llama.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include <stddef.h>
  4. #include <stdint.h>
  5. #include <stdbool.h>
  6. #ifdef LLAMA_SHARED
  7. # if defined(_WIN32) && !defined(__MINGW32__)
  8. # ifdef LLAMA_BUILD
  9. # define LLAMA_API __declspec(dllexport)
  10. # else
  11. # define LLAMA_API __declspec(dllimport)
  12. # endif
  13. # else
  14. # define LLAMA_API __attribute__ ((visibility ("default")))
  15. # endif
  16. #else
  17. # define LLAMA_API
  18. #endif
  19. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  20. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  21. #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
  22. #define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
  23. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  24. #define LLAMA_FILE_VERSION 3
  25. #define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
  26. #define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
  27. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  28. #define LLAMA_SESSION_VERSION 1
  29. #ifdef __cplusplus
  30. extern "C" {
  31. #endif
  32. //
  33. // C interface
  34. //
  35. // TODO: show sample usage
  36. //
  37. struct llama_context;
  38. typedef int llama_token;
  39. typedef struct llama_token_data {
  40. llama_token id; // token id
  41. float logit; // log-odds of the token
  42. float p; // probability of the token
  43. } llama_token_data;
  44. typedef struct llama_token_data_array {
  45. llama_token_data * data;
  46. size_t size;
  47. bool sorted;
  48. } llama_token_data_array;
  49. typedef void (*llama_progress_callback)(float progress, void *ctx);
  50. struct llama_context_params {
  51. int n_ctx; // text context
  52. int n_gpu_layers; // number of layers to store in VRAM
  53. int seed; // RNG seed, -1 for random
  54. bool f16_kv; // use fp16 for KV cache
  55. bool logits_all; // the llama_eval() call computes all logits, not just the last one
  56. bool vocab_only; // only load the vocabulary, no weights
  57. bool use_mmap; // use mmap if possible
  58. bool use_mlock; // force system to keep model in RAM
  59. bool embedding; // embedding mode only
  60. // called with a progress value between 0 and 1, pass NULL to disable
  61. llama_progress_callback progress_callback;
  62. // context pointer passed to the progress callback
  63. void * progress_callback_user_data;
  64. };
  65. // model file types
  66. enum llama_ftype {
  67. LLAMA_FTYPE_ALL_F32 = 0,
  68. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  69. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  70. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  71. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  72. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  73. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  74. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  77. };
  78. LLAMA_API struct llama_context_params llama_context_default_params();
  79. LLAMA_API bool llama_mmap_supported();
  80. LLAMA_API bool llama_mlock_supported();
  81. // TODO: not great API - very likely to change
  82. // Initialize the llama + ggml backend
  83. // Call once at the start of the program
  84. LLAMA_API void llama_init_backend();
  85. LLAMA_API int64_t llama_time_us();
  86. // Various functions for loading a ggml llama model.
  87. // Allocate (almost) all memory needed for the model.
  88. // Return NULL on failure
  89. LLAMA_API struct llama_context * llama_init_from_file(
  90. const char * path_model,
  91. struct llama_context_params params);
  92. // Frees all allocated memory
  93. LLAMA_API void llama_free(struct llama_context * ctx);
  94. // TODO: not great API - very likely to change
  95. // Returns 0 on success
  96. // nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
  97. LLAMA_API int llama_model_quantize(
  98. const char * fname_inp,
  99. const char * fname_out,
  100. enum llama_ftype ftype,
  101. int nthread);
  102. // Apply a LoRA adapter to a loaded model
  103. // path_base_model is the path to a higher quality model to use as a base for
  104. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  105. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  106. // will be applied on top of the previous one
  107. // Returns 0 on success
  108. LLAMA_API int llama_apply_lora_from_file(
  109. struct llama_context * ctx,
  110. const char * path_lora,
  111. const char * path_base_model,
  112. int n_threads);
  113. // Returns the number of tokens in the KV cache
  114. LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
  115. // Sets the current rng seed.
  116. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
  117. // Returns the maximum size in bytes of the state (rng, logits, embedding
  118. // and kv_cache) - will often be smaller after compacting tokens
  119. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  120. // Copies the state to the specified destination address.
  121. // Destination needs to have allocated enough memory.
  122. // Returns the number of bytes copied
  123. LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
  124. // Set the state reading from the specified address
  125. // Returns the number of bytes read
  126. LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
  127. // Save/load session file
  128. LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
  129. LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
  130. // Run the llama inference to obtain the logits and probabilities for the next token.
  131. // tokens + n_tokens is the provided batch of new tokens to process
  132. // n_past is the number of tokens to use from previous eval calls
  133. // Returns 0 on success
  134. LLAMA_API int llama_eval(
  135. struct llama_context * ctx,
  136. const llama_token * tokens,
  137. int n_tokens,
  138. int n_past,
  139. int n_threads);
  140. // Convert the provided text into tokens.
  141. // The tokens pointer must be large enough to hold the resulting tokens.
  142. // Returns the number of tokens on success, no more than n_max_tokens
  143. // Returns a negative number on failure - the number of tokens that would have been returned
  144. // TODO: not sure if correct
  145. LLAMA_API int llama_tokenize(
  146. struct llama_context * ctx,
  147. const char * text,
  148. llama_token * tokens,
  149. int n_max_tokens,
  150. bool add_bos);
  151. LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
  152. LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
  153. LLAMA_API int llama_n_embd (const struct llama_context * ctx);
  154. // Token logits obtained from the last call to llama_eval()
  155. // The logits for the last token are stored in the last row
  156. // Can be mutated in order to change the probabilities of the next token
  157. // Rows: n_tokens
  158. // Cols: n_vocab
  159. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  160. // Get the embeddings for the input
  161. // shape: [n_embd] (1-dimensional)
  162. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  163. // Token Id -> String. Uses the vocabulary in the provided context
  164. LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
  165. // Special tokens
  166. LLAMA_API llama_token llama_token_bos();
  167. LLAMA_API llama_token llama_token_eos();
  168. LLAMA_API llama_token llama_token_nl();
  169. // Sampling functions
  170. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  171. LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
  172. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  173. LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
  174. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  175. LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
  176. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  177. LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
  178. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  179. LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  180. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  181. LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
  182. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  183. LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
  184. LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
  185. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  186. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  187. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  188. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  189. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  190. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  191. LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
  192. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  193. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  194. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  195. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  196. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  197. LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
  198. /// @details Selects the token with the highest probability.
  199. LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
  200. /// @details Randomly selects a token from the candidates based on their probabilities.
  201. LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
  202. // Performance information
  203. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  204. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  205. // Print system information
  206. LLAMA_API const char * llama_print_system_info(void);
  207. #ifdef __cplusplus
  208. }
  209. #endif
  210. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  211. #ifdef LLAMA_API_INTERNAL
  212. #include <vector>
  213. #include <string>
  214. struct ggml_tensor;
  215. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
  216. #endif
  217. #endif // LLAMA_H