llama-bench.cpp 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include <thread>
  20. #include "ggml.h"
  21. #include "llama.h"
  22. #include "common.h"
  23. #ifdef _WIN32
  24. #define WIN32_LEAN_AND_MEAN
  25. #ifndef NOMINMAX
  26. # define NOMINMAX
  27. #endif
  28. #include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. template<class T>
  36. static std::string join(const std::vector<T> & values, const std::string & delim) {
  37. std::ostringstream str;
  38. for (size_t i = 0; i < values.size(); i++) {
  39. str << values[i];
  40. if (i < values.size() - 1) {
  41. str << delim;
  42. }
  43. }
  44. return str.str();
  45. }
  46. template<typename T, typename F>
  47. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  48. std::vector<std::string> str_values;
  49. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  50. return str_values;
  51. }
  52. template<typename T>
  53. static T avg(const std::vector<T> & v) {
  54. if (v.empty()) {
  55. return 0;
  56. }
  57. T sum = std::accumulate(v.begin(), v.end(), T(0));
  58. return sum / (T)v.size();
  59. }
  60. template<typename T>
  61. static T stdev(const std::vector<T> & v) {
  62. if (v.size() <= 1) {
  63. return 0;
  64. }
  65. T mean = avg(v);
  66. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  67. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  68. return stdev;
  69. }
  70. static std::string get_cpu_info() {
  71. std::vector<std::string> cpu_list;
  72. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  73. auto * dev = ggml_backend_dev_get(i);
  74. auto dev_type = ggml_backend_dev_type(dev);
  75. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  76. cpu_list.push_back(ggml_backend_dev_description(dev));
  77. }
  78. }
  79. return join(cpu_list, ", ");
  80. }
  81. static std::string get_gpu_info() {
  82. std::vector<std::string> gpu_list;
  83. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  84. auto * dev = ggml_backend_dev_get(i);
  85. auto dev_type = ggml_backend_dev_type(dev);
  86. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  87. gpu_list.push_back(ggml_backend_dev_description(dev));
  88. }
  89. }
  90. return join(gpu_list, ", ");
  91. }
  92. // command line params
  93. enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
  94. static const char * output_format_str(output_formats format) {
  95. switch (format) {
  96. case NONE: return "none";
  97. case CSV: return "csv";
  98. case JSON: return "json";
  99. case JSONL: return "jsonl";
  100. case MARKDOWN: return "md";
  101. case SQL: return "sql";
  102. default: GGML_ABORT("invalid output format");
  103. }
  104. }
  105. static bool output_format_from_str(const std::string & s, output_formats & format) {
  106. if (s == "none") {
  107. format = NONE;
  108. } else if (s == "csv") {
  109. format = CSV;
  110. } else if (s == "json") {
  111. format = JSON;
  112. } else if (s == "jsonl") {
  113. format = JSONL;
  114. } else if (s == "md") {
  115. format = MARKDOWN;
  116. } else if (s == "sql") {
  117. format = SQL;
  118. } else {
  119. return false;
  120. }
  121. return true;
  122. }
  123. static const char * split_mode_str(llama_split_mode mode) {
  124. switch (mode) {
  125. case LLAMA_SPLIT_MODE_NONE: return "none";
  126. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  127. case LLAMA_SPLIT_MODE_ROW: return "row";
  128. default: GGML_ABORT("invalid split mode");
  129. }
  130. }
  131. static std::string pair_str(const std::pair<int, int> & p) {
  132. static char buf[32];
  133. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  134. return buf;
  135. }
  136. struct cmd_params {
  137. std::vector<std::string> model;
  138. std::vector<int> n_prompt;
  139. std::vector<int> n_gen;
  140. std::vector<std::pair<int, int>> n_pg;
  141. std::vector<int> n_batch;
  142. std::vector<int> n_ubatch;
  143. std::vector<ggml_type> type_k;
  144. std::vector<ggml_type> type_v;
  145. std::vector<int> n_threads;
  146. std::vector<std::string> cpu_mask;
  147. std::vector<bool> cpu_strict;
  148. std::vector<int> poll;
  149. std::vector<int> n_gpu_layers;
  150. std::vector<std::string> rpc_servers;
  151. std::vector<llama_split_mode> split_mode;
  152. std::vector<int> main_gpu;
  153. std::vector<bool> no_kv_offload;
  154. std::vector<bool> flash_attn;
  155. std::vector<std::vector<float>> tensor_split;
  156. std::vector<bool> use_mmap;
  157. std::vector<bool> embeddings;
  158. ggml_numa_strategy numa;
  159. int reps;
  160. ggml_sched_priority prio;
  161. int delay;
  162. bool verbose;
  163. bool progress;
  164. output_formats output_format;
  165. output_formats output_format_stderr;
  166. };
  167. static const cmd_params cmd_params_defaults = {
  168. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  169. /* n_prompt */ {512},
  170. /* n_gen */ {128},
  171. /* n_pg */ {},
  172. /* n_batch */ {2048},
  173. /* n_ubatch */ {512},
  174. /* type_k */ {GGML_TYPE_F16},
  175. /* type_v */ {GGML_TYPE_F16},
  176. /* n_threads */ {cpu_get_num_math()},
  177. /* cpu_mask */ {"0x0"},
  178. /* cpu_strict */ {false},
  179. /* poll */ {50},
  180. /* n_gpu_layers */ {99},
  181. /* rpc_servers */ {""},
  182. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  183. /* main_gpu */ {0},
  184. /* no_kv_offload */ {false},
  185. /* flash_attn */ {false},
  186. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  187. /* use_mmap */ {true},
  188. /* embeddings */ {false},
  189. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  190. /* reps */ 5,
  191. /* prio */ GGML_SCHED_PRIO_NORMAL,
  192. /* delay */ 0,
  193. /* verbose */ false,
  194. /* progress */ false,
  195. /* output_format */ MARKDOWN,
  196. /* output_format_stderr */ NONE,
  197. };
  198. static void print_usage(int /* argc */, char ** argv) {
  199. printf("usage: %s [options]\n", argv[0]);
  200. printf("\n");
  201. printf("options:\n");
  202. printf(" -h, --help\n");
  203. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  204. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  205. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  206. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  207. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  208. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  209. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  210. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  211. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  212. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
  213. printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
  214. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  215. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  216. if (llama_supports_rpc()) {
  217. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  218. }
  219. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  220. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  221. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  222. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  223. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  224. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  225. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  226. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  227. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  228. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  229. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  230. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  231. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  232. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  233. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  234. printf("\n");
  235. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  236. }
  237. static ggml_type ggml_type_from_name(const std::string & s) {
  238. if (s == "f16") {
  239. return GGML_TYPE_F16;
  240. }
  241. if (s == "q8_0") {
  242. return GGML_TYPE_Q8_0;
  243. }
  244. if (s == "q4_0") {
  245. return GGML_TYPE_Q4_0;
  246. }
  247. if (s == "q4_1") {
  248. return GGML_TYPE_Q4_1;
  249. }
  250. if (s == "q5_0") {
  251. return GGML_TYPE_Q5_0;
  252. }
  253. if (s == "q5_1") {
  254. return GGML_TYPE_Q5_1;
  255. }
  256. if (s == "iq4_nl") {
  257. return GGML_TYPE_IQ4_NL;
  258. }
  259. return GGML_TYPE_COUNT;
  260. }
  261. static cmd_params parse_cmd_params(int argc, char ** argv) {
  262. cmd_params params;
  263. std::string arg;
  264. bool invalid_param = false;
  265. const std::string arg_prefix = "--";
  266. const char split_delim = ',';
  267. params.verbose = cmd_params_defaults.verbose;
  268. params.output_format = cmd_params_defaults.output_format;
  269. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  270. params.reps = cmd_params_defaults.reps;
  271. params.numa = cmd_params_defaults.numa;
  272. params.prio = cmd_params_defaults.prio;
  273. params.delay = cmd_params_defaults.delay;
  274. params.progress = cmd_params_defaults.progress;
  275. for (int i = 1; i < argc; i++) {
  276. arg = argv[i];
  277. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  278. std::replace(arg.begin(), arg.end(), '_', '-');
  279. }
  280. if (arg == "-h" || arg == "--help") {
  281. print_usage(argc, argv);
  282. exit(0);
  283. } else if (arg == "-m" || arg == "--model") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. break;
  287. }
  288. auto p = string_split<std::string>(argv[i], split_delim);
  289. params.model.insert(params.model.end(), p.begin(), p.end());
  290. } else if (arg == "-p" || arg == "--n-prompt") {
  291. if (++i >= argc) {
  292. invalid_param = true;
  293. break;
  294. }
  295. auto p = string_split<int>(argv[i], split_delim);
  296. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  297. } else if (arg == "-n" || arg == "--n-gen") {
  298. if (++i >= argc) {
  299. invalid_param = true;
  300. break;
  301. }
  302. auto p = string_split<int>(argv[i], split_delim);
  303. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  304. } else if (arg == "-pg") {
  305. if (++i >= argc) {
  306. invalid_param = true;
  307. break;
  308. }
  309. auto p = string_split<std::string>(argv[i], ',');
  310. if (p.size() != 2) {
  311. invalid_param = true;
  312. break;
  313. }
  314. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  315. } else if (arg == "-b" || arg == "--batch-size") {
  316. if (++i >= argc) {
  317. invalid_param = true;
  318. break;
  319. }
  320. auto p = string_split<int>(argv[i], split_delim);
  321. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  322. } else if (arg == "-ub" || arg == "--ubatch-size") {
  323. if (++i >= argc) {
  324. invalid_param = true;
  325. break;
  326. }
  327. auto p = string_split<int>(argv[i], split_delim);
  328. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  329. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  330. if (++i >= argc) {
  331. invalid_param = true;
  332. break;
  333. }
  334. auto p = string_split<std::string>(argv[i], split_delim);
  335. std::vector<ggml_type> types;
  336. for (const auto & t : p) {
  337. ggml_type gt = ggml_type_from_name(t);
  338. if (gt == GGML_TYPE_COUNT) {
  339. invalid_param = true;
  340. break;
  341. }
  342. types.push_back(gt);
  343. }
  344. if (invalid_param) {
  345. break;
  346. }
  347. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  348. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  349. if (++i >= argc) {
  350. invalid_param = true;
  351. break;
  352. }
  353. auto p = string_split<std::string>(argv[i], split_delim);
  354. std::vector<ggml_type> types;
  355. for (const auto & t : p) {
  356. ggml_type gt = ggml_type_from_name(t);
  357. if (gt == GGML_TYPE_COUNT) {
  358. invalid_param = true;
  359. break;
  360. }
  361. types.push_back(gt);
  362. }
  363. if (invalid_param) {
  364. break;
  365. }
  366. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  367. } else if (arg == "-t" || arg == "--threads") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. auto p = string_split<int>(argv[i], split_delim);
  373. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  374. } else if (arg == "-C" || arg == "--cpu-mask") {
  375. if (++i >= argc) {
  376. invalid_param = true;
  377. break;
  378. }
  379. auto p = string_split<std::string>(argv[i], split_delim);
  380. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  381. } else if (arg == "--cpu-strict") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. break;
  385. }
  386. auto p = string_split<bool>(argv[i], split_delim);
  387. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  388. } else if (arg == "--poll") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. auto p = string_split<int>(argv[i], split_delim);
  394. params.poll.insert(params.poll.end(), p.begin(), p.end());
  395. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  396. if (++i >= argc) {
  397. invalid_param = true;
  398. break;
  399. }
  400. auto p = string_split<int>(argv[i], split_delim);
  401. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  402. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  403. if (++i >= argc) {
  404. invalid_param = true;
  405. break;
  406. }
  407. params.rpc_servers.push_back(argv[i]);
  408. } else if (arg == "-sm" || arg == "--split-mode") {
  409. if (++i >= argc) {
  410. invalid_param = true;
  411. break;
  412. }
  413. auto p = string_split<std::string>(argv[i], split_delim);
  414. std::vector<llama_split_mode> modes;
  415. for (const auto & m : p) {
  416. llama_split_mode mode;
  417. if (m == "none") {
  418. mode = LLAMA_SPLIT_MODE_NONE;
  419. } else if (m == "layer") {
  420. mode = LLAMA_SPLIT_MODE_LAYER;
  421. } else if (m == "row") {
  422. mode = LLAMA_SPLIT_MODE_ROW;
  423. } else {
  424. invalid_param = true;
  425. break;
  426. }
  427. modes.push_back(mode);
  428. }
  429. if (invalid_param) {
  430. break;
  431. }
  432. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  433. } else if (arg == "-mg" || arg == "--main-gpu") {
  434. if (++i >= argc) {
  435. invalid_param = true;
  436. break;
  437. }
  438. params.main_gpu = string_split<int>(argv[i], split_delim);
  439. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  440. if (++i >= argc) {
  441. invalid_param = true;
  442. break;
  443. }
  444. auto p = string_split<bool>(argv[i], split_delim);
  445. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  446. } else if (arg == "--numa") {
  447. if (++i >= argc) {
  448. invalid_param = true;
  449. break;
  450. } else {
  451. std::string value(argv[i]);
  452. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  453. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  454. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  455. else { invalid_param = true; break; }
  456. }
  457. } else if (arg == "-fa" || arg == "--flash-attn") {
  458. if (++i >= argc) {
  459. invalid_param = true;
  460. break;
  461. }
  462. auto p = string_split<bool>(argv[i], split_delim);
  463. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  464. } else if (arg == "-mmp" || arg == "--mmap") {
  465. if (++i >= argc) {
  466. invalid_param = true;
  467. break;
  468. }
  469. auto p = string_split<bool>(argv[i], split_delim);
  470. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  471. } else if (arg == "-embd" || arg == "--embeddings") {
  472. if (++i >= argc) {
  473. invalid_param = true;
  474. break;
  475. }
  476. auto p = string_split<bool>(argv[i], split_delim);
  477. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  478. } else if (arg == "-ts" || arg == "--tensor-split") {
  479. if (++i >= argc) {
  480. invalid_param = true;
  481. break;
  482. }
  483. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  484. // split string by ; and /
  485. const std::regex regex{R"([;/]+)"};
  486. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  487. std::vector<std::string> split_arg{it, {}};
  488. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  489. std::vector<float> tensor_split(llama_max_devices());
  490. for (size_t i = 0; i < llama_max_devices(); ++i) {
  491. if (i < split_arg.size()) {
  492. tensor_split[i] = std::stof(split_arg[i]);
  493. } else {
  494. tensor_split[i] = 0.0f;
  495. }
  496. }
  497. params.tensor_split.push_back(tensor_split);
  498. }
  499. } else if (arg == "-r" || arg == "--repetitions") {
  500. if (++i >= argc) {
  501. invalid_param = true;
  502. break;
  503. }
  504. params.reps = std::stoi(argv[i]);
  505. } else if (arg == "--prio") {
  506. if (++i >= argc) {
  507. invalid_param = true;
  508. break;
  509. }
  510. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  511. } else if (arg == "--delay") {
  512. if (++i >= argc) {
  513. invalid_param = true;
  514. break;
  515. }
  516. params.delay = std::stoi(argv[i]);
  517. } else if (arg == "-o" || arg == "--output") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. }
  522. invalid_param = !output_format_from_str(argv[i], params.output_format);
  523. } else if (arg == "-oe" || arg == "--output-err") {
  524. if (++i >= argc) {
  525. invalid_param = true;
  526. break;
  527. }
  528. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  529. } else if (arg == "-v" || arg == "--verbose") {
  530. params.verbose = true;
  531. } else if (arg == "--progress") {
  532. params.progress = true;
  533. } else {
  534. invalid_param = true;
  535. break;
  536. }
  537. }
  538. if (invalid_param) {
  539. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  540. print_usage(argc, argv);
  541. exit(1);
  542. }
  543. // set defaults
  544. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  545. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  546. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  547. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  548. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  549. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  550. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  551. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  552. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  553. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  554. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  555. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  556. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  557. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  558. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  559. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  560. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  561. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  562. if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
  563. if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
  564. if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
  565. return params;
  566. }
  567. struct cmd_params_instance {
  568. std::string model;
  569. int n_prompt;
  570. int n_gen;
  571. int n_batch;
  572. int n_ubatch;
  573. ggml_type type_k;
  574. ggml_type type_v;
  575. int n_threads;
  576. std::string cpu_mask;
  577. bool cpu_strict;
  578. int poll;
  579. int n_gpu_layers;
  580. std::string rpc_servers;
  581. llama_split_mode split_mode;
  582. int main_gpu;
  583. bool no_kv_offload;
  584. bool flash_attn;
  585. std::vector<float> tensor_split;
  586. bool use_mmap;
  587. bool embeddings;
  588. llama_model_params to_llama_mparams() const {
  589. llama_model_params mparams = llama_model_default_params();
  590. mparams.n_gpu_layers = n_gpu_layers;
  591. if (!rpc_servers.empty()) {
  592. mparams.rpc_servers = rpc_servers.c_str();
  593. }
  594. mparams.split_mode = split_mode;
  595. mparams.main_gpu = main_gpu;
  596. mparams.tensor_split = tensor_split.data();
  597. mparams.use_mmap = use_mmap;
  598. return mparams;
  599. }
  600. bool equal_mparams(const cmd_params_instance & other) const {
  601. return model == other.model &&
  602. n_gpu_layers == other.n_gpu_layers &&
  603. rpc_servers == other.rpc_servers &&
  604. split_mode == other.split_mode &&
  605. main_gpu == other.main_gpu &&
  606. use_mmap == other.use_mmap &&
  607. tensor_split == other.tensor_split;
  608. }
  609. llama_context_params to_llama_cparams() const {
  610. llama_context_params cparams = llama_context_default_params();
  611. cparams.n_ctx = n_prompt + n_gen;
  612. cparams.n_batch = n_batch;
  613. cparams.n_ubatch = n_ubatch;
  614. cparams.type_k = type_k;
  615. cparams.type_v = type_v;
  616. cparams.offload_kqv = !no_kv_offload;
  617. cparams.flash_attn = flash_attn;
  618. cparams.embeddings = embeddings;
  619. return cparams;
  620. }
  621. };
  622. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  623. std::vector<cmd_params_instance> instances;
  624. // this ordering minimizes the number of times that each model needs to be reloaded
  625. for (const auto & m : params.model)
  626. for (const auto & nl : params.n_gpu_layers)
  627. for (const auto & rpc : params.rpc_servers)
  628. for (const auto & sm : params.split_mode)
  629. for (const auto & mg : params.main_gpu)
  630. for (const auto & ts : params.tensor_split)
  631. for (const auto & mmp : params.use_mmap)
  632. for (const auto & embd : params.embeddings)
  633. for (const auto & nb : params.n_batch)
  634. for (const auto & nub : params.n_ubatch)
  635. for (const auto & tk : params.type_k)
  636. for (const auto & tv : params.type_v)
  637. for (const auto & nkvo : params.no_kv_offload)
  638. for (const auto & fa : params.flash_attn)
  639. for (const auto & nt : params.n_threads)
  640. for (const auto & cm : params.cpu_mask)
  641. for (const auto & cs : params.cpu_strict)
  642. for (const auto & pl : params.poll) {
  643. for (const auto & n_prompt : params.n_prompt) {
  644. if (n_prompt == 0) {
  645. continue;
  646. }
  647. cmd_params_instance instance = {
  648. /* .model = */ m,
  649. /* .n_prompt = */ n_prompt,
  650. /* .n_gen = */ 0,
  651. /* .n_batch = */ nb,
  652. /* .n_ubatch = */ nub,
  653. /* .type_k = */ tk,
  654. /* .type_v = */ tv,
  655. /* .n_threads = */ nt,
  656. /* .cpu_mask = */ cm,
  657. /* .cpu_strict = */ cs,
  658. /* .poll = */ pl,
  659. /* .n_gpu_layers = */ nl,
  660. /* .rpc_servers = */ rpc,
  661. /* .split_mode = */ sm,
  662. /* .main_gpu = */ mg,
  663. /* .no_kv_offload= */ nkvo,
  664. /* .flash_attn = */ fa,
  665. /* .tensor_split = */ ts,
  666. /* .use_mmap = */ mmp,
  667. /* .embeddings = */ embd,
  668. };
  669. instances.push_back(instance);
  670. }
  671. for (const auto & n_gen : params.n_gen) {
  672. if (n_gen == 0) {
  673. continue;
  674. }
  675. cmd_params_instance instance = {
  676. /* .model = */ m,
  677. /* .n_prompt = */ 0,
  678. /* .n_gen = */ n_gen,
  679. /* .n_batch = */ nb,
  680. /* .n_ubatch = */ nub,
  681. /* .type_k = */ tk,
  682. /* .type_v = */ tv,
  683. /* .n_threads = */ nt,
  684. /* .cpu_mask = */ cm,
  685. /* .cpu_strict = */ cs,
  686. /* .poll = */ pl,
  687. /* .n_gpu_layers = */ nl,
  688. /* .rpc_servers = */ rpc,
  689. /* .split_mode = */ sm,
  690. /* .main_gpu = */ mg,
  691. /* .no_kv_offload= */ nkvo,
  692. /* .flash_attn = */ fa,
  693. /* .tensor_split = */ ts,
  694. /* .use_mmap = */ mmp,
  695. /* .embeddings = */ embd,
  696. };
  697. instances.push_back(instance);
  698. }
  699. for (const auto & n_pg : params.n_pg) {
  700. if (n_pg.first == 0 && n_pg.second == 0) {
  701. continue;
  702. }
  703. cmd_params_instance instance = {
  704. /* .model = */ m,
  705. /* .n_prompt = */ n_pg.first,
  706. /* .n_gen = */ n_pg.second,
  707. /* .n_batch = */ nb,
  708. /* .n_ubatch = */ nub,
  709. /* .type_k = */ tk,
  710. /* .type_v = */ tv,
  711. /* .n_threads = */ nt,
  712. /* .cpu_mask = */ cm,
  713. /* .cpu_strict = */ cs,
  714. /* .poll = */ pl,
  715. /* .n_gpu_layers = */ nl,
  716. /* .rpc_servers = */ rpc,
  717. /* .split_mode = */ sm,
  718. /* .main_gpu = */ mg,
  719. /* .no_kv_offload= */ nkvo,
  720. /* .flash_attn = */ fa,
  721. /* .tensor_split = */ ts,
  722. /* .use_mmap = */ mmp,
  723. /* .embeddings = */ embd,
  724. };
  725. instances.push_back(instance);
  726. }
  727. }
  728. return instances;
  729. }
  730. struct test {
  731. static const std::string build_commit;
  732. static const int build_number;
  733. static const bool cuda;
  734. static const bool vulkan;
  735. static const bool kompute;
  736. static const bool metal;
  737. static const bool sycl;
  738. static const bool gpu_blas;
  739. static const bool blas;
  740. static const std::string cpu_info;
  741. static const std::string gpu_info;
  742. std::string model_filename;
  743. std::string model_type;
  744. uint64_t model_size;
  745. uint64_t model_n_params;
  746. int n_batch;
  747. int n_ubatch;
  748. int n_threads;
  749. std::string cpu_mask;
  750. bool cpu_strict;
  751. int poll;
  752. bool has_rpc;
  753. ggml_type type_k;
  754. ggml_type type_v;
  755. int n_gpu_layers;
  756. llama_split_mode split_mode;
  757. int main_gpu;
  758. bool no_kv_offload;
  759. bool flash_attn;
  760. std::vector<float> tensor_split;
  761. bool use_mmap;
  762. bool embeddings;
  763. int n_prompt;
  764. int n_gen;
  765. std::string test_time;
  766. std::vector<uint64_t> samples_ns;
  767. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  768. model_filename = inst.model;
  769. char buf[128];
  770. llama_model_desc(lmodel, buf, sizeof(buf));
  771. model_type = buf;
  772. model_size = llama_model_size(lmodel);
  773. model_n_params = llama_model_n_params(lmodel);
  774. n_batch = inst.n_batch;
  775. n_ubatch = inst.n_ubatch;
  776. n_threads = inst.n_threads;
  777. cpu_mask = inst.cpu_mask;
  778. cpu_strict = inst.cpu_strict;
  779. poll = inst.poll;
  780. has_rpc = !inst.rpc_servers.empty();
  781. type_k = inst.type_k;
  782. type_v = inst.type_v;
  783. n_gpu_layers = inst.n_gpu_layers;
  784. split_mode = inst.split_mode;
  785. main_gpu = inst.main_gpu;
  786. no_kv_offload = inst.no_kv_offload;
  787. flash_attn = inst.flash_attn;
  788. tensor_split = inst.tensor_split;
  789. use_mmap = inst.use_mmap;
  790. embeddings = inst.embeddings;
  791. n_prompt = inst.n_prompt;
  792. n_gen = inst.n_gen;
  793. // RFC 3339 date-time format
  794. time_t t = time(NULL);
  795. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  796. test_time = buf;
  797. (void) ctx;
  798. }
  799. uint64_t avg_ns() const {
  800. return ::avg(samples_ns);
  801. }
  802. uint64_t stdev_ns() const {
  803. return ::stdev(samples_ns);
  804. }
  805. std::vector<double> get_ts() const {
  806. int n_tokens = n_prompt + n_gen;
  807. std::vector<double> ts;
  808. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  809. return ts;
  810. }
  811. double avg_ts() const {
  812. return ::avg(get_ts());
  813. }
  814. double stdev_ts() const {
  815. return ::stdev(get_ts());
  816. }
  817. static std::string get_backend() {
  818. std::vector<std::string> backends;
  819. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  820. auto * reg = ggml_backend_reg_get(i);
  821. std::string name = ggml_backend_reg_name(reg);
  822. if (name != "CPU") {
  823. backends.push_back(ggml_backend_reg_name(reg));
  824. }
  825. }
  826. return backends.empty() ? "CPU" : join(backends, ",");
  827. }
  828. static const std::vector<std::string> & get_fields() {
  829. static const std::vector<std::string> fields = {
  830. "build_commit", "build_number",
  831. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  832. "cpu_info", "gpu_info",
  833. "model_filename", "model_type", "model_size", "model_n_params",
  834. "n_batch", "n_ubatch",
  835. "n_threads", "cpu_mask", "cpu_strict", "poll",
  836. "type_k", "type_v",
  837. "n_gpu_layers", "split_mode",
  838. "main_gpu", "no_kv_offload", "flash_attn",
  839. "tensor_split", "use_mmap", "embeddings",
  840. "n_prompt", "n_gen", "test_time",
  841. "avg_ns", "stddev_ns",
  842. "avg_ts", "stddev_ts",
  843. };
  844. return fields;
  845. }
  846. enum field_type {STRING, BOOL, INT, FLOAT};
  847. static field_type get_field_type(const std::string & field) {
  848. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  849. field == "n_threads" || field == "poll" ||
  850. field == "model_size" || field == "model_n_params" ||
  851. field == "n_gpu_layers" || field == "main_gpu" ||
  852. field == "n_prompt" || field == "n_gen" ||
  853. field == "avg_ns" || field == "stddev_ns") {
  854. return INT;
  855. }
  856. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  857. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  858. field == "cpu_strict" ||
  859. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  860. return BOOL;
  861. }
  862. if (field == "avg_ts" || field == "stddev_ts") {
  863. return FLOAT;
  864. }
  865. return STRING;
  866. }
  867. std::vector<std::string> get_values() const {
  868. std::string tensor_split_str;
  869. int max_nonzero = 0;
  870. for (size_t i = 0; i < llama_max_devices(); i++) {
  871. if (tensor_split[i] > 0) {
  872. max_nonzero = i;
  873. }
  874. }
  875. for (int i = 0; i <= max_nonzero; i++) {
  876. char buf[32];
  877. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  878. tensor_split_str += buf;
  879. if (i < max_nonzero) {
  880. tensor_split_str += "/";
  881. }
  882. }
  883. std::vector<std::string> values = {
  884. build_commit, std::to_string(build_number),
  885. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  886. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  887. cpu_info, gpu_info,
  888. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  889. std::to_string(n_batch), std::to_string(n_ubatch),
  890. std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
  891. ggml_type_name(type_k), ggml_type_name(type_v),
  892. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  893. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  894. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  895. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  896. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  897. std::to_string(avg_ts()), std::to_string(stdev_ts())
  898. };
  899. return values;
  900. }
  901. std::map<std::string, std::string> get_map() const {
  902. std::map<std::string, std::string> map;
  903. auto fields = get_fields();
  904. auto values = get_values();
  905. std::transform(fields.begin(), fields.end(), values.begin(),
  906. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  907. return map;
  908. }
  909. };
  910. const std::string test::build_commit = LLAMA_COMMIT;
  911. const int test::build_number = LLAMA_BUILD_NUMBER;
  912. const bool test::cuda = !!ggml_cpu_has_cuda();
  913. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  914. const bool test::kompute = !!ggml_cpu_has_kompute();
  915. const bool test::metal = !!ggml_cpu_has_metal();
  916. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  917. const bool test::blas = !!ggml_cpu_has_blas();
  918. const bool test::sycl = !!ggml_cpu_has_sycl();
  919. const std::string test::cpu_info = get_cpu_info();
  920. const std::string test::gpu_info = get_gpu_info();
  921. struct printer {
  922. virtual ~printer() {}
  923. FILE * fout;
  924. virtual void print_header(const cmd_params & params) { (void) params; }
  925. virtual void print_test(const test & t) = 0;
  926. virtual void print_footer() { }
  927. };
  928. struct csv_printer : public printer {
  929. static std::string escape_csv(const std::string & field) {
  930. std::string escaped = "\"";
  931. for (auto c : field) {
  932. if (c == '"') {
  933. escaped += "\"";
  934. }
  935. escaped += c;
  936. }
  937. escaped += "\"";
  938. return escaped;
  939. }
  940. void print_header(const cmd_params & params) override {
  941. std::vector<std::string> fields = test::get_fields();
  942. fprintf(fout, "%s\n", join(fields, ",").c_str());
  943. (void) params;
  944. }
  945. void print_test(const test & t) override {
  946. std::vector<std::string> values = t.get_values();
  947. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  948. fprintf(fout, "%s\n", join(values, ",").c_str());
  949. }
  950. };
  951. static std::string escape_json(const std::string & value) {
  952. std::string escaped;
  953. for (auto c : value) {
  954. if (c == '"') {
  955. escaped += "\\\"";
  956. } else if (c == '\\') {
  957. escaped += "\\\\";
  958. } else if (c <= 0x1f) {
  959. char buf[8];
  960. snprintf(buf, sizeof(buf), "\\u%04x", c);
  961. escaped += buf;
  962. } else {
  963. escaped += c;
  964. }
  965. }
  966. return escaped;
  967. }
  968. static std::string format_json_value(const std::string & field, const std::string & value) {
  969. switch (test::get_field_type(field)) {
  970. case test::STRING:
  971. return "\"" + escape_json(value) + "\"";
  972. case test::BOOL:
  973. return value == "0" ? "false" : "true";
  974. default:
  975. return value;
  976. }
  977. }
  978. struct json_printer : public printer {
  979. bool first = true;
  980. void print_header(const cmd_params & params) override {
  981. fprintf(fout, "[\n");
  982. (void) params;
  983. }
  984. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  985. assert(fields.size() == values.size());
  986. for (size_t i = 0; i < fields.size(); i++) {
  987. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  988. }
  989. }
  990. void print_test(const test & t) override {
  991. if (first) {
  992. first = false;
  993. } else {
  994. fprintf(fout, ",\n");
  995. }
  996. fprintf(fout, " {\n");
  997. print_fields(test::get_fields(), t.get_values());
  998. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  999. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1000. fprintf(fout, " }");
  1001. fflush(fout);
  1002. }
  1003. void print_footer() override {
  1004. fprintf(fout, "\n]\n");
  1005. }
  1006. };
  1007. struct jsonl_printer : public printer {
  1008. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1009. assert(fields.size() == values.size());
  1010. for (size_t i = 0; i < fields.size(); i++) {
  1011. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1012. }
  1013. }
  1014. void print_test(const test & t) override {
  1015. fprintf(fout, "{");
  1016. print_fields(test::get_fields(), t.get_values());
  1017. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1018. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1019. fprintf(fout, "}\n");
  1020. fflush(fout);
  1021. }
  1022. };
  1023. struct markdown_printer : public printer {
  1024. std::vector<std::string> fields;
  1025. static int get_field_width(const std::string & field) {
  1026. if (field == "model") {
  1027. return -30;
  1028. }
  1029. if (field == "t/s") {
  1030. return 20;
  1031. }
  1032. if (field == "size" || field == "params") {
  1033. return 10;
  1034. }
  1035. if (field == "n_gpu_layers") {
  1036. return 3;
  1037. }
  1038. if (field == "n_threads") {
  1039. return 7;
  1040. }
  1041. if (field == "n_batch") {
  1042. return 7;
  1043. }
  1044. if (field == "n_ubatch") {
  1045. return 8;
  1046. }
  1047. if (field == "type_k" || field == "type_v") {
  1048. return 6;
  1049. }
  1050. if (field == "split_mode") {
  1051. return 5;
  1052. }
  1053. if (field == "flash_attn") {
  1054. return 2;
  1055. }
  1056. if (field == "use_mmap") {
  1057. return 4;
  1058. }
  1059. if (field == "test") {
  1060. return 13;
  1061. }
  1062. int width = std::max((int)field.length(), 10);
  1063. if (test::get_field_type(field) == test::STRING) {
  1064. return -width;
  1065. }
  1066. return width;
  1067. }
  1068. static std::string get_field_display_name(const std::string & field) {
  1069. if (field == "n_gpu_layers") {
  1070. return "ngl";
  1071. }
  1072. if (field == "split_mode") {
  1073. return "sm";
  1074. }
  1075. if (field == "n_threads") {
  1076. return "threads";
  1077. }
  1078. if (field == "no_kv_offload") {
  1079. return "nkvo";
  1080. }
  1081. if (field == "flash_attn") {
  1082. return "fa";
  1083. }
  1084. if (field == "use_mmap") {
  1085. return "mmap";
  1086. }
  1087. if (field == "embeddings") {
  1088. return "embd";
  1089. }
  1090. if (field == "tensor_split") {
  1091. return "ts";
  1092. }
  1093. return field;
  1094. }
  1095. void print_header(const cmd_params & params) override {
  1096. // select fields to print
  1097. fields.emplace_back("model");
  1098. fields.emplace_back("size");
  1099. fields.emplace_back("params");
  1100. fields.emplace_back("backend");
  1101. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1102. if (!is_cpu_backend) {
  1103. fields.emplace_back("n_gpu_layers");
  1104. }
  1105. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1106. fields.emplace_back("n_threads");
  1107. }
  1108. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1109. fields.emplace_back("cpu_mask");
  1110. }
  1111. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1112. fields.emplace_back("cpu_strict");
  1113. }
  1114. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1115. fields.emplace_back("poll");
  1116. }
  1117. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1118. fields.emplace_back("n_batch");
  1119. }
  1120. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1121. fields.emplace_back("n_ubatch");
  1122. }
  1123. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1124. fields.emplace_back("type_k");
  1125. }
  1126. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1127. fields.emplace_back("type_v");
  1128. }
  1129. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1130. fields.emplace_back("main_gpu");
  1131. }
  1132. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1133. fields.emplace_back("split_mode");
  1134. }
  1135. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1136. fields.emplace_back("no_kv_offload");
  1137. }
  1138. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1139. fields.emplace_back("flash_attn");
  1140. }
  1141. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1142. fields.emplace_back("tensor_split");
  1143. }
  1144. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1145. fields.emplace_back("use_mmap");
  1146. }
  1147. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1148. fields.emplace_back("embeddings");
  1149. }
  1150. fields.emplace_back("test");
  1151. fields.emplace_back("t/s");
  1152. fprintf(fout, "|");
  1153. for (const auto & field : fields) {
  1154. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1155. }
  1156. fprintf(fout, "\n");
  1157. fprintf(fout, "|");
  1158. for (const auto & field : fields) {
  1159. int width = get_field_width(field);
  1160. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1161. }
  1162. fprintf(fout, "\n");
  1163. }
  1164. void print_test(const test & t) override {
  1165. std::map<std::string, std::string> vmap = t.get_map();
  1166. fprintf(fout, "|");
  1167. for (const auto & field : fields) {
  1168. std::string value;
  1169. char buf[128];
  1170. if (field == "model") {
  1171. value = t.model_type;
  1172. } else if (field == "size") {
  1173. if (t.model_size < 1024*1024*1024) {
  1174. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1175. } else {
  1176. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1177. }
  1178. value = buf;
  1179. } else if (field == "params") {
  1180. if (t.model_n_params < 1000*1000*1000) {
  1181. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1182. } else {
  1183. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1184. }
  1185. value = buf;
  1186. } else if (field == "backend") {
  1187. value = test::get_backend();
  1188. if (t.has_rpc) {
  1189. value += "+RPC";
  1190. }
  1191. } else if (field == "test") {
  1192. if (t.n_prompt > 0 && t.n_gen == 0) {
  1193. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1194. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1195. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1196. } else {
  1197. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1198. }
  1199. value = buf;
  1200. } else if (field == "t/s") {
  1201. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1202. value = buf;
  1203. } else if (vmap.find(field) != vmap.end()) {
  1204. value = vmap.at(field);
  1205. } else {
  1206. assert(false);
  1207. exit(1);
  1208. }
  1209. int width = get_field_width(field);
  1210. if (field == "t/s") {
  1211. // HACK: the utf-8 character is 2 bytes
  1212. width += 1;
  1213. }
  1214. fprintf(fout, " %*s |", width, value.c_str());
  1215. }
  1216. fprintf(fout, "\n");
  1217. }
  1218. void print_footer() override {
  1219. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1220. }
  1221. };
  1222. struct sql_printer : public printer {
  1223. static std::string get_sql_field_type(const std::string & field) {
  1224. switch (test::get_field_type(field)) {
  1225. case test::STRING:
  1226. return "TEXT";
  1227. case test::BOOL:
  1228. case test::INT:
  1229. return "INTEGER";
  1230. case test::FLOAT:
  1231. return "REAL";
  1232. default:
  1233. assert(false);
  1234. exit(1);
  1235. }
  1236. }
  1237. void print_header(const cmd_params & params) override {
  1238. std::vector<std::string> fields = test::get_fields();
  1239. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1240. for (size_t i = 0; i < fields.size(); i++) {
  1241. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1242. }
  1243. fprintf(fout, ");\n");
  1244. fprintf(fout, "\n");
  1245. (void) params;
  1246. }
  1247. void print_test(const test & t) override {
  1248. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1249. fprintf(fout, "VALUES (");
  1250. std::vector<std::string> values = t.get_values();
  1251. for (size_t i = 0; i < values.size(); i++) {
  1252. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1253. }
  1254. fprintf(fout, ");\n");
  1255. }
  1256. };
  1257. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1258. llama_set_n_threads(ctx, n_threads, n_threads);
  1259. const llama_model * model = llama_get_model(ctx);
  1260. const int32_t n_vocab = llama_n_vocab(model);
  1261. std::vector<llama_token> tokens(n_batch);
  1262. int n_processed = 0;
  1263. while (n_processed < n_prompt) {
  1264. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1265. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1266. for (int i = 1; i < n_tokens; i++) {
  1267. tokens[i] = std::rand() % n_vocab;
  1268. }
  1269. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1270. n_processed += n_tokens;
  1271. }
  1272. llama_synchronize(ctx);
  1273. }
  1274. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1275. llama_set_n_threads(ctx, n_threads, n_threads);
  1276. const llama_model * model = llama_get_model(ctx);
  1277. const int32_t n_vocab = llama_n_vocab(model);
  1278. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1279. for (int i = 0; i < n_gen; i++) {
  1280. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1281. llama_synchronize(ctx);
  1282. token = std::rand() % n_vocab;
  1283. }
  1284. }
  1285. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1286. (void) level;
  1287. (void) text;
  1288. (void) user_data;
  1289. }
  1290. static std::unique_ptr<printer> create_printer(output_formats format) {
  1291. switch (format) {
  1292. case NONE:
  1293. return nullptr;
  1294. case CSV:
  1295. return std::unique_ptr<printer>(new csv_printer());
  1296. case JSON:
  1297. return std::unique_ptr<printer>(new json_printer());
  1298. case JSONL:
  1299. return std::unique_ptr<printer>(new jsonl_printer());
  1300. case MARKDOWN:
  1301. return std::unique_ptr<printer>(new markdown_printer());
  1302. case SQL:
  1303. return std::unique_ptr<printer>(new sql_printer());
  1304. }
  1305. GGML_ABORT("fatal error");
  1306. }
  1307. int main(int argc, char ** argv) {
  1308. // try to set locale for unicode characters in markdown
  1309. setlocale(LC_CTYPE, ".UTF-8");
  1310. #if !defined(NDEBUG)
  1311. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1312. #endif
  1313. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1314. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1315. #endif
  1316. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1317. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1318. #endif
  1319. cmd_params params = parse_cmd_params(argc, argv);
  1320. // initialize llama.cpp
  1321. if (!params.verbose) {
  1322. llama_log_set(llama_null_log_callback, NULL);
  1323. }
  1324. llama_backend_init();
  1325. llama_numa_init(params.numa);
  1326. set_process_priority(params.prio);
  1327. // initialize printer
  1328. std::unique_ptr<printer> p = create_printer(params.output_format);
  1329. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1330. if (p) {
  1331. p->fout = stdout;
  1332. p->print_header(params);
  1333. }
  1334. if (p_err) {
  1335. p_err->fout = stderr;
  1336. p_err->print_header(params);
  1337. }
  1338. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1339. llama_model * lmodel = nullptr;
  1340. const cmd_params_instance * prev_inst = nullptr;
  1341. int params_idx = 0;
  1342. auto params_count = params_instances.size();
  1343. for (const auto & inst : params_instances) {
  1344. params_idx ++;
  1345. if (params.progress) {
  1346. fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
  1347. }
  1348. // keep the same model between tests when possible
  1349. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1350. if (lmodel) {
  1351. llama_free_model(lmodel);
  1352. }
  1353. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1354. if (lmodel == NULL) {
  1355. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1356. return 1;
  1357. }
  1358. prev_inst = &inst;
  1359. }
  1360. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1361. if (ctx == NULL) {
  1362. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1363. llama_free_model(lmodel);
  1364. return 1;
  1365. }
  1366. test t(inst, lmodel, ctx);
  1367. llama_kv_cache_clear(ctx);
  1368. // cool off before the test
  1369. if (params.delay) {
  1370. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1371. }
  1372. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1373. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1374. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1375. exit(1);
  1376. }
  1377. tpp.strict_cpu = t.cpu_strict;
  1378. tpp.poll = t.poll;
  1379. tpp.prio = params.prio;
  1380. struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
  1381. if (!threadpool) {
  1382. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1383. exit(1);
  1384. }
  1385. llama_attach_threadpool(ctx, threadpool, NULL);
  1386. // warmup run
  1387. if (t.n_prompt > 0) {
  1388. if (params.progress) {
  1389. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
  1390. }
  1391. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1392. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1393. }
  1394. if (t.n_gen > 0) {
  1395. if (params.progress) {
  1396. fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
  1397. }
  1398. test_gen(ctx, 1, t.n_threads);
  1399. }
  1400. for (int i = 0; i < params.reps; i++) {
  1401. llama_kv_cache_clear(ctx);
  1402. uint64_t t_start = get_time_ns();
  1403. if (t.n_prompt > 0) {
  1404. if (params.progress) {
  1405. fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1406. }
  1407. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1408. }
  1409. if (t.n_gen > 0) {
  1410. if (params.progress) {
  1411. fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
  1412. }
  1413. test_gen(ctx, t.n_gen, t.n_threads);
  1414. }
  1415. uint64_t t_ns = get_time_ns() - t_start;
  1416. t.samples_ns.push_back(t_ns);
  1417. }
  1418. if (p) {
  1419. p->print_test(t);
  1420. fflush(p->fout);
  1421. }
  1422. if (p_err) {
  1423. p_err->print_test(t);
  1424. fflush(p_err->fout);
  1425. }
  1426. llama_perf_context_print(ctx);
  1427. llama_free(ctx);
  1428. ggml_threadpool_free(threadpool);
  1429. }
  1430. llama_free_model(lmodel);
  1431. if (p) {
  1432. p->print_footer();
  1433. }
  1434. if (p_err) {
  1435. p_err->print_footer();
  1436. }
  1437. llama_backend_free();
  1438. return 0;
  1439. }