_model * model_dft = nullptr;
  420. llama_context_params cparams_dft;
  421. llama_batch batch {};
  422. bool add_bos_token = true;
  423. int32_t n_ctx; // total context for all clients / slots
  424. // slots / clients
  425. std::vector<server_slot> slots;
  426. int slots_debug = 0;
  427. std::unique_ptr<server_prompt_cache> prompt_cache;
  428. server_metrics metrics;
  429. json json_webui_settings = json::object();
  430. // Necessary similarity of prompt for slot selection
  431. float slot_prompt_similarity = 0.0f;
  432. std::string model_name; // name of the loaded model, to be used by API
  433. bool sleeping = false;
  434. void destroy() {
  435. llama_init.reset();
  436. ctx = nullptr;
  437. model = nullptr;
  438. mtmd_free(mctx);
  439. mctx = nullptr;
  440. // Clear any sampling context
  441. for (server_slot & slot : slots) {
  442. llama_free(slot.ctx_dft);
  443. slot.ctx_dft = nullptr;
  444. common_speculative_free(slot.spec);
  445. slot.spec = nullptr;
  446. llama_batch_free(slot.batch_spec);
  447. }
  448. llama_batch_free(batch);
  449. }
  450. void handle_sleeping_state(bool new_state) {
  451. GGML_ASSERT(sleeping != new_state);
  452. if (new_state) {
  453. SRV_INF("%s", "server is entering sleeping state\n");
  454. destroy();
  455. } else {
  456. SRV_INF("%s", "server is exiting sleeping state\n");
  457. if (!load_model(params_base)) {
  458. GGML_ABORT("failed to reload model after sleeping");
  459. }
  460. }
  461. sleeping = new_state;
  462. }
  463. // load the model and initialize llama_context
  464. // this may also be called to resume from sleeping state
  465. bool load_model(const common_params & params) {
  466. bool is_resume = sleeping;
  467. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  468. params_base = params;
  469. llama_init = common_init_from_params(params_base);
  470. model = llama_init->model();
  471. ctx = llama_init->context();
  472. if (model == nullptr) {
  473. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  474. return false;
  475. }
  476. vocab = llama_model_get_vocab(model);
  477. n_ctx = llama_n_ctx(ctx);
  478. add_bos_token = llama_vocab_get_add_bos(vocab);
  479. if (params_base.has_speculative()) {
  480. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  481. auto params_dft = params_base;
  482. params_dft.devices = params_base.speculative.devices;
  483. params_dft.model = params_base.speculative.model;
  484. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
  485. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  486. params_dft.n_parallel = 1;
  487. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  488. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  489. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  490. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  491. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  492. llama_init_dft = common_init_from_params(params_dft);
  493. model_dft = llama_init_dft->model();
  494. if (model_dft == nullptr) {
  495. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  496. return false;
  497. }
  498. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft->context());
  499. if (!vocab_dft_compatible) {
  500. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  501. }
  502. const int n_ctx_dft = llama_n_ctx(llama_init_dft->context());
  503. cparams_dft = common_context_params_to_llama(params_dft);
  504. cparams_dft.n_batch = n_ctx_dft;
  505. // the context is not needed - we will create one for each slot
  506. llama_init_dft->free_context();
  507. }
  508. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  509. try {
  510. common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
  511. } catch (const std::exception & e) {
  512. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  513. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  514. chat_templates = common_chat_templates_init(model, "chatml");
  515. }
  516. std::string & mmproj_path = params_base.mmproj.path;
  517. if (!mmproj_path.empty()) {
  518. if (!is_resume) {
  519. mtmd_helper_log_set(common_log_default_callback, nullptr);
  520. }
  521. mtmd_context_params mparams = mtmd_context_params_default();
  522. mparams.use_gpu = params_base.mmproj_use_gpu;
  523. mparams.print_timings = false;
  524. mparams.n_threads = params_base.cpuparams.n_threads;
  525. mparams.flash_attn_type = params_base.flash_attn_type;
  526. mparams.warmup = params_base.warmup;
  527. mparams.image_min_tokens = params_base.image_min_tokens;
  528. mparams.image_max_tokens = params_base.image_max_tokens;
  529. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  530. if (mctx == nullptr) {
  531. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  532. return false;
  533. }
  534. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  535. if (params_base.ctx_shift) {
  536. params_base.ctx_shift = false;
  537. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  538. }
  539. if (params_base.n_cache_reuse) {
  540. params_base.n_cache_reuse = 0;
  541. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  542. }
  543. if (params_base.has_speculative()) {
  544. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  545. return false;
  546. }
  547. }
  548. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  549. if (params_base.ctx_shift) {
  550. params_base.ctx_shift = false;
  551. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  552. }
  553. if (params_base.n_cache_reuse) {
  554. params_base.n_cache_reuse = 0;
  555. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  556. }
  557. }
  558. // Necessary similarity of prompt for slot selection
  559. slot_prompt_similarity = params_base.slot_prompt_similarity;
  560. // setup slots
  561. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  562. const int n_ctx_train = llama_model_n_ctx_train(model);
  563. int n_ctx_slot = llama_n_ctx_seq(ctx);
  564. if (n_ctx_slot > n_ctx_train) {
  565. SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train);
  566. n_ctx_slot = n_ctx_train;
  567. }
  568. slots.clear();
  569. for (int i = 0; i < params_base.n_parallel; i++) {
  570. server_slot slot;
  571. slot.id = i;
  572. slot.ctx = ctx;
  573. slot.n_ctx = n_ctx_slot;
  574. slot.mctx = mctx;
  575. slot.prompt.tokens.has_mtmd = mctx != nullptr;
  576. if (model_dft) {
  577. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  578. // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
  579. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  580. if (slot.ctx_dft == nullptr) {
  581. SRV_ERR("%s", "failed to create draft context\n");
  582. return false;
  583. }
  584. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  585. if (slot.spec == nullptr) {
  586. SRV_ERR("%s", "failed to create speculator\n");
  587. return false;
  588. }
  589. for (auto & pair : params_base.speculative.replacements) {
  590. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  591. }
  592. }
  593. SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
  594. slot.callback_on_release = [this](int) {
  595. queue_tasks.pop_deferred_task();
  596. };
  597. slot.reset();
  598. slots.push_back(std::move(slot));
  599. }
  600. {
  601. const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG");
  602. slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0;
  603. if (slots_debug) {
  604. SRV_WRN("slots debug = %d\n", slots_debug);
  605. }
  606. }
  607. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  608. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  609. {
  610. const int32_t n_batch = llama_n_batch(ctx);
  611. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  612. }
  613. if (params_base.cache_ram_mib != 0) {
  614. if (params_base.cache_ram_mib < 0) {
  615. SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit");
  616. } else {
  617. SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib);
  618. }
  619. SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n");
  620. prompt_cache = std::make_unique<server_prompt_cache>(params_base.cache_ram_mib, n_ctx);
  621. } else {
  622. SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
  623. }
  624. SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n");
  625. if (!params_base.model_alias.empty()) {
  626. // user explicitly specified model name
  627. model_name = params_base.model_alias;
  628. } else if (!params_base.model.name.empty()) {
  629. // use model name in registry format (for models in cache)
  630. model_name = params_base.model.name;
  631. } else {
  632. // fallback: derive model name from file name
  633. auto model_path = std::filesystem::path(params_base.model.path);
  634. model_name = model_path.filename().string();
  635. }
  636. // thinking is enabled if:
  637. // 1. It's not explicitly disabled (reasoning_budget == 0)
  638. // 2. The chat template supports it
  639. const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
  640. SRV_INF("thinking = %d\n", enable_thinking);
  641. oai_parser_opt = {
  642. /* use_jinja */ params_base.use_jinja,
  643. /* prefill_assistant */ params_base.prefill_assistant,
  644. /* reasoning_format */ params_base.reasoning_format,
  645. /* chat_template_kwargs */ params_base.default_template_kwargs,
  646. /* common_chat_templates */ chat_templates.get(),
  647. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  648. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  649. /* enable_thinking */ enable_thinking,
  650. /* media_path */ params_base.media_path,
  651. };
  652. // print sample chat example to make it clear which template is used
  653. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  654. common_chat_templates_source(chat_templates.get()),
  655. common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());
  656. if (!is_resume) {
  657. return init();
  658. }
  659. return true;
  660. }
  661. // unlike load_model(), this is only called once during initialization
  662. bool init() {
  663. GGML_ASSERT(ctx != nullptr);
  664. GGML_ASSERT(model != nullptr);
  665. GGML_ASSERT(!sleeping);
  666. // wiring up server queues
  667. queue_tasks.on_new_task([this](server_task && task) {
  668. process_single_task(std::move(task));
  669. });
  670. queue_tasks.on_update_slots([this]() {
  671. update_slots();
  672. });
  673. queue_tasks.on_sleeping_state([this](bool sleeping) {
  674. handle_sleeping_state(sleeping);
  675. });
  676. metrics.init();
  677. // populate webui settings
  678. {
  679. if (!params_base.webui_config_json.empty()) {
  680. try {
  681. json_webui_settings = json::parse(params_base.webui_config_json);
  682. } catch (const std::exception & e) {
  683. SRV_ERR("%s: failed to parse webui config: %s\n", __func__, e.what());
  684. return false;
  685. }
  686. }
  687. }
  688. return true;
  689. }
  690. server_slot * get_slot_by_id(int id) {
  691. for (server_slot & slot : slots) {
  692. if (slot.id == id) {
  693. return &slot;
  694. }
  695. }
  696. return nullptr;
  697. }
  698. server_slot * get_available_slot(const server_task & task) {
  699. server_slot * ret = nullptr;
  700. bool update_cache = false;
  701. // find the slot that has at least n% prompt similarity
  702. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  703. float sim_best = 0;
  704. for (server_slot & slot : slots) {
  705. // skip the slot if it is not available
  706. if (slot.is_processing()) {
  707. continue;
  708. }
  709. const auto & tokens = slot.prompt.tokens;
  710. // skip the slot if it does not contains cached tokens
  711. if (tokens.empty()) {
  712. continue;
  713. }
  714. // fraction of the Longest Common Prefix length with respect to the input prompt length
  715. const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size();
  716. // select the current slot if the criteria match
  717. if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
  718. sim_best = sim_cur;
  719. ret = &slot;
  720. }
  721. }
  722. if (ret != nullptr) {
  723. const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size();
  724. SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n",
  725. sim_best, slot_prompt_similarity, f_keep);
  726. // if we are about to lose a large portion of the existing context - save it in the prompt cache
  727. if (f_keep < 0.5f) {
  728. update_cache = true;
  729. }
  730. }
  731. }
  732. // find the slot that has been least recently used
  733. if (ret == nullptr) {
  734. int64_t t_last = -1;
  735. for (server_slot & slot : slots) {
  736. // skip the slot if it is not available
  737. if (slot.is_processing()) {
  738. continue;
  739. }
  740. // select the current slot if the criteria match
  741. if (!ret || slot.t_last_used <= t_last) {
  742. t_last = slot.t_last_used;
  743. ret = &slot;
  744. }
  745. }
  746. if (ret != nullptr) {
  747. SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);
  748. update_cache = true;
  749. }
  750. }
  751. if (ret) {
  752. const auto & tokens = ret->prompt.tokens;
  753. update_cache = update_cache && prompt_cache;
  754. // cache prompts only for completion tasks
  755. update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION;
  756. // don't update the cache if the slot's context is empty
  757. update_cache = update_cache && tokens.size() > 0;
  758. // TODO: mtmd does not support prompt cache
  759. update_cache = update_cache && (ret->mctx == nullptr);
  760. if (update_cache) {
  761. SRV_WRN("%s", "updating prompt cache\n");
  762. const int64_t t_start = ggml_time_us();
  763. ret->prompt_save(*prompt_cache);
  764. if (!ret->prompt_load(*prompt_cache, task.tokens)) {
  765. clear_slot(*ret);
  766. }
  767. prompt_cache->update();
  768. SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
  769. }
  770. }
  771. return ret;
  772. }
  773. void clear_slot(server_slot & slot, bool allow_processing = false) const {
  774. if (!allow_processing) {
  775. GGML_ASSERT(!slot.is_processing());
  776. }
  777. SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size());
  778. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  779. slot.prompt.tokens.clear();
  780. }
  781. // return true if at least one slot has been cleared
  782. // TODO: improve logic
  783. // - smarter decision which slot to clear (LRU or longest prompt?)
  784. // - move slot to level 2 cache instead of removing?
  785. // - instead of purging, try to store and resume later?
  786. bool try_clear_idle_slots() {
  787. bool res = false;
  788. if (!params_base.kv_unified) {
  789. return res;
  790. }
  791. for (auto & slot : slots) {
  792. if (slot.is_processing()) {
  793. continue;
  794. }
  795. if (slot.prompt.n_tokens() > 0) {
  796. SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size());
  797. clear_slot(slot);
  798. res = true;
  799. // clear slots one by one
  800. break;
  801. }
  802. }
  803. return res;
  804. }
  805. std::vector<common_adapter_lora_info> construct_lora_list(const std::map<int, float> & config) {
  806. std::vector<common_adapter_lora_info> output = params_base.lora_adapters; // copy
  807. for (size_t i = 0; i < output.size(); ++i) {
  808. auto it = config.find(i);
  809. if (it != config.end()) {
  810. output[i].scale = it->second;
  811. } else {
  812. output[i].scale = 0.0f;
  813. }
  814. }
  815. return output;
  816. }
  817. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  818. slot.reset();
  819. // process per-request lora adapters
  820. if (!task.params.lora.empty()) {
  821. auto task_loras = construct_lora_list(task.params.lora);
  822. if (!are_lora_equal(task_loras, slot.lora)) {
  823. // if lora has changed, check to see if the cache should be cleared
  824. if (lora_should_clear_cache(slot.lora, task_loras)) {
  825. SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size());
  826. slot.prompt.tokens.clear();
  827. } else {
  828. SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task_loras.size());
  829. }
  830. slot.lora = task_loras;
  831. }
  832. } else {
  833. slot.lora = params_base.lora_adapters;
  834. }
  835. // if using alora, make sure it's only a single one requested and active
  836. size_t alora_invocation_start = task.tokens.size();
  837. if (lora_all_alora(slot.lora)) {
  838. const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
  839. // TODO: This will error out if a user requests two aloras, but only
  840. // provides the activation string for one. We could, instead search
  841. // for all requested alora activation strings and then either keep
  842. // only the last one, or reject if multiple are found.
  843. if (enabled_ids.size() != 1) {
  844. send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
  845. return false;
  846. }
  847. const auto & lora = slot.lora[enabled_ids[0]].ptr;
  848. // get the pointer and count for the invocation tokens
  849. const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
  850. const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora);
  851. // scan backwards through the prompt tokens to find the last
  852. // occurrence of the invocation sequence
  853. int match_idx = static_cast<int>(n_invocation_tokens) - 1;
  854. for (int i = task.tokens.size() - 1; i >= 0; --i) {
  855. // the token in this position matches the next token to find in
  856. // the invocation sequence
  857. if (task.tokens[i] == invocation_tokens[match_idx]) {
  858. // if it's a full match, we've found the start
  859. if (match_idx == 0) {
  860. alora_invocation_start = i;
  861. break;
  862. }
  863. // otherwise, check the next token in the sequence
  864. --match_idx;
  865. } else {
  866. // no match in this position, so start looking over again
  867. match_idx = static_cast<int>(n_invocation_tokens) - 1;
  868. }
  869. }
  870. // if the activation string is not found, disable the alora
  871. if (alora_invocation_start == task.tokens.size()) {
  872. SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
  873. slot.lora[enabled_ids[0]].scale = 0.0f;
  874. } else {
  875. SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
  876. slot.alora_invocation_start = alora_invocation_start;
  877. }
  878. }
  879. if (!task.tokens.validate(ctx)) {
  880. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  881. return false;
  882. }
  883. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  884. // initialize samplers
  885. {
  886. slot.smpl.reset(common_sampler_init(model, task.params.sampling));
  887. if (slot.smpl == nullptr) {
  888. // for now, the only error that may happen here is invalid grammar
  889. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  890. return false;
  891. }
  892. SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl.get()).c_str());
  893. }
  894. // initialize draft batch
  895. // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
  896. if (slot.ctx_dft) {
  897. llama_batch_free(slot.batch_spec);
  898. slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
  899. }
  900. slot.task = std::make_unique<const server_task>(std::move(task));
  901. slot.state = slot.is_child()
  902. ? SLOT_STATE_WAIT_OTHER // wait for the parent to process prompt
  903. : SLOT_STATE_STARTED;
  904. SLT_INF(slot, "%s", "processing task\n");
  905. return true;
  906. }
  907. bool process_token(completion_token_output & result, server_slot & slot) {
  908. // remember which tokens were sampled - used for repetition penalties during sampling
  909. const std::string token_str = result.text_to_send;
  910. slot.sampled = result.tok;
  911. slot.generated_text += token_str;
  912. if (slot.task->params.return_tokens) {
  913. slot.generated_tokens.push_back(result.tok);
  914. }
  915. slot.has_next_token = true;
  916. // check if there is incomplete UTF-8 character at the end
  917. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  918. // search stop word and delete it
  919. if (!incomplete) {
  920. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  921. const std::string str_test = slot.generated_text.substr(pos);
  922. bool send_text = true;
  923. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  924. if (stop_pos != std::string::npos) {
  925. slot.generated_text.erase(
  926. slot.generated_text.begin() + pos + stop_pos,
  927. slot.generated_text.end());
  928. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  929. } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) {
  930. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  931. send_text = stop_pos == std::string::npos;
  932. }
  933. // check if there is any token to predict
  934. if (send_text) {
  935. // no send the stop word in the response
  936. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  937. slot.n_sent_text += result.text_to_send.size();
  938. // add the token to slot queue and cache
  939. } else {
  940. result.text_to_send = "";
  941. }
  942. slot.add_token(result);
  943. if (slot.task->params.stream) {
  944. send_partial_response(slot, result, false);
  945. }
  946. }
  947. if (incomplete) {
  948. slot.has_next_token = true;
  949. }
  950. // if context shifting is disabled, make sure that we don't run out of context
  951. if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
  952. slot.truncated = true;
  953. slot.stop = STOP_TYPE_LIMIT;
  954. slot.has_next_token = false;
  955. SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  956. slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx);
  957. }
  958. // check the limits
  959. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  960. slot.stop = STOP_TYPE_LIMIT;
  961. slot.has_next_token = false;
  962. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict);
  963. }
  964. if (slot.has_new_line) {
  965. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  966. if (slot.task->params.n_indent > 0) {
  967. // check the current indentation
  968. // TODO: improve by not doing it more than once for each new line
  969. if (slot.last_nl_pos > 0) {
  970. size_t pos = slot.last_nl_pos;
  971. int n_indent = 0;
  972. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  973. n_indent++;
  974. pos++;
  975. }
  976. if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) {
  977. slot.stop = STOP_TYPE_LIMIT;
  978. slot.has_next_token = false;
  979. // cut the last line
  980. slot.generated_text.erase(pos, std::string::npos);
  981. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  982. }
  983. }
  984. // find the next new line
  985. {
  986. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  987. if (pos != std::string::npos) {
  988. slot.last_nl_pos = pos + 1;
  989. }
  990. }
  991. }
  992. }
  993. // check if there is a new line in the generated text
  994. if (result.text_to_send.find('\n') != std::string::npos) {
  995. slot.has_new_line = true;
  996. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  997. if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) {
  998. slot.stop = STOP_TYPE_LIMIT;
  999. slot.has_next_token = false;
  1000. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms);
  1001. }
  1002. }
  1003. if (llama_vocab_is_eog(vocab, result.tok)) {
  1004. slot.stop = STOP_TYPE_EOS;
  1005. slot.has_next_token = false;
  1006. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1007. }
  1008. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1009. return slot.has_next_token; // continue
  1010. }
  1011. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
  1012. const size_t n_probs = slot.task->params.sampling.n_probs;
  1013. if (post_sampling) {
  1014. const auto * cur_p = common_sampler_get_candidates(slot.smpl.get(), true);
  1015. const size_t max_probs = cur_p->size;
  1016. // set probability for sampled token
  1017. for (size_t i = 0; i < max_probs; i++) {
  1018. if (cur_p->data[i].id == result.tok) {
  1019. result.prob = cur_p->data[i].p;
  1020. break;
  1021. }
  1022. }
  1023. // set probability for top n_probs tokens
  1024. result.probs.reserve(max_probs);
  1025. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1026. result.probs.push_back({
  1027. cur_p->data[i].id,
  1028. common_token_to_piece(ctx, cur_p->data[i].id, special),
  1029. cur_p->data[i].p
  1030. });
  1031. }
  1032. } else {
  1033. // TODO: optimize this with min-p optimization
  1034. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1035. // set probability for sampled token
  1036. for (size_t i = 0; i < cur.size(); i++) {
  1037. // set probability for sampled token
  1038. if (cur[i].id == result.tok) {
  1039. result.prob = cur[i].p;
  1040. break;
  1041. }
  1042. }
  1043. // set probability for top n_probs tokens
  1044. result.probs.reserve(n_probs);
  1045. for (size_t i = 0; i < std::min(cur.size(), n_probs); i++) {
  1046. result.probs.push_back({
  1047. cur[i].id,
  1048. common_token_to_piece(ctx, cur[i].id, special),
  1049. cur[i].p
  1050. });
  1051. }
  1052. }
  1053. }
  1054. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1055. send_error(task.id, error, type);
  1056. }
  1057. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1058. send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx);
  1059. }
  1060. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
  1061. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1062. if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1063. GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
  1064. }
  1065. auto res = std::make_unique<server_task_result_error>();
  1066. res->id = id_task;
  1067. res->err_type = type;
  1068. res->err_msg = error;
  1069. res->n_prompt_tokens = n_prompt_tokens;
  1070. res->n_ctx = n_ctx;
  1071. queue_results.send(std::move(res));
  1072. }
  1073. // if multimodal is enabled, send an error and return false
  1074. bool check_no_mtmd(const int id_task) {
  1075. if (mctx) {
  1076. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  1077. return false;
  1078. }
  1079. return true;
  1080. }
  1081. void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
  1082. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1083. res->id = slot.task->id;
  1084. res->index = slot.task->index;
  1085. if (is_progress) {
  1086. res->is_progress = true;
  1087. res->progress.total = slot.task->n_tokens();
  1088. res->progress.cache = slot.n_prompt_tokens_cache;
  1089. res->progress.processed = slot.prompt.tokens.size();
  1090. res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt) / 1000;
  1091. } else {
  1092. res->content = tkn.text_to_send;
  1093. res->tokens = { tkn.tok };
  1094. }
  1095. res->n_decoded = slot.n_decoded;
  1096. res->n_prompt_tokens = slot.task->n_tokens();
  1097. res->post_sampling_probs = slot.task->params.post_sampling_probs;
  1098. res->verbose = slot.task->params.verbose;
  1099. res->res_type = slot.task->params.res_type;
  1100. res->oaicompat_model = slot.task->params.oaicompat_model;
  1101. res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
  1102. // populate res.probs_output
  1103. if (slot.task->params.sampling.n_probs > 0) {
  1104. res->prob_output = tkn; // copy the token probs
  1105. }
  1106. // populate timings if this is final response or timings_per_token is enabled
  1107. if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) {
  1108. res->timings = slot.get_timings();
  1109. }
  1110. queue_results.send(std::move(res));
  1111. }
  1112. void send_final_response(server_slot & slot) {
  1113. auto res = std::make_unique<server_task_result_cmpl_final>();
  1114. res->id = slot.task->id;
  1115. res->id_slot = slot.id;
  1116. res->index = slot.task->index;
  1117. // in stream mode, content and tokens are already in last partial chunk
  1118. if (slot.task->params.stream) {
  1119. res->content = "";
  1120. res->tokens = llama_tokens{};
  1121. } else {
  1122. res->content = std::move(slot.generated_text);
  1123. res->tokens = std::move(slot.generated_tokens);
  1124. }
  1125. res->timings = slot.get_timings();
  1126. res->prompt = slot.task->tokens.detokenize(ctx, true);
  1127. res->response_fields = std::move(slot.task->params.response_fields);
  1128. res->truncated = slot.truncated;
  1129. res->n_decoded = slot.n_decoded;
  1130. res->n_prompt_tokens = slot.task->n_tokens();
  1131. res->n_tokens_cached = slot.prompt.n_tokens();
  1132. res->has_new_line = slot.has_new_line;
  1133. res->stopping_word = slot.stopping_word;
  1134. res->stop = slot.stop;
  1135. res->post_sampling_probs = slot.task->params.post_sampling_probs;
  1136. res->verbose = slot.task->params.verbose;
  1137. res->stream = slot.task->params.stream;
  1138. res->include_usage = slot.task->params.include_usage;
  1139. res->res_type = slot.task->params.res_type;
  1140. res->oaicompat_model = slot.task->params.oaicompat_model;
  1141. res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
  1142. // populate res.probs_output
  1143. if (slot.task->params.sampling.n_probs > 0) {
  1144. if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) {
  1145. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1146. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1147. res->probs_output = std::vector<completion_token_output>(
  1148. slot.generated_token_probs.begin(),
  1149. slot.generated_token_probs.end() - safe_offset);
  1150. } else {
  1151. res->probs_output = std::vector<completion_token_output>(
  1152. slot.generated_token_probs.begin(),
  1153. slot.generated_token_probs.end());
  1154. }
  1155. }
  1156. res->generation_params = slot.task->params; // copy the parameters
  1157. queue_results.send(std::move(res));
  1158. }
  1159. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1160. auto res = std::make_unique<server_task_result_embd>();
  1161. res->id = slot.task->id;
  1162. res->index = slot.task->index;
  1163. res->n_tokens = slot.task->n_tokens();
  1164. res->res_type = slot.task->params.res_type;
  1165. const int n_embd = llama_model_n_embd(model);
  1166. std::vector<float> embd_res(n_embd, 0.0f);
  1167. for (int i = 0; i < batch.n_tokens; ++i) {
  1168. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1169. continue;
  1170. }
  1171. const float * embd = nullptr;
  1172. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  1173. embd = llama_get_embeddings_ith(ctx, i);
  1174. } else {
  1175. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1176. }
  1177. if (embd == nullptr) {
  1178. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1179. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1180. continue;
  1181. }
  1182. // normalize only when there is pooling
  1183. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1184. common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
  1185. res->embedding.push_back(embd_res);
  1186. break;
  1187. }
  1188. res->embedding.emplace_back(embd, embd + n_embd);
  1189. }
  1190. SLT_DBG(slot, "%s", "sending embeddings\n");
  1191. queue_results.send(std::move(res));
  1192. }
  1193. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1194. auto res = std::make_unique<server_task_result_rerank>();
  1195. res->id = slot.task->id;
  1196. res->index = slot.task->index;
  1197. res->n_tokens = slot.task->n_tokens();
  1198. for (int i = 0; i < batch.n_tokens; ++i) {
  1199. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1200. continue;
  1201. }
  1202. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1203. if (embd == NULL) {
  1204. embd = llama_get_embeddings_ith(ctx, i);
  1205. }
  1206. if (embd == NULL) {
  1207. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1208. res->score = -1e6;
  1209. continue;
  1210. }
  1211. res->score = embd[0];
  1212. }
  1213. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1214. queue_results.send(std::move(res));
  1215. }
  1216. //
  1217. // Functions to process the task
  1218. //
  1219. // tokenize the input if it's set by CLI, return false on error
  1220. bool tokenize_cli_input(server_task & task) {
  1221. if (task.cli_input == nullptr) {
  1222. return true; // nothing to do
  1223. }
  1224. try {
  1225. auto & opt = oai_parser_opt;
  1226. common_chat_templates_inputs inputs;
  1227. inputs.messages = common_chat_msgs_parse_oaicompat(task.cli_input);
  1228. inputs.tools = {}; // TODO
  1229. inputs.tool_choice = COMMON_CHAT_TOOL_CHOICE_NONE;
  1230. inputs.json_schema = ""; // TODO
  1231. inputs.grammar = ""; // TODO
  1232. inputs.use_jinja = opt.use_jinja;
  1233. inputs.parallel_tool_calls = false;
  1234. inputs.add_generation_prompt = true;
  1235. inputs.reasoning_format = opt.reasoning_format;
  1236. inputs.enable_thinking = opt.enable_thinking;
  1237. // Apply chat template to the list of messages
  1238. auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
  1239. // tokenize the resulting prompt
  1240. auto & prompt = chat_params.prompt;
  1241. if (mctx != nullptr) {
  1242. task.tokens = process_mtmd_prompt(mctx, prompt, task.cli_files);
  1243. } else {
  1244. task.tokens = std::move(tokenize_input_prompts(vocab, mctx, prompt, true, true)[0]);
  1245. }
  1246. task.cli_input.clear();
  1247. task.cli_files.clear();
  1248. } catch (const std::exception & e) {
  1249. send_error(task, std::string("Failed to format input: ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
  1250. return false;
  1251. }
  1252. return true;
  1253. }
  1254. void process_single_task(server_task && task) {
  1255. switch (task.type) {
  1256. case SERVER_TASK_TYPE_COMPLETION:
  1257. case SERVER_TASK_TYPE_INFILL:
  1258. case SERVER_TASK_TYPE_EMBEDDING:
  1259. case SERVER_TASK_TYPE_RERANK:
  1260. {
  1261. if (!tokenize_cli_input(task)) {
  1262. break;
  1263. }
  1264. const int id_slot = task.id_slot;
  1265. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1266. if (slot == nullptr) {
  1267. // if no slot is available, we defer this task for processing later
  1268. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1269. queue_tasks.defer(std::move(task));
  1270. break;
  1271. }
  1272. if (slot->is_processing()) {
  1273. // if requested slot is unavailable, we defer this task for processing later
  1274. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1275. queue_tasks.defer(std::move(task));
  1276. break;
  1277. }
  1278. if (!launch_slot_with_task(*slot, std::move(task))) {
  1279. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1280. break;
  1281. }
  1282. } break;
  1283. case SERVER_TASK_TYPE_CANCEL:
  1284. {
  1285. // release slot linked with the task id
  1286. for (auto & slot : slots) {
  1287. if (slot.task && slot.task->id == task.id_target) {
  1288. slot.release();
  1289. break;
  1290. }
  1291. }
  1292. } break;
  1293. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1294. {
  1295. // do nothing
  1296. } break;
  1297. case SERVER_TASK_TYPE_METRICS:
  1298. {
  1299. json slots_data = json::array();
  1300. int n_idle_slots = 0;
  1301. int n_processing_slots = 0;
  1302. for (server_slot & slot : slots) {
  1303. json slot_data = slot.to_json(slots_debug == 0);
  1304. if (slot.is_processing()) {
  1305. n_processing_slots++;
  1306. } else {
  1307. n_idle_slots++;
  1308. }
  1309. slots_data.push_back(slot_data);
  1310. }
  1311. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  1312. auto res = std::make_unique<server_task_result_metrics>();
  1313. res->id = task.id;
  1314. res->slots_data = std::move(slots_data);
  1315. res->n_idle_slots = n_idle_slots;
  1316. res->n_processing_slots = n_processing_slots;
  1317. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred_size();
  1318. res->t_start = metrics.t_start;
  1319. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  1320. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  1321. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  1322. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  1323. res->n_tokens_max = metrics.n_tokens_max;
  1324. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  1325. res->t_prompt_processing = metrics.t_prompt_processing;
  1326. res->n_tokens_predicted = metrics.n_tokens_predicted;
  1327. res->t_tokens_generation = metrics.t_tokens_generation;
  1328. res->n_decode_total = metrics.n_decode_total;
  1329. res->n_busy_slots_total = metrics.n_busy_slots_total;
  1330. if (task.metrics_reset_bucket) {
  1331. metrics.reset_bucket();
  1332. }
  1333. queue_results.send(std::move(res));
  1334. } break;
  1335. case SERVER_TASK_TYPE_SLOT_SAVE:
  1336. {
  1337. if (!check_no_mtmd(task.id)) {
  1338. break;
  1339. }
  1340. int id_slot = task.slot_action.slot_id;
  1341. server_slot * slot = get_slot_by_id(id_slot);
  1342. if (slot == nullptr) {
  1343. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1344. break;
  1345. }
  1346. if (slot->is_processing()) {
  1347. // if requested slot is unavailable, we defer this task for processing later
  1348. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1349. queue_tasks.defer(std::move(task));
  1350. break;
  1351. }
  1352. const size_t token_count = slot->prompt.tokens.size();
  1353. const int64_t t_start = ggml_time_us();
  1354. std::string filename = task.slot_action.filename;
  1355. std::string filepath = task.slot_action.filepath;
  1356. const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens();
  1357. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  1358. const int64_t t_end = ggml_time_us();
  1359. const double t_save_ms = (t_end - t_start) / 1000.0;
  1360. auto res = std::make_unique<server_task_result_slot_save_load>();
  1361. res->id = task.id;
  1362. res->id_slot = id_slot;
  1363. res->filename = filename;
  1364. res->is_save = true;
  1365. res->n_tokens = token_count;
  1366. res->n_bytes = nwrite;
  1367. res->t_ms = t_save_ms;
  1368. queue_results.send(std::move(res));
  1369. } break;
  1370. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1371. {
  1372. if (!check_no_mtmd(task.id)) break;
  1373. int id_slot = task.slot_action.slot_id;
  1374. server_slot * slot = get_slot_by_id(id_slot);
  1375. if (slot == nullptr) {
  1376. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1377. break;
  1378. }
  1379. if (slot->is_processing()) {
  1380. // if requested slot is unavailable, we defer this task for processing later
  1381. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1382. queue_tasks.defer(std::move(task));
  1383. break;
  1384. }
  1385. const int64_t t_start = ggml_time_us();
  1386. std::string filename = task.slot_action.filename;
  1387. std::string filepath = task.slot_action.filepath;
  1388. llama_tokens tokens;
  1389. tokens.resize(slot->n_ctx);
  1390. size_t token_count = 0;
  1391. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  1392. if (nread == 0) {
  1393. slot->prompt.tokens.clear(); // KV may already been invalidated?
  1394. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1395. break;
  1396. }
  1397. tokens.resize(token_count);
  1398. slot->prompt.tokens.clear();
  1399. slot->prompt.tokens.insert(tokens);
  1400. const int64_t t_end = ggml_time_us();
  1401. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1402. auto res = std::make_unique<server_task_result_slot_save_load>();
  1403. res->id = task.id;
  1404. res->id_slot = id_slot;
  1405. res->filename = filename;
  1406. res->is_save = false;
  1407. res->n_tokens = token_count;
  1408. res->n_bytes = nread;
  1409. res->t_ms = t_restore_ms;
  1410. queue_results.send(std::move(res));
  1411. } break;
  1412. case SERVER_TASK_TYPE_SLOT_ERASE:
  1413. {
  1414. if (!check_no_mtmd(task.id)) {
  1415. break;
  1416. }
  1417. int id_slot = task.slot_action.slot_id;
  1418. server_slot * slot = get_slot_by_id(id_slot);
  1419. if (slot == nullptr) {
  1420. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1421. break;
  1422. }
  1423. if (slot->is_processing()) {
  1424. // if requested slot is unavailable, we defer this task for processing later
  1425. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1426. queue_tasks.defer(std::move(task));
  1427. break;
  1428. }
  1429. // Erase token cache
  1430. const size_t n_erased = slot->prompt.tokens.size();
  1431. clear_slot(*slot);
  1432. auto res = std::make_unique<server_task_result_slot_erase>();
  1433. res->id = task.id;
  1434. res->id_slot = id_slot;
  1435. res->n_erased = n_erased;
  1436. queue_results.send(std::move(res));
  1437. } break;
  1438. case SERVER_TASK_TYPE_GET_LORA:
  1439. {
  1440. // TODO @ngxson : make lora_adapters a dedicated member of server_context
  1441. auto & loras = params_base.lora_adapters;
  1442. auto res = std::make_unique<server_task_result_get_lora>();
  1443. res->id = task.id;
  1444. for (size_t i = 0; i < loras.size(); ++i) {
  1445. auto & lora = loras[i];
  1446. std::string alora_invocation_string = "";
  1447. const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
  1448. llama_tokens alora_invocation_tokens;
  1449. if (n_alora_tokens) {
  1450. const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
  1451. for (uint64_t j = 0; j < n_alora_tokens; ++j) {
  1452. alora_invocation_string += common_token_to_piece(vocab, alora_tokens[j]);
  1453. alora_invocation_tokens.push_back(alora_tokens[j]);
  1454. }
  1455. }
  1456. res->loras.push_back(server_task_result_get_lora::lora{
  1457. lora,
  1458. alora_invocation_string,
  1459. alora_invocation_tokens,
  1460. });
  1461. }
  1462. queue_results.send(std::move(res));
  1463. } break;
  1464. case SERVER_TASK_TYPE_SET_LORA:
  1465. {
  1466. auto new_loras = construct_lora_list(task.set_lora);
  1467. // logging
  1468. for (size_t i = 0; i < new_loras.size(); ++i) {
  1469. SRV_INF("set lora adapter idx=%zu scale=%f\n", i, new_loras[i].scale);
  1470. }
  1471. // TODO @ngxson : make lora_adapters a dedicated member of server_context
  1472. params_base.lora_adapters = new_loras;
  1473. auto res = std::make_unique<server_task_result_apply_lora>();
  1474. res->id = task.id;
  1475. queue_results.send(std::move(res));
  1476. } break;
  1477. }
  1478. }
  1479. void update_slots() {
  1480. // check if all slots are idle
  1481. {
  1482. bool all_idle = true;
  1483. for (auto & slot : slots) {
  1484. if (slot.is_processing()) {
  1485. all_idle = false;
  1486. break;
  1487. }
  1488. }
  1489. if (all_idle) {
  1490. SRV_INF("%s", "all slots are idle\n");
  1491. return;
  1492. }
  1493. }
  1494. {
  1495. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  1496. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  1497. task.id = queue_tasks.get_new_id();
  1498. queue_tasks.post(std::move(task));
  1499. }
  1500. // apply context-shift if needed
  1501. // TODO: simplify and improve
  1502. for (server_slot & slot : slots) {
  1503. if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
  1504. if (!params_base.ctx_shift) {
  1505. // this check is redundant (for good)
  1506. // we should never get here, because generation should already stopped in process_token()
  1507. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  1508. slot.release();
  1509. continue;
  1510. }
  1511. if (mctx) {
  1512. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  1513. // we don't support ctx_shift because an image chunk may contains multiple tokens
  1514. GGML_ABORT("not supported by multimodal");
  1515. }
  1516. if (slot.is_parent() || slot.is_child()) {
  1517. send_error(slot, "context shift cannot be used for shared prompt", ERROR_TYPE_SERVER);
  1518. slot.release();
  1519. continue;
  1520. }
  1521. // Shift context
  1522. int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
  1523. if (add_bos_token) {
  1524. n_keep += 1;
  1525. }
  1526. n_keep = std::min(slot.n_ctx - 4, n_keep);
  1527. const int n_left = slot.prompt.n_tokens() - n_keep;
  1528. const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2);
  1529. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  1530. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  1531. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard);
  1532. // add generated tokens to cache
  1533. // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481
  1534. {
  1535. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  1536. llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy
  1537. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  1538. new_tokens[i - n_discard] = new_tokens[i];
  1539. }
  1540. new_tokens.resize(slot.prompt.tokens.size() - n_discard);
  1541. slot.prompt.tokens.clear();
  1542. slot.prompt.tokens.insert(new_tokens);
  1543. }
  1544. slot.truncated = true;
  1545. }
  1546. }
  1547. // start populating the batch for this iteration
  1548. common_batch_clear(batch);
  1549. // track if given slot can be batched with slots already in the batch
  1550. server_slot * slot_batched = nullptr;
  1551. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  1552. return params_base.special ||
  1553. slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end();
  1554. };
  1555. // first, add sampled tokens from any ongoing sequences
  1556. for (auto & slot : slots) {
  1557. if (slot.state != SLOT_STATE_GENERATING) {
  1558. continue;
  1559. }
  1560. // check if we can batch this slot with the previous one
  1561. if (!slot_batched) {
  1562. slot_batched = &slot;
  1563. } else if (!slot_batched->can_batch_with(slot)) {
  1564. continue;
  1565. }
  1566. // generate draft tokens in speculative decoding mode
  1567. // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
  1568. // perform the speculative drafting for all sequences at the same time in a single batch
  1569. int n_draft_max = slot.get_n_draft_max();
  1570. if (n_draft_max > 0) {
  1571. if (mctx) {
  1572. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  1573. GGML_ABORT("not supported by multimodal");
  1574. }
  1575. struct common_speculative_params params_spec;
  1576. params_spec.n_draft = n_draft_max;
  1577. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
  1578. params_spec.p_min = slot.task->params.speculative.p_min;
  1579. const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
  1580. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, slot.sampled);
  1581. // add the sampled token to the batch
  1582. slot.i_batch_dft.push_back(batch.n_tokens);
  1583. common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
  1584. slot.prompt.tokens.push_back(slot.sampled);
  1585. if (slot.task->params.speculative.n_min > (int) draft.size()) {
  1586. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
  1587. // fallback to normal decoding
  1588. slot.i_batch = slot.i_batch_dft[0];
  1589. slot.drafted.clear();
  1590. slot.i_batch_dft.clear();
  1591. } else {
  1592. // keep track of total number of drafted tokens tested
  1593. slot.n_draft_total += draft.size();
  1594. // add all drafted tokens to the batch
  1595. for (size_t i = 0; i < draft.size(); i++) {
  1596. slot.i_batch_dft.push_back(batch.n_tokens);
  1597. common_batch_add(batch, draft[i], slot.prompt.tokens.pos_next(), { slot.id }, true);
  1598. slot.prompt.tokens.push_back(draft[i]);
  1599. }
  1600. slot.drafted = std::move(draft);
  1601. }
  1602. } else {
  1603. // no speculative decoding
  1604. slot.i_batch = batch.n_tokens;
  1605. common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
  1606. slot.prompt.tokens.push_back(slot.sampled);
  1607. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
  1608. slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
  1609. }
  1610. }
  1611. // process in chunks of params.n_batch
  1612. int32_t n_batch = llama_n_batch(ctx);
  1613. int32_t n_ubatch = llama_n_ubatch(ctx);
  1614. float alora_scale = -1.0f;
  1615. size_t alora_disabled_id = 0;
  1616. // next, batch any pending prompts without exceeding n_batch
  1617. if (params_base.cont_batching || batch.n_tokens == 0) {
  1618. for (auto & slot : slots) {
  1619. if (!slot.is_processing()) {
  1620. continue;
  1621. }
  1622. // check if we can batch this slot with the previous one
  1623. if (slot_batched && !slot_batched->can_batch_with(slot)) {
  1624. continue;
  1625. }
  1626. // this slot still has a prompt to be processed
  1627. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  1628. const auto & input_tokens = slot.task->tokens;
  1629. // TODO: maybe move branch to outside of this loop in the future
  1630. if (slot.state == SLOT_STATE_STARTED) {
  1631. slot.t_start_process_prompt = ggml_time_us();
  1632. slot.t_start_generation = 0;
  1633. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  1634. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n",
  1635. slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens());
  1636. // print prompt tokens (for debugging)
  1637. /*if (1) {
  1638. // first 16 tokens (avoid flooding logs)
  1639. for (int i = 0; i < std::min<int>(16, input_tokens.size()); i++) {
  1640. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
  1641. }
  1642. } else {
  1643. // all
  1644. for (int i = 0; i < (int) input_tokens.size(); i++) {
  1645. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
  1646. }
  1647. }*/
  1648. // keep track how many tokens we can reuse from the previous state
  1649. int n_past = 0;
  1650. // empty prompt passed -> release the slot and send empty response
  1651. if (input_tokens.empty()) {
  1652. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  1653. slot.print_timings();
  1654. send_final_response(slot);
  1655. slot.release();
  1656. continue;
  1657. }
  1658. // TODO: support memory-less logits computation
  1659. if (slot.need_logits() && !llama_get_memory(ctx)) {
  1660. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  1661. slot.release();
  1662. continue;
  1663. }
  1664. if (!slot.can_split()) {
  1665. if (slot.task->n_tokens() > n_ubatch) {
  1666. send_error(slot,
  1667. string_format(
  1668. "input (%d tokens) is too large to process. increase the physical batch "
  1669. "size (current batch size: %d)",
  1670. slot.task->n_tokens(), n_ubatch),
  1671. ERROR_TYPE_SERVER);
  1672. slot.release();
  1673. continue;
  1674. }
  1675. if (slot.task->n_tokens() > slot.n_ctx) {
  1676. send_error(
  1677. slot,
  1678. string_format(
  1679. "input (%d tokens) is larger than the max context size (%d tokens). skipping",
  1680. slot.task->n_tokens(), slot.n_ctx),
  1681. ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  1682. slot.release();
  1683. continue;
  1684. }
  1685. } else {
  1686. if (slot.task->n_tokens() >= slot.n_ctx) {
  1687. send_error(slot,
  1688. string_format("request (%d tokens) exceeds the available context size (%d "
  1689. "tokens), try increasing it",
  1690. slot.task->n_tokens(), slot.n_ctx),
  1691. ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  1692. slot.release();
  1693. continue;
  1694. }
  1695. if (slot.task->params.cache_prompt) {
  1696. // reuse any previously computed tokens that are common with the new prompt
  1697. n_past = slot.prompt.tokens.get_common_prefix(input_tokens);
  1698. // if there is an alora invoked, don't cache after the invocation start
  1699. if (slot.alora_invocation_start > 0) {
  1700. SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start);
  1701. n_past = std::min(n_past, slot.alora_invocation_start - 1);
  1702. }
  1703. const auto n_cache_reuse = slot.task->params.n_cache_reuse;
  1704. const bool can_cache_reuse =
  1705. llama_memory_can_shift(llama_get_memory(ctx)) &&
  1706. !slot.prompt.tokens.has_mtmd;
  1707. if (!can_cache_reuse && n_cache_reuse > 0) {
  1708. SLT_WRN(slot, "cache reuse is not supported - ignoring n_cache_reuse = %d\n", n_cache_reuse);
  1709. }
  1710. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  1711. if (can_cache_reuse && n_cache_reuse > 0) {
  1712. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  1713. size_t head_c = n_past; // cache
  1714. size_t head_p = n_past; // current prompt
  1715. if (mctx) {
  1716. // we should never reach this
  1717. GGML_ABORT("not supported by multimodal");
  1718. }
  1719. SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", n_cache_reuse, n_past);
  1720. while (head_c < slot.prompt.tokens.size() &&
  1721. head_p < input_tokens.size()) {
  1722. size_t n_match = 0;
  1723. while (head_c + n_match < slot.prompt.tokens.size() &&
  1724. head_p + n_match < input_tokens.size() &&
  1725. slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
  1726. n_match++;
  1727. }
  1728. if (n_match >= (size_t) n_cache_reuse) {
  1729. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  1730. //for (size_t i = head_p; i < head_p + n_match; i++) {
  1731. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  1732. //}
  1733. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  1734. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  1735. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  1736. for (size_t i = 0; i < n_match; i++) {
  1737. slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]);
  1738. n_past++;
  1739. }
  1740. head_c += n_match;
  1741. head_p += n_match;
  1742. } else {
  1743. head_c += 1;
  1744. }
  1745. }
  1746. SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past);
  1747. }
  1748. } else {
  1749. // if we don't cache the prompt, we have to remove all previous tokens
  1750. n_past = 0;
  1751. }
  1752. // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
  1753. const auto n_swa = std::max(1, llama_model_n_swa(model));
  1754. // the largest pos_min required for a checkpoint to be useful
  1755. const auto pos_min_thold = std::max(0, n_past - n_swa);
  1756. // note: disallow with mtmd contexts for now
  1757. // https://github.com/ggml-org/llama.cpp/issues/17043
  1758. if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) {
  1759. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  1760. if (pos_min == -1) {
  1761. SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
  1762. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  1763. }
  1764. // when the prompt prefix does not match, print the tokens around the mismatch
  1765. // this is useful for debugging prompt caching
  1766. if (slots_debug) {
  1767. const int np0 = std::max<int>(n_past - 4, 0);
  1768. const int np1 = std::min<int>(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size()));
  1769. std::stringstream ss0;
  1770. std::stringstream ss1;
  1771. std::stringstream st0;
  1772. std::stringstream st1;
  1773. ss0 << "old: ... ";
  1774. ss1 << "new: ... ";
  1775. for (int i = np0; i < np1; i++) {
  1776. if (i == n_past) {
  1777. ss0 << " | ";
  1778. ss1 << " | ";
  1779. }
  1780. {
  1781. const auto token = slot.prompt.tokens[i];
  1782. const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
  1783. ss0 << piece;
  1784. st0 << std::setw(8) << token;
  1785. }
  1786. {
  1787. const auto token = slot.task->tokens[i];
  1788. const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
  1789. ss1 << piece;
  1790. st1 << std::setw(8) << token;
  1791. }
  1792. }
  1793. SLT_WRN(slot, "%s\n", ss0.str().c_str());
  1794. SLT_WRN(slot, "%s\n", ss1.str().c_str());
  1795. SLT_WRN(slot, "%s\n", st0.str().c_str());
  1796. SLT_WRN(slot, "%s\n", st1.str().c_str());
  1797. }
  1798. if (pos_min > pos_min_thold) {
  1799. // TODO: support can be added in the future when corresponding vision models get released
  1800. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  1801. SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
  1802. // search for a context checkpoint
  1803. const auto it = std::find_if(
  1804. slot.prompt.checkpoints.rbegin(),
  1805. slot.prompt.checkpoints.rend(),
  1806. [&](const auto & cur) {
  1807. // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
  1808. return cur.pos_min < pos_min_thold;
  1809. }
  1810. );
  1811. bool do_reset = it == slot.prompt.checkpoints.rend();
  1812. if (!do_reset) {
  1813. // restore the context checkpoint
  1814. const size_t checkpoint_size = it->data.size();
  1815. const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  1816. if (n != checkpoint_size) {
  1817. SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
  1818. do_reset = true;
  1819. //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
  1820. } else {
  1821. n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max));
  1822. SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
  1823. }
  1824. }
  1825. if (do_reset) {
  1826. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
  1827. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  1828. n_past = 0;
  1829. }
  1830. }
  1831. }
  1832. {
  1833. // erase any checkpoints with pos_min > pos_min_thold
  1834. for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) {
  1835. const auto & cur = *it;
  1836. if (cur.pos_min > pos_min_thold) {
  1837. SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
  1838. it = slot.prompt.checkpoints.erase(it);
  1839. } else {
  1840. ++it;
  1841. }
  1842. }
  1843. }
  1844. }
  1845. // [TAG_PROMPT_LOGITS]
  1846. if (n_past == slot.task->n_tokens() && n_past > 0) {
  1847. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens());
  1848. n_past--;
  1849. SLT_WRN(slot, "n_past was set to %d\n", n_past);
  1850. }
  1851. slot.n_prompt_tokens_cache = n_past;
  1852. slot.n_prompt_tokens_processed = 0;
  1853. slot.prompt.tokens.keep_first(n_past);
  1854. // send initial 0% progress update if needed
  1855. // this is to signal the client that the request has started processing
  1856. if (slot.task->params.stream && slot.task->params.return_progress) {
  1857. send_partial_response(slot, {}, true);
  1858. }
  1859. }
  1860. if (!slot.can_split()) {
  1861. // cannot fit the prompt in the current batch - will try next iter
  1862. if (batch.n_tokens + slot.task->n_tokens() > n_batch) {
  1863. continue;
  1864. }
  1865. }
  1866. // truncate any tokens that are beyond n_past for this slot
  1867. const llama_pos p0 = slot.prompt.tokens.pos_next();
  1868. SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0);
  1869. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) {
  1870. SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0);
  1871. clear_slot(slot, /*allow_processing=*/true);
  1872. // there is no common part left
  1873. slot.n_prompt_tokens_cache = 0;
  1874. }
  1875. // check if we should process the image
  1876. if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) {
  1877. // process the image
  1878. size_t n_tokens_out = 0;
  1879. int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out);
  1880. if (res != 0) {
  1881. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  1882. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  1883. slot.release();
  1884. continue;
  1885. }
  1886. slot.n_prompt_tokens_processed += n_tokens_out;
  1887. // add the image chunk to cache
  1888. {
  1889. const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens());
  1890. slot.prompt.tokens.push_back(chunk.get()); // copy
  1891. }
  1892. }
  1893. // If using an alora, there may be uncached tokens that come
  1894. // before the invocation sequence. When this happens, the
  1895. // tokens before the invocation sequence need to be
  1896. // processed without the adapter in a separate batch, then
  1897. // the adapter needs to be enabled for the remaining tokens.
  1898. if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) {
  1899. SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
  1900. const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
  1901. GGML_ASSERT(enabled_loras.size() == 1);
  1902. alora_scale = slot.lora[enabled_loras[0]].scale;
  1903. slot.lora[enabled_loras[0]].scale = 0.0f;
  1904. alora_disabled_id = enabled_loras[0];
  1905. }
  1906. bool do_checkpoint = params_base.n_ctx_checkpoints > 0;
  1907. // make checkpoints only for completion tasks
  1908. do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION;
  1909. // make a checkpoint of the parts of the memory that cannot be rolled back.
  1910. // checkpoints are created only if:
  1911. // - the model uses SWA and we are not using `swa_full`
  1912. // - the model architecture is marked as recurrent or hybrid
  1913. //
  1914. // TODO: try to make this conditional on the context or the memory module, instead of the model type
  1915. do_checkpoint = do_checkpoint && (
  1916. llama_model_is_recurrent(model) ||
  1917. llama_model_is_hybrid(model) ||
  1918. (llama_model_n_swa(model) > 0 && !params_base.swa_full)
  1919. );
  1920. // add prompt tokens for processing in the current batch
  1921. while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) {
  1922. // get next token to process
  1923. llama_token cur_tok = input_tokens[slot.prompt.n_tokens()];
  1924. if (cur_tok == LLAMA_TOKEN_NULL) {
  1925. break; // end of text chunk
  1926. }
  1927. // if this is an alora request with pre-invocation
  1928. // tokens that are not cached, we need to stop filling
  1929. // this batch at those pre-invocation tokens.
  1930. if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) {
  1931. SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
  1932. break;
  1933. }
  1934. // embedding requires all tokens in the batch to be output
  1935. common_batch_add(batch,
  1936. cur_tok,
  1937. slot.prompt.tokens.pos_next(),
  1938. { slot.id },
  1939. slot.need_embd());
  1940. slot.prompt.tokens.push_back(cur_tok);
  1941. slot.n_prompt_tokens_processed++;
  1942. // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
  1943. if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
  1944. break;
  1945. }
  1946. }
  1947. // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());
  1948. SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens());
  1949. // entire prompt has been processed
  1950. if (slot.prompt.n_tokens() == slot.task->n_tokens()) {
  1951. slot.state = SLOT_STATE_DONE_PROMPT;
  1952. GGML_ASSERT(batch.n_tokens > 0);
  1953. common_sampler_reset(slot.smpl.get());
  1954. // Process all prompt tokens through sampler system
  1955. for (int i = 0; i < slot.task->n_tokens(); ++i) {
  1956. llama_token id = input_tokens[i];
  1957. if (id != LLAMA_TOKEN_NULL) {
  1958. common_sampler_accept(slot.smpl.get(), id, false);
  1959. }
  1960. }
  1961. // extract the logits only for the last token
  1962. batch.logits[batch.n_tokens - 1] = true;
  1963. slot.n_decoded = 0;
  1964. slot.i_batch = batch.n_tokens - 1;
  1965. SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens);
  1966. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  1967. const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id);
  1968. // no need for empty or small checkpoints
  1969. do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64);
  1970. // no need to create checkpoints that are too close together
  1971. do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64);
  1972. if (do_checkpoint) {
  1973. while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
  1974. // make room for the new checkpoint, if needed
  1975. const auto & cur = slot.prompt.checkpoints.front();
  1976. SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  1977. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  1978. slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin());
  1979. }
  1980. const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  1981. auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{
  1982. /*.pos_min = */ pos_min,
  1983. /*.pos_max = */ pos_max,
  1984. /*.data = */ std::vector<uint8_t>(checkpoint_size),
  1985. });
  1986. llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  1987. SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  1988. (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  1989. }
  1990. }
  1991. }
  1992. if (!slot_batched) {
  1993. slot_batched = &slot;
  1994. }
  1995. if (batch.n_tokens >= n_batch) {
  1996. break;
  1997. }
  1998. }
  1999. }
  2000. if (batch.n_tokens == 0) {
  2001. SRV_WRN("%s", "no tokens to decode\n");
  2002. return;
  2003. }
  2004. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2005. if (slot_batched) {
  2006. // apply lora, only need to do it once per batch
  2007. common_set_adapter_lora(ctx, slot_batched->lora);
  2008. // if the lora is temporarily disabled for an alora, re-enable it
  2009. // for next time
  2010. if (alora_scale > 0.0f) {
  2011. SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
  2012. slot_batched->lora[alora_disabled_id].scale = alora_scale;
  2013. }
  2014. llama_set_embeddings(ctx, slot_batched->need_embd());
  2015. }
  2016. int32_t i_next = 0;
  2017. // process the created batch of tokens
  2018. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2019. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2020. llama_batch batch_view = {
  2021. n_tokens,
  2022. batch.token + i,
  2023. nullptr,
  2024. batch.pos + i,
  2025. batch.n_seq_id + i,
  2026. batch.seq_id + i,
  2027. batch.logits + i,
  2028. };
  2029. const int ret = llama_decode(ctx, batch_view);
  2030. metrics.on_decoded(slots);
  2031. if (ret != 0) {
  2032. {
  2033. std::string err;
  2034. if (n_batch == 1 && ret == 1) {
  2035. // TODO: try to terminate only the largest active slot/sequence and continue with the rest
  2036. // need to remove the tokens from the current batch too
  2037. err = "Context size has been exceeded.";
  2038. }
  2039. if (ret == -1) {
  2040. err = "Invalid input batch.";
  2041. }
  2042. if (ret < -1) {
  2043. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  2044. err = "Compute error.";
  2045. }
  2046. // TODO: handle ret == 2 (abort) when we start aborting
  2047. if (!err.empty()) {
  2048. SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2049. for (auto & slot : slots) {
  2050. if (slot.is_processing()) {
  2051. send_error(slot, err);
  2052. slot.release();
  2053. // note: it's complicated to keep track of how much of the current batch has been
  2054. // processed before the error occurred, so we simply clear the entire context
  2055. clear_slot(slot);
  2056. }
  2057. }
  2058. break;
  2059. }
  2060. }
  2061. // retry with half the batch size to try to find a free slot in the KV cache
  2062. if (!try_clear_idle_slots()) {
  2063. n_batch /= 2;
  2064. }
  2065. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2066. continue; // continue loop of n_batch
  2067. }
  2068. // move the head of the batch forward with the number of tokens we just processed
  2069. i_next = i + n_tokens;
  2070. // on successful decode, restore the original batch size
  2071. n_batch = llama_n_batch(ctx);
  2072. // technically, measuring the time here excludes the sampling time for the last batch
  2073. // but on the other hand, we don't want to do too many system calls to measure the time, so it's ok
  2074. const int64_t t_current = ggml_time_us();
  2075. for (auto & slot : slots) {
  2076. // may need to copy state to other slots
  2077. if (slot.state == SLOT_STATE_DONE_PROMPT && slot.is_parent()) {
  2078. std::vector<server_slot *> child_slots;
  2079. for (auto & other : slots) {
  2080. if (other.state == SLOT_STATE_WAIT_OTHER && slot.task->id == other.task->id_parent) {
  2081. child_slots.push_back(&other);
  2082. }
  2083. }
  2084. // we can only proceed if all child slots are having the correct tasks
  2085. if (child_slots.size() == slot.task->n_children) {
  2086. // copy state to the child slots
  2087. for (auto & child : child_slots) {
  2088. SLT_INF(slot, "copying state to child %d\n", child->id);
  2089. slot.copy_state_to(*child);
  2090. child->state = SLOT_STATE_DONE_PROMPT;
  2091. }
  2092. }
  2093. }
  2094. // optionally send prompt processing progress
  2095. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
  2096. if (slot.task->params.stream && slot.task->params.return_progress) {
  2097. send_partial_response(slot, {}, true);
  2098. }
  2099. }
  2100. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2101. continue; // continue loop of slots
  2102. }
  2103. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2104. if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) {
  2105. // prompt evaluated for embedding
  2106. send_embedding(slot, batch_view);
  2107. slot.release();
  2108. slot.i_batch = -1;
  2109. continue; // continue loop of slots
  2110. }
  2111. if (slot.task->type == SERVER_TASK_TYPE_RERANK) {
  2112. send_rerank(slot, batch_view);
  2113. slot.release();
  2114. slot.i_batch = -1;
  2115. continue; // continue loop of slots
  2116. }
  2117. // prompt evaluated for next-token prediction
  2118. slot.state = SLOT_STATE_GENERATING;
  2119. } else if (slot.state != SLOT_STATE_GENERATING) {
  2120. continue; // continue loop of slots
  2121. }
  2122. if (slot.i_batch_dft.size() > 0) {
  2123. continue; // sample using speculative decoding
  2124. }
  2125. const int tok_idx = slot.i_batch - i;
  2126. llama_token id = common_sampler_sample(slot.smpl.get(), ctx, tok_idx);
  2127. slot.i_batch = -1;
  2128. common_sampler_accept(slot.smpl.get(), id, true);
  2129. slot.n_decoded += 1;
  2130. if (slot.n_decoded == 1) {
  2131. slot.t_start_generation = t_current;
  2132. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2133. metrics.on_prompt_eval(slot);
  2134. }
  2135. slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
  2136. completion_token_output result;
  2137. result.tok = id;
  2138. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2139. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2140. if (slot.task->params.sampling.n_probs > 0) {
  2141. populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx);
  2142. }
  2143. if (!process_token(result, slot)) {
  2144. // release slot because of stop condition
  2145. slot.print_timings();
  2146. send_final_response(slot);
  2147. metrics.on_prediction(slot);
  2148. slot.release();
  2149. continue;
  2150. }
  2151. }
  2152. // speculative decoding - main model sample and accept
  2153. for (auto & slot : slots) {
  2154. if (slot.state != SLOT_STATE_GENERATING || slot.i_batch_dft.empty()) {
  2155. continue;
  2156. }
  2157. size_t n_draft = slot.drafted.size();
  2158. // the accepted tokens from the speculation
  2159. const auto ids = common_sampler_sample_and_accept_n(slot.smpl.get(), ctx, slot.i_batch_dft, slot.drafted);
  2160. slot.i_batch_dft.clear();
  2161. slot.drafted.clear();
  2162. slot.n_decoded += ids.size();
  2163. slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
  2164. // update how many tokens out of those tested were accepted
  2165. slot.n_draft_accepted += ids.size() - 1;
  2166. // rollback to the state before sampling the draft tokens
  2167. slot.prompt.tokens.keep_first(slot.prompt.n_tokens() - n_draft);
  2168. // add accepted tokens to the prompt
  2169. slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
  2170. slot.sampled = ids.back(); // last accepted token
  2171. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);
  2172. for (size_t i = 0; i < ids.size(); ++i) {
  2173. completion_token_output result;
  2174. result.tok = ids[i];
  2175. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2176. result.prob = 1.0f; // set later
  2177. // TODO: set result.probs
  2178. if (!process_token(result, slot)) {
  2179. slot.print_timings();
  2180. send_final_response(slot);
  2181. metrics.on_prediction(slot);
  2182. slot.release();
  2183. break;
  2184. }
  2185. }
  2186. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) n_draft, slot.prompt.n_tokens());
  2187. }
  2188. }
  2189. SRV_DBG("%s", "run slots completed\n");
  2190. }
  2191. int get_slot_n_ctx() {
  2192. return slots.back().n_ctx;
  2193. }
  2194. server_response_reader get_response_reader() {
  2195. return server_response_reader(queue_tasks, queue_results, HTTP_POLLING_SECONDS);
  2196. }
  2197. };
  2198. //
  2199. // server_context (public API)
  2200. //
  2201. server_context::server_context() : impl(new server_context_impl()) {}
  2202. server_context::~server_context() = default;
  2203. bool server_context::load_model(const common_params & params) {
  2204. return impl->load_model(params);
  2205. }
  2206. void server_context::start_loop() {
  2207. auto & params = impl->params_base;
  2208. impl->queue_tasks.start_loop(params.sleep_idle_seconds * 1000);
  2209. }
  2210. void server_context::terminate() {
  2211. impl->queue_tasks.terminate();
  2212. }
  2213. llama_context * server_context::get_llama_context() const {
  2214. return impl->ctx;
  2215. }
  2216. server_response_reader server_context::get_response_reader() {
  2217. return impl->get_response_reader();
  2218. }
  2219. server_context_meta server_context::get_meta() const {
  2220. auto tool_use_src = common_chat_templates_source(impl->chat_templates.get(), "tool_use");
  2221. auto bos_id = llama_vocab_bos(impl->vocab);
  2222. auto eos_id = llama_vocab_eos(impl->vocab);
  2223. auto bos_token_str = bos_id != LLAMA_TOKEN_NULL ? common_token_to_piece(impl->ctx, bos_id, true) : "";
  2224. auto eos_token_str = eos_id != LLAMA_TOKEN_NULL ? common_token_to_piece(impl->ctx, eos_id, true) : "";
  2225. return server_context_meta {
  2226. /* build_info */ build_info,
  2227. /* model_name */ impl->model_name,
  2228. /* model_path */ impl->params_base.model.path,
  2229. /* has_mtmd */ impl->mctx != nullptr,
  2230. /* has_inp_image */ impl->oai_parser_opt.allow_image,
  2231. /* has_inp_audio */ impl->oai_parser_opt.allow_audio,
  2232. /* json_webui_settings */ impl->json_webui_settings,
  2233. /* slot_n_ctx */ impl->get_slot_n_ctx(),
  2234. /* pooling_type */ llama_pooling_type(impl->ctx),
  2235. /* chat_template */ common_chat_templates_source(impl->chat_templates.get()),
  2236. /* chat_template_tool_use */ tool_use_src ? tool_use_src : "",
  2237. /* bos_token_str */ bos_token_str,
  2238. /* eos_token_str */ eos_token_str,
  2239. /* fim_pre_token */ llama_vocab_fim_pre(impl->vocab),
  2240. /* fim_sub_token */ llama_vocab_fim_suf(impl->vocab),
  2241. /* fim_mid_token */ llama_vocab_fim_mid(impl->vocab),
  2242. /* model_vocab_type */ llama_vocab_type(impl->vocab),
  2243. /* model_vocab_n_tokens */ llama_vocab_n_tokens(impl->vocab),
  2244. /* model_n_ctx_train */ llama_model_n_ctx_train(impl->model),
  2245. /* model_n_embd_inp */ llama_model_n_embd(impl->model),
  2246. /* model_n_params */ llama_model_n_params(impl->model),
  2247. /* model_size */ llama_model_size(impl->model),
  2248. };
  2249. }
  2250. // generator-like API for HTTP response generation
  2251. // may have bypass_sleep = true if the task does not use ctx_server
  2252. struct server_res_generator : server_http_res {
  2253. server_response_reader rd;
  2254. server_res_generator(server_queue & queue_tasks, server_response & queue_results, int sleep_idle_seconds, bool bypass_sleep = false)
  2255. : rd(queue_tasks, queue_results, HTTP_POLLING_SECONDS) {
  2256. // fast path in case sleeping is disabled
  2257. bypass_sleep |= sleep_idle_seconds < 0;
  2258. if (!bypass_sleep) {
  2259. queue_tasks.wait_until_no_sleep();
  2260. }
  2261. }
  2262. void ok(const json & response_data) {
  2263. status = 200;
  2264. data = safe_json_to_str(response_data);
  2265. }
  2266. void error(const json & error_data) {
  2267. status = json_value(error_data, "code", 500);
  2268. data = safe_json_to_str({{ "error", error_data }});
  2269. }
  2270. };
  2271. //
  2272. // server_routes
  2273. //
  2274. std::unique_ptr<server_res_generator> server_routes::handle_completions_impl(
  2275. const server_http_req & req,
  2276. server_task_type type,
  2277. const json & data,
  2278. const std::vector<raw_buffer> & files,
  2279. task_response_type res_type) {
  2280. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2281. auto res = create_response();
  2282. auto completion_id = gen_chatcmplid();
  2283. auto & rd = res->rd;
  2284. try {
  2285. std::vector<server_task> tasks;
  2286. const auto & prompt = data.at("prompt");
  2287. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  2288. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  2289. // process prompt
  2290. std::vector<server_tokens> inputs;
  2291. if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) {
  2292. // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
  2293. inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
  2294. } else {
  2295. // Everything else, including multimodal completions.
  2296. inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  2297. }
  2298. tasks.reserve(inputs.size());
  2299. for (size_t i = 0; i < inputs.size(); i++) {
  2300. server_task task = server_task(type);
  2301. task.id = rd.get_new_id();
  2302. task.tokens = std::move(inputs[i]);
  2303. task.params = server_task::params_from_json_cmpl(
  2304. ctx_server.vocab,
  2305. params,
  2306. meta->slot_n_ctx,
  2307. data);
  2308. task.id_slot = json_value(data, "id_slot", -1);
  2309. // OAI-compat
  2310. task.params.res_type = res_type;
  2311. task.params.oaicompat_cmpl_id = completion_id;
  2312. task.params.oaicompat_model = meta->model_name;
  2313. if (task.params.n_cmpl > 1) {
  2314. task.n_children = task.params.n_cmpl - 1;
  2315. for (size_t j = 0; j < task.n_children; j++) {
  2316. server_task child = task.create_child(
  2317. task.id,
  2318. rd.get_new_id());
  2319. tasks.push_back(std::move(child));
  2320. }
  2321. }
  2322. tasks.push_back(std::move(task));
  2323. }
  2324. rd.post_tasks(std::move(tasks));
  2325. } catch (const std::exception & e) {
  2326. res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2327. return res;
  2328. }
  2329. bool stream = json_value(data, "stream", false);
  2330. if (!stream) {
  2331. // non-stream, wait for the results
  2332. auto all_results = rd.wait_for_all(req.should_stop);
  2333. if (all_results.is_terminated) {
  2334. return res; // connection is closed
  2335. } else if (all_results.error) {
  2336. res->error(all_results.error->to_json());
  2337. return res;
  2338. } else {
  2339. json arr = json::array();
  2340. for (auto & res : all_results.results) {
  2341. GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
  2342. arr.push_back(res->to_json());
  2343. }
  2344. GGML_ASSERT(!arr.empty() && "empty results");
  2345. if (arr.size() == 1) {
  2346. // if single request, return single object instead of array
  2347. res->ok(arr[0]);
  2348. } else if (res_type == TASK_RESPONSE_TYPE_OAI_CHAT || res_type == TASK_RESPONSE_TYPE_OAI_CMPL) {
  2349. // if multiple results in OAI format, we need to re-format them
  2350. json & choices = arr[0]["choices"];
  2351. for (size_t i = 1; i < arr.size(); i++) {
  2352. choices.push_back(std::move(arr[i]["choices"][0]));
  2353. }
  2354. res->ok(arr[0]);
  2355. } else {
  2356. // multi-results, non-OAI compat
  2357. res->ok(arr);
  2358. }
  2359. }
  2360. } else {
  2361. // in streaming mode, the first error must be treated as non-stream response
  2362. // this is to match the OAI API behavior
  2363. // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309
  2364. server_task_result_ptr first_result = rd.next(req.should_stop);
  2365. if (first_result == nullptr) {
  2366. return res; // connection is closed
  2367. } else if (first_result->is_error()) {
  2368. res->error(first_result->to_json());
  2369. return res;
  2370. } else {
  2371. GGML_ASSERT(
  2372. dynamic_cast<server_task_result_cmpl_partial*>(first_result.get()) != nullptr
  2373. || dynamic_cast<server_task_result_cmpl_final*>(first_result.get()) != nullptr
  2374. );
  2375. }
  2376. // next responses are streamed
  2377. // to be sent immediately
  2378. json first_result_json = first_result->to_json();
  2379. if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
  2380. res->data = format_anthropic_sse(first_result_json);
  2381. } else {
  2382. res->data = format_oai_sse(first_result_json);
  2383. }
  2384. res->status = 200;
  2385. res->content_type = "text/event-stream";
  2386. res->next = [res_this = res.get(), res_type, &req](std::string & output) -> bool {
  2387. static auto format_error = [](task_response_type res_type, const json & res_json) {
  2388. if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
  2389. return format_anthropic_sse({
  2390. {"event", "error"},
  2391. {"data", res_json},
  2392. });
  2393. } else {
  2394. return format_oai_sse(json {{ "error", res_json }});
  2395. }
  2396. };
  2397. try {
  2398. if (req.should_stop()) {
  2399. SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
  2400. return false; // should_stop condition met
  2401. }
  2402. if (!res_this->data.empty()) {
  2403. // flush the first chunk
  2404. output = std::move(res_this->data);
  2405. res_this->data.clear();
  2406. return true;
  2407. }
  2408. server_response_reader & rd = res_this->rd;
  2409. // check if there is more data
  2410. if (!rd.has_next()) {
  2411. if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
  2412. // Anthropic doesn't send [DONE], message_stop was already sent
  2413. output = "";
  2414. } else if (res_type != TASK_RESPONSE_TYPE_NONE) {
  2415. output = "data: [DONE]\n\n";
  2416. } else {
  2417. output = "";
  2418. }
  2419. SRV_DBG("%s", "all results received, terminating stream\n");
  2420. return false; // no more data, terminate
  2421. }
  2422. // receive subsequent results
  2423. auto result = rd.next(req.should_stop);
  2424. if (result == nullptr) {
  2425. SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
  2426. return false; // should_stop condition met
  2427. }
  2428. // send the results
  2429. if (result->is_error()) {
  2430. json res_json = result->to_json();
  2431. output = format_error(res_type, res_json);
  2432. SRV_DBG("%s", "error received during streaming, terminating stream\n");
  2433. return false; // terminate on error
  2434. } else {
  2435. GGML_ASSERT(
  2436. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2437. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2438. );
  2439. json res_json = result->to_json();
  2440. if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
  2441. output = format_anthropic_sse(res_json);
  2442. } else {
  2443. output = format_oai_sse(res_json);
  2444. }
  2445. }
  2446. // has next data, continue
  2447. return true;
  2448. } catch (const std::exception & e) {
  2449. json error_json = format_error_response(e.what(), ERROR_TYPE_SERVER);
  2450. output = format_error(res_type, error_json);
  2451. // terminate on exception
  2452. return false;
  2453. }
  2454. };
  2455. }
  2456. return res;
  2457. }
  2458. std::unique_ptr<server_res_generator> server_routes::create_response(bool bypass_sleep) {
  2459. return std::make_unique<server_res_generator>(queue_tasks, queue_results, params.sleep_idle_seconds, bypass_sleep);
  2460. }
  2461. server_routes::server_routes(const common_params & params, server_context & ctx_server)
  2462. : params(params),
  2463. ctx_server(*ctx_server.impl),
  2464. queue_tasks(ctx_server.impl->queue_tasks),
  2465. queue_results(ctx_server.impl->queue_results) {
  2466. init_routes();
  2467. }
  2468. void server_routes::init_routes() {
  2469. // IMPORTANT: all lambda functions must start with create_response()
  2470. // this is to ensure that the server_res_generator can handle sleeping case correctly
  2471. this->get_health = [this](const server_http_req &) {
  2472. // error and loading states are handled by middleware
  2473. auto res = create_response(true);
  2474. // this endpoint can be accessed during sleeping
  2475. // the next LOC is to avoid someone accidentally use ctx_server
  2476. bool server_ctx; // do NOT delete this line
  2477. GGML_UNUSED(server_ctx);
  2478. res->ok({{"status", "ok"}});
  2479. return res;
  2480. };
  2481. this->get_metrics = [this](const server_http_req & req) {
  2482. auto res = create_response();
  2483. if (!params.endpoint_metrics) {
  2484. res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2485. return res;
  2486. }
  2487. // request slots data using task queue
  2488. {
  2489. server_task task(SERVER_TASK_TYPE_METRICS);
  2490. task.id = res->rd.get_new_id();
  2491. res->rd.post_task(std::move(task), true); // high-priority task
  2492. }
  2493. // get the result
  2494. auto result = res->rd.next(req.should_stop);
  2495. if (result->is_error()) {
  2496. res->error(result->to_json());
  2497. return res;
  2498. }
  2499. // TODO: get rid of this dynamic_cast
  2500. auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
  2501. GGML_ASSERT(res_task != nullptr);
  2502. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2503. json all_metrics_def = json {
  2504. {"counter", {{
  2505. {"name", "prompt_tokens_total"},
  2506. {"help", "Number of prompt tokens processed."},
  2507. {"value", (uint64_t) res_task->n_prompt_tokens_processed_total}
  2508. }, {
  2509. {"name", "prompt_seconds_total"},
  2510. {"help", "Prompt process time"},
  2511. {"value", (uint64_t) res_task->t_prompt_processing_total / 1.e3}
  2512. }, {
  2513. {"name", "tokens_predicted_total"},
  2514. {"help", "Number of generation tokens processed."},
  2515. {"value", (uint64_t) res_task->n_tokens_predicted_total}
  2516. }, {
  2517. {"name", "tokens_predicted_seconds_total"},
  2518. {"help", "Predict process time"},
  2519. {"value", (uint64_t) res_task->t_tokens_generation_total / 1.e3}
  2520. }, {
  2521. {"name", "n_decode_total"},
  2522. {"help", "Total number of llama_decode() calls"},
  2523. {"value", res_task->n_decode_total}
  2524. }, {
  2525. {"name", "n_tokens_max"},
  2526. {"help", "Largest observed n_tokens."},
  2527. {"value", res_task->n_tokens_max}
  2528. }, {
  2529. {"name", "n_busy_slots_per_decode"},
  2530. {"help", "Average number of busy slots per llama_decode() call"},
  2531. {"value", (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)}
  2532. }}},
  2533. {"gauge", {{
  2534. {"name", "prompt_tokens_seconds"},
  2535. {"help", "Average prompt throughput in tokens/s."},
  2536. {"value", res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.}
  2537. },{
  2538. {"name", "predicted_tokens_seconds"},
  2539. {"help", "Average generation throughput in tokens/s."},
  2540. {"value", res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.}
  2541. },{
  2542. {"name", "requests_processing"},
  2543. {"help", "Number of requests processing."},
  2544. {"value", (uint64_t) res_task->n_processing_slots}
  2545. },{
  2546. {"name", "requests_deferred"},
  2547. {"help", "Number of requests deferred."},
  2548. {"value", (uint64_t) res_task->n_tasks_deferred}
  2549. }}}
  2550. };
  2551. std::stringstream prometheus;
  2552. for (const auto & el : all_metrics_def.items()) {
  2553. const auto & type = el.key();
  2554. const auto & metrics_def = el.value();
  2555. for (const auto & metric_def : metrics_def) {
  2556. const std::string name = metric_def.at("name");
  2557. const std::string help = metric_def.at("help");
  2558. auto value = json_value(metric_def, "value", 0.);
  2559. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2560. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2561. << "llamacpp:" << name << " " << value << "\n";
  2562. }
  2563. }
  2564. res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start);
  2565. res->content_type = "text/plain; version=0.0.4";
  2566. res->status = 200;
  2567. res->data = prometheus.str();
  2568. return res;
  2569. };
  2570. this->get_slots = [this](const server_http_req & req) {
  2571. auto res = create_response();
  2572. if (!params.endpoint_slots) {
  2573. res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2574. return res;
  2575. }
  2576. // request slots data using task queue
  2577. {
  2578. server_task task(SERVER_TASK_TYPE_METRICS);
  2579. task.id = res->rd.get_new_id();
  2580. res->rd.post_task(std::move(task), true); // high-priority task
  2581. }
  2582. // get the result
  2583. auto result = res->rd.next(req.should_stop);
  2584. if (result->is_error()) {
  2585. res->error(result->to_json());
  2586. return res;
  2587. }
  2588. // TODO: get rid of this dynamic_cast
  2589. auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
  2590. GGML_ASSERT(res_task != nullptr);
  2591. // optionally return "fail_on_no_slot" error
  2592. if (!req.get_param("fail_on_no_slot").empty()) {
  2593. if (res_task->n_idle_slots == 0) {
  2594. res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2595. return res;
  2596. }
  2597. }
  2598. res->ok(res_task->slots_data);
  2599. return res;
  2600. };
  2601. this->post_slots = [this](const server_http_req & req) {
  2602. auto res = create_response();
  2603. if (params.slot_save_path.empty()) {
  2604. res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2605. return res;
  2606. }
  2607. std::string id_slot_str = req.get_param("id_slot");
  2608. int id_slot;
  2609. try {
  2610. id_slot = std::stoi(id_slot_str);
  2611. } catch (const std::exception &) {
  2612. res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2613. return res;
  2614. }
  2615. std::string action = req.get_param("action");
  2616. if (action == "save") {
  2617. return handle_slots_save(req, id_slot);
  2618. } else if (action == "restore") {
  2619. return handle_slots_restore(req, id_slot);
  2620. } else if (action == "erase") {
  2621. return handle_slots_erase(req, id_slot);
  2622. } else {
  2623. res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2624. return res;
  2625. }
  2626. };
  2627. this->get_props = [this](const server_http_req &) {
  2628. auto res = create_response(true);
  2629. // this endpoint can be accessed during sleeping
  2630. // the next LOC is to avoid someone accidentally use ctx_server
  2631. bool server_ctx; // do NOT delete this line
  2632. GGML_UNUSED(server_ctx);
  2633. task_params tparams;
  2634. tparams.sampling = params.sampling;
  2635. json default_generation_settings_for_props = json {
  2636. { "params", tparams.to_json(true) },
  2637. { "n_ctx", meta->slot_n_ctx },
  2638. };
  2639. json props = {
  2640. { "default_generation_settings", default_generation_settings_for_props },
  2641. { "total_slots", params.n_parallel },
  2642. { "model_alias", meta->model_name },
  2643. { "model_path", meta->model_path },
  2644. { "modalities", json {
  2645. {"vision", meta->has_inp_image},
  2646. {"audio", meta->has_inp_audio},
  2647. } },
  2648. { "endpoint_slots", params.endpoint_slots },
  2649. { "endpoint_props", params.endpoint_props },
  2650. { "endpoint_metrics", params.endpoint_metrics },
  2651. { "webui", params.webui },
  2652. { "webui_settings", meta->json_webui_settings },
  2653. { "chat_template", meta->chat_template },
  2654. { "bos_token", meta->bos_token_str },
  2655. { "eos_token", meta->eos_token_str },
  2656. { "build_info", meta->build_info },
  2657. { "is_sleeping", queue_tasks.is_sleeping() },
  2658. };
  2659. if (params.use_jinja) {
  2660. if (!meta->chat_template_tool_use.empty()) {
  2661. props["chat_template_tool_use"] = meta->chat_template_tool_use;
  2662. }
  2663. }
  2664. res->ok(props);
  2665. return res;
  2666. };
  2667. this->post_props = [this](const server_http_req &) {
  2668. auto res = create_response();
  2669. if (!params.endpoint_props) {
  2670. res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2671. return res;
  2672. }
  2673. // update any props here
  2674. res->ok({{ "success", true }});
  2675. return res;
  2676. };
  2677. this->get_api_show = [this](const server_http_req &) {
  2678. auto res = create_response();
  2679. json data = {
  2680. {
  2681. "model_info", {
  2682. { "llama.context_length", meta->slot_n_ctx },
  2683. }
  2684. },
  2685. {"modelfile", ""},
  2686. {"parameters", ""},
  2687. {"template", meta->chat_template},
  2688. {"details", {
  2689. {"parent_model", ""},
  2690. {"format", "gguf"},
  2691. {"family", ""},
  2692. {"families", {""}},
  2693. {"parameter_size", ""},
  2694. {"quantization_level", ""}
  2695. }},
  2696. {"model_info", ""},
  2697. {"capabilities", meta->has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
  2698. };
  2699. res->ok(data);
  2700. return res;
  2701. };
  2702. this->post_infill = [this](const server_http_req & req) {
  2703. auto res = create_response();
  2704. // check model compatibility
  2705. std::string err;
  2706. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  2707. err += "prefix token is missing. ";
  2708. }
  2709. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  2710. err += "suffix token is missing. ";
  2711. }
  2712. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  2713. err += "middle token is missing. ";
  2714. }
  2715. if (!err.empty()) {
  2716. res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  2717. return res;
  2718. }
  2719. // validate input
  2720. json data = json::parse(req.body);
  2721. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  2722. // prompt is optional
  2723. res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2724. }
  2725. if (!data.contains("input_prefix")) {
  2726. res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2727. }
  2728. if (!data.contains("input_suffix")) {
  2729. res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  2730. }
  2731. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  2732. // input_extra is optional
  2733. res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  2734. return res;
  2735. }
  2736. json input_extra = json_value(data, "input_extra", json::array());
  2737. for (const auto & chunk : input_extra) {
  2738. // { "text": string, "filename": string }
  2739. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  2740. res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  2741. return res;
  2742. }
  2743. // filename is optional
  2744. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  2745. res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  2746. return res;
  2747. }
  2748. }
  2749. data["input_extra"] = input_extra; // default to empty array if it's not exist
  2750. std::string prompt = json_value(data, "prompt", std::string());
  2751. std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
  2752. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  2753. data["prompt"] = format_prompt_infill(
  2754. ctx_server.vocab,
  2755. data.at("input_prefix"),
  2756. data.at("input_suffix"),
  2757. data.at("input_extra"),
  2758. params.n_batch,
  2759. params.n_predict,
  2760. meta->slot_n_ctx,
  2761. params.spm_infill,
  2762. tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
  2763. );
  2764. std::vector<raw_buffer> files; // dummy
  2765. return handle_completions_impl(
  2766. req,
  2767. SERVER_TASK_TYPE_INFILL,
  2768. data,
  2769. files,
  2770. TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible
  2771. };
  2772. this->post_completions = [this](const server_http_req & req) {
  2773. auto res = create_response();
  2774. std::vector<raw_buffer> files; // dummy
  2775. const json body = json::parse(req.body);
  2776. return handle_completions_impl(
  2777. req,
  2778. SERVER_TASK_TYPE_COMPLETION,
  2779. body,
  2780. files,
  2781. TASK_RESPONSE_TYPE_NONE);
  2782. };
  2783. this->post_completions_oai = [this](const server_http_req & req) {
  2784. auto res = create_response();
  2785. std::vector<raw_buffer> files; // dummy
  2786. const json body = json::parse(req.body);
  2787. return handle_completions_impl(
  2788. req,
  2789. SERVER_TASK_TYPE_COMPLETION,
  2790. body,
  2791. files,
  2792. TASK_RESPONSE_TYPE_OAI_CMPL);
  2793. };
  2794. this->post_chat_completions = [this](const server_http_req & req) {
  2795. auto res = create_response();
  2796. std::vector<raw_buffer> files;
  2797. json body = json::parse(req.body);
  2798. json body_parsed = oaicompat_chat_params_parse(
  2799. body,
  2800. ctx_server.oai_parser_opt,
  2801. files);
  2802. return handle_completions_impl(
  2803. req,
  2804. SERVER_TASK_TYPE_COMPLETION,
  2805. body_parsed,
  2806. files,
  2807. TASK_RESPONSE_TYPE_OAI_CHAT);
  2808. };
  2809. this->post_anthropic_messages = [this](const server_http_req & req) {
  2810. auto res = create_response();
  2811. std::vector<raw_buffer> files;
  2812. json body = convert_anthropic_to_oai(json::parse(req.body));
  2813. json body_parsed = oaicompat_chat_params_parse(
  2814. body,
  2815. ctx_server.oai_parser_opt,
  2816. files);
  2817. return handle_completions_impl(
  2818. req,
  2819. SERVER_TASK_TYPE_COMPLETION,
  2820. body_parsed,
  2821. files,
  2822. TASK_RESPONSE_TYPE_ANTHROPIC);
  2823. };
  2824. this->post_anthropic_count_tokens = [this](const server_http_req & req) {
  2825. auto res = create_response();
  2826. std::vector<raw_buffer> files;
  2827. json body = convert_anthropic_to_oai(json::parse(req.body));
  2828. json body_parsed = oaicompat_chat_params_parse(
  2829. body,
  2830. ctx_server.oai_parser_opt,
  2831. files);
  2832. json prompt = body_parsed.at("prompt");
  2833. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true);
  2834. res->ok({{"input_tokens", static_cast<int>(tokens.size())}});
  2835. return res;
  2836. };
  2837. // same with handle_chat_completions, but without inference part
  2838. this->post_apply_template = [this](const server_http_req & req) {
  2839. auto res = create_response();
  2840. std::vector<raw_buffer> files; // dummy, unused
  2841. json body = json::parse(req.body);
  2842. json data = oaicompat_chat_params_parse(
  2843. body,
  2844. ctx_server.oai_parser_opt,
  2845. files);
  2846. res->ok({{ "prompt", std::move(data.at("prompt")) }});
  2847. return res;
  2848. };
  2849. this->get_models = [this](const server_http_req &) {
  2850. auto res = create_response(true);
  2851. // this endpoint can be accessed during sleeping
  2852. // the next LOC is to avoid someone accidentally use ctx_server
  2853. bool server_ctx; // do NOT delete this line
  2854. GGML_UNUSED(server_ctx);
  2855. json models = {
  2856. {"models", {
  2857. {
  2858. {"name", meta->model_name},
  2859. {"model", meta->model_name},
  2860. {"modified_at", ""},
  2861. {"size", ""},
  2862. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  2863. {"type", "model"},
  2864. {"description", ""},
  2865. {"tags", {""}},
  2866. {"capabilities", meta->has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
  2867. {"parameters", ""},
  2868. {"details", {
  2869. {"parent_model", ""},
  2870. {"format", "gguf"},
  2871. {"family", ""},
  2872. {"families", {""}},
  2873. {"parameter_size", ""},
  2874. {"quantization_level", ""}
  2875. }}
  2876. }
  2877. }},
  2878. {"object", "list"},
  2879. {"data", {
  2880. {
  2881. {"id", meta->model_name},
  2882. {"object", "model"},
  2883. {"created", std::time(0)},
  2884. {"owned_by", "llamacpp"},
  2885. {"meta", {
  2886. {"vocab_type", meta->model_vocab_type},
  2887. {"n_vocab", meta->model_vocab_n_tokens},
  2888. {"n_ctx_train", meta->model_n_ctx_train},
  2889. {"n_embd", meta->model_n_embd_inp},
  2890. {"n_params", meta->model_n_params},
  2891. {"size", meta->model_size},
  2892. }},
  2893. },
  2894. }}
  2895. };
  2896. res->ok(models);
  2897. return res;
  2898. };
  2899. this->post_tokenize = [this](const server_http_req & req) {
  2900. auto res = create_response();
  2901. const json body = json::parse(req.body);
  2902. json tokens_response = json::array();
  2903. if (body.count("content") != 0) {
  2904. const bool add_special = json_value(body, "add_special", false);
  2905. const bool parse_special = json_value(body, "parse_special", true);
  2906. const bool with_pieces = json_value(body, "with_pieces", false);
  2907. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  2908. if (with_pieces) {
  2909. for (const auto& token : tokens) {
  2910. std::string piece = common_token_to_piece(ctx_server.vocab, token);
  2911. json piece_json;
  2912. // Check if the piece is valid UTF-8
  2913. if (is_valid_utf8(piece)) {
  2914. piece_json = piece;
  2915. } else {
  2916. // If not valid UTF-8, store as array of byte values
  2917. piece_json = json::array();
  2918. for (unsigned char c : piece) {
  2919. piece_json.push_back(static_cast<int>(c));
  2920. }
  2921. }
  2922. tokens_response.push_back({
  2923. {"id", token},
  2924. {"piece", piece_json}
  2925. });
  2926. }
  2927. } else {
  2928. tokens_response = tokens;
  2929. }
  2930. }
  2931. res->ok(json{{"tokens", std::move(tokens_response)}});
  2932. return res;
  2933. };
  2934. this->post_detokenize = [this](const server_http_req & req) {
  2935. auto res = create_response();
  2936. const json body = json::parse(req.body);
  2937. std::string content;
  2938. if (body.count("tokens") != 0) {
  2939. const llama_tokens tokens = body.at("tokens");
  2940. content = tokens_to_str(ctx_server.vocab, tokens);
  2941. }
  2942. res->ok(json{{"content", std::move(content)}});
  2943. return res;
  2944. };
  2945. this->post_embeddings = [this](const server_http_req & req) {
  2946. return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE);
  2947. };
  2948. this->post_embeddings_oai = [this](const server_http_req & req) {
  2949. return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD);
  2950. };
  2951. this->post_rerank = [this](const server_http_req & req) {
  2952. auto res = create_response();
  2953. if (!params.embedding || params.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  2954. res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  2955. return res;
  2956. }
  2957. const json body = json::parse(req.body);
  2958. // if true, use TEI API format, otherwise use Jina API format
  2959. // Jina: https://jina.ai/reranker/
  2960. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  2961. bool is_tei_format = body.contains("texts");
  2962. json query;
  2963. if (body.count("query") == 1) {
  2964. query = body.at("query");
  2965. if (!query.is_string()) {
  2966. res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  2967. return res;
  2968. }
  2969. } else {
  2970. res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2971. return res;
  2972. }
  2973. std::vector<std::string> documents = json_value(body, "documents",
  2974. json_value(body, "texts", std::vector<std::string>()));
  2975. if (documents.empty()) {
  2976. res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  2977. return res;
  2978. }
  2979. int top_n = json_value(body, "top_n", (int)documents.size());
  2980. // create and queue the task
  2981. json responses = json::array();
  2982. auto & rd = res->rd;
  2983. {
  2984. std::vector<server_task> tasks;
  2985. tasks.reserve(documents.size());
  2986. for (size_t i = 0; i < documents.size(); i++) {
  2987. auto tmp = format_prompt_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
  2988. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  2989. task.id = rd.get_new_id();
  2990. task.tokens = std::move(tmp);
  2991. tasks.push_back(std::move(task));
  2992. }
  2993. rd.post_tasks(std::move(tasks));
  2994. }
  2995. // wait for the results
  2996. auto all_results = rd.wait_for_all(req.should_stop);
  2997. // collect results
  2998. if (all_results.is_terminated) {
  2999. return res; // connection is closed
  3000. } else if (all_results.error) {
  3001. res->error(all_results.error->to_json());
  3002. return res;
  3003. } else {
  3004. for (auto & res : all_results.results) {
  3005. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3006. responses.push_back(res->to_json());
  3007. }
  3008. }
  3009. // write JSON response
  3010. json root = format_response_rerank(
  3011. body,
  3012. meta->model_name,
  3013. responses,
  3014. is_tei_format,
  3015. documents,
  3016. top_n);
  3017. res->ok(root);
  3018. return res;
  3019. };
  3020. this->get_lora_adapters = [this](const server_http_req & req) {
  3021. auto res = create_response();
  3022. auto & rd = res->rd;
  3023. {
  3024. server_task task(SERVER_TASK_TYPE_GET_LORA);
  3025. task.id = rd.get_new_id();
  3026. rd.post_task(std::move(task));
  3027. }
  3028. // get the result
  3029. server_task_result_ptr result = rd.next(req.should_stop);
  3030. if (result->is_error()) {
  3031. res->error(result->to_json());
  3032. return res;
  3033. }
  3034. GGML_ASSERT(dynamic_cast<server_task_result_get_lora*>(result.get()) != nullptr);
  3035. res->ok(result->to_json());
  3036. return res;
  3037. };
  3038. this->post_lora_adapters = [this](const server_http_req & req) {
  3039. auto res = create_response();
  3040. const json body = json::parse(req.body);
  3041. if (!body.is_array()) {
  3042. res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3043. return res;
  3044. }
  3045. auto & rd = res->rd;
  3046. {
  3047. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3048. task.id = rd.get_new_id();
  3049. task.set_lora = parse_lora_request(body);
  3050. rd.post_task(std::move(task));
  3051. }
  3052. // get the result
  3053. server_task_result_ptr result = rd.next(req.should_stop);
  3054. if (result->is_error()) {
  3055. res->error(result->to_json());
  3056. return res;
  3057. }
  3058. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3059. res->ok(result->to_json());
  3060. return res;
  3061. };
  3062. }
  3063. std::unique_ptr<server_res_generator> server_routes::handle_slots_save(const server_http_req & req, int id_slot) {
  3064. auto res = create_response();
  3065. const json request_data = json::parse(req.body);
  3066. std::string filename = request_data.at("filename");
  3067. if (!fs_validate_filename(filename)) {
  3068. res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3069. return res;
  3070. }
  3071. std::string filepath = params.slot_save_path + filename;
  3072. auto & rd = res->rd;
  3073. {
  3074. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3075. task.id = rd.get_new_id();
  3076. task.slot_action.slot_id = id_slot;
  3077. task.slot_action.filename = filename;
  3078. task.slot_action.filepath = filepath;
  3079. rd.post_task(std::move(task));
  3080. }
  3081. server_task_result_ptr result = rd.next(req.should_stop);
  3082. if (result->is_error()) {
  3083. res->error(result->to_json());
  3084. return res;
  3085. }
  3086. res->ok(result->to_json());
  3087. return res;
  3088. }
  3089. std::unique_ptr<server_res_generator> server_routes::handle_slots_restore(const server_http_req & req, int id_slot) {
  3090. auto res = create_response();
  3091. const json request_data = json::parse(req.body);
  3092. std::string filename = request_data.at("filename");
  3093. if (!fs_validate_filename(filename)) {
  3094. res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3095. return res;
  3096. }
  3097. std::string filepath = params.slot_save_path + filename;
  3098. auto & rd = res->rd;
  3099. {
  3100. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3101. task.id = rd.get_new_id();
  3102. task.slot_action.slot_id = id_slot;
  3103. task.slot_action.filename = filename;
  3104. task.slot_action.filepath = filepath;
  3105. rd.post_task(std::move(task));
  3106. }
  3107. server_task_result_ptr result = rd.next(req.should_stop);
  3108. if (result->is_error()) {
  3109. res->error(result->to_json());
  3110. return res;
  3111. }
  3112. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3113. res->ok(result->to_json());
  3114. return res;
  3115. }
  3116. std::unique_ptr<server_res_generator> server_routes::handle_slots_erase(const server_http_req & req, int id_slot) {
  3117. auto res = create_response();
  3118. auto & rd = res->rd;
  3119. {
  3120. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3121. task.id = rd.get_new_id();
  3122. task.slot_action.slot_id = id_slot;
  3123. rd.post_task(std::move(task));
  3124. }
  3125. server_task_result_ptr result = rd.next(req.should_stop);
  3126. if (result->is_error()) {
  3127. res->error(result->to_json());
  3128. return res;
  3129. }
  3130. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3131. res->ok(result->to_json());
  3132. return res;
  3133. }
  3134. std::unique_ptr<server_res_generator> server_routes::handle_embeddings_impl(const server_http_req & req, task_response_type res_type) {
  3135. auto res = create_response();
  3136. if (!params.embedding) {
  3137. res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3138. return res;
  3139. }
  3140. if (res_type != TASK_RESPONSE_TYPE_NONE && meta->pooling_type == LLAMA_POOLING_TYPE_NONE) {
  3141. res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3142. return res;
  3143. }
  3144. const json body = json::parse(req.body);
  3145. // for the shape of input/content, see tokenize_input_prompts()
  3146. json prompt;
  3147. if (body.count("input") != 0) {
  3148. prompt = body.at("input");
  3149. } else if (body.contains("content")) {
  3150. res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible
  3151. prompt = body.at("content");
  3152. } else {
  3153. res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3154. return res;
  3155. }
  3156. bool use_base64 = false;
  3157. if (body.count("encoding_format") != 0) {
  3158. const std::string & format = body.at("encoding_format");
  3159. if (format == "base64") {
  3160. use_base64 = true;
  3161. } else if (format != "float") {
  3162. res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3163. return res;
  3164. }
  3165. }
  3166. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  3167. for (const auto & tokens : tokenized_prompts) {
  3168. // this check is necessary for models that do not add BOS token to the input
  3169. if (tokens.empty()) {
  3170. res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3171. return res;
  3172. }
  3173. }
  3174. int embd_normalize = 2; // default to Euclidean/L2 norm
  3175. if (body.count("embd_normalize") != 0) {
  3176. embd_normalize = body.at("embd_normalize");
  3177. if (meta->pooling_type == LLAMA_POOLING_TYPE_NONE) {
  3178. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", meta->pooling_type);
  3179. }
  3180. }
  3181. // create and queue the task
  3182. json responses = json::array();
  3183. auto & rd = res->rd;
  3184. {
  3185. std::vector<server_task> tasks;
  3186. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3187. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3188. task.id = rd.get_new_id();
  3189. task.tokens = std::move(tokenized_prompts[i]);
  3190. // OAI-compat
  3191. task.params.res_type = res_type;
  3192. task.params.embd_normalize = embd_normalize;
  3193. tasks.push_back(std::move(task));
  3194. }
  3195. rd.post_tasks(std::move(tasks));
  3196. }
  3197. // wait for the results
  3198. auto all_results = rd.wait_for_all(req.should_stop);
  3199. // collect results
  3200. if (all_results.is_terminated) {
  3201. return res; // connection is closed
  3202. } else if (all_results.error) {
  3203. res->error(all_results.error->to_json());
  3204. return res;
  3205. } else {
  3206. for (auto & res : all_results.results) {
  3207. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3208. responses.push_back(res->to_json());
  3209. }
  3210. }
  3211. // write JSON response
  3212. json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD
  3213. ? format_embeddings_response_oaicompat(body, meta->model_name, responses, use_base64)
  3214. : json(responses);
  3215. res->ok(root);
  3216. return res;
  3217. }