test-backend-ops.cpp 212 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <string>
  33. #include <thread>
  34. #include <vector>
  35. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  36. size_t nels = ggml_nelements(tensor);
  37. std::vector<float> data(nels);
  38. {
  39. // parallel initialization
  40. static const size_t n_threads = std::thread::hardware_concurrency();
  41. // static RNG initialization (revisit if n_threads stops being constant)
  42. static std::vector<std::default_random_engine> generators = []() {
  43. std::random_device rd;
  44. std::vector<std::default_random_engine> vec;
  45. vec.reserve(n_threads);
  46. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  47. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  48. return vec;
  49. }();
  50. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  51. std::uniform_real_distribution<float> distribution(min, max);
  52. auto & gen = generators[ith];
  53. for (size_t i = start; i < end; i++) {
  54. data[i] = distribution(gen);
  55. }
  56. };
  57. std::vector<std::future<void>> tasks;
  58. tasks.reserve(n_threads);
  59. for (size_t i = 0; i < n_threads; i++) {
  60. size_t start = i*nels/n_threads;
  61. size_t end = (i+1)*nels/n_threads;
  62. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  63. }
  64. for (auto & t : tasks) {
  65. t.get();
  66. }
  67. }
  68. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  69. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  70. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  71. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  72. // dummy importance matrix
  73. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  74. const float * im = imatrix.data();
  75. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  76. // when the imatrix is optional, we want to test both quantization with and without imatrix
  77. // use one of the random numbers to decide
  78. if (data[0] > 0.5f*(min + max)) {
  79. im = nullptr;
  80. }
  81. }
  82. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  83. {
  84. // parallel quantization by block
  85. size_t blck_size = ggml_blck_size(tensor->type);
  86. size_t n_blocks = nels / blck_size;
  87. auto quantize_thread = [&](size_t start, size_t end) {
  88. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  89. start * blck_size, end - start, blck_size, im);
  90. };
  91. const size_t min_blocks_per_thread = 1;
  92. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  93. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  94. std::vector<std::future<void>> tasks;
  95. tasks.reserve(n_threads);
  96. for (size_t i = 0; i < n_threads; i++) {
  97. size_t start = i*n_blocks/n_threads;
  98. size_t end = (i+1)*n_blocks/n_threads;
  99. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  100. }
  101. for (auto & t : tasks) {
  102. t.get();
  103. }
  104. }
  105. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  106. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  107. // This is going to create some weird integers though.
  108. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  109. } else if (tensor->type == GGML_TYPE_I64) {
  110. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  111. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  112. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  113. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  114. } else {
  115. GGML_ABORT("fatal error");
  116. }
  117. }
  118. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  119. std::vector<float> tv;
  120. tv.reserve(ggml_nelements(t));
  121. std::vector<uint8_t> buf(ggml_nbytes(t));
  122. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  123. const auto * tt = ggml_get_type_traits(t->type);
  124. size_t bs = ggml_blck_size(t->type);
  125. std::vector<float> vq(ggml_blck_size(t->type));
  126. bool quantized = ggml_is_quantized(t->type);
  127. // access elements by index to avoid gaps in views
  128. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  129. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  130. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  131. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  132. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  133. if (t->type == GGML_TYPE_F16) {
  134. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_BF16) {
  136. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  137. } else if (t->type == GGML_TYPE_F32) {
  138. tv.push_back(*(float *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I64) {
  140. tv.push_back((float)*(int64_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I32) {
  142. tv.push_back((float)*(int32_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I16) {
  144. tv.push_back((float)*(int16_t *) &buf[i]);
  145. } else if (t->type == GGML_TYPE_I8) {
  146. tv.push_back((float)*(int8_t *) &buf[i]);
  147. } else if (quantized) {
  148. tt->to_float(&buf[i], vq.data(), bs);
  149. tv.insert(tv.end(), vq.begin(), vq.end());
  150. } else {
  151. GGML_ABORT("fatal error");
  152. }
  153. }
  154. }
  155. }
  156. }
  157. return tv;
  158. }
  159. // normalized mean squared error = mse(a, b) / mse(a, 0)
  160. static double nmse(const float * a, const float * b, size_t n) {
  161. double mse_a_b = 0.0;
  162. double mse_a_0 = 0.0;
  163. for (size_t i = 0; i < n; i++) {
  164. float a_i = a[i];
  165. float b_i = b[i];
  166. mse_a_b += (a_i - b_i) * (a_i - b_i);
  167. mse_a_0 += a_i * a_i;
  168. }
  169. return mse_a_b / mse_a_0;
  170. }
  171. // maximum absolute asymmetry between a and b
  172. // asymmetry: (a - b) / (a + b)
  173. // This is more stable than relative error if one of the values fluctuates towards zero.
  174. // n: number of values to compare.
  175. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  176. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  177. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  178. double sum = 0.0f;
  179. size_t nvalid = 0;
  180. for (size_t i = 0; i < n; i++) {
  181. if (!expected_vals.empty()) {
  182. bool matches_any = false;
  183. for (const float & ev : expected_vals) {
  184. if (fabsf(a[i] - ev) < 1e-3f) {
  185. matches_any = true;
  186. break;
  187. }
  188. }
  189. if (!matches_any) {
  190. continue;
  191. }
  192. }
  193. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  194. sum += fabsf(asymm);
  195. nvalid++;
  196. }
  197. return sum/nvalid;
  198. }
  199. // utils for printing the variables of the test cases
  200. template<typename T>
  201. static std::string var_to_str(const T & x) {
  202. return std::to_string(x);
  203. }
  204. template<typename T, size_t N>
  205. static std::string var_to_str(const T (&x)[N]) {
  206. std::string s = "[";
  207. for (size_t i = 0; i < N; i++) {
  208. if (i > 0) {
  209. s += ",";
  210. }
  211. s += var_to_str(x[i]);
  212. }
  213. s += "]";
  214. return s;
  215. }
  216. template<typename T, size_t N>
  217. static std::string var_to_str(const std::array<T, N> & x) {
  218. std::string s = "[";
  219. for (size_t i = 0; i < N; i++) {
  220. if (i > 0) {
  221. s += ",";
  222. }
  223. s += var_to_str(x[i]);
  224. }
  225. s += "]";
  226. return s;
  227. }
  228. static std::string var_to_str(ggml_type type) {
  229. return ggml_type_name(type);
  230. }
  231. static std::string var_to_str(ggml_prec prec) {
  232. return prec == GGML_PREC_F32 ? "f32" : "def";
  233. }
  234. static std::string var_to_str(ggml_op_pool pool) {
  235. switch (pool) {
  236. case GGML_OP_POOL_AVG: return "avg";
  237. case GGML_OP_POOL_MAX: return "max";
  238. default: return std::to_string(pool);
  239. }
  240. }
  241. static std::string var_to_str(ggml_scale_mode mode) {
  242. switch (mode) {
  243. case GGML_SCALE_MODE_NEAREST: return "nearest";
  244. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  245. default: return std::to_string(mode);
  246. }
  247. }
  248. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  249. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  250. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  251. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  252. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  253. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  254. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  255. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  256. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  257. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  258. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  259. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  260. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  261. #ifdef GGML_USE_SYCL
  262. static bool inline _isinf(float f) {
  263. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  264. }
  265. #else
  266. static bool inline _isinf(float f) { return std::isinf(f); }
  267. #endif
  268. // accept FLT_MAX as infinity
  269. static bool isinf_or_max(float f) {
  270. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  271. }
  272. static bool ggml_is_view_op(enum ggml_op op) {
  273. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  274. }
  275. enum test_mode {
  276. MODE_TEST,
  277. MODE_PERF,
  278. MODE_GRAD,
  279. };
  280. // Output format support similar to llama-bench
  281. enum output_formats { CONSOLE, SQL };
  282. static const char * output_format_str(output_formats format) {
  283. switch (format) {
  284. case CONSOLE:
  285. return "console";
  286. case SQL:
  287. return "sql";
  288. default:
  289. GGML_ABORT("invalid output format");
  290. }
  291. }
  292. static bool output_format_from_str(const std::string & s, output_formats & format) {
  293. if (s == "console") {
  294. format = CONSOLE;
  295. } else if (s == "sql") {
  296. format = SQL;
  297. } else {
  298. return false;
  299. }
  300. return true;
  301. }
  302. // Test result structure for SQL output
  303. struct test_result {
  304. std::string test_time;
  305. std::string build_commit;
  306. std::string backend_name;
  307. std::string op_name;
  308. std::string op_params;
  309. std::string test_mode;
  310. bool supported;
  311. bool passed;
  312. std::string error_message;
  313. double time_us;
  314. double flops;
  315. double bandwidth_gb_s;
  316. size_t memory_kb;
  317. int n_runs;
  318. test_result() {
  319. // Initialize with default values
  320. time_us = 0.0;
  321. flops = 0.0;
  322. bandwidth_gb_s = 0.0;
  323. memory_kb = 0;
  324. n_runs = 0;
  325. supported = false;
  326. passed = false;
  327. // Set test time
  328. time_t t = time(NULL);
  329. char buf[32];
  330. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  331. test_time = buf;
  332. // Set build info
  333. build_commit = ggml_commit();
  334. }
  335. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  336. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  337. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  338. int n_runs = 0) :
  339. backend_name(backend_name),
  340. op_name(op_name),
  341. op_params(op_params),
  342. test_mode(test_mode),
  343. supported(supported),
  344. passed(passed),
  345. error_message(error_message),
  346. time_us(time_us),
  347. flops(flops),
  348. bandwidth_gb_s(bandwidth_gb_s),
  349. memory_kb(memory_kb),
  350. n_runs(n_runs) {
  351. // Set test time
  352. time_t t = time(NULL);
  353. char buf[32];
  354. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  355. test_time = buf;
  356. // Set build info
  357. build_commit = ggml_commit();
  358. }
  359. static const std::vector<std::string> & get_fields() {
  360. static const std::vector<std::string> fields = {
  361. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  362. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs"
  363. };
  364. return fields;
  365. }
  366. enum field_type { STRING, BOOL, INT, FLOAT };
  367. static field_type get_field_type(const std::string & field) {
  368. if (field == "supported" || field == "passed") {
  369. return BOOL;
  370. }
  371. if (field == "memory_kb" || field == "n_runs") {
  372. return INT;
  373. }
  374. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  375. return FLOAT;
  376. }
  377. return STRING;
  378. }
  379. std::vector<std::string> get_values() const {
  380. return { test_time,
  381. build_commit,
  382. backend_name,
  383. op_name,
  384. op_params,
  385. test_mode,
  386. std::to_string(supported),
  387. std::to_string(passed),
  388. error_message,
  389. std::to_string(time_us),
  390. std::to_string(flops),
  391. std::to_string(bandwidth_gb_s),
  392. std::to_string(memory_kb),
  393. std::to_string(n_runs) };
  394. }
  395. };
  396. // Printer classes for different output formats
  397. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  398. struct test_operation_info {
  399. std::string op_name;
  400. std::string op_params;
  401. std::string backend_name;
  402. test_status_t status = test_status_t::OK;
  403. std::string failure_reason;
  404. // Additional information fields that were previously in separate structs
  405. std::string error_component;
  406. std::string error_details;
  407. // Gradient info
  408. int64_t gradient_index = -1;
  409. std::string gradient_param_name;
  410. float gradient_value = 0.0f;
  411. // MAA error info
  412. double maa_error = 0.0;
  413. double maa_threshold = 0.0;
  414. // Flags for different types of information
  415. bool has_error = false;
  416. bool has_gradient_info = false;
  417. bool has_maa_error = false;
  418. bool is_compare_failure = false;
  419. bool is_large_tensor_skip = false;
  420. test_operation_info() = default;
  421. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  422. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  423. op_name(op_name),
  424. op_params(op_params),
  425. backend_name(backend_name),
  426. status(status),
  427. failure_reason(failure_reason) {}
  428. // Set error information
  429. void set_error(const std::string & component, const std::string & details) {
  430. has_error = true;
  431. error_component = component;
  432. error_details = details;
  433. if (status == test_status_t::OK) {
  434. status = test_status_t::FAIL;
  435. }
  436. }
  437. // Set gradient information
  438. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  439. has_gradient_info = true;
  440. gradient_index = index;
  441. gradient_param_name = param_name;
  442. gradient_value = value;
  443. if (status == test_status_t::OK) {
  444. status = test_status_t::FAIL;
  445. }
  446. }
  447. // Set MAA error information
  448. void set_maa_error(double error, double threshold) {
  449. has_maa_error = true;
  450. maa_error = error;
  451. maa_threshold = threshold;
  452. if (status == test_status_t::OK) {
  453. status = test_status_t::FAIL;
  454. }
  455. }
  456. // Set compare failure
  457. void set_compare_failure() {
  458. is_compare_failure = true;
  459. if (status == test_status_t::OK) {
  460. status = test_status_t::FAIL;
  461. }
  462. }
  463. // Set large tensor skip
  464. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  465. };
  466. struct test_summary_info {
  467. size_t tests_passed;
  468. size_t tests_total;
  469. bool is_backend_summary = false; // true for backend summary, false for test summary
  470. test_summary_info() = default;
  471. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  472. tests_passed(tests_passed),
  473. tests_total(tests_total),
  474. is_backend_summary(is_backend_summary) {}
  475. };
  476. struct testing_start_info {
  477. size_t device_count;
  478. testing_start_info() = default;
  479. testing_start_info(size_t device_count) : device_count(device_count) {}
  480. };
  481. struct backend_init_info {
  482. size_t device_index;
  483. size_t total_devices;
  484. std::string device_name;
  485. bool skipped = false;
  486. std::string skip_reason;
  487. std::string description;
  488. size_t memory_total_mb = 0;
  489. size_t memory_free_mb = 0;
  490. bool has_memory_info = false;
  491. backend_init_info() = default;
  492. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  493. const std::string & skip_reason = "", const std::string & description = "",
  494. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  495. device_index(device_index),
  496. total_devices(total_devices),
  497. device_name(device_name),
  498. skipped(skipped),
  499. skip_reason(skip_reason),
  500. description(description),
  501. memory_total_mb(memory_total_mb),
  502. memory_free_mb(memory_free_mb),
  503. has_memory_info(has_memory_info) {}
  504. };
  505. struct backend_status_info {
  506. std::string backend_name;
  507. test_status_t status;
  508. backend_status_info() = default;
  509. backend_status_info(const std::string & backend_name, test_status_t status) :
  510. backend_name(backend_name),
  511. status(status) {}
  512. };
  513. struct overall_summary_info {
  514. size_t backends_passed;
  515. size_t backends_total;
  516. bool all_passed;
  517. overall_summary_info() = default;
  518. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  519. backends_passed(backends_passed),
  520. backends_total(backends_total),
  521. all_passed(all_passed) {}
  522. };
  523. struct printer {
  524. virtual ~printer() {}
  525. FILE * fout = stdout;
  526. virtual void print_header() {}
  527. virtual void print_test_result(const test_result & result) = 0;
  528. virtual void print_footer() {}
  529. virtual void print_operation(const test_operation_info & info) { (void) info; }
  530. virtual void print_summary(const test_summary_info & info) { (void) info; }
  531. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  532. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  533. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  534. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  535. };
  536. struct console_printer : public printer {
  537. void print_test_result(const test_result & result) override {
  538. if (result.test_mode == "test") {
  539. print_test_console(result);
  540. } else if (result.test_mode == "perf") {
  541. print_perf_console(result);
  542. }
  543. }
  544. void print_operation(const test_operation_info & info) override {
  545. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  546. fflush(stdout);
  547. // Handle large tensor skip first
  548. if (info.is_large_tensor_skip) {
  549. printf("skipping large tensors for speed \n");
  550. return;
  551. }
  552. // Handle not supported status
  553. if (info.status == test_status_t::NOT_SUPPORTED) {
  554. if (!info.failure_reason.empty()) {
  555. printf("not supported [%s]\n", info.failure_reason.c_str());
  556. } else {
  557. printf("not supported [%s]\n", info.backend_name.c_str());
  558. }
  559. return;
  560. }
  561. // Handle errors and additional information
  562. if (info.has_error) {
  563. if (info.error_component == "allocation") {
  564. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  565. } else if (info.error_component == "backend") {
  566. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  567. } else {
  568. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  569. }
  570. }
  571. // Handle gradient info
  572. if (info.has_gradient_info) {
  573. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  574. info.gradient_param_name.c_str(), info.gradient_value);
  575. }
  576. // Handle MAA error
  577. if (info.has_maa_error) {
  578. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  579. }
  580. // Handle compare failure
  581. if (info.is_compare_failure) {
  582. printf("compare failed ");
  583. }
  584. // Print final status
  585. if (info.status == test_status_t::OK) {
  586. printf("\033[1;32mOK\033[0m\n");
  587. } else {
  588. printf("\033[1;31mFAIL\033[0m\n");
  589. }
  590. }
  591. void print_summary(const test_summary_info & info) override {
  592. if (info.is_backend_summary) {
  593. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  594. } else {
  595. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  596. }
  597. }
  598. void print_backend_status(const backend_status_info & info) override {
  599. printf(" Backend %s: ", info.backend_name.c_str());
  600. if (info.status == test_status_t::OK) {
  601. printf("\033[1;32mOK\033[0m\n");
  602. } else {
  603. printf("\033[1;31mFAIL\033[0m\n");
  604. }
  605. }
  606. void print_testing_start(const testing_start_info & info) override {
  607. printf("Testing %zu devices\n\n", info.device_count);
  608. }
  609. void print_backend_init(const backend_init_info & info) override {
  610. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  611. if (info.skipped) {
  612. printf(" %s\n", info.skip_reason.c_str());
  613. return;
  614. }
  615. if (!info.description.empty()) {
  616. printf(" Device description: %s\n", info.description.c_str());
  617. }
  618. if (info.has_memory_info) {
  619. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  620. }
  621. printf("\n");
  622. }
  623. void print_overall_summary(const overall_summary_info & info) override {
  624. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  625. if (info.all_passed) {
  626. printf("\033[1;32mOK\033[0m\n");
  627. } else {
  628. printf("\033[1;31mFAIL\033[0m\n");
  629. }
  630. }
  631. private:
  632. void print_test_console(const test_result & result) {
  633. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  634. fflush(stdout);
  635. if (!result.supported) {
  636. printf("not supported [%s] ", result.backend_name.c_str());
  637. printf("\n");
  638. return;
  639. }
  640. if (result.passed) {
  641. printf("\033[1;32mOK\033[0m\n");
  642. } else {
  643. printf("\033[1;31mFAIL\033[0m\n");
  644. }
  645. }
  646. void print_perf_console(const test_result & result) {
  647. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  648. fflush(stdout);
  649. if (!result.supported) {
  650. printf("not supported\n");
  651. return;
  652. }
  653. // align while also leaving some margin for variations in parameters
  654. int align = 8;
  655. int last = (len + align - 1) / align * align;
  656. if (last - len < 5) {
  657. last += align;
  658. }
  659. printf("%*s", last - len, "");
  660. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  661. if (result.flops > 0) {
  662. auto format_flops = [](double flops) -> std::string {
  663. char buf[256];
  664. if (flops >= 1e12) {
  665. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  666. } else if (flops >= 1e9) {
  667. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  668. } else if (flops >= 1e6) {
  669. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  670. } else {
  671. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  672. }
  673. return buf;
  674. };
  675. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  676. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  677. format_flops(result.flops).c_str());
  678. } else {
  679. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  680. }
  681. printf("\n");
  682. }
  683. };
  684. struct sql_printer : public printer {
  685. static std::string get_sql_field_type(const std::string & field) {
  686. switch (test_result::get_field_type(field)) {
  687. case test_result::STRING:
  688. return "TEXT";
  689. case test_result::BOOL:
  690. case test_result::INT:
  691. return "INTEGER";
  692. case test_result::FLOAT:
  693. return "REAL";
  694. default:
  695. GGML_ABORT("invalid field type");
  696. }
  697. }
  698. void print_header() override {
  699. std::vector<std::string> fields = test_result::get_fields();
  700. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  701. for (size_t i = 0; i < fields.size(); i++) {
  702. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  703. i < fields.size() - 1 ? "," : "");
  704. }
  705. fprintf(fout, ");\n\n");
  706. }
  707. void print_test_result(const test_result & result) override {
  708. fprintf(fout, "INSERT INTO test_backend_ops (");
  709. std::vector<std::string> fields = test_result::get_fields();
  710. for (size_t i = 0; i < fields.size(); i++) {
  711. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  712. }
  713. fprintf(fout, ") VALUES (");
  714. std::vector<std::string> values = result.get_values();
  715. for (size_t i = 0; i < values.size(); i++) {
  716. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  717. }
  718. fprintf(fout, ");\n");
  719. }
  720. };
  721. static std::unique_ptr<printer> create_printer(output_formats format) {
  722. switch (format) {
  723. case CONSOLE:
  724. return std::make_unique<console_printer>();
  725. case SQL:
  726. return std::make_unique<sql_printer>();
  727. }
  728. GGML_ABORT("invalid output format");
  729. }
  730. struct test_case {
  731. virtual ~test_case() {}
  732. virtual std::string op_desc(ggml_tensor * t) {
  733. return ggml_op_desc(t);
  734. }
  735. virtual std::string vars() {
  736. return "";
  737. }
  738. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  739. virtual double max_nmse_err() {
  740. return 1e-7;
  741. }
  742. virtual double max_maa_err() {
  743. return 1e-4;
  744. }
  745. virtual float grad_eps() {
  746. return 1e-1f;
  747. }
  748. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  749. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  750. virtual bool grad_precise() {
  751. return false;
  752. }
  753. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  754. virtual int64_t grad_nmax() {
  755. return 10000;
  756. }
  757. // No effect if empty.
  758. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  759. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  760. virtual std::vector<float> grad_expect() {
  761. return {};
  762. }
  763. virtual void initialize_tensors(ggml_context * ctx) {
  764. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  765. init_tensor_uniform(t);
  766. }
  767. }
  768. virtual size_t op_size(ggml_tensor * t) {
  769. size_t size = ggml_nbytes(t);
  770. // add source tensors
  771. for (int i = 0; i < GGML_MAX_SRC; i++) {
  772. if (t->src[i] != NULL) {
  773. size += ggml_nbytes(t->src[i]);
  774. }
  775. }
  776. return size;
  777. }
  778. virtual uint64_t op_flops(ggml_tensor * t) {
  779. GGML_UNUSED(t);
  780. return 0;
  781. }
  782. virtual bool run_whole_graph() { return false; }
  783. ggml_cgraph * gf = nullptr;
  784. ggml_cgraph * gb = nullptr;
  785. static const int sentinel_size = 1024;
  786. test_mode mode;
  787. std::vector<ggml_tensor *> sentinels;
  788. void add_sentinel(ggml_context * ctx) {
  789. if (mode == MODE_PERF || mode == MODE_GRAD) {
  790. return;
  791. }
  792. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  793. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  794. sentinels.push_back(sentinel);
  795. }
  796. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  797. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  798. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  799. add_sentinel(ctx);
  800. return t;
  801. }
  802. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  803. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  804. add_sentinel(ctx);
  805. return t;
  806. }
  807. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  808. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  809. add_sentinel(ctx);
  810. return t;
  811. }
  812. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  813. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  814. add_sentinel(ctx);
  815. return t;
  816. }
  817. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  818. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  819. add_sentinel(ctx);
  820. return t;
  821. }
  822. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name, printer * output_printer) {
  823. mode = MODE_TEST;
  824. ggml_init_params params = {
  825. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  826. /* .mem_base = */ NULL,
  827. /* .no_alloc = */ true,
  828. };
  829. ggml_context * ctx = ggml_init(params);
  830. GGML_ASSERT(ctx);
  831. gf = ggml_new_graph(ctx);
  832. // pre-graph sentinel
  833. add_sentinel(ctx);
  834. ggml_tensor * out = build_graph(ctx);
  835. std::string current_op_name = op_desc(out);
  836. if (op_name != nullptr && current_op_name != op_name) {
  837. //printf(" %s: skipping\n", op_desc(out).c_str());
  838. ggml_free(ctx);
  839. return true;
  840. }
  841. // check if the backends support the ops
  842. bool supported = true;
  843. for (ggml_backend_t backend : {backend1, backend2}) {
  844. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  845. if (!ggml_backend_supports_op(backend, t)) {
  846. supported = false;
  847. break;
  848. }
  849. }
  850. }
  851. if (!supported) {
  852. // Create test result for unsupported operation
  853. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  854. false, false, "not supported");
  855. if (output_printer) {
  856. output_printer->print_test_result(result);
  857. }
  858. ggml_free(ctx);
  859. return true;
  860. }
  861. // post-graph sentinel
  862. add_sentinel(ctx);
  863. // allocate
  864. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  865. if (buf == NULL) {
  866. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  867. ggml_free(ctx);
  868. return false;
  869. }
  870. // build graph
  871. ggml_build_forward_expand(gf, out);
  872. // add sentinels as graph nodes so that they are checked in the callback
  873. for (ggml_tensor * sentinel : sentinels) {
  874. ggml_graph_add_node(gf, sentinel);
  875. }
  876. // randomize tensors
  877. initialize_tensors(ctx);
  878. // compare
  879. struct callback_userdata {
  880. bool ok;
  881. double max_err;
  882. ggml_backend_t backend1;
  883. ggml_backend_t backend2;
  884. };
  885. callback_userdata ud {
  886. true,
  887. max_nmse_err(),
  888. backend1,
  889. backend2
  890. };
  891. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  892. callback_userdata * ud = (callback_userdata *) user_data;
  893. const char * bn1 = ggml_backend_name(ud->backend1);
  894. const char * bn2 = ggml_backend_name(ud->backend2);
  895. if (t1->op == GGML_OP_NONE) {
  896. // sentinels must be unchanged
  897. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  898. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  899. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  900. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  901. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  902. printf("sentinel mismatch: %s ", t1->name);
  903. ud->ok = false;
  904. return true;
  905. }
  906. }
  907. std::vector<float> f1 = tensor_to_float(t1);
  908. std::vector<float> f2 = tensor_to_float(t2);
  909. for (size_t i = 0; i < f1.size(); i++) {
  910. // check for nans
  911. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  912. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  913. ud->ok = false;
  914. return true;
  915. }
  916. // check for infs: both must be inf of the same sign, or both must be finite
  917. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  918. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  919. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  920. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  921. ud->ok = false;
  922. return true;
  923. }
  924. } else {
  925. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  926. ud->ok = false;
  927. return true;
  928. }
  929. }
  930. }
  931. double err = nmse(f1.data(), f2.data(), f1.size());
  932. if (err > ud->max_err) {
  933. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  934. //for (int i = 0; i < (int) f1.size(); i++) {
  935. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  936. //}
  937. //printf("\n");
  938. //exit(1);
  939. ud->ok = false;
  940. }
  941. return true;
  942. GGML_UNUSED(index);
  943. };
  944. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  945. ggml_backend_buffer_free(buf);
  946. ggml_free(ctx);
  947. // Create test result
  948. bool test_passed = ud.ok && cmp_ok;
  949. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  950. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  951. error_msg);
  952. if (output_printer) {
  953. output_printer->print_test_result(result);
  954. }
  955. return test_passed;
  956. }
  957. bool eval_perf(ggml_backend_t backend, const char * op_name, printer * output_printer) {
  958. mode = MODE_PERF;
  959. static const size_t graph_nodes = 8192;
  960. ggml_init_params params = {
  961. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  962. /* .mem_base = */ NULL,
  963. /* .no_alloc = */ true,
  964. };
  965. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  966. GGML_ASSERT(ctx);
  967. ggml_tensor * out = build_graph(ctx.get());
  968. std::string current_op_name = op_desc(out);
  969. if (op_name != nullptr && current_op_name != op_name) {
  970. //printf(" %s: skipping\n", op_desc(out).c_str());
  971. return true;
  972. }
  973. // check if backends support op
  974. if (!ggml_backend_supports_op(backend, out)) {
  975. // Create test result for unsupported performance test
  976. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  977. "not supported");
  978. if (output_printer) {
  979. output_printer->print_test_result(result);
  980. }
  981. return true;
  982. }
  983. // allocate
  984. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  985. if (buf == NULL) {
  986. printf("failed to allocate tensors\n");
  987. return false;
  988. }
  989. // randomize tensors
  990. initialize_tensors(ctx.get());
  991. // build graph
  992. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  993. ggml_build_forward_expand(gf, out);
  994. // warmup run
  995. ggml_status status = ggml_backend_graph_compute(backend, gf);
  996. if (status != GGML_STATUS_SUCCESS) {
  997. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  998. return false;
  999. }
  1000. // determine number of runs
  1001. int n_runs;
  1002. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1003. if (op_flops(out) > 0) {
  1004. // based on flops
  1005. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1006. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1007. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1008. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1009. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1010. } else {
  1011. // based on memory size
  1012. const size_t GB = 1ULL << 30;
  1013. const size_t target_size_cpu = 8 * GB;
  1014. const size_t target_size_gpu = 32 * GB;
  1015. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1016. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1017. }
  1018. // duplicate the op
  1019. for (int i = 1; i < n_runs; i++) {
  1020. ggml_graph_add_node(gf, out);
  1021. }
  1022. // calculate memory
  1023. size_t mem = n_runs * op_size(out);
  1024. auto tensor_op_size = [](ggml_tensor * t) {
  1025. size_t size = ggml_nbytes(t);
  1026. // add source tensors
  1027. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1028. if (t->src[i] != NULL) {
  1029. size += ggml_nbytes(t->src[i]);
  1030. }
  1031. }
  1032. return size;
  1033. };
  1034. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1035. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1036. continue;
  1037. }
  1038. mem += tensor_op_size(ggml_graph_node(gf, i));
  1039. }
  1040. // run
  1041. int64_t total_time_us = 0;
  1042. int64_t total_mem = 0;
  1043. int total_runs = 0;
  1044. do {
  1045. int64_t start_time = ggml_time_us();
  1046. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1047. if (status != GGML_STATUS_SUCCESS) {
  1048. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1049. return false;
  1050. }
  1051. int64_t end_time = ggml_time_us();
  1052. total_time_us += end_time - start_time;
  1053. total_mem += mem;
  1054. total_runs += n_runs;
  1055. } while (total_time_us < 1000*1000); // run for at least 1 second
  1056. // Create test result
  1057. double avg_time_us = (double) total_time_us / total_runs;
  1058. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1059. double calculated_bandwidth =
  1060. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1061. size_t calculated_memory_kb = op_size(out) / 1024;
  1062. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1063. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1064. if (output_printer) {
  1065. output_printer->print_test_result(result);
  1066. }
  1067. return true;
  1068. }
  1069. bool eval_grad(ggml_backend_t backend, const char * op_name, printer * output_printer) {
  1070. mode = MODE_GRAD;
  1071. const std::vector<float> expect = grad_expect();
  1072. ggml_init_params params = {
  1073. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1074. /* .mem_base = */ NULL,
  1075. /* .no_alloc = */ true,
  1076. };
  1077. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1078. GGML_ASSERT(ctx);
  1079. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1080. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1081. ggml_tensor * out = build_graph(ctx.get());
  1082. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1083. return true;
  1084. }
  1085. if (out->type != GGML_TYPE_F32) {
  1086. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1087. test_status_t::NOT_SUPPORTED,
  1088. out->name + std::string("->type != FP32")));
  1089. return true;
  1090. }
  1091. // Print operation info first
  1092. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1093. // check if the backend supports the ops
  1094. bool supported = true;
  1095. bool any_params = false;
  1096. std::string failure_reason;
  1097. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1098. if (!ggml_backend_supports_op(backend, t)) {
  1099. supported = false;
  1100. failure_reason = ggml_backend_name(backend);
  1101. break;
  1102. }
  1103. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1104. any_params = true;
  1105. if (t->type != GGML_TYPE_F32) {
  1106. supported = false;
  1107. failure_reason = std::string(t->name) + "->type != FP32";
  1108. break;
  1109. }
  1110. }
  1111. }
  1112. if (!any_params) {
  1113. supported = false;
  1114. failure_reason = op_desc(out);
  1115. }
  1116. if (!supported) {
  1117. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1118. test_status_t::NOT_SUPPORTED, failure_reason));
  1119. return true;
  1120. }
  1121. int64_t ngrads = 0;
  1122. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1123. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1124. ngrads += ggml_nelements(t);
  1125. }
  1126. }
  1127. if (ngrads > grad_nmax()) {
  1128. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1129. info.set_large_tensor_skip();
  1130. output_printer->print_operation(info);
  1131. return true;
  1132. }
  1133. if (!ggml_is_scalar(out)) {
  1134. out = ggml_sum(ctx.get(), out);
  1135. ggml_set_name(out, "sum_of_out");
  1136. }
  1137. ggml_set_loss(out);
  1138. ggml_build_forward_expand(gf, out);
  1139. ggml_graph_cpy(gf, gb);
  1140. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1141. if (expect.size() != 1 || expect[0] != 0.0f) {
  1142. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1143. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1144. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1145. }
  1146. }
  1147. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1148. if (!ggml_backend_supports_op(backend, t)) {
  1149. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1150. test_status_t::NOT_SUPPORTED,
  1151. ggml_backend_name(backend)));
  1152. supported = false;
  1153. break;
  1154. }
  1155. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1156. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1157. test_status_t::NOT_SUPPORTED,
  1158. std::string(t->name) + "->type != FP32"));
  1159. supported = false;
  1160. break;
  1161. }
  1162. }
  1163. if (!supported) {
  1164. return true;
  1165. }
  1166. // allocate
  1167. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1168. if (buf == NULL) {
  1169. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1170. info.set_error("allocation", "");
  1171. output_printer->print_operation(info);
  1172. return false;
  1173. }
  1174. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1175. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1176. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1177. if (status != GGML_STATUS_SUCCESS) {
  1178. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1179. return false;
  1180. }
  1181. status = ggml_backend_graph_compute(backend, gb);
  1182. if (status != GGML_STATUS_SUCCESS) {
  1183. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1184. return false;
  1185. }
  1186. bool ok = true;
  1187. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1188. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1189. continue;
  1190. }
  1191. const char * bn = ggml_backend_name(backend);
  1192. const int64_t ne = ggml_nelements(t);
  1193. std::vector<float> ga;
  1194. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1195. if (grad) {
  1196. ga = tensor_to_float(grad);
  1197. } else {
  1198. ga.resize(ne); // default value is 0.0f
  1199. }
  1200. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1201. // check for nans
  1202. if (!std::isfinite(ga[i])) {
  1203. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1204. info.set_gradient_info(i, bn, ga[i]);
  1205. output_printer->print_operation(info);
  1206. ok = false;
  1207. break;
  1208. }
  1209. }
  1210. if (!ok) {
  1211. break;
  1212. }
  1213. std::vector<float> gn(ne); // gradient numeric
  1214. GGML_ASSERT(ga.size() == gn.size());
  1215. std::vector<float> x0 = tensor_to_float(t); // original t data
  1216. GGML_ASSERT(ggml_is_scalar(out));
  1217. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1218. const float eps = grad_eps();
  1219. for (int64_t i = 0; i < ne; ++i) {
  1220. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1221. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1222. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1223. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1224. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1225. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1226. status = ggml_backend_graph_compute(backend, gf);
  1227. if (status != GGML_STATUS_SUCCESS) {
  1228. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1229. return false;
  1230. }
  1231. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1232. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1233. status = ggml_backend_graph_compute(backend, gf);
  1234. if (status != GGML_STATUS_SUCCESS) {
  1235. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1236. return false;
  1237. }
  1238. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1239. if (grad_precise()) {
  1240. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1241. status = ggml_backend_graph_compute(backend, gf);
  1242. if (status != GGML_STATUS_SUCCESS) {
  1243. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1244. return false;
  1245. }
  1246. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1247. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1248. status = ggml_backend_graph_compute(backend, gf);
  1249. if (status != GGML_STATUS_SUCCESS) {
  1250. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1251. return false;
  1252. }
  1253. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1254. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1255. } else {
  1256. gn[i] = (fu - fd) / (2.0f*eps);
  1257. }
  1258. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1259. }
  1260. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1261. if (err > max_maa_err()) {
  1262. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1263. info.set_maa_error(err, max_maa_err());
  1264. output_printer->print_operation(info);
  1265. ok = false;
  1266. break;
  1267. }
  1268. if (!ok) {
  1269. break;
  1270. }
  1271. }
  1272. // Create final test result
  1273. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1274. if (!ok) {
  1275. final_info.set_compare_failure();
  1276. }
  1277. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1278. output_printer->print_operation(final_info);
  1279. if (ok) {
  1280. return true;
  1281. }
  1282. return false;
  1283. }
  1284. };
  1285. // ###################################
  1286. // ## Section 2: GGML Op Defintions ##
  1287. // ###################################
  1288. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1289. // GGML_OP_EXAMPLE
  1290. struct test_example : public test_case {
  1291. // Always define these 2 or variants thereof:
  1292. const ggml_type type; // The type of the input tensors.
  1293. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1294. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1295. // Or they may need additional parameters.
  1296. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1297. // In most cases these are just the properties of the struct that you defined above.
  1298. // This is needed for info prints.
  1299. std::string vars() override {
  1300. return VARS_TO_STR2(type, ne);
  1301. }
  1302. // Define a constructor for the struct.
  1303. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1304. // and just use initializer lists.
  1305. test_example(ggml_type type = GGML_TYPE_F32,
  1306. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1307. : type(type), ne(ne) {}
  1308. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1309. ggml_tensor * build_graph(ggml_context * ctx) override {
  1310. // Step 1: create input tensors that don't depend on any other tensors:
  1311. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1312. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1313. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1314. ggml_set_name(b, "b");
  1315. // Step 2: use the op that you want to test in the GGML compute graph.
  1316. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1317. ggml_set_name(out, "out");
  1318. // Step 3: return the output tensor.
  1319. return out;
  1320. }
  1321. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1322. // immediately after you create the tensors.
  1323. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1324. };
  1325. // GGML_OP_UNARY
  1326. struct test_unary : public test_case {
  1327. const ggml_unary_op op;
  1328. const ggml_type type;
  1329. const std::array<int64_t, 4> ne_a;
  1330. int v; // view (1 : non-contiguous a)
  1331. std::string vars() override {
  1332. return VARS_TO_STR3(type, ne_a, v);
  1333. }
  1334. test_unary(ggml_unary_op op,
  1335. ggml_type type = GGML_TYPE_F32,
  1336. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1337. int v = 0)
  1338. : op(op), type(type), ne_a(ne_a), v(v) {}
  1339. ggml_tensor * build_graph(ggml_context * ctx) override {
  1340. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1341. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1342. ggml_tensor * a;
  1343. if (v & 1) {
  1344. auto ne = ne_a; ne[0] *= 3;
  1345. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1346. if (grad_supported) {
  1347. ggml_set_param(a);
  1348. }
  1349. ggml_set_name(a, "a");
  1350. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1351. ggml_set_name(a, "view_of_a");
  1352. } else {
  1353. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1354. if (grad_supported) {
  1355. ggml_set_param(a);
  1356. }
  1357. ggml_set_name(a, "a");
  1358. }
  1359. ggml_tensor * out = ggml_unary(ctx, a, op);
  1360. ggml_set_name(out, "out");
  1361. return out;
  1362. }
  1363. void initialize_tensors(ggml_context * ctx) override {
  1364. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1365. // test extended range of values to check for NaNs in GELU
  1366. init_tensor_uniform(t, -150.f, 150.f);
  1367. }
  1368. }
  1369. float grad_eps() override {
  1370. return 15.0f;
  1371. }
  1372. std::vector<float> grad_expect() override {
  1373. if (op == GGML_UNARY_OP_ABS) {
  1374. return {-1.0f, 1.0f};
  1375. }
  1376. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1377. return {0.0f};
  1378. }
  1379. if (op == GGML_UNARY_OP_RELU) {
  1380. return {0.0f, 1.0f};
  1381. }
  1382. return {};
  1383. }
  1384. };
  1385. // GGML_OP_GLU
  1386. struct test_glu : public test_case {
  1387. const ggml_glu_op op;
  1388. const ggml_type type;
  1389. const std::array<int64_t, 4> ne_a;
  1390. int v; // view (1 : non-contiguous a)
  1391. bool swapped;
  1392. std::string vars() override {
  1393. return VARS_TO_STR4(type, ne_a, v, swapped);
  1394. }
  1395. test_glu(ggml_glu_op op,
  1396. ggml_type type = GGML_TYPE_F32,
  1397. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1398. int v = 0,
  1399. bool swapped = false)
  1400. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1401. ggml_tensor * build_graph(ggml_context * ctx) override {
  1402. ggml_tensor * a;
  1403. if (v & 1) {
  1404. auto ne = ne_a; ne[0] *= 3;
  1405. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1406. ggml_set_name(a, "a");
  1407. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1408. ggml_set_name(a, "view_of_a");
  1409. } else {
  1410. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1411. ggml_set_name(a, "a");
  1412. }
  1413. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1414. ggml_set_name(out, "out");
  1415. return out;
  1416. }
  1417. void initialize_tensors(ggml_context * ctx) override {
  1418. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1419. // test extended range of values to check for NaNs in GELU
  1420. init_tensor_uniform(t, -150.f, 150.f);
  1421. }
  1422. }
  1423. };
  1424. struct test_glu_split : public test_case {
  1425. const ggml_glu_op op;
  1426. const ggml_type type;
  1427. const std::array<int64_t, 4> ne_a;
  1428. int v; // view (1 : non-contiguous a)
  1429. std::string vars() override {
  1430. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1431. }
  1432. test_glu_split(ggml_glu_op op,
  1433. ggml_type type = GGML_TYPE_F32,
  1434. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1435. int v = 0)
  1436. : op(op), type(type), ne_a(ne_a), v(v) {}
  1437. ggml_tensor * build_graph(ggml_context * ctx) override {
  1438. ggml_tensor * a;
  1439. ggml_tensor * b;
  1440. if (v & 1) {
  1441. auto ne = ne_a; ne[0] *= 3;
  1442. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1443. ggml_set_param(a);
  1444. ggml_set_name(a, "a");
  1445. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1446. ggml_set_name(a, "view_of_a");
  1447. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1448. ggml_set_param(b);
  1449. ggml_set_name(b, "b");
  1450. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1451. ggml_set_name(a, "view_of_b");
  1452. } else {
  1453. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1454. ggml_set_param(a);
  1455. ggml_set_name(a, "a");
  1456. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1457. ggml_set_param(b);
  1458. ggml_set_name(b, "b");
  1459. }
  1460. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1461. ggml_set_name(out, "out");
  1462. return out;
  1463. }
  1464. void initialize_tensors(ggml_context * ctx) override {
  1465. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1466. // test extended range of values to check for NaNs in GELU
  1467. init_tensor_uniform(t, -150.f, 150.f);
  1468. }
  1469. }
  1470. };
  1471. // GGML_OP_GET_ROWS
  1472. struct test_get_rows : public test_case {
  1473. const ggml_type type;
  1474. const int n; // cols
  1475. const int m; // rows
  1476. const int r; // rows to get
  1477. const int b; // batch size
  1478. const bool v; // view (non-contiguous src1)
  1479. std::string vars() override {
  1480. return VARS_TO_STR6(type, n, m, r, b, v);
  1481. }
  1482. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1483. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1484. ggml_tensor * build_graph(ggml_context * ctx) override {
  1485. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  1486. ggml_set_name(in, "in");
  1487. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1488. ggml_set_name(rows, "rows");
  1489. if (v) {
  1490. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1491. ggml_set_name(rows, "view_of_rows");
  1492. }
  1493. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1494. if (grad_supported) {
  1495. ggml_set_param(in);
  1496. // rows is a constant input -> no gradients
  1497. }
  1498. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1499. ggml_set_name(out, "out");
  1500. return out;
  1501. }
  1502. void initialize_tensors(ggml_context * ctx) override {
  1503. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1504. if (t->type == GGML_TYPE_I32) {
  1505. if (ggml_is_view_op(t->op)) { continue; }
  1506. // rows
  1507. std::vector<int> data(r*b);
  1508. for (int i = 0; i < r*b; i++) {
  1509. data[i] = rand() % m;
  1510. }
  1511. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1512. } else {
  1513. init_tensor_uniform(t);
  1514. }
  1515. }
  1516. }
  1517. };
  1518. // GGML_OP_GET_ROWS_BACK
  1519. struct test_get_rows_back : public test_case {
  1520. const ggml_type type;
  1521. const int n; // cols
  1522. const int m; // rows
  1523. const int r; // rows to get
  1524. const int b; // batch size
  1525. const bool v; // view (non-contiguous src1)
  1526. std::string vars() override {
  1527. return VARS_TO_STR6(type, n, m, r, b, v);
  1528. }
  1529. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1530. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1531. ggml_tensor * build_graph(ggml_context * ctx) override {
  1532. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1533. ggml_set_name(in_forward, "in_forward");
  1534. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1535. ggml_set_name(rows, "rows");
  1536. if (v) {
  1537. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1538. ggml_set_name(rows, "view_of_rows");
  1539. }
  1540. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1541. ggml_set_name(grad, "grad");
  1542. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1543. ggml_set_name(out, "out");
  1544. return out;
  1545. }
  1546. void initialize_tensors(ggml_context * ctx) override {
  1547. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1548. if (t->type == GGML_TYPE_I32) {
  1549. if (ggml_is_view_op(t->op)) { continue; }
  1550. // rows
  1551. std::vector<int> data(r*b);
  1552. for (int i = 0; i < r*b; i++) {
  1553. data[i] = rand() % m;
  1554. }
  1555. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1556. } else {
  1557. init_tensor_uniform(t);
  1558. }
  1559. }
  1560. }
  1561. };
  1562. // GGML_OP_SET_ROWS
  1563. struct test_set_rows : public test_case {
  1564. const ggml_type type;
  1565. const std::array<int64_t, 4> ne;
  1566. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1567. const int r; // rows to set
  1568. const bool v; // view (non-contiguous src1)
  1569. std::string vars() override {
  1570. return VARS_TO_STR5(type, ne, nr23, r, v);
  1571. }
  1572. test_set_rows(ggml_type type,
  1573. std::array<int64_t, 4> ne,
  1574. std::array<int, 2> nr23,
  1575. int r, bool v = false)
  1576. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1577. ggml_tensor * build_graph(ggml_context * ctx) override {
  1578. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1579. ggml_set_name(dst, "dst");
  1580. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1581. ggml_set_name(src, "src");
  1582. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1583. ggml_set_name(row_idxs, "row_idxs");
  1584. if (v) {
  1585. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1586. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1587. ggml_set_name(row_idxs, "view_of_rows");
  1588. }
  1589. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1590. ggml_set_name(out, "out");
  1591. return out;
  1592. }
  1593. void initialize_tensors(ggml_context * ctx) override {
  1594. std::random_device rd;
  1595. std::default_random_engine rng(rd());
  1596. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1597. if (t->type == GGML_TYPE_I64) {
  1598. if (ggml_is_view_op(t->op)) {
  1599. continue;
  1600. }
  1601. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1602. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1603. // generate a shuffled subset of row indices
  1604. std::vector<int64_t> data(ne[1]);
  1605. for (int i = 0; i < ne[1]; i++) {
  1606. data[i] = i;
  1607. }
  1608. std::shuffle(data.begin(), data.end(), rng);
  1609. data.resize(t->ne[0]);
  1610. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1611. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1612. }
  1613. }
  1614. } else {
  1615. init_tensor_uniform(t);
  1616. }
  1617. }
  1618. }
  1619. };
  1620. // GGML_OP_ARGMAX
  1621. struct test_argmax : public test_case {
  1622. const ggml_type type;
  1623. const std::array<int64_t, 4> ne;
  1624. std::string vars() override {
  1625. return VARS_TO_STR2(type, ne);
  1626. }
  1627. test_argmax(ggml_type type = GGML_TYPE_F32,
  1628. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1629. : type(type), ne(ne) {}
  1630. ggml_tensor * build_graph(ggml_context * ctx) override {
  1631. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1632. ggml_set_name(a, "a");
  1633. ggml_tensor * out = ggml_argmax(ctx, a);
  1634. ggml_set_name(out, "out");
  1635. return out;
  1636. }
  1637. void initialize_tensors(ggml_context * ctx) override {
  1638. std::random_device rd;
  1639. std::default_random_engine rng(rd());
  1640. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1641. if (t->type == GGML_TYPE_F32) {
  1642. // initialize with unique values to avoid ties
  1643. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1644. std::vector<float> data(t->ne[0]);
  1645. for (int i = 0; i < t->ne[0]; i++) {
  1646. data[i] = i;
  1647. }
  1648. std::shuffle(data.begin(), data.end(), rng);
  1649. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1650. }
  1651. } else {
  1652. init_tensor_uniform(t);
  1653. }
  1654. }
  1655. }
  1656. double max_nmse_err() override {
  1657. return 0.0;
  1658. }
  1659. };
  1660. // GGML_OP_COUNT_EQUAL
  1661. struct test_count_equal : public test_case {
  1662. const ggml_type type;
  1663. const std::array<int64_t, 4> ne;
  1664. std::string vars() override {
  1665. return VARS_TO_STR2(type, ne);
  1666. }
  1667. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1668. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1669. : type(type), ne(ne) {}
  1670. ggml_tensor * build_graph(ggml_context * ctx) override {
  1671. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1672. ggml_set_name(a, "a");
  1673. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1674. ggml_set_name(a_argmax, "a_argmax");
  1675. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1676. ggml_set_name(b, "b");
  1677. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1678. ggml_set_name(b_argmax, "b_argmax");
  1679. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1680. ggml_set_name(out, "out");
  1681. return out;
  1682. }
  1683. double max_nmse_err() override {
  1684. return 0.0;
  1685. }
  1686. };
  1687. // GGML_OP_REPEAT
  1688. struct test_repeat : public test_case {
  1689. const ggml_type type;
  1690. const std::array<int64_t, 4> ne;
  1691. const std::array<int, 4> nr;
  1692. std::string vars() override {
  1693. return VARS_TO_STR3(type, ne, nr);
  1694. }
  1695. size_t op_size(ggml_tensor * t) override {
  1696. return ggml_nbytes(t) * 2;
  1697. }
  1698. test_repeat(ggml_type type = GGML_TYPE_F32,
  1699. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1700. std::array<int, 4> nr = {2, 2, 2, 2})
  1701. : type(type), ne(ne), nr(nr) {}
  1702. ggml_tensor * build_graph(ggml_context * ctx) override {
  1703. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1704. ggml_set_name(target, "target");
  1705. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1706. ggml_set_param(src);
  1707. ggml_set_name(src, "src");
  1708. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1709. ggml_set_name(out, "out");
  1710. return out;
  1711. }
  1712. };
  1713. // GGML_OP_REPEAT_BACK
  1714. struct test_repeat_back : public test_case {
  1715. const ggml_type type;
  1716. const std::array<int64_t, 4> ne;
  1717. const std::array<int, 4> nr;
  1718. const bool v; // whether src is a noncontiguous view
  1719. std::string vars() override {
  1720. return VARS_TO_STR4(type, ne, nr, v);
  1721. }
  1722. size_t op_size(ggml_tensor * t) override {
  1723. return ggml_nbytes(t) * 2;
  1724. }
  1725. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1726. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1727. std::array<int, 4> nr = {2, 2, 2, 2},
  1728. bool v = false)
  1729. : type(type), ne(ne), nr(nr), v(v) {}
  1730. ggml_tensor * build_graph(ggml_context * ctx) override {
  1731. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1732. ggml_set_name(src, "src");
  1733. if (v) {
  1734. GGML_ASSERT(ne[0] % 2 == 0);
  1735. GGML_ASSERT(ne[1] % 2 == 0);
  1736. GGML_ASSERT(ne[2] % 2 == 0);
  1737. GGML_ASSERT(ne[3] % 2 == 0);
  1738. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1739. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1740. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1741. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1742. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1743. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1744. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1745. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1746. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1747. }
  1748. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1749. ggml_set_name(target, "target");
  1750. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1751. ggml_set_name(out, "out");
  1752. return out;
  1753. }
  1754. };
  1755. // GGML_OP_DUP
  1756. struct test_dup : public test_case {
  1757. const ggml_type type;
  1758. const std::array<int64_t, 4> ne;
  1759. const std::array<int64_t, 4> permute;
  1760. bool _use_permute;
  1761. std::string vars() override {
  1762. std::string v = VARS_TO_STR2(type, ne);
  1763. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1764. return v;
  1765. }
  1766. test_dup(ggml_type type = GGML_TYPE_F32,
  1767. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1768. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1769. : type(type), ne(ne), permute(permute),
  1770. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1771. ggml_tensor * build_graph(ggml_context * ctx) override {
  1772. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1773. ggml_set_param(src);
  1774. ggml_set_name(src, "src");
  1775. if (_use_permute) {
  1776. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1777. ggml_set_name(src, "src_permuted");
  1778. }
  1779. ggml_tensor * out = ggml_dup(ctx, src);
  1780. ggml_set_name(out, "out");
  1781. return out;
  1782. }
  1783. };
  1784. // GGML_OP_SET
  1785. struct test_set : public test_case {
  1786. const ggml_type type_src;
  1787. const ggml_type type_dst;
  1788. const std::array<int64_t, 4> ne;
  1789. const int dim;
  1790. std::string vars() override {
  1791. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1792. }
  1793. size_t op_size(ggml_tensor * t) override {
  1794. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1795. }
  1796. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1797. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1798. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1799. ggml_tensor * build_graph(ggml_context * ctx) override {
  1800. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1801. ggml_set_param(src);
  1802. ggml_set_name(src, "src");
  1803. auto ne_dst = ne;
  1804. for (int i = 0; i < dim; ++i) {
  1805. ne_dst[i] *= 2;
  1806. }
  1807. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1808. ggml_set_param(dst);
  1809. ggml_set_name(dst, "dst");
  1810. size_t offset = 0;
  1811. for (int i = 0; i < dim; ++i) {
  1812. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1813. }
  1814. ggml_tensor * out = ggml_set(ctx, dst, src,
  1815. // The backward pass requires setting a contiguous region:
  1816. src->nb[1], src->nb[2], src->nb[3], offset);
  1817. ggml_set_name(out, "out");
  1818. return out;
  1819. }
  1820. };
  1821. // GGML_OP_CPY
  1822. struct test_cpy : public test_case {
  1823. const ggml_type type_src;
  1824. const ggml_type type_dst;
  1825. const std::array<int64_t, 4> ne;
  1826. const std::array<int64_t, 4> permute_src;
  1827. const std::array<int64_t, 4> permute_dst;
  1828. bool _src_use_permute;
  1829. bool _dst_use_permute;
  1830. std::string vars() override {
  1831. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  1832. }
  1833. double max_nmse_err() override {
  1834. return 1e-6;
  1835. }
  1836. size_t op_size(ggml_tensor * t) override {
  1837. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1838. }
  1839. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1840. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1841. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  1842. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  1843. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  1844. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  1845. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  1846. ggml_tensor * build_graph(ggml_context * ctx) override {
  1847. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1848. ggml_set_param(src);
  1849. ggml_set_name(src, "src");
  1850. if (_src_use_permute) {
  1851. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  1852. ggml_set_name(src, "src_permuted");
  1853. }
  1854. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1855. ggml_set_name(dst, "dst");
  1856. if (_dst_use_permute) {
  1857. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  1858. ggml_set_name(dst, "dst_permuted");
  1859. }
  1860. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1861. ggml_set_name(out, "out");
  1862. return out;
  1863. }
  1864. };
  1865. // GGML_OP_CONT
  1866. struct test_cont : public test_case {
  1867. const ggml_type type;
  1868. const std::array<int64_t, 4> ne;
  1869. std::string vars() override {
  1870. return VARS_TO_STR2(type, ne);
  1871. }
  1872. test_cont(ggml_type type = GGML_TYPE_F32,
  1873. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1874. : type(type), ne(ne) {}
  1875. ggml_tensor * build_graph(ggml_context * ctx) override {
  1876. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1877. ggml_set_param(src);
  1878. ggml_set_name(src, "src");
  1879. src = ggml_transpose(ctx, src);
  1880. ggml_set_name(src, "src_transposed");
  1881. ggml_tensor * out = ggml_cont(ctx, src);
  1882. ggml_set_name(out, "out");
  1883. return out;
  1884. }
  1885. };
  1886. // GGML_OP_ADD
  1887. // GGML_OP_SUB
  1888. // GGML_OP_MUL
  1889. // GGML_OP_DIV
  1890. struct test_bin_bcast : public test_case {
  1891. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1892. op_t op;
  1893. const ggml_type type;
  1894. const std::array<int64_t, 4> ne;
  1895. const std::array<int, 4> nr;
  1896. std::string vars() override {
  1897. return VARS_TO_STR3(type, ne, nr);
  1898. }
  1899. size_t op_size(ggml_tensor * t) override {
  1900. return ggml_nbytes(t) * 3;
  1901. }
  1902. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1903. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1904. std::array<int, 4> nr = {1, 2, 1, 1})
  1905. : op(op), type(type), ne(ne), nr(nr) {}
  1906. ggml_tensor * build_graph(ggml_context * ctx) override {
  1907. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1908. ggml_set_name(a, "a");
  1909. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1910. ggml_set_name(b, "b");
  1911. // The backward pass supports broadcasting only for GGML_ADD:
  1912. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1913. if (grad_supported) {
  1914. ggml_set_param(a);
  1915. ggml_set_param(b);
  1916. }
  1917. ggml_tensor * out = op(ctx, a, b);
  1918. ggml_set_name(out, "out");
  1919. return out;
  1920. }
  1921. void initialize_tensors(ggml_context * ctx) override {
  1922. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1923. if (op == ggml_mul || op == ggml_div) {
  1924. // MUL and DIV have numerical issues around zero:
  1925. init_tensor_uniform(t, 0.9f, 1.1f);
  1926. } else {
  1927. init_tensor_uniform(t);
  1928. }
  1929. }
  1930. }
  1931. float grad_eps() override {
  1932. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1933. }
  1934. bool grad_precise() override {
  1935. return op == ggml_div;
  1936. }
  1937. double max_maa_err() override {
  1938. return op == ggml_add ? 1e-4 : 1e-3;
  1939. }
  1940. };
  1941. // GGML_OP_ADD1
  1942. struct test_add1 : public test_case {
  1943. const ggml_type type;
  1944. const std::array<int64_t, 4> ne;
  1945. std::string vars() override {
  1946. return VARS_TO_STR2(type, ne);
  1947. }
  1948. test_add1(ggml_type type = GGML_TYPE_F32,
  1949. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1950. : type(type), ne(ne) {}
  1951. ggml_tensor * build_graph(ggml_context * ctx) override {
  1952. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1953. ggml_set_param(a);
  1954. ggml_set_name(a, "a");
  1955. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1956. // ggml_set_param(b); // TODO: implement
  1957. ggml_set_name(b, "b");
  1958. ggml_tensor * out = ggml_add1(ctx, a, b);
  1959. ggml_set_name(out, "out");
  1960. return out;
  1961. }
  1962. float grad_eps() override {
  1963. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1964. }
  1965. };
  1966. // GGML_OP_SCALE
  1967. struct test_scale : public test_case {
  1968. const ggml_type type;
  1969. const std::array<int64_t, 4> ne;
  1970. float scale;
  1971. float bias;
  1972. std::string vars() override {
  1973. return VARS_TO_STR4(type, ne, scale, bias);
  1974. }
  1975. test_scale(ggml_type type = GGML_TYPE_F32,
  1976. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1977. float scale = 2.0f,
  1978. float bias = 0.0f)
  1979. : type(type), ne(ne), scale(scale), bias(bias) {}
  1980. ggml_tensor * build_graph(ggml_context * ctx) override {
  1981. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1982. ggml_set_param(a);
  1983. ggml_set_name(a, "a");
  1984. ggml_tensor * out = ggml_scale_bias(ctx, a, scale, bias);
  1985. ggml_set_name(out, "out");
  1986. return out;
  1987. }
  1988. };
  1989. // GGML_OP_SILU_BACK
  1990. struct test_silu_back : public test_case {
  1991. const ggml_type type;
  1992. const std::array<int64_t, 4> ne;
  1993. float eps;
  1994. std::string vars() override {
  1995. return VARS_TO_STR3(type, ne, eps);
  1996. }
  1997. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1998. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1999. float eps = 1e-6f)
  2000. : type(type), ne(ne), eps(eps) {}
  2001. ggml_tensor * build_graph(ggml_context * ctx) override {
  2002. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2003. ggml_set_name(a, "a");
  2004. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2005. ggml_set_name(grad, "grad");
  2006. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2007. ggml_set_name(out, "out");
  2008. return out;
  2009. }
  2010. bool grad_precise() override {
  2011. return true;
  2012. }
  2013. };
  2014. // GGML_OP_NORM
  2015. struct test_norm : public test_case {
  2016. const ggml_type type;
  2017. const std::array<int64_t, 4> ne;
  2018. const bool v; // whether a is a non-contiguous view
  2019. const float eps;
  2020. std::string vars() override {
  2021. return VARS_TO_STR4(type, ne, v, eps);
  2022. }
  2023. test_norm(ggml_type type = GGML_TYPE_F32,
  2024. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2025. bool v = false,
  2026. float eps = 1e-6f)
  2027. : type(type), ne(ne), v(v), eps(eps) {}
  2028. ggml_tensor * build_graph(ggml_context * ctx) override {
  2029. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2030. ggml_set_name(a, "a");
  2031. if (v) {
  2032. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2033. ggml_set_name(a, "view of a");
  2034. }
  2035. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2036. ggml_set_name(out, "out");
  2037. return out;
  2038. }
  2039. };
  2040. // GGML_OP_RMS_NORM
  2041. struct test_rms_norm : public test_case {
  2042. const ggml_type type;
  2043. const std::array<int64_t, 4> ne;
  2044. const bool v; // whether a is a non-contiguous view
  2045. const float eps;
  2046. std::string vars() override {
  2047. return VARS_TO_STR4(type, ne, v, eps);
  2048. }
  2049. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2050. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2051. bool v = false,
  2052. float eps = 1e-6f)
  2053. : type(type), ne(ne), v(v), eps(eps) {}
  2054. ggml_tensor * build_graph(ggml_context * ctx) override {
  2055. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2056. ggml_set_param(a);
  2057. ggml_set_name(a, "a");
  2058. if (v) {
  2059. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2060. ggml_set_name(a, "view of a");
  2061. }
  2062. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  2063. ggml_set_name(out, "out");
  2064. return out;
  2065. }
  2066. void initialize_tensors(ggml_context * ctx) override {
  2067. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2068. init_tensor_uniform(t, -10.f, 10.f);
  2069. }
  2070. }
  2071. float grad_eps() override {
  2072. return 1.0f;
  2073. }
  2074. bool grad_precise() override {
  2075. return true;
  2076. }
  2077. };
  2078. // GGML_OP_RMS_NORM_BACK
  2079. struct test_rms_norm_back : public test_case {
  2080. const ggml_type type;
  2081. const std::array<int64_t, 4> ne;
  2082. const float eps;
  2083. std::string vars() override {
  2084. return VARS_TO_STR3(type, ne, eps);
  2085. }
  2086. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2087. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2088. float eps = 1e-6f)
  2089. : type(type), ne(ne), eps(eps) {}
  2090. ggml_tensor * build_graph(ggml_context * ctx) override {
  2091. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2092. ggml_set_name(a, "a");
  2093. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2094. ggml_set_name(b, "b");
  2095. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2096. ggml_set_name(out, "out");
  2097. return out;
  2098. }
  2099. void initialize_tensors(ggml_context * ctx) override {
  2100. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2101. init_tensor_uniform(t, -10.f, 10.f);
  2102. }
  2103. }
  2104. };
  2105. // GGML_OP_RMS_NORM + GGML_OP_MUL
  2106. struct test_rms_norm_mul : public test_case {
  2107. const ggml_type type;
  2108. const std::array<int64_t, 4> ne;
  2109. const float eps;
  2110. std::string op_desc(ggml_tensor * t) override {
  2111. GGML_UNUSED(t);
  2112. return "RMS_NORM_MUL";
  2113. }
  2114. bool run_whole_graph() override { return true; }
  2115. std::string vars() override {
  2116. return VARS_TO_STR3(type, ne, eps);
  2117. }
  2118. test_rms_norm_mul(ggml_type type = GGML_TYPE_F32,
  2119. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2120. float eps = 1e-6f)
  2121. : type(type), ne(ne), eps(eps) {}
  2122. ggml_tensor * build_graph(ggml_context * ctx) override {
  2123. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2124. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2125. ggml_set_param(a);
  2126. ggml_set_name(a, "a");
  2127. ggml_set_param(b);
  2128. ggml_set_name(b, "b");
  2129. // Use a and b early, so we don't end up with an OP_NONE between rms_norm and mul
  2130. a = ggml_add(ctx, a, b);
  2131. ggml_tensor * out = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  2132. ggml_set_name(out, "out");
  2133. return out;
  2134. }
  2135. void initialize_tensors(ggml_context * ctx) override {
  2136. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2137. init_tensor_uniform(t, -10.f, 10.f);
  2138. }
  2139. }
  2140. float grad_eps() override {
  2141. return 1.0f;
  2142. }
  2143. bool grad_precise() override {
  2144. return true;
  2145. }
  2146. };
  2147. // GGML_OP_SSM_CONV
  2148. struct test_ssm_conv : public test_case {
  2149. const ggml_type type;
  2150. const std::array<int64_t, 4> ne_a;
  2151. const std::array<int64_t, 4> ne_b;
  2152. std::string vars() override {
  2153. return VARS_TO_STR3(type, ne_a, ne_b);
  2154. }
  2155. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2156. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2157. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2158. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2159. ggml_tensor * build_graph(ggml_context * ctx) override {
  2160. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2161. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2162. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2163. return out;
  2164. }
  2165. };
  2166. // GGML_OP_SSM_SCAN
  2167. struct test_ssm_scan : public test_case {
  2168. const ggml_type type;
  2169. const int64_t d_state;
  2170. const int64_t head_dim;
  2171. const int64_t n_head;
  2172. const int64_t n_group;
  2173. const int64_t n_seq_tokens;
  2174. const int64_t n_seqs;
  2175. std::string vars() override {
  2176. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2177. }
  2178. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2179. int64_t d_state = 32,
  2180. int64_t head_dim = 1, // non-zero for Mamba-2
  2181. int64_t n_head = 32,
  2182. int64_t n_group = 1,
  2183. int64_t n_seq_tokens = 32,
  2184. int64_t n_seqs = 32)
  2185. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2186. ggml_tensor * build_graph(ggml_context * ctx) override {
  2187. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2188. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2189. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2190. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2191. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2192. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2193. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2194. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2195. return out;
  2196. }
  2197. // similar to test_mul_mat_id
  2198. void initialize_tensors(ggml_context * ctx) override {
  2199. std::random_device rd;
  2200. std::default_random_engine rng(rd());
  2201. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2202. if (t->type == GGML_TYPE_I32) {
  2203. if (ggml_is_view_op(t->op)) { continue; }
  2204. // ids
  2205. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2206. std::vector<int32_t> data(t->ne[0]);
  2207. for (int i = 0; i < t->ne[0]; i++) {
  2208. data[i] = i;
  2209. }
  2210. std::shuffle(data.begin(), data.end(), rng);
  2211. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2212. }
  2213. } else {
  2214. init_tensor_uniform(t);
  2215. }
  2216. }
  2217. }
  2218. };
  2219. // GGML_OP_RWKV_WKV6
  2220. struct test_rwkv_wkv6 : public test_case {
  2221. const ggml_type type;
  2222. const int64_t head_count;
  2223. const int64_t head_size;
  2224. const int64_t n_seq_tokens;
  2225. const int64_t n_seqs;
  2226. std::string vars() override {
  2227. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2228. }
  2229. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2230. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2231. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2232. ggml_tensor * build_graph(ggml_context * ctx) override {
  2233. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2234. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2235. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2236. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2237. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2238. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2239. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2240. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2241. return out;
  2242. }
  2243. };
  2244. // GGML_OP_GATED_LINEAR_ATTN
  2245. struct test_gla : public test_case {
  2246. const ggml_type type;
  2247. const int64_t head_count;
  2248. const int64_t head_size;
  2249. const int64_t n_seq_tokens;
  2250. const int64_t n_seqs;
  2251. std::string vars() override {
  2252. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2253. }
  2254. test_gla(ggml_type type = GGML_TYPE_F32,
  2255. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2256. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2257. ggml_tensor * build_graph(ggml_context * ctx) override {
  2258. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2259. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2260. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2261. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2262. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2263. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2264. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2265. return out;
  2266. }
  2267. };
  2268. // GGML_OP_RWKV_WKV7
  2269. struct test_rwkv_wkv7 : public test_case {
  2270. const ggml_type type;
  2271. const int64_t head_count;
  2272. const int64_t head_size;
  2273. const int64_t n_seq_tokens;
  2274. const int64_t n_seqs;
  2275. std::string vars() override {
  2276. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2277. }
  2278. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2279. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2280. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2281. ggml_tensor * build_graph(ggml_context * ctx) override {
  2282. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2283. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2284. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2285. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2286. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2287. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2288. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2289. // Outputs may become NaN with long seqlen without these normalization
  2290. a = ggml_l2_norm(ctx, a, 1e-7F);
  2291. b = ggml_l2_norm(ctx, b, 1e-7F);
  2292. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2293. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2294. return out;
  2295. }
  2296. };
  2297. // GGML_OP_MUL_MAT
  2298. struct test_mul_mat : public test_case {
  2299. const ggml_type type_a;
  2300. const ggml_type type_b;
  2301. const int64_t m;
  2302. const int64_t n;
  2303. const int64_t k;
  2304. const std::array<int64_t, 2> bs; // dims 3 and 4
  2305. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2306. const std::array<int64_t, 4> per; // permutation of dimensions
  2307. const bool v; // whether a and b are non-contiguous views
  2308. std::string vars() override {
  2309. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  2310. }
  2311. double max_nmse_err() override {
  2312. return 5e-4;
  2313. }
  2314. int64_t grad_nmax() override {
  2315. return 20000;
  2316. }
  2317. uint64_t op_flops(ggml_tensor * t) override {
  2318. GGML_UNUSED(t);
  2319. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2320. }
  2321. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2322. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2323. std::array<int64_t, 2> bs = {10, 10},
  2324. std::array<int64_t, 2> nr = {2, 2},
  2325. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2326. bool v = false)
  2327. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  2328. ggml_tensor * build_graph(ggml_context * ctx) override {
  2329. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2330. ggml_tensor * a;
  2331. ggml_tensor * b;
  2332. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2333. if (npermuted > 0) {
  2334. GGML_ASSERT(npermuted == 2);
  2335. GGML_ASSERT(!v); // not handled
  2336. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2337. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2338. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2339. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2340. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2341. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2342. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2343. if (!ggml_is_quantized(type_a)) {
  2344. if (bs[1] == 1 && nr[1] == 1) {
  2345. ggml_set_param(a);
  2346. }
  2347. ggml_set_param(b);
  2348. }
  2349. ggml_set_name(a, "a");
  2350. ggml_set_name(b, "b");
  2351. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2352. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2353. ggml_set_name(a, "a_permuted");
  2354. ggml_set_name(b, "b_permuted");
  2355. } else {
  2356. if (v) {
  2357. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2358. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2359. if (!ggml_is_quantized(type_a)) {
  2360. if (bs[1] == 1 && nr[1] == 1) {
  2361. ggml_set_param(a);
  2362. }
  2363. ggml_set_param(b);
  2364. }
  2365. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2366. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2367. } else {
  2368. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2369. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2370. if (!ggml_is_quantized(type_a)) {
  2371. if (bs[1] == 1 && nr[1] == 1) {
  2372. ggml_set_param(a);
  2373. }
  2374. ggml_set_param(b);
  2375. }
  2376. }
  2377. ggml_set_name(a, "a");
  2378. ggml_set_name(b, "b");
  2379. }
  2380. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2381. ggml_set_name(out, "out");
  2382. return out;
  2383. }
  2384. };
  2385. // GGML_OP_MUL_MAT_ID
  2386. struct test_mul_mat_id : public test_case {
  2387. const ggml_type type_a;
  2388. const ggml_type type_b;
  2389. const int n_mats;
  2390. const int n_used;
  2391. const bool b; // broadcast b matrix
  2392. const int64_t m;
  2393. const int64_t n;
  2394. const int64_t k;
  2395. std::string vars() override {
  2396. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  2397. }
  2398. double max_nmse_err() override {
  2399. return 5e-4;
  2400. }
  2401. uint64_t op_flops(ggml_tensor * t) override {
  2402. GGML_UNUSED(t);
  2403. return 2 * m * k * n * n_used;
  2404. }
  2405. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2406. int n_mats = 8, int n_used = 2, bool b = false,
  2407. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  2408. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2409. m(m), n(n), k(k) {
  2410. GGML_ASSERT(n_used <= n_mats);
  2411. }
  2412. ggml_tensor * build_graph(ggml_context * ctx) override {
  2413. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2414. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2415. ggml_set_name(as, "as");
  2416. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2417. ggml_set_name(ids, "ids");
  2418. if (n_used != n_mats) {
  2419. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2420. ggml_set_name(ids, "view_of_ids");
  2421. }
  2422. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2423. ggml_set_name(b, "b");
  2424. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2425. ggml_set_name(out, "out");
  2426. return out;
  2427. }
  2428. void initialize_tensors(ggml_context * ctx) override {
  2429. std::random_device rd;
  2430. std::default_random_engine rng(rd());
  2431. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2432. if (t->type == GGML_TYPE_I32) {
  2433. if (ggml_is_view_op(t->op)) { continue; }
  2434. // ids
  2435. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2436. std::vector<int32_t> data(t->ne[0]);
  2437. for (int i = 0; i < t->ne[0]; i++) {
  2438. data[i] = i % n_mats;
  2439. }
  2440. std::shuffle(data.begin(), data.end(), rng);
  2441. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2442. }
  2443. } else {
  2444. init_tensor_uniform(t);
  2445. }
  2446. }
  2447. }
  2448. };
  2449. // GGML_OP_OUT_PROD
  2450. struct test_out_prod : public test_case {
  2451. const ggml_type type_a;
  2452. const ggml_type type_b;
  2453. const int64_t m;
  2454. const int64_t n;
  2455. const int64_t k;
  2456. const std::array<int64_t, 2> bs; // dims 3 and 4
  2457. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2458. const bool trans_b;
  2459. std::string vars() override {
  2460. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2461. }
  2462. double max_nmse_err() override {
  2463. return 5e-4;
  2464. }
  2465. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2466. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2467. std::array<int64_t, 2> bs = {10, 10},
  2468. std::array<int64_t, 2> nr = {2, 2},
  2469. bool trans_b = false)
  2470. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2471. ggml_tensor * build_graph(ggml_context * ctx) override {
  2472. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2473. ggml_set_name(a, "a");
  2474. ggml_tensor * b;
  2475. if (trans_b) {
  2476. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2477. b = ggml_transpose(ctx, b);
  2478. } else {
  2479. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2480. }
  2481. ggml_set_name(b, "b");
  2482. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2483. ggml_set_name(out, "out");
  2484. return out;
  2485. }
  2486. };
  2487. // GGML_OP_SQR
  2488. struct test_sqr : public test_case {
  2489. const ggml_type type;
  2490. const std::array<int64_t, 4> ne;
  2491. std::string vars() override {
  2492. return VARS_TO_STR2(type, ne);
  2493. }
  2494. test_sqr(ggml_type type = GGML_TYPE_F32,
  2495. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2496. : type(type), ne(ne) {}
  2497. ggml_tensor * build_graph(ggml_context * ctx) override {
  2498. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2499. ggml_set_param(a);
  2500. ggml_set_name(a, "a");
  2501. ggml_tensor * out = ggml_sqr(ctx, a);
  2502. ggml_set_name(out, "out");
  2503. return out;
  2504. }
  2505. float grad_eps() override {
  2506. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2507. }
  2508. };
  2509. // GGML_OP_SQRT
  2510. struct test_sqrt : public test_case {
  2511. const ggml_type type;
  2512. const std::array<int64_t, 4> ne;
  2513. std::string vars() override {
  2514. return VARS_TO_STR2(type, ne);
  2515. }
  2516. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2517. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2518. : type(type), ne(ne) {}
  2519. ggml_tensor * build_graph(ggml_context * ctx) override {
  2520. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2521. ggml_set_param(a);
  2522. ggml_set_name(a, "a");
  2523. ggml_tensor * out = ggml_sqrt(ctx, a);
  2524. ggml_set_name(out, "out");
  2525. return out;
  2526. }
  2527. void initialize_tensors(ggml_context * ctx) override {
  2528. // fill with positive values
  2529. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2530. init_tensor_uniform(t, 50.0f, 100.0f);
  2531. }
  2532. }
  2533. float grad_eps() override {
  2534. return 20.0f;
  2535. }
  2536. bool grad_precise() override {
  2537. return true;
  2538. }
  2539. };
  2540. // GGML_OP_LOG
  2541. struct test_log : public test_case {
  2542. const ggml_type type;
  2543. const std::array<int64_t, 4> ne;
  2544. std::string vars() override {
  2545. return VARS_TO_STR2(type, ne);
  2546. }
  2547. test_log(ggml_type type = GGML_TYPE_F32,
  2548. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2549. : type(type), ne(ne) {}
  2550. ggml_tensor * build_graph(ggml_context * ctx) override {
  2551. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2552. ggml_set_param(a);
  2553. ggml_set_name(a, "a");
  2554. ggml_tensor * out = ggml_log(ctx, a);
  2555. ggml_set_name(out, "out");
  2556. return out;
  2557. }
  2558. void initialize_tensors(ggml_context * ctx) override {
  2559. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2560. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2561. init_tensor_uniform(t, 0.9f, 1.1f);
  2562. }
  2563. }
  2564. bool grad_precise() override {
  2565. return true;
  2566. }
  2567. };
  2568. // GGML_OP_SIN
  2569. struct test_sin : public test_case {
  2570. const ggml_type type;
  2571. const std::array<int64_t, 4> ne;
  2572. std::string vars() override {
  2573. return VARS_TO_STR2(type, ne);
  2574. }
  2575. test_sin(ggml_type type = GGML_TYPE_F32,
  2576. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2577. : type(type), ne(ne) {}
  2578. ggml_tensor * build_graph(ggml_context * ctx) override {
  2579. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2580. ggml_set_param(a);
  2581. ggml_set_name(a, "a");
  2582. ggml_tensor * out = ggml_sin(ctx, a);
  2583. ggml_set_name(out, "out");
  2584. return out;
  2585. }
  2586. void initialize_tensors(ggml_context * ctx) override {
  2587. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2588. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2589. }
  2590. }
  2591. double max_maa_err() override {
  2592. return 1e-3;
  2593. }
  2594. float grad_eps() override {
  2595. return 0.2f;
  2596. }
  2597. bool grad_precise() override {
  2598. return true;
  2599. }
  2600. };
  2601. // GGML_OP_COS
  2602. struct test_cos : public test_case {
  2603. const ggml_type type;
  2604. const std::array<int64_t, 4> ne;
  2605. std::string vars() override {
  2606. return VARS_TO_STR2(type, ne);
  2607. }
  2608. test_cos(ggml_type type = GGML_TYPE_F32,
  2609. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2610. : type(type), ne(ne) {}
  2611. ggml_tensor * build_graph(ggml_context * ctx) override {
  2612. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2613. ggml_set_param(a);
  2614. ggml_set_name(a, "a");
  2615. ggml_tensor * out = ggml_cos(ctx, a);
  2616. ggml_set_name(out, "out");
  2617. return out;
  2618. }
  2619. void initialize_tensors(ggml_context * ctx) override {
  2620. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2621. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2622. }
  2623. }
  2624. double max_maa_err() override {
  2625. return 1e-3;
  2626. }
  2627. float grad_eps() override {
  2628. return 0.2f;
  2629. }
  2630. bool grad_precise() override {
  2631. return true;
  2632. }
  2633. };
  2634. // GGML_OP_CLAMP
  2635. struct test_clamp : public test_case {
  2636. const ggml_type type;
  2637. const std::array<int64_t, 4> ne;
  2638. float min;
  2639. float max;
  2640. std::string vars() override {
  2641. return VARS_TO_STR4(type, ne, min, max);
  2642. }
  2643. test_clamp(ggml_type type = GGML_TYPE_F32,
  2644. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2645. float min = -0.5f, float max = 0.5f)
  2646. : type(type), ne(ne), min(min), max(max) {}
  2647. ggml_tensor * build_graph(ggml_context * ctx) override {
  2648. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2649. ggml_set_name(a, "a");
  2650. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  2651. ggml_set_name(out, "out");
  2652. return out;
  2653. }
  2654. float grad_eps() override {
  2655. return 1e-2f;
  2656. }
  2657. std::vector<float> grad_expect() override {
  2658. return {0.0f, 1.0f};
  2659. }
  2660. };
  2661. // GGML_OP_DIAG_MASK_INF
  2662. struct test_diag_mask_inf : public test_case {
  2663. const ggml_type type;
  2664. const std::array<int64_t, 4> ne;
  2665. const int n_past;
  2666. std::string vars() override {
  2667. return VARS_TO_STR3(type, ne, n_past);
  2668. }
  2669. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  2670. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  2671. int n_past = 5)
  2672. : type(type), ne(ne), n_past(n_past) {}
  2673. ggml_tensor * build_graph(ggml_context * ctx) override {
  2674. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2675. ggml_set_param(a);
  2676. ggml_set_name(a, "a");
  2677. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  2678. ggml_set_name(out, "out");
  2679. return out;
  2680. }
  2681. };
  2682. // GGML_OP_SOFT_MAX
  2683. struct test_soft_max : public test_case {
  2684. const ggml_type type;
  2685. const std::array<int64_t, 4> ne;
  2686. const bool mask;
  2687. const ggml_type m_prec;
  2688. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  2689. const float scale;
  2690. const float max_bias;
  2691. std::string vars() override {
  2692. return VARS_TO_STR7(type, ne, mask, m_prec, nr23, scale, max_bias);
  2693. }
  2694. // the 1024 test with bias occasionally fails:
  2695. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2696. virtual double max_nmse_err() override {
  2697. return 1e-6;
  2698. }
  2699. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2700. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2701. bool mask = false,
  2702. ggml_type m_prec = GGML_TYPE_F32,
  2703. std::array<int64_t, 2> nr23 = {1, 1},
  2704. float scale = 1.0f,
  2705. float max_bias = 0.0f)
  2706. : type(type), ne(ne), mask(mask), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  2707. ggml_tensor * build_graph(ggml_context * ctx) override {
  2708. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  2709. ggml_set_param(a);
  2710. ggml_set_name(a, "a");
  2711. ggml_tensor * mask = nullptr;
  2712. if (this->mask) {
  2713. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  2714. ggml_set_name(mask, "mask");
  2715. }
  2716. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2717. ggml_set_name(out, "out");
  2718. return out;
  2719. }
  2720. bool grad_precise() override {
  2721. return true;
  2722. }
  2723. };
  2724. // GGML_OP_SOFT_MAX_BACK
  2725. struct test_soft_max_back : public test_case {
  2726. const ggml_type type;
  2727. const std::array<int64_t, 4> ne;
  2728. const float scale;
  2729. const float max_bias;
  2730. std::string vars() override {
  2731. return VARS_TO_STR4(type, ne, scale, max_bias);
  2732. }
  2733. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2734. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2735. float scale = 1.0f,
  2736. float max_bias = 0.0f)
  2737. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2738. ggml_tensor * build_graph(ggml_context * ctx) override {
  2739. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2740. ggml_set_name(a, "a");
  2741. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2742. ggml_set_name(a, "a");
  2743. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2744. ggml_set_name(out, "out");
  2745. return out;
  2746. }
  2747. };
  2748. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2749. struct test_rope : public test_case {
  2750. const ggml_type type;
  2751. const std::array<int64_t, 4> ne_a;
  2752. int n_dims;
  2753. int mode;
  2754. int n_ctx; // used to generate positions
  2755. float fs; // freq_scale
  2756. float ef; // ext_factor
  2757. float af; // attn_factor
  2758. bool ff;
  2759. int v; // view (1 : non-contiguous a)
  2760. bool forward;
  2761. std::string vars() override {
  2762. // forward can be inferred from the op, does not need to be printed
  2763. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2764. }
  2765. test_rope(ggml_type type = GGML_TYPE_F32,
  2766. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2767. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2768. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2769. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2770. ggml_tensor * build_graph(ggml_context * ctx) override {
  2771. ggml_tensor * a;
  2772. if (v & 1) {
  2773. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2774. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2775. if (forward) {
  2776. ggml_set_param(a);
  2777. }
  2778. ggml_set_name(a, "a");
  2779. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2780. ggml_set_name(a, "view_of_a");
  2781. } else {
  2782. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2783. if (forward) {
  2784. ggml_set_param(a);
  2785. }
  2786. ggml_set_name(a, "a");
  2787. }
  2788. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2789. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2790. ggml_tensor * pos;
  2791. if (is_mrope || is_vision) {
  2792. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2793. } else {
  2794. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2795. }
  2796. ggml_set_name(pos, "pos");
  2797. ggml_tensor * freq = nullptr;
  2798. if (ff) {
  2799. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2800. ggml_set_name(freq, "freq");
  2801. }
  2802. ggml_tensor * out;
  2803. if (is_mrope) {
  2804. if (is_vision) {
  2805. GGML_ASSERT(n_dims/4 > 0);
  2806. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2807. if (forward) {
  2808. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2809. } else {
  2810. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2811. }
  2812. } else {
  2813. GGML_ASSERT(n_dims/3 > 0);
  2814. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2815. if (forward) {
  2816. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2817. } else {
  2818. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2819. }
  2820. }
  2821. } else {
  2822. if (forward) {
  2823. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2824. } else {
  2825. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2826. }
  2827. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  2828. }
  2829. ggml_set_name(out, "out");
  2830. return out;
  2831. }
  2832. void initialize_tensors(ggml_context * ctx) override {
  2833. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2834. if (t->type == GGML_TYPE_I32) {
  2835. // pos
  2836. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2837. std::vector<int> data(num_pos_ids);
  2838. for (int i = 0; i < num_pos_ids; i++) {
  2839. data[i] = rand() % n_ctx;
  2840. }
  2841. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2842. } else {
  2843. if (t->ne[0] == n_dims/2) {
  2844. // frequency factors in the range [0.9f, 1.1f]
  2845. init_tensor_uniform(t, 0.9f, 1.1f);
  2846. } else {
  2847. init_tensor_uniform(t);
  2848. }
  2849. }
  2850. }
  2851. }
  2852. double max_maa_err() override {
  2853. return 1e-3;
  2854. }
  2855. bool grad_precise() override {
  2856. return true;
  2857. }
  2858. };
  2859. // GGML_OP_POOL2D
  2860. struct test_pool2d : public test_case {
  2861. enum ggml_op_pool pool_type;
  2862. const ggml_type type_input;
  2863. const std::array<int64_t, 4> ne_input;
  2864. // kernel size
  2865. const int k0;
  2866. const int k1;
  2867. // stride
  2868. const int s0;
  2869. const int s1;
  2870. // padding
  2871. const int p0;
  2872. const int p1;
  2873. std::string vars() override {
  2874. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2875. }
  2876. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2877. ggml_type type_input = GGML_TYPE_F32,
  2878. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2879. int k0 = 3, int k1 = 3,
  2880. int s0 = 1, int s1 = 1,
  2881. int p0 = 1, int p1 = 1)
  2882. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2883. ggml_tensor * build_graph(ggml_context * ctx) override {
  2884. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2885. ggml_set_param(input);
  2886. ggml_set_name(input, "input");
  2887. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2888. ggml_set_name(out, "out");
  2889. return out;
  2890. }
  2891. };
  2892. // GGML_OP_CONV_TRANSPOSE_1D
  2893. struct test_conv_transpose_1d : public test_case {
  2894. const std::array<int64_t, 4> ne_input;
  2895. const std::array<int64_t, 4> ne_kernel;
  2896. const int s0; // stride
  2897. const int p0; // padding
  2898. const int d0; // dilation
  2899. std::string vars() override {
  2900. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2901. }
  2902. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  2903. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  2904. int s0 = 1, int p0 = 0, int d0 = 1)
  2905. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2906. ggml_tensor * build_graph(ggml_context * ctx) override {
  2907. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2908. ggml_set_name(input, "input");
  2909. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2910. ggml_set_name(kernel, "kernel");
  2911. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2912. ggml_set_name(out, "out");
  2913. return out;
  2914. }
  2915. };
  2916. // GGML_OP_CONV_TRANSPOSE_2D
  2917. struct test_conv_transpose_2d : public test_case {
  2918. const std::array<int64_t, 4> ne_input;
  2919. const std::array<int64_t, 4> ne_kernel;
  2920. const int stride;
  2921. std::string vars() override {
  2922. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  2923. }
  2924. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2925. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2926. int stride = 1)
  2927. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  2928. ggml_tensor * build_graph(ggml_context * ctx) override {
  2929. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2930. ggml_set_name(input, "input");
  2931. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  2932. ggml_set_name(kernel, "kernel");
  2933. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  2934. ggml_set_name(out, "out");
  2935. return out;
  2936. }
  2937. };
  2938. // GGML_OP_IM2COL
  2939. struct test_im2col : public test_case {
  2940. const ggml_type type_input;
  2941. const ggml_type type_kernel;
  2942. const ggml_type dst_type;
  2943. const std::array<int64_t, 4> ne_input;
  2944. const std::array<int64_t, 4> ne_kernel;
  2945. // stride
  2946. const int s0;
  2947. const int s1;
  2948. // padding
  2949. const int p0;
  2950. const int p1;
  2951. // dilation
  2952. const int d0;
  2953. const int d1;
  2954. // mode
  2955. const bool is_2D;
  2956. std::string vars() override {
  2957. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2958. }
  2959. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2960. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2961. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2962. int s0 = 1, int s1 = 1,
  2963. int p0 = 1, int p1 = 1,
  2964. int d0 = 1, int d1 = 1,
  2965. bool is_2D = true)
  2966. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2967. ggml_tensor * build_graph(ggml_context * ctx) override {
  2968. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2969. ggml_set_param(input);
  2970. ggml_set_name(input, "input");
  2971. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2972. ggml_set_name(kernel, "kernel");
  2973. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2974. ggml_set_name(out, "out");
  2975. return out;
  2976. }
  2977. };
  2978. // GGML_OP_CONV_2D_DW
  2979. struct test_conv_2d_dw : public test_case {
  2980. const std::array<int64_t, 4> ne_input;
  2981. const std::array<int64_t, 4> ne_kernel;
  2982. const int stride;
  2983. const int padding;
  2984. const int dilation;
  2985. const bool cwhn;
  2986. std::string vars() override {
  2987. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  2988. }
  2989. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  2990. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  2991. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  2992. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  2993. ggml_tensor * build_graph(ggml_context * ctx) override {
  2994. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2995. ggml_set_name(input, "input");
  2996. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2997. ggml_set_name(kernel, "kernel");
  2998. if (cwhn) {
  2999. // change memory layout to channel-most-contiguous (CWHN),
  3000. // then permute it back so NE matches the original input
  3001. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3002. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3003. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3004. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3005. }
  3006. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3007. ctx, kernel, input,
  3008. stride, stride, padding, padding, dilation, dilation);
  3009. ggml_set_name(out, "out");
  3010. return out;
  3011. }
  3012. };
  3013. // GGML_OP_CONCAT
  3014. struct test_concat : public test_case {
  3015. const ggml_type type;
  3016. const std::array<int64_t, 4> ne_a;
  3017. const int64_t ne_b_d;
  3018. const int dim;
  3019. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3020. std::string vars() override {
  3021. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3022. }
  3023. test_concat(ggml_type type = GGML_TYPE_F32,
  3024. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3025. int64_t ne_b_d = 5,
  3026. int dim = 2, int v = 0)
  3027. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3028. ggml_tensor * build_graph(ggml_context * ctx) override {
  3029. auto ne_b = ne_a;
  3030. ne_b[dim] = ne_b_d;
  3031. ggml_tensor * a;
  3032. if (v & 1) {
  3033. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3034. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3035. ggml_set_name(a, "a");
  3036. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3037. ggml_set_name(a, "view_of_a");
  3038. } else {
  3039. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3040. ggml_set_name(a, "a");
  3041. }
  3042. ggml_tensor * b;
  3043. if (v & 2) {
  3044. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3045. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3046. ggml_set_name(b, "b");
  3047. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3048. ggml_set_name(b, "view_of_b");
  3049. } else {
  3050. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3051. ggml_set_name(b, "b");
  3052. }
  3053. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3054. ggml_set_name(out, "out");
  3055. return out;
  3056. }
  3057. };
  3058. // GGML_OP_ARGSORT
  3059. struct test_argsort : public test_case {
  3060. const ggml_type type;
  3061. const std::array<int64_t, 4> ne;
  3062. ggml_sort_order order;
  3063. std::string vars() override {
  3064. return VARS_TO_STR3(type, ne, order);
  3065. }
  3066. test_argsort(ggml_type type = GGML_TYPE_F32,
  3067. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3068. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3069. : type(type), ne(ne), order(order) {}
  3070. ggml_tensor * build_graph(ggml_context * ctx) override {
  3071. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3072. ggml_set_name(a, "a");
  3073. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3074. ggml_set_name(out, "out");
  3075. return out;
  3076. }
  3077. void initialize_tensors(ggml_context * ctx) override {
  3078. std::random_device rd;
  3079. std::default_random_engine rng(rd());
  3080. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3081. if (t->type == GGML_TYPE_I32) {
  3082. // indices
  3083. std::vector<int> data(ggml_nelements(t));
  3084. for (int i = 0; i < ggml_nelements(t); i++) {
  3085. data[i] = rand();
  3086. }
  3087. std::shuffle(data.begin(), data.end(), rng);
  3088. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3089. } else if (t->type == GGML_TYPE_F32) {
  3090. // initialize with unique values to avoid ties
  3091. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3092. std::vector<float> data(t->ne[0]);
  3093. for (int i = 0; i < t->ne[0]; i++) {
  3094. data[i] = i;
  3095. }
  3096. std::shuffle(data.begin(), data.end(), rng);
  3097. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3098. }
  3099. } else {
  3100. GGML_ABORT("fatal error");
  3101. }
  3102. }
  3103. }
  3104. };
  3105. // GGML_OP_SUM
  3106. struct test_sum : public test_case {
  3107. const ggml_type type;
  3108. const std::array<int64_t, 4> ne;
  3109. std::string vars() override {
  3110. return VARS_TO_STR2(type, ne);
  3111. }
  3112. test_sum(ggml_type type = GGML_TYPE_F32,
  3113. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3114. : type(type), ne(ne) {}
  3115. ggml_tensor * build_graph(ggml_context * ctx) override {
  3116. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3117. ggml_set_param(a);
  3118. ggml_set_name(a, "a");
  3119. ggml_tensor * out = ggml_sum(ctx, a);
  3120. ggml_set_name(out, "out");
  3121. return out;
  3122. }
  3123. float grad_eps() override {
  3124. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3125. }
  3126. };
  3127. // GGML_OP_SUM_ROWS
  3128. struct test_sum_rows : public test_case {
  3129. const ggml_type type;
  3130. const std::array<int64_t, 4> ne;
  3131. std::string vars() override {
  3132. return VARS_TO_STR2(type, ne);
  3133. }
  3134. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3135. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3136. : type(type), ne(ne) {}
  3137. ggml_tensor * build_graph(ggml_context * ctx) override {
  3138. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3139. ggml_set_param(a);
  3140. ggml_set_name(a, "a");
  3141. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3142. ggml_set_name(out, "out");
  3143. return out;
  3144. }
  3145. };
  3146. // GGML_OP_MEAN
  3147. struct test_mean : public test_case {
  3148. const ggml_type type;
  3149. const std::array<int64_t, 4> ne;
  3150. std::string vars() override {
  3151. return VARS_TO_STR2(type, ne);
  3152. }
  3153. test_mean(ggml_type type = GGML_TYPE_F32,
  3154. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3155. : type(type), ne(ne) {}
  3156. ggml_tensor * build_graph(ggml_context * ctx) override {
  3157. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3158. ggml_set_param(a);
  3159. ggml_set_name(a, "a");
  3160. ggml_tensor * out = ggml_mean(ctx, a);
  3161. ggml_set_name(out, "out");
  3162. return out;
  3163. }
  3164. float grad_eps() override {
  3165. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3166. }
  3167. };
  3168. // GGML_OP_UPSCALE
  3169. struct test_upscale : public test_case {
  3170. const ggml_type type;
  3171. const std::array<int64_t, 4> ne;
  3172. const int32_t scale_factor;
  3173. const bool transpose;
  3174. const ggml_scale_mode mode;
  3175. std::string vars() override {
  3176. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3177. }
  3178. test_upscale(ggml_type type = GGML_TYPE_F32,
  3179. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3180. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3181. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3182. ggml_tensor * build_graph(ggml_context * ctx) override {
  3183. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3184. ggml_set_name(a, "a");
  3185. if (transpose) {
  3186. a = ggml_transpose(ctx, a);
  3187. ggml_set_name(a, "a_transposed");
  3188. }
  3189. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3190. ggml_set_name(out, "out");
  3191. return out;
  3192. }
  3193. };
  3194. // GGML_OP_UPSCALE (via ggml_interpolate)
  3195. struct test_interpolate : public test_case {
  3196. const ggml_type type;
  3197. const std::array<int64_t, 4> ne;
  3198. const std::array<int64_t, 4> ne_tgt;
  3199. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3200. std::string vars() override {
  3201. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3202. }
  3203. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3204. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3205. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3206. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3207. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3208. ggml_tensor * build_graph(ggml_context * ctx) override {
  3209. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3210. ggml_set_name(a, "a");
  3211. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3212. ggml_set_name(out, "out");
  3213. return out;
  3214. }
  3215. };
  3216. // GGML_OP_GROUP_NORM
  3217. struct test_group_norm : public test_case {
  3218. const ggml_type type;
  3219. const std::array<int64_t, 4> ne;
  3220. const int32_t num_groups;
  3221. const float eps;
  3222. std::string vars() override {
  3223. return VARS_TO_STR4(type, ne, num_groups, eps);
  3224. }
  3225. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3226. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3227. int32_t num_groups = 32,
  3228. float eps = 1e-6f)
  3229. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3230. ggml_tensor * build_graph(ggml_context * ctx) override {
  3231. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3232. ggml_set_name(a, "a");
  3233. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3234. ggml_set_name(out, "out");
  3235. return out;
  3236. }
  3237. };
  3238. // GGML_OP_L2_NORM
  3239. struct test_l2_norm : public test_case {
  3240. const ggml_type type;
  3241. const std::array<int64_t, 4> ne;
  3242. const float eps;
  3243. std::string vars() override {
  3244. return VARS_TO_STR2(type, ne);
  3245. }
  3246. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  3247. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3248. float eps = 1e-12f)
  3249. : type(type), ne(ne), eps(eps) {}
  3250. ggml_tensor * build_graph(ggml_context * ctx) override {
  3251. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3252. ggml_set_name(a, "a");
  3253. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  3254. ggml_set_name(out, "out");
  3255. return out;
  3256. }
  3257. };
  3258. // GGML_OP_ACC
  3259. struct test_acc : public test_case {
  3260. const ggml_type type;
  3261. const std::array<int64_t, 4> ne_a;
  3262. const std::array<int64_t, 4> ne_b;
  3263. std::string vars() override {
  3264. return VARS_TO_STR3(type, ne_a, ne_b);
  3265. }
  3266. test_acc(ggml_type type = GGML_TYPE_F32,
  3267. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  3268. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  3269. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  3270. ggml_tensor * build_graph(ggml_context * ctx) override {
  3271. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3272. ggml_set_param(a);
  3273. ggml_set_name(a, "a");
  3274. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3275. ggml_set_param(b);
  3276. ggml_set_name(b, "b");
  3277. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  3278. ggml_set_name(out, "out");
  3279. return out;
  3280. }
  3281. };
  3282. // GGML_OP_PAD
  3283. struct test_pad : public test_case {
  3284. const ggml_type type;
  3285. const std::array<int64_t, 4> ne_a;
  3286. const int pad_0;
  3287. const int pad_1;
  3288. std::string vars() override {
  3289. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3290. }
  3291. test_pad(ggml_type type = GGML_TYPE_F32,
  3292. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  3293. int pad_0 = 1, int pad_1 = 1)
  3294. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3295. ggml_tensor * build_graph(ggml_context * ctx) override {
  3296. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3297. ggml_set_name(a, "a");
  3298. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  3299. ggml_set_name(out, "out");
  3300. return out;
  3301. }
  3302. };
  3303. // GGML_OP_PAD_REFLECT_1D
  3304. struct test_pad_reflect_1d : public test_case {
  3305. const ggml_type type;
  3306. const std::array<int64_t, 4> ne_a;
  3307. const int pad_0;
  3308. const int pad_1;
  3309. std::string vars() override {
  3310. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3311. }
  3312. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  3313. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  3314. int pad_0 = 10, int pad_1 = 9)
  3315. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3316. ggml_tensor * build_graph(ggml_context * ctx) override {
  3317. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  3318. ggml_set_name(a, "a");
  3319. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  3320. ggml_set_name(out, "out");
  3321. return out;
  3322. }
  3323. };
  3324. // GGML_OP_ARANGE
  3325. struct test_arange : public test_case {
  3326. const ggml_type type;
  3327. const float start;
  3328. const float stop;
  3329. const float step;
  3330. std::string vars() override {
  3331. return VARS_TO_STR4(type, start, stop, step);
  3332. }
  3333. test_arange(ggml_type type = GGML_TYPE_F32,
  3334. float start = 0.f, float stop = 10.f, float step = 1.f)
  3335. : type(type), start(start), stop(stop), step(step) {}
  3336. ggml_tensor * build_graph(ggml_context * ctx) override {
  3337. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  3338. ggml_set_name(out, "out");
  3339. return out;
  3340. }
  3341. };
  3342. // GGML_OP_TIMESTEP_EMBEDDING
  3343. struct test_timestep_embedding : public test_case {
  3344. const ggml_type type;
  3345. const std::array<int64_t, 4> ne_a;
  3346. const int dim;
  3347. const int max_period;
  3348. std::string vars() override {
  3349. return VARS_TO_STR4(type, ne_a, dim, max_period);
  3350. }
  3351. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  3352. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  3353. int dim = 320, int max_period=10000)
  3354. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  3355. ggml_tensor * build_graph(ggml_context * ctx) override {
  3356. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3357. ggml_set_name(a, "a");
  3358. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  3359. ggml_set_name(out, "out");
  3360. return out;
  3361. }
  3362. };
  3363. // GGML_OP_LEAKY_RELU
  3364. struct test_leaky_relu : public test_case {
  3365. const ggml_type type;
  3366. const std::array<int64_t, 4> ne_a;
  3367. const float negative_slope;
  3368. std::string vars() override {
  3369. return VARS_TO_STR3(type, ne_a, negative_slope);
  3370. }
  3371. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  3372. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  3373. float negative_slope = 0.1f)
  3374. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  3375. ggml_tensor * build_graph(ggml_context * ctx) override {
  3376. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3377. ggml_set_name(a, "a");
  3378. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  3379. ggml_set_name(out, "out");
  3380. return out;
  3381. }
  3382. };
  3383. // GGML_OP_FLASH_ATTN_EXT
  3384. struct test_flash_attn_ext : public test_case {
  3385. const int64_t hsk; // K head size
  3386. const int64_t hsv; // V head size
  3387. const int64_t nh; // num heads
  3388. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  3389. const int64_t kv; // kv size
  3390. const int64_t nb; // batch size
  3391. const bool mask; // use mask
  3392. const float max_bias; // ALiBi
  3393. const float logit_softcap; // Gemma 2
  3394. const ggml_prec prec;
  3395. const ggml_type type_KV;
  3396. std::array<int32_t, 4> permute;
  3397. std::string vars() override {
  3398. return VARS_TO_STR12(hsk, hsv, nh, nr23, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  3399. }
  3400. double max_nmse_err() override {
  3401. return 5e-4;
  3402. }
  3403. uint64_t op_flops(ggml_tensor * t) override {
  3404. GGML_UNUSED(t);
  3405. // Just counting matmul costs:
  3406. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  3407. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  3408. }
  3409. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  3410. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  3411. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  3412. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  3413. ggml_tensor * build_graph(ggml_context * ctx) override {
  3414. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  3415. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  3416. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  3417. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  3418. int64_t ne_perm[4];
  3419. for (int i = 0; i < 4; ++i) {
  3420. ne_perm[permute[i]] = ne[i];
  3421. }
  3422. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  3423. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  3424. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  3425. }
  3426. return t;
  3427. };
  3428. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1]);
  3429. ggml_set_name(q, "q");
  3430. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1]);
  3431. ggml_set_name(k, "k");
  3432. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1]);
  3433. ggml_set_name(v, "v");
  3434. ggml_tensor * m = nullptr;
  3435. if (mask) {
  3436. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), nr23[0], nr23[1]);
  3437. ggml_set_name(m, "m");
  3438. }
  3439. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  3440. ggml_flash_attn_ext_set_prec(out, prec);
  3441. ggml_set_name(out, "out");
  3442. return out;
  3443. }
  3444. bool grad_precise() override {
  3445. return true;
  3446. }
  3447. };
  3448. // GGML_OP_CROSS_ENTROPY_LOSS
  3449. struct test_cross_entropy_loss : public test_case {
  3450. const ggml_type type;
  3451. const std::array<int64_t, 4> ne;
  3452. std::string vars() override {
  3453. return VARS_TO_STR2(type, ne);
  3454. }
  3455. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  3456. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3457. : type(type), ne(ne) {}
  3458. ggml_tensor * build_graph(ggml_context * ctx) override {
  3459. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3460. ggml_set_param(logits);
  3461. ggml_set_name(logits, "logits");
  3462. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3463. // The labels are assumed to be constant -> no gradients.
  3464. ggml_set_name(labels, "labels");
  3465. // Ensure labels add up to 1:
  3466. labels = ggml_soft_max(ctx, labels);
  3467. ggml_set_name(labels, "labels_normalized");
  3468. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  3469. ggml_set_name(out, "out");
  3470. return out;
  3471. }
  3472. void initialize_tensors(ggml_context * ctx) override {
  3473. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  3474. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3475. init_tensor_uniform(t, -100.0f, 100.0f);
  3476. }
  3477. }
  3478. float grad_eps() override {
  3479. return 1.0f;
  3480. }
  3481. bool grad_precise() override {
  3482. return true;
  3483. }
  3484. };
  3485. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  3486. struct test_cross_entropy_loss_back : public test_case {
  3487. const ggml_type type;
  3488. const std::array<int64_t, 4> ne;
  3489. std::string vars() override {
  3490. return VARS_TO_STR2(type, ne);
  3491. }
  3492. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  3493. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3494. : type(type), ne(ne) {}
  3495. ggml_tensor * build_graph(ggml_context * ctx) override {
  3496. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3497. ggml_set_name(grad, "grad");
  3498. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3499. ggml_set_name(logits, "logits");
  3500. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3501. ggml_set_name(labels, "labels");
  3502. // Ensure labels add up to 1:
  3503. labels = ggml_soft_max(ctx, labels);
  3504. ggml_set_name(labels, "labels_normalized");
  3505. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  3506. ggml_set_name(out, "out");
  3507. return out;
  3508. }
  3509. };
  3510. // GGML_OP_OPT_STEP_ADAMW
  3511. struct test_opt_step_adamw : public test_case {
  3512. const ggml_type type;
  3513. const std::array<int64_t, 4> ne;
  3514. std::string vars() override {
  3515. return VARS_TO_STR2(type, ne);
  3516. }
  3517. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  3518. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3519. : type(type), ne(ne) {}
  3520. ggml_tensor * build_graph(ggml_context * ctx) override {
  3521. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3522. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  3523. ggml_set_name(a, "a");
  3524. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3525. ggml_set_name(grad, "grad");
  3526. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3527. ggml_set_name(grad_m, "grad_m");
  3528. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3529. ggml_set_name(grad_v, "grad_v");
  3530. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  3531. ggml_set_name(adamw_params, "adamw_params");
  3532. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  3533. ggml_set_name(out, "out");
  3534. return out;
  3535. }
  3536. void initialize_tensors(ggml_context * ctx) override {
  3537. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3538. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  3539. }
  3540. }
  3541. bool grad_precise() override {
  3542. return true;
  3543. }
  3544. };
  3545. enum llm_norm_type {
  3546. LLM_NORM,
  3547. LLM_NORM_RMS,
  3548. };
  3549. struct llama_hparams {
  3550. uint32_t n_vocab;
  3551. uint32_t n_embd;
  3552. uint32_t n_head;
  3553. uint32_t n_head_kv;
  3554. static constexpr uint32_t n_layer = 1;
  3555. uint32_t n_rot;
  3556. uint32_t n_embd_head; // dimension of values (d_v)
  3557. uint32_t n_ff;
  3558. float f_norm_eps;
  3559. float f_norm_rms_eps;
  3560. // cparams
  3561. static constexpr uint32_t n_ctx = 512; // user-specified context size
  3562. static constexpr uint32_t n_ctx_orig = n_ctx;
  3563. // batch
  3564. int32_t n_tokens;
  3565. // llm_build_context
  3566. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  3567. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  3568. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  3569. return n_embd_head * n_head_kv;
  3570. }
  3571. };
  3572. // LLM base class
  3573. struct test_llm : public test_case {
  3574. llama_hparams hp;
  3575. protected:
  3576. test_llm(llama_hparams hp)
  3577. : hp(std::move(hp)) {
  3578. }
  3579. public:
  3580. struct ggml_tensor * llm_build_norm(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * cur,
  3583. struct ggml_tensor * mw,
  3584. struct ggml_tensor * mb,
  3585. llm_norm_type type) {
  3586. switch (type) {
  3587. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  3588. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  3589. }
  3590. cur = ggml_mul(ctx, cur, mw);
  3591. if (mb) {
  3592. cur = ggml_add(ctx, cur, mb);
  3593. }
  3594. return cur;
  3595. }
  3596. void llm_build_kv_store(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * k_l,
  3599. struct ggml_tensor * v_l,
  3600. struct ggml_tensor * k_cur,
  3601. struct ggml_tensor * v_cur) {
  3602. // compute the transposed [n_tokens, n_embd] V matrix
  3603. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  3604. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  3605. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  3606. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  3607. ( hp.n_ctx)*ggml_element_size(v_l),
  3608. (hp.kv_head)*ggml_element_size(v_l));
  3609. // important: storing RoPE-ed version of K in the KV cache!
  3610. ggml_cpy(ctx, k_cur, k_cache_view);
  3611. ggml_cpy(ctx, v_cur_t, v_cache_view);
  3612. }
  3613. struct ggml_tensor * llm_build_kqv(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * k_l,
  3616. struct ggml_tensor * v_l,
  3617. struct ggml_tensor * q_cur,
  3618. struct ggml_tensor * kq_mask,
  3619. float kq_scale) {
  3620. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  3621. struct ggml_tensor * k =
  3622. ggml_view_3d(ctx, k_l,
  3623. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  3624. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  3625. ggml_row_size(k_l->type, hp.n_embd_head),
  3626. 0);
  3627. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  3628. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  3629. // split cached v into n_head heads
  3630. struct ggml_tensor * v =
  3631. ggml_view_3d(ctx, v_l,
  3632. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  3633. ggml_element_size(v_l)*hp.n_ctx,
  3634. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  3635. 0);
  3636. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  3637. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  3638. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  3639. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3640. cur = ggml_mul_mat(ctx, wo, cur);
  3641. return cur;
  3642. }
  3643. void initialize_tensors(ggml_context * ctx) override {
  3644. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3645. if (t->type == GGML_TYPE_I32) {
  3646. // pos
  3647. std::vector<int> data(hp.n_tokens);
  3648. for (int i = 0; i < hp.n_tokens; i++) {
  3649. data[i] = rand() % hp.n_ctx;
  3650. }
  3651. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  3652. } else {
  3653. init_tensor_uniform(t);
  3654. }
  3655. }
  3656. }
  3657. };
  3658. // Llama
  3659. struct test_llama : public test_llm {
  3660. static constexpr float freq_base = 10000.0f;
  3661. static constexpr float freq_scale = 1.0f;
  3662. static constexpr float ext_factor = 0.0f;
  3663. static constexpr float attn_factor = 1.0f;
  3664. static constexpr float beta_fast = 32.0f;
  3665. static constexpr float beta_slow = 1.0f;
  3666. bool fused;
  3667. std::string op_desc(ggml_tensor * t) override {
  3668. GGML_UNUSED(t);
  3669. return "LLAMA";
  3670. }
  3671. std::string vars() override {
  3672. auto n_tokens = hp.n_tokens;
  3673. return VARS_TO_STR1(n_tokens);
  3674. }
  3675. double max_nmse_err() override {
  3676. return 2e-3;
  3677. }
  3678. bool run_whole_graph() override { return fused; }
  3679. test_llama(int n_tokens = 1, bool fused = false)
  3680. : test_llm({
  3681. /*n_vocab =*/ 32000,
  3682. /*n_embd =*/ 3200,
  3683. /*n_head =*/ 32,
  3684. /*n_head_kv =*/ 32,
  3685. /*n_rot =*/ 100,
  3686. /*n_embd_head =*/ 100,
  3687. /*n_ff =*/ 8640,
  3688. /*f_norm_eps =*/ 0.f,
  3689. /*f_norm_rms_eps =*/ 1e-5f,
  3690. /*n_tokens =*/ n_tokens,
  3691. })
  3692. , fused(fused)
  3693. {
  3694. }
  3695. ggml_tensor * build_graph(ggml_context * ctx) override {
  3696. struct ggml_tensor * cur;
  3697. struct ggml_tensor * inpL;
  3698. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3699. // inp_pos - contains the positions
  3700. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3701. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3702. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3703. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3704. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3705. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3706. struct ggml_tensor * inpSA = inpL;
  3707. // norm
  3708. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3709. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  3710. // self-attention
  3711. {
  3712. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3713. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3714. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3715. // compute Q and K and RoPE them
  3716. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  3717. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  3718. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  3719. Qcur = ggml_rope_ext(
  3720. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  3721. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3722. ext_factor, attn_factor, beta_fast, beta_slow
  3723. );
  3724. Kcur = ggml_rope_ext(
  3725. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  3726. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3727. ext_factor, attn_factor, beta_fast, beta_slow
  3728. );
  3729. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3730. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3731. }
  3732. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  3733. // feed-forward network
  3734. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3735. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  3736. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3737. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3738. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3739. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  3740. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  3741. cur = ggml_silu(ctx, cur);
  3742. cur = ggml_mul(ctx, cur, tmp);
  3743. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3744. cur = ggml_add(ctx, cur, ffn_inp);
  3745. // input for next layer
  3746. inpL = cur;
  3747. }
  3748. cur = inpL;
  3749. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3750. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  3751. // lm_head
  3752. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  3753. cur = ggml_mul_mat(ctx, output, cur);
  3754. return cur;
  3755. }
  3756. };
  3757. // Falcon
  3758. struct test_falcon : public test_llm {
  3759. static constexpr float freq_base = 10000.0f;
  3760. static constexpr float freq_scale = 1.0f;
  3761. static constexpr float ext_factor = 0.0f;
  3762. static constexpr float attn_factor = 1.0f;
  3763. static constexpr float beta_fast = 32.0f;
  3764. static constexpr float beta_slow = 1.0f;
  3765. std::string op_desc(ggml_tensor * t) override {
  3766. GGML_UNUSED(t);
  3767. return "FALCON";
  3768. }
  3769. std::string vars() override {
  3770. auto n_tokens = hp.n_tokens;
  3771. return VARS_TO_STR1(n_tokens);
  3772. }
  3773. double max_nmse_err() override {
  3774. return 2e-3;
  3775. }
  3776. test_falcon(int n_tokens = 1)
  3777. : test_llm({
  3778. /*n_vocab =*/ 32000,
  3779. /*n_embd =*/ 3200,
  3780. /*n_head =*/ 50,
  3781. /*n_head_kv =*/ 1,
  3782. /*n_rot =*/ 64,
  3783. /*n_embd_head =*/ 64,
  3784. /*n_ff =*/ 8640,
  3785. /*f_norm_eps =*/ 1e-5f,
  3786. /*f_norm_rms_eps =*/ 0.f,
  3787. /*n_tokens =*/ n_tokens,
  3788. }) {
  3789. }
  3790. ggml_tensor * build_graph(ggml_context * ctx) override {
  3791. struct ggml_tensor * cur;
  3792. struct ggml_tensor * inpL;
  3793. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3794. // inp_pos - contains the positions
  3795. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3796. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3797. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3798. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3799. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3800. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3801. // norm
  3802. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3803. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3804. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3805. // self-attention
  3806. {
  3807. cur = attn_norm;
  3808. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3809. cur = ggml_mul_mat(ctx, wqkv, cur);
  3810. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3811. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3812. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3813. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3814. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3815. // using mode = 2 for neox mode
  3816. Qcur = ggml_rope_ext(
  3817. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3818. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3819. );
  3820. Kcur = ggml_rope_ext(
  3821. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3822. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3823. );
  3824. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3825. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3826. }
  3827. struct ggml_tensor * ffn_inp = cur;
  3828. // feed forward
  3829. {
  3830. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3831. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3832. cur = attn_norm;
  3833. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3834. cur = ggml_gelu(ctx, cur);
  3835. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3836. }
  3837. cur = ggml_add(ctx, cur, ffn_inp);
  3838. cur = ggml_add(ctx, cur, inpL);
  3839. // input for next layer
  3840. inpL = cur;
  3841. }
  3842. cur = inpL;
  3843. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3844. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3845. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3846. // lm_head
  3847. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3848. cur = ggml_mul_mat(ctx, output, cur);
  3849. return cur;
  3850. }
  3851. };
  3852. // ###########################################
  3853. // ## Section 3: GGML Op Test Instantiation ##
  3854. // ###########################################
  3855. static const ggml_type all_types[] = {
  3856. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3857. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3858. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3859. GGML_TYPE_Q8_0,
  3860. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3861. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3862. GGML_TYPE_Q6_K,
  3863. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3864. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3865. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3866. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3867. };
  3868. static const ggml_type base_types[] = {
  3869. GGML_TYPE_F32, GGML_TYPE_F16,
  3870. GGML_TYPE_Q8_0, // for I8MM tests
  3871. GGML_TYPE_Q4_0,
  3872. GGML_TYPE_Q4_1, // for I8MM tests
  3873. GGML_TYPE_Q4_K,
  3874. GGML_TYPE_IQ2_XXS
  3875. };
  3876. static const ggml_type other_types[] = {
  3877. GGML_TYPE_Q4_1,
  3878. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3879. GGML_TYPE_Q8_0,
  3880. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3881. GGML_TYPE_Q5_K,
  3882. GGML_TYPE_Q6_K,
  3883. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3884. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3885. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3886. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3887. GGML_TYPE_BF16,
  3888. };
  3889. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3890. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3891. std::vector<std::unique_ptr<test_case>> test_cases;
  3892. std::default_random_engine rng(0);
  3893. // unary ops
  3894. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3895. for (int v : {0, 1}) {
  3896. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3897. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3898. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3899. }
  3900. }
  3901. }
  3902. // glu ops
  3903. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3904. for (int v : {0, 1}) {
  3905. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  3906. for (bool swapped : {false, true}) {
  3907. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  3908. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  3909. }
  3910. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  3911. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  3912. }
  3913. }
  3914. }
  3915. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3916. for (ggml_type type : all_types) {
  3917. for (int b : {1, 7}) {
  3918. for (bool v : {false, true}) {
  3919. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3920. }
  3921. }
  3922. }
  3923. for (int b : {1, 7}) {
  3924. for (bool v : {false, true}) {
  3925. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3926. }
  3927. }
  3928. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3929. for (ggml_type type : all_types) {
  3930. for (bool v : {false, true}) {
  3931. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3932. }
  3933. }
  3934. for (bool v : {false, true}) {
  3935. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3936. }
  3937. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  3938. for (ggml_type type : all_types) {
  3939. for (int b : {1, 7}) {
  3940. for (bool v : {false, true}) {
  3941. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  3942. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  3943. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  3944. if (ggml_blck_size(type) == 1) {
  3945. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  3946. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  3947. }
  3948. }
  3949. }
  3950. }
  3951. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3952. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3953. for (int k0 : {1, 3}) {
  3954. for (int k1 : {1, 3}) {
  3955. for (int s0 : {1, 2}) {
  3956. for (int s1 : {1, 2}) {
  3957. for (int p0 : {0, 1}) {
  3958. for (int p1 : {0, 1}) {
  3959. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3960. }
  3961. }
  3962. }
  3963. }
  3964. }
  3965. }
  3966. }
  3967. }
  3968. // im2col 1D
  3969. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3970. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3971. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3972. for (int s0 : {1, 3}) {
  3973. for (int p0 : {0, 3}) {
  3974. for (int d0 : {1, 3}) {
  3975. test_cases.emplace_back(new test_im2col(
  3976. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3977. s0, 0, p0, 0, d0, 0, false));
  3978. }
  3979. }
  3980. }
  3981. // im2col 2D
  3982. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3983. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3984. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3985. for (int s0 : {1, 3}) {
  3986. for (int s1 : {1, 3}) {
  3987. for (int p0 : {0, 3}) {
  3988. for (int p1 : {0, 3}) {
  3989. for (int d0 : {1, 3}) {
  3990. for (int d1 : {1, 3}) {
  3991. test_cases.emplace_back(new test_im2col(
  3992. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3993. s0, s1, p0, p1, d0, d1, true));
  3994. }
  3995. }
  3996. }
  3997. }
  3998. }
  3999. }
  4000. // extra tests for im2col 2D
  4001. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4002. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4003. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4004. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4005. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4006. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4007. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4008. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4009. // sycl backend will limit task global_range < MAX_INT
  4010. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  4011. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4012. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4013. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4014. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4015. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  4016. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  4017. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  4018. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  4019. for(uint32_t Cout : {1, 9}){
  4020. for(uint32_t Cin : {1, 7}){
  4021. for(uint32_t K : {1, 3, 1337}){
  4022. for(uint32_t L : {1, 2, 13}){
  4023. for(uint32_t s0: {1, 2, 3}){
  4024. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  4025. }
  4026. }
  4027. }
  4028. }
  4029. }
  4030. test_cases.emplace_back(new test_conv_transpose_1d());
  4031. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  4032. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  4033. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  4034. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  4035. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  4036. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  4037. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  4038. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  4039. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  4040. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  4041. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  4042. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  4043. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  4044. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4045. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  4046. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  4047. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  4048. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  4049. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  4050. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4051. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  4052. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  4053. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4054. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4055. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4056. }
  4057. for (bool view : {false, true}) {
  4058. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  4059. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  4060. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  4061. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  4062. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  4063. }
  4064. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  4065. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  4066. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  4067. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  4068. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  4069. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  4070. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  4071. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  4072. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  4073. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  4074. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4075. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  4076. }
  4077. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4078. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  4079. }
  4080. // same-type copy
  4081. for (ggml_type type : all_types) {
  4082. const auto nk = ggml_blck_size(type);
  4083. for (int k = 1; k < 4; ++k) {
  4084. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  4085. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  4086. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  4087. }
  4088. }
  4089. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4090. for (ggml_type type_dst : all_types) {
  4091. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4092. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4093. }
  4094. }
  4095. for (ggml_type type_src : all_types) {
  4096. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  4097. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4098. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4099. }
  4100. }
  4101. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4102. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4103. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  4104. }
  4105. }
  4106. test_cases.emplace_back(new test_cont());
  4107. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  4108. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  4109. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  4110. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  4111. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  4112. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  4113. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  4114. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  4115. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  4116. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  4117. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  4118. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  4119. }
  4120. };
  4121. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4122. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  4123. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  4124. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  4125. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  4126. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  4127. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  4128. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  4129. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  4130. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  4131. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  4132. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  4133. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  4134. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  4135. // stable diffusion
  4136. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  4137. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  4138. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  4139. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  4140. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  4141. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  4142. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  4143. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  4144. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  4145. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  4146. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  4147. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  4148. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  4149. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  4150. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  4151. }
  4152. test_cases.emplace_back(new test_add1());
  4153. test_cases.emplace_back(new test_scale());
  4154. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  4155. test_cases.emplace_back(new test_silu_back());
  4156. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  4157. for (bool v : {false, true}) {
  4158. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4159. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4160. }
  4161. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4162. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4163. }
  4164. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  4165. test_cases.emplace_back(new test_rms_norm_mul(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4166. }
  4167. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  4168. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  4169. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  4170. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  4171. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  4172. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  4173. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  4174. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  4175. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  4176. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  4177. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  4178. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  4179. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  4180. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  4181. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  4182. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  4183. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  4184. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  4185. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  4186. for (ggml_type type_a : all_types) {
  4187. for (int i = 1; i < 10; ++i) {
  4188. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  4189. }
  4190. }
  4191. #if 1
  4192. for (ggml_type type_a : base_types) {
  4193. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4194. std::vector<int> ks = { 256 };
  4195. if (ggml_blck_size(type_a) == 1) {
  4196. ks.push_back(4);
  4197. }
  4198. for (auto k : ks) {
  4199. // test cases without permutation
  4200. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  4201. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  4202. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  4203. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  4204. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  4205. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  4206. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  4207. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  4208. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  4209. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  4210. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  4211. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  4212. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  4213. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  4214. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  4215. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  4216. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  4217. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  4218. // test cases with permutation
  4219. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4220. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4221. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4222. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4223. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4224. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4225. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4226. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4227. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4228. }
  4229. // test cases with large ne00/ne10 to cover stream-k fixup
  4230. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  4231. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  4232. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  4233. }
  4234. }
  4235. for (ggml_type type_a : other_types) {
  4236. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4237. if (ggml_blck_size(type_a) != 256) {
  4238. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  4239. }
  4240. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  4241. }
  4242. }
  4243. #else
  4244. // m = a rows
  4245. // n = b rows
  4246. // k = cols
  4247. std::uniform_int_distribution<> dist_m(1, 128);
  4248. std::uniform_int_distribution<> dist_n(16, 128);
  4249. std::uniform_int_distribution<> dist_k(1, 16);
  4250. for (int i = 0; i < 1000; i++) {
  4251. for (ggml_type type_a : all_types) {
  4252. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4253. int m = dist_m(rng);
  4254. int n = dist_n(rng);
  4255. int k = dist_k(rng) * ggml_blck_size(type_a);
  4256. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  4257. }
  4258. }
  4259. }
  4260. #endif
  4261. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  4262. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  4263. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  4264. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  4265. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  4266. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  4267. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4268. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4269. for (auto bs : {1,2,4,8}) {
  4270. for (auto nr : {1,4}) {
  4271. for (uint32_t m = 0; m < 2; ++m) {
  4272. for (uint32_t k = 0; k < 2; ++k) {
  4273. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4274. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
  4275. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
  4276. }
  4277. }
  4278. }
  4279. }
  4280. }
  4281. // sycl backend will limit task global_range < MAX_INT
  4282. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  4283. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4284. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4285. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  4286. // test large experts*tokens
  4287. for (bool b : {false, true}) {
  4288. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  4289. }
  4290. for (ggml_type type_a : base_types) {
  4291. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4292. for (int n_mats : {4, 8}) {
  4293. for (int n_used : {1, 2, 4}) {
  4294. for (bool b : {false, true}) {
  4295. for (int n : {1, 32, 129}) {
  4296. int m = 512;
  4297. int k = 256;
  4298. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4299. }
  4300. }
  4301. }
  4302. }
  4303. }
  4304. }
  4305. for (ggml_type type_a : other_types) {
  4306. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4307. for (int n_mats : {4}) {
  4308. for (int n_used : {2}) {
  4309. for (bool b : {false}) {
  4310. for (int n : {1, 32}) {
  4311. int m = 512;
  4312. int k = 256;
  4313. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4314. }
  4315. }
  4316. }
  4317. }
  4318. }
  4319. }
  4320. for (ggml_type type_a : base_types) {
  4321. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4322. for (int n : {1, 16}) {
  4323. for (int k : {1, 16}) {
  4324. for (int bs2 : {1, 3}) {
  4325. for (int bs3 : {1, 3}) {
  4326. for (int nr2 : {1, 2}) {
  4327. for (int nr3 : {1, 2}) {
  4328. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  4329. }
  4330. }
  4331. }
  4332. }
  4333. }
  4334. }
  4335. }
  4336. }
  4337. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4338. test_cases.emplace_back(new test_sqr(type));
  4339. test_cases.emplace_back(new test_sqrt(type));
  4340. test_cases.emplace_back(new test_log(type));
  4341. test_cases.emplace_back(new test_sin(type));
  4342. test_cases.emplace_back(new test_cos(type));
  4343. test_cases.emplace_back(new test_clamp(type));
  4344. }
  4345. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  4346. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  4347. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  4348. #if 0
  4349. std::uniform_int_distribution<> dist_ne1(1, 50);
  4350. int exponent = 1;
  4351. while (exponent < (1 << 17)) {
  4352. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  4353. for (int n = 0; n < 10; ++n) {
  4354. int64_t ne0 = dist_ne0(rng);
  4355. int64_t ne1 = dist_ne1(rng);
  4356. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  4357. }
  4358. exponent <<= 1;
  4359. }
  4360. #endif
  4361. for (bool mask : {false, true}) {
  4362. for (float max_bias : {0.0f, 8.0f}) {
  4363. if (!mask && max_bias > 0.0f) continue;
  4364. for (float scale : {1.0f, 0.1f}) {
  4365. for (int64_t ne0 : {16, 1024}) {
  4366. for (int64_t ne1 : {16, 1024}) {
  4367. if (mask) {
  4368. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4369. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  4370. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  4371. if (ne0 <= 32 && ne1 <= 32) {
  4372. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, m_prec, {3, 1}, scale, max_bias));
  4373. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {2, 3}, scale, max_bias));
  4374. }
  4375. }
  4376. } else {
  4377. /* The precision of mask here doesn't matter as boolean mask is false */
  4378. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4379. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4380. }
  4381. }
  4382. }
  4383. }
  4384. }
  4385. }
  4386. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4387. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4388. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4389. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4390. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4391. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  4392. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  4393. for (float max_bias : {0.0f, 8.0f}) {
  4394. for (float scale : {1.0f, 0.1f}) {
  4395. for (int64_t ne0 : {16, 1024}) {
  4396. for (int64_t ne1 : {16, 1024}) {
  4397. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  4398. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  4399. }
  4400. }
  4401. }
  4402. }
  4403. for (bool fw : {true, false}) { // fw == forward
  4404. bool all = true;
  4405. for (float fs : { 1.0f, 1.4245f }) {
  4406. for (float ef : { 0.0f, 0.7465f }) {
  4407. for (float af : { 1.0f, 1.4245f }) {
  4408. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4409. for (bool ff : {false, true}) { // freq_factors
  4410. for (float v : { 0, 1 }) {
  4411. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  4412. if (all) {
  4413. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  4414. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  4415. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  4416. }
  4417. if (all) {
  4418. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4419. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4420. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4421. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 0, 512, fs, ef, af, ff, v, fw));
  4422. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  4423. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  4424. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  4425. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4426. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4427. }
  4428. if (all) {
  4429. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  4430. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  4431. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  4432. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  4433. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  4434. }
  4435. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4436. }
  4437. }
  4438. all = false;
  4439. }
  4440. }
  4441. }
  4442. }
  4443. }
  4444. for (int v : { 0, 1, 2, 3 }) {
  4445. for (int dim : { 0, 1, 2, 3, }) {
  4446. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  4447. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  4448. }
  4449. }
  4450. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  4451. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  4452. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  4453. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  4454. }
  4455. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  4456. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  4457. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  4458. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  4459. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  4460. }
  4461. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  4462. test_cases.emplace_back(new test_sum());
  4463. test_cases.emplace_back(new test_sum_rows());
  4464. test_cases.emplace_back(new test_mean());
  4465. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  4466. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  4467. test_cases.emplace_back(new test_acc());
  4468. test_cases.emplace_back(new test_pad());
  4469. test_cases.emplace_back(new test_pad_reflect_1d());
  4470. test_cases.emplace_back(new test_arange());
  4471. test_cases.emplace_back(new test_timestep_embedding());
  4472. test_cases.emplace_back(new test_leaky_relu());
  4473. for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
  4474. for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
  4475. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  4476. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  4477. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  4478. for (bool mask : { true, false } ) {
  4479. for (float max_bias : { 0.0f, 8.0f }) {
  4480. if (!mask && max_bias > 0.0f) continue;
  4481. for (float logit_softcap : {0.0f, 10.0f}) {
  4482. if (hsk != 128 && logit_softcap != 0.0f) continue;
  4483. for (int nh : { 4, }) {
  4484. for (int nr3 : { 1, 3, }) {
  4485. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  4486. for (int nr2 : { 1, 4, 16 }) {
  4487. if (nr2 == 16 && hsk != 128) continue;
  4488. for (int kv : { 512, 1024, }) {
  4489. if (nr2 != 1 && kv != 512) continue;
  4490. for (int nb : { 1, 3, 32, 35, }) {
  4491. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  4492. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  4493. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  4494. test_cases.emplace_back(new test_flash_attn_ext(
  4495. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  4496. // run fewer test cases permuted
  4497. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  4498. test_cases.emplace_back(new test_flash_attn_ext(
  4499. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  4500. }
  4501. }
  4502. }
  4503. }
  4504. }
  4505. }
  4506. }
  4507. }
  4508. }
  4509. }
  4510. }
  4511. }
  4512. }
  4513. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  4514. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  4515. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  4516. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  4517. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  4518. #if 0
  4519. // these tests are disabled to save execution time, sbut they can be handy for debugging
  4520. test_cases.emplace_back(new test_llama(2, true));
  4521. test_cases.emplace_back(new test_llama(1));
  4522. test_cases.emplace_back(new test_llama(2));
  4523. test_cases.emplace_back(new test_falcon(1));
  4524. test_cases.emplace_back(new test_falcon(2));
  4525. #endif
  4526. return test_cases;
  4527. }
  4528. // Test cases for performance evaluation: should be representative of real-world use cases
  4529. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  4530. std::vector<std::unique_ptr<test_case>> test_cases;
  4531. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  4532. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  4533. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  4534. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  4535. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  4536. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4537. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4538. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4539. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4540. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4541. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4542. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4543. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4544. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  4545. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4546. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  4547. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  4548. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  4549. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  4550. for (ggml_type type_a : all_types) {
  4551. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4552. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  4553. }
  4554. }
  4555. }
  4556. for (int K : {3, 5}) {
  4557. for (int IC : {256, 2560}) {
  4558. for (int IW_IH : {32, 64, 256}) {
  4559. if (IC == 2560 && IW_IH == 256) {
  4560. // too big
  4561. continue;
  4562. }
  4563. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  4564. }
  4565. }
  4566. }
  4567. for (int kv : { 4096, 8192, 16384, }) {
  4568. for (int hs : { 64, 128, }) {
  4569. for (int nr : { 1, 4, }) {
  4570. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  4571. }
  4572. }
  4573. }
  4574. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  4575. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  4576. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  4577. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  4578. return test_cases;
  4579. }
  4580. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter,
  4581. printer * output_printer) {
  4582. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  4583. if (params_filter == nullptr) {
  4584. return;
  4585. }
  4586. std::regex params_filter_regex(params_filter);
  4587. for (auto it = test_cases.begin(); it != test_cases.end();) {
  4588. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  4589. it = test_cases.erase(it);
  4590. continue;
  4591. }
  4592. it++;
  4593. }
  4594. };
  4595. if (mode == MODE_TEST) {
  4596. auto test_cases = make_test_cases_eval();
  4597. filter_test_cases(test_cases, params_filter);
  4598. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  4599. if (backend_cpu == NULL) {
  4600. test_operation_info info("", "", "CPU");
  4601. info.set_error("backend", "Failed to initialize CPU backend");
  4602. output_printer->print_operation(info);
  4603. return false;
  4604. }
  4605. size_t n_ok = 0;
  4606. for (auto & test : test_cases) {
  4607. if (test->eval(backend, backend_cpu, op_name, output_printer)) {
  4608. n_ok++;
  4609. }
  4610. }
  4611. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  4612. ggml_backend_free(backend_cpu);
  4613. return n_ok == test_cases.size();
  4614. }
  4615. if (mode == MODE_GRAD) {
  4616. auto test_cases = make_test_cases_eval();
  4617. filter_test_cases(test_cases, params_filter);
  4618. size_t n_ok = 0;
  4619. for (auto & test : test_cases) {
  4620. if (test->eval_grad(backend, op_name, output_printer)) {
  4621. n_ok++;
  4622. }
  4623. }
  4624. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  4625. return n_ok == test_cases.size();
  4626. }
  4627. if (mode == MODE_PERF) {
  4628. auto test_cases = make_test_cases_perf();
  4629. filter_test_cases(test_cases, params_filter);
  4630. for (auto & test : test_cases) {
  4631. test->eval_perf(backend, op_name, output_printer);
  4632. }
  4633. return true;
  4634. }
  4635. GGML_ABORT("fatal error");
  4636. }
  4637. static void usage(char ** argv) {
  4638. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>] [--output <console|sql>]\n", argv[0]);
  4639. printf(" valid modes:\n");
  4640. printf(" - test (default, compare with CPU backend for correctness)\n");
  4641. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  4642. printf(" - perf (performance evaluation)\n");
  4643. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  4644. printf(" --output specifies output format (default: console)\n");
  4645. }
  4646. int main(int argc, char ** argv) {
  4647. test_mode mode = MODE_TEST;
  4648. output_formats output_format = CONSOLE;
  4649. const char * op_name_filter = nullptr;
  4650. const char * backend_filter = nullptr;
  4651. const char * params_filter = nullptr;
  4652. for (int i = 1; i < argc; i++) {
  4653. if (strcmp(argv[i], "test") == 0) {
  4654. mode = MODE_TEST;
  4655. } else if (strcmp(argv[i], "perf") == 0) {
  4656. mode = MODE_PERF;
  4657. } else if (strcmp(argv[i], "grad") == 0) {
  4658. mode = MODE_GRAD;
  4659. } else if (strcmp(argv[i], "-o") == 0) {
  4660. if (i + 1 < argc) {
  4661. op_name_filter = argv[++i];
  4662. } else {
  4663. usage(argv);
  4664. return 1;
  4665. }
  4666. } else if (strcmp(argv[i], "-b") == 0) {
  4667. if (i + 1 < argc) {
  4668. backend_filter = argv[++i];
  4669. } else {
  4670. usage(argv);
  4671. return 1;
  4672. }
  4673. } else if (strcmp(argv[i], "-p") == 0) {
  4674. if (i + 1 < argc) {
  4675. params_filter = argv[++i];
  4676. } else {
  4677. usage(argv);
  4678. return 1;
  4679. }
  4680. } else if (strcmp(argv[i], "--output") == 0) {
  4681. if (i + 1 < argc) {
  4682. if (!output_format_from_str(argv[++i], output_format)) {
  4683. usage(argv);
  4684. return 1;
  4685. }
  4686. } else {
  4687. usage(argv);
  4688. return 1;
  4689. }
  4690. } else {
  4691. usage(argv);
  4692. return 1;
  4693. }
  4694. }
  4695. // load and enumerate backends
  4696. ggml_backend_load_all();
  4697. // Create printer for output format
  4698. std::unique_ptr<printer> output_printer = create_printer(output_format);
  4699. if (output_printer) {
  4700. output_printer->print_header();
  4701. }
  4702. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  4703. size_t n_ok = 0;
  4704. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  4705. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  4706. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  4707. output_printer->print_backend_init(
  4708. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  4709. n_ok++;
  4710. continue;
  4711. }
  4712. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  4713. output_printer->print_backend_init(backend_init_info(
  4714. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  4715. n_ok++;
  4716. continue;
  4717. }
  4718. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  4719. GGML_ASSERT(backend != NULL);
  4720. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  4721. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4722. if (ggml_backend_set_n_threads_fn) {
  4723. // TODO: better value for n_threads
  4724. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  4725. }
  4726. size_t free, total; // NOLINT
  4727. ggml_backend_dev_memory(dev, &free, &total);
  4728. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  4729. false, "", ggml_backend_dev_description(dev),
  4730. total / 1024 / 1024, free / 1024 / 1024, true));
  4731. bool ok = test_backend(backend, mode, op_name_filter, params_filter, output_printer.get());
  4732. if (ok) {
  4733. n_ok++;
  4734. }
  4735. output_printer->print_backend_status(
  4736. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  4737. ggml_backend_free(backend);
  4738. }
  4739. ggml_quantize_free();
  4740. if (output_printer) {
  4741. output_printer->print_footer();
  4742. }
  4743. output_printer->print_overall_summary(
  4744. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  4745. if (n_ok != ggml_backend_dev_count()) {
  4746. return 1;
  4747. }
  4748. return 0;
  4749. }