| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730 |
- #include "mtmd-audio.h"
- #define _USE_MATH_DEFINES // for M_PI
- #include <cmath>
- #include <cstdint>
- #include <cstring>
- #include <thread>
- #include <vector>
- #include <fstream>
- #include <algorithm>
- // some of the code here is copied from whisper.cpp
- constexpr bool DEBUG = false;
- void mtmd_audio_cache::fill_sin_cos_table(int n) {
- sin_vals.resize(n);
- cos_vals.resize(n);
- for (int i = 0; i < n; i++) {
- double theta = (2 * M_PI * i) / n;
- sin_vals[i] = sinf(theta);
- cos_vals[i] = cosf(theta);
- }
- }
- void mtmd_audio_cache::fill_hann_window(int length, bool periodic) {
- hann_window.resize(length);
- int offset = -1;
- if (periodic) {
- offset = 0;
- }
- for (int i = 0; i < length; i++) {
- hann_window[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
- }
- }
- void mtmd_audio_cache::fill_mel_filterbank_matrix(int n_mel,
- int n_fft,
- int sample_rate,
- float fmin,
- float fmax,
- bool slaney_area_norm,
- float scale) {
- GGML_ASSERT(n_mel > 0 && n_fft > 1);
- if (fmax <= 0.0f) {
- fmax = 0.5f * sample_rate;
- }
- // Slaney scale (matches librosa default)
- const double min_log_hz = 1000.0;
- const double lin_slope = 3 / 200.;
- const double min_log_mel = min_log_hz * lin_slope;
- const double log_step = log(6.4) / 27.0;
- auto hz_to_mel = [min_log_hz, lin_slope, log_step, min_log_mel](const double f_hz) -> double {
- return (f_hz < min_log_hz) ? f_hz * lin_slope : min_log_mel + log(f_hz / min_log_hz) / log_step;
- };
- auto mel_to_hz = [min_log_hz, lin_slope, log_step, min_log_mel](const double m) -> double {
- return (m < min_log_mel) ? m / lin_slope : min_log_hz * exp((m - min_log_mel) * log_step);
- };
- // infer N_fft from n_fft_bins
- const double bin_hz_step = double(sample_rate) / double(n_fft);
- // mel grid: n_mel + 2 edges
- const double m_lo = hz_to_mel(fmin);
- const double m_hi = hz_to_mel(fmax);
- std::vector<double> mel_pts(n_mel + 2);
- for (int i = 0; i < n_mel + 2; ++i) {
- mel_pts[i] = m_lo + (m_hi - m_lo) * (double(i) / (n_mel + 1));
- }
- // convert to Hz
- std::vector<double> hz_pts(n_mel + 2);
- for (int i = 0; i < n_mel + 2; ++i) {
- hz_pts[i] = mel_to_hz(mel_pts[i]);
- }
- const int n_fft_bins = n_fft / 2 + 1;
- // filterbank
- std::vector<float> out(n_mel * n_fft_bins, 0);
- for (int m = 0; m < n_mel; ++m) {
- const double f_left = hz_pts[m];
- const double f_center = hz_pts[m + 1];
- const double f_right = hz_pts[m + 2];
- const double denom_l = std::max(1e-30, f_center - f_left);
- const double denom_r = std::max(1e-30, f_right - f_center);
- const double enorm = slaney_area_norm ? (2.0 / std::max(1e-30, f_right - f_left)) : 1.0;
- for (int k = 0; k < n_fft_bins; ++k) {
- const double f = k * bin_hz_step;
- double w = 0.0;
- if (f >= f_left && f <= f_center) {
- w = (f - f_left) / denom_l;
- } else if (f > f_center && f <= f_right) {
- w = (f_right - f) / denom_r;
- }
- out[size_t(m) * size_t(n_fft_bins) + size_t(k)] = float(w * enorm * scale);
- }
- }
- filters.n_mel = n_mel;
- filters.n_fft = n_fft;
- filters.data = std::move(out);
- if (DEBUG) { // debug
- for (size_t i = 0; i < filters.data.size(); ++i) {
- if (filters.data[i] != 0.0f) {
- printf("filters[%zu] = %f\n", i, filters.data[i] * 1000.0f);
- }
- }
- }
- }
- // Unified DFT implementation for both forward and inverse transforms
- // Template parameters:
- // Inverse: false = DFT with exp(-2πi·k·n/N), no scaling
- // true = IDFT with exp(+2πi·k·n/N), scales by 1/N
- // RealInput: true = input is real-valued (stride 1), avoids imaginary computations
- // false = input is complex-valued (interleaved real/imag, stride 2)
- template <bool Inverse, bool RealInput>
- static void dft_impl(const mtmd_audio_cache & cache, const float * in, int N, float * out) {
- const int n_sin_cos_vals = cache.sin_vals.size();
- const int sin_cos_step = n_sin_cos_vals / N;
- constexpr float sign = Inverse ? 1.0f : -1.0f;
- const float scale = Inverse ? (1.0f / N) : 1.0f;
- for (int k = 0; k < N; k++) {
- float re = 0;
- float im = 0;
- for (int n = 0; n < N; n++) {
- int idx = (k * n * sin_cos_step) % n_sin_cos_vals;
- float cos_val = cache.cos_vals[idx];
- float sin_val = cache.sin_vals[idx];
- if constexpr (RealInput) {
- // Real input: in_im = 0, simplifies to:
- // re += in_re * cos_val
- // im += sign * in_re * sin_val
- float in_re = in[n];
- re += in_re * cos_val;
- im += sign * in_re * sin_val;
- } else {
- float in_re = in[n * 2 + 0];
- float in_im = in[n * 2 + 1];
- // (a + bi) * (cos + sign*i*sin) = (a*cos - sign*b*sin) + (sign*a*sin + b*cos)i
- re += in_re * cos_val - sign * in_im * sin_val;
- im += sign * in_re * sin_val + in_im * cos_val;
- }
- }
- out[k * 2 + 0] = re * scale;
- out[k * 2 + 1] = im * scale;
- }
- }
- // Cooley-Tukey FFT/IFFT unified implementation
- // Template parameters:
- // Inverse: false = FFT with exp(-2πi·k/N), no scaling
- // true = IFFT with exp(+2πi·k/N), scales by 0.5 at each level
- // RealInput: true = input is real-valued (stride 1)
- // false = input is complex-valued (interleaved real/imag, stride 2)
- template <bool Inverse, bool RealInput>
- static void fft_impl(const mtmd_audio_cache & cache, float * in, int N, float * out) {
- const int n_sin_cos_vals = cache.sin_vals.size();
- if (N == 1) {
- out[0] = in[0];
- if constexpr (RealInput) {
- out[1] = 0.0f;
- } else {
- out[1] = in[1];
- }
- return;
- }
- const int half_N = N / 2;
- if (N - half_N * 2 == 1) {
- // Odd N: fall back to DFT
- dft_impl<Inverse, RealInput>(cache, in, N, out);
- return;
- }
- // Split into even and odd
- if constexpr (RealInput) {
- // Real input: stride is 1, copy only real values
- float * even = in + N;
- for (int i = 0; i < half_N; ++i) {
- even[i] = in[2 * i];
- }
- float * even_fft = out + 2 * N;
- fft_impl<Inverse, true>(cache, even, half_N, even_fft);
- float * odd = even;
- for (int i = 0; i < half_N; ++i) {
- odd[i] = in[2 * i + 1];
- }
- float * odd_fft = even_fft + N;
- fft_impl<Inverse, true>(cache, odd, half_N, odd_fft);
- } else {
- // Complex input: stride is 2, copy complex pairs
- float * even = in + N * 2;
- for (int i = 0; i < half_N; ++i) {
- even[i * 2 + 0] = in[2 * i * 2 + 0];
- even[i * 2 + 1] = in[2 * i * 2 + 1];
- }
- float * even_fft = out + 2 * N;
- fft_impl<Inverse, false>(cache, even, half_N, even_fft);
- float * odd = even;
- for (int i = 0; i < half_N; ++i) {
- odd[i * 2 + 0] = in[(2 * i + 1) * 2 + 0];
- odd[i * 2 + 1] = in[(2 * i + 1) * 2 + 1];
- }
- float * odd_fft = even_fft + N;
- fft_impl<Inverse, false>(cache, odd, half_N, odd_fft);
- }
- float * even_fft = out + 2 * N;
- float * odd_fft = even_fft + N;
- const int sin_cos_step = n_sin_cos_vals / N;
- constexpr float sign = Inverse ? 1.0f : -1.0f;
- constexpr float scale = Inverse ? 0.5f : 1.0f;
- for (int k = 0; k < half_N; k++) {
- int idx = k * sin_cos_step; // t = 2*M_PI*k/N
- float re = cache.cos_vals[idx];
- float im = sign * cache.sin_vals[idx];
- float re_odd = odd_fft[2 * k + 0];
- float im_odd = odd_fft[2 * k + 1];
- out[2 * k + 0] = scale * (even_fft[2 * k + 0] + re * re_odd - im * im_odd);
- out[2 * k + 1] = scale * (even_fft[2 * k + 1] + re * im_odd + im * re_odd);
- out[2 * (k + half_N) + 0] = scale * (even_fft[2 * k + 0] - re * re_odd + im * im_odd);
- out[2 * (k + half_N) + 1] = scale * (even_fft[2 * k + 1] - re * im_odd - im * re_odd);
- }
- }
- // Forward FFT for real input (used by mel spectrogram)
- static void fft(const mtmd_audio_cache & cache, float * in, int N, float * out) {
- fft_impl<false, true>(cache, in, N, out);
- }
- // Inverse FFT for complex input
- static void ifft(const mtmd_audio_cache & cache, float * in, int N, float * out) {
- fft_impl<true, false>(cache, in, N, out);
- }
- struct filter_params {
- int32_t n_mel;
- int32_t n_fft_bins;
- int32_t hann_window_size;
- int32_t hop_length;
- int32_t sample_rate;
- bool center_padding = false;
- float preemph = 0.f;
- bool use_natural_log = false;
- bool norm_per_feature = false;
- };
- static void log_mel_spectrogram_worker_thread(int ith,
- const float * hann,
- const std::vector<float> & samples,
- int n_samples,
- int frame_size,
- int frame_step,
- int n_threads,
- const filter_params & params,
- const mtmd_audio_cache & cache,
- mtmd_audio_mel & out) {
- std::vector<float> fft_in(frame_size * 2, 0.0);
- std::vector<float> fft_out(frame_size * 2 * 2 * 2);
- int n_fft_bins = params.n_fft_bins;
- int i = ith;
- const auto & filters = cache.filters;
- // make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
- GGML_ASSERT(n_fft_bins == 1 + (frame_size / 2));
- GGML_ASSERT(cache.sin_vals.size() == cache.cos_vals.size());
- // calculate FFT only when fft_in are not all zero
- for (; i < std::min(n_samples / frame_step + 1, out.n_len); i += n_threads) {
- const int offset = i * frame_step;
- // apply Hann window (~10% faster)
- for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
- fft_in[j] = hann[j] * samples[offset + j];
- }
- // fill the rest with zeros
- if (n_samples - offset < frame_size) {
- std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
- }
- // FFT
- fft(cache, fft_in.data(), frame_size, fft_out.data());
- // Calculate modulus^2 of complex numbers
- // Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
- for (int j = 0; j < n_fft_bins; j++) {
- fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
- }
- // mel spectrogram
- for (int j = 0; j < out.n_mel; j++) {
- double sum = 0.0;
- // unroll loop (suggested by GH user @lunixbochs)
- int k = 0;
- for (k = 0; k < n_fft_bins - 3; k += 4) {
- size_t idx = size_t(j) * size_t(n_fft_bins) + size_t(k);
- sum +=
- fft_out[k + 0] * filters.data[idx + 0] +
- fft_out[k + 1] * filters.data[idx + 1] +
- fft_out[k + 2] * filters.data[idx + 2] +
- fft_out[k + 3] * filters.data[idx + 3];
- }
- // handle n_fft remainder
- for (; k < n_fft_bins; k++) {
- sum += fft_out[k] * filters.data[j * n_fft_bins + k];
- }
- sum = params.use_natural_log
- ? log(sum + 5.960464477539063e-08)
- : log10(std::max(sum, 1e-10));
- out.data[j * out.n_len + i] = sum;
- }
- }
- // Otherwise fft_out are all zero
- double sum = params.use_natural_log ? log(1e-10) : log10(1e-10);
- for (; i < out.n_len; i += n_threads) {
- for (int j = 0; j < out.n_mel; j++) {
- out.data[j * out.n_len + i] = sum;
- }
- }
- }
- // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
- static bool log_mel_spectrogram(
- const float * samples,
- const int n_samples_in,
- const int n_threads,
- const filter_params & params,
- const mtmd_audio_cache & cache,
- mtmd_audio_mel & out) {
- //const int64_t t_start_us = ggml_time_us();
- out.n_len_org = n_samples_in;
- int n_samples = n_samples_in;
- // Hann window
- const float * hann = cache.hann_window.data();
- const int frame_size = (params.n_fft_bins - 1) * 2;
- const int frame_step = params.hop_length;
- // Padding
- std::vector<float> samples_padded;
- if (params.center_padding) {
- const auto pad_amount = frame_size / 2;
- samples_padded = std::vector<float>(n_samples + 2 * pad_amount, 0);
- std::copy(samples, samples + n_samples, samples_padded.data() + pad_amount);
- samples = samples_padded.data();
- n_samples = samples_padded.size();
- } else {
- // existing padding logic
- int64_t stage_1_pad = params.sample_rate * 30;
- int64_t stage_2_pad = frame_size / 2;
- samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
- std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
- // pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
- std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
- // reflective pad 200 samples at the beginning of audio
- if (n_samples < stage_2_pad + 1) {
- // TODO: Handle short audio differently or return error
- return false;
- }
- std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
- }
- // preemphasis
- if (params.preemph) {
- const int pad_amount = frame_size / 2;
- const float preemph = 0.97f;
- float prev = samples_padded[pad_amount];
- for (int i = pad_amount + 1; i + pad_amount < n_samples; ++i) {
- float cur = samples_padded[i];
- samples_padded[i] = cur - preemph * prev;
- prev = cur;
- }
- }
- // pad hann window if it's smaller than frame_size
- // TODO: probably unnecessary here? (or better doing it in g_cache?)
- std::vector<float> hann_window_padded;
- if (params.hann_window_size < frame_size) {
- hann_window_padded.resize(frame_size);
- const int padding = (frame_size - params.hann_window_size) / 2;
- std::copy(hann, hann + params.hann_window_size, &hann_window_padded[padding]);
- hann = hann_window_padded.data();
- }
- out.n_mel = params.n_mel;
- out.n_len = (n_samples - frame_size) / frame_step + 1;
- // TODO: handle these checks better
- if (out.n_mel > 0 && (unsigned long)out.n_len > SIZE_MAX / out.n_mel) {
- LOG_ERR("%s: size overflow\n", __func__);
- return false;
- }
- if (n_samples < frame_size) {
- LOG_ERR("%s: not enough samples after padding\n", __func__);
- return false;
- }
- out.data.resize(out.n_mel * out.n_len);
- {
- std::vector<std::thread> workers(n_threads - 1);
- for (int iw = 0; iw < n_threads - 1; ++iw) {
- workers[iw] =
- std::thread(log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded), n_samples,
- frame_size, frame_step, n_threads, std::cref(params), std::cref(cache), std::ref(out));
- }
- // main thread
- log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples, frame_size, frame_step, n_threads, params,
- cache, out);
- for (int iw = 0; iw < n_threads - 1; ++iw) {
- workers[iw].join();
- }
- }
- const int effective_n_len = n_samples_in / frame_step;
- if (params.norm_per_feature) {
- for (int i = 0; i < out.n_mel; i++) {
- double mean = 0;
- for (int j = 0; j < effective_n_len; ++j) {
- mean += out.data[i * out.n_len + j];
- }
- mean /= effective_n_len;
- double var = 0.0;
- for (int j = 0; j < effective_n_len; ++j) {
- const double value = out.data[i * out.n_len + j] - mean;
- var += value * value;
- }
- var /= effective_n_len - 1; // unbiased
- const double mstd = std::sqrt(var + 1e-5);
- for (int j = 0; j < effective_n_len; ++j) {
- auto &value = out.data[i * out.n_len + j];
- value = (value - mean) / mstd;
- }
- // pad the rest with zeros
- for (int j = effective_n_len; j < out.n_len; ++j) {
- out.data[i * out.n_len + j] = 0.0;
- }
- }
- } else {
- // clamping and normalization
- double mmax = -1e20;
- for (int i = 0; i < out.n_mel*out.n_len; i++) {
- if (out.data[i] > mmax) {
- mmax = out.data[i];
- }
- }
- mmax -= 8.0;
- for (int i = 0; i < out.n_mel*out.n_len; i++) {
- if (out.data[i] < mmax) {
- out.data[i] = mmax;
- }
- out.data[i] = (out.data[i] + 4.0)/4.0;
- }
- }
- // Dump log_mel_spectrogram
- if (DEBUG) {
- std::ofstream outFile("log_mel_spectrogram.json");
- outFile << "[";
- for (uint64_t i = 0; i < out.data.size() - 1; i++) {
- outFile << out.data[i] << ", ";
- }
- outFile << out.data[out.data.size() - 1] << "]";
- outFile.close();
- }
- return true;
- }
- //
- // mtmd_audio_preprocessor_whisper
- //
- void mtmd_audio_preprocessor_whisper::initialize() {
- cache.fill_sin_cos_table(hparams.audio_n_fft);
- cache.fill_hann_window(hparams.audio_window_len, true);
- cache.fill_mel_filterbank_matrix(hparams.n_mel_bins, hparams.audio_n_fft, hparams.audio_sample_rate);
- }
- bool mtmd_audio_preprocessor_whisper::preprocess(const float * samples,
- size_t n_samples,
- std::vector<mtmd_audio_mel> & output) {
- if (n_samples == 0) {
- // empty audio
- return false;
- }
- std::vector<float> smpl;
- // if input is too short, pad with zeros
- // this is to avoid potential issues with stage1/2 padding in log_mel_spectrogram
- // TODO: maybe handle this better
- size_t min_samples = (size_t) hparams.audio_sample_rate * (hparams.audio_chunk_len + 1); // +1 second margin
- if (n_samples < min_samples) {
- smpl.resize(min_samples, 0.0f);
- std::memcpy(smpl.data(), samples, n_samples * sizeof(float));
- samples = smpl.data();
- n_samples = smpl.size();
- }
- filter_params params;
- params.n_mel = hparams.n_mel_bins;
- params.n_fft_bins = 1 + (hparams.audio_n_fft / 2);
- params.hann_window_size = hparams.audio_window_len;
- params.hop_length = hparams.audio_hop_len;
- params.sample_rate = hparams.audio_sample_rate;
- params.center_padding = false;
- params.preemph = 0.0f; // disabled
- params.use_natural_log = false;
- params.norm_per_feature = false;
- // make sure the cache is initialized
- GGML_ASSERT(!cache.sin_vals.empty());
- GGML_ASSERT(!cache.cos_vals.empty());
- GGML_ASSERT(!cache.filters.data.empty());
- mtmd_audio_mel out_full;
- bool ok = log_mel_spectrogram(samples, n_samples,
- 4, // n_threads
- params, cache, out_full);
- if (!ok) {
- return false;
- }
- // because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
- // we always expect the mel to have 3000 silent frames at the end
- if (DEBUG) {
- printf("output: n_mel = %d, n_len = %d\n", out_full.n_mel, out_full.n_len);
- }
- const size_t frames_per_chunk = 3000;
- GGML_ASSERT((size_t) out_full.n_len > frames_per_chunk);
- for (size_t off = 0; off < (size_t) out_full.n_len; off += frames_per_chunk) {
- int n_len = std::min(frames_per_chunk, (size_t) out_full.n_len - off);
- if ((size_t) n_len < frames_per_chunk) {
- break; // last uncomplete chunk will always be a padded chunk, safe to ignore
- }
- mtmd_audio_mel out_chunk;
- out_chunk.n_len = n_len;
- out_chunk.n_mel = out_full.n_mel;
- out_chunk.n_len_org = out_full.n_mel; // unused
- out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);
- for (int i = 0; i < out_full.n_mel; i++) {
- auto src = out_full.data.begin() + i * out_full.n_len + off;
- out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
- }
- output.push_back(std::move(out_chunk));
- }
- return true;
- }
- //
- // mtmd_audio_preprocessor_conformer
- //
- void mtmd_audio_preprocessor_conformer::initialize() {
- cache.fill_sin_cos_table(hparams.audio_n_fft);
- cache.fill_hann_window(hparams.audio_window_len, true);
- cache.fill_mel_filterbank_matrix(hparams.n_mel_bins, hparams.audio_n_fft, hparams.audio_sample_rate);
- }
- bool mtmd_audio_preprocessor_conformer::preprocess(const float * samples,
- size_t n_samples,
- std::vector<mtmd_audio_mel> & output) {
- // empty audio
- if (n_samples == 0) {
- return false;
- }
- filter_params params;
- params.n_mel = hparams.n_mel_bins;
- params.n_fft_bins = 1 + (hparams.audio_n_fft / 2);
- params.hann_window_size = hparams.audio_window_len;
- params.hop_length = hparams.audio_hop_len;
- params.sample_rate = hparams.audio_sample_rate;
- params.center_padding = true;
- params.preemph = 0.97f;
- params.use_natural_log = true;
- params.norm_per_feature = true;
- // make sure the cache is initialized
- GGML_ASSERT(!cache.sin_vals.empty());
- GGML_ASSERT(!cache.cos_vals.empty());
- GGML_ASSERT(!cache.filters.data.empty());
- mtmd_audio_mel out_full;
- bool ok = log_mel_spectrogram(samples, n_samples,
- 4, // n_threads
- params, cache, out_full);
- if (!ok) {
- return false;
- }
- output.push_back(std::move(out_full));
- return true;
- }
- //
- // mtmd_audio_streaming_istft implementation
- //
- mtmd_audio_streaming_istft::mtmd_audio_streaming_istft(int n_fft, int hop_length) :
- n_fft(n_fft),
- hop_length(hop_length),
- n_fft_bins(n_fft / 2 + 1),
- overlap_buffer(n_fft, 0.0f),
- window_sum_buffer(n_fft, 0.0f),
- padding_to_remove((n_fft - hop_length) / 2),
- ifft_in(n_fft * 2 * 4, 0.0f), // extra space for recursive IFFT
- ifft_out(n_fft * 2 * 4, 0.0f) {
- cache.fill_sin_cos_table(n_fft);
- cache.fill_hann_window(n_fft, true);
- }
- void mtmd_audio_streaming_istft::reset() {
- std::fill(overlap_buffer.begin(), overlap_buffer.end(), 0.0f);
- std::fill(window_sum_buffer.begin(), window_sum_buffer.end(), 0.0f);
- padding_to_remove = (n_fft - hop_length) / 2;
- }
- std::vector<float> mtmd_audio_streaming_istft::process_frame(const float * frame_spectrum) {
- std::vector<float> output(hop_length);
- // copy frequencies
- for (int j = 0; j < n_fft_bins; j++) {
- ifft_in[j * 2 + 0] = frame_spectrum[j * 2 + 0];
- ifft_in[j * 2 + 1] = frame_spectrum[j * 2 + 1];
- }
- // mirror negative frequencies
- for (int j = 1; j < n_fft_bins - 1; j++) {
- int mirror_idx = n_fft - j;
- ifft_in[mirror_idx * 2 + 0] = ifft_in[j * 2 + 0];
- ifft_in[mirror_idx * 2 + 1] = -ifft_in[j * 2 + 1]; // conjugate
- }
- ifft(cache, ifft_in.data(), n_fft, ifft_out.data());
- // update window sum and overlap buffer
- for (int j = 0; j < n_fft; j++) {
- window_sum_buffer[j] += cache.hann_window[j] * cache.hann_window[j];
- overlap_buffer[j] += ifft_out[j * 2] * cache.hann_window[j];
- }
- // extract hop_length samples with normalization
- for (int i = 0; i < hop_length; i++) {
- if (window_sum_buffer[i] > 1e-8f) {
- output[i] = overlap_buffer[i] / window_sum_buffer[i];
- } else {
- output[i] = overlap_buffer[i];
- }
- }
- // shift buffers left by hop_length
- std::copy(overlap_buffer.begin() + hop_length, overlap_buffer.end(), overlap_buffer.begin());
- std::fill(overlap_buffer.end() - hop_length, overlap_buffer.end(), 0.0f);
- std::copy(window_sum_buffer.begin() + hop_length, window_sum_buffer.end(), window_sum_buffer.begin());
- std::fill(window_sum_buffer.end() - hop_length, window_sum_buffer.end(), 0.0f);
- // Remove padding if needed
- int to_remove = std::min(padding_to_remove, (int) output.size());
- padding_to_remove -= to_remove;
- output.erase(output.begin(), output.begin() + to_remove);
- return output;
- }
- std::vector<float> mtmd_audio_streaming_istft::flush() {
- std::vector<float> output;
- // Extract remaining samples from overlap buffer
- // Continue until we've extracted all meaningful samples
- int remaining = n_fft - hop_length;
- while (remaining > 0) {
- int chunk_size = std::min(remaining, hop_length);
- for (int i = 0; i < chunk_size; i++) {
- float sample;
- if (window_sum_buffer[i] > 1e-8f) {
- sample = overlap_buffer[i] / window_sum_buffer[i];
- } else {
- sample = overlap_buffer[i];
- }
- output.push_back(sample);
- }
- // Shift buffers
- std::copy(overlap_buffer.begin() + chunk_size, overlap_buffer.end(), overlap_buffer.begin());
- std::fill(overlap_buffer.end() - chunk_size, overlap_buffer.end(), 0.0f);
- std::copy(window_sum_buffer.begin() + chunk_size, window_sum_buffer.end(), window_sum_buffer.begin());
- std::fill(window_sum_buffer.end() - chunk_size, window_sum_buffer.end(), 0.0f);
- remaining -= chunk_size;
- }
- return output;
- }
|