convert_hf_to_gguf.py 517 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. # Handle empty tensor_map for models with block_count=0 (like MobileNetV5)
  448. if self.tensor_map.mapping:
  449. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  450. else:
  451. max_name_len = len("vision_encoder.weight,") # Default reasonable length
  452. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  453. # we don't need these
  454. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  455. continue
  456. old_dtype = data_torch.dtype
  457. # convert any unsupported data types to float32
  458. if data_torch.dtype not in (torch.float16, torch.float32):
  459. data_torch = data_torch.to(torch.float32)
  460. # use the first number-like part of the tensor name as the block id
  461. bid = None
  462. for part in name.split("."):
  463. if part.isdecimal():
  464. bid = int(part)
  465. break
  466. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  467. # TODO: why do we squeeze here?
  468. # data = data_torch.squeeze().numpy()
  469. data = data_torch.numpy()
  470. n_dims = len(data.shape)
  471. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  472. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  473. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  474. data_qtype = gguf.GGMLQuantizationType.F32
  475. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  476. # Some tensor types are always in float32
  477. if data_qtype is False and (
  478. any(
  479. self.match_model_tensor_name(new_name, key, bid)
  480. for key in (
  481. gguf.MODEL_TENSOR.FFN_GATE_INP,
  482. gguf.MODEL_TENSOR.POS_EMBD,
  483. gguf.MODEL_TENSOR.TOKEN_TYPES,
  484. gguf.MODEL_TENSOR.SSM_CONV1D,
  485. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  486. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  487. gguf.MODEL_TENSOR.TIME_MIX_W1,
  488. gguf.MODEL_TENSOR.TIME_MIX_W2,
  489. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  490. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  491. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  492. gguf.MODEL_TENSOR.POSNET_NORM1,
  493. gguf.MODEL_TENSOR.POSNET_NORM2,
  494. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  495. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  496. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  497. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  498. )
  499. )
  500. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  501. ):
  502. data_qtype = gguf.GGMLQuantizationType.F32
  503. if data_qtype is False and any(
  504. self.match_model_tensor_name(new_name, key, bid)
  505. for key in (
  506. gguf.MODEL_TENSOR.TOKEN_EMBD,
  507. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  508. gguf.MODEL_TENSOR.OUTPUT,
  509. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  510. gguf.MODEL_TENSOR.LAUREL_L,
  511. gguf.MODEL_TENSOR.LAUREL_R,
  512. )
  513. ):
  514. if self.ftype in (
  515. gguf.LlamaFileType.MOSTLY_TQ1_0,
  516. gguf.LlamaFileType.MOSTLY_TQ2_0,
  517. ):
  518. # TODO: use Q4_K and Q6_K
  519. data_qtype = gguf.GGMLQuantizationType.F16
  520. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  521. if isinstance(data_qtype, bool):
  522. if self.ftype == gguf.LlamaFileType.ALL_F32:
  523. data_qtype = gguf.GGMLQuantizationType.F32
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  525. data_qtype = gguf.GGMLQuantizationType.F16
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  527. data_qtype = gguf.GGMLQuantizationType.BF16
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  529. data_qtype = gguf.GGMLQuantizationType.Q8_0
  530. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  531. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  532. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  533. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  534. else:
  535. raise ValueError(f"Unknown file type: {self.ftype.name}")
  536. try:
  537. data = gguf.quants.quantize(data, data_qtype)
  538. except gguf.QuantError as e:
  539. logger.warning("%s, %s", e, "falling back to F16")
  540. data_qtype = gguf.GGMLQuantizationType.F16
  541. data = gguf.quants.quantize(data, data_qtype)
  542. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  543. # reverse shape to make it similar to the internal ggml dimension order
  544. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  545. # n_dims is implicit in the shape
  546. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  547. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  548. def set_type(self):
  549. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  550. def prepare_metadata(self, vocab_only: bool):
  551. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  552. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  553. # If we are using HF model id, set the metadata name to the model id
  554. if self.remote_hf_model_id:
  555. self.metadata.name = self.remote_hf_model_id
  556. # Fallback to model directory name if metadata name is still missing
  557. if self.metadata.name is None:
  558. self.metadata.name = self.dir_model.name
  559. # Generate parameter weight class (useful for leader boards) if not yet determined
  560. if self.metadata.size_label is None and total_params > 0:
  561. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  562. self.set_type()
  563. logger.info("Set meta model")
  564. self.metadata.set_gguf_meta_model(self.gguf_writer)
  565. logger.info("Set model parameters")
  566. self.set_gguf_parameters()
  567. logger.info("Set model quantization version")
  568. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  569. def write_vocab(self):
  570. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  571. def write(self):
  572. self.prepare_tensors()
  573. self.prepare_metadata(vocab_only=False)
  574. self.gguf_writer.write_header_to_file(path=self.fname_out)
  575. self.gguf_writer.write_kv_data_to_file()
  576. self.gguf_writer.write_tensors_to_file(progress=True)
  577. self.gguf_writer.close()
  578. @staticmethod
  579. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  580. part_names: list[str] = []
  581. for filename in os.listdir(dir_model):
  582. if filename.startswith(prefix) and filename.endswith(suffix):
  583. part_names.append(filename)
  584. part_names.sort()
  585. return part_names
  586. @staticmethod
  587. def load_hparams(dir_model: Path, is_mistral_format: bool):
  588. if is_mistral_format:
  589. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  590. config = json.load(f)
  591. return config
  592. try:
  593. # for security reason, we don't allow loading remote code by default
  594. # if a model need remote code, we will fallback to config.json
  595. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  596. except Exception as e:
  597. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  598. logger.warning("Trying to load config.json instead")
  599. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  600. config = json.load(f)
  601. if "llm_config" in config:
  602. # rename for InternVL
  603. config["text_config"] = config["llm_config"]
  604. if "lm_config" in config:
  605. # rename for GlmASR
  606. config["text_config"] = config["lm_config"]
  607. if "thinker_config" in config:
  608. # rename for Qwen2.5-Omni
  609. config["text_config"] = config["thinker_config"]["text_config"]
  610. if "lfm" in config:
  611. # rename for LFM2-Audio
  612. config["text_config"] = config["lfm"]
  613. return config
  614. @classmethod
  615. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  616. assert names
  617. def func(modelcls: AnyModel) -> AnyModel:
  618. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  619. for name in names:
  620. cls._model_classes[model_type][name] = modelcls
  621. return modelcls
  622. return func
  623. @classmethod
  624. def print_registered_models(cls):
  625. for model_type, model_classes in cls._model_classes.items():
  626. logger.error(f"{model_type.name} models:")
  627. for name in sorted(model_classes.keys()):
  628. logger.error(f" - {name}")
  629. @classmethod
  630. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  631. try:
  632. return cls._model_classes[model_type][arch]
  633. except KeyError:
  634. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  635. class TextModel(ModelBase):
  636. model_type = ModelType.TEXT
  637. hf_arch: str
  638. def __init__(self, *args, **kwargs):
  639. super().__init__(*args, **kwargs)
  640. if not self.is_mistral_format:
  641. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  642. else:
  643. self.hf_arch = ""
  644. if "text_config" in self.hparams:
  645. # move the text_config to the root level
  646. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  647. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  648. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  649. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  650. rope_theta = self.find_hparam(["global_rope_theta", "rope_global_theta", "rope_theta_global", "rope_theta", "rotary_emb_base"], optional=True)
  651. local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "rope_theta_local", "swa_rope_theta", "rope_local_base_freq"], optional=True)
  652. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  653. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  654. if local_rope_theta is not None:
  655. self.rope_parameters["sliding_attention"] = {"rope_theta": local_rope_theta}
  656. if "rope_theta" not in self.rope_parameters and rope_theta is not None:
  657. self.rope_parameters["rope_theta"] = rope_theta
  658. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  659. self.rope_parameters["rope_type"] = rope_type
  660. @classmethod
  661. def __init_subclass__(cls):
  662. # can't use an abstract property, because overriding it without type errors
  663. # would require using decorated functions instead of simply defining the property
  664. if "model_arch" not in cls.__dict__:
  665. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  666. def set_vocab(self):
  667. self._set_vocab_gpt2()
  668. def prepare_metadata(self, vocab_only: bool):
  669. super().prepare_metadata(vocab_only=vocab_only)
  670. total_params = self.gguf_writer.get_total_parameter_count()[0]
  671. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  672. output_type: str = self.ftype.name.partition("_")[2]
  673. # Filename Output
  674. if self.fname_out.is_dir():
  675. # Generate default filename based on model specification and available metadata
  676. if not vocab_only:
  677. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  678. else:
  679. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  680. # Use the default filename
  681. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  682. else:
  683. # Output path is a custom defined templated filename
  684. # Note: `not is_dir()` is used because `.is_file()` will not detect
  685. # file template strings as it doesn't actually exist as a file
  686. # Process templated file name with the output ftype, useful with the "auto" ftype
  687. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  688. logger.info("Set model tokenizer")
  689. self.set_vocab()
  690. def set_gguf_parameters(self):
  691. self.gguf_writer.add_block_count(self.block_count)
  692. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  693. self.gguf_writer.add_context_length(n_ctx)
  694. logger.info(f"gguf: context length = {n_ctx}")
  695. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  696. self.gguf_writer.add_embedding_length(n_embd)
  697. logger.info(f"gguf: embedding length = {n_embd}")
  698. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  699. self.gguf_writer.add_feed_forward_length(n_ff)
  700. logger.info(f"gguf: feed forward length = {n_ff}")
  701. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  702. self.gguf_writer.add_head_count(n_head)
  703. logger.info(f"gguf: head count = {n_head}")
  704. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  705. self.gguf_writer.add_head_count_kv(n_head_kv)
  706. logger.info(f"gguf: key-value head count = {n_head_kv}")
  707. # TODO: Handle "sliding_attention" similarly when models start implementing it
  708. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  709. if (rope_type := rope_params.get("rope_type")) is not None:
  710. rope_factor = rope_params.get("factor")
  711. rope_gguf_type = gguf.RopeScalingType.NONE
  712. if rope_type == "linear" and rope_factor is not None:
  713. rope_gguf_type = gguf.RopeScalingType.LINEAR
  714. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  715. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  716. elif rope_type == "yarn" and rope_factor is not None:
  717. rope_gguf_type = gguf.RopeScalingType.YARN
  718. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  719. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  720. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  721. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  722. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  723. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  724. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  725. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  726. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  727. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  728. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  729. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  730. elif rope_type == "su" or rope_type == "longrope":
  731. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  732. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  733. elif rope_type == "dynamic":
  734. # HunYuan, handled in model class
  735. pass
  736. elif rope_type.lower() == "llama3":
  737. # Handled in generate_extra_tensors
  738. pass
  739. else:
  740. logger.warning(f"Unknown RoPE type: {rope_type}")
  741. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  742. if "mrope_section" in self.rope_parameters:
  743. mrope_section = self.rope_parameters["mrope_section"]
  744. # Pad to 4 dimensions [time, height, width, extra]
  745. while len(mrope_section) < 4:
  746. mrope_section.append(0)
  747. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  748. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  749. if (rope_theta := rope_params.get("rope_theta")) is not None:
  750. self.gguf_writer.add_rope_freq_base(rope_theta)
  751. logger.info(f"gguf: rope theta = {rope_theta}")
  752. if (local_rope_theta := self.rope_parameters.get("sliding_attention", {}).get("rope_theta")) is not None:
  753. self.gguf_writer.add_rope_freq_base_swa(local_rope_theta)
  754. logger.info(f"gguf: rope theta swa = {local_rope_theta}")
  755. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  756. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  757. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  758. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  759. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  760. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  761. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  762. self.gguf_writer.add_expert_count(n_experts)
  763. logger.info(f"gguf: expert count = {n_experts}")
  764. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  765. self.gguf_writer.add_expert_used_count(n_experts_used)
  766. logger.info(f"gguf: experts used count = {n_experts_used}")
  767. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  768. self.gguf_writer.add_expert_group_count(n_expert_groups)
  769. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  770. if (n_group_used := self.hparams.get("topk_group")) is not None:
  771. self.gguf_writer.add_expert_group_used_count(n_group_used)
  772. logger.info(f"gguf: expert groups used count = {n_group_used}")
  773. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  774. if score_func == "sigmoid":
  775. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  776. elif score_func == "softmax":
  777. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  778. else:
  779. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  780. logger.info(f"gguf: expert score gating function = {score_func}")
  781. if (head_dim := self.hparams.get("head_dim")) is not None:
  782. self.gguf_writer.add_key_length(head_dim)
  783. self.gguf_writer.add_value_length(head_dim)
  784. self.gguf_writer.add_file_type(self.ftype)
  785. logger.info(f"gguf: file type = {self.ftype}")
  786. def write_vocab(self):
  787. if len(self.gguf_writer.tensors) != 1:
  788. raise ValueError('Splitting the vocabulary is not supported')
  789. self.prepare_metadata(vocab_only=True)
  790. self.gguf_writer.write_header_to_file(path=self.fname_out)
  791. self.gguf_writer.write_kv_data_to_file()
  792. self.gguf_writer.close()
  793. def does_token_look_special(self, token: str | bytes) -> bool:
  794. if isinstance(token, (bytes, bytearray)):
  795. token_text = token.decode(encoding="utf-8")
  796. elif isinstance(token, memoryview):
  797. token_text = token.tobytes().decode(encoding="utf-8")
  798. else:
  799. token_text = token
  800. # Some models mark some added tokens which ought to be control tokens as not special.
  801. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  802. seems_special = token_text in (
  803. "<pad>", # deepseek-coder
  804. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  805. )
  806. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  807. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  808. # TODO: should these be marked as UNUSED instead? (maybe not)
  809. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  810. return seems_special
  811. # used for GPT-2 BPE and WordPiece vocabs
  812. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  813. tokens: list[str] = []
  814. toktypes: list[int] = []
  815. from transformers import AutoTokenizer
  816. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  817. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  818. assert max(tokenizer.vocab.values()) < vocab_size
  819. tokpre = self.get_vocab_base_pre(tokenizer)
  820. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  821. added_vocab = tokenizer.get_added_vocab()
  822. added_tokens_decoder = tokenizer.added_tokens_decoder
  823. for i in range(vocab_size):
  824. if i not in reverse_vocab:
  825. tokens.append(f"[PAD{i}]")
  826. toktypes.append(gguf.TokenType.UNUSED)
  827. else:
  828. token: str = reverse_vocab[i]
  829. if token in added_vocab:
  830. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  831. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  832. if not added_tokens_decoder[i].normalized:
  833. previous_token = token
  834. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  835. if previous_token != token:
  836. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  837. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  838. toktypes.append(gguf.TokenType.CONTROL)
  839. else:
  840. # NOTE: this was added for Gemma.
  841. # Encoding and decoding the tokens above isn't sufficient for this case.
  842. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  843. toktypes.append(gguf.TokenType.USER_DEFINED)
  844. else:
  845. toktypes.append(gguf.TokenType.NORMAL)
  846. tokens.append(token)
  847. return tokens, toktypes, tokpre
  848. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  849. # do not modify it manually!
  850. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  851. # Marker: Start get_vocab_base_pre
  852. def get_vocab_base_pre(self, tokenizer) -> str:
  853. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  854. # is specific for the BPE pre-tokenizer used by the model
  855. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  856. # use in llama.cpp to implement the same pre-tokenizer
  857. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  858. chktok = tokenizer.encode(chktxt)
  859. chkhsh = sha256(str(chktok).encode()).hexdigest()
  860. logger.debug(f"chktok: {chktok}")
  861. logger.debug(f"chkhsh: {chkhsh}")
  862. res = None
  863. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  864. # or pull the latest version of the model from Huggingface
  865. # don't edit the hashes manually!
  866. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  867. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  868. res = "chatglm-bpe"
  869. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  870. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  871. res = "chatglm-bpe"
  872. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  873. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  874. res = "glm4"
  875. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  876. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  877. res = "glm4"
  878. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  879. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  880. res = "minerva-7b"
  881. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  882. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  883. res = "hunyuan"
  884. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  885. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  886. res = "hunyuan-dense"
  887. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  888. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  889. res = "falcon-h1"
  890. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  891. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  892. res = "falcon-h1"
  893. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  894. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  895. res = "falcon-h1"
  896. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  897. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  898. res = "falcon-h1"
  899. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  900. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  901. res = "kimi-k2"
  902. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  903. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  904. res = "qwen2"
  905. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  906. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  907. res = "grok-2"
  908. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  909. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  910. res = "jina-v2-de"
  911. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  912. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  913. res = "llama-bpe"
  914. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  915. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  916. res = "deepseek-llm"
  917. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  918. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  919. res = "deepseek-coder"
  920. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  921. # ref: https://huggingface.co/tiiuae/falcon-7b
  922. res = "falcon"
  923. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  924. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  925. res = "bert-bge"
  926. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  927. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  928. res = "falcon3"
  929. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  930. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  931. res = "bert-bge-large"
  932. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  933. # ref: https://huggingface.co/mosaicml/mpt-7b
  934. res = "mpt"
  935. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  936. # ref: https://huggingface.co/bigcode/starcoder2-3b
  937. res = "starcoder"
  938. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  939. # ref: https://huggingface.co/openai-community/gpt2
  940. res = "gpt-2"
  941. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  942. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  943. res = "stablelm2"
  944. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  945. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  946. res = "refact"
  947. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  948. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  949. res = "command-r"
  950. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  951. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  952. res = "qwen2"
  953. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  954. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  955. res = "olmo"
  956. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  957. # ref: https://huggingface.co/databricks/dbrx-base
  958. res = "dbrx"
  959. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  960. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  961. res = "jina-v1-en"
  962. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  963. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  964. res = "jina-v2-en"
  965. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  966. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  967. res = "jina-v2-es"
  968. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  969. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  970. res = "jina-v2-de"
  971. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  972. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  973. res = "smaug-bpe"
  974. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  975. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  976. res = "poro-chat"
  977. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  978. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  979. res = "jina-v2-code"
  980. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  981. # ref: https://huggingface.co/LumiOpen/Viking-7B
  982. res = "viking"
  983. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  984. # ref: https://huggingface.co/core42/jais-13b
  985. res = "jais"
  986. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  987. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  988. res = "codeshell"
  989. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  990. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  991. res = "tekken"
  992. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  993. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  994. res = "smollm"
  995. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  996. # ref: https://huggingface.co/bigscience/bloom
  997. res = "bloom"
  998. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  999. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  1000. res = "gpt3-finnish"
  1001. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  1002. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  1003. res = "exaone"
  1004. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  1005. # ref: https://huggingface.co/microsoft/phi-2
  1006. res = "phi-2"
  1007. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  1008. # ref: https://huggingface.co/facebook/chameleon-7b
  1009. res = "chameleon"
  1010. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  1011. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1012. res = "roberta-bpe"
  1013. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1014. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1015. res = "gigachat"
  1016. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1017. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1018. res = "megrez"
  1019. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1020. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1021. res = "deepseek-v3"
  1022. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1023. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1024. res = "deepseek-r1-qwen"
  1025. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1026. # ref: https://huggingface.co/Xenova/gpt-4o
  1027. res = "gpt-4o"
  1028. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1029. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1030. res = "superbpe"
  1031. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1032. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1033. res = "trillion"
  1034. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1035. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1036. res = "bailingmoe"
  1037. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1038. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1039. res = "llama4"
  1040. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1041. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1042. res = "pixtral"
  1043. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1044. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1045. res = "seed-coder"
  1046. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1047. # ref: https://huggingface.co/skt/A.X-4.0
  1048. res = "a.x-4.0"
  1049. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1050. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1051. res = "midm-2.0"
  1052. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1053. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1054. res = "lfm2"
  1055. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1056. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1057. res = "exaone4"
  1058. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1059. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1060. res = "mellum"
  1061. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1062. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1063. res = "modern-bert"
  1064. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1065. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1066. res = "afmoe"
  1067. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1068. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1069. res = "bailingmoe2"
  1070. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1071. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1072. res = "granite-docling"
  1073. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1074. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1075. res = "minimax-m2"
  1076. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1077. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1078. res = "kormo"
  1079. if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
  1080. # ref: https://huggingface.co/tencent/Youtu-LLM-2B
  1081. res = "youtu"
  1082. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1083. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1084. res = "solar-open"
  1085. if res is None:
  1086. logger.warning("\n")
  1087. logger.warning("**************************************************************************************")
  1088. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1089. logger.warning("** There are 2 possible reasons for this:")
  1090. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1091. logger.warning("** - the pre-tokenization config has changed upstream")
  1092. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1093. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1094. logger.warning("**")
  1095. logger.warning(f"** chkhsh: {chkhsh}")
  1096. logger.warning("**************************************************************************************")
  1097. logger.warning("\n")
  1098. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1099. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1100. logger.debug(f"chkhsh: {chkhsh}")
  1101. return res
  1102. # Marker: End get_vocab_base_pre
  1103. def _set_vocab_none(self) -> None:
  1104. self.gguf_writer.add_tokenizer_model("none")
  1105. def _set_vocab_gpt2(self) -> None:
  1106. tokens, toktypes, tokpre = self.get_vocab_base()
  1107. self.gguf_writer.add_tokenizer_model("gpt2")
  1108. self.gguf_writer.add_tokenizer_pre(tokpre)
  1109. self.gguf_writer.add_token_list(tokens)
  1110. self.gguf_writer.add_token_types(toktypes)
  1111. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1112. special_vocab.add_to_gguf(self.gguf_writer)
  1113. def _set_vocab_qwen(self):
  1114. dir_model = self.dir_model
  1115. hparams = self.hparams
  1116. tokens: list[str] = []
  1117. toktypes: list[int] = []
  1118. from transformers import AutoTokenizer
  1119. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1120. vocab_size = hparams["vocab_size"]
  1121. assert max(tokenizer.get_vocab().values()) < vocab_size
  1122. tokpre = self.get_vocab_base_pre(tokenizer)
  1123. merges = []
  1124. vocab = {}
  1125. mergeable_ranks = tokenizer.mergeable_ranks
  1126. for token, rank in mergeable_ranks.items():
  1127. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1128. if len(token) == 1:
  1129. continue
  1130. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1131. assert len(merged) == 2
  1132. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1133. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1134. added_vocab = tokenizer.special_tokens
  1135. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1136. for i in range(vocab_size):
  1137. if i not in reverse_vocab:
  1138. tokens.append(f"[PAD{i}]")
  1139. toktypes.append(gguf.TokenType.UNUSED)
  1140. elif reverse_vocab[i] in added_vocab:
  1141. tokens.append(reverse_vocab[i])
  1142. toktypes.append(gguf.TokenType.CONTROL)
  1143. else:
  1144. tokens.append(reverse_vocab[i])
  1145. toktypes.append(gguf.TokenType.NORMAL)
  1146. self.gguf_writer.add_tokenizer_model("gpt2")
  1147. self.gguf_writer.add_tokenizer_pre(tokpre)
  1148. self.gguf_writer.add_token_list(tokens)
  1149. self.gguf_writer.add_token_types(toktypes)
  1150. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1151. special_vocab.merges = merges
  1152. # only add special tokens when they were not already loaded from config.json
  1153. if len(special_vocab.special_token_ids) == 0:
  1154. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1155. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1156. # this one is usually not in config.json anyway
  1157. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1158. special_vocab.add_to_gguf(self.gguf_writer)
  1159. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1160. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1161. self.gguf_writer.add_tokenizer_model("llama")
  1162. self.gguf_writer.add_tokenizer_pre("default")
  1163. self.gguf_writer.add_token_list(tokens)
  1164. self.gguf_writer.add_token_scores(scores)
  1165. self.gguf_writer.add_token_types(toktypes)
  1166. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1167. special_vocab.add_to_gguf(self.gguf_writer)
  1168. def _create_vocab_sentencepiece(self):
  1169. from sentencepiece import SentencePieceProcessor
  1170. tokenizer_path = self.dir_model / 'tokenizer.model'
  1171. if not tokenizer_path.is_file():
  1172. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1173. tokenizer = SentencePieceProcessor()
  1174. tokenizer.LoadFromFile(str(tokenizer_path))
  1175. vocab_size = self.find_hparam([
  1176. "vocab_size_per_layer_input", # gemma3n
  1177. "vocab_size",
  1178. ], optional=True) or tokenizer.vocab_size()
  1179. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1180. scores: list[float] = [-10000.0] * vocab_size
  1181. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1182. for token_id in range(tokenizer.vocab_size()):
  1183. if token_id >= vocab_size:
  1184. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1185. break
  1186. piece = tokenizer.IdToPiece(token_id)
  1187. text = piece.encode("utf-8")
  1188. score = tokenizer.GetScore(token_id)
  1189. toktype = SentencePieceTokenTypes.NORMAL
  1190. if tokenizer.IsUnknown(token_id):
  1191. toktype = SentencePieceTokenTypes.UNKNOWN
  1192. elif tokenizer.IsControl(token_id):
  1193. toktype = SentencePieceTokenTypes.CONTROL
  1194. elif tokenizer.IsUnused(token_id):
  1195. toktype = SentencePieceTokenTypes.UNUSED
  1196. elif tokenizer.IsByte(token_id):
  1197. toktype = SentencePieceTokenTypes.BYTE
  1198. tokens[token_id] = text
  1199. scores[token_id] = score
  1200. toktypes[token_id] = toktype
  1201. added_tokens_file = self.dir_model / 'added_tokens.json'
  1202. if added_tokens_file.is_file():
  1203. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1204. added_tokens_json = json.load(f)
  1205. for key in added_tokens_json:
  1206. token_id = added_tokens_json[key]
  1207. if token_id >= vocab_size:
  1208. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1209. continue
  1210. tokens[token_id] = key.encode("utf-8")
  1211. scores[token_id] = -1000.0
  1212. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1213. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1214. if tokenizer_config_file.is_file():
  1215. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1216. tokenizer_config_json = json.load(f)
  1217. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1218. for token_id, token_data in added_tokens_decoder.items():
  1219. token_id = int(token_id)
  1220. token: str = token_data["content"]
  1221. if token_id >= vocab_size:
  1222. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1223. continue
  1224. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1225. if tokens[token_id] != token.encode("utf-8"):
  1226. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1227. if token_data.get("special") or self.does_token_look_special(token):
  1228. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1229. else:
  1230. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1231. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1232. scores[token_id] = -1000.0
  1233. tokens[token_id] = token.encode("utf-8")
  1234. if vocab_size > len(tokens):
  1235. pad_count = vocab_size - len(tokens)
  1236. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1237. for i in range(1, pad_count + 1):
  1238. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1239. scores.append(-1000.0)
  1240. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1241. return tokens, scores, toktypes
  1242. def _set_vocab_llama_hf(self):
  1243. vocab = gguf.LlamaHfVocab(self.dir_model)
  1244. tokens = []
  1245. scores = []
  1246. toktypes = []
  1247. for text, score, toktype in vocab.all_tokens():
  1248. tokens.append(text)
  1249. scores.append(score)
  1250. toktypes.append(toktype)
  1251. assert len(tokens) == vocab.vocab_size
  1252. self.gguf_writer.add_tokenizer_model("llama")
  1253. self.gguf_writer.add_tokenizer_pre("default")
  1254. self.gguf_writer.add_token_list(tokens)
  1255. self.gguf_writer.add_token_scores(scores)
  1256. self.gguf_writer.add_token_types(toktypes)
  1257. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1258. special_vocab.add_to_gguf(self.gguf_writer)
  1259. def _set_vocab_rwkv_world(self):
  1260. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1261. vocab_size = self.hparams.get("vocab_size", 65536)
  1262. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1263. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1264. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1265. lines = f.readlines()
  1266. for line in lines:
  1267. parts = line.split(' ')
  1268. assert len(parts) >= 3
  1269. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1270. token = token.encode("utf-8") if isinstance(token, str) else token
  1271. assert isinstance(token, bytes)
  1272. assert len(token) == token_len
  1273. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1274. tokens.append(token_text.encode("utf-8"))
  1275. toktypes.append(gguf.TokenType.NORMAL)
  1276. remainder = vocab_size - len(tokens)
  1277. assert remainder >= 0
  1278. for i in range(len(tokens), vocab_size):
  1279. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1280. toktypes.append(gguf.TokenType.UNUSED)
  1281. self.gguf_writer.add_tokenizer_model("rwkv")
  1282. self.gguf_writer.add_token_list(tokens)
  1283. self.gguf_writer.add_token_types(toktypes)
  1284. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1285. if special_vocab.chat_template is None:
  1286. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1287. if template_path.is_file():
  1288. with open(template_path, "r", encoding="utf-8") as f:
  1289. template = f.read()
  1290. else:
  1291. template = "rwkv-world"
  1292. special_vocab.chat_template = template
  1293. # hack: Add '\n\n' as the EOT token to make it chat normally
  1294. special_vocab._set_special_token("eot", 261)
  1295. # hack: Override these as they have already been set (incorrectly)
  1296. special_vocab.special_token_ids["bos"] = 0
  1297. special_vocab.special_token_ids["eos"] = 0
  1298. special_vocab.add_to_gguf(self.gguf_writer)
  1299. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1300. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1301. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1302. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1303. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1304. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1305. assert field # tokenizer model
  1306. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1307. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1308. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1309. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1310. assert field # token list
  1311. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1312. if model_name == "llama-spm":
  1313. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1314. assert field # token scores
  1315. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1316. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1317. assert field # token types
  1318. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1319. if model_name != "llama-spm":
  1320. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1321. assert field # token merges
  1322. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1323. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1324. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1325. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1326. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1327. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1328. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1329. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1330. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1331. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1332. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1333. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1334. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1335. def _try_set_pooling_type(self) -> None:
  1336. # get pooling path
  1337. pooling_path = None
  1338. module_path = self.dir_model / "modules.json"
  1339. if module_path.is_file():
  1340. with open(module_path, encoding="utf-8") as f:
  1341. modules = json.load(f)
  1342. for mod in modules:
  1343. if mod["type"] == "sentence_transformers.models.Pooling":
  1344. pooling_path = mod["path"]
  1345. break
  1346. # get pooling type
  1347. if pooling_path is not None:
  1348. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1349. pooling = json.load(f)
  1350. if pooling["pooling_mode_mean_tokens"]:
  1351. pooling_type = gguf.PoolingType.MEAN
  1352. elif pooling["pooling_mode_cls_token"]:
  1353. pooling_type = gguf.PoolingType.CLS
  1354. elif pooling["pooling_mode_lasttoken"]:
  1355. pooling_type = gguf.PoolingType.LAST
  1356. else:
  1357. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1358. self.gguf_writer.add_pooling_type(pooling_type)
  1359. def _set_vocab_glmedge(self):
  1360. from transformers import AutoTokenizer
  1361. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1362. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1363. tokens, toktypes, tokpre = self.get_vocab_base()
  1364. self.gguf_writer.add_tokenizer_model("gpt2")
  1365. self.gguf_writer.add_tokenizer_pre(tokpre)
  1366. self.gguf_writer.add_token_list(tokens)
  1367. self.gguf_writer.add_token_types(toktypes)
  1368. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1369. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1370. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1371. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1372. special_vocab.add_to_gguf(self.gguf_writer)
  1373. def _set_vocab_interns1(self):
  1374. tokens: list[str] = []
  1375. toktypes: list[int] = []
  1376. from transformers import AutoTokenizer
  1377. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1378. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1379. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1380. assert max(vocab.values()) < vocab_size
  1381. tokpre = self.get_vocab_base_pre(tokenizer)
  1382. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1383. added_vocab = tokenizer.get_added_vocab()
  1384. added_tokens_decoder = tokenizer.added_tokens_decoder
  1385. for i in range(vocab_size):
  1386. if i not in reverse_vocab:
  1387. tokens.append(f"[PAD{i}]")
  1388. toktypes.append(gguf.TokenType.UNUSED)
  1389. else:
  1390. token: str = reverse_vocab[i]
  1391. if token in added_vocab:
  1392. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1393. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1394. if not added_tokens_decoder[i].normalized:
  1395. previous_token = token
  1396. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1397. if previous_token != token:
  1398. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1399. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1400. toktypes.append(gguf.TokenType.CONTROL)
  1401. else:
  1402. toktypes.append(gguf.TokenType.USER_DEFINED)
  1403. else:
  1404. toktypes.append(gguf.TokenType.NORMAL)
  1405. tokens.append(token)
  1406. self.gguf_writer.add_tokenizer_model("gpt2")
  1407. self.gguf_writer.add_tokenizer_pre(tokpre)
  1408. self.gguf_writer.add_token_list(tokens)
  1409. self.gguf_writer.add_token_types(toktypes)
  1410. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1411. special_vocab._set_special_token("bos", 151643)
  1412. special_vocab.add_to_gguf(self.gguf_writer)
  1413. def _set_vocab_mistral(self):
  1414. if not _mistral_common_installed:
  1415. raise ImportError(_mistral_import_error_msg)
  1416. vocab = MistralVocab(self.dir_model)
  1417. logger.info(
  1418. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1419. )
  1420. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1421. tokens = []
  1422. scores = []
  1423. toktypes = []
  1424. for text, score, toktype in vocab.all_tokens():
  1425. tokens.append(text)
  1426. scores.append(score)
  1427. toktypes.append(toktype)
  1428. assert len(tokens) == vocab.vocab_size, (
  1429. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1430. )
  1431. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1432. self.gguf_writer.add_tokenizer_pre("tekken")
  1433. self.gguf_writer.add_token_merges(
  1434. vocab.extract_vocab_merges_from_model()
  1435. )
  1436. logger.info(
  1437. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1438. )
  1439. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1440. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1441. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1442. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1443. self.gguf_writer.add_token_list(tokens)
  1444. self.gguf_writer.add_token_scores(scores)
  1445. self.gguf_writer.add_token_types(toktypes)
  1446. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1447. self.gguf_writer.add_add_bos_token(True)
  1448. self.gguf_writer.add_add_eos_token(False)
  1449. local_template_file_path = self.dir_model / "chat_template.jinja"
  1450. if self.is_mistral_format and local_template_file_path.is_file():
  1451. # Ministral-3 and other new Mistral models come with chat templates.
  1452. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1453. logger.info("Using an existing Mistral local chat template.")
  1454. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1455. template = f.read()
  1456. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1457. template_dir = Path(__file__).parent / "models/templates/"
  1458. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1459. if self.is_mistral_format:
  1460. logger.info(
  1461. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1462. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1463. )
  1464. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1465. else:
  1466. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1467. template = None
  1468. if template is not None:
  1469. self.gguf_writer.add_chat_template(template)
  1470. def _set_vocab_plamo(self):
  1471. # PLaMo models use a custom tokenizer with a .jsonl file
  1472. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1473. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1474. if not tokenizer_jsonl_path.is_file():
  1475. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1476. # Load tokenizer config
  1477. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1478. tokenizer_config = json.load(f)
  1479. # Load tokens from JSONL file (actually a list format)
  1480. tokens = []
  1481. scores = []
  1482. toktypes = []
  1483. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1484. for line_num, line in enumerate(f):
  1485. if line.strip():
  1486. token_data = json.loads(line)
  1487. # Format: [token, score, type, ?, ?, ?, ?]
  1488. token = token_data[0].encode("utf-8")
  1489. score = float(token_data[1])
  1490. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1491. tokens.append(token)
  1492. scores.append(score)
  1493. if token_type_str == "UNKNOWN":
  1494. toktypes.append(gguf.TokenType.UNKNOWN)
  1495. elif token_type_str == "CONTROL":
  1496. toktypes.append(gguf.TokenType.CONTROL)
  1497. elif token_type_str == "BYTE":
  1498. toktypes.append(gguf.TokenType.BYTE)
  1499. else:
  1500. token_str = token_data[0]
  1501. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1502. toktypes.append(gguf.TokenType.CONTROL)
  1503. else:
  1504. toktypes.append(gguf.TokenType.NORMAL)
  1505. vocab_size = self.hparams["vocab_size"]
  1506. if vocab_size > len(tokens):
  1507. pad_count = vocab_size - len(tokens)
  1508. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1509. for i in range(1, pad_count + 1):
  1510. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1511. scores.append(-1000.0)
  1512. toktypes.append(gguf.TokenType.UNUSED)
  1513. self.gguf_writer.add_tokenizer_model("plamo2")
  1514. self.gguf_writer.add_tokenizer_pre("default")
  1515. self.gguf_writer.add_token_list(tokens)
  1516. self.gguf_writer.add_token_scores(scores)
  1517. self.gguf_writer.add_token_types(toktypes)
  1518. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1519. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1520. self.gguf_writer.add_bos_token_id(token_id)
  1521. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1522. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1523. self.gguf_writer.add_eos_token_id(token_id)
  1524. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1525. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1526. self.gguf_writer.add_pad_token_id(token_id)
  1527. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1528. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1529. self.gguf_writer.add_sep_token_id(token_id)
  1530. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1531. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1532. self.gguf_writer.add_unk_token_id(token_id)
  1533. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1534. self.gguf_writer.add_eot_token_id(4)
  1535. self.gguf_writer.add_add_space_prefix(False)
  1536. class MmprojModel(ModelBase):
  1537. model_type = ModelType.MMPROJ
  1538. model_arch = gguf.MODEL_ARCH.MMPROJ
  1539. preprocessor_config: dict[str, Any]
  1540. global_config: dict[str, Any]
  1541. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1542. has_vision_encoder: bool = True # by default
  1543. has_audio_encoder: bool = False
  1544. # for models having multiple encoders, we need to separate their hparams
  1545. hparams_vision: dict[str, Any] | None = None
  1546. hparams_audio: dict[str, Any] | None = None
  1547. def __init__(self, *args, **kwargs):
  1548. super().__init__(*args, **kwargs)
  1549. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1550. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1551. # get n_embd of the text model
  1552. if not self.is_mistral_format:
  1553. if "text_config" not in self.hparams:
  1554. self.hparams["text_config"] = {}
  1555. if "audio_config" not in self.hparams:
  1556. self.hparams["audio_config"] = {}
  1557. text_config = {**self.hparams, **self.hparams["text_config"]}
  1558. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1559. else:
  1560. text_config = {
  1561. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1562. }
  1563. self.n_embd_text = text_config.get("hidden_dim", 0)
  1564. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1565. # move vision config to the top level, while preserving the original hparams in global_config
  1566. import copy
  1567. self.global_config = copy.deepcopy(self.hparams)
  1568. self.hparams_vision = self.get_vision_config()
  1569. self.hparams_audio = self.get_audio_config()
  1570. if self.hparams_vision is None and self.hparams_audio is None:
  1571. raise ValueError("vision_config / audio_config not found in hparams")
  1572. # for compat with vision-only models
  1573. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1574. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1575. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1576. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1577. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1578. # load preprocessor config
  1579. self.preprocessor_config = {}
  1580. # prefer preprocessor_config.json if possible
  1581. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1582. if preprocessor_config_path.is_file():
  1583. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1584. self.preprocessor_config = json.load(f)
  1585. # prefer processor_config.json if possible
  1586. processor_config_path = self.dir_model / "processor_config.json"
  1587. if processor_config_path.is_file():
  1588. with open(processor_config_path, "r", encoding="utf-8") as f:
  1589. cfg = json.load(f)
  1590. # move image_processor to root level for compat
  1591. if "image_processor" in cfg:
  1592. cfg = {
  1593. **cfg,
  1594. **cfg["image_processor"],
  1595. }
  1596. # merge configs
  1597. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1598. def get_vision_config(self) -> dict[str, Any] | None:
  1599. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1600. return self.global_config.get(config_name)
  1601. def get_audio_config(self) -> dict[str, Any] | None:
  1602. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1603. return self.global_config.get(mm_config_key)
  1604. def set_type(self):
  1605. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1606. def prepare_metadata(self, vocab_only: bool):
  1607. super().prepare_metadata(vocab_only=vocab_only)
  1608. output_type: str = self.ftype.name.partition("_")[2]
  1609. if self.fname_out.is_dir():
  1610. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1611. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1612. else:
  1613. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1614. def set_gguf_parameters(self):
  1615. self.gguf_writer.add_file_type(self.ftype)
  1616. if self.has_vision_encoder:
  1617. self.gguf_writer.add_clip_has_vision_encoder(True)
  1618. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1619. # vision config
  1620. self.image_size = self.find_vparam(["image_size"])
  1621. self.gguf_writer.add_vision_image_size(self.image_size)
  1622. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1623. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1624. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1625. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1626. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1627. # preprocessor config
  1628. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1629. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1630. self.gguf_writer.add_vision_image_mean(image_mean)
  1631. self.gguf_writer.add_vision_image_std(image_std)
  1632. if self.has_audio_encoder:
  1633. self.gguf_writer.add_clip_has_audio_encoder(True)
  1634. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1635. # audio config
  1636. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1637. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1638. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1639. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1640. if not self.has_vision_encoder and not self.has_audio_encoder:
  1641. raise ValueError("MmprojModel must have either vision or audio encoder")
  1642. def write_vocab(self):
  1643. raise ValueError("MmprojModel does not support vocab writing")
  1644. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1645. assert self.hparams_vision is not None
  1646. return self._find_param(self.hparams_vision, keys, optional)
  1647. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1648. assert self.hparams_audio is not None
  1649. return self._find_param(self.hparams_audio, keys, optional)
  1650. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1651. key = next((k for k in keys if k in obj), None)
  1652. if key is not None:
  1653. return obj[key]
  1654. if optional:
  1655. return None
  1656. raise KeyError(f"could not find any of: {keys}")
  1657. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1658. del bid, name, n_dims # unused
  1659. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1660. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1661. return False
  1662. @ModelBase.register("GPTNeoXForCausalLM")
  1663. class GPTNeoXModel(TextModel):
  1664. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1665. def set_gguf_parameters(self):
  1666. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1667. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1668. self.gguf_writer.add_block_count(self.block_count)
  1669. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1670. self.gguf_writer.add_rope_dimension_count(
  1671. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1672. )
  1673. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1674. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1675. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1676. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1677. del bid # unused
  1678. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1679. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1680. tensors: list[tuple[str, Tensor]] = []
  1681. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1682. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1683. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1684. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1685. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1686. data_torch = torch.cat(
  1687. (
  1688. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1689. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1690. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1691. ),
  1692. dim=0,
  1693. )
  1694. logger.info("re-format attention.linear_qkv.weight")
  1695. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1696. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1697. data_torch = torch.cat(
  1698. (
  1699. qkv_bias[:, 0, :].reshape((n_embed,)),
  1700. qkv_bias[:, 1, :].reshape((n_embed,)),
  1701. qkv_bias[:, 2, :].reshape((n_embed,)),
  1702. ),
  1703. dim=0,
  1704. )
  1705. logger.info("re-format attention.linear_qkv.bias")
  1706. tensors.append((self.map_tensor_name(name), data_torch))
  1707. return tensors
  1708. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1709. class BloomModel(TextModel):
  1710. model_arch = gguf.MODEL_ARCH.BLOOM
  1711. def set_gguf_parameters(self):
  1712. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1713. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1714. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1715. self.gguf_writer.add_embedding_length(n_embed)
  1716. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1717. self.gguf_writer.add_block_count(self.block_count)
  1718. self.gguf_writer.add_head_count(n_head)
  1719. self.gguf_writer.add_head_count_kv(n_head)
  1720. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1721. self.gguf_writer.add_file_type(self.ftype)
  1722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1723. del bid # unused
  1724. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1725. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1726. name = re.sub(r'transformer\.', '', name)
  1727. tensors: list[tuple[str, Tensor]] = []
  1728. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1729. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1730. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1731. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1732. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1733. data_torch = torch.cat(
  1734. (
  1735. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1736. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1737. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1738. ),
  1739. dim=0,
  1740. )
  1741. logger.info("re-format attention.linear_qkv.weight")
  1742. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1743. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1744. data_torch = torch.cat(
  1745. (
  1746. qkv_bias[:, 0, :].reshape((n_embed,)),
  1747. qkv_bias[:, 1, :].reshape((n_embed,)),
  1748. qkv_bias[:, 2, :].reshape((n_embed,)),
  1749. ),
  1750. dim=0,
  1751. )
  1752. logger.info("re-format attention.linear_qkv.bias")
  1753. tensors.append((self.map_tensor_name(name), data_torch))
  1754. return tensors
  1755. @ModelBase.register("MPTForCausalLM")
  1756. class MPTModel(TextModel):
  1757. model_arch = gguf.MODEL_ARCH.MPT
  1758. def set_vocab(self):
  1759. try:
  1760. self._set_vocab_gpt2()
  1761. except Exception:
  1762. # Fallback for SEA-LION model
  1763. self._set_vocab_sentencepiece()
  1764. self.gguf_writer.add_add_bos_token(False)
  1765. self.gguf_writer.add_pad_token_id(3)
  1766. self.gguf_writer.add_eos_token_id(1)
  1767. self.gguf_writer.add_unk_token_id(0)
  1768. def set_gguf_parameters(self):
  1769. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1770. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1771. self.gguf_writer.add_block_count(self.block_count)
  1772. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1773. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1774. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1775. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1776. self.gguf_writer.add_layer_norm_eps(1e-5)
  1777. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1778. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1779. if self.hparams["attn_config"]["alibi"]:
  1780. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1781. else:
  1782. self.gguf_writer.add_max_alibi_bias(0.0)
  1783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1784. del bid # unused
  1785. if "scales" in name:
  1786. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1787. new_name = new_name.replace("scales", "act.scales")
  1788. else:
  1789. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1790. return [(new_name, data_torch)]
  1791. @ModelBase.register("OrionForCausalLM")
  1792. class OrionModel(TextModel):
  1793. model_arch = gguf.MODEL_ARCH.ORION
  1794. def set_vocab(self):
  1795. self._set_vocab_sentencepiece()
  1796. def set_gguf_parameters(self):
  1797. head_count = self.hparams["num_attention_heads"]
  1798. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1799. ctx_length = 0
  1800. if "max_sequence_length" in self.hparams:
  1801. ctx_length = self.hparams["max_sequence_length"]
  1802. elif "max_position_embeddings" in self.hparams:
  1803. ctx_length = self.hparams["max_position_embeddings"]
  1804. elif "model_max_length" in self.hparams:
  1805. ctx_length = self.hparams["model_max_length"]
  1806. else:
  1807. raise ValueError("gguf: can not find ctx length parameter.")
  1808. self.gguf_writer.add_file_type(self.ftype)
  1809. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1810. self.gguf_writer.add_context_length(ctx_length)
  1811. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1812. self.gguf_writer.add_block_count(self.block_count)
  1813. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1814. self.gguf_writer.add_head_count(head_count)
  1815. self.gguf_writer.add_head_count_kv(head_count_kv)
  1816. # note: config provides rms norm but it is actually layer norm
  1817. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1818. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1819. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1820. class BaichuanModel(TextModel):
  1821. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1822. def set_vocab(self):
  1823. self._set_vocab_sentencepiece()
  1824. def set_gguf_parameters(self):
  1825. super().set_gguf_parameters()
  1826. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1827. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1828. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1829. head_count = self.hparams["num_attention_heads"]
  1830. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1831. tensors: list[tuple[str, Tensor]] = []
  1832. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1833. logger.info(f"Unpacking and permuting layer {bid}")
  1834. tensors = [
  1835. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1836. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1837. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1838. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1839. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1840. self._reverse_hf_part(data_torch, 2)),
  1841. ]
  1842. else:
  1843. tensors = [(self.map_tensor_name(name), data_torch)]
  1844. return tensors
  1845. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1846. if n_kv_head is not None and n_head != n_kv_head:
  1847. n_head //= n_kv_head
  1848. return (
  1849. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1850. .swapaxes(1, 2)
  1851. .reshape(weights.shape)
  1852. )
  1853. def _reverse_hf_permute_part(
  1854. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1855. ) -> Tensor:
  1856. r = weights.shape[0] // 3
  1857. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1858. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1859. r = weights.shape[0] // 3
  1860. return weights[r * n_part:r * n_part + r, ...]
  1861. @ModelBase.register("XverseForCausalLM")
  1862. class XverseModel(TextModel):
  1863. model_arch = gguf.MODEL_ARCH.XVERSE
  1864. def set_vocab(self):
  1865. assert (self.dir_model / "tokenizer.json").is_file()
  1866. dir_model = self.dir_model
  1867. hparams = self.hparams
  1868. tokens: list[bytes] = []
  1869. toktypes: list[int] = []
  1870. from transformers import AutoTokenizer
  1871. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1872. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1873. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1874. # because vocab_size is the count of items, and indexes start at 0.
  1875. max_vocab_index = max(tokenizer.get_vocab().values())
  1876. if max_vocab_index >= vocab_size:
  1877. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1878. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1879. added_vocab = tokenizer.get_added_vocab()
  1880. for token_id in range(vocab_size):
  1881. token_text = reverse_vocab[token_id].encode('utf-8')
  1882. # replace "\x00" to string with length > 0
  1883. if token_text == b"\x00":
  1884. toktype = gguf.TokenType.BYTE # special
  1885. token_text = f"<{token_text}>".encode('utf-8')
  1886. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1887. toktype = gguf.TokenType.BYTE # special
  1888. elif reverse_vocab[token_id] in added_vocab:
  1889. if tokenizer.added_tokens_decoder[token_id].special:
  1890. toktype = gguf.TokenType.CONTROL
  1891. else:
  1892. toktype = gguf.TokenType.USER_DEFINED
  1893. else:
  1894. toktype = gguf.TokenType.NORMAL
  1895. tokens.append(token_text)
  1896. toktypes.append(toktype)
  1897. self.gguf_writer.add_tokenizer_model("llama")
  1898. self.gguf_writer.add_tokenizer_pre("default")
  1899. self.gguf_writer.add_token_list(tokens)
  1900. self.gguf_writer.add_token_types(toktypes)
  1901. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1902. special_vocab.add_to_gguf(self.gguf_writer)
  1903. def set_gguf_parameters(self):
  1904. super().set_gguf_parameters()
  1905. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1906. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1908. del bid # unused
  1909. head_count = self.hparams["num_attention_heads"]
  1910. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1911. # HF models permute some of the tensors, so we need to undo that
  1912. if name.endswith("q_proj.weight"):
  1913. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1914. if name.endswith("k_proj.weight"):
  1915. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1916. return [(self.map_tensor_name(name), data_torch)]
  1917. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1918. if n_kv_head is not None and n_head != n_kv_head:
  1919. n_head //= n_kv_head
  1920. return (
  1921. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1922. .swapaxes(1, 2)
  1923. .reshape(weights.shape)
  1924. )
  1925. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1926. class FalconModel(TextModel):
  1927. model_arch = gguf.MODEL_ARCH.FALCON
  1928. def set_gguf_parameters(self):
  1929. n_head = self.hparams.get("num_attention_heads")
  1930. if n_head is None:
  1931. n_head = self.hparams["n_head"] # old name
  1932. n_head_kv = self.hparams.get("num_kv_heads")
  1933. if n_head_kv is None:
  1934. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1935. self.gguf_writer.add_context_length(2048) # not in config.json
  1936. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1937. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1938. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1939. self.gguf_writer.add_block_count(self.block_count)
  1940. self.gguf_writer.add_head_count(n_head)
  1941. self.gguf_writer.add_head_count_kv(n_head_kv)
  1942. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1943. self.gguf_writer.add_file_type(self.ftype)
  1944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1945. del bid # unused
  1946. # QKV tensor transform
  1947. # The original query_key_value tensor contains n_head_kv "kv groups",
  1948. # each consisting of n_head/n_head_kv query weights followed by one key
  1949. # and one value weight (shared by all query heads in the kv group).
  1950. # This layout makes it a big pain to work with in GGML.
  1951. # So we rearrange them here,, so that we have n_head query weights
  1952. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1953. # in contiguous fashion.
  1954. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1955. if "query_key_value" in name:
  1956. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1957. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1958. head_dim = self.hparams["hidden_size"] // n_head
  1959. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1960. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1961. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1962. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1963. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1964. return [(self.map_tensor_name(name), data_torch)]
  1965. @ModelBase.register("GPTBigCodeForCausalLM")
  1966. class StarCoderModel(TextModel):
  1967. model_arch = gguf.MODEL_ARCH.STARCODER
  1968. def set_gguf_parameters(self):
  1969. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1970. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1971. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1972. self.gguf_writer.add_block_count(self.block_count)
  1973. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1974. self.gguf_writer.add_head_count_kv(1)
  1975. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1976. self.gguf_writer.add_file_type(self.ftype)
  1977. @ModelBase.register("GPTRefactForCausalLM")
  1978. class RefactModel(TextModel):
  1979. model_arch = gguf.MODEL_ARCH.REFACT
  1980. def set_vocab(self):
  1981. super().set_vocab()
  1982. # TODO: how to determine special FIM tokens automatically?
  1983. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1984. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1985. special_vocab._set_special_token("prefix", 1)
  1986. special_vocab._set_special_token("suffix", 3)
  1987. special_vocab._set_special_token("middle", 2)
  1988. special_vocab.chat_template = None # do not add it twice
  1989. special_vocab.add_to_gguf(self.gguf_writer)
  1990. def set_gguf_parameters(self):
  1991. hidden_dim = self.hparams["n_embd"]
  1992. inner_dim = 4 * hidden_dim
  1993. hidden_dim = int(2 * inner_dim / 3)
  1994. multiple_of = 256
  1995. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1996. # refact uses Alibi. So this is from config.json which might be used by training.
  1997. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1998. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1999. self.gguf_writer.add_feed_forward_length(ff_dim)
  2000. self.gguf_writer.add_block_count(self.block_count)
  2001. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2002. self.gguf_writer.add_head_count_kv(1)
  2003. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2004. self.gguf_writer.add_file_type(self.ftype)
  2005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2006. hidden_dim = self.hparams["n_embd"]
  2007. inner_dim = 4 * hidden_dim
  2008. hidden_dim = int(2 * inner_dim / 3)
  2009. multiple_of = 256
  2010. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  2011. n_head = self.hparams["n_head"]
  2012. n_head_kv = 1
  2013. head_dim = self.hparams["n_embd"] // n_head
  2014. tensors: list[tuple[str, Tensor]] = []
  2015. if bid is not None:
  2016. if name == f"transformer.h.{bid}.attn.kv.weight":
  2017. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2018. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2019. elif name == f"transformer.h.{bid}.attn.q.weight":
  2020. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2021. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2022. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2023. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2024. if len(tensors) == 0:
  2025. tensors.append((self.map_tensor_name(name), data_torch))
  2026. return tensors
  2027. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2028. class StableLMModel(TextModel):
  2029. model_arch = gguf.MODEL_ARCH.STABLELM
  2030. def set_vocab(self):
  2031. if (self.dir_model / "tokenizer.json").is_file():
  2032. self._set_vocab_gpt2()
  2033. else:
  2034. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2035. self._set_vocab_qwen()
  2036. def set_gguf_parameters(self):
  2037. hparams = self.hparams
  2038. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2039. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2040. self.gguf_writer.add_block_count(self.block_count)
  2041. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2042. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2043. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2044. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2045. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2046. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2047. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2048. self.gguf_writer.add_file_type(self.ftype)
  2049. _q_norms: list[dict[str, Tensor]] | None = None
  2050. _k_norms: list[dict[str, Tensor]] | None = None
  2051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2052. n_head = self.hparams["num_attention_heads"]
  2053. n_kv_head = self.hparams["num_key_value_heads"]
  2054. if name.find("q_layernorm.norms") != -1:
  2055. assert bid is not None
  2056. if self._q_norms is None:
  2057. self._q_norms = [{} for _ in range(self.block_count)]
  2058. self._q_norms[bid][name] = data_torch
  2059. if len(self._q_norms[bid]) >= n_head:
  2060. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2061. else:
  2062. return []
  2063. if name.find("k_layernorm.norms") != -1:
  2064. assert bid is not None
  2065. if self._k_norms is None:
  2066. self._k_norms = [{} for _ in range(self.block_count)]
  2067. self._k_norms[bid][name] = data_torch
  2068. if len(self._k_norms[bid]) >= n_kv_head:
  2069. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2070. else:
  2071. return []
  2072. return [(self.map_tensor_name(name), data_torch)]
  2073. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2074. datas: list[Tensor] = []
  2075. # extract the norms in order
  2076. for xid in range(n_head):
  2077. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2078. datas.append(norms[ename])
  2079. del norms[ename]
  2080. data_torch = torch.stack(datas, dim=0)
  2081. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2082. new_name = self.map_tensor_name(merged_name)
  2083. return [(new_name, data_torch)]
  2084. def prepare_tensors(self):
  2085. super().prepare_tensors()
  2086. if self._q_norms is not None or self._k_norms is not None:
  2087. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2088. norms = (
  2089. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2090. ) + (
  2091. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2092. )
  2093. if len(norms) > 0:
  2094. raise ValueError(f"Unprocessed norms: {norms}")
  2095. @ModelBase.register(
  2096. "LLaMAForCausalLM",
  2097. "LlamaForCausalLM",
  2098. "MistralForCausalLM",
  2099. "MixtralForCausalLM",
  2100. "VLlama3ForCausalLM",
  2101. "LlavaForConditionalGeneration",
  2102. "VoxtralForConditionalGeneration",
  2103. "IQuestCoderForCausalLM",
  2104. "LlamaModel")
  2105. class LlamaModel(TextModel):
  2106. model_arch = gguf.MODEL_ARCH.LLAMA
  2107. undo_permute = True
  2108. def __init__(self, *args, **kwargs):
  2109. super().__init__(*args, **kwargs)
  2110. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2111. if self.hf_arch == "VLlama3ForCausalLM":
  2112. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2113. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2114. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2115. def set_vocab(self):
  2116. if self.origin_hf_arch == "GlmasrModel":
  2117. return self._set_vocab_glmedge()
  2118. if self.is_mistral_format:
  2119. return self._set_vocab_mistral()
  2120. path_tekken_json = self.dir_model / "tekken.json"
  2121. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2122. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2123. self._set_vocab_mistral()
  2124. try:
  2125. self._set_vocab_sentencepiece()
  2126. except FileNotFoundError:
  2127. try:
  2128. self._set_vocab_llama_hf()
  2129. except (FileNotFoundError, TypeError):
  2130. # Llama 3
  2131. self._set_vocab_gpt2()
  2132. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2133. if self.hparams.get("vocab_size", 32000) == 32016:
  2134. special_vocab = gguf.SpecialVocab(
  2135. self.dir_model, load_merges=False,
  2136. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2137. )
  2138. special_vocab._set_special_token("prefix", 32007)
  2139. special_vocab._set_special_token("suffix", 32008)
  2140. special_vocab._set_special_token("middle", 32009)
  2141. special_vocab._set_special_token("eot", 32010)
  2142. special_vocab.add_to_gguf(self.gguf_writer)
  2143. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2144. if tokenizer_config_file.is_file():
  2145. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2146. tokenizer_config_json = json.load(f)
  2147. if "add_prefix_space" in tokenizer_config_json:
  2148. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2149. # Apply to granite small models only
  2150. if self.hparams.get("vocab_size", 32000) == 49152:
  2151. self.gguf_writer.add_add_bos_token(False)
  2152. def set_gguf_parameters(self):
  2153. super().set_gguf_parameters()
  2154. hparams = self.hparams
  2155. if not self.is_mistral_format:
  2156. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2157. if (rope_dim := hparams.get("head_dim")) is None:
  2158. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2159. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2160. @staticmethod
  2161. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2162. if n_head_kv is not None and n_head != n_head_kv:
  2163. n_head = n_head_kv
  2164. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2165. .swapaxes(1, 2)
  2166. .reshape(weights.shape))
  2167. _experts: list[dict[str, Tensor]] | None = None
  2168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2169. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2170. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2171. vision_prefixes = [
  2172. "vision_encoder.",
  2173. "vision_language_adapter.",
  2174. "patch_merger.",
  2175. "pre_mm_projector_norm",
  2176. "audio_encoder.",
  2177. ]
  2178. is_multimodal_tensor = "vision_tower" in name \
  2179. or "vision_model" in name \
  2180. or "audio_tower" in name \
  2181. or "model.connector" in name \
  2182. or "multi_modal_projector" in name \
  2183. or any(
  2184. name.startswith(prefix)
  2185. for prefix in vision_prefixes
  2186. )
  2187. if is_multimodal_tensor:
  2188. return [] # skip vision tensors
  2189. elif self.hf_arch == "LlamaModel":
  2190. name = "model." + name
  2191. elif name.startswith("model.text_model"):
  2192. name = name.replace("text_model.", "") # for SmolVLM
  2193. elif name.startswith("language_model."):
  2194. name = name.replace("language_model.", "") # for the rest
  2195. if self.undo_permute:
  2196. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2197. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2198. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2199. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2200. # process the experts separately
  2201. if name.find("block_sparse_moe.experts") != -1:
  2202. n_experts = self.hparams["num_local_experts"]
  2203. assert bid is not None
  2204. if self._experts is None:
  2205. self._experts = [{} for _ in range(self.block_count)]
  2206. self._experts[bid][name] = data_torch
  2207. if len(self._experts[bid]) >= n_experts * 3:
  2208. tensors: list[tuple[str, Tensor]] = []
  2209. # merge the experts into a single 3d tensor
  2210. for wid in ["w1", "w2", "w3"]:
  2211. datas: list[Tensor] = []
  2212. for xid in range(n_experts):
  2213. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2214. datas.append(self._experts[bid][ename])
  2215. del self._experts[bid][ename]
  2216. data_torch = torch.stack(datas, dim=0)
  2217. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2218. new_name = self.map_tensor_name(merged_name)
  2219. tensors.append((new_name, data_torch))
  2220. return tensors
  2221. else:
  2222. return []
  2223. return [(self.map_tensor_name(name), data_torch)]
  2224. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2225. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2226. if rope_params.get("rope_type", '').lower() == "llama3":
  2227. base = rope_params.get("rope_theta", 10000.0)
  2228. if (dim := self.hparams.get("head_dim")) is None:
  2229. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2230. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2231. factor = rope_params.get("factor", 8.0)
  2232. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2233. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2234. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2235. low_freq_wavelen = old_context_len / low_freq_factor
  2236. high_freq_wavelen = old_context_len / high_freq_factor
  2237. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2238. rope_factors = []
  2239. for freq in freqs:
  2240. wavelen = 2 * math.pi / freq
  2241. if wavelen < high_freq_wavelen:
  2242. rope_factors.append(1)
  2243. elif wavelen > low_freq_wavelen:
  2244. rope_factors.append(factor)
  2245. else:
  2246. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2247. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2248. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2249. def prepare_tensors(self):
  2250. super().prepare_tensors()
  2251. if self._experts is not None:
  2252. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2253. experts = [k for d in self._experts for k in d.keys()]
  2254. if len(experts) > 0:
  2255. raise ValueError(f"Unprocessed experts: {experts}")
  2256. @ModelBase.register("ArceeForCausalLM")
  2257. class ArceeModel(LlamaModel):
  2258. model_arch = gguf.MODEL_ARCH.ARCEE
  2259. def set_gguf_parameters(self):
  2260. super().set_gguf_parameters()
  2261. self._try_set_pooling_type()
  2262. @ModelBase.register("AfmoeForCausalLM")
  2263. class AfmoeModel(LlamaModel):
  2264. model_arch = gguf.MODEL_ARCH.AFMOE
  2265. def set_gguf_parameters(self):
  2266. super().set_gguf_parameters()
  2267. # MoE parameters
  2268. if (n_experts := self.hparams.get("num_experts")) is not None:
  2269. self.gguf_writer.add_expert_count(n_experts)
  2270. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2271. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2272. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2273. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2274. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2275. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2276. # Route normalization and scaling
  2277. if (route_norm := self.hparams.get("route_norm")) is not None:
  2278. self.gguf_writer.add_expert_weights_norm(route_norm)
  2279. if (route_scale := self.hparams.get("route_scale")) is not None:
  2280. self.gguf_writer.add_expert_weights_scale(route_scale)
  2281. # Sliding window attention
  2282. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2283. self.gguf_writer.add_sliding_window(sliding_window)
  2284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2285. # Handle expert weights - they're already merged in the HF format
  2286. # process the experts separately
  2287. if name.find("mlp.experts") != -1:
  2288. n_experts = self.hparams["num_experts"]
  2289. assert bid is not None
  2290. if self._experts is None:
  2291. self._experts = [{} for _ in range(self.block_count)]
  2292. self._experts[bid][name] = data_torch
  2293. if len(self._experts[bid]) >= n_experts * 3:
  2294. tensors: list[tuple[str, Tensor]] = []
  2295. # merge the experts into a single 3d tensor
  2296. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2297. datas: list[Tensor] = []
  2298. for xid in range(n_experts):
  2299. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2300. datas.append(self._experts[bid][ename_to_retrieve])
  2301. del self._experts[bid][ename_to_retrieve]
  2302. data_torch = torch.stack(datas, dim=0)
  2303. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2304. new_name = self.map_tensor_name(merged_name)
  2305. tensors.append((new_name, data_torch))
  2306. return tensors
  2307. else:
  2308. return []
  2309. if name.endswith(".expert_bias"):
  2310. name = name.replace(".expert_bias", ".expert_bias.bias")
  2311. return [(self.map_tensor_name(name), data_torch)]
  2312. @ModelBase.register(
  2313. "LlavaForConditionalGeneration", # pixtral
  2314. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2315. )
  2316. class LlavaVisionModel(MmprojModel):
  2317. img_break_tok_id = -1
  2318. use_break_tok = True
  2319. def __init__(self, *args, **kwargs):
  2320. super().__init__(*args, **kwargs)
  2321. if self.hparams.get("model_type") == "pixtral":
  2322. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2323. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2324. if self.use_break_tok:
  2325. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2326. elif self.is_mistral_format:
  2327. # hparams is already vision config here so norm_eps is only defined in global_config.
  2328. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2329. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2330. if self.use_break_tok:
  2331. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2332. else:
  2333. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2334. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2335. def get_token_id(self, token: str) -> int:
  2336. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2337. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2338. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2339. for id_, token_data in added_tokens_decoder.items():
  2340. if token_data["content"] == token:
  2341. return int(id_)
  2342. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2343. def set_gguf_parameters(self):
  2344. super().set_gguf_parameters()
  2345. hparams = self.hparams
  2346. if hparams.get("model_type") == "pixtral":
  2347. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2348. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2349. # hidden_act
  2350. if hparams["hidden_act"] == "silu":
  2351. self.gguf_writer.add_vision_use_silu(True)
  2352. elif hparams["hidden_act"] == "gelu":
  2353. self.gguf_writer.add_vision_use_gelu(True)
  2354. else:
  2355. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2356. # spatial_merge_size
  2357. if "spatial_merge_size" in self.global_config:
  2358. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2359. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2360. del bid # unused
  2361. n_head = (
  2362. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2363. )
  2364. n_kv_head = n_head
  2365. valid_prefixes = (
  2366. "multi_modal_projector.",
  2367. "vision_tower.",
  2368. "vision_encoder.",
  2369. "vision_language_adapter.",
  2370. "patch_merger.",
  2371. "pre_mm_projector_norm",
  2372. )
  2373. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2374. # process vision tensors
  2375. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2376. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2377. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2378. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2379. return [(self.map_tensor_name(name), data_torch)]
  2380. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2381. if self.img_break_tok_id > 0 and embed_key in name:
  2382. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2383. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2384. img_break_embd = data_torch[self.img_break_tok_id]
  2385. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2386. return [(self.map_tensor_name(name), img_break_embd)]
  2387. return [] # skip other tensors
  2388. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2389. class SmolVLMModel(MmprojModel):
  2390. def __init__(self, *args, **kwargs):
  2391. super().__init__(*args, **kwargs)
  2392. if self.hparams["model_type"] == "smolvlm_vision":
  2393. # fix for SmolVLM2, missing some keys in config.json
  2394. # default values are taken from transformers code
  2395. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2396. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2397. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2398. def set_gguf_parameters(self):
  2399. super().set_gguf_parameters()
  2400. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2401. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2402. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2403. self.gguf_writer.add_vision_use_gelu(True)
  2404. # Add the preprocessor longest edge size
  2405. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2406. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2407. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2408. if ".embeddings." in name:
  2409. return gguf.GGMLQuantizationType.F32
  2410. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2411. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2412. del bid # unused
  2413. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2414. if is_vision_tensor:
  2415. return [(self.map_tensor_name(name), data_torch)]
  2416. return [] # skip other tensors
  2417. @ModelBase.register(
  2418. "Llama4ForConditionalGeneration",
  2419. "Llama4ForCausalLM",
  2420. )
  2421. class Llama4Model(LlamaModel):
  2422. model_arch = gguf.MODEL_ARCH.LLAMA4
  2423. undo_permute = False
  2424. def __init__(self, *args, **kwargs):
  2425. super().__init__(*args, **kwargs)
  2426. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2427. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2428. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2429. def set_vocab(self):
  2430. self._set_vocab_gpt2()
  2431. def set_gguf_parameters(self):
  2432. super().set_gguf_parameters()
  2433. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2434. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2435. if "layer_types" in self.hparams:
  2436. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2437. # all layers are full attention (for MobileLLM), disable swa
  2438. self.gguf_writer.add_sliding_window(0)
  2439. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2440. if name.startswith("language_model."):
  2441. name = name.replace("language_model.", "")
  2442. # split the gate_up into gate and up
  2443. if "gate_up_proj" in name:
  2444. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2445. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2446. dim_half = data_torch.shape[-1] // 2
  2447. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2448. return [
  2449. (self.map_tensor_name(name_gate), gate_proj_weight),
  2450. (self.map_tensor_name(name_up), up_proj_weight)
  2451. ]
  2452. if name.endswith("down_proj"):
  2453. name += ".weight"
  2454. data_torch = data_torch.transpose(-1, -2)
  2455. if "multi_modal_projector" in name or "vision_model" in name:
  2456. return []
  2457. return super().modify_tensors(data_torch, name, bid)
  2458. @ModelBase.register("Llama4ForConditionalGeneration")
  2459. class Llama4VisionModel(MmprojModel):
  2460. def set_gguf_parameters(self):
  2461. super().set_gguf_parameters()
  2462. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2463. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2464. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2465. assert self.hparams["hidden_act"] == "gelu"
  2466. self.gguf_writer.add_vision_use_gelu(True)
  2467. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2468. del bid # unused
  2469. if "multi_modal_projector" in name or "vision_model" in name:
  2470. # process vision tensors
  2471. if "positional_embedding_vlm" in name and ".weight" not in name:
  2472. name += ".weight"
  2473. if "multi_modal_projector.linear_1" in name:
  2474. # despite the name with number postfix, this is a single fully connected layer
  2475. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2476. return [(self.map_tensor_name(name), data_torch)]
  2477. return []
  2478. @ModelBase.register("Mistral3ForConditionalGeneration")
  2479. class Mistral3Model(LlamaModel):
  2480. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2481. def __init__(self, *args, **kwargs):
  2482. super().__init__(*args, **kwargs)
  2483. # for compatibility, we use LLAMA arch for older models
  2484. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2485. if self.hparams.get("model_type") != "ministral3":
  2486. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2487. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2488. self.gguf_writer.add_architecture()
  2489. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2490. def set_gguf_parameters(self):
  2491. super().set_gguf_parameters()
  2492. rope_params = self.rope_parameters
  2493. if self.hparams.get("model_type") == "ministral3":
  2494. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2495. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2496. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2497. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2499. name = name.replace("language_model.", "")
  2500. if "multi_modal_projector" in name or "vision_tower" in name:
  2501. return []
  2502. return super().modify_tensors(data_torch, name, bid)
  2503. @ModelBase.register("DeciLMForCausalLM")
  2504. class DeciModel(TextModel):
  2505. model_arch = gguf.MODEL_ARCH.DECI
  2506. @staticmethod
  2507. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2508. # DeciLM-specific code
  2509. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2510. return DeciModel._find_multiple(intermediate_size, 256)
  2511. @staticmethod
  2512. def _find_multiple(n: int, k: int) -> int:
  2513. # DeciLM-specific code
  2514. if n % k == 0:
  2515. return n
  2516. return n + k - (n % k)
  2517. def __init__(self, *args, **kwargs):
  2518. super().__init__(*args, **kwargs)
  2519. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2520. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2521. assert self.block_count == len(_block_configs)
  2522. self._num_kv_heads = list()
  2523. self._num_heads = list()
  2524. _ffn_multipliers = list()
  2525. # ***linear attention layer***
  2526. # if n_heads_in_group is None and replace_with_linear is True
  2527. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2528. # ***attention-free layer***
  2529. # if n_heads_in_group is None and replace_with_linear is False
  2530. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2531. # ***normal attention-layer***
  2532. # if n_heads_in_group is not None, then
  2533. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2534. # _num_heads[il] is num_attention_head
  2535. # ***dummy layer*** for nemotron 253B
  2536. # if n_heads_in_group is None and ffn_mult is None
  2537. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2538. for il in range(len(_block_configs)):
  2539. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2540. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2541. self._num_kv_heads.append(0)
  2542. self._num_heads.append(self.hparams["num_attention_heads"])
  2543. else:
  2544. self._num_kv_heads.append(0)
  2545. self._num_heads.append(0)
  2546. else:
  2547. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2548. self._num_heads.append(self.hparams["num_attention_heads"])
  2549. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2550. _ffn_multipliers.append(0.0)
  2551. else:
  2552. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2553. assert self.block_count == len(self._num_kv_heads)
  2554. assert self.block_count == len(self._num_heads)
  2555. assert self.block_count == len(_ffn_multipliers)
  2556. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2557. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2558. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2559. self._ffn_dims: list[int] = [
  2560. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2561. for multiplier in _ffn_multipliers
  2562. ]
  2563. def set_vocab(self):
  2564. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2565. # eos_token from '|eot_id|' to '|end_of_text|'
  2566. if self.hparams.get("vocab_size", 128256) == 128256:
  2567. tokens, toktypes, tokpre = self.get_vocab_base()
  2568. self.gguf_writer.add_tokenizer_model("gpt2")
  2569. self.gguf_writer.add_tokenizer_pre(tokpre)
  2570. self.gguf_writer.add_token_list(tokens)
  2571. self.gguf_writer.add_token_types(toktypes)
  2572. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2573. special_vocab.add_to_gguf(self.gguf_writer)
  2574. else:
  2575. # DeciLM-7B
  2576. self._set_vocab_llama_hf()
  2577. def set_gguf_parameters(self):
  2578. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2579. assert self.block_count == len(self._num_kv_heads)
  2580. assert self.block_count == len(self._num_heads)
  2581. assert self.block_count == len(self._ffn_dims)
  2582. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2583. self.gguf_writer.add_rope_freq_base(rope_theta)
  2584. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2585. self.gguf_writer.add_head_count(self._num_heads)
  2586. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2587. self.gguf_writer.add_block_count(self.block_count)
  2588. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2589. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2590. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2591. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2592. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2593. self.gguf_writer.add_file_type(self.ftype)
  2594. else: # DeciLM-7B
  2595. super().set_gguf_parameters()
  2596. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2597. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2598. assert self.block_count == len(self._num_kv_heads)
  2599. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2600. hparams = self.hparams
  2601. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2602. if (rope_dim := hparams.get("head_dim")) is None:
  2603. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2604. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2605. @staticmethod
  2606. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2607. if n_head_kv is not None and n_head != n_head_kv:
  2608. n_head = n_head_kv
  2609. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2610. .swapaxes(1, 2)
  2611. .reshape(weights.shape))
  2612. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2613. n_head = self.hparams["num_attention_heads"]
  2614. if bid is not None:
  2615. if "num_key_value_heads_per_layer" in self.hparams:
  2616. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2617. elif "block_configs" in self.hparams:
  2618. n_kv_head = self._num_kv_heads[bid]
  2619. n_head = self._num_heads[bid]
  2620. else:
  2621. n_kv_head = self.hparams.get("num_key_value_heads")
  2622. else:
  2623. n_kv_head = self.hparams.get("num_key_value_heads")
  2624. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2625. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2626. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2627. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2628. return [(self.map_tensor_name(name), data_torch)]
  2629. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2630. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2631. if rope_params.get("rope_type", '').lower() == "llama3":
  2632. base = rope_params.get("rope_theta", 10000.0)
  2633. if (dim := self.hparams.get("head_dim")) is None:
  2634. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2635. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2636. factor = rope_params.get("factor", 8.0)
  2637. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2638. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2639. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2640. low_freq_wavelen = old_context_len / low_freq_factor
  2641. high_freq_wavelen = old_context_len / high_freq_factor
  2642. assert low_freq_wavelen != high_freq_wavelen
  2643. rope_factors = []
  2644. for freq in freqs:
  2645. wavelen = 2 * math.pi / freq
  2646. if wavelen < high_freq_wavelen:
  2647. rope_factors.append(1)
  2648. elif wavelen > low_freq_wavelen:
  2649. rope_factors.append(factor)
  2650. else:
  2651. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2652. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2653. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2654. def prepare_tensors(self):
  2655. super().prepare_tensors()
  2656. @ModelBase.register("BitnetForCausalLM")
  2657. class BitnetModel(TextModel):
  2658. model_arch = gguf.MODEL_ARCH.BITNET
  2659. def set_vocab(self):
  2660. self._set_vocab_sentencepiece()
  2661. def set_gguf_parameters(self):
  2662. super().set_gguf_parameters()
  2663. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2664. self.gguf_writer.add_rope_scaling_factor(1.0)
  2665. def weight_quant(self, weight: Tensor) -> Tensor:
  2666. dtype = weight.dtype
  2667. weight = weight.float()
  2668. scale = weight.abs().mean().clamp(min=1e-5)
  2669. iscale = 1 / scale
  2670. # TODO: multiply by the scale directly instead of inverting it twice
  2671. # (this is also unnecessarily doubly inverted upstream)
  2672. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2673. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2674. return result.type(dtype)
  2675. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2676. new_name = self.map_tensor_name(name)
  2677. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2678. gguf.MODEL_TENSOR.ATTN_Q,
  2679. gguf.MODEL_TENSOR.ATTN_K,
  2680. gguf.MODEL_TENSOR.ATTN_V,
  2681. gguf.MODEL_TENSOR.ATTN_OUT,
  2682. gguf.MODEL_TENSOR.FFN_UP,
  2683. gguf.MODEL_TENSOR.FFN_DOWN,
  2684. gguf.MODEL_TENSOR.FFN_GATE,
  2685. ]):
  2686. # transform weight into 1/0/-1 (in fp32)
  2687. data_torch = self.weight_quant(data_torch)
  2688. yield (new_name, data_torch)
  2689. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2690. class GrokModel(TextModel):
  2691. model_arch = gguf.MODEL_ARCH.GROK
  2692. def set_vocab(self):
  2693. if (self.dir_model / 'tokenizer.model').is_file():
  2694. self._set_vocab_sentencepiece()
  2695. return
  2696. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2697. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2698. sys.exit(1)
  2699. self._set_vocab_gpt2()
  2700. def __init__(self, *args, **kwargs):
  2701. super().__init__(*args, **kwargs)
  2702. def set_gguf_parameters(self):
  2703. super().set_gguf_parameters()
  2704. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2705. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2706. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2707. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2708. if (rope_dim := self.hparams.get("head_dim")) is None:
  2709. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2710. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2711. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2712. # Treat "original" as "yarn", seems to have been a mistake
  2713. if self.hparams.get("rope_type") in ("yarn", "original"):
  2714. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2715. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2716. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2717. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2718. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2719. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2720. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2721. if temp_len := self.hparams.get("attn_temperature_len"):
  2722. self.gguf_writer.add_attn_temperature_length(temp_len)
  2723. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2724. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2725. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2726. _experts: list[dict[str, list[Tensor]]] | None = None
  2727. _cur_expert = ""
  2728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2729. tensors: list[tuple[str, Tensor]] = []
  2730. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2731. if not is_expert:
  2732. tensors.append((self.map_tensor_name(name), data_torch))
  2733. # process the experts separately
  2734. if is_expert or self._cur_expert:
  2735. n_experts = self.hparams["num_local_experts"]
  2736. assert bid is not None
  2737. if self._experts is None:
  2738. self._experts = [{} for _ in range(self.block_count)]
  2739. # concatenate split tensors
  2740. if name in self._experts[bid]:
  2741. self._cur_expert = name
  2742. self._experts[bid][name].append(data_torch)
  2743. return []
  2744. elif is_expert:
  2745. self._cur_expert = name
  2746. self._experts[bid][name] = [data_torch]
  2747. return []
  2748. else:
  2749. self._cur_expert = ""
  2750. for bid in range(self.block_count):
  2751. if len(self._experts[bid]) >= n_experts * 3:
  2752. # merge the experts into a single 3d tensor
  2753. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2754. datas: list[Tensor] = []
  2755. for xid in range(n_experts):
  2756. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2757. if ename not in self._experts[bid]:
  2758. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2759. tensor_list = self._experts[bid][ename]
  2760. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2761. del self._experts[bid][ename]
  2762. data_torch = torch.stack(datas, dim=0)
  2763. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2764. new_name = self.map_tensor_name(merged_name)
  2765. yield (new_name, data_torch)
  2766. yield from tensors
  2767. @ModelBase.register("DbrxForCausalLM")
  2768. class DbrxModel(TextModel):
  2769. model_arch = gguf.MODEL_ARCH.DBRX
  2770. def set_gguf_parameters(self):
  2771. ffn_config = self.hparams["ffn_config"]
  2772. attn_config = self.hparams["attn_config"]
  2773. self.gguf_writer.add_block_count(self.block_count)
  2774. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2775. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2776. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2777. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2778. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2779. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2780. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2781. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2782. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2783. self.gguf_writer.add_layer_norm_eps(1e-5)
  2784. self.gguf_writer.add_file_type(self.ftype)
  2785. logger.info(f"gguf: file type = {self.ftype}")
  2786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2787. del bid # unused
  2788. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2789. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2790. n_embd = self.hparams["d_model"]
  2791. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2792. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2793. # But llama.cpp moe graph works differently
  2794. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2795. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2796. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2797. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2798. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2799. experts = False
  2800. for exp_tensor_name in exp_tensor_names.keys():
  2801. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2802. experts = True
  2803. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2804. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2805. data_torch = data_torch.permute(*permute_tensor)
  2806. break
  2807. # map tensor names
  2808. # In MoE models the ffn tensors are typically most of the model weights,
  2809. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2810. # Every other model has the weight names ending in .weight,
  2811. # let's assume that is the convention which is not the case for dbrx:
  2812. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2813. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2814. return [(new_name, data_torch)]
  2815. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2816. del name, new_name, bid # unused
  2817. return n_dims > 1
  2818. @ModelBase.register("MiniCPMForCausalLM")
  2819. class MiniCPMModel(TextModel):
  2820. model_arch = gguf.MODEL_ARCH.MINICPM
  2821. def set_gguf_parameters(self):
  2822. super().set_gguf_parameters()
  2823. embedding_scale = float(self.hparams["scale_emb"])
  2824. self.gguf_writer.add_embedding_scale(embedding_scale)
  2825. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2826. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2827. self.gguf_writer.add_residual_scale(residual_scale)
  2828. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2829. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2830. self.gguf_writer.add_logit_scale(logit_scale)
  2831. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2832. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2833. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2834. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2835. if rope_scaling is not None:
  2836. long_factors = rope_scaling.get('long_factor', None)
  2837. short_factors = rope_scaling.get('short_factor', None)
  2838. if long_factors is None or short_factors is None:
  2839. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2840. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2841. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2842. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2843. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2844. def set_vocab(self):
  2845. self._set_vocab_sentencepiece()
  2846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2847. del bid # unused
  2848. n_head = self.hparams["num_attention_heads"]
  2849. n_kv_head = self.hparams.get("num_key_value_heads")
  2850. # HF models permute some of the tensors, so we need to undo that
  2851. if name.endswith(("q_proj.weight")):
  2852. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2853. if name.endswith(("k_proj.weight")):
  2854. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2855. return [(self.map_tensor_name(name), data_torch)]
  2856. @ModelBase.register("MiniCPM3ForCausalLM")
  2857. class MiniCPM3Model(TextModel):
  2858. model_arch = gguf.MODEL_ARCH.MINICPM3
  2859. def set_gguf_parameters(self):
  2860. hparams = self.hparams
  2861. self.gguf_writer.add_file_type(self.ftype)
  2862. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2863. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2864. self.gguf_writer.add_block_count(self.block_count)
  2865. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2866. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2867. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2868. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2869. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2870. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2871. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2872. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2873. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2874. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2875. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2876. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2877. if rope_scaling is not None:
  2878. rope_dims = self.hparams["qk_rope_head_dim"]
  2879. long_factors = rope_scaling.get('long_factor', None)
  2880. short_factors = rope_scaling.get('short_factor', None)
  2881. if long_factors is None or short_factors is None:
  2882. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2883. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2884. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2885. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2886. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2887. def set_vocab(self):
  2888. self._set_vocab_sentencepiece()
  2889. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2890. if n_kv_head is not None and n_head != n_kv_head:
  2891. n_head //= n_kv_head
  2892. return (
  2893. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2894. .swapaxes(1, 2)
  2895. .reshape(weights.shape)
  2896. )
  2897. @ModelBase.register("QWenLMHeadModel")
  2898. class QwenModel(TextModel):
  2899. model_arch = gguf.MODEL_ARCH.QWEN
  2900. @staticmethod
  2901. def token_bytes_to_string(b):
  2902. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2903. byte_encoder = bytes_to_unicode()
  2904. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2905. @staticmethod
  2906. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2907. parts = [bytes([b]) for b in token]
  2908. while True:
  2909. min_idx = None
  2910. min_rank = None
  2911. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2912. rank = mergeable_ranks.get(pair[0] + pair[1])
  2913. if rank is not None and (min_rank is None or rank < min_rank):
  2914. min_idx = i
  2915. min_rank = rank
  2916. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2917. break
  2918. assert min_idx is not None
  2919. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2920. return parts
  2921. def set_vocab(self):
  2922. self._set_vocab_qwen()
  2923. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2924. class Qwen2Model(TextModel):
  2925. model_arch = gguf.MODEL_ARCH.QWEN2
  2926. def set_vocab(self):
  2927. try:
  2928. self._set_vocab_sentencepiece()
  2929. except FileNotFoundError:
  2930. self._set_vocab_gpt2()
  2931. def set_gguf_parameters(self):
  2932. super().set_gguf_parameters()
  2933. self._try_set_pooling_type()
  2934. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2935. if self.hf_arch == "Qwen2Model":
  2936. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2937. if "language_model." in name:
  2938. name = name.replace("language_model.", "") # for InternVL
  2939. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2940. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2941. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2942. # skip vision and audio tensors
  2943. return []
  2944. yield from super().modify_tensors(data_torch, name, bid)
  2945. @ModelBase.register("DreamModel")
  2946. class DreamModel(TextModel):
  2947. model_arch = gguf.MODEL_ARCH.DREAM
  2948. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2949. tokens: list[str] = []
  2950. toktypes: list[int] = []
  2951. from transformers import AutoTokenizer
  2952. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2953. vocab_dict = tokenizer.get_vocab()
  2954. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2955. assert max(vocab_dict.values()) < vocab_size
  2956. tokpre = self.get_vocab_base_pre(tokenizer)
  2957. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2958. added_vocab = tokenizer.get_added_vocab()
  2959. for i in range(vocab_size):
  2960. if i not in reverse_vocab:
  2961. tokens.append(f"[PAD{i}]")
  2962. toktypes.append(gguf.TokenType.UNUSED)
  2963. elif reverse_vocab[i] in added_vocab:
  2964. tokens.append(reverse_vocab[i])
  2965. # Check if it's a special token - treat special tokens as CONTROL tokens
  2966. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2967. if tokenizer.added_tokens_decoder[i].special:
  2968. toktypes.append(gguf.TokenType.CONTROL)
  2969. else:
  2970. toktypes.append(gguf.TokenType.USER_DEFINED)
  2971. else:
  2972. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2973. toktypes.append(gguf.TokenType.CONTROL)
  2974. else:
  2975. tokens.append(reverse_vocab[i])
  2976. toktypes.append(gguf.TokenType.NORMAL)
  2977. return tokens, toktypes, tokpre
  2978. def set_vocab(self):
  2979. try:
  2980. self._set_vocab_sentencepiece()
  2981. except FileNotFoundError:
  2982. self._set_vocab_gpt2()
  2983. def set_gguf_parameters(self):
  2984. super().set_gguf_parameters()
  2985. self._try_set_pooling_type()
  2986. # Dream models use non-causal attention for diffusion
  2987. self.gguf_writer.add_causal_attention(False)
  2988. # Add Dream-specific parameters
  2989. mask_token_id = self.hparams.get("mask_token_id")
  2990. if mask_token_id is not None:
  2991. self.gguf_writer.add_mask_token_id(mask_token_id)
  2992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2993. # Dream model tensors should be mapped directly since it's the base model
  2994. yield from super().modify_tensors(data_torch, name, bid)
  2995. @ModelBase.register("LLaDAModelLM")
  2996. class LLaDAModel(TextModel):
  2997. model_arch = gguf.MODEL_ARCH.LLADA
  2998. undo_permute = True
  2999. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  3000. tokens: list[str] = []
  3001. toktypes: list[int] = []
  3002. from transformers import AutoTokenizer
  3003. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  3004. vocab_dict = tokenizer.get_vocab()
  3005. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  3006. assert max(vocab_dict.values()) < vocab_size
  3007. tokpre = self.get_vocab_base_pre(tokenizer)
  3008. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  3009. added_vocab = tokenizer.get_added_vocab()
  3010. for i in range(vocab_size):
  3011. if i not in reverse_vocab:
  3012. tokens.append(f"[PAD{i}]")
  3013. toktypes.append(gguf.TokenType.UNUSED)
  3014. elif reverse_vocab[i] in added_vocab:
  3015. tokens.append(reverse_vocab[i])
  3016. # Check if it's a special token - treat special tokens as CONTROL tokens
  3017. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3018. if tokenizer.added_tokens_decoder[i].special:
  3019. toktypes.append(gguf.TokenType.CONTROL)
  3020. else:
  3021. toktypes.append(gguf.TokenType.USER_DEFINED)
  3022. else:
  3023. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3024. toktypes.append(gguf.TokenType.CONTROL)
  3025. else:
  3026. tokens.append(reverse_vocab[i])
  3027. toktypes.append(gguf.TokenType.NORMAL)
  3028. return tokens, toktypes, tokpre
  3029. def set_vocab(self):
  3030. self._set_vocab_gpt2()
  3031. # LLaDA specific parameters
  3032. self.gguf_writer.add_add_bos_token(True)
  3033. def set_gguf_parameters(self):
  3034. super().set_gguf_parameters()
  3035. self._try_set_pooling_type()
  3036. # Add parameters similar to LlamaModel
  3037. hparams = self.hparams
  3038. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3039. if (rope_dim := hparams.get("head_dim")) is None:
  3040. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3041. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3042. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3043. # Set context length for LLaDA
  3044. context_length = self.hparams.get("max_sequence_length", 4096)
  3045. self.gguf_writer.add_context_length(context_length)
  3046. # Set embedding length (dimension size)
  3047. embedding_length = self.hparams.get("d_model", 4096)
  3048. self.gguf_writer.add_embedding_length(embedding_length)
  3049. # Set feed forward length (MLP hidden size)
  3050. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3051. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3052. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3053. self.gguf_writer.add_causal_attention(False)
  3054. # LLaDA models don't shift their logits
  3055. self.gguf_writer.add_diffusion_shift_logits(False)
  3056. @staticmethod
  3057. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3058. if n_head_kv is not None and n_head != n_head_kv:
  3059. n_head = n_head_kv
  3060. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3061. .swapaxes(1, 2)
  3062. .reshape(weights.shape))
  3063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3064. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3065. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3066. if self.undo_permute:
  3067. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3068. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3069. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3070. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3071. # LLaDA model tensors should be mapped directly since it's the base model
  3072. yield from super().modify_tensors(data_torch, name, bid)
  3073. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3074. class Ernie4_5Model(TextModel):
  3075. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3076. def set_vocab(self):
  3077. self._set_vocab_sentencepiece()
  3078. def set_gguf_parameters(self):
  3079. super().set_gguf_parameters()
  3080. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3081. num_heads = self.hparams["num_attention_heads"]
  3082. num_kv_heads = self.hparams["num_key_value_heads"]
  3083. if (head_dim := self.hparams.get("head_dim")) is None:
  3084. head_dim = self.hparams["hidden_size"] // num_heads
  3085. if "ernie." in name:
  3086. name = name.replace("ernie.", "model.")
  3087. # split the qkv weights
  3088. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3089. if "qkv_proj" in name:
  3090. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3091. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3092. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3093. total_q_dim = num_heads * head_dim
  3094. total_k_dim = num_kv_heads * head_dim
  3095. total_v_dim = num_kv_heads * head_dim
  3096. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3097. return [
  3098. (self.map_tensor_name(name_q), q_proj_weight),
  3099. (self.map_tensor_name(name_k), k_proj_weight),
  3100. (self.map_tensor_name(name_v), v_proj_weight)
  3101. ]
  3102. # split the up_gate_proj into gate and up
  3103. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3104. if "up_gate_proj" in name:
  3105. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3106. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3107. dim_half = data_torch.shape[0] // 2
  3108. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3109. return [
  3110. (self.map_tensor_name(name_gate), gate_proj_weight),
  3111. (self.map_tensor_name(name_up), up_proj_weight)
  3112. ]
  3113. return [(self.map_tensor_name(name), data_torch)]
  3114. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3115. class Ernie4_5MoeModel(Ernie4_5Model):
  3116. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3117. _experts: list[dict[str, Tensor]] | None = None
  3118. def __init__(self, *args, **kwargs):
  3119. super().__init__(*args, **kwargs)
  3120. self._experts = [{} for _ in range(self.block_count)]
  3121. def set_gguf_parameters(self):
  3122. super().set_gguf_parameters()
  3123. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3124. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3125. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3126. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3127. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3128. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3129. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3130. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3131. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3132. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3133. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3134. # Modify correction bias name as in DeepseekV2
  3135. if name.endswith("e_score_correction_bias"):
  3136. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3137. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3138. match = re.match(r"model.mtp_block.(\d+)", name)
  3139. if match:
  3140. return []
  3141. # skip all other MTP tensors for now
  3142. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3143. if match:
  3144. return []
  3145. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3146. if match:
  3147. return []
  3148. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3149. if match:
  3150. return []
  3151. # process the experts separately
  3152. if name.find("mlp.experts") != -1:
  3153. n_experts = self.hparams["moe_num_experts"]
  3154. assert bid is not None
  3155. if self._experts is None:
  3156. self._experts = [{} for _ in range(self.block_count)]
  3157. self._experts[bid][name] = data_torch
  3158. if len(self._experts[bid]) >= n_experts * 3:
  3159. tensors: list[tuple[str, Tensor]] = []
  3160. # merge the experts into a single 3d tensor
  3161. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3162. datas: list[Tensor] = []
  3163. for xid in range(n_experts):
  3164. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3165. datas.append(self._experts[bid][ename_to_retrieve])
  3166. del self._experts[bid][ename_to_retrieve]
  3167. data_torch = torch.stack(datas, dim=0)
  3168. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3169. new_name = self.map_tensor_name(merged_name)
  3170. tensors.append((new_name, data_torch))
  3171. return tensors
  3172. else:
  3173. return []
  3174. return [(self.map_tensor_name(name), data_torch)]
  3175. def prepare_tensors(self):
  3176. super().prepare_tensors()
  3177. if self._experts is not None:
  3178. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3179. experts = [k for d in self._experts for k in d.keys()]
  3180. if len(experts) > 0:
  3181. raise ValueError(f"Unprocessed experts: {experts}")
  3182. @ModelBase.register(
  3183. "Qwen2VLModel",
  3184. "Qwen2VLForConditionalGeneration",
  3185. "Qwen2_5_VLForConditionalGeneration",
  3186. "Qwen2_5OmniModel",
  3187. )
  3188. class Qwen2VLModel(TextModel):
  3189. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3190. def set_gguf_parameters(self):
  3191. super().set_gguf_parameters()
  3192. def set_vocab(self):
  3193. try:
  3194. self._set_vocab_sentencepiece()
  3195. except FileNotFoundError:
  3196. self._set_vocab_gpt2()
  3197. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3198. del bid # unused
  3199. if name.startswith("thinker."):
  3200. name = name.replace("thinker.", "")
  3201. if name.startswith("visual") or name.startswith("audio") or \
  3202. name.startswith("talker") or name.startswith("token2wav"):
  3203. # skip multimodal tensors
  3204. return []
  3205. return [(self.map_tensor_name(name), data_torch)]
  3206. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3207. class Qwen2VLVisionModel(MmprojModel):
  3208. def __init__(self, *args, **kwargs):
  3209. super().__init__(*args, **kwargs)
  3210. assert self.hparams_vision is not None
  3211. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3212. # rename config.json values
  3213. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3214. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3215. if "embed_dim" in self.hparams_vision: # qwen2vl
  3216. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3217. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3218. def set_gguf_parameters(self):
  3219. super().set_gguf_parameters()
  3220. assert self.hparams_vision is not None
  3221. hparams = self.hparams_vision
  3222. model_type = self.global_config['model_type']
  3223. if model_type == 'qwen2_vl':
  3224. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3225. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3226. if model_type == 'qwen2_5_omni':
  3227. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3228. else:
  3229. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3230. self.gguf_writer.add_vision_use_silu(True)
  3231. # find n_wa_pattern (window attention pattern)
  3232. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3233. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3234. n_wa_pattern = fullatt_block_indexes[0] + 1
  3235. # validate n_wa_pattern
  3236. for i in range(1, len(fullatt_block_indexes)):
  3237. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3238. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3239. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3240. else:
  3241. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3242. # default values below are taken from HF tranformers code
  3243. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3244. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3245. if ".position_embd." in new_name:
  3246. return gguf.GGMLQuantizationType.F32
  3247. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3248. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3249. del bid # unused
  3250. if name.startswith("visual."):
  3251. # process visual tensors
  3252. # split QKV tensors if needed
  3253. if ".qkv." in name:
  3254. if data_torch.ndim == 2: # weight
  3255. c3, _ = data_torch.shape
  3256. else: # bias
  3257. c3 = data_torch.shape[0]
  3258. assert c3 % 3 == 0
  3259. c = c3 // 3
  3260. wq = data_torch[:c]
  3261. wk = data_torch[c: c * 2]
  3262. wv = data_torch[c * 2:]
  3263. return [
  3264. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3265. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3266. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3267. ]
  3268. elif 'patch_embed.proj.weight' in name:
  3269. # split Conv3D into Conv2Ds
  3270. c1, c2, kt, kh, kw = data_torch.shape
  3271. del c1, c2, kh, kw # unused
  3272. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3273. return [
  3274. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3275. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3276. ]
  3277. else:
  3278. return [(self.map_tensor_name(name), data_torch)]
  3279. return [] # skip other tensors
  3280. @ModelBase.register("Qwen2_5OmniModel")
  3281. class Qwen25OmniModel(Qwen2VLVisionModel):
  3282. has_vision_encoder = True
  3283. has_audio_encoder = True
  3284. def __init__(self, *args, **kwargs):
  3285. super().__init__(*args, **kwargs)
  3286. assert self.hparams_audio is not None
  3287. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3288. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3289. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3290. def set_gguf_parameters(self):
  3291. super().set_gguf_parameters()
  3292. assert self.hparams_audio is not None
  3293. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3294. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3295. def get_vision_config(self) -> dict[str, Any] | None:
  3296. return self.global_config["thinker_config"].get("vision_config")
  3297. def get_audio_config(self) -> dict[str, Any] | None:
  3298. return self.global_config["thinker_config"].get("audio_config")
  3299. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3300. # SinusoidsPositionEmbedding
  3301. assert self.hparams_audio is not None
  3302. max_timescale = 10000
  3303. length = 1500
  3304. channels = self.hparams_audio["hidden_size"]
  3305. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3306. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3307. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3308. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3309. yield ("audio_tower.embed_positions.weight", pos_embd)
  3310. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3311. if ".conv" in name and ".weight" in name:
  3312. return gguf.GGMLQuantizationType.F16
  3313. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3315. if name.startswith("thinker."):
  3316. name = name.replace("thinker.", "")
  3317. if name.startswith("audio_tower"):
  3318. # process audio tensors
  3319. if "conv1.bias" in name or "conv2.bias" in name:
  3320. # transpose conv1 and conv2 bias
  3321. data_torch = data_torch.unsqueeze(-1)
  3322. if "audio_bos_eos_token" in name:
  3323. # this tensor is left unused in transformers code
  3324. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3325. return []
  3326. return [(self.map_tensor_name(name), data_torch)]
  3327. return super().modify_tensors(data_torch, name, bid)
  3328. @ModelBase.register("InternVisionModel")
  3329. class InternVisionModel(MmprojModel):
  3330. def set_gguf_parameters(self):
  3331. assert self.hparams_vision is not None
  3332. if isinstance(self.hparams_vision['image_size'], list):
  3333. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3334. if isinstance(self.hparams_vision['patch_size'], list):
  3335. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3336. super().set_gguf_parameters()
  3337. hparams = self.hparams
  3338. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3339. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3340. # hidden_act
  3341. if hparams["hidden_act"] == "silu":
  3342. self.gguf_writer.add_vision_use_silu(True)
  3343. elif hparams["hidden_act"] == "gelu":
  3344. self.gguf_writer.add_vision_use_gelu(True)
  3345. else:
  3346. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3347. # downsample_ratio
  3348. downsample_ratio = self.global_config.get("downsample_ratio")
  3349. assert downsample_ratio is not None
  3350. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3351. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3352. if ".position_embd." in new_name:
  3353. return gguf.GGMLQuantizationType.F32
  3354. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3355. def _mapping_interns1_name(self, name):
  3356. names_map = {
  3357. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3358. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3359. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3360. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3361. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3362. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3363. }
  3364. if name in names_map:
  3365. name = names_map[name]
  3366. return name
  3367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3368. del bid # unused
  3369. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3370. # deal with intern-s1 special case
  3371. name = self._mapping_interns1_name(name)
  3372. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3373. # process visual tensors
  3374. # correct name
  3375. if name.startswith("vision_model"):
  3376. name = "vision_tower." + name
  3377. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3378. name += ".weight"
  3379. # split QKV tensors if needed
  3380. if ".qkv." in name:
  3381. if data_torch.ndim == 2: # weight
  3382. c3, _ = data_torch.shape
  3383. else: # bias
  3384. c3 = data_torch.shape[0]
  3385. assert c3 % 3 == 0
  3386. c = c3 // 3
  3387. wq = data_torch[:c]
  3388. wk = data_torch[c: c * 2]
  3389. wv = data_torch[c * 2:]
  3390. return [
  3391. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3392. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3393. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3394. ]
  3395. return [(self.map_tensor_name(name), data_torch)]
  3396. return [] # skip other tensors
  3397. @ModelBase.register("WavTokenizerDec")
  3398. class WavTokenizerDecModel(TextModel):
  3399. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3401. del bid # unused
  3402. if \
  3403. name.endswith("codebook.cluster_size") or \
  3404. name.endswith("codebook.embed_avg") or \
  3405. name.endswith("codebook.inited"):
  3406. logger.debug(f"Skipping {name!r}")
  3407. return []
  3408. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3409. return [(self.map_tensor_name(name), data_torch)]
  3410. def set_vocab(self):
  3411. self._set_vocab_none()
  3412. def set_gguf_parameters(self):
  3413. super().set_gguf_parameters()
  3414. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3415. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3416. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3417. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3418. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3419. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3420. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3421. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3422. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3423. self.gguf_writer.add_causal_attention(False)
  3424. @ModelBase.register("Qwen2MoeForCausalLM")
  3425. class Qwen2MoeModel(TextModel):
  3426. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3427. def set_gguf_parameters(self):
  3428. super().set_gguf_parameters()
  3429. if (n_experts := self.hparams.get("num_experts")) is not None:
  3430. self.gguf_writer.add_expert_count(n_experts)
  3431. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3432. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3433. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3434. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3435. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3436. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3437. _experts: list[dict[str, Tensor]] | None = None
  3438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3439. # process the experts separately
  3440. name = name.replace("language_model.", "") # InternVL
  3441. # handle aggregated expert tensors
  3442. # GGUF stores dimensions reversed from PyTorch, so:
  3443. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3444. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3445. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3446. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3447. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3448. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3449. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3450. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3451. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3452. permuted = data_torch.permute(0, 2, 1).contiguous()
  3453. return [(self.map_tensor_name(mapped), permuted)]
  3454. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3455. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3456. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3457. split_dim = data_torch.shape[-1] // 2
  3458. gate = data_torch[..., :split_dim].contiguous()
  3459. up = data_torch[..., split_dim:].contiguous()
  3460. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3461. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3462. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3463. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3464. base_name = name.removesuffix(".weight")
  3465. base = base_name.rsplit('.', 1)[0]
  3466. mapped_gate = f"{base}.gate_proj.weight"
  3467. mapped_up = f"{base}.up_proj.weight"
  3468. perm_gate = gate.permute(0, 2, 1).contiguous()
  3469. perm_up = up.permute(0, 2, 1).contiguous()
  3470. return [
  3471. (self.map_tensor_name(mapped_gate), perm_gate),
  3472. (self.map_tensor_name(mapped_up), perm_up),
  3473. ]
  3474. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3475. # skip visual tensors
  3476. return []
  3477. if name.find("experts") != -1:
  3478. n_experts = self.hparams["num_experts"]
  3479. assert bid is not None
  3480. if self._experts is None:
  3481. self._experts = [{} for _ in range(self.block_count)]
  3482. self._experts[bid][name] = data_torch
  3483. if len(self._experts[bid]) >= n_experts * 3:
  3484. tensors: list[tuple[str, Tensor]] = []
  3485. # merge the experts into a single 3d tensor
  3486. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3487. datas: list[Tensor] = []
  3488. for xid in range(n_experts):
  3489. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3490. datas.append(self._experts[bid][ename])
  3491. del self._experts[bid][ename]
  3492. data_torch = torch.stack(datas, dim=0)
  3493. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3494. new_name = self.map_tensor_name(merged_name)
  3495. tensors.append((new_name, data_torch))
  3496. return tensors
  3497. else:
  3498. return []
  3499. return [(self.map_tensor_name(name), data_torch)]
  3500. def prepare_tensors(self):
  3501. super().prepare_tensors()
  3502. if self._experts is not None:
  3503. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3504. experts = [k for d in self._experts for k in d.keys()]
  3505. if len(experts) > 0:
  3506. raise ValueError(f"Unprocessed experts: {experts}")
  3507. @ModelBase.register("Qwen3ForCausalLM")
  3508. class Qwen3Model(Qwen2Model):
  3509. model_arch = gguf.MODEL_ARCH.QWEN3
  3510. # extra logic for rerank models
  3511. is_rerank: bool = False
  3512. is_tied_embeddings: bool = False
  3513. token_false_id: int | None = None
  3514. token_true_id: int | None = None
  3515. def __init__(self, *args, **kwargs):
  3516. super().__init__(*args, **kwargs)
  3517. # track for intern-s1-mini
  3518. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3519. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3520. # a bit hacky, but currently the only way to detect if this is a rerank model
  3521. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3522. readme_path = self.dir_model / "README.md"
  3523. readme_text = ""
  3524. if readme_path.exists():
  3525. with readme_path.open("r", encoding="utf-8") as f:
  3526. readme_text = f.read()
  3527. if "# Qwen3-Reranker" in readme_text:
  3528. self._find_rerank_config()
  3529. def set_vocab(self):
  3530. # deal with intern-s1-mini
  3531. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3532. self._set_vocab_interns1()
  3533. return
  3534. super().set_vocab()
  3535. def _find_rerank_config(self):
  3536. from transformers import AutoTokenizer
  3537. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3538. self.is_rerank = True
  3539. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3540. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3541. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3542. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3543. assert self.token_false_id is not None and self.token_true_id is not None
  3544. def set_gguf_parameters(self):
  3545. super().set_gguf_parameters()
  3546. if self.is_rerank:
  3547. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3548. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3549. self.gguf_writer.add_chat_template([{
  3550. "name": "rerank",
  3551. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3552. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3553. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3554. }])
  3555. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3556. # extract "yes" and "no" tokens from the output lm_head tensor
  3557. false_row = data_torch[self.token_false_id]
  3558. true_row = data_torch[self.token_true_id]
  3559. return torch.stack([true_row, false_row], dim=0)
  3560. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3561. if "model.vision_" in name:
  3562. # skip multimodal tensors
  3563. return []
  3564. if self.is_rerank:
  3565. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3566. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3567. if is_tied_head or is_real_head:
  3568. cls_out_head = (
  3569. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3570. self._get_cls_out_tensor(data_torch),
  3571. )
  3572. if is_tied_head:
  3573. embed = (self.map_tensor_name(name), data_torch)
  3574. return [cls_out_head, embed]
  3575. if is_real_head:
  3576. return [cls_out_head]
  3577. return super().modify_tensors(data_torch, name, bid)
  3578. @ModelBase.register("Qwen3MoeForCausalLM")
  3579. class Qwen3MoeModel(Qwen2MoeModel):
  3580. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3581. def __init__(self, *args, **kwargs):
  3582. super().__init__(*args, **kwargs)
  3583. hparams = ModelBase.load_hparams(self.dir_model, False)
  3584. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3585. def set_vocab(self):
  3586. # deal with intern-s1
  3587. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3588. self._set_vocab_interns1()
  3589. return
  3590. super().set_vocab()
  3591. @ModelBase.register("Qwen3NextForCausalLM")
  3592. class Qwen3NextModel(Qwen2MoeModel):
  3593. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3594. def set_gguf_parameters(self):
  3595. super().set_gguf_parameters()
  3596. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3597. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3598. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3599. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3600. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3601. if (rope_dim := self.hparams.get("head_dim")) is None:
  3602. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3603. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3605. if name.startswith("mtp"):
  3606. return [] # ignore MTP layers for now
  3607. if name.endswith(".A_log"):
  3608. data_torch = -torch.exp(data_torch)
  3609. elif name.endswith(".dt_bias"):
  3610. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3611. elif "conv1d" in name:
  3612. data_torch = data_torch.squeeze()
  3613. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3614. data_torch = data_torch + 1
  3615. yield from super().modify_tensors(data_torch, name, bid)
  3616. @ModelBase.register("RND1")
  3617. class RND1Model(Qwen2MoeModel):
  3618. model_arch = gguf.MODEL_ARCH.RND1
  3619. def set_gguf_parameters(self):
  3620. super().set_gguf_parameters()
  3621. # RND1 specific parameters
  3622. # RND1 uses bidirectional attention
  3623. self.gguf_writer.add_causal_attention(False)
  3624. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3625. self.gguf_writer.add_mask_token_id(mask_token_id)
  3626. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3627. class Qwen3VLVisionModel(MmprojModel):
  3628. def __init__(self, *args, **kwargs):
  3629. super().__init__(*args, **kwargs)
  3630. assert self.hparams_vision is not None
  3631. # Compute image_size if not present
  3632. if "image_size" not in self.hparams_vision:
  3633. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3634. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3635. patch_size = self.hparams_vision.get("patch_size", 16)
  3636. # num_position_embeddings = (image_size / patch_size) ** 2
  3637. # So image_size = sqrt(num_position_embeddings) * patch_size
  3638. image_size = int(num_pos**0.5 * patch_size)
  3639. self.hparams_vision["image_size"] = image_size
  3640. # Rename config values for compatibility
  3641. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3642. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3643. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3644. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3645. self.is_deepstack_layers[idx] = True
  3646. def set_gguf_parameters(self):
  3647. super().set_gguf_parameters()
  3648. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3649. self.gguf_writer.add_vision_use_gelu(True)
  3650. if self.hparams_vision is not None:
  3651. merge_size = self.hparams_vision.get("spatial_merge_size")
  3652. if merge_size is not None:
  3653. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3654. # Use text config's rms_norm_eps for vision attention layernorm eps
  3655. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3656. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3657. if self.is_deepstack_layers:
  3658. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3659. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3660. assert self.hparams_vision is not None
  3661. # Skip text model tensors - they go in the text model file
  3662. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3663. return []
  3664. if name.startswith("model.visual."):
  3665. name = name.replace("model.visual.", "visual.", 1)
  3666. if name.startswith("visual.deepstack_merger_list."):
  3667. prefix, rest = name.split(".", maxsplit=3)[2:]
  3668. # prefix is the layer index, convert to absolute clip layer index!
  3669. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3670. target = rest
  3671. tensor_type: gguf.MODEL_TENSOR
  3672. if target.startswith("norm."):
  3673. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3674. suffix = target.split(".", 1)[1]
  3675. elif target.startswith("linear_fc1."):
  3676. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3677. suffix = target.split(".", 1)[1]
  3678. elif target.startswith("linear_fc2."):
  3679. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3680. suffix = target.split(".", 1)[1]
  3681. else:
  3682. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3683. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3684. return [(new_name, data_torch)]
  3685. if name.startswith("visual.merger."):
  3686. suffix = name.split(".", 2)[2]
  3687. if suffix.startswith("linear_fc"):
  3688. fc_idx_str, tail = suffix.split(".", 1)
  3689. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3690. # Qwen3VL has linear_fc1 and linear_fc2
  3691. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3692. if fc_num == 1:
  3693. fc_idx = 0
  3694. elif fc_num == 2:
  3695. fc_idx = 2
  3696. else:
  3697. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3698. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3699. elif suffix.startswith("norm."):
  3700. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3701. else:
  3702. raise ValueError(f"Unexpected merger tensor: {name}")
  3703. return [(new_name, data_torch)]
  3704. if name == "visual.patch_embed.proj.weight":
  3705. # split Conv3D into Conv2Ds along temporal dimension
  3706. c1, c2, kt, _, _ = data_torch.shape
  3707. del c1, c2
  3708. if kt != 2:
  3709. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3710. return [
  3711. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3712. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3713. ]
  3714. if name == "visual.patch_embed.proj.bias":
  3715. # Include the bias - it's used by the C++ code
  3716. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3717. if name.startswith("visual."):
  3718. return [(self.map_tensor_name(name), data_torch)]
  3719. # Fall back to parent class for other tensors
  3720. return super().modify_tensors(data_torch, name, bid)
  3721. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3722. class Glm4VVisionModel(Qwen3VLVisionModel):
  3723. def set_gguf_parameters(self):
  3724. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3725. assert self.hparams_vision is not None
  3726. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3727. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3728. if hidden_act == "gelu":
  3729. self.gguf_writer.add_vision_use_gelu(True)
  3730. elif hidden_act == "silu":
  3731. self.gguf_writer.add_vision_use_silu(True)
  3732. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3733. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3735. if name.startswith("model.visual."):
  3736. name = name.replace("model.visual.", "visual.")
  3737. if name.startswith("visual.merger."):
  3738. return [(self.map_tensor_name(name), data_torch)]
  3739. return super().modify_tensors(data_torch, name, bid)
  3740. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3741. class Qwen3VLTextModel(Qwen3Model):
  3742. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3743. def set_gguf_parameters(self):
  3744. super().set_gguf_parameters()
  3745. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3746. vision_config = self.hparams.get("vision_config", {})
  3747. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3748. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3749. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3750. # Skip vision tensors - they go in the mmproj file
  3751. if name.startswith("model.visual."):
  3752. return []
  3753. return super().modify_tensors(data_torch, name, bid)
  3754. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3755. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3756. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3757. def set_gguf_parameters(self):
  3758. super().set_gguf_parameters()
  3759. vision_config = self.hparams.get("vision_config", {})
  3760. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3761. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3763. # Skip vision tensors - they go in the mmproj file
  3764. if name.startswith("model.visual."):
  3765. return []
  3766. return super().modify_tensors(data_torch, name, bid)
  3767. @ModelBase.register("GPT2LMHeadModel")
  3768. class GPT2Model(TextModel):
  3769. model_arch = gguf.MODEL_ARCH.GPT2
  3770. def set_gguf_parameters(self):
  3771. self.gguf_writer.add_block_count(self.block_count)
  3772. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3773. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3774. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3775. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3776. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3777. self.gguf_writer.add_file_type(self.ftype)
  3778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3779. del bid # unused
  3780. tensors: list[tuple[str, Tensor]] = []
  3781. # we don't need these
  3782. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3783. return tensors
  3784. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3785. data_torch = data_torch.transpose(1, 0)
  3786. new_name = self.map_tensor_name(name)
  3787. tensors.append((new_name, data_torch))
  3788. return tensors
  3789. @ModelBase.register("PhiForCausalLM")
  3790. class Phi2Model(TextModel):
  3791. model_arch = gguf.MODEL_ARCH.PHI2
  3792. def set_gguf_parameters(self):
  3793. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3794. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3795. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3796. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3797. self.gguf_writer.add_embedding_length(n_embd)
  3798. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3799. self.gguf_writer.add_block_count(self.block_count)
  3800. self.gguf_writer.add_head_count(n_head)
  3801. self.gguf_writer.add_head_count_kv(n_head)
  3802. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3803. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3804. self.gguf_writer.add_file_type(self.ftype)
  3805. self.gguf_writer.add_add_bos_token(False)
  3806. @ModelBase.register("Phi3ForCausalLM")
  3807. class Phi3MiniModel(TextModel):
  3808. model_arch = gguf.MODEL_ARCH.PHI3
  3809. def set_vocab(self):
  3810. # Phi-4 model uses GPT2Tokenizer
  3811. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3812. if tokenizer_config_file.is_file():
  3813. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3814. tokenizer_config_json = json.load(f)
  3815. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3816. if tokenizer_class == 'GPT2Tokenizer':
  3817. return self._set_vocab_gpt2()
  3818. from sentencepiece import SentencePieceProcessor
  3819. tokenizer_path = self.dir_model / 'tokenizer.model'
  3820. if not tokenizer_path.is_file():
  3821. raise ValueError(f'Error: Missing {tokenizer_path}')
  3822. tokenizer = SentencePieceProcessor()
  3823. tokenizer.LoadFromFile(str(tokenizer_path))
  3824. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3825. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3826. scores: list[float] = [-10000.0] * vocab_size
  3827. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3828. for token_id in range(tokenizer.vocab_size()):
  3829. piece = tokenizer.IdToPiece(token_id)
  3830. text = piece.encode("utf-8")
  3831. score = tokenizer.GetScore(token_id)
  3832. toktype = SentencePieceTokenTypes.NORMAL
  3833. if tokenizer.IsUnknown(token_id):
  3834. toktype = SentencePieceTokenTypes.UNKNOWN
  3835. elif tokenizer.IsControl(token_id):
  3836. toktype = SentencePieceTokenTypes.CONTROL
  3837. elif tokenizer.IsUnused(token_id):
  3838. toktype = SentencePieceTokenTypes.UNUSED
  3839. elif tokenizer.IsByte(token_id):
  3840. toktype = SentencePieceTokenTypes.BYTE
  3841. tokens[token_id] = text
  3842. scores[token_id] = score
  3843. toktypes[token_id] = toktype
  3844. added_tokens_file = self.dir_model / 'added_tokens.json'
  3845. if added_tokens_file.is_file():
  3846. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3847. added_tokens_json = json.load(f)
  3848. for key in added_tokens_json:
  3849. token_id = added_tokens_json[key]
  3850. if token_id >= vocab_size:
  3851. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3852. continue
  3853. tokens[token_id] = key.encode("utf-8")
  3854. scores[token_id] = -1000.0
  3855. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3856. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3857. if tokenizer_config_file.is_file():
  3858. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3859. tokenizer_config_json = json.load(f)
  3860. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3861. for token_id, foken_data in added_tokens_decoder.items():
  3862. token_id = int(token_id)
  3863. token = foken_data["content"].encode("utf-8")
  3864. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3865. if tokens[token_id] != token:
  3866. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3867. tokens[token_id] = token
  3868. scores[token_id] = -1000.0
  3869. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3870. if foken_data.get("special"):
  3871. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3872. tokenizer_file = self.dir_model / 'tokenizer.json'
  3873. if tokenizer_file.is_file():
  3874. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3875. tokenizer_json = json.load(f)
  3876. added_tokens = tokenizer_json.get("added_tokens", [])
  3877. for foken_data in added_tokens:
  3878. token_id = int(foken_data["id"])
  3879. token = foken_data["content"].encode("utf-8")
  3880. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3881. if tokens[token_id] != token:
  3882. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3883. tokens[token_id] = token
  3884. scores[token_id] = -1000.0
  3885. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3886. if foken_data.get("special"):
  3887. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3888. self.gguf_writer.add_tokenizer_model("llama")
  3889. self.gguf_writer.add_tokenizer_pre("default")
  3890. self.gguf_writer.add_token_list(tokens)
  3891. self.gguf_writer.add_token_scores(scores)
  3892. self.gguf_writer.add_token_types(toktypes)
  3893. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3894. special_vocab.add_to_gguf(self.gguf_writer)
  3895. def set_gguf_parameters(self):
  3896. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3897. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3898. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3899. rms_eps = self.find_hparam(["rms_norm_eps"])
  3900. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3901. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3902. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3903. rope_dims = int(rot_pct * n_embd) // n_head
  3904. self.gguf_writer.add_context_length(max_pos_embds)
  3905. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3906. self.gguf_writer.add_embedding_length(n_embd)
  3907. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3908. self.gguf_writer.add_block_count(self.block_count)
  3909. self.gguf_writer.add_head_count(n_head)
  3910. self.gguf_writer.add_head_count_kv(n_head_kv)
  3911. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3912. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3913. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3914. self.gguf_writer.add_file_type(self.ftype)
  3915. sliding_window = self.hparams.get("sliding_window")
  3916. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3917. if sliding_window is None:
  3918. sliding_window = 0
  3919. self.gguf_writer.add_sliding_window(sliding_window)
  3920. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3921. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3922. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3923. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3924. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3925. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3926. rope_dims = int(rot_pct * n_embd) // n_head
  3927. # write rope scaling for long context (128k) model
  3928. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3929. if rope_scaling is None:
  3930. return
  3931. scale = max_pos_embds / orig_max_pos_embds
  3932. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3933. if len(rope_scaling_type) == 0:
  3934. raise KeyError('Missing the required key rope_scaling.type')
  3935. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3936. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3937. elif rope_scaling_type == 'yarn':
  3938. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3939. else:
  3940. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3941. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3942. long_factors = rope_scaling.get('long_factor', None)
  3943. short_factors = rope_scaling.get('short_factor', None)
  3944. if long_factors is None or short_factors is None:
  3945. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3946. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3947. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3948. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3949. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3950. @ModelBase.register("PhiMoEForCausalLM")
  3951. class PhiMoeModel(Phi3MiniModel):
  3952. model_arch = gguf.MODEL_ARCH.PHIMOE
  3953. _experts: list[dict[str, Tensor]] | None = None
  3954. def set_gguf_parameters(self):
  3955. super().set_gguf_parameters()
  3956. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3957. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3958. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3959. # process the experts separately
  3960. if name.find("block_sparse_moe.experts") != -1:
  3961. n_experts = self.hparams["num_local_experts"]
  3962. assert bid is not None
  3963. if self._experts is None:
  3964. self._experts = [{} for _ in range(self.block_count)]
  3965. self._experts[bid][name] = data_torch
  3966. if len(self._experts[bid]) >= n_experts * 3:
  3967. tensors: list[tuple[str, Tensor]] = []
  3968. # merge the experts into a single 3d tensor
  3969. for w_name in ["w1", "w2", "w3"]:
  3970. datas: list[Tensor] = []
  3971. for xid in range(n_experts):
  3972. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3973. datas.append(self._experts[bid][ename])
  3974. del self._experts[bid][ename]
  3975. data_torch = torch.stack(datas, dim=0)
  3976. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3977. new_name = self.map_tensor_name(merged_name)
  3978. tensors.append((new_name, data_torch))
  3979. return tensors
  3980. else:
  3981. return []
  3982. return [(self.map_tensor_name(name), data_torch)]
  3983. def prepare_tensors(self):
  3984. super().prepare_tensors()
  3985. if self._experts is not None:
  3986. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3987. experts = [k for d in self._experts for k in d.keys()]
  3988. if len(experts) > 0:
  3989. raise ValueError(f"Unprocessed experts: {experts}")
  3990. @ModelBase.register("PlamoForCausalLM")
  3991. class PlamoModel(TextModel):
  3992. model_arch = gguf.MODEL_ARCH.PLAMO
  3993. def set_vocab(self):
  3994. self._set_vocab_sentencepiece()
  3995. def set_gguf_parameters(self):
  3996. hparams = self.hparams
  3997. self.gguf_writer.add_context_length(4096) # not in config.json
  3998. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3999. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4000. self.gguf_writer.add_block_count(self.block_count)
  4001. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4002. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  4003. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  4004. self.gguf_writer.add_file_type(self.ftype)
  4005. def shuffle_attn_q_weight(self, data_torch):
  4006. assert data_torch.size() == (5120, 5120)
  4007. data_torch = data_torch.reshape(8, 5, 128, 5120)
  4008. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  4009. data_torch = torch.reshape(data_torch, (5120, 5120))
  4010. return data_torch
  4011. def shuffle_attn_output_weight(self, data_torch):
  4012. assert data_torch.size() == (5120, 5120)
  4013. data_torch = data_torch.reshape(5120, 8, 5, 128)
  4014. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4015. data_torch = torch.reshape(data_torch, (5120, 5120))
  4016. return data_torch
  4017. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4018. del bid # unused
  4019. new_name = self.map_tensor_name(name)
  4020. # shuffle for broadcasting of gqa in ggml_mul_mat
  4021. if new_name.endswith("attn_q.weight"):
  4022. data_torch = self.shuffle_attn_q_weight(data_torch)
  4023. elif new_name.endswith("attn_output.weight"):
  4024. data_torch = self.shuffle_attn_output_weight(data_torch)
  4025. return [(new_name, data_torch)]
  4026. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4027. class Plamo2Model(TextModel):
  4028. model_arch = gguf.MODEL_ARCH.PLAMO2
  4029. def set_vocab(self):
  4030. self._set_vocab_plamo()
  4031. def set_gguf_parameters(self):
  4032. hparams = self.hparams
  4033. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4034. # Which layers are Mamba layers
  4035. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4036. # This logic matches modeling_plamo.py's is_mamba function
  4037. mamba_step = hparams.get("mamba_step", 2)
  4038. mamba_enabled = hparams.get("mamba_enabled", True)
  4039. num_key_value_heads = []
  4040. num_attention_heads = []
  4041. if mamba_enabled:
  4042. for i in range(self.block_count):
  4043. if self.block_count <= (mamba_step // 2):
  4044. # use attention in last layer
  4045. is_mamba = (i != self.block_count - 1)
  4046. else:
  4047. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4048. if is_mamba:
  4049. num_key_value_heads.append(0)
  4050. num_attention_heads.append(0)
  4051. else:
  4052. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4053. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4054. if num_key_value_heads and num_attention_heads:
  4055. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4056. self.gguf_writer.add_head_count(num_attention_heads)
  4057. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4058. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4059. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4060. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4061. self.gguf_writer.add_block_count(self.block_count)
  4062. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4063. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4064. # Mamba parameters
  4065. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4066. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4067. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4068. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4069. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4070. self.gguf_writer.add_ssm_group_count(0)
  4071. # MLP feed forward parameters (for attention layers)
  4072. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4073. self.gguf_writer.add_file_type(self.ftype)
  4074. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4075. del bid # unused
  4076. if name.endswith(".A_log"):
  4077. data_torch = -torch.exp(data_torch)
  4078. elif name.endswith(".dt_bias"):
  4079. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4080. elif name.endswith(".dt_norm_weight"):
  4081. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4082. elif name.endswith(".B_norm_weight"):
  4083. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4084. elif name.endswith(".C_norm_weight"):
  4085. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4086. elif name.endswith(".k_weight"):
  4087. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4088. elif name.endswith(".q_weight"):
  4089. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4090. elif name.endswith(".conv1d.weight"):
  4091. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4092. assert data_torch.ndim == 2
  4093. elif name.endswith(".pre_mixer_norm.weight"):
  4094. data_torch += 1.0
  4095. elif name.endswith(".post_mixer_norm.weight"):
  4096. data_torch += 1.0 / 5
  4097. elif name.endswith(".pre_mlp_norm.weight"):
  4098. data_torch += 1.0
  4099. elif name.endswith(".post_mlp_norm.weight"):
  4100. data_torch += 1.0 / (5**1.5)
  4101. elif name.endswith(".norm.weight"):
  4102. data_torch += 1.0
  4103. new_name = self.map_tensor_name(name)
  4104. return [(new_name, data_torch)]
  4105. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4106. class Plamo3Model(TextModel):
  4107. model_arch = gguf.MODEL_ARCH.PLAMO3
  4108. def set_vocab(self):
  4109. self._set_vocab_plamo()
  4110. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4111. tokenizer_config = {}
  4112. if tokenizer_config_path.is_file():
  4113. with open(tokenizer_config_path, encoding="utf-8") as f:
  4114. tokenizer_config = json.load(f)
  4115. chat_template = tokenizer_config.get("chat_template")
  4116. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4117. if chat_template_jinja.is_file():
  4118. with open(chat_template_jinja, encoding="utf-8") as f:
  4119. chat_template = f.read()
  4120. if chat_template:
  4121. self.gguf_writer.add_chat_template(chat_template)
  4122. def set_gguf_parameters(self):
  4123. super().set_gguf_parameters()
  4124. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4125. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4126. self.gguf_writer.add_sliding_window(sliding_window)
  4127. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4128. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4129. if name.endswith(".pre_mixer_norm.weight"):
  4130. data_torch = data_torch + 1.0
  4131. elif name.endswith(".post_mixer_norm.weight"):
  4132. data_torch = data_torch + 1.0 / 5
  4133. elif name.endswith(".pre_mlp_norm.weight"):
  4134. data_torch = data_torch + 1.0
  4135. elif name.endswith(".post_mlp_norm.weight"):
  4136. data_torch = data_torch + 1.0 / (5**1.5)
  4137. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4138. data_torch = data_torch + 1.0
  4139. elif name.endswith(".norm.weight"):
  4140. data_torch = data_torch + 1.0
  4141. return [(self.map_tensor_name(name), data_torch)]
  4142. @ModelBase.register("CodeShellForCausalLM")
  4143. class CodeShellModel(TextModel):
  4144. model_arch = gguf.MODEL_ARCH.CODESHELL
  4145. def set_gguf_parameters(self):
  4146. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4147. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4148. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4149. self.gguf_writer.add_block_count(self.block_count)
  4150. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4151. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4152. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4153. self.gguf_writer.add_file_type(self.ftype)
  4154. self.gguf_writer.add_rope_freq_base(10000.0)
  4155. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4156. self.gguf_writer.add_rope_scaling_factor(1.0)
  4157. @ModelBase.register("InternLM2ForCausalLM")
  4158. class InternLM2Model(TextModel):
  4159. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4160. def set_vocab(self):
  4161. # (TODO): Is there a better way?
  4162. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4163. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4164. # recognized as an empty string in C++.
  4165. from sentencepiece import SentencePieceProcessor
  4166. from sentencepiece import sentencepiece_model_pb2 as model
  4167. tokenizer_path = self.dir_model / 'tokenizer.model'
  4168. tokens: list[bytes] = []
  4169. scores: list[float] = []
  4170. toktypes: list[int] = []
  4171. if not tokenizer_path.is_file():
  4172. logger.error(f'Error: Missing {tokenizer_path}')
  4173. sys.exit(1)
  4174. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4175. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4176. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4177. tokenizer = SentencePieceProcessor()
  4178. tokenizer.LoadFromFile(str(tokenizer_path))
  4179. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4180. for token_id in range(vocab_size):
  4181. piece = tokenizer.IdToPiece(token_id)
  4182. text = piece.encode("utf-8")
  4183. score = tokenizer.GetScore(token_id)
  4184. if text == b"\x00":
  4185. # (TODO): fixme
  4186. # Hack here and replace the \x00 characters.
  4187. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4188. text = "🐉".encode("utf-8")
  4189. toktype = SentencePieceTokenTypes.NORMAL
  4190. if tokenizer.IsUnknown(token_id):
  4191. toktype = SentencePieceTokenTypes.UNKNOWN
  4192. elif tokenizer.IsControl(token_id):
  4193. toktype = SentencePieceTokenTypes.CONTROL
  4194. elif tokenizer.IsUnused(token_id):
  4195. toktype = SentencePieceTokenTypes.UNUSED
  4196. elif tokenizer.IsByte(token_id):
  4197. toktype = SentencePieceTokenTypes.BYTE
  4198. # take care of ununsed raw token
  4199. if piece.startswith('[UNUSED'):
  4200. toktype = SentencePieceTokenTypes.UNUSED
  4201. tokens.append(text)
  4202. scores.append(score)
  4203. toktypes.append(toktype)
  4204. added_tokens_file = self.dir_model / 'added_tokens.json'
  4205. if added_tokens_file.is_file():
  4206. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4207. added_tokens_json = json.load(f)
  4208. for key in added_tokens_json:
  4209. tokens.append(key.encode("utf-8"))
  4210. scores.append(-1000.0)
  4211. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4212. chat_eos_token = '<|im_end|>'
  4213. chat_eos_token_id = None
  4214. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4215. if tokenizer_config_file.is_file():
  4216. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4217. tokenizer_config_json = json.load(f)
  4218. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4219. for token_id, foken_data in added_tokens_decoder.items():
  4220. token_id = int(token_id)
  4221. token = foken_data["content"]
  4222. if token == chat_eos_token:
  4223. chat_eos_token_id = token_id
  4224. token = token.encode("utf-8")
  4225. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4226. if tokens[token_id] != token:
  4227. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4228. tokens[token_id] = token
  4229. scores[token_id] = -1000.0
  4230. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4231. if foken_data.get("special"):
  4232. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4233. tokenizer_file = self.dir_model / 'tokenizer.json'
  4234. if tokenizer_file.is_file():
  4235. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4236. tokenizer_json = json.load(f)
  4237. added_tokens = tokenizer_json.get("added_tokens", [])
  4238. for foken_data in added_tokens:
  4239. token_id = int(foken_data["id"])
  4240. token = foken_data["content"]
  4241. if token == chat_eos_token:
  4242. chat_eos_token_id = token_id
  4243. token = token.encode("utf-8")
  4244. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4245. if tokens[token_id] != token:
  4246. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4247. tokens[token_id] = token
  4248. scores[token_id] = -1000.0
  4249. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4250. if foken_data.get("special"):
  4251. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4252. self.gguf_writer.add_tokenizer_model("llama")
  4253. self.gguf_writer.add_tokenizer_pre("default")
  4254. self.gguf_writer.add_token_list(tokens)
  4255. self.gguf_writer.add_token_scores(scores)
  4256. self.gguf_writer.add_token_types(toktypes)
  4257. self.gguf_writer.add_add_space_prefix(add_prefix)
  4258. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4259. old_eos = special_vocab.special_token_ids["eos"]
  4260. if chat_eos_token_id is not None:
  4261. # For the chat model, we replace the eos with '<|im_end|>'.
  4262. # TODO: this is a hack, should be fixed
  4263. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4264. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4265. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4266. " in chat mode so that the conversation can end normally.")
  4267. special_vocab.add_to_gguf(self.gguf_writer)
  4268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4269. num_heads = self.hparams["num_attention_heads"]
  4270. num_kv_heads = self.hparams["num_key_value_heads"]
  4271. n_embd = self.hparams["hidden_size"]
  4272. q_per_kv = num_heads // num_kv_heads
  4273. head_dim = n_embd // num_heads
  4274. num_groups = num_heads // q_per_kv
  4275. name = name.replace("language_model.", "") # InternVL
  4276. if name.startswith("mlp") or name.startswith("vision_model"):
  4277. # skip visual tensors
  4278. return []
  4279. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4280. qkv = data_torch
  4281. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4282. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4283. # The model weights of q and k equire additional reshape.
  4284. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4285. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4286. v = v.reshape((-1, v.shape[-1]))
  4287. return [
  4288. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4289. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4290. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4291. ]
  4292. else:
  4293. return [(self.map_tensor_name(name), data_torch)]
  4294. @ModelBase.register("InternLM3ForCausalLM")
  4295. class InternLM3Model(TextModel):
  4296. model_arch = gguf.MODEL_ARCH.LLAMA
  4297. def set_vocab(self):
  4298. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4299. self.gguf_writer.add_tokenizer_model("llama")
  4300. self.gguf_writer.add_tokenizer_pre("default")
  4301. self.gguf_writer.add_token_list(tokens)
  4302. self.gguf_writer.add_token_scores(scores)
  4303. self.gguf_writer.add_token_types(toktypes)
  4304. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4305. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4306. if tokenizer_config_file.is_file():
  4307. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4308. tokenizer_config_json = json.load(f)
  4309. if "add_prefix_space" in tokenizer_config_json:
  4310. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4311. if "added_tokens_decoder" in tokenizer_config_json:
  4312. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4313. if token_data.get("special"):
  4314. token_id = int(token_id)
  4315. token = token_data["content"]
  4316. special_vocab._set_special_token(token, token_id)
  4317. # update eos token
  4318. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4319. special_vocab.special_token_ids["eos"] = token_id
  4320. special_vocab.add_to_gguf(self.gguf_writer)
  4321. def set_gguf_parameters(self):
  4322. super().set_gguf_parameters()
  4323. hparams = self.hparams
  4324. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4325. if (rope_dim := hparams.get("head_dim")) is None:
  4326. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4327. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4328. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4329. n_head = self.hparams["num_attention_heads"]
  4330. n_kv_head = self.hparams.get("num_key_value_heads")
  4331. name = name.replace("language_model.", "") # InternVL
  4332. if name.startswith("mlp") or name.startswith("vision_model"):
  4333. # skip visual tensors
  4334. return []
  4335. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4336. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4337. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4338. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4339. return [(self.map_tensor_name(name), data_torch)]
  4340. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4341. class BertModel(TextModel):
  4342. model_arch = gguf.MODEL_ARCH.BERT
  4343. def __init__(self, *args, **kwargs):
  4344. super().__init__(*args, **kwargs)
  4345. self.vocab_size = None
  4346. if cls_out_labels := self.hparams.get("id2label"):
  4347. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4348. # Remove dummy labels added by AutoConfig
  4349. cls_out_labels = None
  4350. self.cls_out_labels = cls_out_labels
  4351. def set_gguf_parameters(self):
  4352. super().set_gguf_parameters()
  4353. self.gguf_writer.add_causal_attention(False)
  4354. self._try_set_pooling_type()
  4355. if self.cls_out_labels:
  4356. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4357. def set_vocab(self):
  4358. tokens, toktypes, tokpre = self.get_vocab_base()
  4359. self.vocab_size = len(tokens)
  4360. # we need this to validate the size of the token_type embeddings
  4361. # though currently we are passing all zeros to the token_type embeddings
  4362. # "Sequence A" or "Sequence B"
  4363. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4364. # convert to phantom space vocab
  4365. def phantom(tok, toktype):
  4366. if toktype == gguf.TokenType.CONTROL:
  4367. return tok
  4368. if tok.startswith("##"):
  4369. return tok[2:]
  4370. return "\u2581" + tok
  4371. assert len(tokens) == len(toktypes)
  4372. tokens = list(map(phantom, tokens, toktypes))
  4373. # add vocab to gguf
  4374. self.gguf_writer.add_tokenizer_model("bert")
  4375. self.gguf_writer.add_tokenizer_pre(tokpre)
  4376. self.gguf_writer.add_token_list(tokens)
  4377. self.gguf_writer.add_token_types(toktypes)
  4378. # handle special tokens
  4379. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4380. special_vocab.add_to_gguf(self.gguf_writer)
  4381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4382. del bid # unused
  4383. if name.startswith("bert."):
  4384. name = name[5:]
  4385. if name.endswith(".gamma"):
  4386. name = name[:-6] + ".weight"
  4387. if name.endswith(".beta"):
  4388. name = name[:-5] + ".bias"
  4389. # we are only using BERT for embeddings so we don't need the pooling layer
  4390. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4391. return [] # we don't need these
  4392. if name.startswith("cls.predictions"):
  4393. return []
  4394. if name.startswith("cls.seq_relationship"):
  4395. return []
  4396. if self.cls_out_labels:
  4397. # For BertForSequenceClassification (direct projection layer)
  4398. if name == "classifier.weight":
  4399. name = "classifier.out_proj.weight"
  4400. if name == "classifier.bias":
  4401. name = "classifier.out_proj.bias"
  4402. return [(self.map_tensor_name(name), data_torch)]
  4403. def _xlmroberta_tokenizer_init(self) -> None:
  4404. # we need the pad_token_id to know how to chop down position_embd matrix
  4405. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4406. self._position_offset = 1 + pad_token_id
  4407. if "max_position_embeddings" in self.hparams:
  4408. self.hparams["max_position_embeddings"] -= self._position_offset
  4409. else:
  4410. self._position_offset = None
  4411. def _xlmroberta_set_vocab(self) -> None:
  4412. # to avoid TypeError: Descriptors cannot be created directly
  4413. # exception when importing sentencepiece_model_pb2
  4414. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4415. from sentencepiece import SentencePieceProcessor
  4416. from sentencepiece import sentencepiece_model_pb2 as model
  4417. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4418. tokenizer_json = {}
  4419. tokenizer_config_json = {}
  4420. if not tokenizer_path.is_file():
  4421. tokenizer_path = self.dir_model / 'tokenizer.json'
  4422. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4423. if not tokenizer_path.is_file():
  4424. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4425. from base64 import b64decode
  4426. from transformers import AutoTokenizer
  4427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4428. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4429. tokenizer_json = json.load(fp)
  4430. if tokenizer_config_path.is_file():
  4431. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4432. tokenizer_config_json = json.load(fp)
  4433. add_prefix = tokenizer.add_prefix_space
  4434. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4435. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4436. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4437. else:
  4438. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4439. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4440. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4441. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4442. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4443. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4444. tokenizer = SentencePieceProcessor()
  4445. tokenizer.LoadFromFile(str(tokenizer_path))
  4446. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4447. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4448. scores: list[float] = [-10000.0] * vocab_size
  4449. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4450. if isinstance(tokenizer, SentencePieceProcessor):
  4451. for token_id in range(tokenizer.vocab_size()):
  4452. piece = tokenizer.IdToPiece(token_id)
  4453. text = piece.encode("utf-8")
  4454. score = tokenizer.GetScore(token_id)
  4455. toktype = SentencePieceTokenTypes.NORMAL
  4456. if tokenizer.IsUnknown(token_id):
  4457. toktype = SentencePieceTokenTypes.UNKNOWN
  4458. elif tokenizer.IsControl(token_id):
  4459. toktype = SentencePieceTokenTypes.CONTROL
  4460. elif tokenizer.IsUnused(token_id):
  4461. toktype = SentencePieceTokenTypes.UNUSED
  4462. elif tokenizer.IsByte(token_id):
  4463. toktype = SentencePieceTokenTypes.BYTE
  4464. tokens[token_id] = text
  4465. scores[token_id] = score
  4466. toktypes[token_id] = toktype
  4467. else:
  4468. added_vocab = tokenizer.get_added_vocab()
  4469. unk_token = tokenizer_config_json.get("unk_token")
  4470. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4471. for token_id in range(tokenizer.vocab_size):
  4472. piece = tokenizer._convert_id_to_token(token_id)
  4473. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4474. text = piece.encode("utf-8")
  4475. score = tokenizer_json["model"]["vocab"][token_id][1]
  4476. toktype = SentencePieceTokenTypes.NORMAL
  4477. if token_id == unk_token_id:
  4478. toktype = SentencePieceTokenTypes.UNKNOWN
  4479. elif token_id in tokenizer.all_special_ids:
  4480. toktype = SentencePieceTokenTypes.CONTROL
  4481. elif token_id in added_vocab.values():
  4482. toktype = SentencePieceTokenTypes.USER_DEFINED
  4483. # No reliable way to detect this, but jina doesn't have any
  4484. # elif tokenizer.IsByte(token_id):
  4485. # toktype = SentencePieceTokenTypes.BYTE
  4486. tokens[token_id] = text
  4487. scores[token_id] = score
  4488. toktypes[token_id] = toktype
  4489. if isinstance(tokenizer, SentencePieceProcessor):
  4490. # realign tokens (see HF tokenizer code)
  4491. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4492. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4493. toktypes = [
  4494. SentencePieceTokenTypes.CONTROL,
  4495. SentencePieceTokenTypes.CONTROL,
  4496. SentencePieceTokenTypes.CONTROL,
  4497. SentencePieceTokenTypes.UNKNOWN,
  4498. ] + toktypes[3:-1]
  4499. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4500. # Add mask token missing from sentencepiece.bpe.model
  4501. tokens[250001] = b'<mask>'
  4502. scores[250001] = 0.0
  4503. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4504. self.gguf_writer.add_tokenizer_model("t5")
  4505. self.gguf_writer.add_tokenizer_pre("default")
  4506. self.gguf_writer.add_token_list(tokens)
  4507. self.gguf_writer.add_token_scores(scores)
  4508. self.gguf_writer.add_token_types(toktypes)
  4509. self.gguf_writer.add_add_space_prefix(add_prefix)
  4510. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4511. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4512. if precompiled_charsmap:
  4513. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4514. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4515. special_vocab.add_to_gguf(self.gguf_writer)
  4516. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4517. class DistilBertModel(BertModel):
  4518. model_arch = gguf.MODEL_ARCH.BERT
  4519. def set_gguf_parameters(self):
  4520. self.gguf_writer.add_layer_norm_eps(1e-12)
  4521. logger.info("gguf: layer norm epsilon = 1e-12")
  4522. super().set_gguf_parameters()
  4523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4524. if name.startswith("distilbert."):
  4525. name = name[11:]
  4526. # These layers act as MLM head, so we don't need them
  4527. if name.startswith("vocab_"):
  4528. return []
  4529. return super().modify_tensors(data_torch, name, bid)
  4530. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4531. class RobertaModel(BertModel):
  4532. model_arch = gguf.MODEL_ARCH.BERT
  4533. def __init__(self, *args, **kwargs):
  4534. super().__init__(*args, **kwargs)
  4535. # we need the pad_token_id to know how to chop down position_embd matrix
  4536. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4537. self._position_offset = 1 + pad_token_id
  4538. if "max_position_embeddings" in self.hparams:
  4539. self.hparams["max_position_embeddings"] -= self._position_offset
  4540. else:
  4541. self._position_offset = None
  4542. def set_vocab(self):
  4543. """Support BPE tokenizers for roberta models"""
  4544. bpe_tok_path = self.dir_model / "tokenizer.json"
  4545. if bpe_tok_path.exists():
  4546. self._set_vocab_gpt2()
  4547. # we need this to validate the size of the token_type embeddings
  4548. # though currently we are passing all zeros to the token_type embeddings
  4549. # "Sequence A" or "Sequence B"
  4550. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4551. else:
  4552. return super().set_vocab()
  4553. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4554. # if name starts with "roberta.", remove the prefix
  4555. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4556. if name.startswith("roberta."):
  4557. name = name[8:]
  4558. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4559. if name == "embeddings.position_embeddings.weight":
  4560. if self._position_offset is not None:
  4561. data_torch = data_torch[self._position_offset:,:]
  4562. return super().modify_tensors(data_torch, name, bid)
  4563. @ModelBase.register("NomicBertModel")
  4564. class NomicBertModel(BertModel):
  4565. model_arch = gguf.MODEL_ARCH.BERT
  4566. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4567. hparams = kwargs.pop("hparams", None)
  4568. if hparams is None:
  4569. hparams = ModelBase.load_hparams(dir_model, False)
  4570. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4571. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4572. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4573. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4574. if self._tokenizer_is_xlmroberta:
  4575. self._xlmroberta_tokenizer_init()
  4576. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4577. if npos == 8192 and mtp == 2048:
  4578. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4579. elif npos == 2048 and mtp == 2048:
  4580. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4581. else:
  4582. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4583. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4584. # this doesn't do anything in the HF version
  4585. assert self.hparams["causal"] is False
  4586. # no bias tensors unless MoE
  4587. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4588. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4589. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4590. # norm at end of layer
  4591. assert self.hparams["prenorm"] is False
  4592. # standard RoPE
  4593. assert self.hparams["rotary_emb_fraction"] == 1.0
  4594. assert self.hparams["rotary_emb_interleaved"] is False
  4595. assert self.hparams["rotary_emb_scale_base"] is None
  4596. def set_vocab(self) -> None:
  4597. if self._tokenizer_is_xlmroberta:
  4598. return self._xlmroberta_set_vocab()
  4599. return super().set_vocab()
  4600. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4601. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4602. if "mlp.experts.bias" in name:
  4603. return [] # Explicitly return an empty list.
  4604. if "mlp.experts.mlp.w1" in name:
  4605. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4606. name += ".weight"
  4607. if "mlp.experts.mlp.w2" in name:
  4608. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4609. data_torch = data_torch.transpose(1, 2)
  4610. name += ".weight"
  4611. return [(self.map_tensor_name(name), data_torch)]
  4612. def set_gguf_parameters(self):
  4613. super().set_gguf_parameters()
  4614. if self.is_moe:
  4615. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4616. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4617. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4618. def _is_tokenizer_xlmroberta(self) -> bool:
  4619. with open(self.dir_model / "tokenizer.json") as f:
  4620. tokenizer_json = json.load(f)
  4621. toktyp = tokenizer_json["model"]["type"]
  4622. if toktyp == "Unigram":
  4623. return True
  4624. if toktyp == "WordPiece":
  4625. return False
  4626. raise ValueError(f"unknown tokenizer: {toktyp}")
  4627. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4628. class NeoBert(BertModel):
  4629. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4630. def set_gguf_parameters(self):
  4631. super().set_gguf_parameters()
  4632. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4633. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4634. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4635. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4636. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4637. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4638. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4639. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4640. def modify_tensors(self, data_torch, name, bid):
  4641. if name.startswith("decoder."):
  4642. return []
  4643. if name.startswith("model."):
  4644. name = name[6:]
  4645. return super().modify_tensors(data_torch, name, bid)
  4646. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4647. class XLMRobertaModel(BertModel):
  4648. model_arch = gguf.MODEL_ARCH.BERT
  4649. _lora_files = {}
  4650. _lora_names = []
  4651. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4652. hparams = kwargs.pop("hparams", None)
  4653. if hparams is None:
  4654. hparams = ModelBase.load_hparams(dir_model, False)
  4655. if lora_names := hparams.get("lora_adaptations"):
  4656. self._lora_names = lora_names
  4657. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4658. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4659. self._xlmroberta_tokenizer_init()
  4660. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4661. if self._lora_names:
  4662. for name in self._lora_names:
  4663. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4664. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4665. return super().generate_extra_tensors()
  4666. def set_type(self):
  4667. for lora_writer in self._lora_files.values():
  4668. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4669. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4670. super().set_type()
  4671. def set_vocab(self):
  4672. self._xlmroberta_set_vocab()
  4673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4674. # if name starts with "roberta.", remove the prefix
  4675. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4676. if name.startswith("roberta."):
  4677. name = name[8:]
  4678. # jina-embeddings-v3
  4679. if ".parametrizations." in name:
  4680. name = name.replace(".parametrizations.", ".")
  4681. if name.endswith(".original"):
  4682. name = name[:-9]
  4683. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4684. if name == "embeddings.position_embeddings.weight":
  4685. if self._position_offset is not None:
  4686. data_torch = data_torch[self._position_offset:,:]
  4687. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4688. if name.startswith("pooler.dense"):
  4689. return []
  4690. num_loras = data_torch.size(0)
  4691. assert num_loras == len(self._lora_names)
  4692. # Split out each LoRA in their own GGUF
  4693. for i, lora_writer in enumerate(self._lora_files.values()):
  4694. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4695. data = data_torch[i, :, :]
  4696. # Transpose/flip token_embd/types into correct shape
  4697. if new_name == "token_embd.weight.lora_b":
  4698. data = data.T
  4699. elif new_name.startswith("token_types.weight."):
  4700. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4701. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4702. return []
  4703. return super().modify_tensors(data_torch, name, bid)
  4704. def set_gguf_parameters(self):
  4705. super().set_gguf_parameters()
  4706. # jina-embeddings-v3
  4707. lora_alpha = self.hparams.get("lora_alpha")
  4708. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4709. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4710. for lora_name, lora_writer in self._lora_files.items():
  4711. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4712. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4713. if lora_prompt_prefixes:
  4714. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4715. def write(self):
  4716. super().write()
  4717. for lora_writer in self._lora_files.values():
  4718. lora_writer.write_header_to_file()
  4719. lora_writer.write_kv_data_to_file()
  4720. lora_writer.write_tensors_to_file(progress=True)
  4721. lora_writer.close()
  4722. @ModelBase.register("GemmaForCausalLM")
  4723. class GemmaModel(TextModel):
  4724. model_arch = gguf.MODEL_ARCH.GEMMA
  4725. def set_vocab(self):
  4726. self._set_vocab_sentencepiece()
  4727. # TODO: these special tokens should be exported only for the CodeGemma family
  4728. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4729. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4730. special_vocab._set_special_token("prefix", 67)
  4731. special_vocab._set_special_token("suffix", 69)
  4732. special_vocab._set_special_token("middle", 68)
  4733. special_vocab._set_special_token("fsep", 70)
  4734. special_vocab._set_special_token("eot", 107)
  4735. special_vocab.chat_template = None # do not add it twice
  4736. special_vocab.add_to_gguf(self.gguf_writer)
  4737. self.gguf_writer.add_add_space_prefix(False)
  4738. def set_gguf_parameters(self):
  4739. hparams = self.hparams
  4740. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4741. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4742. self.gguf_writer.add_block_count(self.block_count)
  4743. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4744. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4745. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4746. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4747. self.gguf_writer.add_key_length(hparams["head_dim"])
  4748. self.gguf_writer.add_value_length(hparams["head_dim"])
  4749. self.gguf_writer.add_file_type(self.ftype)
  4750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4751. del bid # unused
  4752. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4753. # To prevent errors, skip loading lm_head.weight.
  4754. if name == "lm_head.weight":
  4755. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4756. return []
  4757. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4758. if name.endswith("norm.weight"):
  4759. data_torch = data_torch + 1
  4760. return [(self.map_tensor_name(name), data_torch)]
  4761. @ModelBase.register("Gemma2ForCausalLM")
  4762. class Gemma2Model(TextModel):
  4763. model_arch = gguf.MODEL_ARCH.GEMMA2
  4764. def set_vocab(self):
  4765. self._set_vocab_sentencepiece()
  4766. self.gguf_writer.add_add_space_prefix(False)
  4767. def set_gguf_parameters(self):
  4768. hparams = self.hparams
  4769. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4770. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4771. self.gguf_writer.add_block_count(self.block_count)
  4772. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4773. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4774. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4775. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4776. self.gguf_writer.add_key_length(hparams["head_dim"])
  4777. self.gguf_writer.add_value_length(hparams["head_dim"])
  4778. self.gguf_writer.add_file_type(self.ftype)
  4779. self.gguf_writer.add_attn_logit_softcapping(
  4780. self.hparams["attn_logit_softcapping"]
  4781. )
  4782. self.gguf_writer.add_final_logit_softcapping(
  4783. self.hparams["final_logit_softcapping"]
  4784. )
  4785. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4787. del bid # unused
  4788. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4789. # To prevent errors, skip loading lm_head.weight.
  4790. if name == "lm_head.weight":
  4791. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4792. return []
  4793. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4794. if name.endswith("norm.weight"):
  4795. data_torch = data_torch + 1
  4796. return [(self.map_tensor_name(name), data_torch)]
  4797. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4798. class Gemma3Model(TextModel):
  4799. model_arch = gguf.MODEL_ARCH.GEMMA3
  4800. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4801. def set_vocab(self):
  4802. if (self.dir_model / "tokenizer.model").is_file():
  4803. self._set_vocab_sentencepiece()
  4804. self.gguf_writer.add_add_space_prefix(False)
  4805. else:
  4806. self._set_vocab_gpt2()
  4807. def set_gguf_parameters(self):
  4808. super().set_gguf_parameters()
  4809. hparams = self.hparams
  4810. # some default values are not specified in the hparams
  4811. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4812. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4813. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4814. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4815. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4816. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4817. # attn_logit_softcapping is removed in Gemma3
  4818. assert hparams.get("attn_logit_softcapping") is None
  4819. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4820. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4821. if hparams.get("sliding_window_pattern") != 1:
  4822. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4823. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4824. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4825. del bid # unused
  4826. if "language_model." in name:
  4827. name = name.replace("language_model.", "")
  4828. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4829. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4830. return [] # skip vision tensors
  4831. # remove OOV (out-of-vocabulary) rows in token_embd
  4832. if "embed_tokens.weight" in name:
  4833. if (self.dir_model / "tokenizer.model").is_file():
  4834. tokens = self._create_vocab_sentencepiece()[0]
  4835. else:
  4836. tokens = self.get_vocab_base()[0]
  4837. data_torch = data_torch[:len(tokens)]
  4838. # ref code in Gemma3RMSNorm
  4839. # output = output * (1.0 + self.weight.float())
  4840. # note: this is not the case on gemma3n
  4841. if name.endswith("norm.weight"):
  4842. data_torch = data_torch + self.norm_shift
  4843. return [(self.map_tensor_name(name), data_torch)]
  4844. @ModelBase.register("Gemma3TextModel")
  4845. class EmbeddingGemma(Gemma3Model):
  4846. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4847. module_paths = []
  4848. dense_features_dims = {}
  4849. def __init__(self, *args, **kwargs):
  4850. super().__init__(*args, **kwargs)
  4851. if self.sentence_transformers_dense_modules:
  4852. # read modules.json to determine if model has Dense layers
  4853. modules_file = self.dir_model / "modules.json"
  4854. if modules_file.is_file():
  4855. with open(modules_file, encoding="utf-8") as modules_json_file:
  4856. mods = json.load(modules_json_file)
  4857. for mod in mods:
  4858. if mod["type"] == "sentence_transformers.models.Dense":
  4859. mod_path = mod["path"]
  4860. # check if model.safetensors file for Dense layer exists
  4861. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4862. if model_tensors_file.is_file():
  4863. self.module_paths.append(mod_path)
  4864. # read config.json of the Dense layer to get in/out features
  4865. mod_conf_file = self.dir_model / mod_path / "config.json"
  4866. if mod_conf_file.is_file():
  4867. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4868. mod_conf = json.load(mod_conf_json_file)
  4869. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4870. prefix = self._get_dense_prefix(mod_path)
  4871. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4872. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4873. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4874. from safetensors.torch import load_file
  4875. module_paths = list(self.module_paths)
  4876. for i, module_path in enumerate(module_paths):
  4877. tensors_file = self.dir_model / module_path / "model.safetensors"
  4878. local_tensors = load_file(tensors_file)
  4879. tensor_name = self._get_dense_prefix(module_path)
  4880. for name, local_tensor in local_tensors.items():
  4881. if not name.endswith(".weight"):
  4882. continue
  4883. orig_name = name.replace("linear", tensor_name)
  4884. name = self.map_tensor_name(orig_name)
  4885. yield name, local_tensor.clone()
  4886. @staticmethod
  4887. def _get_dense_prefix(module_path) -> str:
  4888. """Get the tensor name prefix for the Dense layer from module path."""
  4889. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4890. return tensor_name
  4891. def set_gguf_parameters(self):
  4892. super().set_gguf_parameters()
  4893. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4894. # constructor. We want to use the value from the original model's config.json.
  4895. # ref: https://github.com/huggingface/transformers/pull/40700
  4896. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4897. config = json.load(f)
  4898. orig_sliding_window = config.get("sliding_window")
  4899. if orig_sliding_window is None:
  4900. raise ValueError("sliding_window not found in model config - this is required for the model")
  4901. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4902. f"instead of {self.hparams['sliding_window']}")
  4903. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4904. if self.sentence_transformers_dense_modules:
  4905. for dense, dims in self.dense_features_dims.items():
  4906. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4907. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4908. self._try_set_pooling_type()
  4909. @ModelBase.register("Gemma3ForConditionalGeneration")
  4910. class Gemma3VisionModel(MmprojModel):
  4911. def set_gguf_parameters(self):
  4912. super().set_gguf_parameters()
  4913. hparams = self.hparams
  4914. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4915. # default values below are taken from HF tranformers code
  4916. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4917. self.gguf_writer.add_vision_use_gelu(True)
  4918. # calculate proj_scale_factor (used by tinygemma3 test model)
  4919. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4920. n_per_side = int(image_seq_length ** 0.5)
  4921. image_size = self.hparams["image_size"]
  4922. patch_size = self.hparams["patch_size"]
  4923. proj_scale_factor = (image_size // patch_size) // n_per_side
  4924. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4925. # we only need to write this if it's not the default value
  4926. # in this case, we are converting a test model
  4927. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4928. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4929. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4930. if "input_projection" in name:
  4931. return gguf.GGMLQuantizationType.F16
  4932. if ".embeddings." in name:
  4933. return gguf.GGMLQuantizationType.F32
  4934. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4936. del bid # unused
  4937. if "vision_model.head." in name:
  4938. return [] # skip redundant tensors for tinygemma3
  4939. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4940. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4941. # process vision tensors
  4942. name = name.replace("_weight", ".weight")
  4943. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4944. # the other norm values are part of SigLIP model, and they are already correct
  4945. # ref code: Gemma3RMSNorm
  4946. if "soft_emb_norm.weight" in name:
  4947. logger.info(f"Correcting norm value for '{name}'")
  4948. data_torch = data_torch + 1
  4949. return [(self.map_tensor_name(name), data_torch)]
  4950. return [] # skip other tensors
  4951. class ConformerAudioModel(MmprojModel):
  4952. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  4953. @staticmethod
  4954. def is_audio_tensor(name: str):
  4955. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  4956. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4957. if ConformerAudioModel.is_audio_tensor(name):
  4958. if ".conv" in name or "_conv" in name and ".weight" in name:
  4959. return gguf.GGMLQuantizationType.F32
  4960. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4962. # fold running_mean, running_var and eps into weight and bias for batch_norm
  4963. if "batch_norm" in name:
  4964. if self._batch_norm_tensors is None:
  4965. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  4966. assert bid is not None
  4967. self._batch_norm_tensors[bid][name] = data_torch
  4968. if len(self._batch_norm_tensors[bid]) < 5:
  4969. return []
  4970. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  4971. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  4972. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  4973. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  4974. eps = 1e-5 # default value
  4975. a = weight / torch.sqrt(running_var + eps)
  4976. b = bias - running_mean * a
  4977. return [
  4978. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  4979. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  4980. ]
  4981. # reshape conv weights
  4982. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  4983. data_torch = data_torch[:, None, None]
  4984. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  4985. assert data_torch.shape[1] == 1
  4986. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  4987. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  4988. assert data_torch.shape[2] == 1
  4989. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  4990. return [(self.map_tensor_name(name), data_torch)]
  4991. @ModelBase.register("Gemma3nForConditionalGeneration")
  4992. class Gemma3nVisionAudioModel(ConformerAudioModel):
  4993. has_audio_encoder = True
  4994. has_vision_encoder = True
  4995. # Double indexed mapping for MobileNetV5 blocks (not supported by tensor_mapping.py)
  4996. # This is the only known model having this, so we prefer implementing it outside of tensor_mapping.py
  4997. block_tensor_mapping = {
  4998. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_exp.weight": "v.blk.{bid}.{sid}.conv_exp.weight",
  4999. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn1.weight": "v.blk.{bid}.{sid}.bn1.weight",
  5000. "model.vision_tower.timm_model.blocks.{bid}.{sid}.conv_pwl.weight": "v.blk.{bid}.{sid}.conv_pwl.weight",
  5001. "model.vision_tower.timm_model.blocks.{bid}.{sid}.bn2.weight": "v.blk.{bid}.{sid}.bn2.weight",
  5002. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.conv.weight": "v.blk.{bid}.{sid}.dw_start.conv.weight",
  5003. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_start.bn.weight": "v.blk.{bid}.{sid}.dw_start.bn.weight",
  5004. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.conv.weight": "v.blk.{bid}.{sid}.dw_mid.conv.weight",
  5005. "model.vision_tower.timm_model.blocks.{bid}.{sid}.dw_mid.bn.weight": "v.blk.{bid}.{sid}.dw_mid.bn.weight",
  5006. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.conv.weight": "v.blk.{bid}.{sid}.pw_exp.conv.weight",
  5007. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_exp.bn.weight": "v.blk.{bid}.{sid}.pw_exp.bn.weight",
  5008. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.conv.weight": "v.blk.{bid}.{sid}.pw_proj.conv.weight",
  5009. "model.vision_tower.timm_model.blocks.{bid}.{sid}.pw_proj.bn.weight": "v.blk.{bid}.{sid}.pw_proj.bn.weight",
  5010. "model.vision_tower.timm_model.blocks.{bid}.{sid}.layer_scale.gamma": "v.blk.{bid}.{sid}.layer_scale.gamma",
  5011. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.query.proj.weight": "v.blk.{bid}.{sid}.attn.query.proj.weight",
  5012. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.proj.weight": "v.blk.{bid}.{sid}.attn.key.proj.weight",
  5013. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.proj.weight": "v.blk.{bid}.{sid}.attn.value.proj.weight",
  5014. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.output.proj.weight": "v.blk.{bid}.{sid}.attn.output.proj.weight",
  5015. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.down_conv.weight": "v.blk.{bid}.{sid}.attn.key.down_conv.weight",
  5016. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.key.norm.weight": "v.blk.{bid}.{sid}.attn.key.norm.weight",
  5017. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.down_conv.weight": "v.blk.{bid}.{sid}.attn.value.down_conv.weight",
  5018. "model.vision_tower.timm_model.blocks.{bid}.{sid}.attn.value.norm.weight": "v.blk.{bid}.{sid}.attn.value.norm.weight",
  5019. "model.vision_tower.timm_model.blocks.{bid}.{sid}.norm.weight": "v.blk.{bid}.{sid}.norm.weight",
  5020. }
  5021. def __init__(self, *args, **kwargs):
  5022. # Parent init will call find_hparam which now returns 0 for empty keys
  5023. super().__init__(*args, **kwargs)
  5024. assert self.hparams_vision is not None
  5025. self.hparams_vision["n_layers"] = 128 # fake value for audio encoder, vision encoder doesn't use it
  5026. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("intermediate_size", 2048) * 4
  5027. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_attention_heads", 8)
  5028. # MobileNetV5 does not use image_mean/std
  5029. self.preprocessor_config["image_mean"] = [0.0 ,0.0 , 0.0]
  5030. self.preprocessor_config["image_std"] = [1.0 ,1.0 ,1.0]
  5031. self.hparams_vision["image_size"] = self.preprocessor_config.get(
  5032. "size", {"height": 768, "width": 768}
  5033. )["height"]
  5034. # Image sequence length (256 tokens = 16x16 for Gemma3n)
  5035. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  5036. image_size = self.hparams_vision["image_size"]
  5037. self.hparams_vision["patch_size"] = image_size // image_seq_length
  5038. # remap audio hparams
  5039. assert self.hparams_audio is not None
  5040. self.hparams_audio["n_layers"] = self.hparams_audio["conf_num_hidden_layers"]
  5041. self.hparams_audio["num_attention_heads"] = self.hparams_audio["conf_num_attention_heads"]
  5042. self.hparams_audio["feat_in"] = self.hparams_audio["input_feat_size"]
  5043. self.hparams_audio["intermediate_size"] = self.hparams_audio.get("intermediate_size", 6144)
  5044. def set_gguf_parameters(self):
  5045. super().set_gguf_parameters()
  5046. # vision params
  5047. self.gguf_writer.add_clip_vision_projector_type(gguf.VisionProjectorType.GEMMA3NV)
  5048. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  5049. # audio params
  5050. assert self.hparams_audio is not None
  5051. self.gguf_writer.add_clip_audio_projector_type(gguf.VisionProjectorType.GEMMA3NA)
  5052. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  5053. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  5054. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5055. # Force quantization settings for specific tensor types
  5056. if "input_projection" in name or "input_proj" in name:
  5057. return gguf.GGMLQuantizationType.F16
  5058. if ".embeddings." in name or "stem" in name:
  5059. return gguf.GGMLQuantizationType.F32
  5060. return super().tensor_force_quant(name, new_name, bid, n_dims)
  5061. def custom_map(self, name: str) -> str:
  5062. """Parses names like model.vision_tower.timm_model.blocks.1.2.suffix and applies template mapping."""
  5063. parts = name.split(".")
  5064. # MobileNet blocks have at least 7 parts: model, vision_tower, timm_model, blocks, bid, sid, and suffix
  5065. if len(parts) >= 7:
  5066. bid, sid = parts[4], parts[5]
  5067. suffix = ".".join(parts[6:])
  5068. template = f"model.vision_tower.timm_model.blocks.{{bid}}.{{sid}}.{suffix}"
  5069. if template in self.block_tensor_mapping:
  5070. return self.block_tensor_mapping[template].format(bid=bid, sid=sid)
  5071. raise ValueError(f"Unknown name: {name}")
  5072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5073. if (ConformerAudioModel.is_audio_tensor(name)):
  5074. name = name.replace("model.audio_tower.conformer.", "conformer.layers.")
  5075. return super().modify_tensors(data_torch, name, bid)
  5076. # Gemma3n uses
  5077. # - model.embed_vision.* for projection layers
  5078. # - model.vision_tower.* for vision encoder
  5079. # Skip non-vision tensors
  5080. if not (name.startswith("model.embed_vision.") or name.startswith("model.vision_tower.")):
  5081. return []
  5082. if name.startswith("model.vision_tower.timm_model.blocks."):
  5083. # Double-indexed block tensors through custom logic
  5084. new_name = self.custom_map(name)
  5085. else:
  5086. # Route non-repeating (conv_stem, msfa, embedding, etc.) and un-catched through tensor_mapping.py
  5087. new_name = self.map_tensor_name(name)
  5088. if new_name.endswith("conv_stem.conv.bias") or new_name.endswith("layer_scale.gamma"):
  5089. data_torch = data_torch.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) # [1, C, 1, 1]
  5090. return [(new_name, data_torch)]
  5091. @ModelBase.register("Gemma3nForCausalLM", "Gemma3nForConditionalGeneration")
  5092. class Gemma3NModel(Gemma3Model):
  5093. model_arch = gguf.MODEL_ARCH.GEMMA3N
  5094. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  5095. _altup_proj: list[Tensor] = []
  5096. _altup_unembd: list[Tensor] = []
  5097. def __init__(self, *args, **kwargs):
  5098. super().__init__(*args, **kwargs)
  5099. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  5100. self._altup_proj = [
  5101. torch.Tensor(), # to be replaced
  5102. torch.Tensor(), # to be replaced
  5103. torch.Tensor(), # to be replaced
  5104. ]
  5105. self._altup_unembd = [
  5106. torch.Tensor(), # to be replaced
  5107. torch.Tensor(), # to be replaced
  5108. torch.Tensor(), # to be replaced
  5109. ]
  5110. def set_vocab(self):
  5111. # For Gemma3n multimodal models, we need the FULL vocab_size (262400)
  5112. # which includes special tokens from 262144-262399 for vision/audio.
  5113. # The vocab_size_per_layer_input (262144) is only the embedding size per layer.
  5114. # Temporarily override the hparams lookup order to prioritize vocab_size.
  5115. # Store original vocab_size_per_layer_input if it exists
  5116. vocab_size_per_layer_input = self.hparams.get("vocab_size_per_layer_input")
  5117. # Temporarily remove vocab_size_per_layer_input to force using vocab_size
  5118. if vocab_size_per_layer_input is not None:
  5119. del self.hparams["vocab_size_per_layer_input"]
  5120. # Call parent set_vocab which will now use vocab_size (262400)
  5121. super().set_vocab()
  5122. # Restore vocab_size_per_layer_input for later use
  5123. if vocab_size_per_layer_input is not None:
  5124. self.hparams["vocab_size_per_layer_input"] = vocab_size_per_layer_input
  5125. def set_gguf_parameters(self):
  5126. super().set_gguf_parameters()
  5127. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  5128. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  5129. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  5130. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  5131. activation_sparsity_scale = []
  5132. for s in self.hparams["activation_sparsity_pattern"]:
  5133. normal_dist = torch.distributions.normal.Normal(0, 1)
  5134. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  5135. activation_sparsity_scale.append(std_multiplier.item())
  5136. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  5137. sliding_window_pattern = []
  5138. for t in self.hparams["layer_types"]:
  5139. sliding_window_pattern.append(t == "sliding_attention")
  5140. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5141. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  5142. has_all = all(m.numel() > 0 for m in matrices)
  5143. if not has_all:
  5144. return None
  5145. else:
  5146. return torch.stack(matrices, dim=0)
  5147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5148. if name.endswith("_scale"):
  5149. name = name + ".weight"
  5150. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  5151. if "language_model." not in name:
  5152. return [] # skip non-language model tensors
  5153. # Pad token embeddings for vision/audio special tokens (262144-262399)
  5154. if "embed_tokens.weight" in name or "embed_tokens_per_layer" in name:
  5155. # Move to CPU to avoid meta device issues during padding
  5156. data_torch = data_torch.to(device="cpu")
  5157. vocab_size = self.hparams.get("vocab_size", 262400)
  5158. current_size = data_torch.shape[0] # First dimension is vocab_size
  5159. if current_size < vocab_size:
  5160. # Pad with zeros for vision/audio tokens (they get embeddings from vision tower)
  5161. padding_size = vocab_size - current_size
  5162. tensor_type = "per-layer embeddings" if "per_layer" in name else "token embeddings"
  5163. logger.info(f"Padding {tensor_type} shape {list(data_torch.shape)} from {current_size} to {vocab_size} (adding {padding_size} vision/audio token slots)")
  5164. # Create padding with zeros (vision tokens won't use these embeddings)
  5165. padding = torch.zeros((padding_size, data_torch.shape[1]), dtype=data_torch.dtype, device=data_torch.device)
  5166. data_torch = torch.cat([data_torch, padding], dim=0)
  5167. # Continue with normal processing
  5168. name = name.replace("language_model.", "")
  5169. return [(self.map_tensor_name(name), data_torch)]
  5170. if "altup_unembed_projections" in name:
  5171. data_torch = data_torch.to(device="cpu")
  5172. # altup_unembed matrices are [hidden_size, hidden_size], NOT vocab-based
  5173. # They should NOT be padded
  5174. if ".0." in name:
  5175. self._altup_unembd[0] = data_torch
  5176. elif ".1." in name:
  5177. self._altup_unembd[1] = data_torch
  5178. elif ".2." in name:
  5179. self._altup_unembd[2] = data_torch
  5180. else:
  5181. raise ValueError(f"Unknown name: {name}")
  5182. out = self._stack_matrices(self._altup_unembd)
  5183. if out is not None:
  5184. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  5185. else:
  5186. return []
  5187. if "altup_projections" in name:
  5188. data_torch = data_torch.to(device="cpu")
  5189. if ".0." in name:
  5190. self._altup_proj[0] = data_torch
  5191. elif ".1." in name:
  5192. self._altup_proj[1] = data_torch
  5193. elif ".2." in name:
  5194. self._altup_proj[2] = data_torch
  5195. else:
  5196. raise ValueError(f"Unknown name: {name}")
  5197. out = self._stack_matrices(self._altup_proj)
  5198. if out is not None:
  5199. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5200. else:
  5201. return []
  5202. return super().modify_tensors(data_torch, name, bid)
  5203. @ModelBase.register("Starcoder2ForCausalLM")
  5204. class StarCoder2Model(TextModel):
  5205. model_arch = gguf.MODEL_ARCH.STARCODER2
  5206. @ModelBase.register("Rwkv6ForCausalLM")
  5207. class Rwkv6Model(TextModel):
  5208. model_arch = gguf.MODEL_ARCH.RWKV6
  5209. def set_vocab(self):
  5210. self._set_vocab_rwkv_world()
  5211. def set_gguf_parameters(self):
  5212. head_size = self.hparams["head_size"]
  5213. hidden_size = self.hparams["hidden_size"]
  5214. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5215. rescale_every_n_layers = self.hparams["rescale_every"]
  5216. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5217. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5218. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5219. # RWKV isn't context limited
  5220. self.gguf_writer.add_context_length(1048576)
  5221. self.gguf_writer.add_embedding_length(hidden_size)
  5222. self.gguf_writer.add_block_count(self.block_count)
  5223. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5224. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5225. self.gguf_writer.add_wkv_head_size(head_size)
  5226. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5227. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5228. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5229. self.gguf_writer.add_file_type(self.ftype)
  5230. # required by llama.cpp, unused
  5231. self.gguf_writer.add_head_count(0)
  5232. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5233. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5234. new_name = self.map_tensor_name(name)
  5235. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5236. new_name += ".weight"
  5237. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5238. data_torch = data_torch.transpose(0, 1)
  5239. if new_name.endswith("time_mix_w2.weight"):
  5240. data_torch = data_torch.permute(0, 2, 1)
  5241. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5242. data_torch = data_torch.squeeze()
  5243. try:
  5244. rescale_every_n_layers = self.hparams["rescale_every"]
  5245. if rescale_every_n_layers > 0:
  5246. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5247. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5248. except KeyError:
  5249. pass
  5250. # concat time_mix_lerp weights to reduce some cpu overhead
  5251. # also reduces the number of tensors in the model
  5252. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5253. try:
  5254. self.lerp_weights[bid][new_name] = data_torch
  5255. except KeyError:
  5256. self.lerp_weights[bid] = {new_name: data_torch}
  5257. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5258. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5259. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5260. yield (new_name, data)
  5261. return
  5262. yield (new_name, data_torch)
  5263. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5264. class RWKV6Qwen2Model(Rwkv6Model):
  5265. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5266. def set_vocab(self):
  5267. try:
  5268. self._set_vocab_sentencepiece()
  5269. except FileNotFoundError:
  5270. self._set_vocab_gpt2()
  5271. def set_gguf_parameters(self):
  5272. num_attention_heads = self.hparams["num_attention_heads"]
  5273. num_key_value_heads = self.hparams["num_key_value_heads"]
  5274. hidden_size = self.hparams["hidden_size"]
  5275. head_size = hidden_size // num_attention_heads
  5276. rms_norm_eps = self.hparams["rms_norm_eps"]
  5277. intermediate_size = self.hparams["intermediate_size"]
  5278. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5279. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5280. # RWKV isn't context limited
  5281. self.gguf_writer.add_context_length(1048576)
  5282. self.gguf_writer.add_embedding_length(hidden_size)
  5283. self.gguf_writer.add_block_count(self.block_count)
  5284. self.gguf_writer.add_wkv_head_size(head_size)
  5285. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5286. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5287. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5288. self.gguf_writer.add_file_type(self.ftype)
  5289. # special parameters for time_mixing in RWKV6QWEN2
  5290. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5291. self.gguf_writer.add_token_shift_count(1)
  5292. # RWKV6QWEN2 use grouped key/value like GQA
  5293. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5294. # required by llama.cpp, unused
  5295. self.gguf_writer.add_head_count(0)
  5296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5297. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5298. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5299. data = data.view(5, -1, data.shape[-1])
  5300. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5301. # permute them here to avoid code changes
  5302. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5303. if "w2" in new_name:
  5304. data = data.view(5, -1, data.shape[-1])
  5305. yield (new_name, data)
  5306. continue
  5307. yield (new_name, data)
  5308. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5309. class Rwkv7Model(TextModel):
  5310. model_arch = gguf.MODEL_ARCH.RWKV7
  5311. def set_vocab(self):
  5312. self._set_vocab_rwkv_world()
  5313. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5314. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5315. def set_gguf_parameters(self):
  5316. try:
  5317. head_size = self.hparams["head_size"]
  5318. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5319. except KeyError:
  5320. head_size = self.hparams["head_dim"]
  5321. layer_norm_eps = self.hparams["norm_eps"]
  5322. hidden_size = self.hparams["hidden_size"]
  5323. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5324. # ICLR: In-Context-Learning-Rate
  5325. try:
  5326. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5327. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5328. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5329. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5330. except KeyError:
  5331. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5332. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5333. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5334. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5335. # RWKV isn't context limited
  5336. self.gguf_writer.add_context_length(1048576)
  5337. self.gguf_writer.add_embedding_length(hidden_size)
  5338. self.gguf_writer.add_block_count(self.block_count)
  5339. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5340. self.gguf_writer.add_wkv_head_size(head_size)
  5341. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5342. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5343. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5344. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5345. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5346. self.gguf_writer.add_file_type(self.ftype)
  5347. # required by llama.cpp, unused
  5348. self.gguf_writer.add_head_count(0)
  5349. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5350. lora_needs_transpose: bool = True
  5351. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5352. # unify tensor names here to make life easier
  5353. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5354. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5355. name = name.replace("time_mixer.", "")
  5356. # lora layer names in fla-hub's impl
  5357. if "_lora.lora" in name:
  5358. self.lora_needs_transpose = False
  5359. name = name.replace("_lora.lora.0.weight", "1.weight")
  5360. name = name.replace("_lora.lora.2.weight", "2.weight")
  5361. name = name.replace("_lora.lora.2.bias", "0.weight")
  5362. name = name.replace("feed_forward_norm", "ln2")
  5363. name = name.replace("g_norm", "ln_x")
  5364. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5365. # some models have dummy v0/v1/v2 on first layer while others don't
  5366. # ignore them all since they are not used
  5367. return
  5368. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5369. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5370. if bid is not None and "attention.x_" in name:
  5371. if "attention.x_x" in name:
  5372. # already concatenated
  5373. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5374. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5375. yield (new_name, data)
  5376. else:
  5377. try:
  5378. self.lerp_weights[bid][name] = data_torch
  5379. except KeyError:
  5380. self.lerp_weights[bid] = {name: data_torch}
  5381. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5382. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5383. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5384. yield (new_name, data)
  5385. return
  5386. else:
  5387. data_torch = data_torch.squeeze()
  5388. new_name = self.map_tensor_name(name)
  5389. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5390. new_name += ".weight"
  5391. if self.lora_needs_transpose and any(
  5392. new_name.endswith(t) for t in [
  5393. "time_mix_w1.weight", "time_mix_w2.weight",
  5394. "time_mix_a1.weight", "time_mix_a2.weight",
  5395. "time_mix_v1.weight", "time_mix_v2.weight",
  5396. "time_mix_g1.weight", "time_mix_g2.weight",
  5397. ]
  5398. ):
  5399. data_torch = data_torch.transpose(0, 1)
  5400. if 'r_k' in new_name:
  5401. data_torch = data_torch.flatten()
  5402. if bid == 0 and "time_mix_a" in new_name:
  5403. # dummy v0/v1/v2 on first layer
  5404. # easist way to make llama happy
  5405. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5406. yield (new_name, data_torch)
  5407. @ModelBase.register("RwkvHybridForCausalLM")
  5408. class ARwkv7Model(Rwkv7Model):
  5409. model_arch = gguf.MODEL_ARCH.ARWKV7
  5410. def set_vocab(self):
  5411. try:
  5412. self._set_vocab_sentencepiece()
  5413. except FileNotFoundError:
  5414. self._set_vocab_gpt2()
  5415. def set_gguf_parameters(self):
  5416. hidden_size = self.hparams["hidden_size"]
  5417. head_size = self.hparams["head_size"]
  5418. rms_norm_eps = self.hparams["rms_norm_eps"]
  5419. intermediate_size = self.hparams["intermediate_size"]
  5420. wkv_has_gate = self.hparams["wkv_has_gate"]
  5421. assert self.hparams["wkv_version"] == 7
  5422. # ICLR: In-Context-Learning-Rate
  5423. lora_rank_decay = 64
  5424. lora_rank_iclr = 64
  5425. lora_rank_value_residual_mix = 32
  5426. lora_rank_gate = 128 if wkv_has_gate else 0
  5427. # RWKV isn't context limited
  5428. self.gguf_writer.add_context_length(1048576)
  5429. self.gguf_writer.add_embedding_length(hidden_size)
  5430. self.gguf_writer.add_block_count(self.block_count)
  5431. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5432. self.gguf_writer.add_wkv_head_size(head_size)
  5433. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5434. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5435. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5436. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5437. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5438. self.gguf_writer.add_file_type(self.ftype)
  5439. self.gguf_writer.add_token_shift_count(1)
  5440. # required by llama.cpp, unused
  5441. self.gguf_writer.add_head_count(0)
  5442. @ModelBase.register("MaincoderForCausalLM")
  5443. class MaincoderModel(TextModel):
  5444. model_arch = gguf.MODEL_ARCH.MAINCODER
  5445. def set_gguf_parameters(self):
  5446. super().set_gguf_parameters()
  5447. if (head_dim := self.hparams.get("head_dim")) is not None:
  5448. self.gguf_writer.add_rope_dimension_count(head_dim)
  5449. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5450. class MambaModel(TextModel):
  5451. model_arch = gguf.MODEL_ARCH.MAMBA
  5452. def __init__(self, dir_model: Path, *args, **kwargs):
  5453. # Avoid using AutoConfig for hparams
  5454. hparams = kwargs.pop("hparams", None)
  5455. if hparams is None:
  5456. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5457. hparams = json.load(f)
  5458. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5459. def set_vocab(self):
  5460. vocab_size = self.hparams["vocab_size"]
  5461. # Round vocab size to next multiple of 8
  5462. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5463. # pad using ceiling division
  5464. # ref: https://stackoverflow.com/a/17511341/22827863
  5465. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5466. self.hparams["vocab_size"] = vocab_size
  5467. if (self.dir_model / "tokenizer.json").is_file():
  5468. self._set_vocab_gpt2()
  5469. elif (self.dir_model / "tokenizer.model").is_file():
  5470. self._set_vocab_sentencepiece()
  5471. else:
  5472. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5473. self._set_vocab_builtin("gpt-neox", vocab_size)
  5474. def set_gguf_parameters(self):
  5475. d_model = self.find_hparam(["hidden_size", "d_model"])
  5476. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5477. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5478. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5479. # ceiling division
  5480. # ref: https://stackoverflow.com/a/17511341/22827863
  5481. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5482. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5483. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5484. use_dt_b_c_norm = False
  5485. # For falconmamba we do apply RMS norm on B / DT and C layers
  5486. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5487. use_dt_b_c_norm = True
  5488. # Fail early for models which don't have a block expansion factor of 2
  5489. assert d_inner == 2 * d_model
  5490. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5491. self.gguf_writer.add_embedding_length(d_model)
  5492. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5493. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5494. self.gguf_writer.add_block_count(self.block_count)
  5495. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5496. self.gguf_writer.add_ssm_inner_size(d_inner)
  5497. self.gguf_writer.add_ssm_state_size(d_state)
  5498. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5499. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5500. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5501. self.gguf_writer.add_file_type(self.ftype)
  5502. _tok_embd = None
  5503. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5504. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5505. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5506. new_name = self.map_tensor_name(name)
  5507. if name.endswith(".A_log"):
  5508. logger.debug("A_log --> A ==> " + new_name)
  5509. data_torch = -torch.exp(data_torch)
  5510. # [4 1 8192 1] -> [4 8192 1 1]
  5511. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5512. data_torch = data_torch.squeeze()
  5513. # assuming token_embd.weight is seen before output.weight
  5514. if self._tok_embd is not None and new_name == output_name:
  5515. if torch.equal(self._tok_embd, data_torch):
  5516. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5517. return []
  5518. elif new_name == tok_embd_name:
  5519. self._tok_embd = data_torch
  5520. return [(new_name, data_torch)]
  5521. @ModelBase.register("Mamba2ForCausalLM")
  5522. class Mamba2Model(TextModel):
  5523. model_arch = gguf.MODEL_ARCH.MAMBA2
  5524. def __init__(self, dir_model: Path, *args, **kwargs):
  5525. # Avoid using AutoConfig for hparams
  5526. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5527. hparams = kwargs.pop("hparams", None)
  5528. if hparams is None:
  5529. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5530. hparams = json.load(f)
  5531. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5532. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5533. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5534. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5535. def set_vocab(self):
  5536. vocab_size = self.hparams["vocab_size"]
  5537. # Round vocab size to next multiple of 16
  5538. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5539. # pad using ceiling division
  5540. # ref: https://stackoverflow.com/a/17511341/22827863
  5541. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5542. self.hparams["vocab_size"] = vocab_size
  5543. if (self.dir_model / "tokenizer.model").is_file():
  5544. self._set_vocab_sentencepiece()
  5545. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5546. # mamba-codestral
  5547. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5548. elif (self.dir_model / "tokenizer.json").is_file():
  5549. self._set_vocab_gpt2()
  5550. else:
  5551. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5552. self._set_vocab_builtin("gpt-neox", vocab_size)
  5553. def set_gguf_parameters(self):
  5554. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5555. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5556. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5557. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5558. # Fail early for models which don't have a block expansion factor of 2
  5559. # TODO: does this really matter?
  5560. # skip the assertion for FalconH1 Model
  5561. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5562. assert self.d_inner == 2 * self.d_model
  5563. assert self.d_inner % head_dim == 0
  5564. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5565. self.gguf_writer.add_embedding_length(self.d_model)
  5566. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5567. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5568. self.gguf_writer.add_block_count(self.block_count)
  5569. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5570. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5571. self.gguf_writer.add_ssm_state_size(d_state)
  5572. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5573. self.gguf_writer.add_ssm_group_count(self.n_group)
  5574. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5575. self.gguf_writer.add_file_type(self.ftype)
  5576. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5577. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5578. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5579. name = name.removeprefix("model.")
  5580. if name.endswith(".dt_bias"):
  5581. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5582. new_name = self.map_tensor_name(name)
  5583. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5584. data_torch = data_torch.squeeze()
  5585. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5586. gguf.MODEL_TENSOR.SSM_A,
  5587. gguf.MODEL_TENSOR.SSM_D,
  5588. ]):
  5589. # unsqueeze A to use similar shape semantics as Mamba-1
  5590. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5591. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5592. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5593. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5594. if name.endswith(".A_log"):
  5595. logger.debug("A_log --> A ==> " + new_name)
  5596. data_torch = -torch.exp(data_torch)
  5597. yield (new_name, data_torch)
  5598. @ModelBase.register("JambaForCausalLM")
  5599. class JambaModel(TextModel):
  5600. model_arch = gguf.MODEL_ARCH.JAMBA
  5601. def set_vocab(self):
  5602. if (self.dir_model / "tokenizer.model").is_file():
  5603. self._set_vocab_sentencepiece()
  5604. else:
  5605. self._set_vocab_llama_hf()
  5606. self.gguf_writer.add_add_space_prefix(False)
  5607. def set_gguf_parameters(self):
  5608. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5609. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5610. d_inner = self.hparams["mamba_expand"] * d_model
  5611. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5612. # ceiling division
  5613. # ref: https://stackoverflow.com/a/17511341/22827863
  5614. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5615. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5616. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5617. n_kv_head = self.hparams["num_key_value_heads"]
  5618. attn_offset = self.hparams["attn_layer_offset"]
  5619. attn_period = self.hparams["attn_layer_period"]
  5620. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5621. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5622. ]
  5623. self.gguf_writer.add_block_count(self.block_count)
  5624. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5625. self.gguf_writer.add_embedding_length(d_model)
  5626. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5627. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5628. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5629. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5630. self.gguf_writer.add_ssm_inner_size(d_inner)
  5631. self.gguf_writer.add_ssm_state_size(d_state)
  5632. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5633. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5634. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5635. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5636. self.gguf_writer.add_file_type(self.ftype)
  5637. _experts: list[dict[str, Tensor]] | None = None
  5638. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5639. # Mini-Jamba
  5640. name = name.replace(".moe.", ".feed_forward.")
  5641. if bid is not None:
  5642. moe_offset = self.hparams["expert_layer_offset"]
  5643. moe_period = self.hparams["expert_layer_period"]
  5644. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5645. name = name.replace(".experts.0.", ".")
  5646. # process the experts separately
  5647. if ".feed_forward.experts." in name:
  5648. n_experts = self.hparams["num_experts"]
  5649. assert bid is not None
  5650. if self._experts is None:
  5651. self._experts = [{} for _ in range(self.block_count)]
  5652. self._experts[bid][name] = data_torch
  5653. if len(self._experts[bid]) >= n_experts * 3:
  5654. # merge the experts into a single 3d tensor
  5655. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5656. datas: list[Tensor] = []
  5657. for xid in range(n_experts):
  5658. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5659. datas.append(self._experts[bid][ename])
  5660. del self._experts[bid][ename]
  5661. data_torch = torch.stack(datas, dim=0)
  5662. # using the same merged name as qwen2moe
  5663. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5664. new_name = self.map_tensor_name(merged_name)
  5665. yield new_name, data_torch
  5666. return
  5667. new_name = self.map_tensor_name(name)
  5668. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5669. data_torch = data_torch.squeeze()
  5670. if name.endswith(".A_log"):
  5671. logger.debug("A_log --> A ==> " + new_name)
  5672. data_torch = -torch.exp(data_torch)
  5673. yield (new_name, data_torch)
  5674. def prepare_tensors(self):
  5675. super().prepare_tensors()
  5676. if self._experts is not None:
  5677. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5678. experts = [k for d in self._experts for k in d.keys()]
  5679. if len(experts) > 0:
  5680. raise ValueError(f"Unprocessed experts: {experts}")
  5681. @ModelBase.register("CohereForCausalLM")
  5682. class CommandR2Model(TextModel):
  5683. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5684. def __init__(self, *args, **kwargs):
  5685. super().__init__(*args, **kwargs)
  5686. # max_position_embeddings = 8192 in config.json but model was actually
  5687. # trained on 128k context length
  5688. # aya-23 models don't have model_max_length specified
  5689. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5690. def set_gguf_parameters(self):
  5691. super().set_gguf_parameters()
  5692. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5693. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5694. @ModelBase.register("Cohere2ForCausalLM")
  5695. class Cohere2Model(TextModel):
  5696. model_arch = gguf.MODEL_ARCH.COHERE2
  5697. def set_gguf_parameters(self):
  5698. super().set_gguf_parameters()
  5699. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5700. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5701. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5702. rotary_pct = self.hparams["rotary_pct"]
  5703. hidden_size = self.hparams["hidden_size"]
  5704. num_attention_heads = self.hparams["num_attention_heads"]
  5705. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5706. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5707. @ModelBase.register("OlmoForCausalLM")
  5708. @ModelBase.register("OLMoForCausalLM")
  5709. class OlmoModel(TextModel):
  5710. model_arch = gguf.MODEL_ARCH.OLMO
  5711. def set_gguf_parameters(self):
  5712. super().set_gguf_parameters()
  5713. self.gguf_writer.add_layer_norm_eps(1e-5)
  5714. clip_qkv = self.hparams.get("clip_qkv")
  5715. if clip_qkv is not None:
  5716. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5717. # Same as super class, but permuting q_proj, k_proj
  5718. # Copied from: LlamaModel
  5719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5720. del bid # unused
  5721. n_head = self.hparams["num_attention_heads"]
  5722. n_kv_head = self.hparams.get("num_key_value_heads")
  5723. if name.endswith("q_proj.weight"):
  5724. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5725. if name.endswith("k_proj.weight"):
  5726. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5727. return [(self.map_tensor_name(name), data_torch)]
  5728. @ModelBase.register("SeedOssForCausalLM")
  5729. class SeedOssModel(TextModel):
  5730. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5731. @ModelBase.register("Olmo2ForCausalLM")
  5732. @ModelBase.register("Olmo3ForCausalLM")
  5733. class Olmo2Model(TextModel):
  5734. model_arch = gguf.MODEL_ARCH.OLMO2
  5735. def set_gguf_parameters(self):
  5736. super().set_gguf_parameters()
  5737. if "sliding_window" in self.hparams:
  5738. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5739. sliding_window_pattern = []
  5740. if "layer_types" in self.hparams:
  5741. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5742. else:
  5743. # Olmo2 does not use sliding window attention.
  5744. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5745. for i in range(self.hparams["num_hidden_layers"]):
  5746. sliding_window_pattern.append((i + 1) % 4 != 0)
  5747. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5748. @ModelBase.register("OlmoeForCausalLM")
  5749. class OlmoeModel(TextModel):
  5750. model_arch = gguf.MODEL_ARCH.OLMOE
  5751. def set_gguf_parameters(self):
  5752. super().set_gguf_parameters()
  5753. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5754. if (n_experts := self.hparams.get("num_experts")) is not None:
  5755. self.gguf_writer.add_expert_count(n_experts)
  5756. _experts: list[dict[str, Tensor]] | None = None
  5757. # Copied from: Qwen2MoeModel
  5758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5759. # process the experts separately
  5760. if name.find("experts") != -1:
  5761. n_experts = self.hparams["num_experts"]
  5762. assert bid is not None
  5763. if self._experts is None:
  5764. self._experts = [{} for _ in range(self.block_count)]
  5765. self._experts[bid][name] = data_torch
  5766. if len(self._experts[bid]) >= n_experts * 3:
  5767. tensors: list[tuple[str, Tensor]] = []
  5768. # merge the experts into a single 3d tensor
  5769. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5770. datas: list[Tensor] = []
  5771. for xid in range(n_experts):
  5772. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5773. datas.append(self._experts[bid][ename])
  5774. del self._experts[bid][ename]
  5775. data_torch = torch.stack(datas, dim=0)
  5776. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5777. new_name = self.map_tensor_name(merged_name)
  5778. tensors.append((new_name, data_torch))
  5779. return tensors
  5780. else:
  5781. return []
  5782. return [(self.map_tensor_name(name), data_torch)]
  5783. # Copied from: Qwen2MoeModel
  5784. def prepare_tensors(self):
  5785. super().prepare_tensors()
  5786. if self._experts is not None:
  5787. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5788. experts = [k for d in self._experts for k in d.keys()]
  5789. if len(experts) > 0:
  5790. raise ValueError(f"Unprocessed experts: {experts}")
  5791. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5792. class JinaBertV2Model(BertModel):
  5793. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5794. def set_vocab(self):
  5795. tokenizer_class = 'BertTokenizer'
  5796. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5797. tokenizer_class = json.load(f)['tokenizer_class']
  5798. if tokenizer_class == 'BertTokenizer':
  5799. super().set_vocab()
  5800. elif tokenizer_class == 'RobertaTokenizer':
  5801. self._set_vocab_gpt2()
  5802. self.gguf_writer.add_token_type_count(2)
  5803. else:
  5804. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5805. @ModelBase.register("OpenELMForCausalLM")
  5806. class OpenELMModel(TextModel):
  5807. model_arch = gguf.MODEL_ARCH.OPENELM
  5808. @staticmethod
  5809. def _make_divisible(v: float | int, divisor: int) -> int:
  5810. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5811. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5812. # Make sure that round down does not go down by more than 10%.
  5813. if new_v < 0.9 * v:
  5814. new_v += divisor
  5815. return new_v
  5816. def __init__(self, *args, **kwargs):
  5817. super().__init__(*args, **kwargs)
  5818. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5819. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5820. self._n_embd: int = self.hparams["model_dim"]
  5821. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5822. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5823. self._ffn_dims: list[int] = [
  5824. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5825. for multiplier in ffn_multipliers
  5826. ]
  5827. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5828. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5829. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5830. def set_vocab(self):
  5831. try:
  5832. self._set_vocab_sentencepiece()
  5833. except FileNotFoundError:
  5834. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5835. def set_gguf_parameters(self):
  5836. n_embd = self._n_embd
  5837. head_dim = self.hparams["head_dim"]
  5838. rot_pct = 1.0
  5839. assert self.block_count == len(self._num_kv_heads)
  5840. assert self.block_count == len(self._num_query_heads)
  5841. assert self.block_count == len(self._ffn_dims)
  5842. self.gguf_writer.add_block_count(self.block_count)
  5843. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5844. self.gguf_writer.add_embedding_length(n_embd)
  5845. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5846. self.gguf_writer.add_head_count(self._num_query_heads)
  5847. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5848. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5849. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5850. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5851. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5852. self.gguf_writer.add_key_length(head_dim)
  5853. self.gguf_writer.add_value_length(head_dim)
  5854. self.gguf_writer.add_file_type(self.ftype)
  5855. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5856. if "n_layers" in keys:
  5857. return self.hparams["num_transformer_layers"]
  5858. return super().find_hparam(keys, optional)
  5859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5860. # split ff
  5861. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5862. ff_dim = self._ffn_dims[bid]
  5863. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5864. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5865. return
  5866. yield (self.map_tensor_name(name), data_torch)
  5867. @ModelBase.register("ArcticForCausalLM")
  5868. class ArcticModel(TextModel):
  5869. model_arch = gguf.MODEL_ARCH.ARCTIC
  5870. def set_vocab(self):
  5871. # The reason for using a custom implementation here is that the
  5872. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5873. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5874. from sentencepiece import SentencePieceProcessor
  5875. tokenizer_path = self.dir_model / 'tokenizer.model'
  5876. if not tokenizer_path.is_file():
  5877. logger.error(f'Error: Missing {tokenizer_path}')
  5878. sys.exit(1)
  5879. # Read the whole vocabulary from the tokenizer.model file
  5880. tokenizer = SentencePieceProcessor()
  5881. tokenizer.LoadFromFile(str(tokenizer_path))
  5882. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5883. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5884. scores: list[float] = [-10000.0] * vocab_size
  5885. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5886. for token_id in range(tokenizer.vocab_size()):
  5887. piece = tokenizer.IdToPiece(token_id)
  5888. text = piece.encode("utf-8")
  5889. score = tokenizer.GetScore(token_id)
  5890. toktype = SentencePieceTokenTypes.NORMAL
  5891. if tokenizer.IsUnknown(token_id):
  5892. toktype = SentencePieceTokenTypes.UNKNOWN
  5893. elif tokenizer.IsControl(token_id):
  5894. toktype = SentencePieceTokenTypes.CONTROL
  5895. elif tokenizer.IsUnused(token_id):
  5896. toktype = SentencePieceTokenTypes.UNUSED
  5897. elif tokenizer.IsByte(token_id):
  5898. toktype = SentencePieceTokenTypes.BYTE
  5899. tokens[token_id] = text
  5900. scores[token_id] = score
  5901. toktypes[token_id] = toktype
  5902. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5903. # of information about added/redefined tokens and modify them accordingly.
  5904. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5905. if tokenizer_config_file.is_file():
  5906. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5907. tokenizer_config_json = json.load(f)
  5908. if "added_tokens_decoder" in tokenizer_config_json:
  5909. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5910. for token_id, token_json in added_tokens_decoder.items():
  5911. token_id = int(token_id)
  5912. if token_id >= vocab_size:
  5913. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5914. continue
  5915. token_content = token_json["content"]
  5916. token_type = SentencePieceTokenTypes.USER_DEFINED
  5917. token_score = -10000.0
  5918. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5919. # Set the score to 0.0 as in the original tokenizer.model
  5920. if ("special" in token_json) and token_json["special"]:
  5921. if token_content == tokenizer_config_json["unk_token"]:
  5922. token_type = SentencePieceTokenTypes.UNKNOWN
  5923. else:
  5924. token_type = SentencePieceTokenTypes.CONTROL
  5925. token_score = 0.0
  5926. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5927. tokens[token_id] = token_content.encode("utf-8")
  5928. toktypes[token_id] = token_type
  5929. scores[token_id] = token_score
  5930. self.gguf_writer.add_tokenizer_model("llama")
  5931. self.gguf_writer.add_tokenizer_pre("default")
  5932. self.gguf_writer.add_token_list(tokens)
  5933. self.gguf_writer.add_token_scores(scores)
  5934. self.gguf_writer.add_token_types(toktypes)
  5935. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5936. special_vocab.add_to_gguf(self.gguf_writer)
  5937. def set_gguf_parameters(self):
  5938. super().set_gguf_parameters()
  5939. hparams = self.hparams
  5940. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5941. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5942. _experts: list[dict[str, Tensor]] | None = None
  5943. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5944. n_head = self.hparams["num_attention_heads"]
  5945. n_kv_head = self.hparams.get("num_key_value_heads")
  5946. if name.endswith("q_proj.weight"):
  5947. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5948. if name.endswith("k_proj.weight"):
  5949. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5950. # process the experts separately
  5951. if name.find("block_sparse_moe.experts") != -1:
  5952. n_experts = self.hparams["num_local_experts"]
  5953. assert bid is not None
  5954. if self._experts is None:
  5955. self._experts = [{} for _ in range(self.block_count)]
  5956. self._experts[bid][name] = data_torch
  5957. if len(self._experts[bid]) >= n_experts * 3:
  5958. tensors: list[tuple[str, Tensor]] = []
  5959. # merge the experts into a single 3d tensor
  5960. for wid in ["w1", "w2", "w3"]:
  5961. datas: list[Tensor] = []
  5962. for xid in range(n_experts):
  5963. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5964. datas.append(self._experts[bid][ename])
  5965. del self._experts[bid][ename]
  5966. data_torch = torch.stack(datas, dim=0)
  5967. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5968. new_name = self.map_tensor_name(merged_name)
  5969. tensors.append((new_name, data_torch))
  5970. return tensors
  5971. else:
  5972. return []
  5973. return [(self.map_tensor_name(name), data_torch)]
  5974. def prepare_tensors(self):
  5975. super().prepare_tensors()
  5976. if self._experts is not None:
  5977. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5978. experts = [k for d in self._experts for k in d.keys()]
  5979. if len(experts) > 0:
  5980. raise ValueError(f"Unprocessed experts: {experts}")
  5981. @ModelBase.register("DeepseekForCausalLM")
  5982. class DeepseekModel(TextModel):
  5983. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5984. def set_vocab(self):
  5985. try:
  5986. self._set_vocab_sentencepiece()
  5987. except FileNotFoundError:
  5988. self._set_vocab_gpt2()
  5989. def set_gguf_parameters(self):
  5990. super().set_gguf_parameters()
  5991. hparams = self.hparams
  5992. if (rope_dim := hparams.get("head_dim")) is None:
  5993. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5994. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5995. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5996. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5997. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5998. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5999. self.gguf_writer.add_expert_weights_scale(1.0)
  6000. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  6001. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  6002. _experts: list[dict[str, Tensor]] | None = None
  6003. @staticmethod
  6004. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6005. if n_head_kv is not None and n_head != n_head_kv:
  6006. n_head = n_head_kv
  6007. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6008. .swapaxes(1, 2)
  6009. .reshape(weights.shape))
  6010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6011. n_head = self.hparams["num_attention_heads"]
  6012. n_kv_head = self.hparams.get("num_key_value_heads")
  6013. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6014. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  6015. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6016. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  6017. # process the experts separately
  6018. if name.find("mlp.experts") != -1:
  6019. n_experts = self.hparams["n_routed_experts"]
  6020. assert bid is not None
  6021. if self._experts is None:
  6022. self._experts = [{} for _ in range(self.block_count)]
  6023. self._experts[bid][name] = data_torch
  6024. if len(self._experts[bid]) >= n_experts * 3:
  6025. tensors: list[tuple[str, Tensor]] = []
  6026. # merge the experts into a single 3d tensor
  6027. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6028. datas: list[Tensor] = []
  6029. for xid in range(n_experts):
  6030. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6031. datas.append(self._experts[bid][ename])
  6032. del self._experts[bid][ename]
  6033. data_torch = torch.stack(datas, dim=0)
  6034. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6035. new_name = self.map_tensor_name(merged_name)
  6036. tensors.append((new_name, data_torch))
  6037. return tensors
  6038. else:
  6039. return []
  6040. return [(self.map_tensor_name(name), data_torch)]
  6041. def prepare_tensors(self):
  6042. super().prepare_tensors()
  6043. if self._experts is not None:
  6044. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6045. experts = [k for d in self._experts for k in d.keys()]
  6046. if len(experts) > 0:
  6047. raise ValueError(f"Unprocessed experts: {experts}")
  6048. @ModelBase.register(
  6049. "DeepseekV2ForCausalLM",
  6050. "DeepseekV3ForCausalLM",
  6051. "KimiVLForConditionalGeneration",
  6052. "YoutuForCausalLM",
  6053. "YoutuVLForConditionalGeneration"
  6054. )
  6055. class DeepseekV2Model(TextModel):
  6056. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  6057. def set_vocab(self):
  6058. try:
  6059. self._set_vocab_gpt2()
  6060. return
  6061. except Exception:
  6062. pass
  6063. from transformers import AutoTokenizer
  6064. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6065. tokpre = self.get_vocab_base_pre(tokenizer)
  6066. if tokpre == "kimi-k2":
  6067. # Build merges list using the approach similar to HunYuanMoE
  6068. merges = []
  6069. vocab = {}
  6070. mergeable_ranks = tokenizer.model._mergeable_ranks
  6071. for token, rank in mergeable_ranks.items():
  6072. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6073. if len(token) == 1:
  6074. continue
  6075. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6076. if len(merged) == 2:
  6077. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6078. # Build token list
  6079. vocab_size = self.hparams["vocab_size"]
  6080. special_tokens = tokenizer.special_tokens
  6081. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6082. tokens: list[str] = []
  6083. toktypes: list[int] = []
  6084. for i in range(vocab_size):
  6085. if i not in reverse_vocab:
  6086. tokens.append(f"[PAD{i}]")
  6087. toktypes.append(gguf.TokenType.UNUSED)
  6088. else:
  6089. token = reverse_vocab[i]
  6090. tokens.append(token)
  6091. if i in special_tokens.values():
  6092. toktypes.append(gguf.TokenType.CONTROL)
  6093. else:
  6094. toktypes.append(gguf.TokenType.NORMAL)
  6095. self.gguf_writer.add_tokenizer_model("gpt2")
  6096. self.gguf_writer.add_tokenizer_pre(tokpre)
  6097. self.gguf_writer.add_token_list(tokens)
  6098. self.gguf_writer.add_token_types(toktypes)
  6099. self.gguf_writer.add_token_merges(merges)
  6100. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6101. special_vocab.add_to_gguf(self.gguf_writer)
  6102. else:
  6103. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  6104. def set_gguf_parameters(self):
  6105. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  6106. self.hparams["num_key_value_heads"] = 1
  6107. super().set_gguf_parameters()
  6108. hparams = self.hparams
  6109. # first_k_dense_replace: number of leading layers using dense FFN instead of MoE
  6110. # For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
  6111. # For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
  6112. has_moe = hparams.get("n_routed_experts") is not None
  6113. first_k_dense_replace = hparams.get("first_k_dense_replace")
  6114. if first_k_dense_replace is None:
  6115. # Default: if no MoE, all layers are dense; if MoE, none are dense
  6116. first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
  6117. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6118. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6119. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  6120. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  6121. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6122. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  6123. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  6124. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  6125. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6126. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  6127. # MoE parameters (required by C++ code for DEEPSEEK2 arch)
  6128. # For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
  6129. moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
  6130. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6131. if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
  6132. self.gguf_writer.add_expert_count(n_routed_experts)
  6133. # expert_shared_count is required by C++ code, default to 0 for non-MoE models
  6134. n_shared_experts = hparams.get("n_shared_experts", 0)
  6135. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6136. # When not set, C++ code will use scale_w = false to skip the no-op scaling
  6137. if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
  6138. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6139. if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
  6140. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6141. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6142. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  6143. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  6144. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  6145. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  6146. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  6147. _experts: list[dict[str, Tensor]] | None = None
  6148. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6149. # skip vision tensors and remove "language_model." for Kimi-VL
  6150. if "vision_tower" in name or "multi_modal_projector" in name:
  6151. return []
  6152. if name.startswith("siglip2.") or name.startswith("merger."):
  6153. return []
  6154. if name.startswith("language_model."):
  6155. name = name.replace("language_model.", "")
  6156. # skip lm_head.weight if tie_word_embeddings is True
  6157. if self.hparams.get("tie_word_embeddings", False):
  6158. if name == "lm_head.weight" or name == "model.lm_head.weight":
  6159. logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
  6160. return []
  6161. # rename e_score_correction_bias tensors
  6162. if name.endswith("e_score_correction_bias"):
  6163. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6164. # skip Multi-Token Prediction (MTP) layers
  6165. block_count = self.hparams["num_hidden_layers"]
  6166. match = re.match(r"model.layers.(\d+)", name)
  6167. if match and int(match.group(1)) >= block_count:
  6168. return []
  6169. # process the experts separately
  6170. if name.find("mlp.experts") != -1:
  6171. n_experts = self.hparams["n_routed_experts"]
  6172. assert bid is not None
  6173. if self._experts is None:
  6174. self._experts = [{} for _ in range(self.block_count)]
  6175. self._experts[bid][name] = data_torch
  6176. if len(self._experts[bid]) >= n_experts * 3:
  6177. tensors: list[tuple[str, Tensor]] = []
  6178. # merge the experts into a single 3d tensor
  6179. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6180. datas: list[Tensor] = []
  6181. for xid in range(n_experts):
  6182. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6183. datas.append(self._experts[bid][ename])
  6184. del self._experts[bid][ename]
  6185. data_torch = torch.stack(datas, dim=0)
  6186. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6187. new_name = self.map_tensor_name(merged_name)
  6188. tensors.append((new_name, data_torch))
  6189. return tensors
  6190. else:
  6191. return []
  6192. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  6193. if name.endswith("kv_b_proj.weight"):
  6194. name_kb = name.replace("kv_b_proj", "k_b_proj")
  6195. name_vb = name.replace("kv_b_proj", "v_b_proj")
  6196. n_head_kv = self.hparams["num_key_value_heads"]
  6197. v_head_dim = self.hparams["v_head_dim"]
  6198. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  6199. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  6200. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  6201. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  6202. k_b = k_b.transpose(1, 2)
  6203. return [
  6204. (self.map_tensor_name(name_kb), k_b),
  6205. (self.map_tensor_name(name_vb), v_b)
  6206. ]
  6207. return [(self.map_tensor_name(name), data_torch)]
  6208. def prepare_tensors(self):
  6209. super().prepare_tensors()
  6210. if self._experts is not None:
  6211. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6212. experts = [k for d in self._experts for k in d.keys()]
  6213. if len(experts) > 0:
  6214. raise ValueError(f"Unprocessed experts: {experts}")
  6215. @ModelBase.register("MiniMaxM2ForCausalLM")
  6216. class MiniMaxM2Model(TextModel):
  6217. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6218. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6219. def __init__(self, *args, **kwargs):
  6220. super().__init__(*args, **kwargs)
  6221. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6222. def set_gguf_parameters(self):
  6223. super().set_gguf_parameters()
  6224. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6225. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6227. if name.endswith("e_score_correction_bias"):
  6228. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6229. # merge expert weights
  6230. if 'experts' in name:
  6231. n_experts = self.hparams["num_experts"]
  6232. assert bid is not None
  6233. expert_cache = self._experts_cache.setdefault(bid, {})
  6234. expert_cache[name] = data_torch
  6235. expert_weights = ["w1", "w2", "w3"]
  6236. # not enough expert weights to merge
  6237. if len(expert_cache) < n_experts * len(expert_weights):
  6238. return []
  6239. tensors: list[tuple[str, Tensor]] = []
  6240. for w_name in expert_weights:
  6241. datas: list[Tensor] = []
  6242. for xid in range(n_experts):
  6243. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6244. datas.append(expert_cache[ename])
  6245. del expert_cache[ename]
  6246. data_torch = torch.stack(datas, dim=0)
  6247. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6248. new_name = self.map_tensor_name(merged_name)
  6249. tensors.append((new_name, data_torch))
  6250. del self._experts_cache[bid]
  6251. return tensors
  6252. return super().modify_tensors(data_torch, name, bid)
  6253. @ModelBase.register("MiMoV2FlashForCausalLM")
  6254. class MimoV2Model(TextModel):
  6255. model_arch = gguf.MODEL_ARCH.MIMO2
  6256. def set_gguf_parameters(self):
  6257. super().set_gguf_parameters()
  6258. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6259. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6260. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6261. assert self.hparams["topk_method"] == "noaux_tc"
  6262. n_head_kv = self.hparams["num_key_value_heads"]
  6263. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6264. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6265. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6266. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6267. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6268. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6269. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6270. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6271. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6272. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6273. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6274. _experts: list[dict[str, Tensor]] | None = None
  6275. def modify_tensors(self, data_torch, name, bid):
  6276. if name.endswith("e_score_correction_bias"):
  6277. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6278. if "attention_sink" in name and not name.endswith(".weight"):
  6279. name += ".weight"
  6280. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6281. if "model.mtp." in name:
  6282. return []
  6283. # process the experts separately
  6284. if name.find("mlp.experts") != -1:
  6285. n_experts = self.hparams["n_routed_experts"]
  6286. assert bid is not None
  6287. if self._experts is None:
  6288. self._experts = [{} for _ in range(self.block_count)]
  6289. self._experts[bid][name] = data_torch
  6290. if len(self._experts[bid]) >= n_experts * 3:
  6291. tensors: list[tuple[str, Tensor]] = []
  6292. # merge the experts into a single 3d tensor
  6293. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6294. datas: list[Tensor] = []
  6295. for xid in range(n_experts):
  6296. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6297. datas.append(self._experts[bid][ename_to_retrieve])
  6298. del self._experts[bid][ename_to_retrieve]
  6299. data_torch = torch.stack(datas, dim=0)
  6300. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6301. new_name = self.map_tensor_name(merged_name)
  6302. tensors.append((new_name, data_torch))
  6303. return tensors
  6304. else:
  6305. return []
  6306. return [(self.map_tensor_name(name), data_torch)]
  6307. def prepare_tensors(self):
  6308. super().prepare_tensors()
  6309. if self._experts is not None:
  6310. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6311. experts = [k for d in self._experts for k in d.keys()]
  6312. if len(experts) > 0:
  6313. raise ValueError(f"Unprocessed experts: {experts}")
  6314. @ModelBase.register("PanguEmbeddedForCausalLM")
  6315. class PanguEmbeddedModel(TextModel):
  6316. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6317. def set_vocab(self):
  6318. self._set_vocab_sentencepiece()
  6319. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6320. if tokenizer_config_file.is_file():
  6321. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6322. tokenizer_config_json = json.load(f)
  6323. if "add_prefix_space" in tokenizer_config_json:
  6324. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6325. def set_gguf_parameters(self):
  6326. super().set_gguf_parameters()
  6327. hparams = self.hparams
  6328. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6329. # PanguEmbedded's hparam loaded from config.json without head_dim
  6330. if (rope_dim := hparams.get("head_dim")) is None:
  6331. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6332. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6333. if hparams.get("head_dim") is None:
  6334. self.gguf_writer.add_key_length(rope_dim)
  6335. self.gguf_writer.add_value_length(rope_dim)
  6336. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6337. if name == "lm_head.weight":
  6338. if self.hparams.get("tie_word_embeddings", False):
  6339. logger.info("Skipping tied output layer 'lm_head.weight'")
  6340. return []
  6341. return [(self.map_tensor_name(name), data_torch)]
  6342. @ModelBase.register("Dots1ForCausalLM")
  6343. class Dots1Model(Qwen2MoeModel):
  6344. model_arch = gguf.MODEL_ARCH.DOTS1
  6345. def __init__(self, *args, **kwargs):
  6346. super().__init__(*args, **kwargs)
  6347. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6348. def set_gguf_parameters(self):
  6349. super().set_gguf_parameters()
  6350. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6351. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6352. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6353. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6355. if name.endswith("e_score_correction_bias"):
  6356. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6357. if "shared_experts" in name:
  6358. return [(self.map_tensor_name(name), data_torch)]
  6359. return super().modify_tensors(data_torch, name, bid)
  6360. @ModelBase.register("PLMForCausalLM")
  6361. class PLMModel(TextModel):
  6362. model_arch = gguf.MODEL_ARCH.PLM
  6363. def set_vocab(self):
  6364. self._set_vocab_gpt2()
  6365. def set_gguf_parameters(self):
  6366. super().set_gguf_parameters()
  6367. hparams = self.hparams
  6368. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6369. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6370. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6371. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6372. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6374. return [(self.map_tensor_name(name), data_torch)]
  6375. def prepare_tensors(self):
  6376. super().prepare_tensors()
  6377. @ModelBase.register("T5WithLMHeadModel")
  6378. @ModelBase.register("T5ForConditionalGeneration")
  6379. @ModelBase.register("MT5ForConditionalGeneration")
  6380. @ModelBase.register("UMT5ForConditionalGeneration")
  6381. @ModelBase.register("UMT5Model")
  6382. class T5Model(TextModel):
  6383. model_arch = gguf.MODEL_ARCH.T5
  6384. def __init__(self, *args, **kwargs):
  6385. super().__init__(*args, **kwargs)
  6386. self.shared_token_embeddings_found = False
  6387. def set_vocab(self):
  6388. # to avoid TypeError: Descriptors cannot be created directly
  6389. # exception when importing sentencepiece_model_pb2
  6390. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6391. from sentencepiece import SentencePieceProcessor
  6392. from sentencepiece import sentencepiece_model_pb2 as model
  6393. tokenizer_path = self.dir_model / 'tokenizer.model'
  6394. # many older models use spiece.model tokenizer model filename
  6395. if not tokenizer_path.is_file():
  6396. tokenizer_path = self.dir_model / 'spiece.model'
  6397. if not tokenizer_path.is_file():
  6398. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6399. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6400. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6401. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6402. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6403. # assure the tokenizer model file name is correct
  6404. assert tokenizer_path.name == 'tokenizer.model'
  6405. return self._set_vocab_sentencepiece()
  6406. else:
  6407. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6408. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6409. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6410. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6411. tokenizer = SentencePieceProcessor()
  6412. tokenizer.LoadFromFile(str(tokenizer_path))
  6413. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6414. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6415. scores: list[float] = [-10000.0] * vocab_size
  6416. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6417. for token_id in range(tokenizer.vocab_size()):
  6418. piece = tokenizer.IdToPiece(token_id)
  6419. text = piece.encode("utf-8")
  6420. score = tokenizer.GetScore(token_id)
  6421. toktype = SentencePieceTokenTypes.NORMAL
  6422. if tokenizer.IsUnknown(token_id):
  6423. toktype = SentencePieceTokenTypes.UNKNOWN
  6424. elif tokenizer.IsControl(token_id):
  6425. toktype = SentencePieceTokenTypes.CONTROL
  6426. elif tokenizer.IsUnused(token_id):
  6427. toktype = SentencePieceTokenTypes.UNUSED
  6428. elif tokenizer.IsByte(token_id):
  6429. toktype = SentencePieceTokenTypes.BYTE
  6430. tokens[token_id] = text
  6431. scores[token_id] = score
  6432. toktypes[token_id] = toktype
  6433. added_tokens_file = self.dir_model / 'added_tokens.json'
  6434. if added_tokens_file.is_file():
  6435. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6436. added_tokens_json = json.load(f)
  6437. for key in added_tokens_json:
  6438. token_id = added_tokens_json[key]
  6439. if token_id >= vocab_size:
  6440. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6441. continue
  6442. tokens[token_id] = key.encode("utf-8")
  6443. scores[token_id] = -1000.0
  6444. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6445. if vocab_size > len(tokens):
  6446. pad_count = vocab_size - len(tokens)
  6447. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6448. for i in range(1, pad_count + 1):
  6449. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6450. scores.append(-1000.0)
  6451. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6452. self.gguf_writer.add_tokenizer_model("t5")
  6453. self.gguf_writer.add_tokenizer_pre("default")
  6454. self.gguf_writer.add_token_list(tokens)
  6455. self.gguf_writer.add_token_scores(scores)
  6456. self.gguf_writer.add_token_types(toktypes)
  6457. self.gguf_writer.add_add_space_prefix(add_prefix)
  6458. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6459. if precompiled_charsmap:
  6460. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6461. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6462. special_vocab.add_to_gguf(self.gguf_writer)
  6463. def set_gguf_parameters(self):
  6464. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6465. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6466. n_ctx = 512
  6467. self.gguf_writer.add_context_length(n_ctx)
  6468. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6469. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6470. self.gguf_writer.add_block_count(self.block_count)
  6471. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6472. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6473. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6474. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6475. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6476. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6477. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6478. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6479. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6480. self.gguf_writer.add_file_type(self.ftype)
  6481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6482. del bid # unused
  6483. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6484. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6485. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6486. # and decoder and ignore the remaining ones.
  6487. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6488. if not self.shared_token_embeddings_found:
  6489. name = "shared.weight"
  6490. self.shared_token_embeddings_found = True
  6491. else:
  6492. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6493. return []
  6494. return [(self.map_tensor_name(name), data_torch)]
  6495. @ModelBase.register("T5EncoderModel")
  6496. class T5EncoderModel(TextModel):
  6497. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6498. def __init__(self, *args, **kwargs):
  6499. super().__init__(*args, **kwargs)
  6500. self.shared_token_embeddings_found = False
  6501. def set_vocab(self):
  6502. # to avoid TypeError: Descriptors cannot be created directly
  6503. # exception when importing sentencepiece_model_pb2
  6504. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6505. from sentencepiece import SentencePieceProcessor
  6506. from sentencepiece import sentencepiece_model_pb2 as model
  6507. tokenizer_path = self.dir_model / 'tokenizer.model'
  6508. # many older models use spiece.model tokenizer model filename
  6509. if not tokenizer_path.is_file():
  6510. tokenizer_path = self.dir_model / 'spiece.model'
  6511. if not tokenizer_path.is_file():
  6512. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6513. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6514. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6515. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6516. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6517. # assure the tokenizer model file name is correct
  6518. assert tokenizer_path.name == 'tokenizer.model'
  6519. return self._set_vocab_sentencepiece()
  6520. else:
  6521. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6522. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6523. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6524. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6525. tokenizer = SentencePieceProcessor()
  6526. tokenizer.LoadFromFile(str(tokenizer_path))
  6527. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6528. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6529. scores: list[float] = [-10000.0] * vocab_size
  6530. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6531. for token_id in range(tokenizer.vocab_size()):
  6532. piece = tokenizer.IdToPiece(token_id)
  6533. text = piece.encode("utf-8")
  6534. score = tokenizer.GetScore(token_id)
  6535. toktype = SentencePieceTokenTypes.NORMAL
  6536. if tokenizer.IsUnknown(token_id):
  6537. toktype = SentencePieceTokenTypes.UNKNOWN
  6538. elif tokenizer.IsControl(token_id):
  6539. toktype = SentencePieceTokenTypes.CONTROL
  6540. elif tokenizer.IsUnused(token_id):
  6541. toktype = SentencePieceTokenTypes.UNUSED
  6542. elif tokenizer.IsByte(token_id):
  6543. toktype = SentencePieceTokenTypes.BYTE
  6544. tokens[token_id] = text
  6545. scores[token_id] = score
  6546. toktypes[token_id] = toktype
  6547. added_tokens_file = self.dir_model / 'added_tokens.json'
  6548. if added_tokens_file.is_file():
  6549. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6550. added_tokens_json = json.load(f)
  6551. for key in added_tokens_json:
  6552. token_id = added_tokens_json[key]
  6553. if token_id >= vocab_size:
  6554. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6555. continue
  6556. tokens[token_id] = key.encode("utf-8")
  6557. scores[token_id] = -1000.0
  6558. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6559. if vocab_size > len(tokens):
  6560. pad_count = vocab_size - len(tokens)
  6561. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6562. for i in range(1, pad_count + 1):
  6563. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6564. scores.append(-1000.0)
  6565. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6566. self.gguf_writer.add_tokenizer_model("t5")
  6567. self.gguf_writer.add_tokenizer_pre("default")
  6568. self.gguf_writer.add_token_list(tokens)
  6569. self.gguf_writer.add_token_scores(scores)
  6570. self.gguf_writer.add_token_types(toktypes)
  6571. self.gguf_writer.add_add_space_prefix(add_prefix)
  6572. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6573. if precompiled_charsmap:
  6574. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6575. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6576. special_vocab.add_to_gguf(self.gguf_writer)
  6577. def set_gguf_parameters(self):
  6578. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6579. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6580. n_ctx = 512
  6581. self.gguf_writer.add_context_length(n_ctx)
  6582. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6583. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6584. self.gguf_writer.add_block_count(self.block_count)
  6585. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6586. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6587. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6588. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6589. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6590. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6591. self.gguf_writer.add_file_type(self.ftype)
  6592. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6593. del bid # unused
  6594. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6595. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6596. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6597. # and decoder and ignore the remaining ones.
  6598. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6599. if not self.shared_token_embeddings_found:
  6600. name = "shared.weight"
  6601. self.shared_token_embeddings_found = True
  6602. else:
  6603. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6604. return []
  6605. return [(self.map_tensor_name(name), data_torch)]
  6606. @ModelBase.register("JAISLMHeadModel")
  6607. class JaisModel(TextModel):
  6608. model_arch = gguf.MODEL_ARCH.JAIS
  6609. def __init__(self, *args, **kwargs):
  6610. super().__init__(*args, **kwargs)
  6611. # SwigLU activation
  6612. assert self.hparams["activation_function"] == "swiglu"
  6613. # ALiBi position embedding
  6614. assert self.hparams["position_embedding_type"] == "alibi"
  6615. # Embeddings scale
  6616. self.embeddings_scale = 1.0
  6617. if 'mup_embeddings_scale' in self.hparams:
  6618. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6619. elif 'embeddings_scale' in self.hparams:
  6620. self.embeddings_scale = self.hparams['embeddings_scale']
  6621. else:
  6622. assert False
  6623. self.width_scale = 1.0
  6624. if 'mup_output_alpha' in self.hparams:
  6625. assert 'mup_width_scale' in self.hparams
  6626. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6627. elif 'width_scale' in self.hparams:
  6628. self.width_scale = self.hparams['width_scale']
  6629. else:
  6630. assert False
  6631. self.max_alibi_bias = 8.0
  6632. def set_vocab(self):
  6633. self._set_vocab_gpt2()
  6634. def set_gguf_parameters(self):
  6635. self.gguf_writer.add_block_count(self.block_count)
  6636. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6637. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6638. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6639. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6640. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6641. self.gguf_writer.add_file_type(self.ftype)
  6642. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6643. del bid # unused
  6644. tensors: list[tuple[str, Tensor]] = []
  6645. # we don't need these
  6646. if name.endswith((".attn.bias")):
  6647. return tensors
  6648. if name.endswith(("relative_pe.slopes")):
  6649. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6650. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6651. # but Jais's PyTorch model simply precalculates the slope values and places them
  6652. # in relative_pes.slopes
  6653. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6654. first_val = float(data_torch[0].item())
  6655. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6656. return tensors
  6657. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6658. data_torch = data_torch.transpose(1, 0)
  6659. new_name = self.map_tensor_name(name)
  6660. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6661. tensors.append((new_name, data_torch * self.embeddings_scale))
  6662. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6663. tensors.append((new_name, data_torch * self.width_scale))
  6664. else:
  6665. tensors.append((new_name, data_torch))
  6666. return tensors
  6667. def prepare_tensors(self):
  6668. super().prepare_tensors()
  6669. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6670. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6671. class Glm4Model(TextModel):
  6672. model_arch = gguf.MODEL_ARCH.GLM4
  6673. use_mrope = False
  6674. partial_rotary_factor = 0.5
  6675. def __init__(self, *args, **kwargs):
  6676. super().__init__(*args, **kwargs)
  6677. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6678. if "mrope_section" in self.rope_parameters:
  6679. self.use_mrope = True
  6680. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6681. def set_vocab(self):
  6682. from transformers import AutoTokenizer
  6683. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6684. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6685. tokens, toktypes, tokpre = self.get_vocab_base()
  6686. self.gguf_writer.add_tokenizer_model("gpt2")
  6687. self.gguf_writer.add_tokenizer_pre(tokpre)
  6688. self.gguf_writer.add_token_list(tokens)
  6689. self.gguf_writer.add_token_types(toktypes)
  6690. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6691. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6692. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6693. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6694. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6695. special_vocab.add_to_gguf(self.gguf_writer)
  6696. def set_gguf_parameters(self):
  6697. super().set_gguf_parameters()
  6698. if (rope_dim := self.hparams.get("head_dim")) is None:
  6699. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6700. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6701. @staticmethod
  6702. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6703. orig_shape = weights.shape
  6704. if len(orig_shape) == 1:
  6705. weights = weights.unsqueeze(1) # [out_dim, 1]
  6706. if len(weights.shape) != 2:
  6707. raise ValueError("Only 1D and 2D tensors are supported.")
  6708. n_effective_heads = weights.shape[0] // head_dim
  6709. if n_head_kv is not None and n_effective_heads != n_head:
  6710. if n_effective_heads != n_head_kv:
  6711. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6712. rotary_dim = int(head_dim * partial_rotary_factor)
  6713. if rotary_dim % 2 != 0:
  6714. raise ValueError("rotary_dim must be even.")
  6715. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6716. rot_part = reshaped[:, :rotary_dim, :]
  6717. non_rot_part = reshaped[:, rotary_dim:, :]
  6718. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6719. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6720. result = combined.reshape(weights.shape)
  6721. return result if len(orig_shape) != 1 else result.squeeze(1)
  6722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6723. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6724. return []
  6725. elif name.startswith("model.language_model."):
  6726. name = name.replace("language_model.", "") # for Glm4v
  6727. if self.use_mrope:
  6728. n_head = self.hparams["num_attention_heads"]
  6729. n_kv_head = self.hparams["num_key_value_heads"]
  6730. n_embd = self.hparams["hidden_size"]
  6731. head_dim = n_embd // n_head
  6732. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6733. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6734. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6735. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6736. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6737. return super().modify_tensors(data_torch, name, bid)
  6738. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6739. class Glm4MoeModel(TextModel):
  6740. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6741. def __init__(self, *args, **kwargs):
  6742. super().__init__(*args, **kwargs)
  6743. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6744. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6745. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6746. def set_vocab(self):
  6747. from transformers import AutoTokenizer
  6748. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6749. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6750. tokens, toktypes, tokpre = self.get_vocab_base()
  6751. self.gguf_writer.add_tokenizer_model("gpt2")
  6752. self.gguf_writer.add_tokenizer_pre(tokpre)
  6753. self.gguf_writer.add_token_list(tokens)
  6754. self.gguf_writer.add_token_types(toktypes)
  6755. # Special tokens
  6756. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6757. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6758. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6759. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6760. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6761. special_vocab.add_to_gguf(self.gguf_writer)
  6762. def set_gguf_parameters(self):
  6763. super().set_gguf_parameters()
  6764. if (rope_dim := self.hparams.get("head_dim")) is None:
  6765. rope_dim = (
  6766. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6767. )
  6768. self.gguf_writer.add_rope_dimension_count(
  6769. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6770. )
  6771. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6772. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6773. self.gguf_writer.add_expert_count(n_routed_experts)
  6774. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6775. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6776. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6777. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6778. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6779. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6780. # Expert gating function (sigmoid for GLM4_MOE)
  6781. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6782. # Routed scaling factor
  6783. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6784. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6785. # Normalise topk probabilities
  6786. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6787. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6788. # NextN/MTP prediction layers
  6789. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6790. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6791. _experts: list[dict[str, Tensor]] | None = None
  6792. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6793. def modify_tensors(
  6794. self, data_torch: Tensor, name: str, bid: int | None
  6795. ) -> Iterable[tuple[str, Tensor]]:
  6796. if name.startswith("model.visual."): # ignore visual part
  6797. return []
  6798. elif name.startswith("model.language_model."):
  6799. name = name.replace("language_model.", "") # for multimodal variants
  6800. # Handle main token embedding (but not layer-specific NextN embeddings)
  6801. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6802. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6803. # Handle routed experts
  6804. if name.find("mlp.experts") != -1:
  6805. n_experts = self.hparams["n_routed_experts"]
  6806. assert bid is not None
  6807. if self._experts is None:
  6808. self._experts = [{} for _ in range(self.block_count)]
  6809. self._experts[bid][name] = data_torch
  6810. if len(self._experts[bid]) >= n_experts * 3:
  6811. tensors: list[tuple[str, Tensor]] = []
  6812. # merge the experts into a single 3d tensor
  6813. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6814. datas: list[Tensor] = []
  6815. for xid in range(n_experts):
  6816. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6817. datas.append(self._experts[bid][ename])
  6818. del self._experts[bid][ename]
  6819. data_torch = torch.stack(datas, dim=0)
  6820. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6821. new_name = self.map_tensor_name(merged_name)
  6822. tensors.append((new_name, data_torch))
  6823. return tensors
  6824. else:
  6825. return []
  6826. if name.endswith("e_score_correction_bias"):
  6827. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6828. new_name = self.map_tensor_name(name)
  6829. return [(new_name, data_torch)]
  6830. def prepare_tensors(self):
  6831. super().prepare_tensors()
  6832. if self._experts is not None:
  6833. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6834. experts = [k for d in self._experts for k in d.keys()]
  6835. if len(experts) > 0:
  6836. raise ValueError(f"Unprocessed experts: {experts}")
  6837. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6838. class ChatGLMModel(TextModel):
  6839. model_arch = gguf.MODEL_ARCH.CHATGLM
  6840. def set_vocab_chatglm3(self):
  6841. dir_model = self.dir_model
  6842. hparams = self.hparams
  6843. tokens: list[bytes] = []
  6844. toktypes: list[int] = []
  6845. scores: list[float] = []
  6846. from transformers import AutoTokenizer
  6847. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6848. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6849. assert max(tokenizer.get_vocab().values()) < vocab_size
  6850. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6851. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6852. for token_id in range(vocab_size):
  6853. piece = tokenizer._convert_id_to_token(token_id)
  6854. if token_id == 0:
  6855. piece = "<unk>"
  6856. elif token_id == 1:
  6857. piece = "<bos>"
  6858. elif token_id == 2:
  6859. piece = "<eos>"
  6860. text = piece.encode("utf-8")
  6861. score = 0.0
  6862. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6863. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6864. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6865. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6866. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6867. if piece in special_tokens:
  6868. toktype = SentencePieceTokenTypes.CONTROL
  6869. elif len(piece) == 0:
  6870. text = f"[PAD{token_id}]".encode("utf-8")
  6871. toktype = SentencePieceTokenTypes.UNUSED
  6872. else:
  6873. toktype = SentencePieceTokenTypes.USER_DEFINED
  6874. tokens.append(text)
  6875. scores.append(score)
  6876. toktypes.append(toktype)
  6877. continue
  6878. toktype = SentencePieceTokenTypes.NORMAL
  6879. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6880. toktype = SentencePieceTokenTypes.UNKNOWN
  6881. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6882. toktype = SentencePieceTokenTypes.CONTROL
  6883. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6884. toktype = SentencePieceTokenTypes.UNUSED
  6885. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6886. toktype = SentencePieceTokenTypes.BYTE
  6887. tokens.append(text)
  6888. scores.append(score)
  6889. toktypes.append(toktype)
  6890. self.gguf_writer.add_tokenizer_model("llama")
  6891. # glm3 needs prefix and suffix formatted as:
  6892. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6893. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6894. self.gguf_writer.add_token_list(tokens)
  6895. self.gguf_writer.add_token_scores(scores)
  6896. self.gguf_writer.add_token_types(toktypes)
  6897. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6898. special_vocab.add_to_gguf(self.gguf_writer)
  6899. @staticmethod
  6900. def token_bytes_to_string(b):
  6901. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6902. byte_encoder = bytes_to_unicode()
  6903. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6904. @staticmethod
  6905. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6906. parts = [bytes([b]) for b in token]
  6907. while True:
  6908. min_idx = None
  6909. min_rank = None
  6910. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6911. rank = mergeable_ranks.get(pair[0] + pair[1])
  6912. if rank is not None and (min_rank is None or rank < min_rank):
  6913. min_idx = i
  6914. min_rank = rank
  6915. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6916. break
  6917. assert min_idx is not None
  6918. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6919. return parts
  6920. def set_vocab(self):
  6921. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6922. self.set_vocab_chatglm3()
  6923. return
  6924. dir_model = self.dir_model
  6925. hparams = self.hparams
  6926. tokens: list[str] = []
  6927. toktypes: list[int] = []
  6928. from transformers import AutoTokenizer
  6929. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6930. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6931. assert max(tokenizer.get_vocab().values()) < vocab_size
  6932. tokens, toktypes, tokpre = self.get_vocab_base()
  6933. self.gguf_writer.add_tokenizer_model("gpt2")
  6934. self.gguf_writer.add_tokenizer_pre(tokpre)
  6935. self.gguf_writer.add_token_list(tokens)
  6936. self.gguf_writer.add_token_types(toktypes)
  6937. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6938. # only add special tokens when they were not already loaded from config.json
  6939. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6940. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6941. # this one is usually not in config.json anyway
  6942. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6943. special_vocab.add_to_gguf(self.gguf_writer)
  6944. def set_gguf_parameters(self):
  6945. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6946. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6947. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6948. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6949. self.gguf_writer.add_embedding_length(n_embed)
  6950. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6951. self.gguf_writer.add_block_count(self.block_count)
  6952. self.gguf_writer.add_head_count(n_head)
  6953. self.gguf_writer.add_head_count_kv(n_head_kv)
  6954. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6955. self.gguf_writer.add_file_type(self.ftype)
  6956. if "attention_dim" in self.hparams:
  6957. rope_dim = self.hparams["attention_dim"]
  6958. else:
  6959. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6960. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6961. self.gguf_writer.add_add_bos_token(False)
  6962. rope_freq = 10000
  6963. if "rope_ratio" in self.hparams:
  6964. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6965. self.gguf_writer.add_rope_freq_base(rope_freq)
  6966. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6967. del bid # unused
  6968. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6969. return []
  6970. name = name.removeprefix("transformer.")
  6971. return [(self.map_tensor_name(name), data_torch)]
  6972. @ModelBase.register("NemotronForCausalLM")
  6973. class NemotronModel(TextModel):
  6974. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6975. def set_vocab(self):
  6976. self._set_vocab_sentencepiece()
  6977. self.gguf_writer.add_pad_token_id(0)
  6978. self.gguf_writer.add_unk_token_id(1)
  6979. def set_gguf_parameters(self):
  6980. super().set_gguf_parameters()
  6981. hparams = self.hparams
  6982. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6983. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6984. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6985. # * Partial RoPE
  6986. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6987. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6988. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6989. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6990. # * RopeScaling for Nemotron
  6991. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6992. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6993. else:
  6994. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6995. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6997. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6998. # model.layers.{l}.input_layernorm.weight
  6999. # model.layers.{l}.post_attention_layernorm.weight
  7000. # model.norm.weight
  7001. if name.endswith("norm.weight"):
  7002. data_torch = data_torch + 1
  7003. return [(self.map_tensor_name(name), data_torch)]
  7004. @ModelBase.register("ExaoneForCausalLM")
  7005. class ExaoneModel(TextModel):
  7006. model_arch = gguf.MODEL_ARCH.EXAONE
  7007. def set_gguf_parameters(self):
  7008. super().set_gguf_parameters()
  7009. hparams = self.hparams
  7010. assert (hparams["activation_function"] == "silu")
  7011. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  7012. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  7013. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  7014. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7015. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7016. if rope_params.get("rope_type", '').lower() == "llama3":
  7017. base = self.rope_parameters.get("rope_theta", 10000.0)
  7018. if (dim := self.hparams.get("head_dim")) is None:
  7019. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7020. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7021. factor = rope_params.get("factor", 8.0)
  7022. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7023. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7024. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7025. low_freq_wavelen = old_context_len / low_freq_factor
  7026. high_freq_wavelen = old_context_len / high_freq_factor
  7027. assert low_freq_wavelen != high_freq_wavelen
  7028. rope_factors = []
  7029. for freq in freqs:
  7030. wavelen = 2 * math.pi / freq
  7031. if wavelen < high_freq_wavelen:
  7032. rope_factors.append(1)
  7033. elif wavelen > low_freq_wavelen:
  7034. rope_factors.append(factor)
  7035. else:
  7036. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7037. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7038. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7039. @ModelBase.register("Exaone4ForCausalLM")
  7040. class Exaone4Model(TextModel):
  7041. model_arch = gguf.MODEL_ARCH.EXAONE4
  7042. def set_vocab(self):
  7043. tokens, toktypes, tokpre = self.get_vocab_base()
  7044. self.gguf_writer.add_tokenizer_model("gpt2")
  7045. self.gguf_writer.add_tokenizer_pre(tokpre)
  7046. self.gguf_writer.add_token_list(tokens)
  7047. self.gguf_writer.add_token_types(toktypes)
  7048. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  7049. special_vocab.add_to_gguf(self.gguf_writer)
  7050. def set_gguf_parameters(self):
  7051. super().set_gguf_parameters()
  7052. hparams = self.hparams
  7053. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7054. if hparams.get("sliding_window") is not None:
  7055. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  7056. if "layer_types" in hparams:
  7057. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  7058. elif "sliding_window_pattern" in hparams:
  7059. sliding_window_pattern = []
  7060. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  7061. for i in range(hparams["num_hidden_layers"]):
  7062. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  7063. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  7064. for i in range(hparams["num_hidden_layers"]):
  7065. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  7066. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  7067. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  7068. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7069. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  7070. if rope_params.get("rope_type", '').lower() == "llama3":
  7071. base = rope_params.get("rope_theta", 10_000.0)
  7072. if (dim := self.hparams.get("head_dim")) is None:
  7073. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  7074. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  7075. factor = rope_params.get("factor", 16.0)
  7076. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  7077. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  7078. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  7079. low_freq_wavelen = old_context_len / low_freq_factor
  7080. high_freq_wavelen = old_context_len / high_freq_factor
  7081. rope_factors = []
  7082. for freq in freqs:
  7083. wavelen = 2 * math.pi / freq
  7084. if wavelen < high_freq_wavelen:
  7085. rope_factors.append(1)
  7086. elif wavelen > low_freq_wavelen:
  7087. rope_factors.append(factor)
  7088. else:
  7089. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  7090. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  7091. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  7092. @ModelBase.register("GraniteForCausalLM")
  7093. class GraniteModel(LlamaModel):
  7094. """Conversion for IBM's GraniteForCausalLM"""
  7095. model_arch = gguf.MODEL_ARCH.GRANITE
  7096. def set_gguf_parameters(self):
  7097. """Granite uses standard llama parameters with the following differences:
  7098. - No head_dim support
  7099. - New multiplier params:
  7100. - attention_scale
  7101. - embedding_scale
  7102. - residual_scale
  7103. - logits_scaling
  7104. """
  7105. if head_dim := self.hparams.pop("head_dim", None):
  7106. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  7107. super().set_gguf_parameters()
  7108. # NOTE: Convert _multiplier params to _scale params for naming
  7109. # consistency
  7110. if attention_scale := self.hparams.get("attention_multiplier"):
  7111. self.gguf_writer.add_attention_scale(attention_scale)
  7112. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  7113. if embedding_scale := self.hparams.get("embedding_multiplier"):
  7114. self.gguf_writer.add_embedding_scale(embedding_scale)
  7115. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  7116. if residual_scale := self.hparams.get("residual_multiplier"):
  7117. self.gguf_writer.add_residual_scale(residual_scale)
  7118. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  7119. if logits_scale := self.hparams.get("logits_scaling"):
  7120. self.gguf_writer.add_logit_scale(logits_scale)
  7121. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  7122. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  7123. class GraniteMoeModel(GraniteModel):
  7124. """Conversion for IBM's GraniteMoeForCausalLM"""
  7125. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  7126. def set_gguf_parameters(self):
  7127. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  7128. - shared_intermediate_size
  7129. """
  7130. super().set_gguf_parameters()
  7131. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  7132. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  7133. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  7134. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7135. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  7136. is used. This essentially merges w1 and w3 into a single tensor with 2x
  7137. the hidden size that is then split during forward. To keep compatibility
  7138. with existing mixtral support, we pull them apart here.
  7139. """
  7140. if name.endswith("block_sparse_moe.input_linear.weight"):
  7141. ffn_dim = self.hparams["intermediate_size"]
  7142. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  7143. gate, up = data_torch.split(ffn_dim, dim=-2)
  7144. return [
  7145. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  7146. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  7147. ]
  7148. has_experts = bool(self.hparams.get('num_local_experts'))
  7149. if name.endswith("shared_mlp.input_linear.weight"):
  7150. ffn_dim = self.hparams["shared_intermediate_size"]
  7151. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  7152. gate, up = data_torch.split(ffn_dim, dim=-2)
  7153. if has_experts:
  7154. return [
  7155. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  7156. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  7157. ]
  7158. return [
  7159. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  7160. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  7161. ]
  7162. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  7163. return [
  7164. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  7165. ]
  7166. return super().modify_tensors(data_torch, name, bid)
  7167. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  7168. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  7169. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  7170. layers and optionally uses MoE w/ a shared expert"""
  7171. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  7172. undo_permute = True
  7173. def __init__(self, *args, **kwargs):
  7174. # Hybrid mamba models use a prefix for the mamba-specific params.
  7175. # TODO: Extend this if the prefix(es) need to be configurable
  7176. self.hparam_prefixes = ["mamba"]
  7177. super().__init__(*args, **kwargs)
  7178. # Lists of which layers use ssm vs attention
  7179. self._attn_layers = self.get_attn_layers()
  7180. self._ssm_layers = [
  7181. i for i in range(self.block_count)
  7182. if i not in self._attn_layers
  7183. ]
  7184. # There are some models in this family that are non-hybrid, but keep the
  7185. # same parent class by setting all layers to "attention." If this is the
  7186. # case, the model architecture needs to be updated to a standard
  7187. # "granite" or "granitemoe" model
  7188. if not self._ssm_layers:
  7189. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  7190. new_arch = (
  7191. gguf.MODEL_ARCH.GRANITE_MOE
  7192. if has_experts else
  7193. gguf.MODEL_ARCH.GRANITE
  7194. )
  7195. self.model_arch = new_arch
  7196. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  7197. self.gguf_writer.add_architecture()
  7198. # n_group and d_inner are used during reshape_tensors for mamba2
  7199. # NOTE: Explicitly include hparam prefix prefix for d_model to
  7200. # disambiguate with top-level head_dim
  7201. # NOTE 2: If needed for future models, this can be isolated in a method
  7202. # to separate the prefix setting and teh keys used
  7203. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  7204. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  7205. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  7206. def get_attn_layers(self):
  7207. # Explicit list of layer type names
  7208. if layer_types := self.hparams.get("layer_types"):
  7209. return [
  7210. i for i, typ in enumerate(layer_types)
  7211. if typ == "attention"
  7212. ]
  7213. # Layer types indicated by index or period
  7214. attn_layers = self.hparams.get("attn_layer_indices", [])
  7215. if not attn_layers:
  7216. attn_period = self.hparams.get("attn_layer_period")
  7217. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7218. attn_offset = self.hparams.get("attn_layer_offset")
  7219. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7220. attn_layers = [
  7221. i for i in range(self.block_count)
  7222. if i % attn_period == attn_offset
  7223. ]
  7224. return attn_layers
  7225. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7226. prefixed = []
  7227. for pfx in self.hparam_prefixes:
  7228. prefixed.extend(
  7229. "_".join([pfx, k])
  7230. for k in keys
  7231. )
  7232. keys = list(keys) + prefixed
  7233. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7234. def modify_tensors(
  7235. self, data_torch: Tensor, name: str, bid: int | None
  7236. ) -> Iterable[tuple[str, Tensor]]:
  7237. if (
  7238. name.endswith("block_sparse_moe.input_linear.weight")
  7239. or "shared_mlp" in name
  7240. ):
  7241. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7242. # Determine whether this is a mamba layer or an attention layer
  7243. if bid in self._ssm_layers:
  7244. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7245. elif bid in self._attn_layers:
  7246. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7247. return [(self.map_tensor_name(name), data_torch)]
  7248. def set_gguf_parameters(self):
  7249. """This method merges params from both parents and some that are
  7250. specific to this model. The result is some duplication of how the params
  7251. get set. The following warnings are expected during conversion:
  7252. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7253. WARNING:Duplicated key name 'granitehybrid.context_length'
  7254. """
  7255. GraniteMoeModel.set_gguf_parameters(self)
  7256. ## Mamba mixer params ##
  7257. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7258. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7259. self.gguf_writer.add_ssm_group_count(self.n_group)
  7260. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7261. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7262. # in llama.cpp
  7263. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7264. ## Attention params ##
  7265. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7266. head_count_kv_vec = [
  7267. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7268. ]
  7269. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7270. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7271. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7272. ## If Bamba or non-hybrid, use rope, otherwise don't
  7273. use_rope = (
  7274. "BambaForCausalLM" in self.hparams["architectures"]
  7275. or not self._ssm_layers
  7276. )
  7277. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7278. if not use_rope:
  7279. self.gguf_writer.add_context_length(2**20)
  7280. ## Validation ##
  7281. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7282. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7283. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7284. def set_vocab(self):
  7285. self.hparams["pad_vocab_size_multiple"] = 8
  7286. Mamba2Model.set_vocab(self)
  7287. @ModelBase.register("NemotronHForCausalLM")
  7288. class NemotronHModel(GraniteHybridModel):
  7289. """Hybrid mamba2/attention model from NVIDIA"""
  7290. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7291. is_moe: bool = False
  7292. def __init__(self, *args, **kwargs):
  7293. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7294. # calling the parent __init__. This is because the parent constructor
  7295. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7296. # mappings would be missed if it were called with the default non-MoE arch.
  7297. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7298. if "num_experts_per_tok" in hparams:
  7299. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7300. self.is_moe = True
  7301. super().__init__(*args, **kwargs)
  7302. # Save the top-level head_dim for later
  7303. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7304. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7305. # Don't use expand to calculate d_inner
  7306. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7307. # Update the ssm / attn / mlp layers
  7308. # M: Mamba2, *: Attention, -: MLP
  7309. # MoE:
  7310. # M: Mamba2, *: Attention, E: Expert
  7311. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7312. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7313. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7314. def get_attn_layers(self):
  7315. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7316. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7317. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7318. def set_gguf_parameters(self):
  7319. super().set_gguf_parameters()
  7320. self.gguf_writer.add_key_length(self.head_dim)
  7321. self.gguf_writer.add_value_length(self.head_dim)
  7322. # Set feed_forward_length
  7323. # NOTE: This will trigger an override warning. This is preferrable to
  7324. # duplicating all the parent logic
  7325. if not self.is_moe:
  7326. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7327. self.gguf_writer.add_feed_forward_length([
  7328. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7329. ])
  7330. else:
  7331. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7332. self.gguf_writer.add_feed_forward_length([
  7333. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7334. ])
  7335. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7336. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7337. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7338. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7339. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7340. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7341. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7342. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7343. # number of experts used per token (top-k)
  7344. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7345. self.gguf_writer.add_expert_used_count(n_experts_used)
  7346. def set_vocab(self):
  7347. super().set_vocab()
  7348. # The tokenizer _does_ add a BOS token (via post_processor type
  7349. # TemplateProcessing) but does not set add_bos_token to true in the
  7350. # config, so we need to explicitly override it here.
  7351. if not self.is_moe:
  7352. self.gguf_writer.add_add_bos_token(True)
  7353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7354. if self.is_moe and bid is not None:
  7355. if name.endswith("mixer.gate.e_score_correction_bias"):
  7356. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7357. mapped_name = self.map_tensor_name(new_name)
  7358. return [(mapped_name, data_torch)]
  7359. if name.endswith("mixer.dt_bias"):
  7360. new_name = name.replace("dt_bias", "dt.bias")
  7361. mapped_name = self.map_tensor_name(new_name)
  7362. return [(mapped_name, data_torch)]
  7363. if name.endswith("mixer.conv1d.weight"):
  7364. squeezed_data = data_torch.squeeze()
  7365. mapped_name = self.map_tensor_name(name)
  7366. return [(mapped_name, squeezed_data)]
  7367. if name.endswith("mixer.A_log"):
  7368. transformed_data = -torch.exp(data_torch)
  7369. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7370. mapped_name = self.map_tensor_name(name)
  7371. return [(mapped_name, reshaped_data)]
  7372. if name.endswith("mixer.D"):
  7373. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7374. mapped_name = self.map_tensor_name(name)
  7375. return [(mapped_name, reshaped_data)]
  7376. if name.endswith("mixer.norm.weight"):
  7377. reshaped_data = data_torch.reshape(8, 512)
  7378. mapped_name = self.map_tensor_name(name)
  7379. return [(mapped_name, reshaped_data)]
  7380. if name.find("mixer.experts") != -1:
  7381. n_experts = self.hparams["n_routed_experts"]
  7382. assert bid is not None
  7383. if self._experts is None:
  7384. self._experts = [{} for _ in range(self.block_count)]
  7385. self._experts[bid][name] = data_torch
  7386. if len(self._experts[bid]) >= n_experts * 2:
  7387. # merge the experts into a single tensor
  7388. tensors: list[tuple[str, Tensor]] = []
  7389. for w_name in ["down_proj", "up_proj"]:
  7390. datas: list[Tensor] = []
  7391. for xid in range(n_experts):
  7392. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7393. datas.append(self._experts[bid][ename])
  7394. del self._experts[bid][ename]
  7395. data_torch = torch.stack(datas, dim=0)
  7396. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7397. new_name = self.map_tensor_name(merged_name)
  7398. tensors.append((new_name, data_torch))
  7399. return tensors
  7400. else:
  7401. return []
  7402. return super().modify_tensors(data_torch, name, bid)
  7403. def prepare_tensors(self):
  7404. super().prepare_tensors()
  7405. if self._experts is not None:
  7406. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7407. experts = [k for d in self._experts for k in d.keys()]
  7408. if len(experts) > 0:
  7409. raise ValueError(f"Unprocessed experts: {experts}")
  7410. @ModelBase.register("LlamaBidirectionalModel")
  7411. class LlamaEmbedNemotronModel(LlamaModel):
  7412. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7413. @ModelBase.register("BailingMoeForCausalLM")
  7414. class BailingMoeModel(TextModel):
  7415. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7416. def set_vocab(self):
  7417. self._set_vocab_gpt2()
  7418. def set_gguf_parameters(self):
  7419. super().set_gguf_parameters()
  7420. hparams = self.hparams
  7421. if (rope_dim := hparams.get("head_dim")) is None:
  7422. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7423. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7424. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7425. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7426. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7427. self.gguf_writer.add_expert_weights_scale(1.0)
  7428. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7429. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7430. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7431. _experts: list[dict[str, Tensor]] | None = None
  7432. @staticmethod
  7433. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7434. if n_head_kv is not None and n_head != n_head_kv:
  7435. n_head = n_head_kv
  7436. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7437. .swapaxes(1, 2)
  7438. .reshape(weights.shape))
  7439. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7440. n_head = self.hparams["num_attention_heads"]
  7441. n_kv_head = self.hparams.get("num_key_value_heads")
  7442. n_embd = self.hparams["hidden_size"]
  7443. if (head_dim := self.hparams.get("head_dim")) is None:
  7444. head_dim = n_embd // n_head
  7445. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7446. if name.endswith("attention.dense.weight"):
  7447. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7448. elif name.endswith("query_key_value.weight"):
  7449. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7450. return [
  7451. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7452. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7453. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7454. ]
  7455. elif name.find("mlp.experts") != -1:
  7456. n_experts = self.hparams["num_experts"]
  7457. assert bid is not None
  7458. tensors: list[tuple[str, Tensor]] = []
  7459. if self._experts is None:
  7460. self._experts = [{} for _ in range(self.block_count)]
  7461. self._experts[bid][name] = data_torch
  7462. if len(self._experts[bid]) >= n_experts * 3:
  7463. # merge the experts into a single 3d tensor
  7464. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7465. datas: list[Tensor] = []
  7466. for xid in range(n_experts):
  7467. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7468. datas.append(self._experts[bid][ename])
  7469. del self._experts[bid][ename]
  7470. data_torch = torch.stack(datas, dim=0)
  7471. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7472. new_name = self.map_tensor_name(merged_name)
  7473. tensors.append((new_name, data_torch))
  7474. return tensors
  7475. new_name = self.map_tensor_name(name)
  7476. if new_name == output_name and self.hparams.get("norm_head"):
  7477. data_torch = data_torch.float()
  7478. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7479. return [(new_name, data_torch)]
  7480. def prepare_tensors(self):
  7481. super().prepare_tensors()
  7482. if self._experts is not None:
  7483. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7484. experts = [k for d in self._experts for k in d.keys()]
  7485. if len(experts) > 0:
  7486. raise ValueError(f"Unprocessed experts: {experts}")
  7487. @ModelBase.register("BailingMoeV2ForCausalLM")
  7488. class BailingMoeV2Model(TextModel):
  7489. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7490. def __init__(self, *args, **kwargs):
  7491. super().__init__(*args, **kwargs)
  7492. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7493. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7494. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7495. def set_vocab(self):
  7496. self._set_vocab_gpt2()
  7497. def set_gguf_parameters(self):
  7498. super().set_gguf_parameters()
  7499. hparams = self.hparams
  7500. if (rope_dim := hparams.get("head_dim")) is None:
  7501. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7502. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7503. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7504. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7505. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7506. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7507. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7508. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7509. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7510. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7511. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7512. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7513. _experts: list[dict[str, Tensor]] | None = None
  7514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7515. if "mlp.experts" in name:
  7516. n_experts = self.hparams["num_experts"]
  7517. assert bid is not None
  7518. tensors: list[tuple[str, Tensor]] = []
  7519. if self._experts is None:
  7520. self._experts = [{} for _ in range(self.block_count)]
  7521. self._experts[bid][name] = data_torch
  7522. if len(self._experts[bid]) >= n_experts * 3:
  7523. # merge the experts into a single 3d tensor
  7524. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7525. datas: list[Tensor] = []
  7526. for xid in range(n_experts):
  7527. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7528. datas.append(self._experts[bid][ename])
  7529. del self._experts[bid][ename]
  7530. data_torch = torch.stack(datas, dim=0)
  7531. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7532. new_name = self.map_tensor_name(merged_name)
  7533. tensors.append((new_name, data_torch))
  7534. return tensors
  7535. if name.endswith(".expert_bias"):
  7536. name = name.replace(".expert_bias", ".expert_bias.bias")
  7537. return [(self.map_tensor_name(name), data_torch)]
  7538. def prepare_tensors(self):
  7539. super().prepare_tensors()
  7540. if self._experts is not None:
  7541. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7542. experts = [k for d in self._experts for k in d.keys()]
  7543. if len(experts) > 0:
  7544. raise ValueError(f"Unprocessed experts: {experts}")
  7545. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7546. class GroveMoeModel(TextModel):
  7547. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7548. def set_gguf_parameters(self):
  7549. super().set_gguf_parameters()
  7550. if (n_experts := self.hparams.get("num_experts")) is not None:
  7551. self.gguf_writer.add_expert_count(n_experts)
  7552. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7553. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7554. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7555. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7556. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7557. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7558. self.gguf_writer.add_experts_per_group(2)
  7559. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7560. self.gguf_writer.add_expert_group_scale(0.05)
  7561. _experts: list[dict[str, Tensor]] | None = None
  7562. _chunk_experts: list[dict[str, Tensor]] | None = None
  7563. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7564. if name.endswith(".expert_bias"):
  7565. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7566. return []
  7567. # process the experts separately
  7568. if name.find("chunk_experts") != -1:
  7569. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7570. assert bid is not None
  7571. if self._chunk_experts is None:
  7572. self._chunk_experts = [{} for _ in range(self.block_count)]
  7573. self._chunk_experts[bid][name] = data_torch
  7574. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7575. tensors: list[tuple[str, Tensor]] = []
  7576. # merge the experts into a single 3d tensor
  7577. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7578. datas: list[Tensor] = []
  7579. for xid in range(n_experts):
  7580. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7581. datas.append(self._chunk_experts[bid][ename])
  7582. del self._chunk_experts[bid][ename]
  7583. data_torch = torch.stack(datas, dim=0)
  7584. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7585. new_name = self.map_tensor_name(merged_name)
  7586. tensors.append((new_name, data_torch))
  7587. return tensors
  7588. else:
  7589. return []
  7590. elif name.find("experts") != -1:
  7591. n_experts = self.hparams["num_experts"]
  7592. assert bid is not None
  7593. if self._experts is None:
  7594. self._experts = [{} for _ in range(self.block_count)]
  7595. self._experts[bid][name] = data_torch
  7596. if len(self._experts[bid]) >= n_experts * 3:
  7597. tensors: list[tuple[str, Tensor]] = []
  7598. # merge the experts into a single 3d tensor
  7599. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7600. datas: list[Tensor] = []
  7601. for xid in range(n_experts):
  7602. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7603. datas.append(self._experts[bid][ename])
  7604. del self._experts[bid][ename]
  7605. data_torch = torch.stack(datas, dim=0)
  7606. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7607. new_name = self.map_tensor_name(merged_name)
  7608. tensors.append((new_name, data_torch))
  7609. return tensors
  7610. else:
  7611. return []
  7612. return [(self.map_tensor_name(name), data_torch)]
  7613. def prepare_tensors(self):
  7614. super().prepare_tensors()
  7615. if self._chunk_experts is not None:
  7616. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7617. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7618. if len(chunk_experts) > 0:
  7619. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7620. if self._experts is not None:
  7621. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7622. experts = [k for d in self._experts for k in d.keys()]
  7623. if len(experts) > 0:
  7624. raise ValueError(f"Unprocessed experts: {experts}")
  7625. @ModelBase.register("ChameleonForConditionalGeneration")
  7626. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7627. class ChameleonModel(TextModel):
  7628. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7629. def set_gguf_parameters(self):
  7630. super().set_gguf_parameters()
  7631. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7632. def set_vocab(self):
  7633. self._set_vocab_gpt2()
  7634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7635. # ignore image tokenizer for now
  7636. # TODO: remove this once image support is implemented for Chameleon
  7637. if name.startswith("model.vqmodel"):
  7638. return []
  7639. n_head = self.hparams["num_attention_heads"]
  7640. n_kv_head = self.hparams.get("num_key_value_heads")
  7641. hidden_dim = self.hparams.get("hidden_size")
  7642. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7643. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7644. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7645. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7646. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7647. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7648. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7649. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7650. return [(self.map_tensor_name(name), data_torch)]
  7651. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7652. @staticmethod
  7653. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7654. head_dim = hidden_dim // n_heads
  7655. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7656. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7657. return data_torch
  7658. @ModelBase.register("UltravoxModel")
  7659. class UltravoxModel(TextModel):
  7660. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7661. def __init__(self, *args, **kwargs):
  7662. super().__init__(*args, **kwargs)
  7663. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7664. @ModelBase.register("GlmasrModel")
  7665. class GlmASRWhisperEncoderModel(MmprojModel):
  7666. has_vision_encoder = False
  7667. has_audio_encoder = True
  7668. def __init__(self, *args, **kwargs):
  7669. super().__init__(*args, **kwargs)
  7670. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7671. self.hparams["hidden_size"] = self.hparams["d_model"]
  7672. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7673. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7674. def set_gguf_parameters(self):
  7675. super().set_gguf_parameters()
  7676. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7677. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7678. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7679. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7680. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7681. if ".conv" in name and ".weight" in name:
  7682. return gguf.GGMLQuantizationType.F16
  7683. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7684. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7685. del bid # unused
  7686. if name.startswith("model.") or name.startswith("lm_head."):
  7687. # skip language model tensors
  7688. return []
  7689. if name.startswith("audio_encoder.whisper."):
  7690. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7691. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7692. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7693. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7694. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7695. if name.startswith("audio_encoder.adapting."):
  7696. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7697. if ".layer_norm." in name:
  7698. name = name.replace(".layer_norm.", ".ln_pre.")
  7699. if ".0." in name:
  7700. name = name.replace(".0.", ".linear_1.")
  7701. if ".2." in name:
  7702. name = name.replace(".2.", ".linear_2.")
  7703. if ".proj." in name:
  7704. return []
  7705. if "conv1.bias" in name or "conv2.bias" in name:
  7706. # transpose conv1 and conv2 bias
  7707. data_torch = data_torch.unsqueeze(-1)
  7708. return [(self.map_tensor_name(name), data_torch)]
  7709. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7710. class WhisperEncoderModel(MmprojModel):
  7711. has_vision_encoder = False # no vision encoder
  7712. has_audio_encoder = True
  7713. def __init__(self, *args, **kwargs):
  7714. super().__init__(*args, **kwargs)
  7715. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7716. self.hparams["hidden_size"] = self.hparams["d_model"]
  7717. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7718. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7719. def set_gguf_parameters(self):
  7720. super().set_gguf_parameters()
  7721. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7722. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7723. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7724. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7725. if ".conv" in name and ".weight" in name:
  7726. return gguf.GGMLQuantizationType.F16
  7727. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7729. del bid # unused
  7730. if name.startswith("language_model."):
  7731. # skip language model tensors
  7732. return []
  7733. # prevent clash naming with vision tensors
  7734. if name.startswith("multi_modal_projector"):
  7735. name = "audio." + name
  7736. if "conv1.bias" in name or "conv2.bias" in name:
  7737. # transpose conv1 and conv2 bias
  7738. data_torch = data_torch.unsqueeze(-1)
  7739. return [(self.map_tensor_name(name), data_torch)]
  7740. @ModelBase.register("UltravoxModel")
  7741. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7742. has_vision_encoder = False # no vision encoder
  7743. has_audio_encoder = True
  7744. def set_gguf_parameters(self):
  7745. super().set_gguf_parameters()
  7746. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7747. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7748. @ModelBase.register("VoxtralForConditionalGeneration")
  7749. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7750. has_vision_encoder = False # no vision encoder
  7751. has_audio_encoder = True
  7752. def set_gguf_parameters(self):
  7753. super().set_gguf_parameters()
  7754. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7755. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7756. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7757. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7758. def set_gguf_parameters(self):
  7759. super().set_gguf_parameters()
  7760. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7761. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7762. if ".conv" in name and ".weight" in name:
  7763. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7764. return gguf.GGMLQuantizationType.F32
  7765. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7766. @ModelBase.register("FalconH1ForCausalLM")
  7767. class FalconH1Model(Mamba2Model):
  7768. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7769. def __init__(self, *args, **kwargs):
  7770. # Set the hparam prefixes for Falcon Mamba2
  7771. self.hparam_prefixes = ["mamba"]
  7772. # Initialize the base Mamba2Model
  7773. super().__init__(*args, **kwargs)
  7774. # Use Llama conversion for attention
  7775. self._transformer_model_class = LlamaModel
  7776. # n_group and d_inner are used during reshape_tensors for mamba2
  7777. self.n_group = self.find_hparam(["n_groups"])
  7778. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7779. self.d_head = self.find_hparam(["d_head"])
  7780. # Initialize any Falcon Mamba2 specific attributes
  7781. self.has_attention = True # Falcon Mamba2 has attention components
  7782. # Load Falcon-H1 multipliers from hyperparameters
  7783. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7784. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7785. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7786. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7787. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7788. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7789. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7790. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7791. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7792. prefixed = []
  7793. for pfx in self.hparam_prefixes:
  7794. prefixed.extend(
  7795. "_".join([pfx, k])
  7796. for k in keys
  7797. )
  7798. keys = list(keys) + prefixed
  7799. return super().find_hparam(keys, *args, **kwargs)
  7800. def set_vocab(self):
  7801. self._set_vocab_gpt2()
  7802. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7803. tensors = list(super().modify_tensors(data_torch, name, bid))
  7804. tensor = tensors[0][1]
  7805. if "down_proj" in name:
  7806. tensor = tensor * self.mlp_multipliers[1]
  7807. elif "gate_proj" in name:
  7808. tensor = tensor * self.mlp_multipliers[0]
  7809. elif "k_proj" in name:
  7810. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7811. elif "q_proj" in name:
  7812. tensor = tensor * self.attention_in_multiplier
  7813. elif "v_proj" in name:
  7814. tensor = tensor * self.attention_in_multiplier
  7815. elif "o_proj" in name:
  7816. tensor = tensor * self.attention_out_multiplier
  7817. elif "out_proj" in name:
  7818. tensor = tensor * self.ssm_out_multiplier
  7819. elif "in_proj" in name:
  7820. tensor = tensor * self.ssm_in_multiplier
  7821. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7822. intermediate_size = self.hparams["mamba_d_ssm"]
  7823. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7824. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7825. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7826. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7827. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7828. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7829. elif "lm_head" in name:
  7830. tensor = tensor * self.hparams["lm_head_multiplier"]
  7831. elif "embed_tokens" in name:
  7832. tensor = tensor * self.hparams["embedding_multiplier"]
  7833. elif "mamba.norm" in name:
  7834. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7835. tensors = [(tensors[0][0], tensor)]
  7836. return tensors
  7837. def set_gguf_parameters(self):
  7838. super().set_gguf_parameters()
  7839. ## General Params ##
  7840. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7841. # Override some Mamba2 defaults
  7842. self.gguf_writer.add_block_count(self.block_count)
  7843. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7844. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7845. ## Attention params ##
  7846. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7847. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7848. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7849. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7850. ## Validation ##
  7851. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7852. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7853. # Add any other Falcon Mamba2 specific configuration
  7854. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7855. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7856. class HunYuanMoEModel(TextModel):
  7857. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7858. def set_vocab(self):
  7859. from transformers import AutoTokenizer
  7860. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7861. # 1. Get the pre-tokenizer identifier hash
  7862. tokpre = self.get_vocab_base_pre(tokenizer)
  7863. # 2. Reverse-engineer the merges list from mergeable_ranks
  7864. merges = []
  7865. vocab = {}
  7866. mergeable_ranks = tokenizer.mergeable_ranks
  7867. for token, rank in mergeable_ranks.items():
  7868. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7869. if len(token) == 1:
  7870. continue
  7871. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7872. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7873. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7874. # 3. Generate the tokens and toktypes lists
  7875. vocab_size = self.hparams["vocab_size"]
  7876. assert tokenizer.vocab_size == vocab_size
  7877. special_tokens = tokenizer.special_tokens
  7878. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7879. tokens: list[str] = []
  7880. toktypes: list[int] = []
  7881. for i in range(vocab_size):
  7882. if i not in reverse_vocab:
  7883. tokens.append(f"[PAD{i}]")
  7884. toktypes.append(gguf.TokenType.UNUSED)
  7885. else:
  7886. token = reverse_vocab[i]
  7887. tokens.append(token)
  7888. if i in special_tokens.values():
  7889. toktypes.append(gguf.TokenType.CONTROL)
  7890. else:
  7891. toktypes.append(gguf.TokenType.NORMAL)
  7892. # 4. Write all vocab-related fields to the GGUF writer
  7893. self.gguf_writer.add_tokenizer_model("gpt2")
  7894. self.gguf_writer.add_tokenizer_pre(tokpre)
  7895. self.gguf_writer.add_token_list(tokens)
  7896. self.gguf_writer.add_token_types(toktypes)
  7897. self.gguf_writer.add_token_merges(merges)
  7898. # 5. Add special tokens and chat templates
  7899. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7900. special_vocab.add_to_gguf(self.gguf_writer)
  7901. # FIX for BOS token: Overwrite incorrect id read from config.json
  7902. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7903. def set_gguf_parameters(self):
  7904. super().set_gguf_parameters()
  7905. hparams = self.hparams
  7906. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7907. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7908. moe_intermediate_size = hparams["moe_intermediate_size"]
  7909. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7910. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7911. moe_topk = hparams["moe_topk"]
  7912. assert all(topk == moe_topk[0] for topk in moe_topk)
  7913. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7914. moe_shared_expert = hparams["num_shared_expert"]
  7915. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7916. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7917. # Rope
  7918. if self.rope_parameters.get("rope_type") == "dynamic":
  7919. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7920. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7921. alpha = self.rope_parameters.get("alpha", 1000)
  7922. base = self.rope_parameters.get("rope_theta", 10000.0)
  7923. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7924. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7925. self.gguf_writer.add_rope_freq_base(scaled_base)
  7926. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7927. self.gguf_writer.add_rope_scaling_factor(1)
  7928. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7929. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7930. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7931. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7932. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7933. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7934. _experts: list[dict[str, Tensor]] | None = None
  7935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7936. if name == "lm_head.weight":
  7937. if self.hparams.get("tie_word_embeddings", False):
  7938. logger.info("Skipping tied output layer 'lm_head.weight'")
  7939. return []
  7940. if name.find("mlp.experts") != -1:
  7941. n_experts = self.hparams["num_experts"]
  7942. assert bid is not None
  7943. if self._experts is None:
  7944. self._experts = [{} for _ in range(self.block_count)]
  7945. self._experts[bid][name] = data_torch
  7946. if len(self._experts[bid]) >= n_experts * 3:
  7947. # merge the experts into a single 3d tensor
  7948. tensors: list[tuple[str, Tensor]] = []
  7949. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7950. datas: list[Tensor] = []
  7951. for xid in range(n_experts):
  7952. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7953. datas.append(self._experts[bid][ename])
  7954. del self._experts[bid][ename]
  7955. data_torch = torch.stack(datas, dim=0)
  7956. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7957. new_name = self.map_tensor_name(merged_name)
  7958. tensors.append((new_name, data_torch))
  7959. return tensors
  7960. else:
  7961. return []
  7962. return [(self.map_tensor_name(name), data_torch)]
  7963. def prepare_tensors(self):
  7964. super().prepare_tensors()
  7965. if self._experts is not None:
  7966. experts = [k for d in self._experts for k in d.keys()]
  7967. if len(experts) > 0:
  7968. raise ValueError(f"Unprocessed experts: {experts}")
  7969. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7970. class LLaDAMoEModel(TextModel):
  7971. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7972. def set_gguf_parameters(self):
  7973. super().set_gguf_parameters()
  7974. if (n_experts := self.hparams.get("num_experts")) is not None:
  7975. self.gguf_writer.add_expert_count(n_experts)
  7976. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7977. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7978. # number of experts used per token (top-k)
  7979. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7980. self.gguf_writer.add_expert_used_count(n_experts_used)
  7981. self.gguf_writer.add_mask_token_id(156895)
  7982. self.gguf_writer.add_causal_attention(False)
  7983. self.gguf_writer.add_diffusion_shift_logits(False)
  7984. _experts: list[dict[str, Tensor]] | None = None
  7985. # Copied from: Qwen2MoeModel
  7986. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7987. # process the experts separately
  7988. if name.find("experts") != -1:
  7989. n_experts = self.hparams["num_experts"]
  7990. assert bid is not None
  7991. if self._experts is None:
  7992. self._experts = [{} for _ in range(self.block_count)]
  7993. self._experts[bid][name] = data_torch
  7994. if len(self._experts[bid]) >= n_experts * 3:
  7995. tensors: list[tuple[str, Tensor]] = []
  7996. # merge the experts into a single 3d tensor
  7997. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7998. datas: list[Tensor] = []
  7999. for xid in range(n_experts):
  8000. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  8001. datas.append(self._experts[bid][ename])
  8002. del self._experts[bid][ename]
  8003. data_torch = torch.stack(datas, dim=0)
  8004. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  8005. new_name = self.map_tensor_name(merged_name)
  8006. tensors.append((new_name, data_torch))
  8007. return tensors
  8008. else:
  8009. return []
  8010. return [(self.map_tensor_name(name), data_torch)]
  8011. # Copied from: Qwen2MoeModel
  8012. def prepare_tensors(self):
  8013. super().prepare_tensors()
  8014. if self._experts is not None:
  8015. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8016. experts = [k for d in self._experts for k in d.keys()]
  8017. if len(experts) > 0:
  8018. raise ValueError(f"Unprocessed experts: {experts}")
  8019. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  8020. class HunYuanModel(TextModel):
  8021. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  8022. def set_vocab(self):
  8023. if (self.dir_model / "tokenizer.json").is_file():
  8024. self._set_vocab_gpt2()
  8025. else:
  8026. from transformers import AutoTokenizer
  8027. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  8028. # 1. Get the pre-tokenizer identifier hash
  8029. tokpre = self.get_vocab_base_pre(tokenizer)
  8030. # 2. Reverse-engineer the merges list from mergeable_ranks
  8031. merges = []
  8032. vocab = {}
  8033. mergeable_ranks = tokenizer.mergeable_ranks
  8034. for token, rank in mergeable_ranks.items():
  8035. vocab[QwenModel.token_bytes_to_string(token)] = rank
  8036. if len(token) == 1:
  8037. continue
  8038. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  8039. if len(merged) == 2:
  8040. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  8041. # 3. Generate the tokens and toktypes lists
  8042. vocab_size = self.hparams["vocab_size"]
  8043. assert tokenizer.vocab_size == vocab_size
  8044. special_tokens = tokenizer.special_tokens
  8045. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  8046. tokens: list[str] = []
  8047. toktypes: list[int] = []
  8048. for i in range(vocab_size):
  8049. if i not in reverse_vocab:
  8050. tokens.append(f"[PAD{i}]")
  8051. toktypes.append(gguf.TokenType.UNUSED)
  8052. else:
  8053. token = reverse_vocab[i]
  8054. tokens.append(token)
  8055. if i in special_tokens.values():
  8056. toktypes.append(gguf.TokenType.CONTROL)
  8057. else:
  8058. toktypes.append(gguf.TokenType.NORMAL)
  8059. # 4. Write all vocab-related fields to the GGUF writer
  8060. self.gguf_writer.add_tokenizer_model("gpt2")
  8061. self.gguf_writer.add_tokenizer_pre(tokpre)
  8062. self.gguf_writer.add_token_list(tokens)
  8063. self.gguf_writer.add_token_types(toktypes)
  8064. self.gguf_writer.add_token_merges(merges)
  8065. # 5. Add special tokens and chat templates
  8066. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  8067. special_vocab.add_to_gguf(self.gguf_writer)
  8068. # FIX for BOS token: Overwrite incorrect id read from config.json
  8069. if self.hparams['hidden_size'] == 4096:
  8070. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  8071. def set_gguf_parameters(self):
  8072. super().set_gguf_parameters()
  8073. hparams = self.hparams
  8074. # Rope
  8075. if self.rope_parameters.get("rope_type") == "dynamic":
  8076. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  8077. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  8078. alpha = self.rope_parameters.get("alpha", 50)
  8079. base = self.rope_parameters.get("rope_theta", 10000.0)
  8080. dim = hparams["head_dim"]
  8081. scaled_base = base * (alpha ** (dim / (dim - 2)))
  8082. self.gguf_writer.add_rope_freq_base(scaled_base)
  8083. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8084. self.gguf_writer.add_rope_scaling_factor(1)
  8085. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  8086. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  8087. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  8088. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  8089. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  8090. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  8091. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8092. if name == "lm_head.weight":
  8093. if self.hparams.get("tie_word_embeddings", False):
  8094. logger.info("Skipping tied output layer 'lm_head.weight'")
  8095. return []
  8096. return [(self.map_tensor_name(name), data_torch)]
  8097. @ModelBase.register("SmolLM3ForCausalLM")
  8098. class SmolLM3Model(LlamaModel):
  8099. model_arch = gguf.MODEL_ARCH.SMOLLM3
  8100. @ModelBase.register("GptOssForCausalLM")
  8101. class GptOssModel(TextModel):
  8102. model_arch = gguf.MODEL_ARCH.GPT_OSS
  8103. # TODO: remove once MXFP4 is supported more generally
  8104. def dequant_model(self):
  8105. quant_config = self.hparams.get("quantization_config")
  8106. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  8107. return
  8108. return super().dequant_model()
  8109. def transform_nibble_layout(self, tensor):
  8110. assert tensor.dtype == torch.uint8
  8111. assert tensor.shape[-1] == 16
  8112. # swap nibbles
  8113. t_lo = tensor & 0x0F
  8114. t_hi = tensor & 0xF0
  8115. t_swapped = (t_lo << 4) | (t_hi >> 4)
  8116. tensor = t_swapped
  8117. # transform aaaa...bbbb... to abababab...
  8118. blk_a, blk_b = tensor.chunk(2, dim=-1)
  8119. # get a_
  8120. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  8121. blk_a1 = (blk_a << 4).view(-1, 1)
  8122. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  8123. # get _b
  8124. blk_b0 = (blk_b >> 4).view(-1, 1)
  8125. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  8126. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  8127. # swap once more
  8128. out = blk_a | blk_b
  8129. out_h = out & 0xF0
  8130. out_l = out & 0x0F
  8131. out = (out_h >> 4) | (out_l << 4)
  8132. return out
  8133. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  8134. assert blocks.dtype == torch.uint8
  8135. assert scales.dtype == torch.uint8
  8136. scales = scales.unsqueeze(-1)
  8137. assert len(blocks.shape) == 4
  8138. assert len(scales.shape) == 4
  8139. blocks = self.transform_nibble_layout(blocks)
  8140. new_data = torch.concat((scales, blocks), dim=-1)
  8141. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  8142. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  8143. # flatten last dim
  8144. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  8145. new_data = new_data.numpy()
  8146. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  8147. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8148. blocks0: Tensor = torch.zeros(1)
  8149. blocks1: Tensor = torch.zeros(1)
  8150. # we assume that tensors are loaded in the correct order
  8151. for name, data_torch in self.get_tensors():
  8152. if "mlp.experts.down_proj_blocks" in name:
  8153. blocks0 = data_torch
  8154. elif "mlp.experts.down_proj_scales" in name:
  8155. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  8156. self.repack_mxfp4(new_name, blocks0, data_torch)
  8157. elif "mlp.experts.gate_up_proj_blocks" in name:
  8158. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  8159. elif "mlp.experts.gate_up_proj_scales" in name:
  8160. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8161. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  8162. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  8163. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  8164. self.repack_mxfp4(new_name_up, blocks1, scales1)
  8165. return []
  8166. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8167. del bid # unused
  8168. if "sinks" in name:
  8169. name += ".weight"
  8170. # correct naming for down_proj
  8171. if "down_proj" in name:
  8172. if name.endswith("_bias"):
  8173. name = name.replace("down_proj_bias", "down_proj.bias")
  8174. elif "_blocks" not in name and "_scales" not in name:
  8175. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8176. name = name.replace("down_proj", "down_proj.weight")
  8177. data_torch = data_torch.transpose(-1, -2)
  8178. else:
  8179. # otherwise, it should already be repacked to ggml MXFP4 format
  8180. return []
  8181. # split the gate_up into gate and up
  8182. if "gate_up_proj" in name:
  8183. if name.endswith("_bias"):
  8184. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  8185. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  8186. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  8187. return [
  8188. (self.map_tensor_name(name_gate), gate_proj_bias),
  8189. (self.map_tensor_name(name_up), up_proj_bias)
  8190. ]
  8191. elif "_blocks" not in name and "_scales" not in name:
  8192. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8193. name_up = name.replace("gate_up_proj", "up_proj.weight")
  8194. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  8195. data_torch = data_torch.transpose(-1, -2)
  8196. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8197. return [
  8198. (self.map_tensor_name(name_gate), gate_proj_weight),
  8199. (self.map_tensor_name(name_up), up_proj_weight)
  8200. ]
  8201. else:
  8202. # otherwise, it should already be repacked to ggml MXFP4 format
  8203. return []
  8204. return [(self.map_tensor_name(name), data_torch)]
  8205. def set_vocab(self):
  8206. self._set_vocab_gpt2()
  8207. def set_gguf_parameters(self):
  8208. super().set_gguf_parameters()
  8209. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  8210. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  8211. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  8212. class LFM2Model(TextModel):
  8213. model_arch = gguf.MODEL_ARCH.LFM2
  8214. def _add_feed_forward_length(self):
  8215. ff_dim = self.hparams["block_ff_dim"]
  8216. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  8217. ff_dim = self.hparams["block_ff_dim"]
  8218. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8219. multiple_of = self.hparams["block_multiple_of"]
  8220. if auto_adjust_ff_dim:
  8221. ff_dim = int(2 * ff_dim / 3)
  8222. # custom dim factor multiplier
  8223. if ffn_dim_multiplier is not None:
  8224. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8225. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8226. self.gguf_writer.add_feed_forward_length(ff_dim)
  8227. def set_gguf_parameters(self):
  8228. # set num_key_value_heads only for attention layers
  8229. self.hparams["num_key_value_heads"] = [
  8230. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8231. for layer_type in self.hparams["layer_types"]
  8232. ]
  8233. super().set_gguf_parameters()
  8234. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8235. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8236. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8237. self._add_feed_forward_length()
  8238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8239. if self._is_vision_tensor(name) or ConformerAudioModel.is_audio_tensor(name):
  8240. # skip multimodal tensors
  8241. return []
  8242. name = name.replace("language_model.", "") # vision
  8243. name = name.replace("lfm.", "model.") # audio
  8244. # conv op requires 2d tensor
  8245. if 'conv.conv' in name:
  8246. data_torch = data_torch.squeeze(1)
  8247. return [(self.map_tensor_name(name), data_torch)]
  8248. def _is_vision_tensor(self, name: str) -> bool:
  8249. return "vision_tower" in name or "multi_modal_projector" in name
  8250. @ModelBase.register("Lfm2Model")
  8251. class LFM2ColBertModel(LFM2Model):
  8252. model_arch = gguf.MODEL_ARCH.LFM2
  8253. dense_tensor_name = "dense_2"
  8254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8255. if not name.startswith(self.dense_tensor_name):
  8256. name = "model." + name
  8257. return super().modify_tensors(data_torch, name, bid)
  8258. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  8259. # dense tensor is stored in a separate safetensors file
  8260. from safetensors.torch import load_file
  8261. tensors_file = self.dir_model / "1_Dense" / "model.safetensors"
  8262. assert tensors_file.is_file()
  8263. tensor = load_file(tensors_file)["linear.weight"]
  8264. self.gguf_writer.add_embedding_length_out(tensor.shape[0])
  8265. yield f"{self.dense_tensor_name}.weight", tensor.clone()
  8266. @ModelBase.register("Lfm2MoeForCausalLM")
  8267. class LFM2MoeModel(TextModel):
  8268. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8269. def set_gguf_parameters(self):
  8270. # set num_key_value_heads only for attention layers
  8271. self.hparams["num_key_value_heads"] = [
  8272. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8273. for layer_type in self.hparams["layer_types"]
  8274. ]
  8275. super().set_gguf_parameters()
  8276. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8277. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8278. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8279. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8280. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8281. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8282. # cache for experts weights for merging
  8283. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8285. # conv op requires 2d tensor
  8286. if 'conv.conv' in name:
  8287. data_torch = data_torch.squeeze(1)
  8288. if name.endswith(".expert_bias"):
  8289. name = name.replace(".expert_bias", ".expert_bias.bias")
  8290. # merge expert weights
  8291. if 'experts' in name:
  8292. n_experts = self.hparams["num_experts"]
  8293. assert bid is not None
  8294. expert_cache = self._experts_cache.setdefault(bid, {})
  8295. expert_cache[name] = data_torch
  8296. expert_weights = ["w1", "w2", "w3"]
  8297. # not enough expert weights to merge
  8298. if len(expert_cache) < n_experts * len(expert_weights):
  8299. return []
  8300. tensors: list[tuple[str, Tensor]] = []
  8301. for w_name in expert_weights:
  8302. datas: list[Tensor] = []
  8303. for xid in range(n_experts):
  8304. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8305. datas.append(expert_cache[ename])
  8306. del expert_cache[ename]
  8307. data_torch = torch.stack(datas, dim=0)
  8308. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8309. new_name = self.map_tensor_name(merged_name)
  8310. tensors.append((new_name, data_torch))
  8311. del self._experts_cache[bid]
  8312. return tensors
  8313. return [(self.map_tensor_name(name), data_torch)]
  8314. def prepare_tensors(self):
  8315. super().prepare_tensors()
  8316. assert not self._experts_cache
  8317. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8318. class LFM2VLModel(MmprojModel):
  8319. def __init__(self, *args, **kwargs):
  8320. super().__init__(*args, **kwargs)
  8321. assert self.hparams_vision is not None
  8322. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8323. self.hparams_vision["image_size"] = 256
  8324. def set_gguf_parameters(self):
  8325. super().set_gguf_parameters()
  8326. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8327. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8328. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8329. self.gguf_writer.add_vision_use_gelu(True)
  8330. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8331. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8332. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8333. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8334. del bid # unused
  8335. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8336. if is_vision_tensor:
  8337. # remove "model." prefix
  8338. name = name.replace("model.vision_tower.", "vision_tower.")
  8339. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8340. if "patch_embedding.weight" in name:
  8341. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8342. return [(self.map_tensor_name(name), data_torch)]
  8343. return [] # skip other tensors
  8344. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8345. class LFM2AudioModel(ConformerAudioModel):
  8346. has_vision_encoder = False
  8347. has_audio_encoder = True
  8348. model_name = "Lfm2AudioEncoder"
  8349. def get_audio_config(self) -> dict[str, Any] | None:
  8350. return self.global_config.get("encoder")
  8351. def set_gguf_parameters(self):
  8352. assert self.hparams_audio is not None
  8353. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8354. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8355. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8356. super().set_gguf_parameters()
  8357. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8358. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8359. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8360. def modify_tensors(self, data_torch, name, bid):
  8361. # skip language model tensors
  8362. if name.startswith("lfm."):
  8363. return []
  8364. # for training only
  8365. if any(p in name for p in ["audio_loss_weight"]):
  8366. return []
  8367. # for audio output
  8368. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8369. return []
  8370. return super().modify_tensors(data_torch, name, bid)
  8371. @ModelBase.register("SmallThinkerForCausalLM")
  8372. class SmallThinkerModel(TextModel):
  8373. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8374. def set_gguf_parameters(self):
  8375. super().set_gguf_parameters()
  8376. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8377. self.gguf_writer.add_expert_count(n_experts)
  8378. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8379. self.gguf_writer.add_expert_used_count(n_experts_used)
  8380. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8381. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8382. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8383. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8384. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8385. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8386. else:
  8387. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8388. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8389. if sliding_window_layout:
  8390. for i in sliding_window_layout:
  8391. if i != 0:
  8392. sliding_window = self.hparams.get("sliding_window_size")
  8393. if sliding_window:
  8394. self.gguf_writer.add_sliding_window(sliding_window)
  8395. break
  8396. _experts: list[dict[str, Tensor]] | None = None
  8397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8398. # process the experts separately
  8399. if name.find("experts") != -1:
  8400. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8401. assert bid is not None
  8402. if self._experts is None:
  8403. self._experts = [{} for _ in range(self.block_count)]
  8404. self._experts[bid][name] = data_torch
  8405. if len(self._experts[bid]) >= n_experts * 3:
  8406. tensors: list[tuple[str, Tensor]] = []
  8407. # merge the experts into a single 3d tensor
  8408. for w_name in ["down", "gate", "up"]:
  8409. datas: list[Tensor] = []
  8410. for xid in range(n_experts):
  8411. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8412. datas.append(self._experts[bid][ename])
  8413. del self._experts[bid][ename]
  8414. data_torch = torch.stack(datas, dim=0)
  8415. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8416. new_name = self.map_tensor_name(merged_name)
  8417. tensors.append((new_name, data_torch))
  8418. return tensors
  8419. else:
  8420. return []
  8421. return [(self.map_tensor_name(name), data_torch)]
  8422. def prepare_tensors(self):
  8423. super().prepare_tensors()
  8424. if self._experts is not None:
  8425. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8426. experts = [k for d in self._experts for k in d.keys()]
  8427. if len(experts) > 0:
  8428. raise ValueError(f"Unprocessed experts: {experts}")
  8429. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8430. class ModernBertModel(BertModel):
  8431. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8432. def set_vocab(self):
  8433. self.gguf_writer.add_add_bos_token(True)
  8434. self.gguf_writer.add_add_eos_token(True)
  8435. self.gguf_writer.add_add_sep_token(True)
  8436. self._set_vocab_gpt2()
  8437. def set_gguf_parameters(self):
  8438. super().set_gguf_parameters()
  8439. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8440. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8441. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8442. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8443. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8445. # these layers act as MLM head, so we don't need them
  8446. if name.startswith("decoder."):
  8447. return []
  8448. if name.startswith("model."):
  8449. name = name[6:]
  8450. return super().modify_tensors(data_torch, name, bid)
  8451. @ModelBase.register("ApertusForCausalLM")
  8452. class ApertusModel(LlamaModel):
  8453. model_arch = gguf.MODEL_ARCH.APERTUS
  8454. undo_permute = False
  8455. _alpha_n = {}
  8456. _alpha_p = {}
  8457. _beta = {}
  8458. _eps = {}
  8459. def modify_tensors(self, data_torch, name, bid):
  8460. # Handle xIELU activation parameters
  8461. n_layers = self.hparams["num_hidden_layers"]
  8462. if name.endswith(".act_fn.alpha_n"):
  8463. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8464. if (len(self._alpha_n) == n_layers):
  8465. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8466. return []
  8467. if name.endswith(".act_fn.alpha_p"):
  8468. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8469. if (len(self._alpha_p) == n_layers):
  8470. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8471. return []
  8472. if name.endswith(".act_fn.beta"):
  8473. self._beta[bid] = data_torch.to("cpu").float().item()
  8474. if (len(self._beta) == n_layers):
  8475. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8476. return []
  8477. if name.endswith(".act_fn.eps"):
  8478. self._eps[bid] = data_torch.to("cpu").float().item()
  8479. if (len(self._eps) == n_layers):
  8480. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8481. return []
  8482. return super().modify_tensors(data_torch, name, bid)
  8483. class MistralModel(LlamaModel):
  8484. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8485. model_name = "Mistral"
  8486. hf_arch = ""
  8487. is_mistral_format = True
  8488. undo_permute = False
  8489. def __init__(self, *args, **kwargs):
  8490. super().__init__(*args, **kwargs)
  8491. # for compatibility, we use LLAMA arch for older models
  8492. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8493. if "llama_4_scaling" not in self.hparams:
  8494. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8495. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8496. self.gguf_writer.add_architecture()
  8497. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8498. def dequant_model(self):
  8499. # transform quantization config into HF format
  8500. quant_config = self.hparams.get("quantization")
  8501. if quant_config is not None:
  8502. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8503. self.hparams["quantization_config"] = {
  8504. "activation_scheme": "static",
  8505. "quant_method": "fp8",
  8506. "weight_block_size": None,
  8507. }
  8508. return super().dequant_model()
  8509. @staticmethod
  8510. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8511. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8512. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8513. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8514. )
  8515. if vocab.tokenizer.version == TokenizerVersion.v1:
  8516. return "mistral-v1"
  8517. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8518. return "mistral-v3"
  8519. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8520. return "mistral-v3-tekken"
  8521. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8522. return "mistral-v7"
  8523. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8524. return "mistral-v7-tekken"
  8525. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8526. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8527. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8528. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8529. else:
  8530. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8531. if is_mistral_format:
  8532. err_message += (
  8533. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8534. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8535. )
  8536. raise ValueError(err_message)
  8537. template_path = templates_dir / template_file
  8538. if not template_path.exists():
  8539. raise FileNotFoundError(f"Template file not found: {template_path}")
  8540. with open(template_path, "r", encoding="utf-8") as f:
  8541. template = f.read()
  8542. return template
  8543. def set_gguf_parameters(self):
  8544. super().set_gguf_parameters()
  8545. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8546. @staticmethod
  8547. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8548. if "yarn" in hparams:
  8549. yarn_params = hparams["yarn"]
  8550. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8551. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8552. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8553. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8554. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8555. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8556. if "llama_4_scaling" in hparams:
  8557. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8558. class MistralMoeModel(DeepseekV2Model):
  8559. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8560. model_name = "Mistral"
  8561. hf_arch = ""
  8562. is_mistral_format = True
  8563. def __init__(self, *args, **kwargs):
  8564. super().__init__(*args, **kwargs)
  8565. logger.info("Using MistralMoeModel")
  8566. # remap hparams from Mistral MoE format to DeepseekV2 format
  8567. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8568. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8569. config = self.hparams
  8570. # Mistral key -> HF key
  8571. config_mapping = {
  8572. "dim": "hidden_size",
  8573. "norm_eps": "rms_norm_eps",
  8574. "n_kv_heads": "num_key_value_heads",
  8575. "n_layers": "num_hidden_layers",
  8576. "n_heads": "num_attention_heads",
  8577. "hidden_dim": "intermediate_size",
  8578. }
  8579. # HF key -> (Mistral key, default value)
  8580. top_level_mapping_with_default = {
  8581. "model_type": ("model_type", "transformer"),
  8582. "hidden_act": ("activation", "silu"),
  8583. "tie_word_embeddings": ("tied_embeddings", False),
  8584. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8585. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8586. }
  8587. # mapping top-level keys
  8588. for key, new_key in config_mapping.items():
  8589. if key in config:
  8590. config[new_key] = config[key]
  8591. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8592. config[new_key] = config.get(key, default_value)
  8593. # mapping MoE-specific keys
  8594. moe_config_map = {
  8595. "route_every_n": "moe_layer_freq",
  8596. "first_k_dense_replace": "first_k_dense_replace",
  8597. "num_experts_per_tok": "num_experts_per_tok",
  8598. "num_experts": "n_routed_experts",
  8599. "expert_hidden_dim": "moe_intermediate_size",
  8600. "routed_scale": "routed_scaling_factor",
  8601. "num_shared_experts": "n_shared_experts",
  8602. "num_expert_groups": "n_group",
  8603. "num_expert_groups_per_tok": "topk_group",
  8604. }
  8605. moe = config["moe"]
  8606. for key, new_key in moe_config_map.items():
  8607. if key in moe:
  8608. config[new_key] = moe[key]
  8609. # provide missing values
  8610. config["topk_method"] = None
  8611. config["norm_topk_prob"] = True
  8612. config["scoring_func"] = "softmax"
  8613. def set_vocab(self):
  8614. self._set_vocab_mistral()
  8615. def set_gguf_parameters(self):
  8616. super().set_gguf_parameters()
  8617. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8618. yarn_params = self.hparams["yarn"]
  8619. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8620. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8621. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8622. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8623. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8624. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8625. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8626. return []
  8627. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8628. if name.endswith(".qscale_act"):
  8629. name = name.replace(".qscale_act", ".input_scale")
  8630. if name.endswith(".qscale_weight"):
  8631. name = name.replace(".qscale_weight", ".weight_scale")
  8632. if ".wkv_b." in name:
  8633. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8634. if ".experts." in name:
  8635. name = name.replace(".experts.", ".mlp.experts.")
  8636. name = name.replace(".w1.", ".gate_proj.")
  8637. name = name.replace(".w2.", ".down_proj.")
  8638. name = name.replace(".w3.", ".up_proj.")
  8639. name = "model." + name
  8640. return super().modify_tensors(data_torch, name, bid)
  8641. class PixtralModel(LlavaVisionModel):
  8642. model_name = "Pixtral"
  8643. hf_arch = ""
  8644. is_mistral_format = True
  8645. def set_gguf_parameters(self):
  8646. super().set_gguf_parameters()
  8647. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8648. self.gguf_writer.add_vision_attention_layernorm_eps(
  8649. self.find_hparam(["norm_eps"])
  8650. )
  8651. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8652. self.gguf_writer.add_vision_use_silu(True)
  8653. # spatial_merge_size
  8654. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8655. self.gguf_writer.add_vision_spatial_merge_size(
  8656. self.find_vparam(["spatial_merge_size"])
  8657. )
  8658. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8659. if name == "vision_language_adapter.w_in.weight":
  8660. return "mm.1.weight"
  8661. elif name == "vision_language_adapter.w_out.weight":
  8662. return "mm.2.weight"
  8663. return super().map_tensor_name(name, try_suffixes)
  8664. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8665. class LightOnOCRVisionModel(LlavaVisionModel):
  8666. is_mistral_format = False
  8667. use_break_tok = False
  8668. def set_gguf_parameters(self):
  8669. super().set_gguf_parameters()
  8670. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8672. name = name.replace("model.vision_encoder.", "vision_tower.")
  8673. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8674. return super().modify_tensors(data_torch, name, bid)
  8675. @ModelBase.register("KimiVLForConditionalGeneration")
  8676. class KimiVLModel(MmprojModel):
  8677. def __init__(self, *args, **kwargs):
  8678. super().__init__(*args, **kwargs)
  8679. assert self.hparams_vision is not None
  8680. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8681. def set_gguf_parameters(self):
  8682. super().set_gguf_parameters()
  8683. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8684. self.gguf_writer.add_vision_use_gelu(True)
  8685. self.gguf_writer.add_vision_projector_scale_factor(2)
  8686. # eps is the same as pytorch's default value
  8687. assert self.hparams_vision is not None
  8688. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8690. del bid # unused
  8691. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8692. if is_vision_tensor:
  8693. if "pos_emb.weight" in name:
  8694. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8695. elif "wqkv" in name:
  8696. split_dim = 0 if "weight" in name else -1
  8697. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8698. return [
  8699. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8700. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8701. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8702. ]
  8703. return [(self.map_tensor_name(name), data_torch)]
  8704. return [] # skip other tensors
  8705. @ModelBase.register("CogVLMForCausalLM")
  8706. class CogVLMVisionModel(MmprojModel):
  8707. def set_gguf_parameters(self):
  8708. super().set_gguf_parameters()
  8709. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8710. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8711. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8712. del bid # unused
  8713. if not name.startswith("model.vision."):
  8714. return []
  8715. return [(self.map_tensor_name(name), data_torch)]
  8716. @ModelBase.register("CogVLMForCausalLM")
  8717. class CogVLMModel(LlamaModel):
  8718. model_arch = gguf.MODEL_ARCH.COGVLM
  8719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8720. del bid # unused
  8721. # block vision tensors
  8722. if name.startswith("model.vision."):
  8723. return []
  8724. return [(self.map_tensor_name(name), data_torch)]
  8725. @ModelBase.register("JanusForConditionalGeneration")
  8726. class JanusProModel(LlamaModel):
  8727. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8729. # Skip vision, aligner, and generation tensors
  8730. skip_prefixes = (
  8731. 'model.vision_model.',
  8732. 'model.aligner.',
  8733. 'model.vqmodel.',
  8734. 'model.generation_embeddings.',
  8735. 'model.generation_aligner.',
  8736. 'model.generation_head.',
  8737. )
  8738. if name.startswith(skip_prefixes):
  8739. return []
  8740. if name.startswith('model.language_model.'):
  8741. name = name.replace('model.language_model.', 'model.')
  8742. elif name.startswith('language_model.'):
  8743. name = name.replace('language_model.', '')
  8744. return super().modify_tensors(data_torch, name, bid)
  8745. @ModelBase.register("JanusForConditionalGeneration")
  8746. class JanusProVisionModel(MmprojModel):
  8747. def __init__(self, *args, **kwargs):
  8748. super().__init__(*args, **kwargs)
  8749. assert self.hparams_vision is not None
  8750. if "intermediate_size" not in self.hparams_vision:
  8751. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8752. hidden_size = self.hparams_vision.get("hidden_size")
  8753. if mlp_ratio is not None and hidden_size is not None:
  8754. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8755. def set_gguf_parameters(self):
  8756. super().set_gguf_parameters()
  8757. assert self.hparams_vision is not None
  8758. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8759. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8760. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8761. if hidden_act == "gelu":
  8762. self.gguf_writer.add_vision_use_gelu(True)
  8763. elif hidden_act == "silu":
  8764. self.gguf_writer.add_vision_use_silu(True)
  8765. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8766. """Map aligner tensors to projector format"""
  8767. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8768. if name.startswith("model.aligner."):
  8769. local_name = name[len("model.aligner."):]
  8770. elif name.startswith("aligner."):
  8771. local_name = name[len("aligner."):]
  8772. else:
  8773. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8774. if local_name.startswith("fc1."):
  8775. mm_index = 0
  8776. elif local_name.startswith("hidden_layers."):
  8777. parts = local_name.split(".", 2)
  8778. if len(parts) < 3:
  8779. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8780. mm_index = int(parts[1]) + 1
  8781. else:
  8782. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8783. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8784. return [(tensor_name, data_torch)]
  8785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8786. del bid # unused
  8787. # Skip language model tensors as they will be handled by `JanusProModel`
  8788. if name.startswith(('model.language_model.', 'language_model.')):
  8789. return []
  8790. # Skip generation-related components
  8791. skip_generation_prefixes = (
  8792. 'model.vqmodel.',
  8793. 'vqmodel.',
  8794. 'model.generation_embeddings.',
  8795. 'generation_embeddings.',
  8796. 'model.generation_aligner.',
  8797. 'generation_aligner.',
  8798. 'model.generation_head.',
  8799. 'generation_head.',
  8800. )
  8801. if name.startswith(skip_generation_prefixes):
  8802. return []
  8803. # Handle aligner tensors
  8804. if name.startswith(('model.aligner.', 'aligner.')):
  8805. return list(self._map_aligner_tensor(data_torch, name))
  8806. # Handle vision tensors
  8807. if name.startswith(('model.vision_model.', 'vision_model.')):
  8808. return [(self.map_tensor_name(name), data_torch)]
  8809. return []
  8810. @ModelBase.register("YoutuVLForConditionalGeneration")
  8811. class YoutuVLVisionModel(MmprojModel):
  8812. def __init__(self, *args, **kwargs):
  8813. super().__init__(*args, **kwargs)
  8814. assert self.hparams_vision is not None
  8815. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  8816. def set_gguf_parameters(self):
  8817. super().set_gguf_parameters()
  8818. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
  8819. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8820. # Handle activation function
  8821. hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
  8822. if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
  8823. self.gguf_writer.add_vision_use_gelu(True)
  8824. elif hidden_act == "silu":
  8825. self.gguf_writer.add_vision_use_silu(True)
  8826. else:
  8827. raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
  8828. self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
  8829. window_size = self.hparams.get("window_size")
  8830. if window_size is not None:
  8831. self.gguf_writer.add_vision_window_size(window_size)
  8832. # fullatt_block_indexes contains explicit layer indices that use full attention
  8833. # e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
  8834. # All other layers use window attention
  8835. fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
  8836. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
  8837. # Store the explicit layer indices for YoutuVL (irregular pattern approach)
  8838. self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
  8839. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8840. del bid # unused
  8841. # Skip language model tensors
  8842. skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
  8843. if name.startswith(skip_prefixes):
  8844. return []
  8845. # Try to map the tensor using TensorNameMap (handles vision encoder and projector)
  8846. try:
  8847. new_name = self.map_tensor_name(name)
  8848. return [(new_name, data_torch)]
  8849. except ValueError:
  8850. # If mapping fails, log warning and skip
  8851. logger.warning(f"Cannot map tensor: {name}")
  8852. return []
  8853. @ModelBase.register("SolarOpenForCausalLM")
  8854. class SolarOpenModel(Glm4MoeModel):
  8855. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8856. def set_vocab(self):
  8857. from transformers import AutoTokenizer
  8858. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8859. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8860. tokens, toktypes, tokpre = self.get_vocab_base()
  8861. self.gguf_writer.add_tokenizer_model("gpt2")
  8862. self.gguf_writer.add_tokenizer_pre(tokpre)
  8863. self.gguf_writer.add_token_list(tokens)
  8864. self.gguf_writer.add_token_types(toktypes)
  8865. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8866. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8867. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8868. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8869. special_vocab.add_to_gguf(self.gguf_writer)
  8870. ###### CONVERSION LOGIC ######
  8871. # tree of lazy tensors
  8872. class LazyTorchTensor(gguf.LazyBase):
  8873. _tensor_type = torch.Tensor
  8874. # to keep the type-checker happy
  8875. dtype: torch.dtype
  8876. shape: torch.Size
  8877. # only used when converting a torch.Tensor to a np.ndarray
  8878. _dtype_map: dict[torch.dtype, type] = {
  8879. torch.float16: np.float16,
  8880. torch.float32: np.float32,
  8881. torch.uint8: np.uint8,
  8882. }
  8883. # only used when byteswapping data. Only correct size is needed
  8884. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8885. torch.float64: np.float64,
  8886. torch.float32: np.float32,
  8887. torch.bfloat16: np.float16,
  8888. torch.float16: np.float16,
  8889. torch.int64: np.int64,
  8890. torch.uint64: np.uint64,
  8891. torch.int32: np.int32,
  8892. torch.uint32: np.uint32,
  8893. torch.int16: np.int16,
  8894. torch.uint16: np.uint16,
  8895. torch.int8: np.int8,
  8896. torch.uint8: np.uint8,
  8897. torch.bool: np.uint8,
  8898. torch.float8_e4m3fn: np.uint8,
  8899. torch.float8_e5m2: np.uint8,
  8900. }
  8901. # used for safetensors slices
  8902. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8903. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8904. _dtype_str_map: dict[str, torch.dtype] = {
  8905. "F64": torch.float64,
  8906. "F32": torch.float32,
  8907. "BF16": torch.bfloat16,
  8908. "F16": torch.float16,
  8909. # "U64": torch.uint64,
  8910. "I64": torch.int64,
  8911. # "U32": torch.uint32,
  8912. "I32": torch.int32,
  8913. # "U16": torch.uint16,
  8914. "I16": torch.int16,
  8915. "U8": torch.uint8,
  8916. "I8": torch.int8,
  8917. "BOOL": torch.bool,
  8918. "F8_E4M3": torch.float8_e4m3fn,
  8919. "F8_E5M2": torch.float8_e5m2,
  8920. }
  8921. def numpy(self) -> gguf.LazyNumpyTensor:
  8922. dtype = self._dtype_map[self.dtype]
  8923. return gguf.LazyNumpyTensor(
  8924. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8925. args=(self,),
  8926. func=(lambda s: s.numpy())
  8927. )
  8928. @classmethod
  8929. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8930. return torch.empty(size=shape, dtype=dtype, device="meta")
  8931. @classmethod
  8932. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8933. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8934. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8935. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8936. return cast(torch.Tensor, lazy)
  8937. @classmethod
  8938. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8939. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8940. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8941. if sys.byteorder == 'big':
  8942. # switch data back to big endian
  8943. tensor = tensor.view(dtype).byteswap(inplace=False)
  8944. return tensor
  8945. dtype = cls._dtype_str_map[tensor.dtype]
  8946. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8947. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8948. dtype = cls._dtype_str_map[t.dtype]
  8949. shape = t.shape
  8950. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8951. return cast(torch.Tensor, lazy)
  8952. @classmethod
  8953. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8954. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8955. if sys.byteorder == 'big':
  8956. # switch data back to big endian
  8957. tensor = tensor.view(dtype).byteswap(inplace=False)
  8958. return tensor
  8959. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8960. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8961. shape = remote_tensor.shape
  8962. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8963. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8964. return cast(torch.Tensor, lazy)
  8965. @classmethod
  8966. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8967. del types # unused
  8968. if kwargs is None:
  8969. kwargs = {}
  8970. if func is torch.Tensor.numpy:
  8971. return args[0].numpy()
  8972. return cls._wrap_fn(func)(*args, **kwargs)
  8973. def parse_args() -> argparse.Namespace:
  8974. parser = argparse.ArgumentParser(
  8975. description="Convert a huggingface model to a GGML compatible file")
  8976. parser.add_argument(
  8977. "--vocab-only", action="store_true",
  8978. help="extract only the vocab",
  8979. )
  8980. parser.add_argument(
  8981. "--outfile", type=Path,
  8982. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8983. )
  8984. parser.add_argument(
  8985. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8986. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8987. )
  8988. parser.add_argument(
  8989. "--bigendian", action="store_true",
  8990. help="model is executed on big endian machine",
  8991. )
  8992. parser.add_argument(
  8993. "model", type=str,
  8994. help="directory containing model file or huggingface repository ID (if --remote)",
  8995. nargs="?",
  8996. )
  8997. parser.add_argument(
  8998. "--use-temp-file", action="store_true",
  8999. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  9000. )
  9001. parser.add_argument(
  9002. "--no-lazy", action="store_true",
  9003. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  9004. )
  9005. parser.add_argument(
  9006. "--model-name", type=str, default=None,
  9007. help="name of the model",
  9008. )
  9009. parser.add_argument(
  9010. "--verbose", action="store_true",
  9011. help="increase output verbosity",
  9012. )
  9013. parser.add_argument(
  9014. "--split-max-tensors", type=int, default=0,
  9015. help="max tensors in each split",
  9016. )
  9017. parser.add_argument(
  9018. "--split-max-size", type=str, default="0",
  9019. help="max size per split N(M|G)",
  9020. )
  9021. parser.add_argument(
  9022. "--dry-run", action="store_true",
  9023. help="only print out a split plan and exit, without writing any new files",
  9024. )
  9025. parser.add_argument(
  9026. "--no-tensor-first-split", action="store_true",
  9027. help="do not add tensors to the first split (disabled by default)"
  9028. )
  9029. parser.add_argument(
  9030. "--metadata", type=Path,
  9031. help="Specify the path for an authorship metadata override file"
  9032. )
  9033. parser.add_argument(
  9034. "--print-supported-models", action="store_true",
  9035. help="Print the supported models"
  9036. )
  9037. parser.add_argument(
  9038. "--remote", action="store_true",
  9039. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  9040. )
  9041. parser.add_argument(
  9042. "--mmproj", action="store_true",
  9043. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  9044. )
  9045. parser.add_argument(
  9046. "--mistral-format", action="store_true",
  9047. help="Whether the model is stored following the Mistral format.",
  9048. )
  9049. parser.add_argument(
  9050. "--disable-mistral-community-chat-template", action="store_true",
  9051. help=(
  9052. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  9053. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  9054. )
  9055. )
  9056. parser.add_argument(
  9057. "--sentence-transformers-dense-modules", action="store_true",
  9058. help=("Whether to include sentence-transformers dense modules. "
  9059. "It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
  9060. "Default these modules are not included.")
  9061. )
  9062. args = parser.parse_args()
  9063. if not args.print_supported_models and args.model is None:
  9064. parser.error("the following arguments are required: model")
  9065. return args
  9066. def split_str_to_n_bytes(split_str: str) -> int:
  9067. if split_str.endswith("K"):
  9068. n = int(split_str[:-1]) * 1000
  9069. elif split_str.endswith("M"):
  9070. n = int(split_str[:-1]) * 1000 * 1000
  9071. elif split_str.endswith("G"):
  9072. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  9073. elif split_str.isnumeric():
  9074. n = int(split_str)
  9075. else:
  9076. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  9077. if n < 0:
  9078. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  9079. return n
  9080. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  9081. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  9082. # maybe we should fallback to text model's arch in that case, since not many models have both
  9083. text_config = hparams.get("text_config", {})
  9084. vision_config = hparams.get("vision_config", {})
  9085. arch = None
  9086. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  9087. arch = arches[0]
  9088. elif "ssm_cfg" in hparams:
  9089. # For non-hf Mamba and Mamba2 models
  9090. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  9091. # if "architectures" is found in the sub-config, use that instead
  9092. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  9093. arch = text_config["architectures"][0]
  9094. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  9095. arch = vision_config["architectures"][0]
  9096. if arch is None:
  9097. raise ValueError("Failed to detect model architecture")
  9098. return arch
  9099. def main() -> None:
  9100. args = parse_args()
  9101. if args.print_supported_models:
  9102. logger.error("Supported models:")
  9103. ModelBase.print_registered_models()
  9104. sys.exit(0)
  9105. if args.verbose:
  9106. logging.basicConfig(level=logging.DEBUG)
  9107. else:
  9108. logging.basicConfig(level=logging.INFO)
  9109. if args.remote:
  9110. hf_repo_id = args.model
  9111. from huggingface_hub import snapshot_download
  9112. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  9113. if args.sentence_transformers_dense_modules:
  9114. # include sentence-transformers dense modules safetensors files
  9115. allowed_patterns.append("*.safetensors")
  9116. local_dir = snapshot_download(
  9117. repo_id=hf_repo_id,
  9118. allow_patterns=allowed_patterns)
  9119. dir_model = Path(local_dir)
  9120. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  9121. else:
  9122. hf_repo_id = None
  9123. dir_model = Path(args.model)
  9124. if not dir_model.is_dir():
  9125. logger.error(f'Error: {dir_model} is not a directory')
  9126. sys.exit(1)
  9127. ftype_map: dict[str, gguf.LlamaFileType] = {
  9128. "f32": gguf.LlamaFileType.ALL_F32,
  9129. "f16": gguf.LlamaFileType.MOSTLY_F16,
  9130. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  9131. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  9132. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  9133. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  9134. "auto": gguf.LlamaFileType.GUESSED,
  9135. }
  9136. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  9137. if args.use_temp_file and is_split:
  9138. logger.error("Error: Cannot use temp file when splitting")
  9139. sys.exit(1)
  9140. if args.outfile is not None:
  9141. fname_out = args.outfile
  9142. elif hf_repo_id:
  9143. # if remote, use the model ID as the output file name
  9144. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  9145. else:
  9146. fname_out = dir_model
  9147. logger.info(f"Loading model: {dir_model.name}")
  9148. is_mistral_format = args.mistral_format
  9149. if is_mistral_format and not _mistral_common_installed:
  9150. raise ImportError(_mistral_import_error_msg)
  9151. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  9152. with torch.inference_mode():
  9153. output_type = ftype_map[args.outtype]
  9154. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  9155. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  9156. if not is_mistral_format:
  9157. model_architecture = get_model_architecture(hparams, model_type)
  9158. logger.info(f"Model architecture: {model_architecture}")
  9159. try:
  9160. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  9161. except NotImplementedError:
  9162. logger.error(f"Model {model_architecture} is not supported")
  9163. sys.exit(1)
  9164. elif args.mmproj:
  9165. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  9166. model_class = PixtralModel
  9167. elif "moe" in hparams:
  9168. model_class = MistralMoeModel
  9169. else:
  9170. model_class = MistralModel
  9171. model_instance = model_class(dir_model, output_type, fname_out,
  9172. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  9173. eager=args.no_lazy,
  9174. metadata_override=args.metadata, model_name=args.model_name,
  9175. split_max_tensors=args.split_max_tensors,
  9176. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  9177. small_first_shard=args.no_tensor_first_split,
  9178. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  9179. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  9180. )
  9181. if args.vocab_only:
  9182. logger.info("Exporting model vocab...")
  9183. model_instance.write_vocab()
  9184. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  9185. else:
  9186. logger.info("Exporting model...")
  9187. model_instance.write()
  9188. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  9189. logger.info(f"Model successfully exported to {out_path}")
  9190. if __name__ == '__main__':
  9191. main()