tensor_mapping.py 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "embeddings.tok_embeddings", # modern-bert
  17. "language_model.embedding.word_embeddings", # persimmon
  18. "wte", # gpt2
  19. "transformer.embd.wte", # phi2
  20. "model.tok_embeddings", # internlm2
  21. "model.embedding", # mamba-qbert
  22. "backbone.embedding", # mamba
  23. "backbone.embeddings", # mamba-hf
  24. "transformer.in_out_embed", # Grok
  25. "embedding.word_embeddings", # chatglm
  26. "transformer.token_embeddings", # openelm
  27. "shared", # t5
  28. "rwkv.embeddings", # rwkv6
  29. "model.embeddings", # rwkv7
  30. "model.word_embeddings", # bailingmoe
  31. "language_model.model.embed_tokens", # llama4
  32. "encoder", # neobert
  33. "model.transformer.wte", # llada
  34. "embed_tokens", # qwen3-embedding
  35. ),
  36. # Token type embeddings
  37. MODEL_TENSOR.TOKEN_TYPES: (
  38. "embeddings.token_type_embeddings", # bert nomic-bert
  39. ),
  40. # Normalization of token embeddings
  41. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  42. "word_embeddings_layernorm", # bloom
  43. "embeddings.LayerNorm", # bert
  44. "embeddings.norm", # modern-bert
  45. "emb_ln", # nomic-bert
  46. "transformer.norm", # openelm
  47. "rwkv.blocks.0.pre_ln", # rwkv
  48. "rwkv.blocks.0.pre_ln", # rwkv6
  49. "model.pre_ln", # rwkv7
  50. "model.layers.0.pre_norm", # rwkv7
  51. "backbone.norm", # wavtokenizer
  52. "model.embedding_norm", # lfm2
  53. ),
  54. # Position embeddings
  55. MODEL_TENSOR.POS_EMBD: (
  56. "transformer.wpe", # gpt2
  57. "embeddings.position_embeddings", # bert
  58. "wpe", # gpt2
  59. ),
  60. # Output
  61. MODEL_TENSOR.OUTPUT: (
  62. "embed_out", # gptneox
  63. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  64. "output", # llama-pth bloom internlm2
  65. "word_embeddings_for_head", # persimmon
  66. "lm_head.linear", # phi2
  67. "output_layer", # chatglm
  68. "head", # rwkv
  69. "head.out", # wavtokenizer
  70. "lm_head", # llama4
  71. "model.transformer.ff_out", # llada
  72. "head.decoder", # modern-bert
  73. ),
  74. MODEL_TENSOR.DENSE_2_OUT: (
  75. "dense_2_out", # embeddinggemma
  76. ),
  77. MODEL_TENSOR.DENSE_3_OUT: (
  78. "dense_3_out", # embeddinggemma
  79. ),
  80. # Output norm
  81. MODEL_TENSOR.OUTPUT_NORM: (
  82. "gpt_neox.final_layer_norm", # gptneox
  83. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  84. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  85. "norm", # llama-pth
  86. "transformer.norm_f", # mpt dbrx
  87. "ln_f", # refact bloom qwen gpt2
  88. "language_model.encoder.final_layernorm", # persimmon
  89. "model.final_layernorm", # persimmon
  90. "lm_head.ln", # phi2
  91. "model.norm_f", # mamba-qbert
  92. "backbone.norm_f", # mamba
  93. "transformer.rms_norm", # Grok
  94. "encoder.final_layernorm", # chatglm
  95. "transformer.norm", # openelm
  96. "model.norm", # nemotron
  97. "rwkv.ln_out", # rwkv6
  98. "model.ln_out", # rwkv7
  99. "backbone.final_layer_norm", # wavtokenizer
  100. "model.norm", # llama4
  101. "model.transformer.ln_f", # llada
  102. "final_norm", # modern-bert
  103. "model.norm", # cogvlm
  104. ),
  105. # Rope frequencies
  106. MODEL_TENSOR.ROPE_FREQS: (
  107. "rope.freqs", # llama-pth
  108. "rotary_pos_emb.inv_freq", # chatglm
  109. ),
  110. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  111. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  112. MODEL_TENSOR.CONV1D: (
  113. "backbone.embed", # roberta
  114. ),
  115. MODEL_TENSOR.V_MM_EMBEDDING: (
  116. "model.embed_vision.embedding", # gemma3n
  117. ),
  118. MODEL_TENSOR.V_MM_HARD_EMB_NORM: (
  119. "model.embed_vision.hard_embedding_norm", # gemma3n
  120. ),
  121. MODEL_TENSOR.V_MM_INP_PROJ: (
  122. "model.embed_vision.embedding_projection", # gemma3n
  123. ),
  124. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  125. "model.embed_vision.soft_embedding_norm", # gemma3n
  126. ),
  127. MODEL_TENSOR.V_ENC_CONV_STEM: (
  128. "model.vision_tower.timm_model.conv_stem.conv", # gemma3n
  129. ),
  130. MODEL_TENSOR.V_ENC_CONV_STEM_NORM: (
  131. "model.vision_tower.timm_model.conv_stem.bn", # gemma3n
  132. ),
  133. MODEL_TENSOR.V_ENC_MSFA_EXP: (
  134. "model.vision_tower.timm_model.msfa.ffn.pw_exp.conv", # gemma3n
  135. ),
  136. MODEL_TENSOR.V_ENC_MSFA_EXP_NORM: (
  137. "model.vision_tower.timm_model.msfa.ffn.pw_exp.bn", # gemma3n
  138. ),
  139. MODEL_TENSOR.V_ENC_MSFA_PROJ: (
  140. "model.vision_tower.timm_model.msfa.ffn.pw_proj.conv", # gemma3n
  141. ),
  142. MODEL_TENSOR.V_ENC_MSFA_PROJ_NORM: (
  143. "model.vision_tower.timm_model.msfa.ffn.pw_proj.bn", # gemma3n
  144. ),
  145. MODEL_TENSOR.V_ENC_MSFA_NORM: (
  146. "model.vision_tower.timm_model.msfa.norm", # gemma3n
  147. ),
  148. }
  149. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  150. # Attention norm
  151. MODEL_TENSOR.ATTN_NORM: (
  152. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  153. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  154. "transformer.blocks.{bid}.norm_1", # mpt
  155. "transformer.h.{bid}.input_layernorm", # falcon7b
  156. "h.{bid}.input_layernorm", # bloom
  157. "transformer.h.{bid}.ln_mlp", # falcon40b
  158. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  159. "layers.{bid}.attention_norm", # llama-pth
  160. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  161. "model.layers.{bid}.ln1", # yi
  162. "h.{bid}.ln_1", # gpt2
  163. "transformer.h.{bid}.ln", # phi2
  164. "model.layers.layers.{bid}.norm", # plamo
  165. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  166. "model.layers.{bid}.attention_norm", # internlm2
  167. "model.layers.{bid}.norm", # mamba-qbert
  168. "backbone.layers.{bid}.norm", # mamba
  169. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  170. "model.layers.{bid}.pre_attn_norm", # grok-2
  171. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  172. "encoder.layers.{bid}.input_layernorm", # chatglm
  173. "transformer.layers.{bid}.attn_norm", # openelm
  174. "rwkv.blocks.{bid}.ln1", # rwkv6
  175. "model.layers.{bid}.ln1", # rwkv7
  176. "model.layers.{bid}.input_layernorm", # llama4
  177. "layers.{bid}.input_layernorm", # embeddinggemma
  178. "transformer_encoder.{bid}.attention_norm", # neobert
  179. "layers.{bid}.attn_norm", # modern-bert
  180. "model.layers.{bid}.operator_norm", # lfm2
  181. "model.transformer.blocks.{bid}.attn_norm", # llada
  182. "layers.{bid}.input_layernorm", # qwen3-embedding
  183. "model.layers.{bid}.attention_layernorm", # apertus
  184. "model.layers.{bid}.pre_attention_layernorm", # kormo
  185. ),
  186. # Attention norm 2
  187. MODEL_TENSOR.ATTN_NORM_2: (
  188. "transformer.h.{bid}.ln_attn", # falcon40b
  189. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  190. "rwkv.blocks.{bid}.ln2", # rwkv6
  191. "model.layers.{bid}.ln2", # rwkv7
  192. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  193. ),
  194. # Attention query-key-value
  195. MODEL_TENSOR.ATTN_QKV: (
  196. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  197. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  198. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  199. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  200. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  201. "h.{bid}.self_attention.query_key_value", # bloom
  202. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  203. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  204. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  205. "h.{bid}.attn.c_attn", # gpt2
  206. "transformer.h.{bid}.mixer.Wqkv", # phi2
  207. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  208. "encoder.layers.{bid}.mixer.Wqkv", # jina
  209. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  210. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  211. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  212. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  213. "transformer_encoder.{bid}.qkv", # neobert
  214. "layers.{bid}.attn.Wqkv", # modern-bert
  215. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  216. ),
  217. # Attention query
  218. MODEL_TENSOR.ATTN_Q: (
  219. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  220. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  221. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  222. "layers.{bid}.attention.wq", # llama-pth
  223. "encoder.layer.{bid}.attention.self.query", # bert
  224. "transformer.layer.{bid}.attention.q_lin", # distillbert
  225. "transformer.h.{bid}.attn.q_proj", # gpt-j
  226. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  227. "model.layers.{bid}.attention.wq", # internlm2
  228. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  229. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  230. "model.layers.{bid}.self_attn.q_proj", # llama4
  231. "model.transformer.blocks.{bid}.q_proj", # llada
  232. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  233. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  234. ),
  235. # Attention key
  236. MODEL_TENSOR.ATTN_K: (
  237. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  238. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  239. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  240. "layers.{bid}.attention.wk", # llama-pth
  241. "encoder.layer.{bid}.attention.self.key", # bert
  242. "transformer.layer.{bid}.attention.k_lin", # distillbert
  243. "transformer.h.{bid}.attn.k_proj", # gpt-j
  244. "transformer.h.{bid}.attn.k", # refact
  245. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  246. "model.layers.{bid}.attention.wk", # internlm2
  247. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  248. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  249. "model.layers.{bid}.self_attn.k_proj", # llama4
  250. "model.transformer.blocks.{bid}.k_proj", # llada
  251. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  252. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  253. ),
  254. # Attention value
  255. MODEL_TENSOR.ATTN_V: (
  256. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  257. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  258. "layers.{bid}.attention.wv", # llama-pth
  259. "encoder.layer.{bid}.attention.self.value", # bert
  260. "transformer.layer.{bid}.attention.v_lin", # distillbert
  261. "transformer.h.{bid}.attn.v_proj", # gpt-j
  262. "transformer.h.{bid}.attn.v", # refact
  263. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  264. "model.layers.{bid}.attention.wv", # internlm2
  265. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  266. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  267. "model.layers.{bid}.self_attn.v_proj", # llama4
  268. "model.transformer.blocks.{bid}.v_proj", # llada
  269. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  270. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  271. ),
  272. # Attention output
  273. MODEL_TENSOR.ATTN_OUT: (
  274. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  275. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  276. "transformer.blocks.{bid}.attn.out_proj", # mpt
  277. "transformer.h.{bid}.self_attention.dense", # falcon
  278. "h.{bid}.self_attention.dense", # bloom
  279. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  280. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  281. "model.layers.{bid}.self_attn.out_proj", # lfm2
  282. "model.layers.{bid}.self_attn.linear_attn", # deci
  283. "layers.{bid}.attention.wo", # llama-pth
  284. "encoder.layer.{bid}.attention.output.dense", # bert
  285. "layers.{bid}.attn.Wo", # modern-bert
  286. "transformer.layer.{bid}.attention.out_lin", # distillbert
  287. "transformer.h.{bid}.attn.out_proj", # gpt-j
  288. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  289. "model.layers.{bid}.self_attn.dense", # persimmon
  290. "model.layers.{bid}.attention.dense", # bailingmoe2
  291. "h.{bid}.attn.c_proj", # gpt2
  292. "transformer.h.{bid}.mixer.out_proj", # phi2
  293. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  294. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  295. "model.layers.{bid}.attention.wo", # internlm2
  296. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  297. "encoder.layers.{bid}.mixer.out_proj", # jina
  298. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  299. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  300. "encoder.layers.{bid}.self_attention.dense", # chatglm
  301. "transformer.layers.{bid}.attn.out_proj", # openelm
  302. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  303. "model.layers.{bid}.self_attn.o_proj", # llama4
  304. "transformer_encoder.{bid}.wo", # neobert
  305. "model.transformer.blocks.{bid}.attn_out", # llada
  306. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  307. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  308. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  309. ),
  310. # Attention output norm
  311. MODEL_TENSOR.ATTN_OUT_NORM: (
  312. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  313. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  314. "encoder.layers.{bid}.norm1", # nomic-bert
  315. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  316. "model.layers.{bid}.post_attn_norm", # grok-2
  317. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  318. ),
  319. MODEL_TENSOR.ATTN_POST_NORM: (
  320. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  321. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  322. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  323. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  324. ),
  325. # Rotary embeddings
  326. MODEL_TENSOR.ATTN_ROT_EMBD: (
  327. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  328. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  329. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  330. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  331. ),
  332. MODEL_TENSOR.ATTN_SINKS: (
  333. "model.layers.{bid}.self_attn.sinks", # openai-moe
  334. "model.layers.{bid}.self_attn.attention_sink_bias", # mimov2
  335. ),
  336. MODEL_TENSOR.ATTN_GATE: (
  337. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  338. ),
  339. # Feed-forward norm
  340. MODEL_TENSOR.FFN_NORM: (
  341. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  342. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  343. "h.{bid}.post_attention_layernorm", # bloom
  344. "transformer.blocks.{bid}.norm_2", # mpt
  345. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  346. "layers.{bid}.ffn_norm", # llama-pth
  347. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  348. "model.layers.{bid}.ln2", # yi
  349. "h.{bid}.ln_2", # gpt2
  350. "model.layers.{bid}.ffn_norm", # internlm2
  351. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  352. "model.layers.{bid}.pre_moe_norm", # grok-2
  353. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  354. "transformer.layers.{bid}.ffn_norm", # openelm
  355. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  356. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  357. "model.layers.{bid}.post_attention_layernorm", # llama4
  358. "transformer_encoder.{bid}.ffn_norm", # neobert
  359. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  360. "model.transformer.blocks.{bid}.ff_norm", # llada
  361. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  362. "model.layers.{bid}.feedforward_layernorm", # apertus
  363. "model.layers.{bid}.pre_mlp_layernorm", # kormo
  364. "layers.{bid}.mlp_norm" # modern-bert
  365. ),
  366. # Pre feed-forward norm
  367. MODEL_TENSOR.FFN_PRE_NORM: (
  368. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  369. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  370. "model.layers.{bid}.pre_ff_layernorm.weight",
  371. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  372. ),
  373. # Post feed-forward norm
  374. MODEL_TENSOR.FFN_POST_NORM: (
  375. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  376. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  377. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  378. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  379. "model.layers.{bid}.feed_forward.up_proj",
  380. "model.layers.{bid}.post_moe_norm", # grok-2
  381. ),
  382. MODEL_TENSOR.FFN_GATE_INP: (
  383. "layers.{bid}.feed_forward.gate", # mixtral
  384. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  385. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  386. "transformer.decoder_layer.{bid}.router", # Grok
  387. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  388. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  389. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  390. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  391. "model.layers.{bid}.mlp.router", # openai-moe
  392. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  393. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  394. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  395. "model.layers.{bid}.mlp.router.gate", # afmoe
  396. "layers.{bid}.gate", # mistral-large
  397. "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
  398. ),
  399. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  400. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  401. ),
  402. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  403. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  404. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  405. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  406. "model.layers.{bid}.mlp.expert_bias", # afmoe
  407. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  408. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  409. "backbone.layers.{bid}.mixer.gate.e_score_correction" # nemotron-h-moe
  410. ),
  411. # Feed-forward up
  412. MODEL_TENSOR.FFN_UP: (
  413. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  414. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  415. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  416. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  417. "h.{bid}.mlp.dense_h_to_4h", # bloom
  418. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  419. "layers.{bid}.mlp.up_proj", # embeddinggemma
  420. "layers.{bid}.feed_forward.w3", # llama-pth
  421. "encoder.layer.{bid}.intermediate.dense", # bert
  422. "layers.{bid}.mlp.Wi", # modern-bert
  423. "transformer.layer.{bid}.ffn.lin1", # distillbert
  424. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  425. "transformer.h.{bid}.mlp.linear_3", # refact
  426. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  427. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  428. "transformer.h.{bid}.mlp.w1", # qwen
  429. "h.{bid}.mlp.c_fc", # gpt2
  430. "transformer.h.{bid}.mlp.fc1", # phi2
  431. "model.layers.{bid}.mlp.fc1", # phi2
  432. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  433. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  434. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  435. "model.layers.{bid}.feed_forward.w3", # internlm2
  436. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  437. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  438. "model.layers.{bid}.mlp.c_fc", # starcoder2
  439. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  440. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  441. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  442. "model.layers.{bid}.residual_mlp.w3", # arctic
  443. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  444. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  445. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  446. "transformer_encoder.{bid}.ffn.w12", # neobert
  447. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  448. "model.transformer.blocks.{bid}.up_proj", # llada
  449. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  450. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  451. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  452. ),
  453. MODEL_TENSOR.FFN_UP_EXP: (
  454. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  455. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  456. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  457. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
  458. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  459. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  460. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  461. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  462. ),
  463. MODEL_TENSOR.FFN_UP_SHEXP: (
  464. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  465. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  466. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  467. "model.layers.{bid}.feed_forward.down_proj",
  468. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  469. "layers.{bid}.shared_experts.w3", # mistral-large
  470. "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
  471. ),
  472. MODEL_TENSOR.FFN_UP_CHEXP: (
  473. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  474. ),
  475. # AWQ-activation gate
  476. MODEL_TENSOR.FFN_ACT: (
  477. "transformer.blocks.{bid}.ffn.act", # mpt
  478. ),
  479. # Feed-forward gate
  480. MODEL_TENSOR.FFN_GATE: (
  481. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  482. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  483. "layers.{bid}.feed_forward.w1", # llama-pth
  484. "transformer.h.{bid}.mlp.w2", # qwen
  485. "transformer.h.{bid}.mlp.c_fc2", # jais
  486. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  487. "model.layers.{bid}.feed_forward.w1", # internlm2
  488. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  489. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  490. "transformer.h.{bid}.mlp.linear_1", # refact
  491. "model.layers.{bid}.residual_mlp.w1", # arctic
  492. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  493. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  494. "model.transformer.blocks.{bid}.ff_proj", # llada
  495. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  496. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  497. ),
  498. MODEL_TENSOR.FFN_GATE_EXP: (
  499. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  500. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  501. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  502. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  503. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  504. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  505. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  506. ),
  507. MODEL_TENSOR.FFN_GATE_SHEXP: (
  508. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  509. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  510. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  511. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  512. "layers.{bid}.shared_experts.w1", # mistral-large
  513. ),
  514. MODEL_TENSOR.FFN_GATE_CHEXP: (
  515. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  516. ),
  517. # Feed-forward down
  518. MODEL_TENSOR.FFN_DOWN: (
  519. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  520. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  521. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  522. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  523. "h.{bid}.mlp.dense_4h_to_h", # bloom
  524. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  525. "layers.{bid}.mlp.down_proj", # embeddinggemma
  526. "layers.{bid}.feed_forward.w2", # llama-pth
  527. "encoder.layer.{bid}.output.dense", # bert
  528. "layers.{bid}.mlp.Wo", # modern-bert
  529. "transformer.layer.{bid}.ffn.lin2", # distillbert
  530. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  531. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  532. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  533. "h.{bid}.mlp.c_proj", # gpt2
  534. "transformer.h.{bid}.mlp.fc2", # phi2
  535. "model.layers.{bid}.mlp.fc2", # phi2
  536. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  537. "model.layers.{bid}.feed_forward.w2", # internlm2
  538. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  539. "model.layers.{bid}.mlp.c_proj", # starcoder2
  540. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  541. "transformer.layers.{bid}.ffn.proj_2", # openelm
  542. "model.layers.{bid}.residual_mlp.w2", # arctic
  543. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  544. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  545. "model.layers.h.{bid}.mlp.c_proj", # exaone
  546. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  547. "transformer_encoder.{bid}.ffn.w3", # neobert
  548. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  549. "model.transformer.blocks.{bid}.ff_out", # llada
  550. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  551. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  552. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  553. ),
  554. MODEL_TENSOR.FFN_DOWN_EXP: (
  555. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  556. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  557. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  558. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
  559. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  560. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  561. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  562. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  563. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  564. ),
  565. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  566. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  567. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  568. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  569. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  570. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  571. "layers.{bid}.shared_experts.w2", # mistral-large
  572. "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
  573. ),
  574. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  575. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  576. ),
  577. MODEL_TENSOR.ATTN_Q_NORM: (
  578. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  579. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  580. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  581. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  582. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  583. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  584. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  585. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  586. "transformer.layers.{bid}.attn.q_norm", # openelm
  587. "model.layers.layers.{bid}.mixer.q", # plamo2
  588. "model.layers.layers.{bid}.mixer.q_norm", # plamo3
  589. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  590. "model.layers.{bid}.attention.query_layernorm", # apertus
  591. ),
  592. MODEL_TENSOR.ATTN_K_NORM: (
  593. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  594. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  595. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  596. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  597. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  598. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  599. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  600. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  601. "transformer.layers.{bid}.attn.k_norm", # openelm
  602. "model.layers.layers.{bid}.mixer.k", # plamo2
  603. "model.layers.layers.{bid}.mixer.k_norm", # plamo3
  604. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  605. "model.layers.{bid}.attention.key_layernorm", # apertus
  606. ),
  607. MODEL_TENSOR.ROPE_FREQS: (
  608. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  609. ),
  610. MODEL_TENSOR.LAYER_OUT_NORM: (
  611. "encoder.layer.{bid}.output.LayerNorm", # bert
  612. "transformer.layer.{bid}.output_layer_norm", # distillbert
  613. "encoder.layers.{bid}.norm2", # nomic-bert
  614. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  615. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  616. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  617. "model.layers.{bid}.final_layernorm", # bailingmoe2
  618. ),
  619. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  620. "model.embed_tokens_per_layer", # gemma3n
  621. ),
  622. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  623. "model.per_layer_model_projection", # gemma3n
  624. ),
  625. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  626. "model.per_layer_projection_norm", # gemma3n
  627. ),
  628. MODEL_TENSOR.ALTUP_PROJ: (
  629. "model.altup_projections", # gemma3n
  630. ),
  631. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  632. "model.altup_unembed_projections", # gemma3n
  633. ),
  634. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  635. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  636. ),
  637. MODEL_TENSOR.PER_LAYER_PROJ: (
  638. "model.layers.{bid}.per_layer_projection", # gemma3n
  639. ),
  640. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  641. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  642. ),
  643. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  644. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  645. ),
  646. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  647. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  648. ),
  649. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  650. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  651. ),
  652. MODEL_TENSOR.ALTUP_ROUTER: (
  653. "model.layers.{bid}.altup.modality_router", # gemma3n
  654. ),
  655. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  656. "model.layers.{bid}.altup.router_norm", # gemma3n
  657. ),
  658. MODEL_TENSOR.LAUREL_L: (
  659. "model.layers.{bid}.laurel.linear_left", # gemma3n
  660. ),
  661. MODEL_TENSOR.LAUREL_R: (
  662. "model.layers.{bid}.laurel.linear_right", # gemma3n
  663. ),
  664. MODEL_TENSOR.LAUREL_POST_NORM: (
  665. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  666. ),
  667. MODEL_TENSOR.SSM_IN: (
  668. "model.layers.{bid}.in_proj", # mamba-hf
  669. "backbone.layers.{bid}.mixer.in_proj", # mamba
  670. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  671. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  672. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  673. ),
  674. MODEL_TENSOR.SSM_CONV1D: (
  675. "model.layers.{bid}.conv1d", # mamba-hf
  676. "backbone.layers.{bid}.mixer.conv1d", # mamba
  677. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  678. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  679. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  680. ),
  681. MODEL_TENSOR.SSM_X: (
  682. "model.layers.{bid}.x_proj", # mamba-hf
  683. "backbone.layers.{bid}.mixer.x_proj", # mamba
  684. "model.layers.{bid}.mamba.x_proj", # jamba
  685. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  686. ),
  687. MODEL_TENSOR.SSM_DT: (
  688. "model.layers.{bid}.dt_proj", # mamba-hf
  689. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  690. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  691. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  692. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  693. "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
  694. ),
  695. MODEL_TENSOR.SSM_DT_NORM: (
  696. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  697. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  698. ),
  699. MODEL_TENSOR.SSM_A: (
  700. "model.layers.{bid}.A_log", # mamba-hf
  701. "backbone.layers.{bid}.mixer.A_log", # mamba
  702. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  703. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  704. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  705. ),
  706. MODEL_TENSOR.SSM_B_NORM: (
  707. "model.layers.{bid}.mamba.b_layernorm", # jamba
  708. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  709. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  710. ),
  711. MODEL_TENSOR.SSM_C_NORM: (
  712. "model.layers.{bid}.mamba.c_layernorm", # jamba
  713. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  714. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  715. ),
  716. MODEL_TENSOR.SSM_D: (
  717. "model.layers.{bid}.D", # mamba-hf
  718. "backbone.layers.{bid}.mixer.D", # mamba
  719. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  720. "model.layers.layers.{bid}.mixer.D", # plamo2
  721. ),
  722. MODEL_TENSOR.SSM_NORM: (
  723. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  724. "model.layers.{bid}.linear_attn.norm", # qwen3next
  725. "backbone.layers.{bid}.mixer.norm", # mamba2
  726. ),
  727. MODEL_TENSOR.SSM_OUT: (
  728. "model.layers.{bid}.out_proj", # mamba-hf
  729. "backbone.layers.{bid}.mixer.out_proj", # mamba
  730. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  731. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  732. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  733. ),
  734. MODEL_TENSOR.SSM_BETA_ALPHA: (
  735. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  736. ),
  737. MODEL_TENSOR.TIME_MIX_W0: (
  738. "model.layers.{bid}.attention.w0", # rwkv7
  739. ),
  740. MODEL_TENSOR.TIME_MIX_W1: (
  741. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  742. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  743. "model.layers.{bid}.attention.w1", # rwkv7
  744. ),
  745. MODEL_TENSOR.TIME_MIX_W2: (
  746. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  747. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  748. "model.layers.{bid}.attention.w2", # rwkv7
  749. ),
  750. MODEL_TENSOR.TIME_MIX_A0: (
  751. "model.layers.{bid}.attention.a0", # rwkv7
  752. ),
  753. MODEL_TENSOR.TIME_MIX_A1: (
  754. "model.layers.{bid}.attention.a1", # rwkv7
  755. ),
  756. MODEL_TENSOR.TIME_MIX_A2: (
  757. "model.layers.{bid}.attention.a2", # rwkv7
  758. ),
  759. MODEL_TENSOR.TIME_MIX_V0: (
  760. "model.layers.{bid}.attention.v0", # rwkv7
  761. ),
  762. MODEL_TENSOR.TIME_MIX_V1: (
  763. "model.layers.{bid}.attention.v1", # rwkv7
  764. ),
  765. MODEL_TENSOR.TIME_MIX_V2: (
  766. "model.layers.{bid}.attention.v2", # rwkv7
  767. ),
  768. MODEL_TENSOR.TIME_MIX_G1: (
  769. "model.layers.{bid}.attention.g1", # rwkv7
  770. ),
  771. MODEL_TENSOR.TIME_MIX_G2: (
  772. "model.layers.{bid}.attention.g2", # rwkv7
  773. ),
  774. MODEL_TENSOR.TIME_MIX_K_K: (
  775. "model.layers.{bid}.attention.k_k", # rwkv7
  776. ),
  777. MODEL_TENSOR.TIME_MIX_K_A: (
  778. "model.layers.{bid}.attention.k_a", # rwkv7
  779. ),
  780. MODEL_TENSOR.TIME_MIX_R_K: (
  781. "model.layers.{bid}.attention.r_k", # rwkv7
  782. ),
  783. MODEL_TENSOR.TIME_MIX_LERP_X: (
  784. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  785. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  786. ),
  787. MODEL_TENSOR.TIME_MIX_LERP_K: (
  788. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  789. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  790. ),
  791. MODEL_TENSOR.TIME_MIX_LERP_V: (
  792. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  793. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  794. ),
  795. MODEL_TENSOR.TIME_MIX_LERP_R: (
  796. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  797. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  798. ),
  799. MODEL_TENSOR.TIME_MIX_LERP_G: (
  800. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  801. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  802. ),
  803. MODEL_TENSOR.TIME_MIX_LERP_W: (
  804. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  805. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  806. ),
  807. MODEL_TENSOR.TIME_MIX_FIRST: (
  808. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  809. ),
  810. MODEL_TENSOR.TIME_MIX_DECAY: (
  811. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  812. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  813. ),
  814. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  815. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  816. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  817. ),
  818. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  819. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  820. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  821. ),
  822. MODEL_TENSOR.TIME_MIX_KEY: (
  823. "rwkv.blocks.{bid}.attention.key", # rwkv6
  824. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  825. "model.layers.{bid}.attention.key", # rwkv7
  826. "model.layers.{bid}.attention.k_proj", # rwkv7
  827. ),
  828. MODEL_TENSOR.TIME_MIX_VALUE: (
  829. "rwkv.blocks.{bid}.attention.value", # rwkv6
  830. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  831. "model.layers.{bid}.attention.value", # rwkv7
  832. "model.layers.{bid}.attention.v_proj", # rwkv7
  833. ),
  834. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  835. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  836. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  837. "model.layers.{bid}.attention.receptance", # rwkv7
  838. "model.layers.{bid}.attention.r_proj", # rwkv7
  839. ),
  840. MODEL_TENSOR.TIME_MIX_GATE: (
  841. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  842. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  843. ),
  844. MODEL_TENSOR.TIME_MIX_LN: (
  845. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  846. "model.layers.{bid}.attention.ln_x" # rwkv7
  847. ),
  848. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  849. "rwkv.blocks.{bid}.attention.output", # rwkv6
  850. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  851. "model.layers.{bid}.attention.output", # rwkv7
  852. "model.layers.{bid}.attention.o_proj", # rwkv7
  853. ),
  854. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  855. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  856. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  857. ),
  858. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  859. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  860. ),
  861. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  862. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  863. "model.layers.{bid}.feed_forward.key", # rwkv7
  864. ),
  865. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  866. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  867. ),
  868. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  869. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  870. "model.layers.{bid}.feed_forward.value", # rwkv7
  871. ),
  872. MODEL_TENSOR.ATTN_Q_A: (
  873. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  874. "layers.{bid}.attention.wq_a", # mistral-large
  875. ),
  876. MODEL_TENSOR.ATTN_Q_B: (
  877. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  878. "layers.{bid}.attention.wq_b", # mistral-large
  879. ),
  880. MODEL_TENSOR.ATTN_KV_A_MQA: (
  881. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  882. "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
  883. ),
  884. MODEL_TENSOR.ATTN_KV_B: (
  885. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  886. ),
  887. MODEL_TENSOR.ATTN_K_B: (
  888. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  889. "layers.{bid}.attention.k_b_proj", # mistral-large
  890. ),
  891. MODEL_TENSOR.ATTN_V_B: (
  892. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  893. "layers.{bid}.attention.v_b_proj", # mistral-large
  894. ),
  895. MODEL_TENSOR.ATTN_Q_A_NORM: (
  896. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  897. "layers.{bid}.attention.q_a_norm", # mistral-large
  898. ),
  899. MODEL_TENSOR.ATTN_KV_A_NORM: (
  900. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  901. "layers.{bid}.attention.kv_a_norm", # mistral-large
  902. ),
  903. MODEL_TENSOR.ATTN_SUB_NORM: (
  904. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  905. ),
  906. MODEL_TENSOR.FFN_SUB_NORM: (
  907. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  908. ),
  909. MODEL_TENSOR.DEC_ATTN_NORM: (
  910. "decoder.block.{bid}.layer.0.layer_norm", # t5
  911. ),
  912. MODEL_TENSOR.DEC_ATTN_Q: (
  913. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  914. ),
  915. MODEL_TENSOR.DEC_ATTN_K: (
  916. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  917. ),
  918. MODEL_TENSOR.DEC_ATTN_V: (
  919. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  920. ),
  921. MODEL_TENSOR.DEC_ATTN_OUT: (
  922. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  923. ),
  924. MODEL_TENSOR.DEC_ATTN_REL_B: (
  925. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  926. ),
  927. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  928. "decoder.block.{bid}.layer.1.layer_norm", # t5
  929. ),
  930. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  931. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  932. ),
  933. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  934. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  935. ),
  936. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  937. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  938. ),
  939. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  940. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  941. ),
  942. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  943. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  944. ),
  945. MODEL_TENSOR.DEC_FFN_NORM: (
  946. "decoder.block.{bid}.layer.2.layer_norm", # t5
  947. ),
  948. MODEL_TENSOR.DEC_FFN_GATE: (
  949. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  950. ),
  951. MODEL_TENSOR.DEC_FFN_UP: (
  952. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  953. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  954. ),
  955. MODEL_TENSOR.DEC_FFN_DOWN: (
  956. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  957. ),
  958. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  959. "decoder.final_layer_norm", # t5
  960. ),
  961. MODEL_TENSOR.ENC_ATTN_NORM: (
  962. "encoder.block.{bid}.layer.0.layer_norm", # t5
  963. ),
  964. MODEL_TENSOR.ENC_ATTN_Q: (
  965. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  966. ),
  967. MODEL_TENSOR.ENC_ATTN_K: (
  968. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  969. ),
  970. MODEL_TENSOR.ENC_ATTN_V: (
  971. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  972. ),
  973. MODEL_TENSOR.ENC_ATTN_OUT: (
  974. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  975. ),
  976. MODEL_TENSOR.ENC_ATTN_REL_B: (
  977. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  978. ),
  979. MODEL_TENSOR.ENC_FFN_NORM: (
  980. "encoder.block.{bid}.layer.1.layer_norm", # t5
  981. ),
  982. MODEL_TENSOR.ENC_FFN_GATE: (
  983. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  984. ),
  985. MODEL_TENSOR.ENC_FFN_UP: (
  986. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  987. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  988. ),
  989. MODEL_TENSOR.ENC_FFN_DOWN: (
  990. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  991. ),
  992. MODEL_TENSOR.VISEXP_UP: (
  993. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  994. ),
  995. MODEL_TENSOR.VISEXP_GATE: (
  996. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  997. ),
  998. MODEL_TENSOR.VISEXP_DOWN: (
  999. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  1000. ),
  1001. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  1002. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  1003. ),
  1004. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  1005. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  1006. ),
  1007. ############################################################################
  1008. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  1009. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  1010. "encoder.final_layer_norm", # t5
  1011. "layer_norm", # neobert
  1012. ),
  1013. MODEL_TENSOR.CLS: (
  1014. "classifier", # jina
  1015. "classifier.dense", # roberta
  1016. "pre_classifier", # distillbert
  1017. "dense", # neobert
  1018. "head.dense", # modern-bert
  1019. ),
  1020. MODEL_TENSOR.CLS_OUT: (
  1021. "classifier.out_proj", # roberta
  1022. ),
  1023. #############################################################################
  1024. MODEL_TENSOR.CONVNEXT_DW: (
  1025. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  1026. ),
  1027. MODEL_TENSOR.CONVNEXT_NORM: (
  1028. "backbone.convnext.{bid}.norm", # wavtokenizer
  1029. ),
  1030. MODEL_TENSOR.CONVNEXT_PW1: (
  1031. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  1032. ),
  1033. MODEL_TENSOR.CONVNEXT_PW2: (
  1034. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  1035. ),
  1036. MODEL_TENSOR.CONVNEXT_GAMMA: (
  1037. "backbone.convnext.{bid}.gamma", # wavtokenizer
  1038. ),
  1039. MODEL_TENSOR.POSNET_CONV1: (
  1040. "backbone.posnet.{bid}.conv1", # wavtokenizer
  1041. ),
  1042. MODEL_TENSOR.POSNET_CONV2: (
  1043. "backbone.posnet.{bid}.conv2", # wavtokenizer
  1044. ),
  1045. MODEL_TENSOR.POSNET_NORM: (
  1046. "backbone.posnet.{bid}.norm", # wavtokenizer
  1047. ),
  1048. MODEL_TENSOR.POSNET_NORM1: (
  1049. "backbone.posnet.{bid}.norm1", # wavtokenizer
  1050. ),
  1051. MODEL_TENSOR.POSNET_NORM2: (
  1052. "backbone.posnet.{bid}.norm2", # wavtokenizer
  1053. ),
  1054. MODEL_TENSOR.POSNET_ATTN_NORM: (
  1055. "backbone.posnet.{bid}.norm", # wavtokenizer
  1056. ),
  1057. MODEL_TENSOR.POSNET_ATTN_Q: (
  1058. "backbone.posnet.{bid}.q", # wavtokenizer
  1059. ),
  1060. MODEL_TENSOR.POSNET_ATTN_K: (
  1061. "backbone.posnet.{bid}.k", # wavtokenizer
  1062. ),
  1063. MODEL_TENSOR.POSNET_ATTN_V: (
  1064. "backbone.posnet.{bid}.v", # wavtokenizer
  1065. ),
  1066. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1067. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1068. ),
  1069. MODEL_TENSOR.SHORTCONV_CONV: (
  1070. "model.layers.{bid}.conv.conv",
  1071. ),
  1072. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1073. "model.layers.{bid}.conv.in_proj",
  1074. ),
  1075. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1076. "model.layers.{bid}.conv.out_proj",
  1077. ),
  1078. #############################################################################
  1079. ## Vision encoder
  1080. MODEL_TENSOR.V_MMPROJ: (
  1081. "multi_modal_projector.linear_{bid}",
  1082. "visual.merger.mlp.{bid}", # qwen2vl
  1083. "merger.mlp.{bid}",
  1084. ),
  1085. MODEL_TENSOR.V_MMPROJ_FC: (
  1086. "model.connector.modality_projection.proj", # SmolVLM
  1087. "model.vision.linear_proj.linear_proj", # cogvlm
  1088. "visual.merger.proj", # glm4v
  1089. ),
  1090. MODEL_TENSOR.V_MMPROJ_MLP: (
  1091. "model.mm_projector.mlp.mlp.{bid}",
  1092. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1093. "mlp1.{bid}", # InternVL
  1094. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1095. ),
  1096. MODEL_TENSOR.V_MMPROJ_PEG: (
  1097. "model.mm_projector.peg.peg.{bid}",
  1098. ),
  1099. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1100. "vision_tower.vision_model.embeddings.class_embedding",
  1101. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1102. "vision_model.class_embedding", # llama 4
  1103. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1104. ),
  1105. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1106. "vision_tower.vision_model.embeddings.patch_embedding",
  1107. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1108. "vpm.embeddings.patch_embedding",
  1109. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1110. "vision_tower.patch_conv", # pixtral-hf
  1111. "vision_encoder.patch_conv", # pixtral
  1112. "vision_model.patch_embedding.linear", # llama 4
  1113. "visual.patch_embed.proj", # qwen2vl
  1114. "vision_tower.patch_embed.proj", # kimi-vl
  1115. "model.vision.patch_embedding.proj", # cogvlm
  1116. "siglip2.vision_model.embeddings.patch_embedding",
  1117. ),
  1118. MODEL_TENSOR.V_ENC_EMBD_NORM: (
  1119. "visual.post_conv_layernorm", # glm4v
  1120. ),
  1121. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1122. "vision_tower.vision_model.embeddings.position_embedding",
  1123. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1124. "vpm.embeddings.position_embedding",
  1125. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1126. "vision_model.positional_embedding_vlm", # llama 4
  1127. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1128. "visual.pos_embed", # qwen3vl
  1129. "model.vision.patch_embedding.position_embedding", # cogvlm
  1130. "visual.embeddings.position_embedding", # glm4v
  1131. ),
  1132. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1133. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1134. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1135. ),
  1136. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1137. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1138. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1139. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1140. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1141. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1142. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1143. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1144. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1145. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1146. "siglip2.vision_model.encoder.layers.{bid}.self_attn.q_proj", # youtuvl
  1147. ),
  1148. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1149. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1150. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1151. ),
  1152. MODEL_TENSOR.V_ENC_ATTN_K: (
  1153. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1154. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1155. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1156. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1157. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1158. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1159. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1160. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1161. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1162. "siglip2.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1163. ),
  1164. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1165. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1166. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1167. ),
  1168. MODEL_TENSOR.V_ENC_ATTN_V: (
  1169. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1170. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1171. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1172. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1173. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1174. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1175. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1176. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1177. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1178. "siglip2.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1179. ),
  1180. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1181. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1182. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1183. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1184. "vpm.encoder.layers.{bid}.layer_norm1",
  1185. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1186. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1187. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1188. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1189. "visual.blocks.{bid}.norm1", # qwen2vl
  1190. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1191. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1192. "siglip2.vision_model.encoder.layers.{bid}.layer_norm1",
  1193. ),
  1194. MODEL_TENSOR.V_ENC_ATTN_O: (
  1195. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1196. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1197. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1198. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1199. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1200. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1201. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1202. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1203. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1204. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1205. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1206. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1207. "siglip2.vision_model.encoder.layers.{bid}.self_attn.out_proj", # youtuvl
  1208. ),
  1209. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1210. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1211. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1212. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1213. "vpm.encoder.layers.{bid}.layer_norm2",
  1214. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1215. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1216. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1217. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1218. "visual.blocks.{bid}.norm2", # qwen2vl
  1219. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1220. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1221. "siglip2.vision_model.encoder.layers.{bid}.layer_norm2",
  1222. ),
  1223. MODEL_TENSOR.V_ENC_FFN_UP: (
  1224. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1225. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1226. "vpm.encoder.layers.{bid}.mlp.fc1",
  1227. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1228. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1229. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1230. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1231. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1232. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1233. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1234. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1235. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1236. "siglip2.vision_model.encoder.layers.{bid}.mlp.fc1",
  1237. ),
  1238. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1239. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1240. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1241. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1242. ),
  1243. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1244. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1245. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1246. "vpm.encoder.layers.{bid}.mlp.fc2",
  1247. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1248. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1249. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1250. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1251. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1252. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1253. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1254. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1255. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1256. "siglip2.vision_model.encoder.layers.{bid}.mlp.fc2",
  1257. ),
  1258. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1259. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1260. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1261. ),
  1262. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1263. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1264. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1265. ),
  1266. MODEL_TENSOR.V_PRE_NORM: (
  1267. "vision_tower.vision_model.pre_layrnorm",
  1268. "vision_tower.ln_pre", # pixtral-hf
  1269. "vision_encoder.ln_pre", # pixtral
  1270. "vision_model.layernorm_pre", # llama4
  1271. ),
  1272. MODEL_TENSOR.V_POST_NORM: (
  1273. "vision_tower.vision_model.post_layernorm",
  1274. "model.vision_model.post_layernorm", # SmolVLM
  1275. "vision_model.layernorm_post", # llama4
  1276. "visual.merger.ln_q", # qwen2vl
  1277. "vision_tower.encoder.final_layernorm", # kimi-vl
  1278. "visual.post_layernorm", # glm4v
  1279. "siglip2.vision_model.post_layernorm",
  1280. ),
  1281. MODEL_TENSOR.V_MM_POST_NORM: (
  1282. "visual.merger.post_projection_norm", # glm4v
  1283. ),
  1284. MODEL_TENSOR.V_MM_INP_PROJ: (
  1285. "multi_modal_projector.mm_input_projection",
  1286. ),
  1287. MODEL_TENSOR.V_MM_INP_NORM: (
  1288. "multi_modal_projector.norm",
  1289. "multi_modal_projector.layer_norm",
  1290. "multi_modal_projector.pre_norm",
  1291. "pre_mm_projector_norm",
  1292. "model.vision.linear_proj.norm1", # cogvlm
  1293. "merger.ln_q",
  1294. ),
  1295. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1296. "multi_modal_projector.mm_soft_emb_norm",
  1297. ),
  1298. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1299. "resampler.pos_embed_k",
  1300. ),
  1301. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1302. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1303. ),
  1304. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1305. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1306. ),
  1307. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1308. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1309. ),
  1310. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1311. "resampler.attn.out_proj",
  1312. ),
  1313. MODEL_TENSOR.V_RESMPL_KV: (
  1314. "resampler.kv_proj",
  1315. ),
  1316. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1317. "resampler.ln_post",
  1318. ),
  1319. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1320. "resampler.ln_kv",
  1321. ),
  1322. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1323. "resampler.ln_q",
  1324. ),
  1325. MODEL_TENSOR.V_RESMPL_PROJ: (
  1326. "resampler.proj",
  1327. ),
  1328. MODEL_TENSOR.V_RESMPL_QUERY: (
  1329. "resampler.query",
  1330. ),
  1331. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1332. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1333. ),
  1334. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1335. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1336. "patch_merger.merging_layer", # mistral
  1337. "visual.downsample", # glm4v
  1338. ),
  1339. MODEL_TENSOR.V_DS_NORM: (
  1340. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1341. ),
  1342. MODEL_TENSOR.V_DS_FC1: (
  1343. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1344. ),
  1345. MODEL_TENSOR.V_DS_FC2: (
  1346. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1347. ),
  1348. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1349. "model.vision.linear_proj.norm1", # cogvlm
  1350. ),
  1351. MODEL_TENSOR.V_MM_UP: (
  1352. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1353. "visual.merger.up_proj", # glm4v
  1354. ),
  1355. MODEL_TENSOR.V_MM_DOWN: (
  1356. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1357. "visual.merger.down_proj", # glm4v
  1358. ),
  1359. MODEL_TENSOR.V_MM_GATE: (
  1360. "model.vision.linear_proj.gate_proj", # cogvlm
  1361. "visual.merger.gate_proj", # glm4v
  1362. ),
  1363. MODEL_TENSOR.V_TOK_BOI: (
  1364. "model.vision.boi", # cogvlm
  1365. ),
  1366. MODEL_TENSOR.V_TOK_EOI: (
  1367. "model.vision.eoi", # cogvlm
  1368. ),
  1369. # audio (mtmd)
  1370. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1371. "audio_tower.embed_positions", # ultravox
  1372. "audio_embedding.embedding", # lfm2
  1373. ),
  1374. MODEL_TENSOR.A_ENC_EMBD_NORM: (
  1375. "audio_embedding.embedding_norm", # lfm2
  1376. ),
  1377. MODEL_TENSOR.A_ENC_EMBD_TO_LOGITS: (
  1378. "audio_embedding.to_logits", # lfm2
  1379. ),
  1380. MODEL_TENSOR.A_ENC_CONV1D: (
  1381. "audio_tower.conv{bid}", # ultravox
  1382. "conformer.pre_encode.conv.{bid}", # lfm2
  1383. "model.audio_tower.subsample_conv_projection.conv_{bid}.conv", # gemma3n
  1384. ),
  1385. MODEL_TENSOR.A_ENC_CONV1D_NORM: (
  1386. "model.audio_tower.subsample_conv_projection.conv_{bid}.norm", # gemma3n
  1387. ),
  1388. MODEL_TENSOR.A_PRE_NORM: (),
  1389. MODEL_TENSOR.A_POST_NORM: (
  1390. "audio_tower.layer_norm", # ultravox
  1391. "audio_tower.ln_post", # qwen2omni
  1392. ),
  1393. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1394. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1395. "conformer.layers.{bid}.self_attn.linear_q", # lfm2
  1396. "conformer.layers.{bid}.attention.attn.q_proj", # gemma3n
  1397. ),
  1398. MODEL_TENSOR.A_ENC_ATTN_K: (
  1399. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1400. "conformer.layers.{bid}.self_attn.linear_k", # lfm2
  1401. "conformer.layers.{bid}.attention.attn.k_proj", # gemma3n
  1402. ),
  1403. MODEL_TENSOR.A_ENC_ATTN_V: (
  1404. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1405. "conformer.layers.{bid}.self_attn.linear_v", # lfm2
  1406. "conformer.layers.{bid}.attention.attn.v_proj", # gemma3n
  1407. ),
  1408. MODEL_TENSOR.A_ENC_PER_DIM_SCALE: (
  1409. "conformer.layers.{bid}.attention.attn.per_dim_scale", # gemma3n
  1410. ),
  1411. MODEL_TENSOR.A_ENC_LAYER_PRE_NORM: (
  1412. "conformer.layers.{bid}.norm", # gemma3n
  1413. ),
  1414. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1415. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1416. "conformer.layers.{bid}.norm_self_att", # lfm2
  1417. "conformer.layers.{bid}.attention.pre_attn_norm", # gemma3n
  1418. ),
  1419. MODEL_TENSOR.A_ENC_OUTPUT: (
  1420. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1421. "conformer.layers.{bid}.self_attn.linear_out", # lfm2
  1422. "conformer.layers.{bid}.attention.post", # gemma3n
  1423. ),
  1424. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1425. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1426. "conformer.layers.{bid}.norm_out", # lfm2
  1427. "conformer.layers.{bid}.attention.post_norm", # gemma3n
  1428. ),
  1429. MODEL_TENSOR.A_ENC_FFN_NORM: (
  1430. "conformer.layers.{bid}.norm_feed_forward1", # lfm2
  1431. "conformer.layers.{bid}.ffw_layer_start.pre_layer_norm", # gemma3n
  1432. ),
  1433. MODEL_TENSOR.A_ENC_FFN_POST_NORM: (
  1434. "conformer.layers.{bid}.ffw_layer_start.post_layer_norm", # gemma3n
  1435. ),
  1436. MODEL_TENSOR.A_ENC_FFN_SCALE: (
  1437. "conformer.layers.{bid}.ffw_layer_start.post_layer_scale", # gemma3n
  1438. ),
  1439. MODEL_TENSOR.A_ENC_FFN_UP: (
  1440. "audio_tower.layers.{bid}.fc1", # ultravox
  1441. "conformer.layers.{bid}.feed_forward1.linear1", # lfm2
  1442. "conformer.layers.{bid}.ffw_layer_start.ffw_layer_1", # gemma3n
  1443. ),
  1444. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1445. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1446. "audio_tower.layers.{bid}.fc2", # ultravox
  1447. "conformer.layers.{bid}.feed_forward1.linear2", # lfm2
  1448. "conformer.layers.{bid}.ffw_layer_start.ffw_layer_2", # gemma3n
  1449. ),
  1450. MODEL_TENSOR.A_ENC_FFN_UP_1: (
  1451. "conformer.layers.{bid}.feed_forward2.linear1", # lfm2
  1452. "conformer.layers.{bid}.ffw_layer_end.ffw_layer_1", # gemma3n
  1453. ),
  1454. MODEL_TENSOR.A_ENC_FFN_DOWN_1: (
  1455. "conformer.layers.{bid}.feed_forward2.linear2", # lfm2
  1456. "conformer.layers.{bid}.ffw_layer_end.ffw_layer_2", # gemma3n
  1457. ),
  1458. MODEL_TENSOR.A_ENC_FFN_NORM_1: (
  1459. "conformer.layers.{bid}.norm_feed_forward2", # lfm2
  1460. "conformer.layers.{bid}.ffw_layer_end.pre_layer_norm", # gemma3n
  1461. ),
  1462. MODEL_TENSOR.A_ENC_FFN_POST_NORM_1: (
  1463. "conformer.layers.{bid}.ffw_layer_end.post_layer_norm", # gemma3n
  1464. ),
  1465. MODEL_TENSOR.A_ENC_FFN_SCALE_1: (
  1466. "conformer.layers.{bid}.ffw_layer_end.post_layer_scale", # gemma3n
  1467. ),
  1468. MODEL_TENSOR.A_ENC_LINEAR_POS: (
  1469. "conformer.layers.{bid}.self_attn.linear_pos", # lfm2
  1470. "conformer.layers.{bid}.attention.attn.relative_position_embedding.pos_proj", # gemma3n
  1471. ),
  1472. MODEL_TENSOR.A_ENC_POS_BIAS_U: (
  1473. "conformer.layers.{bid}.self_attn.pos_bias_u", # lfm2
  1474. ),
  1475. MODEL_TENSOR.A_ENC_POS_BIAS_V: (
  1476. "conformer.layers.{bid}.self_attn.pos_bias_v", # lfm2
  1477. ),
  1478. MODEL_TENSOR.A_ENC_OUT: (
  1479. "conformer.pre_encode.out", # lfm2
  1480. "model.audio_tower.subsample_conv_projection.input_proj_linear", # gemma3n
  1481. ),
  1482. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1483. # this prefix is added in the conversion code in modify_tensors()
  1484. MODEL_TENSOR.A_MMPROJ: (
  1485. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1486. "audio_adapter.model.{bid}" # lfm2
  1487. ),
  1488. MODEL_TENSOR.A_MMPROJ_FC: (
  1489. "audio.multi_modal_projector.linear", # qwen2audio
  1490. "audio_tower.proj", # qwen2omni
  1491. ),
  1492. MODEL_TENSOR.A_MM_NORM_PRE: (
  1493. "audio.multi_modal_projector.ln_pre", # ultravox
  1494. ),
  1495. MODEL_TENSOR.A_MM_NORM_MID: (
  1496. "audio.multi_modal_projector.ln_mid", # ultravox
  1497. ),
  1498. MODEL_TENSOR.A_ENC_CONV_DW: (
  1499. "conformer.layers.{bid}.conv.depthwise_conv", # lfm2
  1500. "conformer.layers.{bid}.lconv1d.depthwise_conv1d", # gemma3n
  1501. ),
  1502. MODEL_TENSOR.A_ENC_CONV_NORM: (
  1503. "conformer.layers.{bid}.conv.batch_norm", # lfm2
  1504. "conformer.layers.{bid}.lconv1d.pre_layer_norm", # gemma3n
  1505. ),
  1506. MODEL_TENSOR.A_ENC_CONV_PW1: (
  1507. "conformer.layers.{bid}.conv.pointwise_conv1", # lfm2
  1508. "conformer.layers.{bid}.lconv1d.linear_start", # gemma3n
  1509. ),
  1510. MODEL_TENSOR.A_ENC_CONV_PW2: (
  1511. "conformer.layers.{bid}.conv.pointwise_conv2", # lfm2
  1512. "conformer.layers.{bid}.lconv1d.linear_end", # gemma3n
  1513. ),
  1514. MODEL_TENSOR.A_ENC_NORM_CONV: (
  1515. "conformer.layers.{bid}.norm_conv", # lfm2
  1516. "conformer.layers.{bid}.lconv1d.conv_norm", # gemma3n
  1517. ),
  1518. MODEL_TENSOR.A_MM_EMBEDDING: (
  1519. "model.embed_audio.embedding", # gemma3n
  1520. ),
  1521. MODEL_TENSOR.A_MM_HARD_EMB_NORM: (
  1522. "model.embed_audio.hard_embedding_norm", # gemma3n
  1523. ),
  1524. MODEL_TENSOR.A_MM_INP_PROJ: (
  1525. "model.embed_audio.embedding_projection", # gemma3n
  1526. ),
  1527. MODEL_TENSOR.A_MM_SOFT_EMB_NORM: (
  1528. "model.embed_audio.soft_embedding_norm", # gemma3n
  1529. ),
  1530. # NextN/MTP tensors for GLM4_MOE
  1531. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1532. "model.layers.{bid}.eh_proj",
  1533. ),
  1534. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1535. "model.layers.{bid}.embed_tokens",
  1536. ),
  1537. MODEL_TENSOR.NEXTN_ENORM: (
  1538. "model.layers.{bid}.enorm",
  1539. ),
  1540. MODEL_TENSOR.NEXTN_HNORM: (
  1541. "model.layers.{bid}.hnorm",
  1542. ),
  1543. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1544. "model.layers.{bid}.shared_head.head",
  1545. ),
  1546. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1547. "model.layers.{bid}.shared_head.norm",
  1548. ),
  1549. }
  1550. # architecture-specific block mappings
  1551. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1552. MODEL_ARCH.ARCTIC: {
  1553. MODEL_TENSOR.FFN_NORM: (
  1554. "model.layers.{bid}.residual_layernorm",
  1555. ),
  1556. MODEL_TENSOR.FFN_NORM_EXP: (
  1557. "model.layers.{bid}.post_attention_layernorm",
  1558. ),
  1559. },
  1560. }
  1561. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1562. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1563. self.mapping = {}
  1564. for tensor, keys in self.mappings_cfg.items():
  1565. if tensor not in MODEL_TENSORS[arch]:
  1566. continue
  1567. tensor_name = TENSOR_NAMES[tensor]
  1568. self.mapping[tensor_name] = (tensor, tensor_name)
  1569. for key in keys:
  1570. self.mapping[key] = (tensor, tensor_name)
  1571. if arch in self.arch_block_mappings_cfg:
  1572. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1573. for bid in range(n_blocks):
  1574. for tensor, keys in self.block_mappings_cfg.items():
  1575. if tensor not in MODEL_TENSORS[arch]:
  1576. continue
  1577. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1578. self.mapping[tensor_name] = (tensor, tensor_name)
  1579. for key in keys:
  1580. key = key.format(bid = bid)
  1581. self.mapping[key] = (tensor, tensor_name)
  1582. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1583. result = self.mapping.get(key)
  1584. if result is not None:
  1585. return result
  1586. for suffix in try_suffixes:
  1587. if key.endswith(suffix):
  1588. result = self.mapping.get(key[:-len(suffix)])
  1589. if result is not None:
  1590. return result[0], result[1] + suffix
  1591. return None
  1592. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1593. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1594. if result is None:
  1595. return None
  1596. return result[1]
  1597. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1598. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1599. if result is None:
  1600. return None
  1601. return result[0]
  1602. def __getitem__(self, key: str) -> str:
  1603. try:
  1604. return self.mapping[key][1]
  1605. except KeyError:
  1606. raise KeyError(key)
  1607. def __contains__(self, key: str) -> bool:
  1608. return key in self.mapping
  1609. def __repr__(self) -> str:
  1610. return repr(self.mapping)
  1611. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1612. return TensorNameMap(arch, n_blocks)