llama.cpp 127 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #ifdef GGML_USE_METAL
  17. #include "ggml-metal.h"
  18. #endif
  19. #ifdef GGML_USE_MPI
  20. #include "ggml-mpi.h"
  21. #endif
  22. #ifdef GGML_USE_K_QUANTS
  23. #ifndef QK_K
  24. #ifdef GGML_QKK_64
  25. #define QK_K 64
  26. #else
  27. #define QK_K 256
  28. #endif
  29. #endif
  30. #endif
  31. #include <array>
  32. #include <ctime>
  33. #include <cinttypes>
  34. #include <fstream>
  35. #include <random>
  36. #include <map>
  37. #include <unordered_map>
  38. #include <queue>
  39. #include <cassert>
  40. #include <cstring>
  41. #include <climits>
  42. #include <memory>
  43. #include <algorithm>
  44. #include <initializer_list>
  45. #include <thread>
  46. #include <atomic>
  47. #include <mutex>
  48. #include <sstream>
  49. #include <numeric>
  50. #if defined(_MSC_VER)
  51. #pragma warning(disable: 4244 4267) // possible loss of data
  52. #endif
  53. #define LLAMA_USE_SCRATCH
  54. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  55. // available llama models
  56. enum e_model {
  57. MODEL_UNKNOWN,
  58. MODEL_3B,
  59. MODEL_7B,
  60. MODEL_13B,
  61. MODEL_30B,
  62. MODEL_65B,
  63. };
  64. static const size_t kB = 1024;
  65. static const size_t MB = 1024*1024;
  66. // computed for n_ctx == 2048
  67. // TODO: dynamically determine these sizes
  68. // needs modifications in ggml
  69. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  70. void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  71. (void) tensor;
  72. }
  73. //
  74. // ggml helpers
  75. //
  76. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  77. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  78. if (plan.work_size > 0) {
  79. buf.resize(plan.work_size);
  80. plan.work_data = buf.data();
  81. }
  82. ggml_graph_compute(graph, &plan);
  83. }
  84. //
  85. // memory sizes
  86. //
  87. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  88. {
  89. static std::map<e_model, size_t> k_sizes = {
  90. { MODEL_3B, 256ull * MB },
  91. { MODEL_7B, 512ull * MB },
  92. { MODEL_13B, 512ull * MB },
  93. { MODEL_30B, 512ull * MB },
  94. { MODEL_65B, 1024ull * MB },
  95. };
  96. return k_sizes;
  97. }
  98. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  99. {
  100. static std::map<e_model, size_t> k_sizes = {
  101. { MODEL_3B, 256ull * MB },
  102. { MODEL_7B, 512ull * MB },
  103. { MODEL_13B, 512ull * MB },
  104. { MODEL_30B, 512ull * MB },
  105. { MODEL_65B, 1024ull * MB },
  106. };
  107. return k_sizes;
  108. }
  109. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  110. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  111. {
  112. static std::map<e_model, size_t> k_sizes = {
  113. { MODEL_3B, 682ull * MB },
  114. { MODEL_7B, 1026ull * MB },
  115. { MODEL_13B, 1608ull * MB },
  116. { MODEL_30B, 3124ull * MB },
  117. { MODEL_65B, 5120ull * MB },
  118. };
  119. return k_sizes;
  120. }
  121. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  122. // not actually needed if BLAS is disabled
  123. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  124. {
  125. static std::map<e_model, size_t> k_sizes = {
  126. { MODEL_3B, 512ull * MB },
  127. { MODEL_7B, 768ull * MB },
  128. { MODEL_13B, 1024ull * MB },
  129. { MODEL_30B, 1280ull * MB },
  130. { MODEL_65B, 1536ull * MB },
  131. };
  132. return k_sizes;
  133. }
  134. // amount of VRAM needed per batch size to hold temporary results
  135. // the values for 3b and 65b are not derived from testing but instead chosen conservatively
  136. static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
  137. {
  138. static std::map<e_model, size_t> k_sizes = {
  139. { MODEL_3B, 512ull * kB },
  140. { MODEL_7B, 512ull * kB },
  141. { MODEL_13B, 640ull * kB },
  142. { MODEL_30B, 768ull * kB },
  143. { MODEL_65B, 1536ull * kB },
  144. };
  145. return k_sizes;
  146. }
  147. // amount of VRAM needed per batch size and context to hold temporary results
  148. // the values for 3b and 65b are not derived from testing but instead chosen conservatively
  149. static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
  150. {
  151. static std::map<e_model, size_t> k_sizes = {
  152. { MODEL_3B, 128ull },
  153. { MODEL_7B, 128ull },
  154. { MODEL_13B, 160ull },
  155. { MODEL_30B, 208ull },
  156. { MODEL_65B, 416ull },
  157. };
  158. return k_sizes;
  159. }
  160. // default hparams (LLaMA 7B)
  161. struct llama_hparams {
  162. uint32_t n_vocab = 32000;
  163. uint32_t n_ctx = 512; // this is provided as user input?
  164. uint32_t n_embd = 4096;
  165. uint32_t n_mult = 256;
  166. uint32_t n_head = 32;
  167. uint32_t n_layer = 32;
  168. uint32_t n_rot = 64;
  169. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  170. bool operator!=(const llama_hparams & other) const {
  171. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  172. }
  173. };
  174. struct llama_layer {
  175. // normalization
  176. struct ggml_tensor * attention_norm;
  177. // attention
  178. struct ggml_tensor * wq;
  179. struct ggml_tensor * wk;
  180. struct ggml_tensor * wv;
  181. struct ggml_tensor * wo;
  182. // normalization
  183. struct ggml_tensor * ffn_norm;
  184. // ff
  185. struct ggml_tensor * w1;
  186. struct ggml_tensor * w2;
  187. struct ggml_tensor * w3;
  188. };
  189. struct llama_kv_cache {
  190. struct ggml_tensor * k = NULL;
  191. struct ggml_tensor * v = NULL;
  192. struct ggml_context * ctx = NULL;
  193. llama_ctx_buffer buf;
  194. int n; // number of tokens currently in the cache
  195. ~llama_kv_cache() {
  196. if (ctx) {
  197. ggml_free(ctx);
  198. }
  199. #ifdef GGML_USE_CUBLAS
  200. ggml_cuda_free_data(k);
  201. ggml_cuda_free_data(v);
  202. #endif // GGML_USE_CUBLAS
  203. }
  204. };
  205. struct llama_vocab {
  206. using id = int32_t;
  207. using token = std::string;
  208. struct token_score {
  209. token tok;
  210. float score;
  211. };
  212. std::unordered_map<token, id> token_to_id;
  213. std::vector<token_score> id_to_token;
  214. };
  215. struct llama_model {
  216. e_model type = MODEL_UNKNOWN;
  217. llama_hparams hparams;
  218. struct ggml_tensor * tok_embeddings;
  219. struct ggml_tensor * norm;
  220. struct ggml_tensor * output;
  221. std::vector<llama_layer> layers;
  222. int n_gpu_layers;
  223. // context
  224. struct ggml_context * ctx = NULL;
  225. // the model memory buffer
  226. llama_ctx_buffer buf;
  227. // model memory mapped file
  228. std::unique_ptr<llama_mmap> mapping;
  229. // objects representing data potentially being locked in memory
  230. llama_mlock mlock_buf;
  231. llama_mlock mlock_mmap;
  232. // for quantize-stats only
  233. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  234. int64_t t_load_us = 0;
  235. int64_t t_start_us = 0;
  236. llama_vocab vocab;
  237. ~llama_model() {
  238. if (ctx) {
  239. ggml_free(ctx);
  240. }
  241. #ifdef GGML_USE_CUBLAS
  242. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  243. ggml_cuda_free_data(tensors_by_name[i].second);
  244. }
  245. ggml_cuda_free_scratch();
  246. #elif defined(GGML_USE_CLBLAST)
  247. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  248. ggml_cl_free_data(tensors_by_name[i].second);
  249. }
  250. #endif
  251. }
  252. };
  253. struct llama_context {
  254. llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
  255. #ifdef GGML_USE_METAL
  256. ~llama_context() {
  257. if (ctx_metal) {
  258. ggml_metal_free(ctx_metal);
  259. }
  260. }
  261. #endif
  262. std::mt19937 rng;
  263. bool has_evaluated_once = false;
  264. int64_t t_sample_us = 0;
  265. int64_t t_eval_us = 0;
  266. int64_t t_p_eval_us = 0;
  267. int32_t n_sample = 0; // number of tokens sampled
  268. int32_t n_eval = 0; // number of eval calls
  269. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  270. const llama_model & model;
  271. bool model_owner = false;
  272. int64_t t_load_us;
  273. int64_t t_start_us;
  274. // key + value cache for the self attention
  275. struct llama_kv_cache kv_self;
  276. size_t mem_per_token = 0;
  277. // decode output (2-dimensional array: [n_tokens][n_vocab])
  278. std::vector<float> logits;
  279. bool logits_all = false;
  280. // input embedding (1-dimensional array: [n_embd])
  281. std::vector<float> embedding;
  282. // reusable buffer for `struct ggml_graph_plan.work_data`
  283. std::vector<uint8_t> work_buffer;
  284. // memory buffers used to evaluate the model
  285. // TODO: move in llama_state
  286. llama_ctx_buffer buf_compute;
  287. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  288. #ifdef GGML_USE_METAL
  289. ggml_metal_context * ctx_metal = NULL;
  290. #endif
  291. #ifdef GGML_USE_MPI
  292. ggml_mpi_context * ctx_mpi = NULL;
  293. #endif
  294. int buf_last = 0;
  295. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  296. void use_buf(struct ggml_context * ctx, int i) {
  297. #if defined(LLAMA_USE_SCRATCH)
  298. size_t last_size = 0;
  299. if (i == -1) {
  300. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  301. } else {
  302. auto & buf = buf_scratch[i];
  303. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  304. }
  305. if (buf_last >= 0) {
  306. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  307. }
  308. buf_last = i;
  309. #else
  310. (void) i;
  311. (void) ctx;
  312. #endif
  313. }
  314. size_t get_buf_max_mem(int i) const {
  315. #if defined(LLAMA_USE_SCRATCH)
  316. return buf_max_size[i];
  317. #else
  318. (void) i;
  319. return 0;
  320. #endif
  321. }
  322. };
  323. template <typename T>
  324. static T checked_mul(T a, T b) {
  325. T ret = a * b;
  326. if (a != 0 && ret / a != b) {
  327. throw std::runtime_error(format("overflow multiplying %llu * %llu",
  328. (unsigned long long) a, (unsigned long long) b));
  329. }
  330. return ret;
  331. }
  332. static size_t checked_div(size_t a, size_t b) {
  333. if (b == 0 || a % b != 0) {
  334. throw std::runtime_error(format("error dividing %zu / %zu", a, b));
  335. }
  336. return a / b;
  337. }
  338. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  339. char buf[256];
  340. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  341. for (size_t i = 1; i < ne.size(); i++) {
  342. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  343. }
  344. return buf;
  345. }
  346. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  347. size_t size = ggml_type_size(type);
  348. for (uint32_t dim : ne) {
  349. size = checked_mul<size_t>(size, dim);
  350. }
  351. return size / ggml_blck_size(type);
  352. }
  353. struct llama_load_tensor {
  354. std::string name;
  355. enum ggml_type type = GGML_TYPE_F32;
  356. std::vector<uint32_t> ne;
  357. size_t file_off;
  358. size_t size;
  359. struct ggml_tensor * ggml_tensor = NULL;
  360. uint8_t * data;
  361. };
  362. struct llama_load_tensors_map {
  363. // tensors is kept in a separate vector to preserve file order
  364. std::vector<llama_load_tensor> tensors;
  365. std::unordered_map<std::string, size_t> name_to_idx;
  366. };
  367. enum llama_file_version {
  368. LLAMA_FILE_VERSION_GGML,
  369. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  370. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  371. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  372. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  373. };
  374. struct llama_file_loader {
  375. llama_file file;
  376. llama_file_version file_version;
  377. llama_hparams hparams;
  378. llama_vocab vocab;
  379. llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
  380. : file(fname, "rb") {
  381. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  382. read_magic();
  383. read_hparams();
  384. read_vocab();
  385. read_tensor_metadata(tensors_map);
  386. }
  387. void read_magic() {
  388. uint32_t magic = file.read_u32();
  389. if (magic == LLAMA_FILE_MAGIC_GGML) {
  390. file_version = LLAMA_FILE_VERSION_GGML;
  391. return;
  392. }
  393. uint32_t version = file.read_u32();
  394. switch (magic) {
  395. case LLAMA_FILE_MAGIC_GGMF:
  396. switch (version) {
  397. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  398. }
  399. break;
  400. case LLAMA_FILE_MAGIC_GGJT:
  401. switch (version) {
  402. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  403. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  404. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  405. }
  406. }
  407. throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  408. magic, version));
  409. }
  410. void read_hparams() {
  411. hparams.n_vocab = file.read_u32();
  412. hparams.n_embd = file.read_u32();
  413. hparams.n_mult = file.read_u32();
  414. hparams.n_head = file.read_u32();
  415. hparams.n_layer = file.read_u32();
  416. hparams.n_rot = file.read_u32();
  417. hparams.ftype = (enum llama_ftype) file.read_u32();
  418. }
  419. void read_vocab() {
  420. vocab.id_to_token.resize(hparams.n_vocab);
  421. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  422. uint32_t len = file.read_u32();
  423. std::string word = file.read_string(len);
  424. float score = 0.0f;
  425. file.read_raw(&score, sizeof(score));
  426. vocab.token_to_id[word] = i;
  427. auto & tok_score = vocab.id_to_token[i];
  428. tok_score.tok = std::move(word);
  429. tok_score.score = score;
  430. }
  431. }
  432. void read_tensor_metadata(llama_load_tensors_map & tensors_map) {
  433. while (file.tell() < file.size) {
  434. llama_load_tensor tensor;
  435. uint32_t n_dims = file.read_u32();
  436. uint32_t name_len = file.read_u32();
  437. tensor.type = (enum ggml_type) file.read_u32();
  438. tensor.ne.resize(n_dims);
  439. file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims);
  440. std::string name = file.read_string(name_len);
  441. if (n_dims < 1 || n_dims > 2) {
  442. throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
  443. }
  444. switch (tensor.type) {
  445. case GGML_TYPE_F32:
  446. case GGML_TYPE_F16:
  447. case GGML_TYPE_Q4_0:
  448. case GGML_TYPE_Q4_1:
  449. case GGML_TYPE_Q5_0:
  450. case GGML_TYPE_Q5_1:
  451. case GGML_TYPE_Q8_0:
  452. case GGML_TYPE_Q2_K:
  453. case GGML_TYPE_Q3_K:
  454. case GGML_TYPE_Q4_K:
  455. case GGML_TYPE_Q5_K:
  456. case GGML_TYPE_Q6_K:
  457. break;
  458. default: {
  459. throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type));
  460. }
  461. }
  462. // skip to the next multiple of 32 bytes
  463. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  464. tensor.file_off = file.tell();
  465. tensor.name = name;
  466. tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type);
  467. file.seek(tensor.size, SEEK_CUR);
  468. tensors_map.tensors.push_back(tensor);
  469. tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
  470. }
  471. }
  472. };
  473. struct llama_file_saver {
  474. llama_file file;
  475. llama_file_loader * any_file_loader;
  476. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  477. : file(fname, "wb"), any_file_loader(any_file_loader) {
  478. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  479. write_magic();
  480. write_hparams(new_ftype);
  481. write_vocab();
  482. }
  483. void write_magic() {
  484. file.write_u32(LLAMA_FILE_MAGIC); // magic
  485. file.write_u32(LLAMA_FILE_VERSION); // version
  486. }
  487. void write_hparams(enum llama_ftype new_ftype) {
  488. const llama_hparams & hparams = any_file_loader->hparams;
  489. file.write_u32(hparams.n_vocab);
  490. file.write_u32(hparams.n_embd);
  491. file.write_u32(hparams.n_mult);
  492. file.write_u32(hparams.n_head);
  493. file.write_u32(hparams.n_layer);
  494. file.write_u32(hparams.n_rot);
  495. file.write_u32(new_ftype);
  496. }
  497. void write_vocab() {
  498. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  499. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  500. }
  501. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  502. for (uint32_t i = 0; i < n_vocab; i++) {
  503. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  504. file.write_u32((uint32_t) token_score.tok.size());
  505. file.write_raw(token_score.tok.data(), token_score.tok.size());
  506. file.write_raw(&token_score.score, sizeof(token_score.score));
  507. }
  508. }
  509. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  510. switch (new_type) {
  511. case GGML_TYPE_F32:
  512. case GGML_TYPE_F16:
  513. case GGML_TYPE_Q4_0:
  514. case GGML_TYPE_Q4_1:
  515. case GGML_TYPE_Q5_0:
  516. case GGML_TYPE_Q5_1:
  517. case GGML_TYPE_Q8_0:
  518. case GGML_TYPE_Q2_K:
  519. case GGML_TYPE_Q3_K:
  520. case GGML_TYPE_Q4_K:
  521. case GGML_TYPE_Q5_K:
  522. case GGML_TYPE_Q6_K:
  523. break;
  524. default: LLAMA_ASSERT(false);
  525. }
  526. file.write_u32((uint32_t) tensor.ne.size());
  527. file.write_u32((uint32_t) tensor.name.size());
  528. file.write_u32(new_type);
  529. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  530. file.write_raw(tensor.name.data(), tensor.name.size());
  531. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  532. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  533. file.write_raw(new_data, new_size);
  534. }
  535. };
  536. struct llama_model_loader {
  537. std::unique_ptr<llama_file_loader> file_loader;
  538. llama_load_tensors_map tensors_map;
  539. bool use_mmap;
  540. size_t num_ggml_tensors_created = 0;
  541. struct ggml_context * ggml_ctx = NULL;
  542. std::unique_ptr<llama_mmap> mapping;
  543. llama_model_loader(const std::string & fname_base, bool use_mmap) {
  544. file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
  545. if (!llama_mmap::SUPPORTED) {
  546. use_mmap = false;
  547. }
  548. this->use_mmap = use_mmap;
  549. }
  550. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  551. *ctx_size_p = *mmapped_size_p = 0;
  552. for (const llama_load_tensor & lt : tensors_map.tensors) {
  553. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  554. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  555. }
  556. }
  557. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  558. auto it = tensors_map.name_to_idx.find(name);
  559. if (it == tensors_map.name_to_idx.end()) {
  560. throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
  561. }
  562. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  563. if (lt.ne != ne) {
  564. throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  565. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
  566. }
  567. return get_tensor_for(lt, backend);
  568. }
  569. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  570. struct ggml_tensor * tensor;
  571. if (backend != GGML_BACKEND_CPU) {
  572. ggml_set_no_alloc(ggml_ctx, true);
  573. }
  574. if (lt.ne.size() == 2) {
  575. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  576. } else {
  577. LLAMA_ASSERT(lt.ne.size() == 1);
  578. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  579. }
  580. ggml_set_name(tensor, lt.name.c_str());
  581. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  582. if (backend != GGML_BACKEND_CPU) {
  583. ggml_set_no_alloc(ggml_ctx, use_mmap);
  584. }
  585. tensor->backend = backend;
  586. lt.ggml_tensor = tensor;
  587. num_ggml_tensors_created++;
  588. return tensor;
  589. }
  590. void done_getting_tensors() const {
  591. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  592. throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
  593. }
  594. }
  595. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  596. size_t data_size = 0;
  597. size_t prefetch_size = 0;
  598. size_t lock_size = 0;
  599. for (const llama_load_tensor & lt : tensors_map.tensors) {
  600. data_size += lt.size;
  601. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  602. prefetch_size += lt.size;
  603. }
  604. }
  605. if (use_mmap) {
  606. mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa()));
  607. if (lmlock) {
  608. lmlock->init(mapping->addr);
  609. }
  610. }
  611. size_t done_size = 0;
  612. for (llama_load_tensor & lt : tensors_map.tensors) {
  613. if (progress_callback) {
  614. progress_callback((float) done_size / data_size, progress_callback_user_data);
  615. }
  616. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  617. lt.data = (uint8_t *) lt.ggml_tensor->data;
  618. // allocate temp buffer if not using mmap
  619. if (!use_mmap && lt.data == NULL) {
  620. GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
  621. lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
  622. }
  623. load_data_for(lt);
  624. switch(lt.ggml_tensor->backend) {
  625. case GGML_BACKEND_CPU:
  626. lt.ggml_tensor->data = lt.data;
  627. if (use_mmap && lmlock) {
  628. lock_size += lt.size;
  629. lmlock->grow_to(lock_size);
  630. }
  631. break;
  632. #if defined(GGML_USE_CUBLAS)
  633. case GGML_BACKEND_GPU:
  634. case GGML_BACKEND_GPU_SPLIT:
  635. ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  636. if (!use_mmap) {
  637. free(lt.data);
  638. }
  639. break;
  640. #elif defined(GGML_USE_CLBLAST)
  641. case GGML_BACKEND_GPU:
  642. ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
  643. if (!use_mmap) {
  644. free(lt.data);
  645. }
  646. break;
  647. #endif
  648. default:
  649. continue;
  650. }
  651. done_size += lt.size;
  652. }
  653. }
  654. void load_data_for(llama_load_tensor & lt) {
  655. if (use_mmap) {
  656. lt.data = (uint8_t *) mapping->addr + lt.file_off;
  657. } else {
  658. llama_file & file = file_loader->file;
  659. file.seek(lt.file_off, SEEK_SET);
  660. file.read_raw(lt.data, lt.size);
  661. }
  662. if (0) {
  663. print_checksum(lt);
  664. }
  665. }
  666. static void print_checksum(llama_load_tensor & lt) {
  667. uint32_t sum = 0;
  668. for (size_t i = 0; i < lt.size; i++) {
  669. uint8_t byte = lt.data[i];
  670. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  671. }
  672. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  673. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  674. }
  675. };
  676. //
  677. // kv cache
  678. //
  679. static bool kv_cache_init(
  680. const struct llama_hparams & hparams,
  681. struct llama_kv_cache & cache,
  682. ggml_type wtype,
  683. int n_ctx,
  684. int n_gpu_layers) {
  685. const int n_embd = hparams.n_embd;
  686. const int n_layer = hparams.n_layer;
  687. const int64_t n_mem = n_layer*n_ctx;
  688. const int64_t n_elements = n_embd*n_mem;
  689. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  690. cache.n = 0;
  691. struct ggml_init_params params;
  692. params.mem_size = cache.buf.size;
  693. params.mem_buffer = cache.buf.addr;
  694. params.no_alloc = false;
  695. cache.ctx = ggml_init(params);
  696. if (!cache.ctx) {
  697. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  698. return false;
  699. }
  700. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  701. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  702. ggml_set_name(cache.k, "cache_k");
  703. ggml_set_name(cache.v, "cache_v");
  704. (void) n_gpu_layers;
  705. #ifdef GGML_USE_CUBLAS
  706. if (n_gpu_layers > n_layer + 1) {
  707. ggml_cuda_assign_buffers_no_scratch(cache.v);
  708. }
  709. if (n_gpu_layers > n_layer + 2) {
  710. ggml_cuda_assign_buffers_no_scratch(cache.k);
  711. }
  712. #endif // GGML_USE_CUBLAS
  713. return true;
  714. }
  715. struct llama_context_params llama_context_default_params() {
  716. struct llama_context_params result = {
  717. /*.seed =*/ LLAMA_DEFAULT_SEED,
  718. /*.n_ctx =*/ 512,
  719. /*.n_batch =*/ 512,
  720. /*.gpu_layers =*/ 0,
  721. /*.main_gpu =*/ 0,
  722. /*.tensor_split =*/ {0},
  723. /*.progress_callback =*/ nullptr,
  724. /*.progress_callback_user_data =*/ nullptr,
  725. /*.low_vram =*/ false,
  726. /*.f16_kv =*/ true,
  727. /*.logits_all =*/ false,
  728. /*.vocab_only =*/ false,
  729. /*.use_mmap =*/ true,
  730. /*.use_mlock =*/ false,
  731. /*.embedding =*/ false,
  732. };
  733. return result;
  734. }
  735. struct llama_model_quantize_params llama_model_quantize_default_params() {
  736. struct llama_model_quantize_params result = {
  737. /*.nthread =*/ 0,
  738. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  739. /*.allow_requantize =*/ false,
  740. /*.quantize_output_tensor =*/ true,
  741. };
  742. return result;
  743. }
  744. bool llama_mmap_supported() {
  745. return llama_mmap::SUPPORTED;
  746. }
  747. bool llama_mlock_supported() {
  748. return llama_mlock::SUPPORTED;
  749. }
  750. void llama_backend_init(bool numa) {
  751. ggml_time_init();
  752. // needed to initialize f16 tables
  753. {
  754. struct ggml_init_params params = { 0, NULL, false };
  755. struct ggml_context * ctx = ggml_init(params);
  756. ggml_free(ctx);
  757. }
  758. if (numa) {
  759. ggml_numa_init();
  760. }
  761. #ifdef GGML_USE_MPI
  762. ggml_mpi_backend_init();
  763. #endif
  764. }
  765. void llama_backend_free() {
  766. #ifdef GGML_USE_MPI
  767. ggml_mpi_backend_free();
  768. #endif
  769. }
  770. int64_t llama_time_us() {
  771. return ggml_time_us();
  772. }
  773. //
  774. // model loading
  775. //
  776. static const char *llama_file_version_name(llama_file_version version) {
  777. switch (version) {
  778. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  779. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  780. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  781. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  782. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  783. }
  784. return "unknown";
  785. }
  786. static const char *llama_ftype_name(enum llama_ftype ftype) {
  787. switch (ftype) {
  788. case LLAMA_FTYPE_ALL_F32: return "all F32";
  789. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  790. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  791. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  792. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  793. return "mostly Q4_1, some F16";
  794. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  795. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  796. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  797. // K-quants
  798. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  799. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  800. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  801. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  802. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  803. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  804. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  805. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  806. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  807. default: return "unknown, may not work";
  808. }
  809. }
  810. static const char *llama_model_type_name(e_model type) {
  811. switch (type) {
  812. case MODEL_3B: return "3B";
  813. case MODEL_7B: return "7B";
  814. case MODEL_13B: return "13B";
  815. case MODEL_30B: return "30B";
  816. case MODEL_65B: return "65B";
  817. default: LLAMA_ASSERT(false);
  818. }
  819. }
  820. static void llama_model_load_internal(
  821. const std::string & fname,
  822. llama_model & model,
  823. llama_vocab & vocab,
  824. int n_ctx,
  825. int n_batch,
  826. int n_gpu_layers,
  827. int main_gpu,
  828. const float * tensor_split,
  829. bool low_vram,
  830. ggml_type memory_type,
  831. bool use_mmap,
  832. bool use_mlock,
  833. bool vocab_only,
  834. llama_progress_callback progress_callback,
  835. void * progress_callback_user_data) {
  836. model.t_start_us = ggml_time_us();
  837. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
  838. vocab = std::move(ml->file_loader->vocab);
  839. model.hparams = ml->file_loader->hparams;
  840. model.n_gpu_layers = n_gpu_layers;
  841. llama_file_version file_version = ml->file_loader->file_version;
  842. auto & hparams = model.hparams;
  843. {
  844. switch (hparams.n_layer) {
  845. case 26: model.type = e_model::MODEL_3B; break;
  846. case 32: model.type = e_model::MODEL_7B; break;
  847. case 40: model.type = e_model::MODEL_13B; break;
  848. case 60: model.type = e_model::MODEL_30B; break;
  849. case 80: model.type = e_model::MODEL_65B; break;
  850. default:
  851. {
  852. if (hparams.n_layer < 32) {
  853. model.type = e_model::MODEL_7B;
  854. }
  855. } break;
  856. }
  857. hparams.n_ctx = n_ctx;
  858. }
  859. const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  860. {
  861. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  862. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  863. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  864. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  865. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  866. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  867. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  868. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  869. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  870. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  871. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  872. }
  873. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  874. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  875. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  876. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  877. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
  878. }
  879. }
  880. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  881. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  882. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  883. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  884. throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
  885. }
  886. }
  887. if (vocab_only) {
  888. return;
  889. }
  890. auto & ctx = model.ctx;
  891. size_t ctx_size;
  892. size_t mmapped_size;
  893. ml->calc_sizes(&ctx_size, &mmapped_size);
  894. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  895. // create the ggml context
  896. {
  897. model.buf.resize(ctx_size);
  898. if (use_mlock) {
  899. model.mlock_buf.init(model.buf.addr);
  900. model.mlock_buf.grow_to(model.buf.size);
  901. }
  902. struct ggml_init_params params = {
  903. /*.mem_size =*/ model.buf.size,
  904. /*.mem_buffer =*/ model.buf.addr,
  905. /*.no_alloc =*/ ml->use_mmap,
  906. };
  907. model.ctx = ggml_init(params);
  908. if (!model.ctx) {
  909. throw std::runtime_error(format("ggml_init() failed"));
  910. }
  911. }
  912. (void) main_gpu;
  913. #if defined(GGML_USE_CUBLAS)
  914. fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
  915. ggml_cuda_set_main_device(main_gpu);
  916. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  917. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  918. #elif defined(GGML_USE_CLBLAST)
  919. fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
  920. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  921. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  922. #else
  923. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  924. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  925. #endif
  926. // prepare memory for the weights
  927. size_t vram_weights = 0;
  928. size_t vram_scratch = 0;
  929. {
  930. const uint32_t n_embd = hparams.n_embd;
  931. const uint32_t n_layer = hparams.n_layer;
  932. const uint32_t n_vocab = hparams.n_vocab;
  933. ml->ggml_ctx = ctx;
  934. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  935. // "output" tensor
  936. {
  937. ggml_backend backend_norm;
  938. ggml_backend backend_output;
  939. if (n_gpu_layers > int(n_layer)) { // NOLINT
  940. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  941. // on Windows however this is detrimental unless everything is on the GPU
  942. #ifndef _WIN32
  943. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  944. #else
  945. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  946. #endif // _WIN32
  947. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  948. } else {
  949. backend_norm = GGML_BACKEND_CPU;
  950. backend_output = GGML_BACKEND_CPU;
  951. }
  952. model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
  953. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  954. if (backend_norm == GGML_BACKEND_GPU) {
  955. vram_weights += ggml_nbytes(model.norm);
  956. }
  957. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  958. vram_weights += ggml_nbytes(model.output);
  959. }
  960. }
  961. const int i_gpu_start = n_layer - n_gpu_layers;
  962. model.layers.resize(n_layer);
  963. for (uint32_t i = 0; i < n_layer; ++i) {
  964. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  965. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  966. auto & layer = model.layers[i];
  967. std::string layers_i = "layers." + std::to_string(i);
  968. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  969. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
  970. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
  971. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
  972. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
  973. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  974. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
  975. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
  976. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
  977. if (backend == GGML_BACKEND_GPU) {
  978. vram_weights +=
  979. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  980. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  981. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  982. }
  983. }
  984. }
  985. ml->done_getting_tensors();
  986. // print memory requirements
  987. {
  988. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  989. // this is the total memory required to run the inference
  990. const size_t mem_required =
  991. ctx_size +
  992. mmapped_size - vram_weights + // weights in VRAM not in memory
  993. MEM_REQ_SCRATCH0().at(model.type) +
  994. MEM_REQ_SCRATCH1().at(model.type) +
  995. MEM_REQ_EVAL().at (model.type);
  996. // this is the memory required by one llama_state
  997. const size_t mem_required_state =
  998. scale*MEM_REQ_KV_SELF().at(model.type);
  999. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  1000. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  1001. (void) vram_scratch;
  1002. (void) n_batch;
  1003. #ifdef GGML_USE_CUBLAS
  1004. if (low_vram) {
  1005. fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  1006. ggml_cuda_set_scratch_size(0); // disable scratch
  1007. } else {
  1008. const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
  1009. const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
  1010. vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
  1011. ggml_cuda_set_scratch_size(vram_scratch);
  1012. if (n_gpu_layers > 0) {
  1013. fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
  1014. __func__, vram_scratch_base / kB, vram_scratch_per_context,
  1015. (vram_scratch + MB - 1) / MB); // round up
  1016. }
  1017. }
  1018. #endif // GGML_USE_CUBLAS
  1019. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1020. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1021. fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  1022. if (n_gpu_layers > (int) hparams.n_layer) {
  1023. fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
  1024. }
  1025. size_t vram_kv_cache = 0;
  1026. #ifdef GGML_USE_CUBLAS
  1027. const int max_backend_supported_layers = hparams.n_layer + 3;
  1028. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1029. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1030. if (low_vram) {
  1031. fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1032. } else {
  1033. fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
  1034. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1035. }
  1036. }
  1037. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1038. if (low_vram) {
  1039. fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1040. } else {
  1041. fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
  1042. vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
  1043. }
  1044. }
  1045. #elif defined(GGML_USE_CLBLAST)
  1046. const int max_backend_supported_layers = hparams.n_layer + 1;
  1047. const int max_offloadable_layers = hparams.n_layer + 1;
  1048. #endif // GGML_USE_CUBLAS
  1049. fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
  1050. __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  1051. fprintf(stderr, "%s: total VRAM used: %zu MB\n",
  1052. __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
  1053. #else
  1054. (void) n_gpu_layers;
  1055. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1056. }
  1057. // populate `tensors_by_name`
  1058. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  1059. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  1060. }
  1061. (void) tensor_split;
  1062. #if defined(GGML_USE_CUBLAS)
  1063. {
  1064. ggml_cuda_set_tensor_split(tensor_split);
  1065. }
  1066. #endif
  1067. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  1068. if (progress_callback) {
  1069. progress_callback(1.0f, progress_callback_user_data);
  1070. }
  1071. model.mapping = std::move(ml->mapping);
  1072. // loading time will be recalculate after the first eval, so
  1073. // we take page faults deferred by mmap() into consideration
  1074. model.t_load_us = ggml_time_us() - model.t_start_us;
  1075. }
  1076. static bool llama_model_load(
  1077. const std::string & fname,
  1078. llama_model & model,
  1079. llama_vocab & vocab,
  1080. int n_ctx,
  1081. int n_batch,
  1082. int n_gpu_layers,
  1083. int main_gpu,
  1084. float * tensor_split,
  1085. bool low_vram,
  1086. ggml_type memory_type,
  1087. bool use_mmap,
  1088. bool use_mlock,
  1089. bool vocab_only,
  1090. llama_progress_callback progress_callback,
  1091. void *progress_callback_user_data) {
  1092. try {
  1093. llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
  1094. use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
  1095. return true;
  1096. } catch (const std::exception & err) {
  1097. fprintf(stderr, "error loading model: %s\n", err.what());
  1098. return false;
  1099. }
  1100. }
  1101. // evaluate the transformer
  1102. //
  1103. // - lctx: llama context
  1104. // - tokens: new batch of tokens to process
  1105. // - embd embeddings input
  1106. // - n_tokens number of tokens
  1107. // - n_past: the context size so far
  1108. // - n_threads: number of threads to use
  1109. //
  1110. static bool llama_eval_internal(
  1111. llama_context & lctx,
  1112. const llama_token * tokens,
  1113. const float * embd,
  1114. int n_tokens,
  1115. int n_past,
  1116. int n_threads,
  1117. const char * cgraph_fname) {
  1118. LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
  1119. #ifdef GGML_USE_MPI
  1120. ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  1121. #endif
  1122. const int64_t t_start_us = ggml_time_us();
  1123. const int N = n_tokens;
  1124. const auto & model = lctx.model;
  1125. const auto & hparams = model.hparams;
  1126. const auto & kv_self = lctx.kv_self;
  1127. LLAMA_ASSERT(!!kv_self.ctx);
  1128. const int n_embd = hparams.n_embd;
  1129. const int n_layer = hparams.n_layer;
  1130. const int n_ctx = hparams.n_ctx;
  1131. const int n_head = hparams.n_head;
  1132. const int n_vocab = hparams.n_vocab;
  1133. const int n_rot = hparams.n_embd/hparams.n_head;
  1134. const int n_gpu_layers = model.n_gpu_layers;
  1135. auto & mem_per_token = lctx.mem_per_token;
  1136. auto & buf_compute = lctx.buf_compute;
  1137. struct ggml_init_params params = {
  1138. /*.mem_size =*/ buf_compute.size,
  1139. /*.mem_buffer =*/ buf_compute.addr,
  1140. /*.no_alloc =*/ false,
  1141. };
  1142. struct ggml_context * ctx0 = ggml_init(params);
  1143. ggml_cgraph gf = {};
  1144. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1145. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1146. n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1147. struct ggml_tensor * cur;
  1148. struct ggml_tensor * inpL;
  1149. if (tokens) {
  1150. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1151. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  1152. ggml_set_name(inp_tokens, "inp_tokens");
  1153. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  1154. } else {
  1155. #ifdef GGML_USE_MPI
  1156. GGML_ASSERT(false && "not implemented");
  1157. #endif
  1158. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  1159. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  1160. }
  1161. const int i_gpu_start = n_layer - n_gpu_layers;
  1162. (void) i_gpu_start;
  1163. // offload functions set the tensor output backend to GPU
  1164. // tensors are GPU-accelerated if any input or the output has been offloaded
  1165. //
  1166. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  1167. // in that case ggml_cuda_assign_buffers has no effect
  1168. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  1169. offload_func_t offload_func_kq = llama_nop;
  1170. offload_func_t offload_func_v = llama_nop;
  1171. #ifdef GGML_USE_CUBLAS
  1172. if (n_gpu_layers > n_layer) {
  1173. offload_func_nr = ggml_cuda_assign_buffers;
  1174. }
  1175. if (n_gpu_layers > n_layer + 1) {
  1176. offload_func_v = ggml_cuda_assign_buffers;
  1177. }
  1178. if (n_gpu_layers > n_layer + 2) {
  1179. offload_func_kq = ggml_cuda_assign_buffers;
  1180. }
  1181. #endif // GGML_USE_CUBLAS
  1182. for (int il = 0; il < n_layer; ++il) {
  1183. ggml_format_name(inpL, "layer_inp_%d", il);
  1184. offload_func_t offload_func = llama_nop;
  1185. #ifdef GGML_USE_CUBLAS
  1186. if (il >= i_gpu_start) {
  1187. offload_func = ggml_cuda_assign_buffers;
  1188. }
  1189. #endif // GGML_USE_CUBLAS
  1190. struct ggml_tensor * inpSA = inpL;
  1191. lctx.use_buf(ctx0, 0);
  1192. // norm
  1193. {
  1194. cur = ggml_rms_norm(ctx0, inpL);
  1195. offload_func(cur);
  1196. ggml_set_name(cur, "rms_norm_0");
  1197. // cur = cur*attention_norm(broadcasted)
  1198. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1199. offload_func(cur);
  1200. ggml_set_name(cur, "attention_norm_0");
  1201. }
  1202. // self-attention
  1203. {
  1204. // compute Q and K and RoPE them
  1205. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  1206. offload_func_kq(tmpk);
  1207. ggml_set_name(tmpk, "tmpk");
  1208. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  1209. offload_func_kq(tmpq);
  1210. ggml_set_name(tmpq, "tmpq");
  1211. struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
  1212. offload_func_kq(Kcur);
  1213. ggml_set_name(Kcur, "Kcur");
  1214. struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
  1215. offload_func_kq(Qcur);
  1216. ggml_set_name(Qcur, "Qcur");
  1217. // store key and value to memory
  1218. {
  1219. // compute the transposed [N, n_embd] V matrix
  1220. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  1221. offload_func_v(tmpv);
  1222. ggml_set_name(tmpv, "tmpv");
  1223. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
  1224. offload_func_v(Vcur);
  1225. ggml_set_name(Vcur, "Vcur");
  1226. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1227. offload_func_kq(k);
  1228. ggml_set_name(k, "k");
  1229. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1230. ( n_ctx)*ggml_element_size(kv_self.v),
  1231. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1232. offload_func_v(v);
  1233. ggml_set_name(v, "v");
  1234. // important: storing RoPE-ed version of K in the KV cache!
  1235. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1236. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1237. }
  1238. struct ggml_tensor * Q =
  1239. ggml_permute(ctx0,
  1240. Qcur,
  1241. 0, 2, 1, 3);
  1242. offload_func_kq(Q);
  1243. ggml_set_name(Q, "Q");
  1244. struct ggml_tensor * K =
  1245. ggml_permute(ctx0,
  1246. ggml_reshape_3d(ctx0,
  1247. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1248. n_embd/n_head, n_head, n_past + N),
  1249. 0, 2, 1, 3);
  1250. offload_func_kq(K);
  1251. ggml_set_name(K, "K");
  1252. // K * Q
  1253. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1254. offload_func_kq(KQ);
  1255. ggml_set_name(KQ, "KQ");
  1256. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1257. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1258. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1259. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1260. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1261. offload_func_kq(KQ_scaled);
  1262. ggml_set_name(KQ_scaled, "KQ_scaled");
  1263. // KQ_masked = mask_past(KQ_scaled)
  1264. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1265. offload_func_kq(KQ_masked);
  1266. ggml_set_name(KQ_masked, "KQ_masked");
  1267. // KQ = soft_max(KQ_masked)
  1268. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1269. offload_func_v(KQ_soft_max);
  1270. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1271. // split cached V into n_head heads
  1272. struct ggml_tensor * V =
  1273. ggml_view_3d(ctx0, kv_self.v,
  1274. n_past + N, n_embd/n_head, n_head,
  1275. n_ctx*ggml_element_size(kv_self.v),
  1276. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1277. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1278. offload_func_v(V);
  1279. ggml_set_name(V, "V");
  1280. #if 1
  1281. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1282. offload_func_v(KQV);
  1283. ggml_set_name(KQV, "KQV");
  1284. #else
  1285. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1286. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1287. // is there a better way?
  1288. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1289. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1290. #endif
  1291. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1292. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1293. offload_func_v(KQV_merged);
  1294. ggml_set_name(KQV_merged, "KQV_merged");
  1295. // cur = KQV_merged.contiguous().view(n_embd, N)
  1296. cur = ggml_cpy(ctx0,
  1297. KQV_merged,
  1298. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1299. offload_func_v(cur);
  1300. ggml_set_name(cur, "KQV_merged_contiguous");
  1301. // projection (no bias)
  1302. cur = ggml_mul_mat(ctx0,
  1303. model.layers[il].wo,
  1304. cur);
  1305. offload_func(cur);
  1306. ggml_set_name(cur, "result_wo");
  1307. }
  1308. lctx.use_buf(ctx0, 1);
  1309. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1310. offload_func(inpFF);
  1311. ggml_set_name(inpFF, "inpFF");
  1312. // feed-forward network
  1313. {
  1314. // norm
  1315. {
  1316. cur = ggml_rms_norm(ctx0, inpFF);
  1317. offload_func(cur);
  1318. ggml_set_name(cur, "rms_norm_1");
  1319. // cur = cur*ffn_norm(broadcasted)
  1320. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1321. offload_func(cur);
  1322. ggml_set_name(cur, "ffn_norm");
  1323. }
  1324. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1325. model.layers[il].w3,
  1326. cur);
  1327. offload_func(tmp);
  1328. ggml_set_name(tmp, "result_w3");
  1329. cur = ggml_mul_mat(ctx0,
  1330. model.layers[il].w1,
  1331. cur);
  1332. offload_func(cur);
  1333. ggml_set_name(cur, "result_w1");
  1334. // SILU activation
  1335. cur = ggml_silu(ctx0, cur);
  1336. offload_func(cur);
  1337. ggml_set_name(cur, "silu");
  1338. cur = ggml_mul(ctx0, cur, tmp);
  1339. offload_func(cur);
  1340. ggml_set_name(cur, "silu_x_result_w3");
  1341. cur = ggml_mul_mat(ctx0,
  1342. model.layers[il].w2,
  1343. cur);
  1344. offload_func(cur);
  1345. ggml_set_name(cur, "result_w2");
  1346. }
  1347. cur = ggml_add(ctx0, cur, inpFF);
  1348. offload_func(cur);
  1349. ggml_set_name(cur, "inpFF_+_result_w2");
  1350. // input for next layer
  1351. inpL = cur;
  1352. }
  1353. lctx.use_buf(ctx0, 0);
  1354. // used at the end to optionally extract the embeddings
  1355. struct ggml_tensor * embeddings = NULL;
  1356. // norm
  1357. {
  1358. cur = ggml_rms_norm(ctx0, inpL);
  1359. offload_func_nr(cur);
  1360. ggml_set_name(cur, "rms_norm_2");
  1361. // cur = cur*norm(broadcasted)
  1362. cur = ggml_mul(ctx0, cur, model.norm);
  1363. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  1364. ggml_set_name(cur, "result_norm");
  1365. embeddings = cur;
  1366. }
  1367. // lm_head
  1368. cur = ggml_mul_mat(ctx0, model.output, cur);
  1369. ggml_set_name(cur, "result_output");
  1370. lctx.use_buf(ctx0, -1);
  1371. // logits -> probs
  1372. //cur = ggml_soft_max_inplace(ctx0, cur);
  1373. // run the computation
  1374. ggml_build_forward_expand(&gf, cur);
  1375. #if GGML_USE_MPI
  1376. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer);
  1377. #endif
  1378. #ifdef GGML_USE_METAL
  1379. if (lctx.ctx_metal && N == 1) {
  1380. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  1381. ggml_metal_graph_compute(lctx.ctx_metal, &gf);
  1382. ggml_metal_get_tensor (lctx.ctx_metal, cur);
  1383. } else {
  1384. // IMPORTANT:
  1385. // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
  1386. // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
  1387. // coprocessor.
  1388. //
  1389. // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
  1390. // But for now, we have focused only on Matrix x Vector Metal multiplication.
  1391. //
  1392. // TODO: avoid these syncs via shared memory (ref #1696)
  1393. //
  1394. if (lctx.ctx_metal) {
  1395. // We need to sync the GPU KV cache with the CPU KV cache
  1396. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
  1397. ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
  1398. }
  1399. ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
  1400. }
  1401. #else
  1402. ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
  1403. #endif
  1404. #if GGML_USE_MPI
  1405. ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer);
  1406. #endif
  1407. // update kv token count
  1408. lctx.kv_self.n = n_past + N;
  1409. struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1];
  1410. if (cgraph_fname) {
  1411. ggml_graph_export(&gf, cgraph_fname);
  1412. }
  1413. #ifdef GGML_PERF
  1414. // print timing information per ggml operation (for debugging purposes)
  1415. // requires GGML_PERF to be defined
  1416. ggml_graph_print(&gf);
  1417. #endif
  1418. // plot the computation graph in dot format (for debugging purposes)
  1419. //if (n_past%100 == 0) {
  1420. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1421. //}
  1422. // extract logits
  1423. {
  1424. auto & logits_out = lctx.logits;
  1425. if (lctx.logits_all) {
  1426. logits_out.resize(n_vocab * N);
  1427. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
  1428. } else {
  1429. // return result for just the last token
  1430. logits_out.resize(n_vocab);
  1431. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1432. }
  1433. }
  1434. // extract embeddings
  1435. if (!lctx.embedding.empty()) {
  1436. auto & embedding_out = lctx.embedding;
  1437. embedding_out.resize(n_embd);
  1438. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1439. }
  1440. if (mem_per_token == 0) {
  1441. mem_per_token = ggml_used_mem(ctx0)/N;
  1442. }
  1443. #if 0
  1444. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1445. ggml_used_mem(ctx0)/1024.0/1024.0,
  1446. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1447. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1448. #endif
  1449. ggml_free(ctx0);
  1450. // measure the performance only for the single-token evals
  1451. if (N == 1) {
  1452. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1453. lctx.n_eval++;
  1454. }
  1455. else if (N > 1) {
  1456. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1457. lctx.n_p_eval += N;
  1458. }
  1459. return true;
  1460. }
  1461. //
  1462. // tokenizer
  1463. //
  1464. static size_t utf8_len(char src) {
  1465. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1466. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1467. return lookup[highbits];
  1468. }
  1469. struct llama_sp_symbol {
  1470. using index = int;
  1471. index prev;
  1472. index next;
  1473. const char * text;
  1474. size_t n;
  1475. };
  1476. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1477. struct llama_sp_bigram {
  1478. struct comparator {
  1479. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1480. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1481. }
  1482. };
  1483. using queue_storage = std::vector<llama_sp_bigram>;
  1484. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1485. llama_sp_symbol::index left;
  1486. llama_sp_symbol::index right;
  1487. float score;
  1488. size_t size;
  1489. };
  1490. // original implementation:
  1491. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1492. struct llama_tokenizer {
  1493. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1494. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1495. // split string into utf8 chars
  1496. int index = 0;
  1497. size_t offs = 0;
  1498. while (offs < text.size()) {
  1499. llama_sp_symbol sym;
  1500. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1501. sym.text = text.c_str() + offs;
  1502. sym.n = char_len;
  1503. offs += char_len;
  1504. sym.prev = index - 1;
  1505. sym.next = offs == text.size() ? -1 : index + 1;
  1506. index++;
  1507. symbols_.emplace_back(sym);
  1508. }
  1509. // seed the work queue with all possible 2-character tokens.
  1510. for (size_t i = 1; i < symbols_.size(); ++i) {
  1511. try_add_bigram(i - 1, i);
  1512. }
  1513. // keep substituting the highest frequency pairs for as long as we can.
  1514. while (!work_queue_.empty()) {
  1515. auto bigram = work_queue_.top();
  1516. work_queue_.pop();
  1517. auto & left_sym = symbols_[bigram.left];
  1518. auto & right_sym = symbols_[bigram.right];
  1519. // if one of the symbols already got merged, skip it.
  1520. if (left_sym.n == 0 || right_sym.n == 0 ||
  1521. left_sym.n + right_sym.n != bigram.size) {
  1522. continue;
  1523. }
  1524. // merge the right sym into the left one
  1525. left_sym.n += right_sym.n;
  1526. right_sym.n = 0;
  1527. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1528. // remove the right sym from the chain
  1529. left_sym.next = right_sym.next;
  1530. if (right_sym.next >= 0) {
  1531. symbols_[right_sym.next].prev = bigram.left;
  1532. }
  1533. // find more substitutions
  1534. try_add_bigram(left_sym.prev, bigram.left);
  1535. try_add_bigram(bigram.left, left_sym.next);
  1536. }
  1537. for (int i = 0; i != -1; i = symbols_[i].next) {
  1538. auto & symbol = symbols_[i];
  1539. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1540. if (token == vocab_.token_to_id.end()) {
  1541. // output any symbols that did not form tokens as bytes.
  1542. for (int j = 0; j < (int) symbol.n; ++j) {
  1543. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1544. output.push_back(token_id);
  1545. }
  1546. } else {
  1547. output.push_back((*token).second);
  1548. }
  1549. }
  1550. }
  1551. private:
  1552. void try_add_bigram(int left, int right) {
  1553. if (left == -1 || right == -1) {
  1554. return;
  1555. }
  1556. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1557. auto token = vocab_.token_to_id.find(text);
  1558. if (token == vocab_.token_to_id.end()) {
  1559. return;
  1560. }
  1561. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1562. return;
  1563. }
  1564. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1565. llama_sp_bigram bigram;
  1566. bigram.left = left;
  1567. bigram.right = right;
  1568. bigram.score = tok_score.score;
  1569. bigram.size = text.size();
  1570. work_queue_.push(bigram);
  1571. }
  1572. const llama_vocab & vocab_;
  1573. std::vector<llama_sp_symbol> symbols_;
  1574. llama_sp_bigram::queue work_queue_;
  1575. };
  1576. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1577. llama_tokenizer tokenizer(vocab);
  1578. std::vector<llama_vocab::id> output;
  1579. if (text.empty()) {
  1580. return output;
  1581. }
  1582. if (bos) {
  1583. output.push_back(llama_token_bos());
  1584. }
  1585. tokenizer.tokenize(text, output);
  1586. return output;
  1587. }
  1588. //
  1589. // sampling
  1590. //
  1591. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1592. assert(candidates->size > 0);
  1593. const int64_t t_start_sample_us = ggml_time_us();
  1594. // Sort the logits in descending order
  1595. if (!candidates->sorted) {
  1596. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1597. return a.logit > b.logit;
  1598. });
  1599. candidates->sorted = true;
  1600. }
  1601. float max_l = candidates->data[0].logit;
  1602. float cum_sum = 0.0f;
  1603. for (size_t i = 0; i < candidates->size; ++i) {
  1604. float p = expf(candidates->data[i].logit - max_l);
  1605. candidates->data[i].p = p;
  1606. cum_sum += p;
  1607. }
  1608. for (size_t i = 0; i < candidates->size; ++i) {
  1609. candidates->data[i].p /= cum_sum;
  1610. }
  1611. if (ctx) {
  1612. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1613. }
  1614. }
  1615. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1616. const int64_t t_start_sample_us = ggml_time_us();
  1617. k = std::max(k, (int) min_keep);
  1618. k = std::min(k, (int) candidates->size);
  1619. // Sort scores in descending order
  1620. if (!candidates->sorted) {
  1621. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1622. return a.logit > b.logit;
  1623. };
  1624. if (k == (int) candidates->size) {
  1625. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1626. } else {
  1627. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1628. }
  1629. candidates->sorted = true;
  1630. }
  1631. candidates->size = k;
  1632. if (ctx) {
  1633. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1634. }
  1635. }
  1636. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1637. if (p >= 1.0f) {
  1638. return;
  1639. }
  1640. llama_sample_softmax(ctx, candidates);
  1641. const int64_t t_start_sample_us = ggml_time_us();
  1642. // Compute the cumulative probabilities
  1643. float cum_sum = 0.0f;
  1644. size_t last_idx = candidates->size;
  1645. for (size_t i = 0; i < candidates->size; ++i) {
  1646. cum_sum += candidates->data[i].p;
  1647. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  1648. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  1649. if (cum_sum >= p && i + 1 >= min_keep) {
  1650. last_idx = i + 1;
  1651. break;
  1652. }
  1653. }
  1654. // Resize the output vector to keep only the top-p tokens
  1655. candidates->size = last_idx;
  1656. if (ctx) {
  1657. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1658. }
  1659. }
  1660. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1661. if (z >= 1.0f || candidates->size <= 2) {
  1662. return;
  1663. }
  1664. llama_sample_softmax(nullptr, candidates);
  1665. const int64_t t_start_sample_us = ggml_time_us();
  1666. // Compute the first and second derivatives
  1667. std::vector<float> first_derivatives(candidates->size - 1);
  1668. std::vector<float> second_derivatives(candidates->size - 2);
  1669. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1670. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1671. }
  1672. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1673. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1674. }
  1675. // Calculate absolute value of second derivatives
  1676. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1677. second_derivatives[i] = abs(second_derivatives[i]);
  1678. }
  1679. // Normalize the second derivatives
  1680. float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1681. for (float & value : second_derivatives) {
  1682. value /= second_derivatives_sum;
  1683. }
  1684. float cum_sum = 0.0f;
  1685. size_t last_idx = candidates->size;
  1686. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1687. cum_sum += second_derivatives[i];
  1688. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1689. if (cum_sum > z && i >= min_keep) {
  1690. last_idx = i;
  1691. break;
  1692. }
  1693. }
  1694. // Resize the output vector to keep only the tokens above the tail location
  1695. candidates->size = last_idx;
  1696. if (ctx) {
  1697. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1698. }
  1699. }
  1700. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1701. // Reference implementation:
  1702. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1703. if (p >= 1.0f) {
  1704. return;
  1705. }
  1706. // Compute the softmax of logits and calculate entropy
  1707. llama_sample_softmax(nullptr, candidates);
  1708. const int64_t t_start_sample_us = ggml_time_us();
  1709. float entropy = 0.0f;
  1710. for (size_t i = 0; i < candidates->size; ++i) {
  1711. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1712. }
  1713. // Compute the absolute difference between negative log probability and entropy for each candidate
  1714. std::vector<float> shifted_scores;
  1715. for (size_t i = 0; i < candidates->size; ++i) {
  1716. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1717. shifted_scores.push_back(shifted_score);
  1718. }
  1719. // Sort tokens based on the shifted_scores and their corresponding indices
  1720. std::vector<size_t> indices(candidates->size);
  1721. std::iota(indices.begin(), indices.end(), 0);
  1722. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1723. return shifted_scores[a] < shifted_scores[b];
  1724. });
  1725. // Compute the cumulative probabilities
  1726. float cum_sum = 0.0f;
  1727. size_t last_idx = indices.size();
  1728. for (size_t i = 0; i < indices.size(); ++i) {
  1729. size_t idx = indices[i];
  1730. cum_sum += candidates->data[idx].p;
  1731. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1732. if (cum_sum > p && i >= min_keep - 1) {
  1733. last_idx = i + 1;
  1734. break;
  1735. }
  1736. }
  1737. // Resize the output vector to keep only the locally typical tokens
  1738. std::vector<llama_token_data> new_candidates;
  1739. for (size_t i = 0; i < last_idx; ++i) {
  1740. size_t idx = indices[i];
  1741. new_candidates.push_back(candidates->data[idx]);
  1742. }
  1743. // Replace the data in candidates with the new_candidates data
  1744. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1745. candidates->size = new_candidates.size();
  1746. if (ctx) {
  1747. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1748. }
  1749. }
  1750. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1751. const int64_t t_start_sample_us = ggml_time_us();
  1752. for (size_t i = 0; i < candidates_p->size; ++i) {
  1753. candidates_p->data[i].logit /= temp;
  1754. }
  1755. if (ctx) {
  1756. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1757. }
  1758. }
  1759. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1760. if (last_tokens_size == 0 || penalty == 1.0f) {
  1761. return;
  1762. }
  1763. const int64_t t_start_sample_us = ggml_time_us();
  1764. for (size_t i = 0; i < candidates->size; ++i) {
  1765. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1766. if (token_iter == last_tokens + last_tokens_size) {
  1767. continue;
  1768. }
  1769. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1770. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1771. if (candidates->data[i].logit <= 0) {
  1772. candidates->data[i].logit *= penalty;
  1773. } else {
  1774. candidates->data[i].logit /= penalty;
  1775. }
  1776. }
  1777. candidates->sorted = false;
  1778. if (ctx) {
  1779. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1780. }
  1781. }
  1782. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1783. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1784. return;
  1785. }
  1786. const int64_t t_start_sample_us = ggml_time_us();
  1787. // Create a frequency map to count occurrences of each token in last_tokens
  1788. std::unordered_map<llama_token, int> token_count;
  1789. for (size_t i = 0; i < last_tokens_size; ++i) {
  1790. token_count[last_tokens_p[i]]++;
  1791. }
  1792. // Apply frequency and presence penalties to the candidates
  1793. for (size_t i = 0; i < candidates->size; ++i) {
  1794. auto token_iter = token_count.find(candidates->data[i].id);
  1795. if (token_iter == token_count.end()) {
  1796. continue;
  1797. }
  1798. int count = token_iter->second;
  1799. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1800. }
  1801. candidates->sorted = false;
  1802. if (ctx) {
  1803. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1804. }
  1805. }
  1806. static void llama_log_softmax(float * array, size_t size) {
  1807. float max_l = *std::max_element(array, array + size);
  1808. float sum = 0.f;
  1809. for (size_t i = 0; i < size; ++i) {
  1810. float p = expf(array[i] - max_l);
  1811. sum += p;
  1812. array[i] = p;
  1813. }
  1814. for (size_t i = 0; i < size; ++i) {
  1815. array[i] = logf(array[i] / sum);
  1816. }
  1817. }
  1818. void llama_sample_classifier_free_guidance(
  1819. struct llama_context * ctx,
  1820. llama_token_data_array * candidates,
  1821. struct llama_context * guidance_ctx,
  1822. float scale,
  1823. float smooth_factor) {
  1824. int64_t t_start_sample_us = t_start_sample_us = ggml_time_us();
  1825. assert(ctx);
  1826. auto n_vocab = llama_n_vocab(ctx);
  1827. assert(n_vocab == (int)candidates->size);
  1828. assert(!candidates->sorted);
  1829. std::vector<float> logits_base;
  1830. logits_base.reserve(candidates->size);
  1831. for (size_t i = 0; i < candidates->size; ++i) {
  1832. logits_base.push_back(candidates->data[i].logit);
  1833. }
  1834. llama_log_softmax(logits_base.data(), candidates->size);
  1835. float* logits_guidance = llama_get_logits(guidance_ctx);
  1836. llama_log_softmax(logits_guidance, n_vocab);
  1837. for (int i = 0; i < n_vocab; ++i) {
  1838. float logit_guidance = logits_guidance[i];
  1839. float logit_base = logits_base[i];
  1840. logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance;
  1841. }
  1842. llama_log_softmax(logits_guidance, n_vocab);
  1843. for (int i = 0; i < n_vocab; ++i) {
  1844. float logit_base = logits_base[i];
  1845. float logit_guidance = logits_guidance[i];
  1846. candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
  1847. }
  1848. if (ctx) {
  1849. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1850. }
  1851. }
  1852. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1853. assert(ctx);
  1854. auto N = float(llama_n_vocab(ctx));
  1855. int64_t t_start_sample_us;
  1856. t_start_sample_us = ggml_time_us();
  1857. llama_sample_softmax(nullptr, candidates);
  1858. // Estimate s_hat using the most probable m tokens
  1859. float s_hat = 0.0;
  1860. float sum_ti_bi = 0.0;
  1861. float sum_ti_sq = 0.0;
  1862. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1863. float t_i = logf(float(i + 2) / float(i + 1));
  1864. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1865. sum_ti_bi += t_i * b_i;
  1866. sum_ti_sq += t_i * t_i;
  1867. }
  1868. s_hat = sum_ti_bi / sum_ti_sq;
  1869. // Compute k from the estimated s_hat and target surprise value
  1870. float epsilon_hat = s_hat - 1;
  1871. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1872. // Sample the next word X using top-k sampling
  1873. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1874. if (ctx) {
  1875. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1876. }
  1877. llama_token X = llama_sample_token(ctx, candidates);
  1878. t_start_sample_us = ggml_time_us();
  1879. // Compute error as the difference between observed surprise and target surprise value
  1880. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1881. return candidate.id == X;
  1882. }));
  1883. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1884. float e = observed_surprise - tau;
  1885. // Update mu using the learning rate and error
  1886. *mu = *mu - eta * e;
  1887. if (ctx) {
  1888. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1889. }
  1890. return X;
  1891. }
  1892. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1893. int64_t t_start_sample_us;
  1894. t_start_sample_us = ggml_time_us();
  1895. llama_sample_softmax(ctx, candidates);
  1896. // Truncate the words with surprise values greater than mu
  1897. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1898. return -log2f(candidate.p) > *mu;
  1899. }));
  1900. if (candidates->size == 0) {
  1901. candidates->size = 1;
  1902. }
  1903. if (ctx) {
  1904. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1905. }
  1906. // Normalize the probabilities of the remaining words
  1907. llama_sample_softmax(ctx, candidates);
  1908. // Sample the next word X from the remaining words
  1909. llama_token X = llama_sample_token(ctx, candidates);
  1910. t_start_sample_us = ggml_time_us();
  1911. // Compute error as the difference between observed surprise and target surprise value
  1912. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1913. return candidate.id == X;
  1914. }));
  1915. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1916. float e = observed_surprise - tau;
  1917. // Update mu using the learning rate and error
  1918. *mu = *mu - eta * e;
  1919. if (ctx) {
  1920. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1921. }
  1922. return X;
  1923. }
  1924. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1925. const int64_t t_start_sample_us = ggml_time_us();
  1926. // Find max element
  1927. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1928. return a.logit < b.logit;
  1929. });
  1930. llama_token result = max_iter->id;
  1931. if (ctx) {
  1932. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1933. ctx->n_sample++;
  1934. }
  1935. return result;
  1936. }
  1937. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1938. assert(ctx);
  1939. const int64_t t_start_sample_us = ggml_time_us();
  1940. llama_sample_softmax(nullptr, candidates);
  1941. std::vector<float> probs;
  1942. probs.reserve(candidates->size);
  1943. for (size_t i = 0; i < candidates->size; ++i) {
  1944. probs.push_back(candidates->data[i].p);
  1945. }
  1946. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1947. auto & rng = ctx->rng;
  1948. int idx = dist(rng);
  1949. llama_token result = candidates->data[idx].id;
  1950. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1951. ctx->n_sample++;
  1952. return result;
  1953. }
  1954. //
  1955. // quantization
  1956. //
  1957. static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
  1958. if (output.size < nelements * sizeof(float)) {
  1959. output.resize(nelements * sizeof(float));
  1960. }
  1961. float * f32_output = (float *) output.addr;
  1962. ggml_type_traits_t qtype;
  1963. if (ggml_is_quantized(tensor.type)) {
  1964. qtype = ggml_internal_get_type_traits(tensor.type);
  1965. if (qtype.to_float == NULL) {
  1966. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
  1967. }
  1968. } else if (tensor.type != GGML_TYPE_F16) {
  1969. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
  1970. }
  1971. if (nthread < 2) {
  1972. if (tensor.type == GGML_TYPE_F16) {
  1973. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
  1974. } else if (ggml_is_quantized(tensor.type)) {
  1975. qtype.to_float(tensor.data, f32_output, nelements);
  1976. } else {
  1977. LLAMA_ASSERT(false); // unreachable
  1978. }
  1979. return;
  1980. }
  1981. auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
  1982. auto block_size_bytes = ggml_type_size(tensor.type);
  1983. LLAMA_ASSERT(nelements % block_size == 0);
  1984. auto nblocks = nelements / block_size;
  1985. auto blocks_per_thread = nblocks / nthread;
  1986. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  1987. std::vector<std::thread> workers;
  1988. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  1989. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  1990. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  1991. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  1992. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  1993. if (typ == GGML_TYPE_F16) {
  1994. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  1995. } else {
  1996. qtype.to_float(inbuf, outbuf, nels);
  1997. }
  1998. };
  1999. workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
  2000. in_buff_offs += thr_block_bytes;
  2001. out_buff_offs += thr_elems;
  2002. }
  2003. for (auto & worker : workers) {
  2004. worker.join();
  2005. }
  2006. }
  2007. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  2008. ggml_type quantized_type;
  2009. llama_ftype ftype = params->ftype;
  2010. int nthread = params->nthread;
  2011. switch (params->ftype) {
  2012. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  2013. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  2014. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  2015. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  2016. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  2017. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  2018. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  2019. #ifdef GGML_USE_K_QUANTS
  2020. // K-quants
  2021. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  2022. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  2023. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  2024. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  2025. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  2026. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  2027. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  2028. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  2029. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  2030. #endif
  2031. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  2032. }
  2033. if (nthread <= 0) {
  2034. nthread = std::thread::hardware_concurrency();
  2035. }
  2036. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
  2037. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
  2038. #ifdef GGML_USE_K_QUANTS
  2039. int n_attention_wv = 0;
  2040. int n_feed_forward_w2 = 0;
  2041. for (auto& tensor : model_loader->tensors_map.tensors) {
  2042. if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2043. ++n_attention_wv;
  2044. }
  2045. else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2046. ++n_feed_forward_w2;
  2047. }
  2048. }
  2049. int i_attention_wv = 0;
  2050. int i_feed_forward_w2 = 0;
  2051. #endif
  2052. size_t total_size_org = 0;
  2053. size_t total_size_new = 0;
  2054. std::vector<int64_t> hist_all(1 << 4, 0);
  2055. std::vector<std::thread> workers;
  2056. std::mutex mutex;
  2057. auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
  2058. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  2059. };
  2060. size_t idx = 0;
  2061. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  2062. llama_buffer read_data;
  2063. read_data.resize(tensor.size);
  2064. tensor.data = read_data.addr;
  2065. model_loader->load_data_for(tensor);
  2066. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  2067. ++idx, model_loader->tensors_map.tensors.size(),
  2068. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  2069. ggml_type_name(tensor.type));
  2070. // This used to be a regex, but <regex> has an extreme cost to compile times.
  2071. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  2072. // quantize only 2D tensors
  2073. quantize &= (tensor.ne.size() == 2);
  2074. quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
  2075. quantize &= quantized_type != tensor.type;
  2076. enum ggml_type new_type;
  2077. void * new_data;
  2078. size_t new_size;
  2079. llama_buffer work;
  2080. if (!quantize) {
  2081. new_type = tensor.type;
  2082. new_data = tensor.data;
  2083. new_size = tensor.size;
  2084. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  2085. } else {
  2086. new_type = quantized_type;
  2087. #ifdef GGML_USE_K_QUANTS
  2088. bool convert_incompatible_tensor = false;
  2089. if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
  2090. quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
  2091. int nx = tensor.ne.at(0);
  2092. int ny = tensor.ne.at(1);
  2093. if (nx % QK_K != 0 || ny % QK_K != 0) {
  2094. fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
  2095. convert_incompatible_tensor = true;
  2096. }
  2097. }
  2098. if (tensor.name == "output.weight") {
  2099. int nx = tensor.ne.at(0);
  2100. int ny = tensor.ne.at(1);
  2101. if (nx % QK_K == 0 && ny % QK_K == 0) {
  2102. new_type = GGML_TYPE_Q6_K;
  2103. }
  2104. } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
  2105. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2106. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2107. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2108. use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  2109. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  2110. (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  2111. ++i_attention_wv;
  2112. } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
  2113. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2114. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2115. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  2116. use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  2117. //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
  2118. ++i_feed_forward_w2;
  2119. } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
  2120. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
  2121. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  2122. }
  2123. if (convert_incompatible_tensor) {
  2124. if (tensor.name == "output.weight") {
  2125. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  2126. fprintf(stderr, "F16 will be used for this tensor instead.\n");
  2127. } else if (tensor.name == "tok_embeddings.weight") {
  2128. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  2129. fprintf(stderr, "Q4_0 will be used for this tensor instead.\n");
  2130. } else {
  2131. throw std::runtime_error("Unsupported tensor size encountered\n");
  2132. }
  2133. }
  2134. #endif
  2135. float * f32_data;
  2136. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  2137. llama_buffer f32_conv_buf;
  2138. if (tensor.type == GGML_TYPE_F32) {
  2139. f32_data = (float *) tensor.data;
  2140. } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
  2141. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
  2142. } else {
  2143. llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
  2144. f32_data = (float *) f32_conv_buf.addr;
  2145. }
  2146. printf("quantizing .. ");
  2147. fflush(stdout);
  2148. work.resize(nelements * 4); // upper bound on size
  2149. new_data = work.addr;
  2150. std::vector<int64_t> hist_cur(1 << 4, 0);
  2151. int chunk_size = 32 * 512;
  2152. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  2153. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  2154. if (nthread_use < 2) {
  2155. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  2156. } else {
  2157. size_t counter = 0;
  2158. new_size = 0;
  2159. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  2160. std::vector<int64_t> local_hist;
  2161. size_t local_size = 0;
  2162. while (true) {
  2163. std::unique_lock<std::mutex> lock(mutex);
  2164. size_t first = counter; counter += chunk_size;
  2165. if (first >= nelements) {
  2166. if (!local_hist.empty()) {
  2167. for (int j=0; j<int(local_hist.size()); ++j) {
  2168. hist_cur[j] += local_hist[j];
  2169. }
  2170. new_size += local_size;
  2171. }
  2172. break;
  2173. }
  2174. lock.unlock();
  2175. size_t last = std::min(nelements, first + chunk_size);
  2176. if (local_hist.empty()) {
  2177. local_hist.resize(hist_cur.size(), 0);
  2178. }
  2179. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  2180. }
  2181. };
  2182. if ((int) workers.size() < nthread_use - 1) {
  2183. workers.resize(nthread_use - 1);
  2184. }
  2185. for (int it = 0; it < nthread_use - 1; ++it) {
  2186. workers[it] = std::thread(compute);
  2187. }
  2188. compute();
  2189. for (int it = 0; it < nthread_use - 1; ++it) {
  2190. workers[it].join();
  2191. }
  2192. }
  2193. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  2194. int64_t tot_count = 0;
  2195. for (size_t i = 0; i < hist_cur.size(); i++) {
  2196. hist_all[i] += hist_cur[i];
  2197. tot_count += hist_cur[i];
  2198. }
  2199. if (tot_count > 0) {
  2200. for (size_t i = 0; i < hist_cur.size(); i++) {
  2201. printf("%5.3f ", hist_cur[i] / float(nelements));
  2202. }
  2203. }
  2204. printf("\n");
  2205. }
  2206. total_size_org += tensor.size;
  2207. total_size_new += new_size;
  2208. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  2209. }
  2210. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  2211. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  2212. {
  2213. int64_t sum_all = 0;
  2214. for (size_t i = 0; i < hist_all.size(); i++) {
  2215. sum_all += hist_all[i];
  2216. }
  2217. if (sum_all > 0) {
  2218. printf("%s: hist: ", __func__);
  2219. for (size_t i = 0; i < hist_all.size(); i++) {
  2220. printf("%5.3f ", hist_all[i] / float(sum_all));
  2221. }
  2222. printf("\n");
  2223. }
  2224. }
  2225. }
  2226. //
  2227. // interface implementation
  2228. //
  2229. struct llama_model * llama_load_model_from_file(
  2230. const char * path_model,
  2231. struct llama_context_params params) {
  2232. ggml_time_init();
  2233. llama_model * model = new llama_model;
  2234. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2235. if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
  2236. params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
  2237. params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
  2238. delete model;
  2239. fprintf(stderr, "%s: failed to load model\n", __func__);
  2240. return nullptr;
  2241. }
  2242. return model;
  2243. }
  2244. void llama_free_model(struct llama_model * model) {
  2245. delete model;
  2246. }
  2247. struct llama_context * llama_new_context_with_model(
  2248. struct llama_model * model,
  2249. struct llama_context_params params) {
  2250. if (!model) {
  2251. return nullptr;
  2252. }
  2253. llama_context * ctx = new llama_context(*model);
  2254. if (params.seed == LLAMA_DEFAULT_SEED) {
  2255. params.seed = time(NULL);
  2256. }
  2257. unsigned cur_percentage = 0;
  2258. if (params.progress_callback == NULL) {
  2259. params.progress_callback_user_data = &cur_percentage;
  2260. params.progress_callback = [](float progress, void * ctx) {
  2261. unsigned * cur_percentage_p = (unsigned *) ctx;
  2262. unsigned percentage = (unsigned) (100 * progress);
  2263. while (percentage > *cur_percentage_p) {
  2264. *cur_percentage_p = percentage;
  2265. fprintf(stderr, ".");
  2266. fflush(stderr);
  2267. if (percentage >= 100) {
  2268. fprintf(stderr, "\n");
  2269. }
  2270. }
  2271. };
  2272. }
  2273. ctx->rng = std::mt19937(params.seed);
  2274. ctx->logits_all = params.logits_all;
  2275. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  2276. // reserve memory for context buffers
  2277. if (!params.vocab_only) {
  2278. if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  2279. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  2280. llama_free(ctx);
  2281. return nullptr;
  2282. }
  2283. {
  2284. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  2285. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  2286. }
  2287. const auto & hparams = ctx->model.hparams;
  2288. // resized during inference
  2289. if (params.logits_all) {
  2290. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  2291. } else {
  2292. ctx->logits.reserve(hparams.n_vocab);
  2293. }
  2294. if (params.embedding){
  2295. ctx->embedding.resize(hparams.n_embd);
  2296. }
  2297. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  2298. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  2299. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  2300. }
  2301. #ifdef GGML_USE_METAL
  2302. if (params.n_gpu_layers > 0) {
  2303. // this allocates all Metal resources and memory buffers
  2304. ctx->ctx_metal = ggml_metal_init(1);
  2305. void * data_ptr = NULL;
  2306. size_t data_size = 0;
  2307. if (params.use_mmap) {
  2308. data_ptr = ctx->model.mapping->addr;
  2309. data_size = ctx->model.mapping->size;
  2310. } else {
  2311. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  2312. data_size = ggml_get_mem_size (ctx->model.ctx);
  2313. }
  2314. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  2315. printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  2316. #define LLAMA_METAL_CHECK_BUF(result) \
  2317. if (!(result)) { \
  2318. fprintf(stderr, "%s: failed to add buffer\n", __func__); \
  2319. llama_free(ctx); \
  2320. return NULL; \
  2321. }
  2322. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  2323. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
  2324. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
  2325. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
  2326. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
  2327. #undef LLAMA_METAL_CHECK_BUF
  2328. }
  2329. #endif
  2330. #ifdef GGML_USE_MPI
  2331. ctx->ctx_mpi = ggml_mpi_init();
  2332. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  2333. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  2334. const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos());
  2335. while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  2336. llama_backend_free();
  2337. exit(1);
  2338. }
  2339. #endif
  2340. return ctx;
  2341. }
  2342. struct llama_context * llama_init_from_file(
  2343. const char * path_model,
  2344. struct llama_context_params params) {
  2345. struct llama_model * model = llama_load_model_from_file(path_model, params);
  2346. if (!model) {
  2347. return nullptr;
  2348. }
  2349. struct llama_context * ctx = llama_new_context_with_model(model, params);
  2350. ctx->model_owner = true;
  2351. return ctx;
  2352. }
  2353. void llama_free(struct llama_context * ctx) {
  2354. if (ctx->model_owner) {
  2355. delete &ctx->model;
  2356. }
  2357. delete ctx;
  2358. }
  2359. int llama_model_quantize(
  2360. const char * fname_inp,
  2361. const char * fname_out,
  2362. const llama_model_quantize_params *params) {
  2363. try {
  2364. llama_model_quantize_internal(fname_inp, fname_out, params);
  2365. return 0;
  2366. } catch (const std::exception & err) {
  2367. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
  2368. return 1;
  2369. }
  2370. }
  2371. int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
  2372. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  2373. const int64_t t_start_lora_us = ggml_time_us();
  2374. auto fin = std::ifstream(path_lora, std::ios::binary);
  2375. if (!fin) {
  2376. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  2377. return 1;
  2378. }
  2379. // verify magic and version
  2380. {
  2381. uint32_t magic;
  2382. fin.read((char *) &magic, sizeof(magic));
  2383. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  2384. fprintf(stderr, "%s: bad file magic\n", __func__);
  2385. return 1;
  2386. }
  2387. uint32_t format_version;
  2388. fin.read((char *) &format_version, sizeof(format_version));
  2389. if (format_version != 1) {
  2390. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  2391. return 1;
  2392. }
  2393. }
  2394. int32_t lora_r;
  2395. int32_t lora_alpha;
  2396. fin.read((char *) &lora_r, sizeof(lora_r));
  2397. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  2398. float scaling = (float)lora_alpha / (float)lora_r;
  2399. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  2400. // create a temporary ggml context to store the lora tensors
  2401. // todo: calculate size from biggest possible tensor
  2402. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  2403. struct ggml_init_params params;
  2404. params.mem_size = lora_buf.size();
  2405. params.mem_buffer = lora_buf.data();
  2406. params.no_alloc = false;
  2407. ggml_context * lora_ctx = ggml_init(params);
  2408. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  2409. // create a name -> tensor map of the model to accelerate lookups
  2410. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  2411. for (const auto & kv: model.tensors_by_name) {
  2412. model_tensors.insert(kv);
  2413. }
  2414. // load base model
  2415. std::unique_ptr<llama_model_loader> model_loader;
  2416. ggml_context * base_ctx = NULL;
  2417. llama_buffer base_buf;
  2418. if (path_base_model) {
  2419. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  2420. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  2421. size_t ctx_size;
  2422. size_t mmapped_size;
  2423. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  2424. base_buf.resize(ctx_size);
  2425. ggml_init_params base_params;
  2426. base_params.mem_size = base_buf.size;
  2427. base_params.mem_buffer = base_buf.addr;
  2428. base_params.no_alloc = model_loader->use_mmap;
  2429. base_ctx = ggml_init(base_params);
  2430. model_loader->ggml_ctx = base_ctx;
  2431. // maybe this should in llama_model_loader
  2432. if (model_loader->use_mmap) {
  2433. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa()));
  2434. }
  2435. }
  2436. // read tensors and apply
  2437. bool warned = false;
  2438. int n_tensors = 0;
  2439. std::vector<uint8_t> work_buffer;
  2440. while (true) {
  2441. int32_t n_dims;
  2442. int32_t length;
  2443. int32_t ftype;
  2444. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  2445. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  2446. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  2447. if (fin.eof()) {
  2448. break;
  2449. }
  2450. int32_t ne[2] = { 1, 1 };
  2451. for (int i = 0; i < n_dims; ++i) {
  2452. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  2453. }
  2454. std::string name;
  2455. {
  2456. char buf[1024];
  2457. fin.read(buf, length);
  2458. name = std::string(buf, length);
  2459. }
  2460. // check for lora suffix and get the type of tensor
  2461. const std::string lora_suffix = ".lora";
  2462. size_t pos = name.rfind(lora_suffix);
  2463. if (pos == std::string::npos) {
  2464. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2465. return 1;
  2466. }
  2467. std::string lora_type = name.substr(pos + lora_suffix.length());
  2468. std::string base_name = name;
  2469. base_name.erase(pos);
  2470. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2471. if (model_tensors.find(base_name) == model_tensors.end()) {
  2472. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2473. return 1;
  2474. }
  2475. // create ggml tensor
  2476. ggml_type wtype;
  2477. switch (ftype) {
  2478. case 0: wtype = GGML_TYPE_F32; break;
  2479. case 1: wtype = GGML_TYPE_F16; break;
  2480. default:
  2481. {
  2482. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2483. __func__, ftype);
  2484. return false;
  2485. }
  2486. }
  2487. ggml_tensor * lora_tensor;
  2488. if (n_dims == 2) {
  2489. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2490. }
  2491. else {
  2492. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2493. return 1;
  2494. }
  2495. ggml_set_name(lora_tensor, "lora_tensor");
  2496. // load tensor data
  2497. size_t offset = fin.tellg();
  2498. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2499. offset = (offset + 31) & -32;
  2500. fin.seekg(offset);
  2501. fin.read((char*)lora_tensor->data, tensor_data_size);
  2502. lora_tensors[name] = lora_tensor;
  2503. // check if we have both A and B tensors and apply
  2504. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2505. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2506. ggml_tensor * dest_t = model_tensors[base_name];
  2507. offload_func_t offload_func = llama_nop;
  2508. offload_func_t offload_func_force_inplace = llama_nop;
  2509. #ifdef GGML_USE_CUBLAS
  2510. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  2511. if (dest_t->type != GGML_TYPE_F16) {
  2512. throw std::runtime_error(format(
  2513. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  2514. }
  2515. offload_func = ggml_cuda_assign_buffers;
  2516. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  2517. }
  2518. #endif // GGML_USE_CUBLAS
  2519. ggml_tensor * base_t;
  2520. if (model_loader) {
  2521. // load from base model
  2522. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2523. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2524. return 1;
  2525. }
  2526. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2527. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2528. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2529. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2530. model_loader->load_data_for(lt);
  2531. lt.ggml_tensor->data = lt.data;
  2532. }
  2533. else {
  2534. base_t = dest_t;
  2535. }
  2536. if (ggml_is_quantized(base_t->type)) {
  2537. if (!warned) {
  2538. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2539. "use a f16 or f32 base model with --lora-base\n", __func__);
  2540. warned = true;
  2541. }
  2542. }
  2543. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2544. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  2545. ggml_set_name(loraA, "loraA");
  2546. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2547. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  2548. ggml_set_name(loraB, "loraB");
  2549. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2550. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2551. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2552. return 1;
  2553. }
  2554. // w = w + BA*s
  2555. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2556. offload_func(BA);
  2557. ggml_set_name(BA, "BA");
  2558. if (scaling != 1.0f) {
  2559. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2560. ggml_set_name(scale_tensor, "scale_tensor");
  2561. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2562. offload_func(BA);
  2563. ggml_set_name(BA, "BA_scaled");
  2564. }
  2565. ggml_tensor * r;
  2566. if (base_t == dest_t) {
  2567. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2568. offload_func_force_inplace(r);
  2569. ggml_set_name(r, "r_add_inplace");
  2570. }
  2571. else {
  2572. r = ggml_add(lora_ctx, base_t, BA);
  2573. offload_func(r);
  2574. ggml_set_name(r, "r_add");
  2575. r = ggml_cpy(lora_ctx, r, dest_t);
  2576. offload_func(r);
  2577. ggml_set_name(r, "r_cpy");
  2578. }
  2579. struct ggml_cgraph gf = ggml_build_forward(r);
  2580. ggml_graph_compute_helper(work_buffer, &gf, n_threads);
  2581. // we won't need these tensors again, reset the context to save memory
  2582. ggml_free(lora_ctx);
  2583. lora_ctx = ggml_init(params);
  2584. lora_tensors.clear();
  2585. n_tensors++;
  2586. if (n_tensors % 4 == 0) {
  2587. fprintf(stderr, ".");
  2588. }
  2589. }
  2590. }
  2591. // TODO: this should be in a destructor, it will leak on failure
  2592. ggml_free(lora_ctx);
  2593. if (base_ctx) {
  2594. ggml_free(base_ctx);
  2595. }
  2596. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2597. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2598. return 0;
  2599. }
  2600. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2601. try {
  2602. return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
  2603. } catch (const std::exception & err) {
  2604. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2605. return 1;
  2606. }
  2607. }
  2608. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
  2609. try {
  2610. return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
  2611. } catch (const std::exception & err) {
  2612. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
  2613. return 1;
  2614. }
  2615. }
  2616. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2617. return ctx->kv_self.n;
  2618. }
  2619. #define LLAMA_MAX_RNG_STATE (64*1024)
  2620. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  2621. if (seed == LLAMA_DEFAULT_SEED) {
  2622. seed = time(NULL);
  2623. }
  2624. ctx->rng.seed(seed);
  2625. }
  2626. // Returns the *maximum* size of the state
  2627. size_t llama_get_state_size(const struct llama_context * ctx) {
  2628. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2629. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2630. const size_t s_rng_size = sizeof(size_t);
  2631. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2632. const size_t s_logits_capacity = sizeof(size_t);
  2633. const size_t s_logits_size = sizeof(size_t);
  2634. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2635. const size_t s_embedding_size = sizeof(size_t);
  2636. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2637. const size_t s_kv_size = sizeof(size_t);
  2638. const size_t s_kv_ntok = sizeof(int);
  2639. const size_t s_kv = ctx->kv_self.buf.size;
  2640. const size_t s_total = (
  2641. + s_rng_size
  2642. + s_rng
  2643. + s_logits_capacity
  2644. + s_logits_size
  2645. + s_logits
  2646. + s_embedding_size
  2647. + s_embedding
  2648. + s_kv_size
  2649. + s_kv_ntok
  2650. + s_kv
  2651. );
  2652. return s_total;
  2653. }
  2654. // Copies the state to the specified destination address
  2655. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2656. uint8_t * out = dst;
  2657. // copy rng
  2658. {
  2659. std::stringstream rng_ss;
  2660. rng_ss << ctx->rng;
  2661. const size_t rng_size = rng_ss.str().size();
  2662. char rng_buf[LLAMA_MAX_RNG_STATE];
  2663. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2664. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2665. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2666. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2667. }
  2668. // copy logits
  2669. {
  2670. const size_t logits_cap = ctx->logits.capacity();
  2671. const size_t logits_size = ctx->logits.size();
  2672. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2673. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2674. if (logits_size) {
  2675. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2676. }
  2677. out += logits_cap * sizeof(float);
  2678. }
  2679. // copy embeddings
  2680. {
  2681. const size_t embedding_size = ctx->embedding.size();
  2682. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2683. if (embedding_size) {
  2684. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2685. out += embedding_size * sizeof(float);
  2686. }
  2687. }
  2688. // copy kv cache
  2689. {
  2690. const auto & kv_self = ctx->kv_self;
  2691. const auto & hparams = ctx->model.hparams;
  2692. const int n_layer = hparams.n_layer;
  2693. const int n_embd = hparams.n_embd;
  2694. const int n_ctx = hparams.n_ctx;
  2695. const size_t kv_size = kv_self.buf.size;
  2696. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2697. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2698. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2699. if (kv_size) {
  2700. const size_t elt_size = ggml_element_size(kv_self.k);
  2701. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  2702. ggml_cgraph gf{};
  2703. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2704. kout3d->data = out;
  2705. out += ggml_nbytes(kout3d);
  2706. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2707. vout3d->data = out;
  2708. out += ggml_nbytes(vout3d);
  2709. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2710. n_embd, kv_ntok, n_layer,
  2711. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2712. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2713. kv_ntok, n_embd, n_layer,
  2714. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2715. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2716. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2717. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  2718. ggml_free(cpy_ctx);
  2719. }
  2720. }
  2721. const size_t written = out - dst;
  2722. const size_t max_size = llama_get_state_size(ctx);
  2723. LLAMA_ASSERT(written <= max_size);
  2724. return written;
  2725. }
  2726. // Sets the state reading from the specified source address
  2727. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2728. uint8_t * inp = src;
  2729. // set rng
  2730. {
  2731. size_t rng_size;
  2732. char rng_buf[LLAMA_MAX_RNG_STATE];
  2733. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2734. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2735. std::stringstream rng_ss;
  2736. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2737. rng_ss >> ctx->rng;
  2738. LLAMA_ASSERT(rng_ss.fail() == false);
  2739. }
  2740. // set logits
  2741. {
  2742. size_t logits_cap;
  2743. size_t logits_size;
  2744. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2745. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2746. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2747. if (logits_size) {
  2748. ctx->logits.resize(logits_size);
  2749. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2750. }
  2751. inp += logits_cap * sizeof(float);
  2752. }
  2753. // set embeddings
  2754. {
  2755. size_t embedding_size;
  2756. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2757. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2758. if (embedding_size) {
  2759. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2760. inp += embedding_size * sizeof(float);
  2761. }
  2762. }
  2763. // set kv cache
  2764. {
  2765. const auto & kv_self = ctx->kv_self;
  2766. const auto & hparams = ctx->model.hparams;
  2767. const int n_layer = hparams.n_layer;
  2768. const int n_embd = hparams.n_embd;
  2769. const int n_ctx = hparams.n_ctx;
  2770. size_t kv_size;
  2771. int kv_ntok;
  2772. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2773. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2774. if (kv_size) {
  2775. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2776. const size_t elt_size = ggml_element_size(kv_self.k);
  2777. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  2778. ggml_cgraph gf{};
  2779. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2780. kin3d->data = (void *) inp;
  2781. inp += ggml_nbytes(kin3d);
  2782. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2783. vin3d->data = (void *) inp;
  2784. inp += ggml_nbytes(vin3d);
  2785. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2786. n_embd, kv_ntok, n_layer,
  2787. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2788. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2789. kv_ntok, n_embd, n_layer,
  2790. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2791. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2792. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2793. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  2794. ggml_free(cpy_ctx);
  2795. }
  2796. ctx->kv_self.n = kv_ntok;
  2797. }
  2798. const size_t nread = inp - src;
  2799. const size_t max_size = llama_get_state_size(ctx);
  2800. LLAMA_ASSERT(nread <= max_size);
  2801. return nread;
  2802. }
  2803. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2804. llama_file file(path_session, "rb");
  2805. // sanity checks
  2806. {
  2807. const uint32_t magic = file.read_u32();
  2808. const uint32_t version = file.read_u32();
  2809. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2810. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2811. return false;
  2812. }
  2813. llama_hparams session_hparams;
  2814. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2815. if (session_hparams != ctx->model.hparams) {
  2816. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2817. return false;
  2818. }
  2819. }
  2820. // load the prompt
  2821. {
  2822. const uint32_t n_token_count = file.read_u32();
  2823. if (n_token_count > n_token_capacity) {
  2824. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2825. return false;
  2826. }
  2827. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2828. *n_token_count_out = n_token_count;
  2829. }
  2830. // restore the context state
  2831. {
  2832. const size_t n_state_size_cur = file.size - file.tell();
  2833. const size_t n_state_size_max = llama_get_state_size(ctx);
  2834. if (n_state_size_cur > n_state_size_max) {
  2835. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2836. return false;
  2837. }
  2838. std::vector<uint8_t> state_data(n_state_size_max);
  2839. file.read_raw(state_data.data(), n_state_size_cur);
  2840. llama_set_state_data(ctx, state_data.data());
  2841. }
  2842. return true;
  2843. }
  2844. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2845. try {
  2846. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  2847. } catch (const std::exception & err) {
  2848. fprintf(stderr, "error loading session file: %s\n", err.what());
  2849. return false;
  2850. }
  2851. }
  2852. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2853. llama_file file(path_session, "wb");
  2854. file.write_u32(LLAMA_SESSION_MAGIC);
  2855. file.write_u32(LLAMA_SESSION_VERSION);
  2856. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2857. // save the prompt
  2858. file.write_u32((uint32_t) n_token_count);
  2859. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2860. // save the context state
  2861. {
  2862. const size_t n_state_size_max = llama_get_state_size(ctx);
  2863. std::vector<uint8_t> state_data(n_state_size_max);
  2864. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2865. file.write_raw(state_data.data(), n_state_size_cur);
  2866. }
  2867. return true;
  2868. }
  2869. int llama_eval(
  2870. struct llama_context * ctx,
  2871. const llama_token * tokens,
  2872. int n_tokens,
  2873. int n_past,
  2874. int n_threads) {
  2875. if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
  2876. fprintf(stderr, "%s: failed to eval\n", __func__);
  2877. return 1;
  2878. }
  2879. // get a more accurate load time, upon first eval
  2880. // TODO: fix this
  2881. if (!ctx->has_evaluated_once) {
  2882. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2883. ctx->has_evaluated_once = true;
  2884. }
  2885. return 0;
  2886. }
  2887. int llama_eval_embd(
  2888. struct llama_context * ctx,
  2889. const float * embd,
  2890. int n_tokens,
  2891. int n_past,
  2892. int n_threads) {
  2893. if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
  2894. fprintf(stderr, "%s: failed to eval\n", __func__);
  2895. return 1;
  2896. }
  2897. // get a more accurate load time, upon first eval
  2898. // TODO: fix this
  2899. if (!ctx->has_evaluated_once) {
  2900. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2901. ctx->has_evaluated_once = true;
  2902. }
  2903. return 0;
  2904. }
  2905. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  2906. const int n_batch = 1;
  2907. const int n_ctx = 512 - n_batch;
  2908. const std::vector<llama_token> tmp(n_batch, llama_token_bos());
  2909. if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
  2910. fprintf(stderr, "%s: failed to eval\n", __func__);
  2911. return 1;
  2912. }
  2913. return 0;
  2914. }
  2915. int llama_tokenize_with_model(
  2916. const struct llama_model * model,
  2917. const char * text,
  2918. llama_token * tokens,
  2919. int n_max_tokens,
  2920. bool add_bos) {
  2921. auto res = llama_tokenize(model->vocab, text, add_bos);
  2922. if (n_max_tokens < (int) res.size()) {
  2923. fprintf(stderr, "%s: too many tokens\n", __func__);
  2924. return -((int) res.size());
  2925. }
  2926. for (size_t i = 0; i < res.size(); i++) {
  2927. tokens[i] = res[i];
  2928. }
  2929. return res.size();
  2930. }
  2931. int llama_tokenize(
  2932. struct llama_context * ctx,
  2933. const char * text,
  2934. llama_token * tokens,
  2935. int n_max_tokens,
  2936. bool add_bos) {
  2937. return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos);
  2938. }
  2939. int llama_n_vocab_from_model(const struct llama_model * model) {
  2940. return model->vocab.id_to_token.size();
  2941. }
  2942. int llama_n_ctx_from_model(const struct llama_model * model) {
  2943. return model->hparams.n_ctx;
  2944. }
  2945. int llama_n_embd_from_model(const struct llama_model * model) {
  2946. return model->hparams.n_embd;
  2947. }
  2948. int llama_n_vocab(const struct llama_context * ctx) {
  2949. return ctx->model.vocab.id_to_token.size();
  2950. }
  2951. int llama_n_ctx(const struct llama_context * ctx) {
  2952. return ctx->model.hparams.n_ctx;
  2953. }
  2954. int llama_n_embd(const struct llama_context * ctx) {
  2955. return ctx->model.hparams.n_embd;
  2956. }
  2957. int llama_get_vocab_from_model(
  2958. const struct llama_model * model,
  2959. const char * * strings,
  2960. float * scores,
  2961. int capacity) {
  2962. int n = std::min(capacity, (int) model->vocab.id_to_token.size());
  2963. for (int i = 0; i<n; ++i) {
  2964. strings[i] = model->vocab.id_to_token[i].tok.c_str();
  2965. scores[i] = model->vocab.id_to_token[i].score;
  2966. }
  2967. return n;
  2968. }
  2969. int llama_get_vocab(
  2970. const struct llama_context * ctx,
  2971. const char * * strings,
  2972. float * scores,
  2973. int capacity) {
  2974. return llama_get_vocab_from_model(&ctx->model, strings, scores, capacity);
  2975. }
  2976. float * llama_get_logits(struct llama_context * ctx) {
  2977. return ctx->logits.data();
  2978. }
  2979. float * llama_get_embeddings(struct llama_context * ctx) {
  2980. return ctx->embedding.data();
  2981. }
  2982. const char * llama_token_to_str_with_model(const struct llama_model * model, llama_token token) {
  2983. if (token >= llama_n_vocab_from_model(model)) {
  2984. return nullptr;
  2985. }
  2986. return model->vocab.id_to_token[token].tok.c_str();
  2987. }
  2988. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  2989. return llama_token_to_str_with_model(&ctx->model, token);
  2990. }
  2991. llama_token llama_token_bos() {
  2992. return 1;
  2993. }
  2994. llama_token llama_token_eos() {
  2995. return 2;
  2996. }
  2997. llama_token llama_token_nl() {
  2998. return 13;
  2999. }
  3000. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  3001. struct llama_timings result = {
  3002. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  3003. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  3004. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  3005. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  3006. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  3007. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  3008. /*.n_sample =*/ std::max(1, ctx->n_sample),
  3009. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  3010. /*.n_eval =*/ std::max(1, ctx->n_eval),
  3011. };
  3012. return result;
  3013. }
  3014. void llama_print_timings(struct llama_context * ctx) {
  3015. const llama_timings timings = llama_get_timings(ctx);
  3016. fprintf(stderr, "\n");
  3017. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
  3018. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  3019. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  3020. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  3021. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  3022. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  3023. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  3024. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  3025. }
  3026. void llama_reset_timings(struct llama_context * ctx) {
  3027. ctx->t_start_us = ggml_time_us();
  3028. ctx->t_sample_us = ctx->n_sample = 0;
  3029. ctx->t_eval_us = ctx->n_eval = 0;
  3030. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  3031. }
  3032. const char * llama_print_system_info(void) {
  3033. static std::string s;
  3034. s = "";
  3035. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  3036. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  3037. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  3038. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  3039. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  3040. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  3041. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  3042. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  3043. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  3044. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  3045. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  3046. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  3047. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  3048. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  3049. return s.c_str();
  3050. }
  3051. // For internal test use
  3052. const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  3053. return ctx->model.tensors_by_name;
  3054. }