convert_hf_to_gguf.py 199 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  81. if self.ftype == gguf.LlamaFileType.GUESSED:
  82. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  83. _, first_tensor = next(self.get_tensors())
  84. if first_tensor.dtype == torch.float16:
  85. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  86. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  87. else:
  88. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  89. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  90. # Configure GGUF Writer
  91. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  92. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  93. @classmethod
  94. def __init_subclass__(cls):
  95. # can't use an abstract property, because overriding it without type errors
  96. # would require using decorated functions instead of simply defining the property
  97. if "model_arch" not in cls.__dict__:
  98. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  99. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  100. key = next((k for k in keys if k in self.hparams), None)
  101. if key is not None:
  102. return self.hparams[key]
  103. if optional:
  104. return None
  105. raise KeyError(f"could not find any of: {keys}")
  106. def set_vocab(self):
  107. self._set_vocab_gpt2()
  108. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  109. tensor_names_from_parts: set[str] = set()
  110. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  111. index_name += ".index.json"
  112. index_file = self.dir_model / index_name
  113. if index_file.is_file():
  114. self.tensor_names = set()
  115. logger.info(f"gguf: loading model weight map from '{index_name}'")
  116. with open(index_file, "r", encoding="utf-8") as f:
  117. index: dict[str, Any] = json.load(f)
  118. weight_map = index.get("weight_map")
  119. if weight_map is None or not isinstance(weight_map, dict):
  120. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  121. self.tensor_names.update(weight_map.keys())
  122. else:
  123. self.tensor_names = tensor_names_from_parts
  124. weight_map = {}
  125. for part_name in self.part_names:
  126. logger.info(f"gguf: loading model part '{part_name}'")
  127. ctx: ContextManager[Any]
  128. if self.is_safetensors:
  129. from safetensors import safe_open
  130. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  131. else:
  132. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  133. with ctx as model_part:
  134. tensor_names_from_parts.update(model_part.keys())
  135. for name in model_part.keys():
  136. if self.is_safetensors:
  137. if self.lazy:
  138. data = model_part.get_slice(name)
  139. data = LazyTorchTensor.from_safetensors_slice(data)
  140. else:
  141. data = model_part.get_tensor(name)
  142. else:
  143. data = model_part[name]
  144. if self.lazy:
  145. data = LazyTorchTensor.from_eager(data)
  146. yield name, data
  147. # verify tensor name presence and identify potentially missing files
  148. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  149. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  150. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  151. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  152. if len(extra) == 0 and len(missing_files) > 0:
  153. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  154. else:
  155. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  156. f"Missing tensors: {missing}\n"
  157. f"Extra tensors: {extra}")
  158. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  159. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  160. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  161. name: str = gguf.TENSOR_NAMES[key]
  162. if "{bid}" in name:
  163. assert bid is not None
  164. name = name.format(bid=bid)
  165. return name + suffix
  166. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  167. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  168. return False
  169. key_name: str = gguf.TENSOR_NAMES[key]
  170. if "{bid}" in key_name:
  171. if bid is None:
  172. return False
  173. key_name = key_name.format(bid=bid)
  174. else:
  175. if bid is not None:
  176. return False
  177. return name == (key_name + suffix)
  178. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  179. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  180. if new_name is None:
  181. raise ValueError(f"Can not map tensor {name!r}")
  182. return new_name
  183. def set_gguf_parameters(self):
  184. self.gguf_writer.add_block_count(self.block_count)
  185. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  186. self.gguf_writer.add_context_length(n_ctx)
  187. logger.info(f"gguf: context length = {n_ctx}")
  188. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  189. self.gguf_writer.add_embedding_length(n_embd)
  190. logger.info(f"gguf: embedding length = {n_embd}")
  191. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  192. self.gguf_writer.add_feed_forward_length(n_ff)
  193. logger.info(f"gguf: feed forward length = {n_ff}")
  194. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  195. self.gguf_writer.add_head_count(n_head)
  196. logger.info(f"gguf: head count = {n_head}")
  197. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  198. self.gguf_writer.add_head_count_kv(n_head_kv)
  199. logger.info(f"gguf: key-value head count = {n_head_kv}")
  200. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  201. self.gguf_writer.add_rope_freq_base(rope_theta)
  202. logger.info(f"gguf: rope theta = {rope_theta}")
  203. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  204. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  205. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  206. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  207. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  208. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  209. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  210. self.gguf_writer.add_expert_count(n_experts)
  211. logger.info(f"gguf: expert count = {n_experts}")
  212. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  213. self.gguf_writer.add_expert_used_count(n_experts_used)
  214. logger.info(f"gguf: experts used count = {n_experts_used}")
  215. if (head_dim := self.hparams.get("head_dim")) is not None:
  216. self.gguf_writer.add_key_length(head_dim)
  217. self.gguf_writer.add_value_length(head_dim)
  218. self.gguf_writer.add_file_type(self.ftype)
  219. logger.info(f"gguf: file type = {self.ftype}")
  220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  221. del bid # unused
  222. return [(self.map_tensor_name(name), data_torch)]
  223. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  224. del name, new_name, bid, n_dims # unused
  225. return False
  226. # some models need extra generated tensors (like rope_freqs)
  227. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  228. return ()
  229. def prepare_tensors(self):
  230. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  231. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  232. # we don't need these
  233. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  234. continue
  235. old_dtype = data_torch.dtype
  236. # convert any unsupported data types to float32
  237. if data_torch.dtype not in (torch.float16, torch.float32):
  238. data_torch = data_torch.to(torch.float32)
  239. # use the first number-like part of the tensor name as the block id
  240. bid = None
  241. for part in name.split("."):
  242. if part.isdecimal():
  243. bid = int(part)
  244. break
  245. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  246. data = data_torch.squeeze().numpy()
  247. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  248. if len(data.shape) == 0:
  249. data = data_torch.numpy()
  250. n_dims = len(data.shape)
  251. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  252. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  253. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  254. data_qtype = gguf.GGMLQuantizationType.F32
  255. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  256. # Some tensor types are always in float32
  257. if data_qtype is False and (
  258. any(
  259. self.match_model_tensor_name(new_name, key, bid)
  260. for key in (
  261. gguf.MODEL_TENSOR.FFN_GATE_INP,
  262. gguf.MODEL_TENSOR.POS_EMBD,
  263. gguf.MODEL_TENSOR.TOKEN_TYPES,
  264. gguf.MODEL_TENSOR.SSM_CONV1D,
  265. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  266. gguf.MODEL_TENSOR.TIME_MIX_W1,
  267. gguf.MODEL_TENSOR.TIME_MIX_W2,
  268. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  269. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  270. )
  271. )
  272. or not new_name.endswith(".weight")
  273. ):
  274. data_qtype = gguf.GGMLQuantizationType.F32
  275. if data_qtype is False and any(
  276. self.match_model_tensor_name(new_name, key, bid)
  277. for key in (
  278. gguf.MODEL_TENSOR.TOKEN_EMBD,
  279. gguf.MODEL_TENSOR.OUTPUT,
  280. )
  281. ):
  282. if self.ftype in (
  283. gguf.LlamaFileType.MOSTLY_TQ1_0,
  284. gguf.LlamaFileType.MOSTLY_TQ2_0,
  285. ):
  286. # TODO: use Q4_K and Q6_K
  287. data_qtype = gguf.GGMLQuantizationType.F16
  288. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  289. if isinstance(data_qtype, bool):
  290. if self.ftype == gguf.LlamaFileType.ALL_F32:
  291. data_qtype = gguf.GGMLQuantizationType.F32
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  295. data_qtype = gguf.GGMLQuantizationType.BF16
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  297. data_qtype = gguf.GGMLQuantizationType.Q8_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  300. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  301. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  302. else:
  303. raise ValueError(f"Unknown file type: {self.ftype.name}")
  304. try:
  305. data = gguf.quants.quantize(data, data_qtype)
  306. except gguf.QuantError as e:
  307. logger.warning("%s, %s", e, "falling back to F16")
  308. data_qtype = gguf.GGMLQuantizationType.F16
  309. data = gguf.quants.quantize(data, data_qtype)
  310. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  311. # reverse shape to make it similar to the internal ggml dimension order
  312. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  313. # n_dims is implicit in the shape
  314. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  315. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  316. def set_type(self):
  317. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  318. def prepare_metadata(self, vocab_only: bool):
  319. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  320. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  321. # Fallback to model directory name if metadata name is still missing
  322. if self.metadata.name is None:
  323. self.metadata.name = self.dir_model.name
  324. # Generate parameter weight class (useful for leader boards) if not yet determined
  325. if self.metadata.size_label is None and total_params > 0:
  326. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  327. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  328. output_type: str = self.ftype.name.partition("_")[2]
  329. # Filename Output
  330. if self.fname_out.is_dir():
  331. # Generate default filename based on model specification and available metadata
  332. if not vocab_only:
  333. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  334. else:
  335. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  336. # Use the default filename
  337. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  338. else:
  339. # Output path is a custom defined templated filename
  340. # Note: `not is_dir()` is used because `.is_file()` will not detect
  341. # file template strings as it doesn't actually exist as a file
  342. # Process templated file name with the output ftype, useful with the "auto" ftype
  343. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  344. self.set_type()
  345. logger.info("Set meta model")
  346. self.metadata.set_gguf_meta_model(self.gguf_writer)
  347. logger.info("Set model parameters")
  348. self.set_gguf_parameters()
  349. logger.info("Set model tokenizer")
  350. self.set_vocab()
  351. logger.info("Set model quantization version")
  352. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  353. def write(self):
  354. self.prepare_tensors()
  355. self.prepare_metadata(vocab_only=False)
  356. self.gguf_writer.write_header_to_file(path=self.fname_out)
  357. self.gguf_writer.write_kv_data_to_file()
  358. self.gguf_writer.write_tensors_to_file(progress=True)
  359. self.gguf_writer.close()
  360. def write_vocab(self):
  361. if len(self.gguf_writer.tensors) != 1:
  362. raise ValueError('Splitting the vocabulary is not supported')
  363. self.prepare_metadata(vocab_only=True)
  364. self.gguf_writer.write_header_to_file(path=self.fname_out)
  365. self.gguf_writer.write_kv_data_to_file()
  366. self.gguf_writer.close()
  367. @staticmethod
  368. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  369. part_names: list[str] = []
  370. for filename in os.listdir(dir_model):
  371. if filename.startswith(prefix) and filename.endswith(suffix):
  372. part_names.append(filename)
  373. part_names.sort()
  374. return part_names
  375. @staticmethod
  376. def load_hparams(dir_model: Path):
  377. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  378. return json.load(f)
  379. @classmethod
  380. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  381. assert names
  382. def func(modelcls: AnyModel) -> AnyModel:
  383. for name in names:
  384. cls._model_classes[name] = modelcls
  385. return modelcls
  386. return func
  387. @classmethod
  388. def from_model_architecture(cls, arch: str) -> type[Model]:
  389. try:
  390. return cls._model_classes[arch]
  391. except KeyError:
  392. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  393. def does_token_look_special(self, token: str | bytes) -> bool:
  394. if isinstance(token, (bytes, bytearray)):
  395. token_text = token.decode(encoding="utf-8")
  396. elif isinstance(token, memoryview):
  397. token_text = token.tobytes().decode(encoding="utf-8")
  398. else:
  399. token_text = token
  400. # Some models mark some added tokens which ought to be control tokens as not special.
  401. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  402. seems_special = token_text in (
  403. "<pad>", # deepseek-coder
  404. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  405. )
  406. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  407. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  408. # TODO: should these be marked as UNUSED instead? (maybe not)
  409. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  410. return seems_special
  411. # used for GPT-2 BPE and WordPiece vocabs
  412. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  413. tokens: list[str] = []
  414. toktypes: list[int] = []
  415. from transformers import AutoTokenizer
  416. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  417. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  418. assert max(tokenizer.vocab.values()) < vocab_size
  419. tokpre = self.get_vocab_base_pre(tokenizer)
  420. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  421. added_vocab = tokenizer.get_added_vocab()
  422. for i in range(vocab_size):
  423. if i not in reverse_vocab:
  424. tokens.append(f"[PAD{i}]")
  425. toktypes.append(gguf.TokenType.UNUSED)
  426. else:
  427. token: str = reverse_vocab[i]
  428. if token in added_vocab:
  429. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  430. toktypes.append(gguf.TokenType.CONTROL)
  431. else:
  432. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  433. toktypes.append(gguf.TokenType.USER_DEFINED)
  434. else:
  435. toktypes.append(gguf.TokenType.NORMAL)
  436. tokens.append(token)
  437. return tokens, toktypes, tokpre
  438. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  439. # do not modify it manually!
  440. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  441. # Marker: Start get_vocab_base_pre
  442. def get_vocab_base_pre(self, tokenizer) -> str:
  443. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  444. # is specific for the BPE pre-tokenizer used by the model
  445. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  446. # use in llama.cpp to implement the same pre-tokenizer
  447. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  448. chktok = tokenizer.encode(chktxt)
  449. chkhsh = sha256(str(chktok).encode()).hexdigest()
  450. logger.debug(f"chktok: {chktok}")
  451. logger.debug(f"chkhsh: {chkhsh}")
  452. res = None
  453. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  454. # or pull the latest version of the model from Huggingface
  455. # don't edit the hashes manually!
  456. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  457. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  458. res = "llama-bpe"
  459. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  460. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  461. res = "deepseek-llm"
  462. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  463. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  464. res = "deepseek-coder"
  465. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  466. # ref: https://huggingface.co/tiiuae/falcon-7b
  467. res = "falcon"
  468. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  469. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  470. res = "bert-bge"
  471. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  472. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  473. res = "bert-bge-large"
  474. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  475. # ref: https://huggingface.co/mosaicml/mpt-7b
  476. res = "mpt"
  477. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  478. # ref: https://huggingface.co/bigcode/starcoder2-3b
  479. res = "starcoder"
  480. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  481. # ref: https://huggingface.co/openai-community/gpt2
  482. res = "gpt-2"
  483. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  484. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  485. res = "stablelm2"
  486. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  487. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  488. res = "refact"
  489. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  490. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  491. res = "command-r"
  492. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  493. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  494. res = "qwen2"
  495. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  496. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  497. res = "olmo"
  498. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  499. # ref: https://huggingface.co/databricks/dbrx-base
  500. res = "dbrx"
  501. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  502. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  503. res = "jina-v1-en"
  504. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  505. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  506. res = "jina-v2-en"
  507. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  508. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  509. res = "jina-v2-es"
  510. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  511. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  512. res = "jina-v2-de"
  513. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  514. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  515. res = "smaug-bpe"
  516. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  517. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  518. res = "poro-chat"
  519. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  520. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  521. res = "jina-v2-code"
  522. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  523. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  524. res = "chatglm-bpe"
  525. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  526. # ref: https://huggingface.co/LumiOpen/Viking-7B
  527. res = "viking"
  528. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  529. # ref: https://huggingface.co/core42/jais-13b
  530. res = "jais"
  531. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  532. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  533. res = "codeshell"
  534. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  535. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  536. res = "tekken"
  537. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  538. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  539. res = "smollm"
  540. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  541. # ref: https://huggingface.co/bigscience/bloom
  542. res = "bloom"
  543. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  544. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  545. res = "gpt3-finnish"
  546. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  547. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  548. res = "exaone"
  549. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  550. # ref: https://huggingface.co/microsoft/phi-2
  551. res = "phi-2"
  552. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  553. # ref: https://huggingface.co/facebook/chameleon-7b
  554. res = "chameleon"
  555. if res is None:
  556. logger.warning("\n")
  557. logger.warning("**************************************************************************************")
  558. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  559. logger.warning("** There are 2 possible reasons for this:")
  560. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  561. logger.warning("** - the pre-tokenization config has changed upstream")
  562. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  563. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  564. logger.warning("**")
  565. logger.warning(f"** chkhsh: {chkhsh}")
  566. logger.warning("**************************************************************************************")
  567. logger.warning("\n")
  568. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  569. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  570. logger.debug(f"chkhsh: {chkhsh}")
  571. return res
  572. # Marker: End get_vocab_base_pre
  573. def _set_vocab_gpt2(self) -> None:
  574. tokens, toktypes, tokpre = self.get_vocab_base()
  575. self.gguf_writer.add_tokenizer_model("gpt2")
  576. self.gguf_writer.add_tokenizer_pre(tokpre)
  577. self.gguf_writer.add_token_list(tokens)
  578. self.gguf_writer.add_token_types(toktypes)
  579. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  580. special_vocab.add_to_gguf(self.gguf_writer)
  581. def _set_vocab_qwen(self):
  582. dir_model = self.dir_model
  583. hparams = self.hparams
  584. tokens: list[str] = []
  585. toktypes: list[int] = []
  586. from transformers import AutoTokenizer
  587. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  588. vocab_size = hparams["vocab_size"]
  589. assert max(tokenizer.get_vocab().values()) < vocab_size
  590. tokpre = self.get_vocab_base_pre(tokenizer)
  591. merges = []
  592. vocab = {}
  593. mergeable_ranks = tokenizer.mergeable_ranks
  594. for token, rank in mergeable_ranks.items():
  595. vocab[QwenModel.token_bytes_to_string(token)] = rank
  596. if len(token) == 1:
  597. continue
  598. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  599. assert len(merged) == 2
  600. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  601. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  602. added_vocab = tokenizer.special_tokens
  603. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  604. for i in range(vocab_size):
  605. if i not in reverse_vocab:
  606. tokens.append(f"[PAD{i}]")
  607. toktypes.append(gguf.TokenType.UNUSED)
  608. elif reverse_vocab[i] in added_vocab:
  609. tokens.append(reverse_vocab[i])
  610. toktypes.append(gguf.TokenType.CONTROL)
  611. else:
  612. tokens.append(reverse_vocab[i])
  613. toktypes.append(gguf.TokenType.NORMAL)
  614. self.gguf_writer.add_tokenizer_model("gpt2")
  615. self.gguf_writer.add_tokenizer_pre(tokpre)
  616. self.gguf_writer.add_token_list(tokens)
  617. self.gguf_writer.add_token_types(toktypes)
  618. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  619. special_vocab.merges = merges
  620. # only add special tokens when they were not already loaded from config.json
  621. if len(special_vocab.special_token_ids) == 0:
  622. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  623. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  624. # this one is usually not in config.json anyway
  625. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  626. special_vocab.add_to_gguf(self.gguf_writer)
  627. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  628. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  629. self.gguf_writer.add_tokenizer_model("llama")
  630. self.gguf_writer.add_tokenizer_pre("default")
  631. self.gguf_writer.add_token_list(tokens)
  632. self.gguf_writer.add_token_scores(scores)
  633. self.gguf_writer.add_token_types(toktypes)
  634. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  635. special_vocab.add_to_gguf(self.gguf_writer)
  636. def _create_vocab_sentencepiece(self):
  637. from sentencepiece import SentencePieceProcessor
  638. tokenizer_path = self.dir_model / 'tokenizer.model'
  639. if not tokenizer_path.is_file():
  640. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  641. tokenizer = SentencePieceProcessor()
  642. tokenizer.LoadFromFile(str(tokenizer_path))
  643. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  644. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  645. scores: list[float] = [-10000.0] * vocab_size
  646. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  647. for token_id in range(tokenizer.vocab_size()):
  648. piece = tokenizer.IdToPiece(token_id)
  649. text = piece.encode("utf-8")
  650. score = tokenizer.GetScore(token_id)
  651. toktype = SentencePieceTokenTypes.NORMAL
  652. if tokenizer.IsUnknown(token_id):
  653. toktype = SentencePieceTokenTypes.UNKNOWN
  654. elif tokenizer.IsControl(token_id):
  655. toktype = SentencePieceTokenTypes.CONTROL
  656. elif tokenizer.IsUnused(token_id):
  657. toktype = SentencePieceTokenTypes.UNUSED
  658. elif tokenizer.IsByte(token_id):
  659. toktype = SentencePieceTokenTypes.BYTE
  660. tokens[token_id] = text
  661. scores[token_id] = score
  662. toktypes[token_id] = toktype
  663. added_tokens_file = self.dir_model / 'added_tokens.json'
  664. if added_tokens_file.is_file():
  665. with open(added_tokens_file, "r", encoding="utf-8") as f:
  666. added_tokens_json = json.load(f)
  667. for key in added_tokens_json:
  668. token_id = added_tokens_json[key]
  669. if token_id >= vocab_size:
  670. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  671. continue
  672. tokens[token_id] = key.encode("utf-8")
  673. scores[token_id] = -1000.0
  674. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  675. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  676. if tokenizer_config_file.is_file():
  677. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  678. tokenizer_config_json = json.load(f)
  679. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  680. for token_id, token_data in added_tokens_decoder.items():
  681. token_id = int(token_id)
  682. token: str = token_data["content"]
  683. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  684. if tokens[token_id] != token.encode("utf-8"):
  685. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  686. if token_data.get("special") or self.does_token_look_special(token):
  687. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  688. else:
  689. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  690. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  691. scores[token_id] = -1000.0
  692. tokens[token_id] = token.encode("utf-8")
  693. if vocab_size > len(tokens):
  694. pad_count = vocab_size - len(tokens)
  695. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  696. for i in range(1, pad_count + 1):
  697. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  698. scores.append(-1000.0)
  699. toktypes.append(SentencePieceTokenTypes.UNUSED)
  700. return tokens, scores, toktypes
  701. def _set_vocab_llama_hf(self):
  702. vocab = gguf.LlamaHfVocab(self.dir_model)
  703. tokens = []
  704. scores = []
  705. toktypes = []
  706. for text, score, toktype in vocab.all_tokens():
  707. tokens.append(text)
  708. scores.append(score)
  709. toktypes.append(toktype)
  710. assert len(tokens) == vocab.vocab_size
  711. self.gguf_writer.add_tokenizer_model("llama")
  712. self.gguf_writer.add_tokenizer_pre("default")
  713. self.gguf_writer.add_token_list(tokens)
  714. self.gguf_writer.add_token_scores(scores)
  715. self.gguf_writer.add_token_types(toktypes)
  716. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  717. special_vocab.add_to_gguf(self.gguf_writer)
  718. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  719. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  720. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  721. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  722. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  723. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  724. assert field # tokenizer model
  725. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  726. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  727. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  728. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  729. assert field # token list
  730. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  731. if model_name == "llama-spm":
  732. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  733. assert field # token scores
  734. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  735. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  736. assert field # token types
  737. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  738. if model_name != "llama-spm":
  739. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  740. assert field # token merges
  741. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  742. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  743. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  744. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  745. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  746. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  747. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  748. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  749. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  750. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  751. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  752. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  753. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  754. @Model.register("GPTNeoXForCausalLM")
  755. class GPTNeoXModel(Model):
  756. model_arch = gguf.MODEL_ARCH.GPTNEOX
  757. def set_gguf_parameters(self):
  758. block_count = self.hparams["num_hidden_layers"]
  759. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  760. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  761. self.gguf_writer.add_block_count(block_count)
  762. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  763. self.gguf_writer.add_rope_dimension_count(
  764. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  765. )
  766. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  767. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  768. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  770. del bid # unused
  771. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  772. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  773. tensors: list[tuple[str, Tensor]] = []
  774. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  775. # Map bloom-style qkv_linear to gpt-style qkv_linear
  776. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  777. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  778. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  779. data_torch = torch.cat(
  780. (
  781. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  782. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  783. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  784. ),
  785. dim=0,
  786. )
  787. logger.info("re-format attention.linear_qkv.weight")
  788. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  789. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  790. data_torch = torch.cat(
  791. (
  792. qkv_bias[:, 0, :].reshape((n_embed,)),
  793. qkv_bias[:, 1, :].reshape((n_embed,)),
  794. qkv_bias[:, 2, :].reshape((n_embed,)),
  795. ),
  796. dim=0,
  797. )
  798. logger.info("re-format attention.linear_qkv.bias")
  799. tensors.append((self.map_tensor_name(name), data_torch))
  800. return tensors
  801. @Model.register("BloomForCausalLM", "BloomModel")
  802. class BloomModel(Model):
  803. model_arch = gguf.MODEL_ARCH.BLOOM
  804. def set_gguf_parameters(self):
  805. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  806. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  807. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  808. self.gguf_writer.add_embedding_length(n_embed)
  809. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  810. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  811. self.gguf_writer.add_head_count(n_head)
  812. self.gguf_writer.add_head_count_kv(n_head)
  813. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  814. self.gguf_writer.add_file_type(self.ftype)
  815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  816. del bid # unused
  817. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  818. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  819. name = re.sub(r'transformer\.', '', name)
  820. tensors: list[tuple[str, Tensor]] = []
  821. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  822. # Map bloom-style qkv_linear to gpt-style qkv_linear
  823. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  824. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  825. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  826. data_torch = torch.cat(
  827. (
  828. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  829. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  830. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  831. ),
  832. dim=0,
  833. )
  834. logger.info("re-format attention.linear_qkv.weight")
  835. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  836. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  837. data_torch = torch.cat(
  838. (
  839. qkv_bias[:, 0, :].reshape((n_embed,)),
  840. qkv_bias[:, 1, :].reshape((n_embed,)),
  841. qkv_bias[:, 2, :].reshape((n_embed,)),
  842. ),
  843. dim=0,
  844. )
  845. logger.info("re-format attention.linear_qkv.bias")
  846. tensors.append((self.map_tensor_name(name), data_torch))
  847. if name == "word_embeddings.weight":
  848. assert self.tensor_names is not None
  849. # TODO: tie them at runtime, don't duplicate in the model file
  850. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  851. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  852. return tensors
  853. @Model.register("MPTForCausalLM")
  854. class MPTModel(Model):
  855. model_arch = gguf.MODEL_ARCH.MPT
  856. def set_vocab(self):
  857. try:
  858. self._set_vocab_gpt2()
  859. except Exception:
  860. # Fallback for SEA-LION model
  861. self._set_vocab_sentencepiece()
  862. self.gguf_writer.add_add_bos_token(False)
  863. self.gguf_writer.add_pad_token_id(3)
  864. self.gguf_writer.add_eos_token_id(1)
  865. self.gguf_writer.add_unk_token_id(0)
  866. def set_gguf_parameters(self):
  867. block_count = self.hparams["n_layers"]
  868. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  869. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  870. self.gguf_writer.add_block_count(block_count)
  871. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  872. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  873. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  874. self.gguf_writer.add_head_count_kv(kv_n_heads)
  875. self.gguf_writer.add_layer_norm_eps(1e-5)
  876. if self.hparams["attn_config"]["clip_qkv"] is not None:
  877. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  878. if self.hparams["attn_config"]["alibi"]:
  879. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  880. else:
  881. self.gguf_writer.add_max_alibi_bias(0.0)
  882. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  883. del bid # unused
  884. if "scales" in name:
  885. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  886. new_name = new_name.replace("scales", "act.scales")
  887. else:
  888. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  889. return [(new_name, data_torch)]
  890. @Model.register("OrionForCausalLM")
  891. class OrionModel(Model):
  892. model_arch = gguf.MODEL_ARCH.ORION
  893. def set_vocab(self):
  894. self._set_vocab_sentencepiece()
  895. def set_gguf_parameters(self):
  896. block_count = self.hparams["num_hidden_layers"]
  897. head_count = self.hparams["num_attention_heads"]
  898. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  899. ctx_length = 0
  900. if "max_sequence_length" in self.hparams:
  901. ctx_length = self.hparams["max_sequence_length"]
  902. elif "max_position_embeddings" in self.hparams:
  903. ctx_length = self.hparams["max_position_embeddings"]
  904. elif "model_max_length" in self.hparams:
  905. ctx_length = self.hparams["model_max_length"]
  906. else:
  907. raise ValueError("gguf: can not find ctx length parameter.")
  908. self.gguf_writer.add_file_type(self.ftype)
  909. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  910. self.gguf_writer.add_context_length(ctx_length)
  911. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  912. self.gguf_writer.add_block_count(block_count)
  913. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  914. self.gguf_writer.add_head_count(head_count)
  915. self.gguf_writer.add_head_count_kv(head_count_kv)
  916. # note: config provides rms norm but it is actually layer norm
  917. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  918. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  919. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  920. class BaichuanModel(Model):
  921. model_arch = gguf.MODEL_ARCH.BAICHUAN
  922. def set_vocab(self):
  923. self._set_vocab_sentencepiece()
  924. def set_gguf_parameters(self):
  925. block_count = self.hparams["num_hidden_layers"]
  926. head_count = self.hparams["num_attention_heads"]
  927. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  928. ctx_length = 0
  929. if "max_sequence_length" in self.hparams:
  930. ctx_length = self.hparams["max_sequence_length"]
  931. elif "max_position_embeddings" in self.hparams:
  932. ctx_length = self.hparams["max_position_embeddings"]
  933. elif "model_max_length" in self.hparams:
  934. ctx_length = self.hparams["model_max_length"]
  935. else:
  936. raise ValueError("gguf: can not find ctx length parameter.")
  937. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  938. self.gguf_writer.add_context_length(ctx_length)
  939. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  940. self.gguf_writer.add_block_count(block_count)
  941. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  942. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  943. self.gguf_writer.add_head_count(head_count)
  944. self.gguf_writer.add_head_count_kv(head_count_kv)
  945. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  946. self.gguf_writer.add_file_type(self.ftype)
  947. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  948. if self.hparams["rope_scaling"].get("type") == "linear":
  949. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  950. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  952. head_count = self.hparams["num_attention_heads"]
  953. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  954. tensors: list[tuple[str, Tensor]] = []
  955. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  956. logger.info(f"Unpacking and permuting layer {bid}")
  957. tensors = [
  958. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  959. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  960. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  961. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  962. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  963. self._reverse_hf_part(data_torch, 2)),
  964. ]
  965. else:
  966. tensors = [(self.map_tensor_name(name), data_torch)]
  967. return tensors
  968. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  969. if n_kv_head is not None and n_head != n_kv_head:
  970. n_head //= n_kv_head
  971. return (
  972. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  973. .swapaxes(1, 2)
  974. .reshape(weights.shape)
  975. )
  976. def _reverse_hf_permute_part(
  977. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  978. ) -> Tensor:
  979. r = weights.shape[0] // 3
  980. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  981. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  982. r = weights.shape[0] // 3
  983. return weights[r * n_part:r * n_part + r, ...]
  984. @Model.register("XverseForCausalLM")
  985. class XverseModel(Model):
  986. model_arch = gguf.MODEL_ARCH.XVERSE
  987. def set_vocab(self):
  988. assert (self.dir_model / "tokenizer.json").is_file()
  989. dir_model = self.dir_model
  990. hparams = self.hparams
  991. tokens: list[bytes] = []
  992. toktypes: list[int] = []
  993. from transformers import AutoTokenizer
  994. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  995. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  996. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  997. # because vocab_size is the count of items, and indexes start at 0.
  998. max_vocab_index = max(tokenizer.get_vocab().values())
  999. if max_vocab_index >= vocab_size:
  1000. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1001. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1002. added_vocab = tokenizer.get_added_vocab()
  1003. for token_id in range(vocab_size):
  1004. token_text = reverse_vocab[token_id].encode('utf-8')
  1005. # replace "\x00" to string with length > 0
  1006. if token_text == b"\x00":
  1007. toktype = gguf.TokenType.BYTE # special
  1008. token_text = f"<{token_text}>".encode('utf-8')
  1009. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1010. toktype = gguf.TokenType.BYTE # special
  1011. elif reverse_vocab[token_id] in added_vocab:
  1012. if tokenizer.added_tokens_decoder[token_id].special:
  1013. toktype = gguf.TokenType.CONTROL
  1014. else:
  1015. toktype = gguf.TokenType.USER_DEFINED
  1016. else:
  1017. toktype = gguf.TokenType.NORMAL
  1018. tokens.append(token_text)
  1019. toktypes.append(toktype)
  1020. self.gguf_writer.add_tokenizer_model("llama")
  1021. self.gguf_writer.add_tokenizer_pre("default")
  1022. self.gguf_writer.add_token_list(tokens)
  1023. self.gguf_writer.add_token_types(toktypes)
  1024. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1025. special_vocab.add_to_gguf(self.gguf_writer)
  1026. def set_gguf_parameters(self):
  1027. block_count = self.hparams["num_hidden_layers"]
  1028. head_count = self.hparams["num_attention_heads"]
  1029. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1030. ctx_length = 0
  1031. if "max_sequence_length" in self.hparams:
  1032. ctx_length = self.hparams["max_sequence_length"]
  1033. elif "max_position_embeddings" in self.hparams:
  1034. ctx_length = self.hparams["max_position_embeddings"]
  1035. elif "model_max_length" in self.hparams:
  1036. ctx_length = self.hparams["model_max_length"]
  1037. else:
  1038. raise ValueError("gguf: can not find ctx length parameter.")
  1039. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1040. self.gguf_writer.add_context_length(ctx_length)
  1041. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1042. self.gguf_writer.add_block_count(block_count)
  1043. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1044. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1045. self.gguf_writer.add_head_count(head_count)
  1046. self.gguf_writer.add_head_count_kv(head_count_kv)
  1047. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1048. self.gguf_writer.add_file_type(self.ftype)
  1049. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1050. if self.hparams["rope_scaling"].get("type") == "linear":
  1051. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1052. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1053. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1054. del bid # unused
  1055. head_count = self.hparams["num_attention_heads"]
  1056. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1057. # HF models permute some of the tensors, so we need to undo that
  1058. if name.endswith("q_proj.weight"):
  1059. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1060. if name.endswith("k_proj.weight"):
  1061. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1062. return [(self.map_tensor_name(name), data_torch)]
  1063. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1064. if n_kv_head is not None and n_head != n_kv_head:
  1065. n_head //= n_kv_head
  1066. return (
  1067. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1068. .swapaxes(1, 2)
  1069. .reshape(weights.shape)
  1070. )
  1071. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1072. class FalconModel(Model):
  1073. model_arch = gguf.MODEL_ARCH.FALCON
  1074. def set_gguf_parameters(self):
  1075. block_count = self.hparams.get("num_hidden_layers")
  1076. if block_count is None:
  1077. block_count = self.hparams["n_layer"] # old name
  1078. n_head = self.hparams.get("num_attention_heads")
  1079. if n_head is None:
  1080. n_head = self.hparams["n_head"] # old name
  1081. n_head_kv = self.hparams.get("num_kv_heads")
  1082. if n_head_kv is None:
  1083. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1084. self.gguf_writer.add_context_length(2048) # not in config.json
  1085. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1086. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1087. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1088. self.gguf_writer.add_block_count(block_count)
  1089. self.gguf_writer.add_head_count(n_head)
  1090. self.gguf_writer.add_head_count_kv(n_head_kv)
  1091. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1092. self.gguf_writer.add_file_type(self.ftype)
  1093. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1094. del bid # unused
  1095. # QKV tensor transform
  1096. # The original query_key_value tensor contains n_head_kv "kv groups",
  1097. # each consisting of n_head/n_head_kv query weights followed by one key
  1098. # and one value weight (shared by all query heads in the kv group).
  1099. # This layout makes it a big pain to work with in GGML.
  1100. # So we rearrange them here,, so that we have n_head query weights
  1101. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1102. # in contiguous fashion.
  1103. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1104. if "query_key_value" in name:
  1105. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1106. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1107. head_dim = self.hparams["hidden_size"] // n_head
  1108. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1109. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1110. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1111. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1112. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1113. return [(self.map_tensor_name(name), data_torch)]
  1114. @Model.register("GPTBigCodeForCausalLM")
  1115. class StarCoderModel(Model):
  1116. model_arch = gguf.MODEL_ARCH.STARCODER
  1117. def set_gguf_parameters(self):
  1118. block_count = self.hparams["n_layer"]
  1119. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1120. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1121. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1122. self.gguf_writer.add_block_count(block_count)
  1123. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1124. self.gguf_writer.add_head_count_kv(1)
  1125. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1126. self.gguf_writer.add_file_type(self.ftype)
  1127. @Model.register("GPTRefactForCausalLM")
  1128. class RefactModel(Model):
  1129. model_arch = gguf.MODEL_ARCH.REFACT
  1130. def set_vocab(self):
  1131. super().set_vocab()
  1132. # TODO: how to determine special FIM tokens automatically?
  1133. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1134. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1135. special_vocab._set_special_token("prefix", 1)
  1136. special_vocab._set_special_token("suffix", 3)
  1137. special_vocab._set_special_token("middle", 2)
  1138. special_vocab.chat_template = None # do not add it twice
  1139. special_vocab.add_to_gguf(self.gguf_writer)
  1140. def set_gguf_parameters(self):
  1141. hidden_dim = self.hparams["n_embd"]
  1142. inner_dim = 4 * hidden_dim
  1143. hidden_dim = int(2 * inner_dim / 3)
  1144. multiple_of = 256
  1145. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1146. block_count = self.hparams["n_layer"]
  1147. # refact uses Alibi. So this is from config.json which might be used by training.
  1148. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1149. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1150. self.gguf_writer.add_feed_forward_length(ff_dim)
  1151. self.gguf_writer.add_block_count(block_count)
  1152. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1153. self.gguf_writer.add_head_count_kv(1)
  1154. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1155. self.gguf_writer.add_file_type(self.ftype)
  1156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1157. hidden_dim = self.hparams["n_embd"]
  1158. inner_dim = 4 * hidden_dim
  1159. hidden_dim = int(2 * inner_dim / 3)
  1160. multiple_of = 256
  1161. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1162. n_head = self.hparams["n_head"]
  1163. n_head_kv = 1
  1164. head_dim = self.hparams["n_embd"] // n_head
  1165. tensors: list[tuple[str, Tensor]] = []
  1166. if bid is not None:
  1167. if name == f"transformer.h.{bid}.attn.kv.weight":
  1168. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1169. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1170. elif name == f"transformer.h.{bid}.attn.q.weight":
  1171. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1172. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1173. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1174. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1175. if len(tensors) == 0:
  1176. tensors.append((self.map_tensor_name(name), data_torch))
  1177. return tensors
  1178. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1179. class StableLMModel(Model):
  1180. model_arch = gguf.MODEL_ARCH.STABLELM
  1181. def set_vocab(self):
  1182. if (self.dir_model / "tokenizer.json").is_file():
  1183. self._set_vocab_gpt2()
  1184. else:
  1185. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1186. self._set_vocab_qwen()
  1187. def set_gguf_parameters(self):
  1188. hparams = self.hparams
  1189. block_count = hparams["num_hidden_layers"]
  1190. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1191. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1192. self.gguf_writer.add_block_count(block_count)
  1193. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1194. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1195. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1196. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1197. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1198. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1199. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1200. self.gguf_writer.add_file_type(self.ftype)
  1201. _q_norms: list[dict[str, Tensor]] | None = None
  1202. _k_norms: list[dict[str, Tensor]] | None = None
  1203. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1204. n_head = self.hparams["num_attention_heads"]
  1205. n_kv_head = self.hparams["num_key_value_heads"]
  1206. if name.find("q_layernorm.norms") != -1:
  1207. assert bid is not None
  1208. if self._q_norms is None:
  1209. self._q_norms = [{} for _ in range(self.block_count)]
  1210. self._q_norms[bid][name] = data_torch
  1211. if len(self._q_norms[bid]) >= n_head:
  1212. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1213. else:
  1214. return []
  1215. if name.find("k_layernorm.norms") != -1:
  1216. assert bid is not None
  1217. if self._k_norms is None:
  1218. self._k_norms = [{} for _ in range(self.block_count)]
  1219. self._k_norms[bid][name] = data_torch
  1220. if len(self._k_norms[bid]) >= n_kv_head:
  1221. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1222. else:
  1223. return []
  1224. return [(self.map_tensor_name(name), data_torch)]
  1225. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1226. datas: list[Tensor] = []
  1227. # extract the norms in order
  1228. for xid in range(n_head):
  1229. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1230. datas.append(norms[ename])
  1231. del norms[ename]
  1232. data_torch = torch.stack(datas, dim=0)
  1233. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1234. new_name = self.map_tensor_name(merged_name)
  1235. return [(new_name, data_torch)]
  1236. def prepare_tensors(self):
  1237. super().prepare_tensors()
  1238. if self._q_norms is not None or self._k_norms is not None:
  1239. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1240. norms = (
  1241. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1242. ) + (
  1243. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1244. )
  1245. if len(norms) > 0:
  1246. raise ValueError(f"Unprocessed norms: {norms}")
  1247. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1248. class LlamaModel(Model):
  1249. model_arch = gguf.MODEL_ARCH.LLAMA
  1250. def set_vocab(self):
  1251. try:
  1252. self._set_vocab_sentencepiece()
  1253. except FileNotFoundError:
  1254. try:
  1255. self._set_vocab_llama_hf()
  1256. except (FileNotFoundError, TypeError):
  1257. # Llama 3
  1258. self._set_vocab_gpt2()
  1259. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1260. if self.hparams.get("vocab_size", 32000) == 32016:
  1261. special_vocab = gguf.SpecialVocab(
  1262. self.dir_model, load_merges=False,
  1263. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1264. )
  1265. special_vocab._set_special_token("prefix", 32007)
  1266. special_vocab._set_special_token("suffix", 32008)
  1267. special_vocab._set_special_token("middle", 32009)
  1268. special_vocab._set_special_token("eot", 32010)
  1269. special_vocab.add_to_gguf(self.gguf_writer)
  1270. def set_gguf_parameters(self):
  1271. super().set_gguf_parameters()
  1272. hparams = self.hparams
  1273. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1274. if "head_dim" in hparams:
  1275. rope_dim = hparams["head_dim"]
  1276. else:
  1277. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1278. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1279. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1280. if self.hparams["rope_scaling"].get("type") == "linear":
  1281. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1282. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1283. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1284. if tokenizer_config_file.is_file():
  1285. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1286. tokenizer_config_json = json.load(f)
  1287. if "add_prefix_space" in tokenizer_config_json:
  1288. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1289. # Apply to granite small models only
  1290. if self.hparams.get("vocab_size", 32000) == 49152:
  1291. self.gguf_writer.add_add_bos_token(False)
  1292. @staticmethod
  1293. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1294. if n_head_kv is not None and n_head != n_head_kv:
  1295. n_head = n_head_kv
  1296. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1297. .swapaxes(1, 2)
  1298. .reshape(weights.shape))
  1299. _experts: list[dict[str, Tensor]] | None = None
  1300. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1301. n_head = self.hparams["num_attention_heads"]
  1302. n_kv_head = self.hparams.get("num_key_value_heads")
  1303. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1304. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1305. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1306. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1307. # process the experts separately
  1308. if name.find("block_sparse_moe.experts") != -1:
  1309. n_experts = self.hparams["num_local_experts"]
  1310. assert bid is not None
  1311. if self._experts is None:
  1312. self._experts = [{} for _ in range(self.block_count)]
  1313. self._experts[bid][name] = data_torch
  1314. if len(self._experts[bid]) >= n_experts * 3:
  1315. tensors: list[tuple[str, Tensor]] = []
  1316. # merge the experts into a single 3d tensor
  1317. for wid in ["w1", "w2", "w3"]:
  1318. datas: list[Tensor] = []
  1319. for xid in range(n_experts):
  1320. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1321. datas.append(self._experts[bid][ename])
  1322. del self._experts[bid][ename]
  1323. data_torch = torch.stack(datas, dim=0)
  1324. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1325. new_name = self.map_tensor_name(merged_name)
  1326. tensors.append((new_name, data_torch))
  1327. return tensors
  1328. else:
  1329. return []
  1330. return [(self.map_tensor_name(name), data_torch)]
  1331. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1332. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1333. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1334. base = self.hparams.get("rope_theta", 10000.0)
  1335. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1336. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1337. factor = rope_scaling.get("factor", 8.0)
  1338. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1339. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1340. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1341. low_freq_wavelen = old_context_len / low_freq_factor
  1342. high_freq_wavelen = old_context_len / high_freq_factor
  1343. assert low_freq_wavelen != high_freq_wavelen
  1344. rope_factors = []
  1345. for freq in freqs:
  1346. wavelen = 2 * math.pi / freq
  1347. if wavelen < high_freq_wavelen:
  1348. rope_factors.append(1)
  1349. elif wavelen > low_freq_wavelen:
  1350. rope_factors.append(factor)
  1351. else:
  1352. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1353. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1354. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1355. def prepare_tensors(self):
  1356. super().prepare_tensors()
  1357. if self._experts is not None:
  1358. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1359. experts = [k for d in self._experts for k in d.keys()]
  1360. if len(experts) > 0:
  1361. raise ValueError(f"Unprocessed experts: {experts}")
  1362. @Model.register("BitnetForCausalLM")
  1363. class BitnetModel(Model):
  1364. model_arch = gguf.MODEL_ARCH.BITNET
  1365. def set_vocab(self):
  1366. self._set_vocab_sentencepiece()
  1367. def set_gguf_parameters(self):
  1368. super().set_gguf_parameters()
  1369. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1370. self.gguf_writer.add_rope_scaling_factor(1.0)
  1371. def weight_quant(self, weight: Tensor) -> Tensor:
  1372. dtype = weight.dtype
  1373. weight = weight.float()
  1374. scale = weight.abs().mean().clamp(min=1e-5)
  1375. iscale = 1 / scale
  1376. # TODO: multiply by the scale directly instead of inverting it twice
  1377. # (this is also unnecessarily doubly inverted upstream)
  1378. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1379. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1380. return result.type(dtype)
  1381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1382. new_name = self.map_tensor_name(name)
  1383. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1384. gguf.MODEL_TENSOR.ATTN_Q,
  1385. gguf.MODEL_TENSOR.ATTN_K,
  1386. gguf.MODEL_TENSOR.ATTN_V,
  1387. gguf.MODEL_TENSOR.ATTN_OUT,
  1388. gguf.MODEL_TENSOR.FFN_UP,
  1389. gguf.MODEL_TENSOR.FFN_DOWN,
  1390. gguf.MODEL_TENSOR.FFN_GATE,
  1391. ]):
  1392. # transform weight into 1/0/-1 (in fp32)
  1393. data_torch = self.weight_quant(data_torch)
  1394. yield (new_name, data_torch)
  1395. @Model.register("GrokForCausalLM")
  1396. class GrokModel(Model):
  1397. model_arch = gguf.MODEL_ARCH.GROK
  1398. def set_vocab(self):
  1399. self._set_vocab_sentencepiece()
  1400. def __init__(self, *args, **kwargs):
  1401. super().__init__(*args, **kwargs)
  1402. def set_gguf_parameters(self):
  1403. super().set_gguf_parameters()
  1404. _experts: list[dict[str, Tensor]] | None = None
  1405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1406. # process the experts separately
  1407. if name.find(".moe.") != -1:
  1408. n_experts = self.hparams["num_local_experts"]
  1409. assert bid is not None
  1410. if self._experts is None:
  1411. self._experts = [{} for _ in range(self.block_count)]
  1412. self._experts[bid][name] = data_torch
  1413. if len(self._experts[bid]) >= n_experts * 3:
  1414. tensors: list[tuple[str, Tensor]] = []
  1415. # merge the experts into a single 3d tensor
  1416. for wid in ["linear", "linear_1", "linear_v"]:
  1417. datas: list[Tensor] = []
  1418. for xid in range(n_experts):
  1419. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1420. datas.append(self._experts[bid][ename])
  1421. del self._experts[bid][ename]
  1422. data_torch = torch.stack(datas, dim=0)
  1423. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1424. new_name = self.map_tensor_name(merged_name)
  1425. tensors.append((new_name, data_torch))
  1426. return tensors
  1427. else:
  1428. return []
  1429. return [(self.map_tensor_name(name), data_torch)]
  1430. @Model.register("DbrxForCausalLM")
  1431. class DbrxModel(Model):
  1432. model_arch = gguf.MODEL_ARCH.DBRX
  1433. def set_gguf_parameters(self):
  1434. ffn_config = self.hparams["ffn_config"]
  1435. attn_config = self.hparams["attn_config"]
  1436. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1437. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1438. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1439. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1440. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1441. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1442. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1443. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1444. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1445. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1446. self.gguf_writer.add_layer_norm_eps(1e-5)
  1447. self.gguf_writer.add_file_type(self.ftype)
  1448. logger.info(f"gguf: file type = {self.ftype}")
  1449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1450. del bid # unused
  1451. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1452. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1453. n_embd = self.hparams["d_model"]
  1454. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1455. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1456. # But llama.cpp moe graph works differently
  1457. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1458. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1459. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1460. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1461. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1462. experts = False
  1463. for exp_tensor_name in exp_tensor_names.keys():
  1464. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1465. experts = True
  1466. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1467. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1468. data_torch = data_torch.permute(*permute_tensor)
  1469. break
  1470. # map tensor names
  1471. # In MoE models the ffn tensors are typically most of the model weights,
  1472. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1473. # Every other model has the weight names ending in .weight,
  1474. # let's assume that is the convention which is not the case for dbrx:
  1475. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1476. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1477. return [(new_name, data_torch)]
  1478. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1479. del name, new_name, bid # unused
  1480. return n_dims > 1
  1481. @Model.register("MiniCPMForCausalLM")
  1482. class MiniCPMModel(Model):
  1483. model_arch = gguf.MODEL_ARCH.MINICPM
  1484. def set_gguf_parameters(self):
  1485. block_count = self.hparams["num_hidden_layers"]
  1486. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1487. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1488. self.gguf_writer.add_block_count(block_count)
  1489. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1490. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1491. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1492. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1493. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1494. self.gguf_writer.add_file_type(self.ftype)
  1495. def set_vocab(self):
  1496. self._set_vocab_llama_hf()
  1497. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1498. if n_kv_head is not None and n_head != n_kv_head:
  1499. n_head //= n_kv_head
  1500. return (
  1501. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1502. .swapaxes(1, 2)
  1503. .reshape(weights.shape)
  1504. )
  1505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1506. del bid # unused
  1507. n_head = self.hparams["num_attention_heads"]
  1508. n_kv_head = self.hparams.get("num_key_value_heads")
  1509. # HF models permute some of the tensors, so we need to undo that
  1510. if name.endswith(("q_proj.weight")):
  1511. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1512. if name.endswith(("k_proj.weight")):
  1513. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1514. return [(self.map_tensor_name(name), data_torch)]
  1515. @Model.register("MiniCPM3ForCausalLM")
  1516. class MiniCPM3Model(Model):
  1517. model_arch = gguf.MODEL_ARCH.MINICPM3
  1518. def set_gguf_parameters(self):
  1519. hparams = self.hparams
  1520. self.gguf_writer.add_file_type(self.ftype)
  1521. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1522. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1523. self.gguf_writer.add_block_count(self.block_count)
  1524. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1525. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1526. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1527. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1528. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1529. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1530. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1531. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1532. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1533. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1534. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1535. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1536. if rope_scaling is not None:
  1537. rope_dims = self.hparams["qk_rope_head_dim"]
  1538. long_factors = rope_scaling.get('long_factor', None)
  1539. short_factors = rope_scaling.get('short_factor', None)
  1540. if long_factors is None or short_factors is None:
  1541. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1542. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1543. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1544. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1545. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1546. def set_vocab(self):
  1547. self._set_vocab_sentencepiece()
  1548. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1549. if n_kv_head is not None and n_head != n_kv_head:
  1550. n_head //= n_kv_head
  1551. return (
  1552. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1553. .swapaxes(1, 2)
  1554. .reshape(weights.shape)
  1555. )
  1556. @Model.register("QWenLMHeadModel")
  1557. class QwenModel(Model):
  1558. model_arch = gguf.MODEL_ARCH.QWEN
  1559. @staticmethod
  1560. def token_bytes_to_string(b):
  1561. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1562. byte_encoder = bytes_to_unicode()
  1563. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1564. @staticmethod
  1565. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1566. parts = [bytes([b]) for b in token]
  1567. while True:
  1568. min_idx = None
  1569. min_rank = None
  1570. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1571. rank = mergeable_ranks.get(pair[0] + pair[1])
  1572. if rank is not None and (min_rank is None or rank < min_rank):
  1573. min_idx = i
  1574. min_rank = rank
  1575. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1576. break
  1577. assert min_idx is not None
  1578. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1579. return parts
  1580. def set_vocab(self):
  1581. self._set_vocab_qwen()
  1582. def set_gguf_parameters(self):
  1583. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1584. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1585. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1586. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1587. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1588. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1589. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1590. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1591. self.gguf_writer.add_file_type(self.ftype)
  1592. @Model.register("Qwen2ForCausalLM")
  1593. class Qwen2Model(Model):
  1594. model_arch = gguf.MODEL_ARCH.QWEN2
  1595. def set_vocab(self):
  1596. try:
  1597. self._set_vocab_sentencepiece()
  1598. except FileNotFoundError:
  1599. self._set_vocab_gpt2()
  1600. @Model.register("Qwen2MoeForCausalLM")
  1601. class Qwen2MoeModel(Model):
  1602. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1603. def set_gguf_parameters(self):
  1604. super().set_gguf_parameters()
  1605. if (n_experts := self.hparams.get("num_experts")) is not None:
  1606. self.gguf_writer.add_expert_count(n_experts)
  1607. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1608. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1609. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1610. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1611. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1612. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1613. _experts: list[dict[str, Tensor]] | None = None
  1614. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1615. # process the experts separately
  1616. if name.find("experts") != -1:
  1617. n_experts = self.hparams["num_experts"]
  1618. assert bid is not None
  1619. if self._experts is None:
  1620. self._experts = [{} for _ in range(self.block_count)]
  1621. self._experts[bid][name] = data_torch
  1622. if len(self._experts[bid]) >= n_experts * 3:
  1623. tensors: list[tuple[str, Tensor]] = []
  1624. # merge the experts into a single 3d tensor
  1625. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1626. datas: list[Tensor] = []
  1627. for xid in range(n_experts):
  1628. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1629. datas.append(self._experts[bid][ename])
  1630. del self._experts[bid][ename]
  1631. data_torch = torch.stack(datas, dim=0)
  1632. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1633. new_name = self.map_tensor_name(merged_name)
  1634. tensors.append((new_name, data_torch))
  1635. return tensors
  1636. else:
  1637. return []
  1638. return [(self.map_tensor_name(name), data_torch)]
  1639. def prepare_tensors(self):
  1640. super().prepare_tensors()
  1641. if self._experts is not None:
  1642. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1643. experts = [k for d in self._experts for k in d.keys()]
  1644. if len(experts) > 0:
  1645. raise ValueError(f"Unprocessed experts: {experts}")
  1646. @Model.register("GPT2LMHeadModel")
  1647. class GPT2Model(Model):
  1648. model_arch = gguf.MODEL_ARCH.GPT2
  1649. def set_gguf_parameters(self):
  1650. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1651. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1652. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1653. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1654. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1655. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1656. self.gguf_writer.add_file_type(self.ftype)
  1657. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1658. del bid # unused
  1659. tensors: list[tuple[str, Tensor]] = []
  1660. # we don't need these
  1661. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1662. return tensors
  1663. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1664. data_torch = data_torch.transpose(1, 0)
  1665. new_name = self.map_tensor_name(name)
  1666. tensors.append((new_name, data_torch))
  1667. # note: GPT2 output is tied to (same as) wte in original model
  1668. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1669. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1670. return tensors
  1671. @Model.register("PhiForCausalLM")
  1672. class Phi2Model(Model):
  1673. model_arch = gguf.MODEL_ARCH.PHI2
  1674. def set_gguf_parameters(self):
  1675. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1676. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1677. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1678. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1679. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1680. self.gguf_writer.add_embedding_length(n_embd)
  1681. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1682. self.gguf_writer.add_block_count(block_count)
  1683. self.gguf_writer.add_head_count(n_head)
  1684. self.gguf_writer.add_head_count_kv(n_head)
  1685. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1686. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1687. self.gguf_writer.add_file_type(self.ftype)
  1688. self.gguf_writer.add_add_bos_token(False)
  1689. @Model.register("Phi3ForCausalLM")
  1690. class Phi3MiniModel(Model):
  1691. model_arch = gguf.MODEL_ARCH.PHI3
  1692. def set_vocab(self):
  1693. from sentencepiece import SentencePieceProcessor
  1694. tokenizer_path = self.dir_model / 'tokenizer.model'
  1695. if not tokenizer_path.is_file():
  1696. raise ValueError(f'Error: Missing {tokenizer_path}')
  1697. tokenizer = SentencePieceProcessor()
  1698. tokenizer.LoadFromFile(str(tokenizer_path))
  1699. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1700. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1701. scores: list[float] = [-10000.0] * vocab_size
  1702. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1703. for token_id in range(tokenizer.vocab_size()):
  1704. piece = tokenizer.IdToPiece(token_id)
  1705. text = piece.encode("utf-8")
  1706. score = tokenizer.GetScore(token_id)
  1707. toktype = SentencePieceTokenTypes.NORMAL
  1708. if tokenizer.IsUnknown(token_id):
  1709. toktype = SentencePieceTokenTypes.UNKNOWN
  1710. elif tokenizer.IsControl(token_id):
  1711. toktype = SentencePieceTokenTypes.CONTROL
  1712. elif tokenizer.IsUnused(token_id):
  1713. toktype = SentencePieceTokenTypes.UNUSED
  1714. elif tokenizer.IsByte(token_id):
  1715. toktype = SentencePieceTokenTypes.BYTE
  1716. tokens[token_id] = text
  1717. scores[token_id] = score
  1718. toktypes[token_id] = toktype
  1719. added_tokens_file = self.dir_model / 'added_tokens.json'
  1720. if added_tokens_file.is_file():
  1721. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1722. added_tokens_json = json.load(f)
  1723. for key in added_tokens_json:
  1724. token_id = added_tokens_json[key]
  1725. if token_id >= vocab_size:
  1726. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1727. continue
  1728. tokens[token_id] = key.encode("utf-8")
  1729. scores[token_id] = -1000.0
  1730. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1731. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1732. if tokenizer_config_file.is_file():
  1733. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1734. tokenizer_config_json = json.load(f)
  1735. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1736. for token_id, foken_data in added_tokens_decoder.items():
  1737. token_id = int(token_id)
  1738. token = foken_data["content"].encode("utf-8")
  1739. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1740. if tokens[token_id] != token:
  1741. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1742. tokens[token_id] = token
  1743. scores[token_id] = -1000.0
  1744. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1745. if foken_data.get("special"):
  1746. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1747. tokenizer_file = self.dir_model / 'tokenizer.json'
  1748. if tokenizer_file.is_file():
  1749. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1750. tokenizer_json = json.load(f)
  1751. added_tokens = tokenizer_json.get("added_tokens", [])
  1752. for foken_data in added_tokens:
  1753. token_id = int(foken_data["id"])
  1754. token = foken_data["content"].encode("utf-8")
  1755. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1756. if tokens[token_id] != token:
  1757. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1758. tokens[token_id] = token
  1759. scores[token_id] = -1000.0
  1760. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1761. if foken_data.get("special"):
  1762. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1763. self.gguf_writer.add_tokenizer_model("llama")
  1764. self.gguf_writer.add_tokenizer_pre("default")
  1765. self.gguf_writer.add_token_list(tokens)
  1766. self.gguf_writer.add_token_scores(scores)
  1767. self.gguf_writer.add_token_types(toktypes)
  1768. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1769. special_vocab.add_to_gguf(self.gguf_writer)
  1770. def set_gguf_parameters(self):
  1771. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1772. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1773. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1774. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1775. rms_eps = self.find_hparam(["rms_norm_eps"])
  1776. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1777. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1778. rope_dims = n_embd // n_head
  1779. self.gguf_writer.add_context_length(max_pos_embds)
  1780. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1781. self.gguf_writer.add_embedding_length(n_embd)
  1782. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1783. self.gguf_writer.add_block_count(block_count)
  1784. self.gguf_writer.add_head_count(n_head)
  1785. self.gguf_writer.add_head_count_kv(n_head_kv)
  1786. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1787. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1788. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1789. self.gguf_writer.add_file_type(self.ftype)
  1790. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1791. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1792. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1793. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1794. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1795. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1796. rope_dims = n_embd // n_head
  1797. # write rope scaling for long context (128k) model
  1798. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1799. if rope_scaling is None:
  1800. return
  1801. scale = max_pos_embds / orig_max_pos_embds
  1802. rope_scaling_type = rope_scaling.get('type', '').lower()
  1803. if len(rope_scaling_type) == 0:
  1804. raise KeyError('Missing the required key rope_scaling.type')
  1805. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1806. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1807. elif rope_scaling_type == 'yarn':
  1808. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1809. else:
  1810. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1811. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1812. long_factors = rope_scaling.get('long_factor', None)
  1813. short_factors = rope_scaling.get('short_factor', None)
  1814. if long_factors is None or short_factors is None:
  1815. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1816. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1817. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1818. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1819. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1820. @Model.register("PlamoForCausalLM")
  1821. class PlamoModel(Model):
  1822. model_arch = gguf.MODEL_ARCH.PLAMO
  1823. def set_vocab(self):
  1824. self._set_vocab_sentencepiece()
  1825. def set_gguf_parameters(self):
  1826. hparams = self.hparams
  1827. block_count = hparams["num_hidden_layers"]
  1828. self.gguf_writer.add_context_length(4096) # not in config.json
  1829. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1830. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1831. self.gguf_writer.add_block_count(block_count)
  1832. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1833. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1834. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1835. self.gguf_writer.add_file_type(self.ftype)
  1836. def shuffle_attn_q_weight(self, data_torch):
  1837. assert data_torch.size() == (5120, 5120)
  1838. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1839. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1840. data_torch = torch.reshape(data_torch, (5120, 5120))
  1841. return data_torch
  1842. def shuffle_attn_output_weight(self, data_torch):
  1843. assert data_torch.size() == (5120, 5120)
  1844. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1845. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1846. data_torch = torch.reshape(data_torch, (5120, 5120))
  1847. return data_torch
  1848. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1849. del bid # unused
  1850. new_name = self.map_tensor_name(name)
  1851. # shuffle for broadcasting of gqa in ggml_mul_mat
  1852. if new_name.endswith("attn_q.weight"):
  1853. data_torch = self.shuffle_attn_q_weight(data_torch)
  1854. elif new_name.endswith("attn_output.weight"):
  1855. data_torch = self.shuffle_attn_output_weight(data_torch)
  1856. return [(new_name, data_torch)]
  1857. @Model.register("CodeShellForCausalLM")
  1858. class CodeShellModel(Model):
  1859. model_arch = gguf.MODEL_ARCH.CODESHELL
  1860. def set_gguf_parameters(self):
  1861. block_count = self.hparams["n_layer"]
  1862. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1863. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1864. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1865. self.gguf_writer.add_block_count(block_count)
  1866. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1867. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1868. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1869. self.gguf_writer.add_file_type(self.ftype)
  1870. self.gguf_writer.add_rope_freq_base(10000.0)
  1871. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1872. self.gguf_writer.add_rope_scaling_factor(1.0)
  1873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1874. del bid # unused
  1875. new_name = self.map_tensor_name(name)
  1876. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1877. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1878. assert self.tensor_names is not None
  1879. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1880. # copy tok_embd.weight to output.weight
  1881. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1882. return tensors
  1883. @Model.register("InternLM2ForCausalLM")
  1884. class InternLM2Model(Model):
  1885. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1886. def set_vocab(self):
  1887. # (TODO): Is there a better way?
  1888. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1889. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1890. # recognized as an empty string in C++.
  1891. from sentencepiece import SentencePieceProcessor
  1892. from sentencepiece import sentencepiece_model_pb2 as model
  1893. tokenizer_path = self.dir_model / 'tokenizer.model'
  1894. tokens: list[bytes] = []
  1895. scores: list[float] = []
  1896. toktypes: list[int] = []
  1897. if not tokenizer_path.is_file():
  1898. logger.error(f'Error: Missing {tokenizer_path}')
  1899. sys.exit(1)
  1900. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1901. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1902. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1903. tokenizer = SentencePieceProcessor()
  1904. tokenizer.LoadFromFile(str(tokenizer_path))
  1905. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1906. for token_id in range(vocab_size):
  1907. piece = tokenizer.IdToPiece(token_id)
  1908. text = piece.encode("utf-8")
  1909. score = tokenizer.GetScore(token_id)
  1910. if text == b"\x00":
  1911. # (TODO): fixme
  1912. # Hack here and replace the \x00 characters.
  1913. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1914. text = "🐉".encode("utf-8")
  1915. toktype = SentencePieceTokenTypes.NORMAL
  1916. if tokenizer.IsUnknown(token_id):
  1917. toktype = SentencePieceTokenTypes.UNKNOWN
  1918. elif tokenizer.IsControl(token_id):
  1919. toktype = SentencePieceTokenTypes.CONTROL
  1920. elif tokenizer.IsUnused(token_id):
  1921. toktype = SentencePieceTokenTypes.UNUSED
  1922. elif tokenizer.IsByte(token_id):
  1923. toktype = SentencePieceTokenTypes.BYTE
  1924. # take care of ununsed raw token
  1925. if piece.startswith('[UNUSED'):
  1926. toktype = SentencePieceTokenTypes.UNUSED
  1927. tokens.append(text)
  1928. scores.append(score)
  1929. toktypes.append(toktype)
  1930. added_tokens_file = self.dir_model / 'added_tokens.json'
  1931. if added_tokens_file.is_file():
  1932. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1933. added_tokens_json = json.load(f)
  1934. for key in added_tokens_json:
  1935. tokens.append(key.encode("utf-8"))
  1936. scores.append(-1000.0)
  1937. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1938. chat_eos_token = '<|im_end|>'
  1939. chat_eos_token_id = None
  1940. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1941. if tokenizer_config_file.is_file():
  1942. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1943. tokenizer_config_json = json.load(f)
  1944. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1945. for token_id, foken_data in added_tokens_decoder.items():
  1946. token_id = int(token_id)
  1947. token = foken_data["content"]
  1948. if token == chat_eos_token:
  1949. chat_eos_token_id = token_id
  1950. token = token.encode("utf-8")
  1951. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1952. if tokens[token_id] != token:
  1953. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1954. tokens[token_id] = token
  1955. scores[token_id] = -1000.0
  1956. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1957. if foken_data.get("special"):
  1958. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1959. tokenizer_file = self.dir_model / 'tokenizer.json'
  1960. if tokenizer_file.is_file():
  1961. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1962. tokenizer_json = json.load(f)
  1963. added_tokens = tokenizer_json.get("added_tokens", [])
  1964. for foken_data in added_tokens:
  1965. token_id = int(foken_data["id"])
  1966. token = foken_data["content"]
  1967. if token == chat_eos_token:
  1968. chat_eos_token_id = token_id
  1969. token = token.encode("utf-8")
  1970. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1971. if tokens[token_id] != token:
  1972. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1973. tokens[token_id] = token
  1974. scores[token_id] = -1000.0
  1975. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1976. if foken_data.get("special"):
  1977. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1978. self.gguf_writer.add_tokenizer_model("llama")
  1979. self.gguf_writer.add_tokenizer_pre("default")
  1980. self.gguf_writer.add_token_list(tokens)
  1981. self.gguf_writer.add_token_scores(scores)
  1982. self.gguf_writer.add_token_types(toktypes)
  1983. self.gguf_writer.add_add_space_prefix(add_prefix)
  1984. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1985. old_eos = special_vocab.special_token_ids["eos"]
  1986. if chat_eos_token_id is not None:
  1987. # For the chat model, we replace the eos with '<|im_end|>'.
  1988. # TODO: this is a hack, should be fixed
  1989. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1990. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1991. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1992. " in chat mode so that the conversation can end normally.")
  1993. special_vocab.add_to_gguf(self.gguf_writer)
  1994. def set_gguf_parameters(self):
  1995. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1996. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1997. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1998. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1999. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2000. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2001. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2002. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2003. self.gguf_writer.add_file_type(self.ftype)
  2004. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2005. if self.hparams["rope_scaling"].get("type") == "linear":
  2006. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2007. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2009. num_heads = self.hparams["num_attention_heads"]
  2010. num_kv_heads = self.hparams["num_key_value_heads"]
  2011. n_embd = self.hparams["hidden_size"]
  2012. q_per_kv = num_heads // num_kv_heads
  2013. head_dim = n_embd // num_heads
  2014. num_groups = num_heads // q_per_kv
  2015. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2016. qkv = data_torch
  2017. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2018. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2019. # The model weights of q and k equire additional reshape.
  2020. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2021. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2022. v = v.reshape((-1, v.shape[-1]))
  2023. return [
  2024. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2025. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2026. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2027. ]
  2028. else:
  2029. return [(self.map_tensor_name(name), data_torch)]
  2030. @Model.register("BertModel", "CamembertModel")
  2031. class BertModel(Model):
  2032. model_arch = gguf.MODEL_ARCH.BERT
  2033. def __init__(self, *args, **kwargs):
  2034. super().__init__(*args, **kwargs)
  2035. self.vocab_size = None
  2036. def set_gguf_parameters(self):
  2037. super().set_gguf_parameters()
  2038. self.gguf_writer.add_causal_attention(False)
  2039. # get pooling path
  2040. pooling_path = None
  2041. module_path = self.dir_model / "modules.json"
  2042. if module_path.is_file():
  2043. with open(module_path, encoding="utf-8") as f:
  2044. modules = json.load(f)
  2045. for mod in modules:
  2046. if mod["type"] == "sentence_transformers.models.Pooling":
  2047. pooling_path = mod["path"]
  2048. break
  2049. # get pooling type
  2050. if pooling_path is not None:
  2051. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2052. pooling = json.load(f)
  2053. if pooling["pooling_mode_mean_tokens"]:
  2054. pooling_type = gguf.PoolingType.MEAN
  2055. elif pooling["pooling_mode_cls_token"]:
  2056. pooling_type = gguf.PoolingType.CLS
  2057. else:
  2058. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2059. self.gguf_writer.add_pooling_type(pooling_type)
  2060. def set_vocab(self):
  2061. tokens, toktypes, tokpre = self.get_vocab_base()
  2062. self.vocab_size = len(tokens)
  2063. # we need this to validate the size of the token_type embeddings
  2064. # though currently we are passing all zeros to the token_type embeddings
  2065. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2066. # convert to phantom space vocab
  2067. def phantom(tok):
  2068. if tok.startswith("[") and tok.endswith("]"):
  2069. return tok
  2070. if tok.startswith("##"):
  2071. return tok[2:]
  2072. return "\u2581" + tok
  2073. tokens = list(map(phantom, tokens))
  2074. # add vocab to gguf
  2075. self.gguf_writer.add_tokenizer_model("bert")
  2076. self.gguf_writer.add_tokenizer_pre(tokpre)
  2077. self.gguf_writer.add_token_list(tokens)
  2078. self.gguf_writer.add_token_types(toktypes)
  2079. # handle special tokens
  2080. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2081. special_vocab.add_to_gguf(self.gguf_writer)
  2082. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2083. del bid # unused
  2084. # we are only using BERT for embeddings so we don't need the pooling layer
  2085. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2086. return [] # we don't need these
  2087. return [(self.map_tensor_name(name), data_torch)]
  2088. @Model.register("NomicBertModel")
  2089. class NomicBertModel(BertModel):
  2090. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2091. def __init__(self, *args, **kwargs):
  2092. super().__init__(*args, **kwargs)
  2093. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2094. self.hparams["n_ctx"] = 2048
  2095. # SwigLU activation
  2096. assert self.hparams["activation_function"] == "swiglu"
  2097. # this doesn't do anything in the HF version
  2098. assert self.hparams["causal"] is False
  2099. # no bias tensors
  2100. assert self.hparams["qkv_proj_bias"] is False
  2101. assert self.hparams["mlp_fc1_bias"] is False
  2102. assert self.hparams["mlp_fc2_bias"] is False
  2103. # norm at end of layer
  2104. assert self.hparams["prenorm"] is False
  2105. # standard RoPE
  2106. assert self.hparams["rotary_emb_fraction"] == 1.0
  2107. assert self.hparams["rotary_emb_interleaved"] is False
  2108. assert self.hparams["rotary_emb_scale_base"] is None
  2109. def set_gguf_parameters(self):
  2110. super().set_gguf_parameters()
  2111. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2112. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2113. class XLMRobertaModel(BertModel):
  2114. model_arch = gguf.MODEL_ARCH.BERT
  2115. def __init__(self, *args, **kwargs):
  2116. super().__init__(*args, **kwargs)
  2117. # we need the pad_token_id to know how to chop down position_embd matrix
  2118. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2119. self._position_offset = 1 + pad_token_id
  2120. if "max_position_embeddings" in self.hparams:
  2121. self.hparams["max_position_embeddings"] -= self._position_offset
  2122. else:
  2123. self._position_offset = None
  2124. def set_vocab(self):
  2125. # to avoid TypeError: Descriptors cannot be created directly
  2126. # exception when importing sentencepiece_model_pb2
  2127. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2128. from sentencepiece import SentencePieceProcessor
  2129. from sentencepiece import sentencepiece_model_pb2 as model
  2130. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2131. if not tokenizer_path.is_file():
  2132. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2133. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2134. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2135. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2136. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2137. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2138. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2139. tokenizer = SentencePieceProcessor()
  2140. tokenizer.LoadFromFile(str(tokenizer_path))
  2141. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2142. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2143. scores: list[float] = [-10000.0] * vocab_size
  2144. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2145. for token_id in range(tokenizer.vocab_size()):
  2146. piece = tokenizer.IdToPiece(token_id)
  2147. text = piece.encode("utf-8")
  2148. score = tokenizer.GetScore(token_id)
  2149. toktype = SentencePieceTokenTypes.NORMAL
  2150. if tokenizer.IsUnknown(token_id):
  2151. toktype = SentencePieceTokenTypes.UNKNOWN
  2152. elif tokenizer.IsControl(token_id):
  2153. toktype = SentencePieceTokenTypes.CONTROL
  2154. elif tokenizer.IsUnused(token_id):
  2155. toktype = SentencePieceTokenTypes.UNUSED
  2156. elif tokenizer.IsByte(token_id):
  2157. toktype = SentencePieceTokenTypes.BYTE
  2158. tokens[token_id] = text
  2159. scores[token_id] = score
  2160. toktypes[token_id] = toktype
  2161. if vocab_size > len(tokens):
  2162. pad_count = vocab_size - len(tokens)
  2163. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2164. for i in range(1, pad_count + 1):
  2165. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2166. scores.append(-1000.0)
  2167. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2168. # realign tokens (see HF tokenizer code)
  2169. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2170. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2171. toktypes = [
  2172. SentencePieceTokenTypes.CONTROL,
  2173. SentencePieceTokenTypes.CONTROL,
  2174. SentencePieceTokenTypes.CONTROL,
  2175. SentencePieceTokenTypes.UNKNOWN,
  2176. ] + toktypes[3:-1]
  2177. self.gguf_writer.add_tokenizer_model("t5")
  2178. self.gguf_writer.add_tokenizer_pre("default")
  2179. self.gguf_writer.add_token_list(tokens)
  2180. self.gguf_writer.add_token_scores(scores)
  2181. self.gguf_writer.add_token_types(toktypes)
  2182. self.gguf_writer.add_add_space_prefix(add_prefix)
  2183. self.gguf_writer.add_token_type_count(1)
  2184. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2185. if precompiled_charsmap:
  2186. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2187. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2188. special_vocab.add_to_gguf(self.gguf_writer)
  2189. self.gguf_writer.add_add_bos_token(True)
  2190. self.gguf_writer.add_add_eos_token(True)
  2191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2192. # if name starts with "roberta.", remove the prefix
  2193. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2194. if name.startswith("roberta."):
  2195. name = name[8:]
  2196. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2197. if name == "embeddings.position_embeddings.weight":
  2198. if self._position_offset is not None:
  2199. data_torch = data_torch[self._position_offset:,:]
  2200. return super().modify_tensors(data_torch, name, bid)
  2201. @Model.register("GemmaForCausalLM")
  2202. class GemmaModel(Model):
  2203. model_arch = gguf.MODEL_ARCH.GEMMA
  2204. def set_vocab(self):
  2205. self._set_vocab_sentencepiece()
  2206. # TODO: these special tokens should be exported only for the CodeGemma family
  2207. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2208. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2209. special_vocab._set_special_token("prefix", 67)
  2210. special_vocab._set_special_token("suffix", 69)
  2211. special_vocab._set_special_token("middle", 68)
  2212. special_vocab._set_special_token("fsep", 70)
  2213. special_vocab._set_special_token("eot", 107)
  2214. special_vocab.chat_template = None # do not add it twice
  2215. special_vocab.add_to_gguf(self.gguf_writer)
  2216. self.gguf_writer.add_add_space_prefix(False)
  2217. def set_gguf_parameters(self):
  2218. hparams = self.hparams
  2219. block_count = hparams["num_hidden_layers"]
  2220. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2221. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2222. self.gguf_writer.add_block_count(block_count)
  2223. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2224. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2225. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2226. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2227. self.gguf_writer.add_key_length(hparams["head_dim"])
  2228. self.gguf_writer.add_value_length(hparams["head_dim"])
  2229. self.gguf_writer.add_file_type(self.ftype)
  2230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2231. del bid # unused
  2232. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2233. # To prevent errors, skip loading lm_head.weight.
  2234. if name == "lm_head.weight":
  2235. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2236. return []
  2237. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2238. if name.endswith("norm.weight"):
  2239. data_torch = data_torch + 1
  2240. return [(self.map_tensor_name(name), data_torch)]
  2241. @Model.register("Gemma2ForCausalLM")
  2242. class Gemma2Model(Model):
  2243. model_arch = gguf.MODEL_ARCH.GEMMA2
  2244. def set_vocab(self):
  2245. self._set_vocab_sentencepiece()
  2246. self.gguf_writer.add_add_space_prefix(False)
  2247. def set_gguf_parameters(self):
  2248. hparams = self.hparams
  2249. block_count = hparams["num_hidden_layers"]
  2250. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2251. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2252. self.gguf_writer.add_block_count(block_count)
  2253. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2254. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2255. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2256. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2257. self.gguf_writer.add_key_length(hparams["head_dim"])
  2258. self.gguf_writer.add_value_length(hparams["head_dim"])
  2259. self.gguf_writer.add_file_type(self.ftype)
  2260. self.gguf_writer.add_attn_logit_softcapping(
  2261. self.hparams["attn_logit_softcapping"]
  2262. )
  2263. self.gguf_writer.add_final_logit_softcapping(
  2264. self.hparams["final_logit_softcapping"]
  2265. )
  2266. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2268. del bid # unused
  2269. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2270. # To prevent errors, skip loading lm_head.weight.
  2271. if name == "lm_head.weight":
  2272. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2273. return []
  2274. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2275. if name.endswith("norm.weight"):
  2276. data_torch = data_torch + 1
  2277. return [(self.map_tensor_name(name), data_torch)]
  2278. @Model.register("Starcoder2ForCausalLM")
  2279. class StarCoder2Model(Model):
  2280. model_arch = gguf.MODEL_ARCH.STARCODER2
  2281. @Model.register("Rwkv6ForCausalLM")
  2282. class Rwkv6Model(Model):
  2283. model_arch = gguf.MODEL_ARCH.RWKV6
  2284. def set_vocab(self):
  2285. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2286. vocab_size = self.hparams.get("vocab_size", 65536)
  2287. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2288. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2289. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2290. lines = f.readlines()
  2291. for line in lines:
  2292. parts = line.split(' ')
  2293. assert len(parts) >= 3
  2294. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2295. token = token.encode("utf-8") if isinstance(token, str) else token
  2296. assert isinstance(token, bytes)
  2297. assert len(token) == token_len
  2298. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2299. tokens.append(token_text.encode("utf-8"))
  2300. toktypes.append(gguf.TokenType.NORMAL)
  2301. remainder = vocab_size - len(tokens)
  2302. assert remainder >= 0
  2303. for i in range(len(tokens), vocab_size):
  2304. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2305. toktypes.append(gguf.TokenType.UNUSED)
  2306. self.gguf_writer.add_tokenizer_model("rwkv")
  2307. self.gguf_writer.add_token_list(tokens)
  2308. self.gguf_writer.add_token_types(toktypes)
  2309. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2310. special_vocab.chat_template = "rwkv-world"
  2311. # hack: Add '\n\n' as the EOT token to make it chat normally
  2312. special_vocab._set_special_token("eot", 261)
  2313. special_vocab.add_to_gguf(self.gguf_writer)
  2314. def set_gguf_parameters(self):
  2315. block_count = self.hparams["num_hidden_layers"]
  2316. head_size = self.hparams["head_size"]
  2317. hidden_size = self.hparams["hidden_size"]
  2318. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2319. rescale_every_n_layers = self.hparams["rescale_every"]
  2320. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2321. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2322. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2323. # RWKV isn't context limited
  2324. self.gguf_writer.add_context_length(1048576)
  2325. self.gguf_writer.add_embedding_length(hidden_size)
  2326. self.gguf_writer.add_block_count(block_count)
  2327. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2328. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2329. self.gguf_writer.add_wkv_head_size(head_size)
  2330. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2331. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2332. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2333. self.gguf_writer.add_file_type(self.ftype)
  2334. # required by llama.cpp, unused
  2335. self.gguf_writer.add_head_count(0)
  2336. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2337. new_name = self.map_tensor_name(name)
  2338. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2339. new_name += ".weight"
  2340. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2341. data_torch = data_torch.transpose(0, 1)
  2342. if new_name.endswith("time_mix_w2.weight"):
  2343. data_torch = data_torch.permute(0, 2, 1)
  2344. rescale_every_n_layers = self.hparams["rescale_every"]
  2345. if rescale_every_n_layers > 0:
  2346. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2347. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2348. yield (new_name, data_torch)
  2349. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2350. class MambaModel(Model):
  2351. model_arch = gguf.MODEL_ARCH.MAMBA
  2352. def set_vocab(self):
  2353. vocab_size = self.hparams["vocab_size"]
  2354. # Round vocab size to next multiple of 8
  2355. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2356. # pad using ceiling division
  2357. # ref: https://stackoverflow.com/a/17511341/22827863
  2358. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2359. self.hparams["vocab_size"] = vocab_size
  2360. if (self.dir_model / "tokenizer.json").is_file():
  2361. self._set_vocab_gpt2()
  2362. elif (self.dir_model / "tokenizer.model").is_file():
  2363. self._set_vocab_sentencepiece()
  2364. else:
  2365. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2366. self._set_vocab_builtin("gpt-neox", vocab_size)
  2367. def set_gguf_parameters(self):
  2368. d_model = self.find_hparam(["hidden_size", "d_model"])
  2369. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2370. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2371. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2372. # ceiling division
  2373. # ref: https://stackoverflow.com/a/17511341/22827863
  2374. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2375. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2376. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2377. use_dt_b_c_norm = False
  2378. # For falconmamba we do apply RMS norm on B / DT and C layers
  2379. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2380. use_dt_b_c_norm = True
  2381. # Fail early for models which don't have a block expansion factor of 2
  2382. assert d_inner == 2 * d_model
  2383. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2384. self.gguf_writer.add_embedding_length(d_model)
  2385. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2386. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2387. self.gguf_writer.add_block_count(self.block_count)
  2388. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2389. self.gguf_writer.add_ssm_inner_size(d_inner)
  2390. self.gguf_writer.add_ssm_state_size(d_state)
  2391. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2392. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2393. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2394. self.gguf_writer.add_file_type(self.ftype)
  2395. _tok_embd = None
  2396. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2397. del bid # unused
  2398. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2399. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2400. new_name = self.map_tensor_name(name)
  2401. if name.endswith(".A_log"):
  2402. logger.debug("A_log --> A ==> " + new_name)
  2403. data_torch = -torch.exp(data_torch)
  2404. # assuming token_embd.weight is seen before output.weight
  2405. if self._tok_embd is not None and new_name == output_name:
  2406. if torch.equal(self._tok_embd, data_torch):
  2407. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2408. return []
  2409. elif new_name == tok_embd_name:
  2410. self._tok_embd = data_torch
  2411. return [(new_name, data_torch)]
  2412. @Model.register("CohereForCausalLM")
  2413. class CommandR2Model(Model):
  2414. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2415. def __init__(self, *args, **kwargs):
  2416. super().__init__(*args, **kwargs)
  2417. # max_position_embeddings = 8192 in config.json but model was actually
  2418. # trained on 128k context length
  2419. # aya-23 models don't have model_max_length specified
  2420. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2421. def set_gguf_parameters(self):
  2422. super().set_gguf_parameters()
  2423. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2424. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2425. @Model.register("OlmoForCausalLM")
  2426. @Model.register("OLMoForCausalLM")
  2427. class OlmoModel(Model):
  2428. model_arch = gguf.MODEL_ARCH.OLMO
  2429. def set_gguf_parameters(self):
  2430. super().set_gguf_parameters()
  2431. self.gguf_writer.add_layer_norm_eps(1e-5)
  2432. clip_qkv = self.hparams.get("clip_qkv")
  2433. if clip_qkv is not None:
  2434. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2435. # Same as super class, but permuting q_proj, k_proj
  2436. # Copied from: LlamaModel
  2437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2438. del bid # unused
  2439. n_head = self.hparams["num_attention_heads"]
  2440. n_kv_head = self.hparams.get("num_key_value_heads")
  2441. if name.endswith("q_proj.weight"):
  2442. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2443. if name.endswith("k_proj.weight"):
  2444. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2445. return [(self.map_tensor_name(name), data_torch)]
  2446. @Model.register("OlmoeForCausalLM")
  2447. class OlmoeModel(Model):
  2448. model_arch = gguf.MODEL_ARCH.OLMOE
  2449. def set_gguf_parameters(self):
  2450. super().set_gguf_parameters()
  2451. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2452. if (n_experts := self.hparams.get("num_experts")) is not None:
  2453. self.gguf_writer.add_expert_count(n_experts)
  2454. _experts: list[dict[str, Tensor]] | None = None
  2455. # Copied from: Qwen2MoeModel
  2456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2457. # process the experts separately
  2458. if name.find("experts") != -1:
  2459. n_experts = self.hparams["num_experts"]
  2460. assert bid is not None
  2461. if self._experts is None:
  2462. self._experts = [{} for _ in range(self.block_count)]
  2463. self._experts[bid][name] = data_torch
  2464. if len(self._experts[bid]) >= n_experts * 3:
  2465. tensors: list[tuple[str, Tensor]] = []
  2466. # merge the experts into a single 3d tensor
  2467. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2468. datas: list[Tensor] = []
  2469. for xid in range(n_experts):
  2470. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2471. datas.append(self._experts[bid][ename])
  2472. del self._experts[bid][ename]
  2473. data_torch = torch.stack(datas, dim=0)
  2474. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2475. new_name = self.map_tensor_name(merged_name)
  2476. tensors.append((new_name, data_torch))
  2477. return tensors
  2478. else:
  2479. return []
  2480. return [(self.map_tensor_name(name), data_torch)]
  2481. # Copied from: Qwen2MoeModel
  2482. def prepare_tensors(self):
  2483. super().prepare_tensors()
  2484. if self._experts is not None:
  2485. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2486. experts = [k for d in self._experts for k in d.keys()]
  2487. if len(experts) > 0:
  2488. raise ValueError(f"Unprocessed experts: {experts}")
  2489. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2490. class JinaBertV2Model(BertModel):
  2491. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2492. def __init__(self, *args, **kwargs):
  2493. super().__init__(*args, **kwargs)
  2494. self.intermediate_size = self.hparams["intermediate_size"]
  2495. def get_tensors(self):
  2496. for name, data in super().get_tensors():
  2497. if 'gated_layer' in name:
  2498. d1 = data[:self.intermediate_size, :]
  2499. name1 = name.replace('gated_layers', 'gated_layers_w')
  2500. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2501. d2 = data[self.intermediate_size:, :]
  2502. name2 = name.replace('gated_layers', 'gated_layers_v')
  2503. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2504. yield name1, d1
  2505. yield name2, d2
  2506. continue
  2507. yield name, data
  2508. def set_vocab(self):
  2509. tokenizer_class = 'BertTokenizer'
  2510. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2511. tokenizer_class = json.load(f)['tokenizer_class']
  2512. if tokenizer_class == 'BertTokenizer':
  2513. super().set_vocab()
  2514. elif tokenizer_class == 'RobertaTokenizer':
  2515. self._set_vocab_gpt2()
  2516. self.gguf_writer.add_token_type_count(2)
  2517. else:
  2518. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2519. self.gguf_writer.add_add_bos_token(True)
  2520. self.gguf_writer.add_add_eos_token(True)
  2521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2522. # if name starts with "bert.", remove the prefix
  2523. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2524. if name.startswith("bert."):
  2525. name = name[5:]
  2526. return super().modify_tensors(data_torch, name, bid)
  2527. @Model.register("OpenELMForCausalLM")
  2528. class OpenELMModel(Model):
  2529. model_arch = gguf.MODEL_ARCH.OPENELM
  2530. @staticmethod
  2531. def _make_divisible(v: float | int, divisor: int) -> int:
  2532. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2533. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2534. # Make sure that round down does not go down by more than 10%.
  2535. if new_v < 0.9 * v:
  2536. new_v += divisor
  2537. return new_v
  2538. def __init__(self, *args, **kwargs):
  2539. super().__init__(*args, **kwargs)
  2540. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2541. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2542. self._n_embd: int = self.hparams["model_dim"]
  2543. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2544. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2545. self._ffn_dims: list[int] = [
  2546. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2547. for multiplier in ffn_multipliers
  2548. ]
  2549. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2550. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2551. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2552. def set_vocab(self):
  2553. try:
  2554. self._set_vocab_sentencepiece()
  2555. except FileNotFoundError:
  2556. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2557. def set_gguf_parameters(self):
  2558. n_embd = self._n_embd
  2559. head_dim = self.hparams["head_dim"]
  2560. rot_pct = 1.0
  2561. assert self.block_count == len(self._num_kv_heads)
  2562. assert self.block_count == len(self._num_query_heads)
  2563. assert self.block_count == len(self._ffn_dims)
  2564. self.gguf_writer.add_block_count(self.block_count)
  2565. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2566. self.gguf_writer.add_embedding_length(n_embd)
  2567. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2568. self.gguf_writer.add_head_count(self._num_query_heads)
  2569. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2570. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2571. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2572. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2573. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2574. self.gguf_writer.add_key_length(head_dim)
  2575. self.gguf_writer.add_value_length(head_dim)
  2576. self.gguf_writer.add_file_type(self.ftype)
  2577. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2578. if "n_layers" in keys:
  2579. return self.hparams["num_transformer_layers"]
  2580. return super().find_hparam(keys, optional)
  2581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2582. # split ff
  2583. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2584. ff_dim = self._ffn_dims[bid]
  2585. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2586. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2587. return
  2588. yield (self.map_tensor_name(name), data_torch)
  2589. @Model.register("ArcticForCausalLM")
  2590. class ArcticModel(Model):
  2591. model_arch = gguf.MODEL_ARCH.ARCTIC
  2592. def set_vocab(self):
  2593. # The reason for using a custom implementation here is that the
  2594. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2595. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2596. from sentencepiece import SentencePieceProcessor
  2597. tokenizer_path = self.dir_model / 'tokenizer.model'
  2598. if not tokenizer_path.is_file():
  2599. logger.error(f'Error: Missing {tokenizer_path}')
  2600. sys.exit(1)
  2601. # Read the whole vocabulary from the tokenizer.model file
  2602. tokenizer = SentencePieceProcessor()
  2603. tokenizer.LoadFromFile(str(tokenizer_path))
  2604. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2605. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2606. scores: list[float] = [-10000.0] * vocab_size
  2607. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2608. for token_id in range(tokenizer.vocab_size()):
  2609. piece = tokenizer.IdToPiece(token_id)
  2610. text = piece.encode("utf-8")
  2611. score = tokenizer.GetScore(token_id)
  2612. toktype = SentencePieceTokenTypes.NORMAL
  2613. if tokenizer.IsUnknown(token_id):
  2614. toktype = SentencePieceTokenTypes.UNKNOWN
  2615. elif tokenizer.IsControl(token_id):
  2616. toktype = SentencePieceTokenTypes.CONTROL
  2617. elif tokenizer.IsUnused(token_id):
  2618. toktype = SentencePieceTokenTypes.UNUSED
  2619. elif tokenizer.IsByte(token_id):
  2620. toktype = SentencePieceTokenTypes.BYTE
  2621. tokens[token_id] = text
  2622. scores[token_id] = score
  2623. toktypes[token_id] = toktype
  2624. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2625. # of information about added/redefined tokens and modify them accordingly.
  2626. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2627. if tokenizer_config_file.is_file():
  2628. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2629. tokenizer_config_json = json.load(f)
  2630. if "added_tokens_decoder" in tokenizer_config_json:
  2631. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2632. for token_id, token_json in added_tokens_decoder.items():
  2633. token_id = int(token_id)
  2634. if token_id >= vocab_size:
  2635. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2636. continue
  2637. token_content = token_json["content"]
  2638. token_type = SentencePieceTokenTypes.USER_DEFINED
  2639. token_score = -10000.0
  2640. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2641. # Set the score to 0.0 as in the original tokenizer.model
  2642. if ("special" in token_json) and token_json["special"]:
  2643. if token_content == tokenizer_config_json["unk_token"]:
  2644. token_type = SentencePieceTokenTypes.UNKNOWN
  2645. else:
  2646. token_type = SentencePieceTokenTypes.CONTROL
  2647. token_score = 0.0
  2648. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2649. tokens[token_id] = token_content.encode("utf-8")
  2650. toktypes[token_id] = token_type
  2651. scores[token_id] = token_score
  2652. self.gguf_writer.add_tokenizer_model("llama")
  2653. self.gguf_writer.add_tokenizer_pre("default")
  2654. self.gguf_writer.add_token_list(tokens)
  2655. self.gguf_writer.add_token_scores(scores)
  2656. self.gguf_writer.add_token_types(toktypes)
  2657. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2658. special_vocab.add_to_gguf(self.gguf_writer)
  2659. def set_gguf_parameters(self):
  2660. super().set_gguf_parameters()
  2661. hparams = self.hparams
  2662. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2663. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2664. _experts: list[dict[str, Tensor]] | None = None
  2665. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2666. n_head = self.hparams["num_attention_heads"]
  2667. n_kv_head = self.hparams.get("num_key_value_heads")
  2668. if name.endswith("q_proj.weight"):
  2669. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2670. if name.endswith("k_proj.weight"):
  2671. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2672. # process the experts separately
  2673. if name.find("block_sparse_moe.experts") != -1:
  2674. n_experts = self.hparams["num_local_experts"]
  2675. assert bid is not None
  2676. if self._experts is None:
  2677. self._experts = [{} for _ in range(self.block_count)]
  2678. self._experts[bid][name] = data_torch
  2679. if len(self._experts[bid]) >= n_experts * 3:
  2680. tensors: list[tuple[str, Tensor]] = []
  2681. # merge the experts into a single 3d tensor
  2682. for wid in ["w1", "w2", "w3"]:
  2683. datas: list[Tensor] = []
  2684. for xid in range(n_experts):
  2685. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2686. datas.append(self._experts[bid][ename])
  2687. del self._experts[bid][ename]
  2688. data_torch = torch.stack(datas, dim=0)
  2689. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2690. new_name = self.map_tensor_name(merged_name)
  2691. tensors.append((new_name, data_torch))
  2692. return tensors
  2693. else:
  2694. return []
  2695. return [(self.map_tensor_name(name), data_torch)]
  2696. def prepare_tensors(self):
  2697. super().prepare_tensors()
  2698. if self._experts is not None:
  2699. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2700. experts = [k for d in self._experts for k in d.keys()]
  2701. if len(experts) > 0:
  2702. raise ValueError(f"Unprocessed experts: {experts}")
  2703. @Model.register("DeepseekV2ForCausalLM")
  2704. class DeepseekV2Model(Model):
  2705. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2706. def set_vocab(self):
  2707. self._set_vocab_gpt2()
  2708. def set_gguf_parameters(self):
  2709. super().set_gguf_parameters()
  2710. hparams = self.hparams
  2711. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2712. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2713. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2714. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2715. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2716. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2717. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2718. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2719. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2720. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2721. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2722. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2723. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2724. if self.hparams["rope_scaling"].get("type") == "yarn":
  2725. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2726. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2727. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2728. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2729. _experts: list[dict[str, Tensor]] | None = None
  2730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2731. # process the experts separately
  2732. if name.find("mlp.experts") != -1:
  2733. n_experts = self.hparams["n_routed_experts"]
  2734. assert bid is not None
  2735. if self._experts is None:
  2736. self._experts = [{} for _ in range(self.block_count)]
  2737. self._experts[bid][name] = data_torch
  2738. if len(self._experts[bid]) >= n_experts * 3:
  2739. tensors: list[tuple[str, Tensor]] = []
  2740. # merge the experts into a single 3d tensor
  2741. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2742. datas: list[Tensor] = []
  2743. for xid in range(n_experts):
  2744. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2745. datas.append(self._experts[bid][ename])
  2746. del self._experts[bid][ename]
  2747. data_torch = torch.stack(datas, dim=0)
  2748. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2749. new_name = self.map_tensor_name(merged_name)
  2750. tensors.append((new_name, data_torch))
  2751. return tensors
  2752. else:
  2753. return []
  2754. return [(self.map_tensor_name(name), data_torch)]
  2755. def prepare_tensors(self):
  2756. super().prepare_tensors()
  2757. if self._experts is not None:
  2758. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2759. experts = [k for d in self._experts for k in d.keys()]
  2760. if len(experts) > 0:
  2761. raise ValueError(f"Unprocessed experts: {experts}")
  2762. @Model.register("T5WithLMHeadModel")
  2763. @Model.register("T5ForConditionalGeneration")
  2764. @Model.register("MT5ForConditionalGeneration")
  2765. @Model.register("UMT5ForConditionalGeneration")
  2766. class T5Model(Model):
  2767. model_arch = gguf.MODEL_ARCH.T5
  2768. def __init__(self, *args, **kwargs):
  2769. super().__init__(*args, **kwargs)
  2770. self.shared_token_embeddings_found = False
  2771. def set_vocab(self):
  2772. # to avoid TypeError: Descriptors cannot be created directly
  2773. # exception when importing sentencepiece_model_pb2
  2774. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2775. from sentencepiece import SentencePieceProcessor
  2776. from sentencepiece import sentencepiece_model_pb2 as model
  2777. tokenizer_path = self.dir_model / 'tokenizer.model'
  2778. # many older models use spiece.model tokenizer model filename
  2779. if not tokenizer_path.is_file():
  2780. tokenizer_path = self.dir_model / 'spiece.model'
  2781. if not tokenizer_path.is_file():
  2782. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2783. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2784. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2785. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2786. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2787. # assure the tokenizer model file name is correct
  2788. assert tokenizer_path.name == 'tokenizer.model'
  2789. return self._set_vocab_sentencepiece()
  2790. else:
  2791. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2792. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2793. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2794. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2795. tokenizer = SentencePieceProcessor()
  2796. tokenizer.LoadFromFile(str(tokenizer_path))
  2797. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2798. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2799. scores: list[float] = [-10000.0] * vocab_size
  2800. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2801. for token_id in range(tokenizer.vocab_size()):
  2802. piece = tokenizer.IdToPiece(token_id)
  2803. text = piece.encode("utf-8")
  2804. score = tokenizer.GetScore(token_id)
  2805. toktype = SentencePieceTokenTypes.NORMAL
  2806. if tokenizer.IsUnknown(token_id):
  2807. toktype = SentencePieceTokenTypes.UNKNOWN
  2808. elif tokenizer.IsControl(token_id):
  2809. toktype = SentencePieceTokenTypes.CONTROL
  2810. elif tokenizer.IsUnused(token_id):
  2811. toktype = SentencePieceTokenTypes.UNUSED
  2812. elif tokenizer.IsByte(token_id):
  2813. toktype = SentencePieceTokenTypes.BYTE
  2814. tokens[token_id] = text
  2815. scores[token_id] = score
  2816. toktypes[token_id] = toktype
  2817. added_tokens_file = self.dir_model / 'added_tokens.json'
  2818. if added_tokens_file.is_file():
  2819. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2820. added_tokens_json = json.load(f)
  2821. for key in added_tokens_json:
  2822. token_id = added_tokens_json[key]
  2823. if token_id >= vocab_size:
  2824. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2825. continue
  2826. tokens[token_id] = key.encode("utf-8")
  2827. scores[token_id] = -1000.0
  2828. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2829. if vocab_size > len(tokens):
  2830. pad_count = vocab_size - len(tokens)
  2831. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2832. for i in range(1, pad_count + 1):
  2833. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2834. scores.append(-1000.0)
  2835. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2836. self.gguf_writer.add_tokenizer_model("t5")
  2837. self.gguf_writer.add_tokenizer_pre("default")
  2838. self.gguf_writer.add_token_list(tokens)
  2839. self.gguf_writer.add_token_scores(scores)
  2840. self.gguf_writer.add_token_types(toktypes)
  2841. self.gguf_writer.add_add_space_prefix(add_prefix)
  2842. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2843. if precompiled_charsmap:
  2844. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2845. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2846. special_vocab.add_to_gguf(self.gguf_writer)
  2847. self.gguf_writer.add_add_bos_token(False)
  2848. self.gguf_writer.add_add_eos_token(True)
  2849. def set_gguf_parameters(self):
  2850. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2851. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2852. n_ctx = 512
  2853. self.gguf_writer.add_context_length(n_ctx)
  2854. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2855. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2856. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2857. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2858. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2859. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2860. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2861. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2862. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2863. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2864. self.gguf_writer.add_file_type(self.ftype)
  2865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2866. del bid # unused
  2867. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2868. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2869. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2870. # and decoder and ignore the remaining ones.
  2871. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2872. if not self.shared_token_embeddings_found:
  2873. name = "shared.weight"
  2874. self.shared_token_embeddings_found = True
  2875. else:
  2876. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2877. return []
  2878. return [(self.map_tensor_name(name), data_torch)]
  2879. @Model.register("T5EncoderModel")
  2880. class T5EncoderModel(Model):
  2881. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2882. def __init__(self, *args, **kwargs):
  2883. super().__init__(*args, **kwargs)
  2884. self.shared_token_embeddings_found = False
  2885. def set_vocab(self):
  2886. # to avoid TypeError: Descriptors cannot be created directly
  2887. # exception when importing sentencepiece_model_pb2
  2888. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2889. from sentencepiece import SentencePieceProcessor
  2890. from sentencepiece import sentencepiece_model_pb2 as model
  2891. tokenizer_path = self.dir_model / 'tokenizer.model'
  2892. # many older models use spiece.model tokenizer model filename
  2893. if not tokenizer_path.is_file():
  2894. tokenizer_path = self.dir_model / 'spiece.model'
  2895. if not tokenizer_path.is_file():
  2896. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2897. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2898. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2899. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2900. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2901. # assure the tokenizer model file name is correct
  2902. assert tokenizer_path.name == 'tokenizer.model'
  2903. return self._set_vocab_sentencepiece()
  2904. else:
  2905. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2906. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2907. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2908. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2909. tokenizer = SentencePieceProcessor()
  2910. tokenizer.LoadFromFile(str(tokenizer_path))
  2911. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2912. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2913. scores: list[float] = [-10000.0] * vocab_size
  2914. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2915. for token_id in range(tokenizer.vocab_size()):
  2916. piece = tokenizer.IdToPiece(token_id)
  2917. text = piece.encode("utf-8")
  2918. score = tokenizer.GetScore(token_id)
  2919. toktype = SentencePieceTokenTypes.NORMAL
  2920. if tokenizer.IsUnknown(token_id):
  2921. toktype = SentencePieceTokenTypes.UNKNOWN
  2922. elif tokenizer.IsControl(token_id):
  2923. toktype = SentencePieceTokenTypes.CONTROL
  2924. elif tokenizer.IsUnused(token_id):
  2925. toktype = SentencePieceTokenTypes.UNUSED
  2926. elif tokenizer.IsByte(token_id):
  2927. toktype = SentencePieceTokenTypes.BYTE
  2928. tokens[token_id] = text
  2929. scores[token_id] = score
  2930. toktypes[token_id] = toktype
  2931. added_tokens_file = self.dir_model / 'added_tokens.json'
  2932. if added_tokens_file.is_file():
  2933. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2934. added_tokens_json = json.load(f)
  2935. for key in added_tokens_json:
  2936. token_id = added_tokens_json[key]
  2937. if token_id >= vocab_size:
  2938. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2939. continue
  2940. tokens[token_id] = key.encode("utf-8")
  2941. scores[token_id] = -1000.0
  2942. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2943. if vocab_size > len(tokens):
  2944. pad_count = vocab_size - len(tokens)
  2945. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2946. for i in range(1, pad_count + 1):
  2947. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2948. scores.append(-1000.0)
  2949. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2950. self.gguf_writer.add_tokenizer_model("t5")
  2951. self.gguf_writer.add_tokenizer_pre("default")
  2952. self.gguf_writer.add_token_list(tokens)
  2953. self.gguf_writer.add_token_scores(scores)
  2954. self.gguf_writer.add_token_types(toktypes)
  2955. self.gguf_writer.add_add_space_prefix(add_prefix)
  2956. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2957. if precompiled_charsmap:
  2958. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2959. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2960. special_vocab.add_to_gguf(self.gguf_writer)
  2961. self.gguf_writer.add_add_bos_token(False)
  2962. self.gguf_writer.add_add_eos_token(True)
  2963. def set_gguf_parameters(self):
  2964. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2965. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2966. n_ctx = 512
  2967. self.gguf_writer.add_context_length(n_ctx)
  2968. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2969. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2970. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2971. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2972. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2973. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2974. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2975. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2976. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2977. self.gguf_writer.add_file_type(self.ftype)
  2978. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2979. del bid # unused
  2980. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2981. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2982. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2983. # and decoder and ignore the remaining ones.
  2984. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2985. if not self.shared_token_embeddings_found:
  2986. name = "shared.weight"
  2987. self.shared_token_embeddings_found = True
  2988. else:
  2989. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2990. return []
  2991. return [(self.map_tensor_name(name), data_torch)]
  2992. @Model.register("JAISLMHeadModel")
  2993. class JaisModel(Model):
  2994. model_arch = gguf.MODEL_ARCH.JAIS
  2995. def __init__(self, *args, **kwargs):
  2996. super().__init__(*args, **kwargs)
  2997. # SwigLU activation
  2998. assert self.hparams["activation_function"] == "swiglu"
  2999. # ALiBi position embedding
  3000. assert self.hparams["position_embedding_type"] == "alibi"
  3001. # Embeddings scale
  3002. self.embeddings_scale = 1.0
  3003. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  3004. self.output_is_wte = False
  3005. if 'mup_embeddings_scale' in self.hparams:
  3006. self.output_is_wte = True # Hack (?)
  3007. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3008. elif 'embeddings_scale' in self.hparams:
  3009. self.embeddings_scale = self.hparams['embeddings_scale']
  3010. else:
  3011. assert False
  3012. self.width_scale = 1.0
  3013. if 'mup_output_alpha' in self.hparams:
  3014. assert 'mup_width_scale' in self.hparams
  3015. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3016. elif 'width_scale' in self.hparams:
  3017. self.width_scale = self.hparams['width_scale']
  3018. else:
  3019. assert False
  3020. self.max_alibi_bias = 8.0
  3021. def set_vocab(self):
  3022. self._set_vocab_gpt2()
  3023. def set_gguf_parameters(self):
  3024. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3025. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3026. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3027. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3028. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3029. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3030. self.gguf_writer.add_file_type(self.ftype)
  3031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3032. del bid # unused
  3033. tensors: list[tuple[str, Tensor]] = []
  3034. # we don't need these
  3035. if name.endswith((".attn.bias")):
  3036. return tensors
  3037. if name.endswith(("relative_pe.slopes")):
  3038. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3039. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3040. # but Jais's PyTorch model simply precalculates the slope values and places them
  3041. # in relative_pes.slopes
  3042. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3043. first_val = float(data_torch[0].item())
  3044. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3045. return tensors
  3046. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3047. data_torch = data_torch.transpose(1, 0)
  3048. new_name = self.map_tensor_name(name)
  3049. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3050. tensors.append((new_name, data_torch * self.embeddings_scale))
  3051. if self.output_is_wte:
  3052. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  3053. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3054. assert not self.output_is_wte
  3055. tensors.append((new_name, data_torch * self.width_scale))
  3056. else:
  3057. tensors.append((new_name, data_torch))
  3058. return tensors
  3059. def prepare_tensors(self):
  3060. super().prepare_tensors()
  3061. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3062. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3063. class ChatGLMModel(Model):
  3064. model_arch = gguf.MODEL_ARCH.CHATGLM
  3065. def set_vocab_chatglm3(self):
  3066. dir_model = self.dir_model
  3067. hparams = self.hparams
  3068. tokens: list[bytes] = []
  3069. toktypes: list[int] = []
  3070. scores: list[float] = []
  3071. from transformers import AutoTokenizer
  3072. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3073. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3074. assert max(tokenizer.get_vocab().values()) < vocab_size
  3075. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3076. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3077. for token_id in range(vocab_size):
  3078. piece = tokenizer._convert_id_to_token(token_id)
  3079. if token_id == 0:
  3080. piece = "<unk>"
  3081. elif token_id == 1:
  3082. piece = "<bos>"
  3083. elif token_id == 2:
  3084. piece = "<eos>"
  3085. text = piece.encode("utf-8")
  3086. score = 0.0
  3087. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3088. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3089. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3090. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3091. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3092. if piece in special_tokens:
  3093. toktype = SentencePieceTokenTypes.CONTROL
  3094. elif len(piece) == 0:
  3095. text = f"[PAD{token_id}]".encode("utf-8")
  3096. toktype = SentencePieceTokenTypes.UNUSED
  3097. else:
  3098. toktype = SentencePieceTokenTypes.USER_DEFINED
  3099. tokens.append(text)
  3100. scores.append(score)
  3101. toktypes.append(toktype)
  3102. continue
  3103. toktype = SentencePieceTokenTypes.NORMAL
  3104. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3105. toktype = SentencePieceTokenTypes.UNKNOWN
  3106. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3107. toktype = SentencePieceTokenTypes.CONTROL
  3108. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3109. toktype = SentencePieceTokenTypes.UNUSED
  3110. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3111. toktype = SentencePieceTokenTypes.BYTE
  3112. tokens.append(text)
  3113. scores.append(score)
  3114. toktypes.append(toktype)
  3115. self.gguf_writer.add_tokenizer_model("llama")
  3116. # glm3 needs prefix and suffix formatted as:
  3117. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3118. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3119. self.gguf_writer.add_token_list(tokens)
  3120. self.gguf_writer.add_token_scores(scores)
  3121. self.gguf_writer.add_token_types(toktypes)
  3122. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3123. special_vocab.add_to_gguf(self.gguf_writer)
  3124. @staticmethod
  3125. def token_bytes_to_string(b):
  3126. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3127. byte_encoder = bytes_to_unicode()
  3128. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3129. @staticmethod
  3130. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3131. parts = [bytes([b]) for b in token]
  3132. while True:
  3133. min_idx = None
  3134. min_rank = None
  3135. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3136. rank = mergeable_ranks.get(pair[0] + pair[1])
  3137. if rank is not None and (min_rank is None or rank < min_rank):
  3138. min_idx = i
  3139. min_rank = rank
  3140. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3141. break
  3142. assert min_idx is not None
  3143. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3144. return parts
  3145. def set_vocab(self):
  3146. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3147. self.set_vocab_chatglm3()
  3148. return
  3149. dir_model = self.dir_model
  3150. hparams = self.hparams
  3151. tokens: list[str] = []
  3152. toktypes: list[int] = []
  3153. from transformers import AutoTokenizer
  3154. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3155. vocab_size = hparams["padded_vocab_size"]
  3156. assert max(tokenizer.get_vocab().values()) < vocab_size
  3157. tokpre = self.get_vocab_base_pre(tokenizer)
  3158. merges = []
  3159. vocab = {}
  3160. mergeable_ranks = tokenizer.mergeable_ranks
  3161. for token, rank in mergeable_ranks.items():
  3162. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3163. if len(token) == 1:
  3164. continue
  3165. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3166. assert len(merged) >= 2 and len(merged) <= 7
  3167. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3168. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3169. added_vocab = tokenizer.get_added_vocab()
  3170. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3171. for i in range(vocab_size):
  3172. if i not in reverse_vocab:
  3173. tokens.append(f"[PAD{i}]")
  3174. toktypes.append(gguf.TokenType.UNUSED)
  3175. elif reverse_vocab[i] in added_vocab:
  3176. tokens.append(reverse_vocab[i])
  3177. if tokenizer.added_tokens_decoder[i].special:
  3178. toktypes.append(gguf.TokenType.CONTROL)
  3179. else:
  3180. toktypes.append(gguf.TokenType.USER_DEFINED)
  3181. else:
  3182. tokens.append(reverse_vocab[i])
  3183. toktypes.append(gguf.TokenType.NORMAL)
  3184. self.gguf_writer.add_tokenizer_model("gpt2")
  3185. self.gguf_writer.add_tokenizer_pre(tokpre)
  3186. self.gguf_writer.add_token_list(tokens)
  3187. self.gguf_writer.add_token_types(toktypes)
  3188. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3189. special_vocab.merges = merges
  3190. # only add special tokens when they were not already loaded from config.json
  3191. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3192. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3193. # this one is usually not in config.json anyway
  3194. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3195. special_vocab.add_to_gguf(self.gguf_writer)
  3196. def set_gguf_parameters(self):
  3197. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3198. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3199. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3200. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3201. self.gguf_writer.add_embedding_length(n_embed)
  3202. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3203. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3204. self.gguf_writer.add_head_count(n_head)
  3205. self.gguf_writer.add_head_count_kv(n_head_kv)
  3206. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3207. self.gguf_writer.add_file_type(self.ftype)
  3208. self.gguf_writer.add_rope_dimension_count(64)
  3209. self.gguf_writer.add_add_bos_token(False)
  3210. rope_freq = 10000
  3211. if "rope_ratio" in self.hparams:
  3212. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3213. self.gguf_writer.add_rope_freq_base(rope_freq)
  3214. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3215. del bid # unused
  3216. if name.endswith(".rotary_pos_emb.inv_freq"):
  3217. return []
  3218. name = name.removeprefix("transformer.")
  3219. return [(self.map_tensor_name(name), data_torch)]
  3220. @Model.register("NemotronForCausalLM")
  3221. class NemotronModel(Model):
  3222. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3223. def set_vocab(self):
  3224. self._set_vocab_sentencepiece()
  3225. self.gguf_writer.add_pad_token_id(0)
  3226. self.gguf_writer.add_unk_token_id(1)
  3227. def set_gguf_parameters(self):
  3228. super().set_gguf_parameters()
  3229. hparams = self.hparams
  3230. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3231. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3232. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3233. # * Partial RoPE
  3234. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3235. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3236. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3237. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3238. # * RopeScaling for Nemotron
  3239. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3240. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3241. else:
  3242. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3243. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3244. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3245. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3246. # model.layers.{l}.input_layernorm.weight
  3247. # model.layers.{l}.post_attention_layernorm.weight
  3248. # model.norm.weight
  3249. if name.endswith("norm.weight"):
  3250. data_torch = data_torch + 1
  3251. return [(self.map_tensor_name(name), data_torch)]
  3252. @Model.register("ExaoneForCausalLM")
  3253. class ExaoneModel(Model):
  3254. model_arch = gguf.MODEL_ARCH.EXAONE
  3255. def set_gguf_parameters(self):
  3256. hparams = self.hparams
  3257. assert (hparams["activation_function"] == "silu")
  3258. max_position_embeddings = hparams["max_position_embeddings"]
  3259. embed_dim = hparams["hidden_size"]
  3260. num_heads = hparams["num_attention_heads"]
  3261. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3262. layer_norm_eps = hparams["layer_norm_epsilon"]
  3263. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3264. num_layers = hparams["num_layers"]
  3265. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3266. # attention_dropout_rate = hparams["attention_dropout"]
  3267. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3268. # embed_dropout_rate = hparams["embed_dropout"]
  3269. self.gguf_writer.add_embedding_length(embed_dim)
  3270. self.gguf_writer.add_head_count(num_heads)
  3271. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3272. self.gguf_writer.add_context_length(max_position_embeddings)
  3273. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3274. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3275. self.gguf_writer.add_block_count(num_layers)
  3276. self.gguf_writer.add_file_type(self.ftype)
  3277. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3278. self.gguf_writer.add_rope_freq_base(rope_theta)
  3279. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3280. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3281. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3282. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3283. if hparams["rope_scaling"].get("type") == "linear":
  3284. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3285. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3286. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3287. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3288. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3289. base = self.hparams.get("rope_theta", 10000.0)
  3290. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3291. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3292. factor = rope_scaling.get("factor", 8.0)
  3293. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3294. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3295. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3296. low_freq_wavelen = old_context_len / low_freq_factor
  3297. high_freq_wavelen = old_context_len / high_freq_factor
  3298. assert low_freq_wavelen != high_freq_wavelen
  3299. rope_factors = []
  3300. for freq in freqs:
  3301. wavelen = 2 * math.pi / freq
  3302. if wavelen < high_freq_wavelen:
  3303. rope_factors.append(1)
  3304. elif wavelen > low_freq_wavelen:
  3305. rope_factors.append(factor)
  3306. else:
  3307. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3308. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3309. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3310. @Model.register("GraniteForCausalLM")
  3311. class GraniteModel(LlamaModel):
  3312. """Conversion for IBM's GraniteForCausalLM"""
  3313. model_arch = gguf.MODEL_ARCH.GRANITE
  3314. def set_gguf_parameters(self):
  3315. """Granite uses standard llama parameters with the following differences:
  3316. - No head_dim support
  3317. - New multiplier params:
  3318. - attention_scale
  3319. - embedding_scale
  3320. - residual_scale
  3321. - logits_scaling
  3322. """
  3323. if head_dim := self.hparams.pop("head_dim", None):
  3324. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3325. super().set_gguf_parameters()
  3326. # NOTE: Convert _multiplier params to _scale params for naming
  3327. # consistency
  3328. if attention_scale := self.hparams.get("attention_multiplier"):
  3329. self.gguf_writer.add_attention_scale(attention_scale)
  3330. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3331. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3332. self.gguf_writer.add_embedding_scale(embedding_scale)
  3333. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3334. if residual_scale := self.hparams.get("residual_multiplier"):
  3335. self.gguf_writer.add_residual_scale(residual_scale)
  3336. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3337. if logits_scale := self.hparams.get("logits_scaling"):
  3338. self.gguf_writer.add_logit_scale(logits_scale)
  3339. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3340. @Model.register("GraniteMoeForCausalLM")
  3341. class GraniteMoeModel(GraniteModel):
  3342. """Conversion for IBM's GraniteMoeForCausalLM"""
  3343. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3345. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3346. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3347. the hidden size that is then split during forward. To keep compatibility
  3348. with existing mixtral support, we pull them apart here.
  3349. """
  3350. if name.endswith("block_sparse_moe.input_linear.weight"):
  3351. ffn_dim = self.hparams["intermediate_size"]
  3352. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3353. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3354. return [
  3355. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3356. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3357. ]
  3358. return super().modify_tensors(data_torch, name, bid)
  3359. @Model.register("ChameleonForConditionalGeneration")
  3360. @Model.register("ChameleonForCausalLM") # obsolete
  3361. class ChameleonModel(Model):
  3362. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3363. def set_gguf_parameters(self):
  3364. super().set_gguf_parameters()
  3365. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3366. def set_vocab(self):
  3367. self._set_vocab_gpt2()
  3368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3369. # ignore image tokenizer for now
  3370. # TODO: remove this once image support is implemented for Chameleon
  3371. if name.startswith("model.vqmodel"):
  3372. return []
  3373. n_head = self.hparams["num_attention_heads"]
  3374. n_kv_head = self.hparams.get("num_key_value_heads")
  3375. hidden_dim = self.hparams.get("hidden_size")
  3376. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3377. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3378. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3379. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3380. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3381. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3382. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3383. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3384. return [(self.map_tensor_name(name), data_torch)]
  3385. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3386. @staticmethod
  3387. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3388. head_dim = hidden_dim // n_heads
  3389. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3390. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3391. return data_torch
  3392. ###### CONVERSION LOGIC ######
  3393. # tree of lazy tensors
  3394. class LazyTorchTensor(gguf.LazyBase):
  3395. _tensor_type = torch.Tensor
  3396. # to keep the type-checker happy
  3397. dtype: torch.dtype
  3398. shape: torch.Size
  3399. # only used when converting a torch.Tensor to a np.ndarray
  3400. _dtype_map: dict[torch.dtype, type] = {
  3401. torch.float16: np.float16,
  3402. torch.float32: np.float32,
  3403. }
  3404. # used for safetensors slices
  3405. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3406. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3407. _dtype_str_map: dict[str, torch.dtype] = {
  3408. "F64": torch.float64,
  3409. "F32": torch.float32,
  3410. "BF16": torch.bfloat16,
  3411. "F16": torch.float16,
  3412. # "U64": torch.uint64,
  3413. "I64": torch.int64,
  3414. # "U32": torch.uint32,
  3415. "I32": torch.int32,
  3416. # "U16": torch.uint16,
  3417. "I16": torch.int16,
  3418. "U8": torch.uint8,
  3419. "I8": torch.int8,
  3420. "BOOL": torch.bool,
  3421. "F8_E4M3": torch.float8_e4m3fn,
  3422. "F8_E5M2": torch.float8_e5m2,
  3423. }
  3424. def numpy(self) -> gguf.LazyNumpyTensor:
  3425. dtype = self._dtype_map[self.dtype]
  3426. return gguf.LazyNumpyTensor(
  3427. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3428. args=(self,),
  3429. func=(lambda s: s.numpy())
  3430. )
  3431. @classmethod
  3432. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3433. return torch.empty(size=shape, dtype=dtype, device="meta")
  3434. @classmethod
  3435. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3436. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3437. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3438. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3439. return cast(torch.Tensor, lazy)
  3440. @classmethod
  3441. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3442. del types # unused
  3443. if kwargs is None:
  3444. kwargs = {}
  3445. if func is torch.Tensor.numpy:
  3446. return args[0].numpy()
  3447. return cls._wrap_fn(func)(*args, **kwargs)
  3448. def parse_args() -> argparse.Namespace:
  3449. parser = argparse.ArgumentParser(
  3450. description="Convert a huggingface model to a GGML compatible file")
  3451. parser.add_argument(
  3452. "--vocab-only", action="store_true",
  3453. help="extract only the vocab",
  3454. )
  3455. parser.add_argument(
  3456. "--outfile", type=Path,
  3457. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3458. )
  3459. parser.add_argument(
  3460. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3461. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3462. )
  3463. parser.add_argument(
  3464. "--bigendian", action="store_true",
  3465. help="model is executed on big endian machine",
  3466. )
  3467. parser.add_argument(
  3468. "model", type=Path,
  3469. help="directory containing model file",
  3470. )
  3471. parser.add_argument(
  3472. "--use-temp-file", action="store_true",
  3473. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3474. )
  3475. parser.add_argument(
  3476. "--no-lazy", action="store_true",
  3477. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3478. )
  3479. parser.add_argument(
  3480. "--model-name", type=str, default=None,
  3481. help="name of the model",
  3482. )
  3483. parser.add_argument(
  3484. "--verbose", action="store_true",
  3485. help="increase output verbosity",
  3486. )
  3487. parser.add_argument(
  3488. "--split-max-tensors", type=int, default=0,
  3489. help="max tensors in each split",
  3490. )
  3491. parser.add_argument(
  3492. "--split-max-size", type=str, default="0",
  3493. help="max size per split N(M|G)",
  3494. )
  3495. parser.add_argument(
  3496. "--dry-run", action="store_true",
  3497. help="only print out a split plan and exit, without writing any new files",
  3498. )
  3499. parser.add_argument(
  3500. "--no-tensor-first-split", action="store_true",
  3501. help="do not add tensors to the first split (disabled by default)"
  3502. )
  3503. parser.add_argument(
  3504. "--metadata", type=Path,
  3505. help="Specify the path for an authorship metadata override file"
  3506. )
  3507. return parser.parse_args()
  3508. def split_str_to_n_bytes(split_str: str) -> int:
  3509. if split_str.endswith("K"):
  3510. n = int(split_str[:-1]) * 1000
  3511. elif split_str.endswith("M"):
  3512. n = int(split_str[:-1]) * 1000 * 1000
  3513. elif split_str.endswith("G"):
  3514. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3515. elif split_str.isnumeric():
  3516. n = int(split_str)
  3517. else:
  3518. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3519. if n < 0:
  3520. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3521. return n
  3522. def main() -> None:
  3523. args = parse_args()
  3524. if args.verbose:
  3525. logging.basicConfig(level=logging.DEBUG)
  3526. else:
  3527. logging.basicConfig(level=logging.INFO)
  3528. dir_model = args.model
  3529. if not dir_model.is_dir():
  3530. logger.error(f'Error: {args.model} is not a directory')
  3531. sys.exit(1)
  3532. ftype_map: dict[str, gguf.LlamaFileType] = {
  3533. "f32": gguf.LlamaFileType.ALL_F32,
  3534. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3535. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3536. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3537. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3538. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3539. "auto": gguf.LlamaFileType.GUESSED,
  3540. }
  3541. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3542. if args.use_temp_file and is_split:
  3543. logger.error("Error: Cannot use temp file when splitting")
  3544. sys.exit(1)
  3545. if args.outfile is not None:
  3546. fname_out = args.outfile
  3547. else:
  3548. fname_out = dir_model
  3549. logger.info(f"Loading model: {dir_model.name}")
  3550. hparams = Model.load_hparams(dir_model)
  3551. with torch.inference_mode():
  3552. output_type = ftype_map[args.outtype]
  3553. model_architecture = hparams["architectures"][0]
  3554. try:
  3555. model_class = Model.from_model_architecture(model_architecture)
  3556. except NotImplementedError:
  3557. logger.error(f"Model {model_architecture} is not supported")
  3558. sys.exit(1)
  3559. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3560. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3561. eager=args.no_lazy,
  3562. metadata_override=args.metadata, model_name=args.model_name,
  3563. split_max_tensors=args.split_max_tensors,
  3564. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3565. small_first_shard=args.no_tensor_first_split)
  3566. if args.vocab_only:
  3567. logger.info("Exporting model vocab...")
  3568. model_instance.write_vocab()
  3569. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3570. else:
  3571. logger.info("Exporting model...")
  3572. model_instance.write()
  3573. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3574. logger.info(f"Model successfully exported to {out_path}")
  3575. if __name__ == '__main__':
  3576. main()