ggml.c 317 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if defined(__ARM_NEON) || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. const vector float v85 = vec_splats(8.5f);
  412. for (int i = 0; i < nb; i++) {
  413. float amax = 0.0f; // absolute max
  414. vector float srcv [8];
  415. vector float asrcv[8];
  416. vector float amaxv[8];
  417. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  418. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  419. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  420. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  421. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  422. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  423. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  424. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  425. amax = MAX(
  426. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  427. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  428. const float d = amax / ((1 << 3) - 1);
  429. const float id = d ? 1.0/d : 0.0;
  430. *(float *)pd = d;
  431. pd += bs;
  432. const vector float vid = vec_splats(id);
  433. for (int l = 0; l < 8; l++) {
  434. const vector float vf = vec_madd(srcv[l], vid, v85);
  435. const vector signed int vi = vec_signed(vf);
  436. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  437. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  438. }
  439. //memcpy(pb, pp, sizeof(pp));
  440. pb += bs;
  441. }
  442. #elif __ARM_NEON
  443. for (int i = 0; i < nb; i++) {
  444. float amax = 0.0f; // absolute max
  445. float32x4_t srcv [8];
  446. float32x4_t asrcv[8];
  447. float32x4_t amaxv[8];
  448. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  449. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  450. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  451. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  452. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  453. amax = MAX(
  454. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  455. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  456. const float d = amax / ((1 << 3) - 1);
  457. const float id = d ? 1.0/d : 0.0;
  458. *(float *)pd = d;
  459. pd += bs;
  460. for (int l = 0; l < 8; l++) {
  461. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  462. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  463. const int32x4_t vi = vcvtq_s32_f32(vf);
  464. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  465. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  466. }
  467. memcpy(pb, pp, sizeof(pp));
  468. pb += bs;
  469. }
  470. #elif defined(__AVX2__)
  471. for (int i = 0; i < nb; i++) {
  472. // Load elements into 4 AVX vectors
  473. __m256 v0 = _mm256_loadu_ps( x );
  474. __m256 v1 = _mm256_loadu_ps( x + 8 );
  475. __m256 v2 = _mm256_loadu_ps( x + 16 );
  476. __m256 v3 = _mm256_loadu_ps( x + 24 );
  477. x += 32;
  478. // Compute max(abs(e)) for the block
  479. const __m256 signBit = _mm256_set1_ps( -0.0f );
  480. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  481. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  484. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  485. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  486. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  487. const float maxScalar = _mm_cvtss_f32( max4 );
  488. // Quantize these floats
  489. const float d = maxScalar / 7.0f;
  490. *(float *)pd = d;
  491. pd += bs;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )pb, res );
  525. pb += bs;
  526. }
  527. #elif defined(__wasm_simd128__)
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. *(float *)pd = d;
  544. pd += bs;
  545. for (int l = 0; l < 8; l++) {
  546. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  547. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  548. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  549. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  550. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  551. }
  552. memcpy(pb, pp, sizeof(pp));
  553. pb += bs;
  554. }
  555. #else
  556. // scalar
  557. quantize_row_q4_0_reference(x, y, k);
  558. #endif
  559. }
  560. // method 4
  561. // blocks of QK elements
  562. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  563. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  564. assert(k % QK == 0);
  565. const int nb = k / QK;
  566. const size_t bs = 2*sizeof(float) + QK/2;
  567. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  568. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  569. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  570. uint8_t pp[QK/2];
  571. for (int i = 0; i < nb; i++) {
  572. float min = FLT_MAX;
  573. float max = -FLT_MAX;
  574. for (int l = 0; l < QK; l++) {
  575. const float v = x[i*QK + l];
  576. if (v < min) min = v;
  577. if (v > max) max = v;
  578. }
  579. const float d = (max - min) / ((1 << 4) - 1);
  580. const float id = d ? 1.0f/d : 0.0f;
  581. *(float *)pm = min;
  582. *(float *)pd = d;
  583. pm += bs;
  584. pd += bs;
  585. for (int l = 0; l < QK; l += 2) {
  586. const float v0 = (x[i*QK + l + 0] - min)*id;
  587. const float v1 = (x[i*QK + l + 1] - min)*id;
  588. const uint8_t vi0 = round(v0);
  589. const uint8_t vi1 = round(v1);
  590. assert(vi0 >= 0 && vi0 < 16);
  591. assert(vi1 >= 0 && vi1 < 16);
  592. pp[l/2] = vi0 | (vi1 << 4);
  593. }
  594. memcpy(pb, pp, sizeof(pp));
  595. pb += bs;
  596. }
  597. }
  598. // TODO: vectorize
  599. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  600. assert(k % QK == 0);
  601. const int nb = k / QK;
  602. const size_t bs = sizeof(float) + QK/2;
  603. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  604. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  605. #if defined(__AVX2__)
  606. for (int i = 0; i < nb; i++) {
  607. // scale factor
  608. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  609. const uint8_t * restrict pp = pb + i*bs;
  610. for (int l = 0; l < QK; l += 32) {
  611. // Load 32x4-bit integers into 32x8-bit integers
  612. __m256i vx8 = bytesFromNibbles(pp+l/2);
  613. // Subtract 8 from the integers
  614. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  615. // Convert to 16-bit int
  616. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  617. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  618. // Convert to 32-bit int -> float 32
  619. const __m256 vf[4] = {
  620. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  621. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  622. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  623. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  624. };
  625. // Scale and store
  626. for (int j = 0; j < 4; j++) {
  627. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  628. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  629. }
  630. }
  631. }
  632. #elif defined(__ARM_NEON)
  633. for (int i = 0; i < nb; i++) {
  634. const float d = *(const float *) (pd + i*bs);
  635. const uint8_t * restrict pp = pb + i*bs;
  636. const float32x4_t vd = vdupq_n_f32(d);
  637. for (int l = 0; l < QK; l += 16) {
  638. // Load 16x4-bit integers into 8x8-bit integers
  639. const uint8x8_t v8 = vld1_u8(pp + l/2);
  640. // Expand 4-bit nibbles to 8-bit bytes
  641. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  642. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  643. // Convert to signed 8-bit integers
  644. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  645. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  646. // Subtract 8 from each byte
  647. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  648. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  649. // Interleave and combine
  650. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  651. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  652. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  653. // convert to 2x int16x8_t
  654. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  655. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  656. // convert to 4x float32x4_t
  657. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  658. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  659. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  660. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  661. // Multiply by d
  662. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  663. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  664. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  665. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  666. // Store
  667. vst1q_f32(y + i*QK + l + 0, r0);
  668. vst1q_f32(y + i*QK + l + 4, r1);
  669. vst1q_f32(y + i*QK + l + 8, r2);
  670. vst1q_f32(y + i*QK + l + 12, r3);
  671. }
  672. }
  673. #else
  674. // scalar
  675. for (int i = 0; i < nb; i++) {
  676. const float d = *(const float *) (pd + i*bs);
  677. const uint8_t * restrict pp = pb + i*bs;
  678. for (int l = 0; l < QK; l += 2) {
  679. const uint8_t vi = pp[l/2];
  680. const int8_t vi0 = vi & 0xf;
  681. const int8_t vi1 = vi >> 4;
  682. const float v0 = (vi0 - 8)*d;
  683. const float v1 = (vi1 - 8)*d;
  684. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  685. y[i*QK + l + 0] = v0;
  686. y[i*QK + l + 1] = v1;
  687. assert(!isnan(y[i*QK + l + 0]));
  688. assert(!isnan(y[i*QK + l + 1]));
  689. }
  690. }
  691. #endif
  692. }
  693. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  694. assert(k % QK == 0);
  695. const int nb = k / QK;
  696. const size_t bs = 2*sizeof(float) + QK/2;
  697. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  698. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  699. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  700. #if defined(__AVX2__)
  701. for (int i = 0; i < nb; i++) {
  702. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  703. const __m256 d_m = _mm256_broadcast_ss((const float *) (pm + i*bs));
  704. const uint8_t * restrict pp = pb + i*bs;
  705. for (int l = 0; l < QK; l += 32) {
  706. // Load 32x4-bit integers into 32x8-bit integers
  707. __m256i vx8 = bytesFromNibbles(pp+l/2);
  708. // Convert to 16-bit int
  709. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  710. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  711. // Convert to 32-bit int -> float 32
  712. const __m256 vf[4] = {
  713. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  714. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  715. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  716. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  717. };
  718. // Scale, add m and store
  719. for (int j = 0; j < 4; j++) {
  720. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  721. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  722. }
  723. }
  724. }
  725. #else
  726. for (int i = 0; i < nb; i++) {
  727. const float d = *(const float *) (pd + i*bs);
  728. const float m = *(const float *) (pm + i*bs);
  729. const uint8_t * restrict pp = pb + i*bs;
  730. for (int l = 0; l < QK; l += 2) {
  731. const uint8_t vi = pp[l/2];
  732. const int8_t vi0 = vi & 0xf;
  733. const int8_t vi1 = vi >> 4;
  734. const float v0 = vi0*d + m;
  735. const float v1 = vi1*d + m;
  736. y[i*QK + l + 0] = v0;
  737. y[i*QK + l + 1] = v1;
  738. assert(!isnan(y[i*QK + l + 0]));
  739. assert(!isnan(y[i*QK + l + 1]));
  740. }
  741. }
  742. #endif
  743. }
  744. //
  745. // simd mappings
  746. //
  747. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  748. // we then implement the fundamental computation operations below using only these macros
  749. // adding support for new architectures requires to define the corresponding SIMD macros
  750. //
  751. // GGML_F32_STEP / GGML_F16_STEP
  752. // number of elements to process in a single step
  753. //
  754. // GGML_F32_EPR / GGML_F16_EPR
  755. // number of elements to fit in a single register
  756. //
  757. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  758. #define GGML_SIMD
  759. // F32 NEON
  760. #define GGML_F32_STEP 16
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 float32x4_t
  763. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  764. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  765. #define GGML_F32x4_LOAD vld1q_f32
  766. #define GGML_F32x4_STORE vst1q_f32
  767. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  768. #define GGML_F32x4_ADD vaddq_f32
  769. #define GGML_F32x4_MUL vmulq_f32
  770. #if defined(__ARM_FEATURE_QRDMX)
  771. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  772. #else
  773. #define GGML_F32x4_REDUCE_ONE(x) \
  774. (vgetq_lane_f32(x, 0) + \
  775. vgetq_lane_f32(x, 1) + \
  776. vgetq_lane_f32(x, 2) + \
  777. vgetq_lane_f32(x, 3))
  778. #endif
  779. #define GGML_F32x4_REDUCE(res, x) \
  780. { \
  781. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  782. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  783. } \
  784. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  785. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  786. } \
  787. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  788. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  789. } \
  790. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  791. }
  792. #define GGML_F32_VEC GGML_F32x4
  793. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  794. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  795. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  796. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  797. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  798. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  799. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  800. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  801. // F16 NEON
  802. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  803. #define GGML_F16_STEP 32
  804. #define GGML_F16_EPR 8
  805. #define GGML_F16x8 float16x8_t
  806. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  807. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  808. #define GGML_F16x8_LOAD vld1q_f16
  809. #define GGML_F16x8_STORE vst1q_f16
  810. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  811. #define GGML_F16x8_ADD vaddq_f16
  812. #define GGML_F16x8_MUL vmulq_f16
  813. #define GGML_F16x8_REDUCE(res, x) \
  814. { \
  815. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  816. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  817. } \
  818. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  819. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  820. } \
  821. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  822. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  823. } \
  824. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  825. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  826. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  827. }
  828. #define GGML_F16_VEC GGML_F16x8
  829. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  830. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  831. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  832. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  833. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  834. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  835. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  836. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  837. #else
  838. // if FP16 vector arithmetic is not supported, we use FP32 instead
  839. // and take advantage of the vcvt_ functions to convert to/from FP16
  840. #define GGML_F16_STEP 16
  841. #define GGML_F16_EPR 4
  842. #define GGML_F32Cx4 float32x4_t
  843. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  846. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  847. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32Cx4_ADD vaddq_f32
  849. #define GGML_F32Cx4_MUL vmulq_f32
  850. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  851. #define GGML_F16_VEC GGML_F32Cx4
  852. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  853. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  854. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  855. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  856. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  857. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  858. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  859. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  860. #endif
  861. #elif defined(__AVX__)
  862. #define GGML_SIMD
  863. // F32 AVX
  864. #define GGML_F32_STEP 32
  865. #define GGML_F32_EPR 8
  866. #define GGML_F32x8 __m256
  867. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  868. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  869. #define GGML_F32x8_LOAD _mm256_loadu_ps
  870. #define GGML_F32x8_STORE _mm256_storeu_ps
  871. #if defined(__FMA__)
  872. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  873. #else
  874. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  875. #endif
  876. #define GGML_F32x8_ADD _mm256_add_ps
  877. #define GGML_F32x8_MUL _mm256_mul_ps
  878. #define GGML_F32x8_REDUCE(res, x) \
  879. { \
  880. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  881. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  882. } \
  883. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  884. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  885. } \
  886. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  887. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  888. } \
  889. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  890. _mm256_extractf128_ps(x[0], 1)); \
  891. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  892. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  893. }
  894. // TODO: is this optimal ?
  895. #define GGML_F32_VEC GGML_F32x8
  896. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  897. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  898. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  899. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  900. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  901. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  902. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  903. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  904. // F16 AVX
  905. #define GGML_F16_STEP 32
  906. #define GGML_F16_EPR 8
  907. // F16 arithmetic is not supported by AVX, so we use F32 instead
  908. #define GGML_F32Cx8 __m256
  909. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  910. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  911. #if defined(__F16C__)
  912. // the _mm256_cvt intrinsics require F16C
  913. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  914. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  915. #else
  916. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  917. float tmp[8];
  918. for (int i = 0; i < 8; i++)
  919. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  920. return _mm256_loadu_ps(tmp);
  921. }
  922. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  923. float arr[8];
  924. _mm256_storeu_ps(arr, y);
  925. for (int i = 0; i < 8; i++)
  926. x[i] = GGML_FP16_TO_FP32(arr[i]);
  927. }
  928. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  929. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  930. #endif
  931. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  932. #define GGML_F32Cx8_ADD _mm256_add_ps
  933. #define GGML_F32Cx8_MUL _mm256_mul_ps
  934. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  935. #define GGML_F16_VEC GGML_F32Cx8
  936. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  937. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  938. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  939. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  940. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  941. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  942. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  943. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  944. #elif defined(__POWER9_VECTOR__)
  945. #define GGML_SIMD
  946. // F32 POWER9
  947. #define GGML_F32_STEP 32
  948. #define GGML_F32_EPR 4
  949. #define GGML_F32x4 vector float
  950. #define GGML_F32x4_ZERO 0.0f
  951. #define GGML_F32x4_SET1 vec_splats
  952. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  953. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  954. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  955. #define GGML_F32x4_ADD vec_add
  956. #define GGML_F32x4_MUL vec_mul
  957. #define GGML_F32x4_REDUCE(res, x) \
  958. { \
  959. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  960. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  961. } \
  962. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  963. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  964. } \
  965. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  966. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  967. } \
  968. res = vec_extract(x[0], 0) + \
  969. vec_extract(x[0], 1) + \
  970. vec_extract(x[0], 2) + \
  971. vec_extract(x[0], 3); \
  972. }
  973. #define GGML_F32_VEC GGML_F32x4
  974. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  975. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  976. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  977. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  978. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  979. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  980. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  981. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  982. // F16 POWER9
  983. #define GGML_F16_STEP GGML_F32_STEP
  984. #define GGML_F16_EPR GGML_F32_EPR
  985. #define GGML_F16_VEC GGML_F32x4
  986. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  987. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  988. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  989. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  990. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  991. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  992. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  993. vec_extract_fp32_from_shortl(vec_xl(0, p))
  994. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  995. #define GGML_F16_VEC_STORE(p, r, i) \
  996. if (i & 0x1) \
  997. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  998. r[i - GGML_ENDIAN_BYTE(0)]), \
  999. 0, p - GGML_F16_EPR)
  1000. #elif defined(__wasm_simd128__)
  1001. #define GGML_SIMD
  1002. // F32 WASM
  1003. #define GGML_F32_STEP 16
  1004. #define GGML_F32_EPR 4
  1005. #define GGML_F32x4 v128_t
  1006. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1007. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1008. #define GGML_F32x4_LOAD wasm_v128_load
  1009. #define GGML_F32x4_STORE wasm_v128_store
  1010. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1011. #define GGML_F32x4_ADD wasm_f32x4_add
  1012. #define GGML_F32x4_MUL wasm_f32x4_mul
  1013. #define GGML_F32x4_REDUCE(res, x) \
  1014. { \
  1015. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1016. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1017. } \
  1018. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1019. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1020. } \
  1021. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1022. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1023. } \
  1024. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1025. wasm_f32x4_extract_lane(x[0], 1) + \
  1026. wasm_f32x4_extract_lane(x[0], 2) + \
  1027. wasm_f32x4_extract_lane(x[0], 3); \
  1028. }
  1029. #define GGML_F32_VEC GGML_F32x4
  1030. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1031. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1032. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1033. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1034. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1035. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1036. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1037. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1038. // F16 WASM
  1039. #define GGML_F16_STEP 16
  1040. #define GGML_F16_EPR 4
  1041. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1042. float tmp[4];
  1043. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1044. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1045. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1046. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1047. return wasm_v128_load(tmp);
  1048. }
  1049. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1050. float tmp[4];
  1051. wasm_v128_store(tmp, x);
  1052. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1053. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1054. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1055. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1056. }
  1057. #define GGML_F16x4 v128_t
  1058. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1059. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1060. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1061. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1062. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1063. #define GGML_F16x4_ADD wasm_f32x4_add
  1064. #define GGML_F16x4_MUL wasm_f32x4_mul
  1065. #define GGML_F16x4_REDUCE(res, x) \
  1066. { \
  1067. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1068. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1069. } \
  1070. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1071. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1072. } \
  1073. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1074. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1075. } \
  1076. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1077. wasm_f32x4_extract_lane(x[0], 1) + \
  1078. wasm_f32x4_extract_lane(x[0], 2) + \
  1079. wasm_f32x4_extract_lane(x[0], 3); \
  1080. }
  1081. #define GGML_F16_VEC GGML_F16x4
  1082. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1083. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1084. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1085. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1086. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1087. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1088. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1089. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1090. #elif defined(__SSE3__)
  1091. #define GGML_SIMD
  1092. // F32 SSE
  1093. #define GGML_F32_STEP 32
  1094. #define GGML_F32_EPR 4
  1095. #define GGML_F32x4 __m128
  1096. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1097. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1098. #define GGML_F32x4_LOAD _mm_loadu_ps
  1099. #define GGML_F32x4_STORE _mm_storeu_ps
  1100. #if defined(__FMA__)
  1101. // TODO: Does this work?
  1102. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1103. #else
  1104. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1105. #endif
  1106. #define GGML_F32x4_ADD _mm_add_ps
  1107. #define GGML_F32x4_MUL _mm_mul_ps
  1108. #define GGML_F32x4_REDUCE(res, x) \
  1109. { \
  1110. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1111. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1112. } \
  1113. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1114. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1115. } \
  1116. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1117. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1118. } \
  1119. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1120. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1121. }
  1122. // TODO: is this optimal ?
  1123. #define GGML_F32_VEC GGML_F32x4
  1124. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1125. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1126. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1127. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1128. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1129. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1130. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1131. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1132. // F16 SSE
  1133. #define GGML_F16_STEP 32
  1134. #define GGML_F16_EPR 4
  1135. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1136. float tmp[4];
  1137. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1138. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1139. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1140. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1141. return _mm_loadu_ps(tmp);
  1142. }
  1143. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1144. float arr[4];
  1145. _mm_storeu_ps(arr, y);
  1146. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1147. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1148. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1149. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1150. }
  1151. #define GGML_F32Cx4 __m128
  1152. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1153. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1154. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1155. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1156. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1157. #define GGML_F32Cx4_ADD _mm_add_ps
  1158. #define GGML_F32Cx4_MUL _mm_mul_ps
  1159. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1160. #define GGML_F16_VEC GGML_F32Cx4
  1161. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1162. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1163. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1164. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1165. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1166. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1167. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1168. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1169. #endif
  1170. // GGML_F32_ARR / GGML_F16_ARR
  1171. // number of registers to use per step
  1172. #ifdef GGML_SIMD
  1173. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1174. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1175. #endif
  1176. //
  1177. // fundamental operations
  1178. //
  1179. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1180. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1181. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1182. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1183. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1184. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1185. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1186. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1187. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1188. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1189. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1190. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1191. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1192. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1193. ggml_float sumf = 0.0;
  1194. #ifdef GGML_SIMD
  1195. const int np = (n & ~(GGML_F32_STEP - 1));
  1196. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1197. GGML_F32_VEC ax[GGML_F32_ARR];
  1198. GGML_F32_VEC ay[GGML_F32_ARR];
  1199. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1200. for (int j = 0; j < GGML_F32_ARR; j++) {
  1201. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1202. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1203. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1204. }
  1205. }
  1206. // reduce sum0..sum3 to sum0
  1207. GGML_F32_VEC_REDUCE(sumf, sum);
  1208. // leftovers
  1209. for (int i = np; i < n; ++i) {
  1210. sumf += x[i]*y[i];
  1211. }
  1212. #else
  1213. // scalar
  1214. for (int i = 0; i < n; ++i) {
  1215. sumf += x[i]*y[i];
  1216. }
  1217. #endif
  1218. *s = sumf;
  1219. }
  1220. #if __AVX512F__ && QK == 32
  1221. static inline __m512 dot_q4_0_oneblock_avx512(
  1222. __m512 acc,
  1223. const uint8_t * pd0,
  1224. const uint8_t * pd1,
  1225. const uint8_t * pb0,
  1226. const uint8_t * pb1,
  1227. size_t bs,
  1228. int i
  1229. ) {
  1230. const float * d0_0 = (const float *) (pd0 + i*bs);
  1231. const float * d1_0 = (const float *) (pd1 + i*bs);
  1232. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1233. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1234. // Compute combined scale for the block
  1235. float scaleScalar = d0_0[0] * d1_0[0];
  1236. __m512 scale = _mm512_set1_ps( scaleScalar );
  1237. __m256i bx = bytesFromNibbles( p0 );
  1238. __m256i by = bytesFromNibbles( p1 );
  1239. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1240. const __m256i off = _mm256_set1_epi8( 8 );
  1241. bx = _mm256_sub_epi8( bx, off );
  1242. by = _mm256_sub_epi8( by, off );
  1243. // Sign-extend 16 signed bytes into int16_t
  1244. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1245. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1246. // Compute products of int16_t integers, add pairwise
  1247. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1248. // Convert int32_t to float
  1249. __m512 p = _mm512_cvtepi32_ps( i64 );
  1250. // Apply the scale, and accumulate
  1251. return _mm512_fmadd_ps( scale, p, acc );
  1252. }
  1253. #endif
  1254. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1255. ggml_float sumf = 0.0;
  1256. #if defined(GGML_SIMD)
  1257. const int np = (n & ~(GGML_F16_STEP - 1));
  1258. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1259. GGML_F16_VEC ax[GGML_F16_ARR];
  1260. GGML_F16_VEC ay[GGML_F16_ARR];
  1261. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1262. for (int j = 0; j < GGML_F16_ARR; j++) {
  1263. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1264. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1265. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1266. }
  1267. }
  1268. // reduce sum0..sum3 to sum0
  1269. GGML_F16_VEC_REDUCE(sumf, sum);
  1270. // leftovers
  1271. for (int i = np; i < n; ++i) {
  1272. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1273. }
  1274. #else
  1275. for (int i = 0; i < n; ++i) {
  1276. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1277. }
  1278. #endif
  1279. *s = sumf;
  1280. }
  1281. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1282. const int nb = n / QK;
  1283. assert(n % QK == 0);
  1284. assert(nb % 2 == 0);
  1285. const size_t bs = sizeof(float) + QK/2;
  1286. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1287. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1288. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1289. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1290. float sumf = 0.0;
  1291. #if defined(__ARM_NEON)
  1292. float sum0 = 0.0f;
  1293. float sum1 = 0.0f;
  1294. for (int i = 0; i < nb; i += 2) {
  1295. const float d0_0 = *(const float *) (pd0 + i*bs);
  1296. const float d1_0 = *(const float *) (pd1 + i*bs);
  1297. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1298. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1299. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1300. const uint8_t * restrict p0 = pb0 + i*bs;
  1301. const uint8_t * restrict p1 = pb1 + i*bs;
  1302. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1303. const int8x16_t s8b = vdupq_n_s8(0x8);
  1304. const uint8x16_t v0_0 = vld1q_u8(p0);
  1305. const uint8x16_t v1_0 = vld1q_u8(p1);
  1306. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1307. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1308. // 4-bit -> 8-bit
  1309. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1310. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1311. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1312. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1313. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1314. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1315. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1316. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1317. // sub 8
  1318. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1319. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1320. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1321. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1322. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1323. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1324. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1325. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1326. #if defined(__ARM_FEATURE_DOTPROD)
  1327. // dot product into int16x8_t
  1328. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1329. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1330. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1331. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1332. // scalar
  1333. #if defined(__ARM_FEATURE_QRDMX)
  1334. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1335. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1336. #else
  1337. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1338. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1339. #endif
  1340. #else
  1341. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1342. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1343. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1344. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1345. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1346. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1347. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1348. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1349. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1350. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1351. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1352. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1353. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1354. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1355. // scalar
  1356. #if defined(__ARM_FEATURE_QRDMX)
  1357. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1358. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1359. #else
  1360. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1361. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1362. #endif
  1363. #endif
  1364. }
  1365. sumf = sum0 + sum1;
  1366. #elif defined(__AVX512F__)
  1367. // Initialize accumulator with zeros
  1368. __m512 acc0 = _mm512_setzero_ps();
  1369. __m512 acc1 = _mm512_setzero_ps();
  1370. const int superblock_size = 8;
  1371. const int superblock_count = nb / superblock_size;
  1372. const int remainder = nb % superblock_size;
  1373. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1374. int i = superblock_ix * superblock_size;
  1375. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1376. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1377. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1378. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1379. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1380. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1381. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1382. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1383. }
  1384. // Remainders
  1385. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1386. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1387. }
  1388. // Horizontal sum of all lanes of the accumulator
  1389. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1390. #elif defined(__AVX2__)
  1391. // Initialize accumulator with zeros
  1392. __m256 acc = _mm256_setzero_ps();
  1393. // Main loop
  1394. for (int i = 0; i < nb; ++i) {
  1395. const float * d0_0 = (const float *) (pd0 + i*bs);
  1396. const float * d1_0 = (const float *) (pd1 + i*bs);
  1397. const uint8_t * restrict p0 = pb0 + i*bs;
  1398. const uint8_t * restrict p1 = pb1 + i*bs;
  1399. // Compute combined scale for the block
  1400. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1401. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1402. __m256i bx = bytesFromNibbles( p0 );
  1403. __m256i by = bytesFromNibbles( p1 );
  1404. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1405. const __m256i off = _mm256_set1_epi8( 8 );
  1406. bx = _mm256_sub_epi8( bx, off );
  1407. by = _mm256_sub_epi8( by, off );
  1408. // Sign-extend first 16 signed bytes into int16_t
  1409. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1410. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1411. // Compute products of int16_t integers, add pairwise
  1412. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1413. // Sign-extend last 16 signed bytes into int16_t vectors
  1414. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1415. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1416. // Accumulate products of int16_t integers
  1417. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1418. // Convert int32_t to float
  1419. __m256 p = _mm256_cvtepi32_ps( i32 );
  1420. // Apply the scale, and accumulate
  1421. acc = _mm256_fmadd_ps( scale, p, acc );
  1422. }
  1423. // Return horizontal sum of the acc vector
  1424. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1425. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1426. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1427. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1428. sumf = _mm_cvtss_f32( res );
  1429. #elif defined(__wasm_simd128__)
  1430. // wasm simd
  1431. float sum0 = 0.0f;
  1432. float sum1 = 0.0f;
  1433. for (int i = 0; i < nb; i += 2) {
  1434. const float d0_0 = *(const float *) (pd0 + i*bs);
  1435. const float d1_0 = *(const float *) (pd1 + i*bs);
  1436. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1437. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1438. const uint8_t * restrict p0 = pb0 + i*bs;
  1439. const uint8_t * restrict p1 = pb1 + i*bs;
  1440. const v128_t m4b = wasm_u8x16_splat(0xf);
  1441. const v128_t s8b = wasm_i8x16_splat(0x8);
  1442. const v128_t v0_0 = wasm_v128_load(p0);
  1443. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1444. const v128_t v1_0 = wasm_v128_load(p1);
  1445. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1446. // 4-bit -> 8-bit
  1447. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1448. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1449. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1450. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1451. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1452. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1453. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1454. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1455. // sub 8
  1456. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1457. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1458. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1459. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1460. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1461. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1462. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1463. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1464. // dot product into int16x8_t
  1465. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1466. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1467. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1468. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1469. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1470. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1471. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1472. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1473. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1474. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1475. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1476. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1477. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1478. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1479. sum0 += d0_0*d1_0*(
  1480. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1481. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1482. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1483. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1484. sum1 += d0_1*d1_1*(
  1485. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1486. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1487. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1488. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1489. }
  1490. sumf = sum0 + sum1;
  1491. #else
  1492. // scalar
  1493. for (int i = 0; i < nb; i++) {
  1494. const float d0 = *(const float *) (pd0 + i*bs);
  1495. const float d1 = *(const float *) (pd1 + i*bs);
  1496. const uint8_t * restrict p0 = pb0 + i*bs;
  1497. const uint8_t * restrict p1 = pb1 + i*bs;
  1498. for (int j = 0; j < QK/2; j++) {
  1499. const uint8_t v0 = p0[j];
  1500. const uint8_t v1 = p1[j];
  1501. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1502. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1503. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1504. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1505. sumf += f0*f2 + f1*f3;
  1506. }
  1507. }
  1508. #endif
  1509. *s = sumf;
  1510. }
  1511. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1512. const int nb = n / QK;
  1513. const size_t bs = 2*sizeof(float) + QK/2;
  1514. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1515. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1516. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1517. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1518. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1519. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1520. float sumf = 0.0;
  1521. #if defined(__AVX2__)
  1522. // Initialize accumulator with zeros
  1523. __m256 acc = _mm256_setzero_ps();
  1524. // Accumulator for constant offsets
  1525. float acc_offset = 0.0f;
  1526. // Main loop
  1527. for (int i = 0; i < nb; ++i) {
  1528. const float * m0 = (const float *) (pm0 + i*bs);
  1529. const float * m1 = (const float *) (pm1 + i*bs);
  1530. const float * d0 = (const float *) (pd0 + i*bs);
  1531. const float * d1 = (const float *) (pd1 + i*bs);
  1532. const uint8_t * restrict p0 = pb0 + i*bs;
  1533. const uint8_t * restrict p1 = pb1 + i*bs;
  1534. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1535. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1536. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1537. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1538. // Compute combined scale for the block
  1539. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1540. // Compute cross scales for the block
  1541. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1542. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1543. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1544. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1545. __m256i bx = bytesFromNibbles( p0 );
  1546. __m256i by = bytesFromNibbles( p1 );
  1547. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1548. // Sign-extend first 16 signed bytes into int16_t
  1549. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1550. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1551. // Compute products of int16_t integers, add pairwise
  1552. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1553. // Sign-extend last 16 signed bytes into int16_t vectors
  1554. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1555. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1556. // Accumulate products of int16_t integers
  1557. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1558. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1559. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1560. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1561. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1562. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1563. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1564. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1565. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1566. // Convert int32_t to float
  1567. __m256 p = _mm256_cvtepi32_ps( i32 );
  1568. // Apply the scale, and accumulate
  1569. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1570. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1571. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1572. // acc_offset += m0*m1 (for each entry in the block)
  1573. acc_offset += (*m0)*(*m1);
  1574. }
  1575. // Return horizontal sum of the acc vector
  1576. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1577. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1578. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1579. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1580. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1581. #else
  1582. // scalar
  1583. for (int i = 0; i < nb; i++) {
  1584. const float m0 = *(const float *) (pm0 + i*bs);
  1585. const float m1 = *(const float *) (pm1 + i*bs);
  1586. const float d0 = *(const float *) (pd0 + i*bs);
  1587. const float d1 = *(const float *) (pd1 + i*bs);
  1588. const uint8_t * restrict p0 = pb0 + i*bs;
  1589. const uint8_t * restrict p1 = pb1 + i*bs;
  1590. for (int j = 0; j < QK/2; j++) {
  1591. const uint8_t v0 = p0[j];
  1592. const uint8_t v1 = p1[j];
  1593. const float f0 = d0*(v0 & 0xf) + m0;
  1594. const float f1 = d0*(v0 >> 4) + m0;
  1595. const float f2 = d1*(v1 & 0xf) + m1;
  1596. const float f3 = d1*(v1 >> 4) + m1;
  1597. sumf += f0*f2 + f1*f3;
  1598. }
  1599. }
  1600. #endif
  1601. *s = sumf;
  1602. }
  1603. // compute GGML_VEC_DOT_UNROLL dot products at once
  1604. // xs - x row stride in bytes
  1605. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1606. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1607. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1608. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1609. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1610. }
  1611. #if defined(GGML_SIMD)
  1612. const int np = (n & ~(GGML_F16_STEP - 1));
  1613. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1614. GGML_F16_VEC ax[GGML_F16_ARR];
  1615. GGML_F16_VEC ay[GGML_F16_ARR];
  1616. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1617. for (int j = 0; j < GGML_F16_ARR; j++) {
  1618. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1619. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1620. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1621. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1622. }
  1623. }
  1624. }
  1625. // reduce sum0..sum3 to sum0
  1626. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1627. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1628. }
  1629. // leftovers
  1630. for (int i = np; i < n; ++i) {
  1631. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1632. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1633. }
  1634. }
  1635. #else
  1636. for (int i = 0; i < n; ++i) {
  1637. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1638. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1639. }
  1640. }
  1641. #endif
  1642. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1643. s[i] = sumf[i];
  1644. }
  1645. }
  1646. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1647. #if defined(GGML_SIMD)
  1648. const int np = (n & ~(GGML_F32_STEP - 1));
  1649. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1650. GGML_F32_VEC ax[GGML_F32_ARR];
  1651. GGML_F32_VEC ay[GGML_F32_ARR];
  1652. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1653. for (int j = 0; j < GGML_F32_ARR; j++) {
  1654. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1655. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1656. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1657. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1658. }
  1659. }
  1660. // leftovers
  1661. for (int i = np; i < n; ++i) {
  1662. y[i] += x[i]*v;
  1663. }
  1664. #else
  1665. // scalar
  1666. for (int i = 0; i < n; ++i) {
  1667. y[i] += x[i]*v;
  1668. }
  1669. #endif
  1670. }
  1671. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1672. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1673. #if defined(GGML_SIMD)
  1674. const int np = (n & ~(GGML_F32_STEP - 1));
  1675. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1676. GGML_F32_VEC ay[GGML_F32_ARR];
  1677. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1678. for (int j = 0; j < GGML_F32_ARR; j++) {
  1679. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1680. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1681. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1682. }
  1683. }
  1684. // leftovers
  1685. for (int i = np; i < n; ++i) {
  1686. y[i] *= v;
  1687. }
  1688. #else
  1689. // scalar
  1690. for (int i = 0; i < n; ++i) {
  1691. y[i] *= v;
  1692. }
  1693. #endif
  1694. }
  1695. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1696. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1697. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1698. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1699. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1700. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1701. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1702. static const ggml_float GELU_COEF_A = 0.044715;
  1703. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1704. inline static float ggml_gelu_f32(float x) {
  1705. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1706. }
  1707. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1708. const uint16_t * i16 = (const uint16_t *) x;
  1709. for (int i = 0; i < n; ++i) {
  1710. y[i] = table_gelu_f16[i16[i]];
  1711. }
  1712. }
  1713. #ifdef GGML_GELU_FP16
  1714. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1715. uint16_t t;
  1716. for (int i = 0; i < n; ++i) {
  1717. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1718. memcpy(&t, &fp16, sizeof(uint16_t));
  1719. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1720. }
  1721. }
  1722. #else
  1723. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1724. for (int i = 0; i < n; ++i) {
  1725. y[i] = ggml_gelu_f32(x[i]);
  1726. }
  1727. }
  1728. #endif
  1729. // Sigmoid Linear Unit (SiLU) function
  1730. inline static float ggml_silu_f32(float x) {
  1731. return x/(1.0 + exp(-x));
  1732. }
  1733. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1734. const uint16_t * i16 = (const uint16_t *) x;
  1735. for (int i = 0; i < n; ++i) {
  1736. y[i] = table_silu_f16[i16[i]];
  1737. }
  1738. }
  1739. #ifdef GGML_SILU_FP16
  1740. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1741. uint16_t t;
  1742. for (int i = 0; i < n; ++i) {
  1743. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1744. memcpy(&t, &fp16, sizeof(uint16_t));
  1745. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1746. }
  1747. }
  1748. #else
  1749. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1750. for (int i = 0; i < n; ++i) {
  1751. y[i] = ggml_silu_f32(x[i]);
  1752. }
  1753. }
  1754. #endif
  1755. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1756. #ifndef GGML_USE_ACCELERATE
  1757. ggml_float sum = 0.0;
  1758. for (int i = 0; i < n; ++i) {
  1759. sum += x[i];
  1760. }
  1761. *s = sum;
  1762. #else
  1763. vDSP_sve(x, 1, s, n);
  1764. #endif
  1765. }
  1766. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1767. #ifndef GGML_USE_ACCELERATE
  1768. ggml_float max = -INFINITY;
  1769. for (int i = 0; i < n; ++i) {
  1770. max = MAX(max, x[i]);
  1771. }
  1772. *s = max;
  1773. #else
  1774. vDSP_maxv(x, 1, s, n);
  1775. #endif
  1776. }
  1777. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1778. //
  1779. // logging
  1780. //
  1781. #if (GGML_DEBUG >= 1)
  1782. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1783. #else
  1784. #define GGML_PRINT_DEBUG(...)
  1785. #endif
  1786. #if (GGML_DEBUG >= 5)
  1787. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1788. #else
  1789. #define GGML_PRINT_DEBUG_5(...)
  1790. #endif
  1791. #if (GGML_DEBUG >= 10)
  1792. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1793. #else
  1794. #define GGML_PRINT_DEBUG_10(...)
  1795. #endif
  1796. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1797. //
  1798. // data types
  1799. //
  1800. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1801. QK,
  1802. QK,
  1803. 1,
  1804. 1,
  1805. 1,
  1806. 1,
  1807. 1,
  1808. };
  1809. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1810. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1811. sizeof(float ) + QK/2,
  1812. sizeof(float )*2 + QK/2,
  1813. sizeof(int8_t ),
  1814. sizeof(int16_t),
  1815. sizeof(int32_t),
  1816. sizeof(ggml_fp16_t),
  1817. sizeof(float ),
  1818. };
  1819. // don't forget to update the array above when adding new types
  1820. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1821. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1822. "NONE",
  1823. "DUP",
  1824. "ADD",
  1825. "SUB",
  1826. "MUL",
  1827. "DIV",
  1828. "SQR",
  1829. "SQRT",
  1830. "SUM",
  1831. "MEAN",
  1832. "REPEAT",
  1833. "ABS",
  1834. "SGN",
  1835. "NEG",
  1836. "STEP",
  1837. "RELU",
  1838. "GELU",
  1839. "SILU",
  1840. "NORM",
  1841. "RMS_NORM",
  1842. "MUL_MAT",
  1843. "SCALE",
  1844. "CPY",
  1845. "RESHAPE",
  1846. "VIEW",
  1847. "PERMUTE",
  1848. "TRANSPOSE",
  1849. "GET_ROWS",
  1850. "DIAG_MASK_INF",
  1851. "SOFT_MAX",
  1852. "ROPE",
  1853. "CONV_1D_1S",
  1854. "CONV_1D_2S",
  1855. "FLASH_ATTN",
  1856. "FLASH_FF",
  1857. };
  1858. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1859. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1860. "none",
  1861. "x",
  1862. "x+y",
  1863. "x-y",
  1864. "x*y",
  1865. "x/y",
  1866. "x^2",
  1867. "√x",
  1868. "Σx",
  1869. "Σx/n",
  1870. "repeat(x)",
  1871. "abs(x)",
  1872. "sgn(x)",
  1873. "-x",
  1874. "step(x)",
  1875. "relu(x)",
  1876. "gelu(x)",
  1877. "silu(x)",
  1878. "norm(x)",
  1879. "rms_norm(x)",
  1880. "X*Y",
  1881. "x*v",
  1882. "x-\\>y",
  1883. "reshape(x)",
  1884. "view(x)",
  1885. "permute(x)",
  1886. "transpose(x)",
  1887. "get_rows(x)",
  1888. "diag_mask_inf(x)",
  1889. "soft_max(x)",
  1890. "rope(x)",
  1891. "conv_1d_1s(x)",
  1892. "conv_1d_2s(x)",
  1893. "flash_attn(x)",
  1894. "flash_ff(x)",
  1895. };
  1896. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1897. //
  1898. // ggml object
  1899. //
  1900. struct ggml_object {
  1901. size_t offs;
  1902. size_t size;
  1903. struct ggml_object * next;
  1904. char padding[8];
  1905. };
  1906. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1907. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1908. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1909. //
  1910. // ggml context
  1911. //
  1912. struct ggml_context {
  1913. size_t mem_size;
  1914. void * mem_buffer;
  1915. bool mem_buffer_owned;
  1916. bool mem_buffer_mlocked;
  1917. int n_objects;
  1918. struct ggml_object * objects_begin;
  1919. struct ggml_object * objects_end;
  1920. struct ggml_scratch scratch;
  1921. struct ggml_scratch scratch_save;
  1922. };
  1923. struct ggml_context_container {
  1924. bool used;
  1925. struct ggml_context context;
  1926. };
  1927. //
  1928. // compute types
  1929. //
  1930. enum ggml_task_type {
  1931. GGML_TASK_INIT = 0,
  1932. GGML_TASK_COMPUTE,
  1933. GGML_TASK_FINALIZE,
  1934. };
  1935. struct ggml_compute_params {
  1936. enum ggml_task_type type;
  1937. int ith, nth;
  1938. // work buffer for all threads
  1939. size_t wsize;
  1940. void * wdata;
  1941. };
  1942. //
  1943. // ggml state
  1944. //
  1945. struct ggml_state {
  1946. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1947. };
  1948. // global state
  1949. static struct ggml_state g_state;
  1950. static atomic_int g_state_barrier = 0;
  1951. // barrier via spin lock
  1952. inline static void ggml_critical_section_start(void) {
  1953. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1954. while (processing > 0) {
  1955. // wait for other threads to finish
  1956. atomic_fetch_sub(&g_state_barrier, 1);
  1957. sched_yield(); // TODO: reconsider this
  1958. processing = atomic_fetch_add(&g_state_barrier, 1);
  1959. }
  1960. }
  1961. // TODO: make this somehow automatically executed
  1962. // some sort of "sentry" mechanism
  1963. inline static void ggml_critical_section_end(void) {
  1964. atomic_fetch_sub(&g_state_barrier, 1);
  1965. }
  1966. ////////////////////////////////////////////////////////////////////////////////
  1967. void ggml_print_object(const struct ggml_object * obj) {
  1968. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1969. obj->offs, obj->size, (const void *) obj->next);
  1970. }
  1971. void ggml_print_objects(const struct ggml_context * ctx) {
  1972. struct ggml_object * obj = ctx->objects_begin;
  1973. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1974. while (obj != NULL) {
  1975. ggml_print_object(obj);
  1976. obj = obj->next;
  1977. }
  1978. GGML_PRINT("%s: --- end ---\n", __func__);
  1979. }
  1980. int ggml_nelements(const struct ggml_tensor * tensor) {
  1981. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1982. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1983. }
  1984. int ggml_nrows(const struct ggml_tensor * tensor) {
  1985. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1986. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1987. }
  1988. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1989. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1990. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1991. }
  1992. int ggml_blck_size(enum ggml_type type) {
  1993. return GGML_BLCK_SIZE[type];
  1994. }
  1995. size_t ggml_type_size(enum ggml_type type) {
  1996. return GGML_TYPE_SIZE[type];
  1997. }
  1998. float ggml_type_sizef(enum ggml_type type) {
  1999. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2000. }
  2001. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2002. return GGML_TYPE_SIZE[tensor->type];
  2003. }
  2004. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2005. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2006. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2007. }
  2008. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2009. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2010. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2011. }
  2012. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2013. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2014. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2015. }
  2016. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2018. return
  2019. (t0->ne[0] == t1->ne[0]) &&
  2020. (t0->ne[2] == t1->ne[2]) &&
  2021. (t0->ne[3] == t1->ne[3]);
  2022. }
  2023. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2024. return tensor->nb[0] > tensor->nb[1];
  2025. }
  2026. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2027. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2028. return
  2029. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2030. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2031. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2032. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2033. }
  2034. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2035. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2036. return
  2037. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2038. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2039. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2040. }
  2041. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2042. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2043. return
  2044. (t0->ne[0] == t1->ne[0] ) &&
  2045. (t0->ne[1] == t1->ne[1] ) &&
  2046. (t0->ne[2] == t1->ne[2] ) &&
  2047. (t0->ne[3] == t1->ne[3] );
  2048. }
  2049. // check if t1 can be represented as a repeatition of t0
  2050. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2051. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2052. return
  2053. (t1->ne[0]%t0->ne[0] == 0) &&
  2054. (t1->ne[1]%t0->ne[1] == 0) &&
  2055. (t1->ne[2]%t0->ne[2] == 0) &&
  2056. (t1->ne[3]%t0->ne[3] == 0);
  2057. }
  2058. static inline int ggml_up32(int n) {
  2059. return (n + 31) & ~31;
  2060. }
  2061. static inline int ggml_up64(int n) {
  2062. return (n + 63) & ~63;
  2063. }
  2064. static inline int ggml_up(int n, int m) {
  2065. // assert m is a power of 2
  2066. GGML_ASSERT((m & (m - 1)) == 0);
  2067. return (n + m - 1) & ~(m - 1);
  2068. }
  2069. // assert that pointer is aligned to GGML_MEM_ALIGN
  2070. #define ggml_assert_aligned(ptr) \
  2071. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2072. ////////////////////////////////////////////////////////////////////////////////
  2073. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2074. // make this function thread safe
  2075. ggml_critical_section_start();
  2076. static bool is_first_call = true;
  2077. if (is_first_call) {
  2078. // initialize GELU, SILU and EXP F32 tables
  2079. {
  2080. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2081. ggml_fp16_t ii;
  2082. for (int i = 0; i < (1 << 16); ++i) {
  2083. uint16_t ui = i;
  2084. memcpy(&ii, &ui, sizeof(ii));
  2085. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2086. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2087. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2088. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2089. }
  2090. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2091. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2092. }
  2093. // initialize g_state
  2094. {
  2095. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2096. g_state = (struct ggml_state) {
  2097. /*.contexts =*/ { { 0 } },
  2098. };
  2099. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2100. g_state.contexts[i].used = false;
  2101. }
  2102. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2103. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2104. }
  2105. is_first_call = false;
  2106. }
  2107. // find non-used context in g_state
  2108. struct ggml_context * ctx = NULL;
  2109. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2110. if (!g_state.contexts[i].used) {
  2111. g_state.contexts[i].used = true;
  2112. ctx = &g_state.contexts[i].context;
  2113. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2114. break;
  2115. }
  2116. }
  2117. if (ctx == NULL) {
  2118. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2119. ggml_critical_section_end();
  2120. return NULL;
  2121. }
  2122. *ctx = (struct ggml_context) {
  2123. /*.mem_size =*/ params.mem_size,
  2124. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2125. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2126. /*.mem_buffer_mlocked =*/ false,
  2127. /*.n_objects =*/ 0,
  2128. /*.objects_begin =*/ NULL,
  2129. /*.objects_end =*/ NULL,
  2130. /*.scratch =*/ { 0, 0, NULL, },
  2131. /*.scratch_save =*/ { 0, 0, NULL, },
  2132. };
  2133. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2134. ggml_assert_aligned(ctx->mem_buffer);
  2135. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2136. ggml_critical_section_end();
  2137. return ctx;
  2138. }
  2139. void ggml_free(struct ggml_context * ctx) {
  2140. // make this function thread safe
  2141. ggml_critical_section_start();
  2142. bool found = false;
  2143. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2144. if (&g_state.contexts[i].context == ctx) {
  2145. g_state.contexts[i].used = false;
  2146. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2147. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2148. #if GGML_MLOCK_SUPPORT
  2149. if (ctx->mem_buffer_mlocked) {
  2150. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2151. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2152. }
  2153. }
  2154. #endif
  2155. if (ctx->mem_buffer_owned) {
  2156. free(ctx->mem_buffer);
  2157. }
  2158. found = true;
  2159. break;
  2160. }
  2161. }
  2162. if (!found) {
  2163. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2164. }
  2165. ggml_critical_section_end();
  2166. }
  2167. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2168. return ctx->objects_end->offs + ctx->objects_end->size;
  2169. }
  2170. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2171. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2172. ctx->scratch = scratch;
  2173. return result;
  2174. }
  2175. bool ggml_mlock_supported(void) {
  2176. return GGML_MLOCK_SUPPORT;
  2177. }
  2178. #if GGML_MLOCK_SUPPORT
  2179. #ifdef __APPLE__
  2180. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2181. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2182. #else
  2183. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2184. #endif
  2185. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2186. if (ctx->mem_buffer_mlocked) {
  2187. return true;
  2188. }
  2189. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2190. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2191. ctx->mem_size, strerror(errno));
  2192. GGML_ASSERT(ret >= 0);
  2193. return false;
  2194. }
  2195. ctx->mem_buffer_mlocked = true;
  2196. return true;
  2197. }
  2198. #else // GGML_MLOCK_SUPPORT
  2199. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2200. *err_p = strdup("can't mlock because it's not supported on this system");
  2201. return false;
  2202. }
  2203. #endif // GGML_MLOCK_SUPPORT
  2204. ////////////////////////////////////////////////////////////////////////////////
  2205. struct ggml_tensor * ggml_new_tensor_impl(
  2206. struct ggml_context * ctx,
  2207. enum ggml_type type,
  2208. int n_dims,
  2209. const int* ne,
  2210. void* data) {
  2211. // always insert objects at the end of the context's memory pool
  2212. struct ggml_object * obj_cur = ctx->objects_end;
  2213. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2214. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2215. const size_t cur_end = cur_offs + cur_size;
  2216. size_t size_needed = 0;
  2217. if (data == NULL) {
  2218. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2219. for (int i = 1; i < n_dims; i++) {
  2220. size_needed *= ne[i];
  2221. }
  2222. // align to GGML_MEM_ALIGN
  2223. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2224. }
  2225. char * const mem_buffer = ctx->mem_buffer;
  2226. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2227. if (ctx->scratch.data == NULL || data != NULL) {
  2228. size_needed += sizeof(struct ggml_tensor);
  2229. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2230. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2231. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2232. assert(false);
  2233. return NULL;
  2234. }
  2235. *obj_new = (struct ggml_object) {
  2236. .offs = cur_end + GGML_OBJECT_SIZE,
  2237. .size = size_needed,
  2238. .next = NULL,
  2239. };
  2240. } else {
  2241. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2242. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2243. assert(false);
  2244. return NULL;
  2245. }
  2246. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2247. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2248. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2249. assert(false);
  2250. return NULL;
  2251. }
  2252. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2253. *obj_new = (struct ggml_object) {
  2254. .offs = cur_end + GGML_OBJECT_SIZE,
  2255. .size = sizeof(struct ggml_tensor),
  2256. .next = NULL,
  2257. };
  2258. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2259. ctx->scratch.offs += size_needed;
  2260. }
  2261. if (obj_cur != NULL) {
  2262. obj_cur->next = obj_new;
  2263. } else {
  2264. // this is the first object in this context
  2265. ctx->objects_begin = obj_new;
  2266. }
  2267. ctx->objects_end = obj_new;
  2268. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2269. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2270. ggml_assert_aligned(result);
  2271. *result = (struct ggml_tensor) {
  2272. /*.type =*/ type,
  2273. /*.n_dims =*/ n_dims,
  2274. /*.ne =*/ { 1, 1, 1, 1 },
  2275. /*.nb =*/ { 0, 0, 0, 0 },
  2276. /*.op =*/ GGML_OP_NONE,
  2277. /*.is_param =*/ false,
  2278. /*.grad =*/ NULL,
  2279. /*.src0 =*/ NULL,
  2280. /*.src1 =*/ NULL,
  2281. /*.opt =*/ { NULL },
  2282. /*.n_tasks =*/ 0,
  2283. /*.perf_runs =*/ 0,
  2284. /*.perf_cycles =*/ 0,
  2285. /*.perf_time_us =*/ 0,
  2286. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2287. /*.pad =*/ { 0 },
  2288. };
  2289. ggml_assert_aligned(result->data);
  2290. for (int i = 0; i < n_dims; i++) {
  2291. result->ne[i] = ne[i];
  2292. }
  2293. result->nb[0] = GGML_TYPE_SIZE[type];
  2294. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2295. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2296. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2297. }
  2298. ctx->n_objects++;
  2299. return result;
  2300. }
  2301. struct ggml_tensor * ggml_new_tensor(
  2302. struct ggml_context * ctx,
  2303. enum ggml_type type,
  2304. int n_dims,
  2305. const int * ne) {
  2306. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2307. }
  2308. struct ggml_tensor * ggml_new_tensor_1d(
  2309. struct ggml_context * ctx,
  2310. enum ggml_type type,
  2311. int ne0) {
  2312. return ggml_new_tensor(ctx, type, 1, &ne0);
  2313. }
  2314. struct ggml_tensor * ggml_new_tensor_2d(
  2315. struct ggml_context * ctx,
  2316. enum ggml_type type,
  2317. int ne0,
  2318. int ne1) {
  2319. const int ne[2] = { ne0, ne1 };
  2320. return ggml_new_tensor(ctx, type, 2, ne);
  2321. }
  2322. struct ggml_tensor * ggml_new_tensor_3d(
  2323. struct ggml_context * ctx,
  2324. enum ggml_type type,
  2325. int ne0,
  2326. int ne1,
  2327. int ne2) {
  2328. const int ne[3] = { ne0, ne1, ne2 };
  2329. return ggml_new_tensor(ctx, type, 3, ne);
  2330. }
  2331. struct ggml_tensor * ggml_new_tensor_4d(
  2332. struct ggml_context * ctx,
  2333. enum ggml_type type,
  2334. int ne0,
  2335. int ne1,
  2336. int ne2,
  2337. int ne3) {
  2338. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2339. return ggml_new_tensor(ctx, type, 4, ne);
  2340. }
  2341. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2342. ctx->scratch_save = ctx->scratch;
  2343. ctx->scratch.data = NULL;
  2344. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2345. ctx->scratch = ctx->scratch_save;
  2346. ggml_set_i32(result, value);
  2347. return result;
  2348. }
  2349. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2350. ctx->scratch_save = ctx->scratch;
  2351. ctx->scratch.data = NULL;
  2352. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2353. ctx->scratch = ctx->scratch_save;
  2354. ggml_set_f32(result, value);
  2355. return result;
  2356. }
  2357. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2358. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2359. }
  2360. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2361. memset(tensor->data, 0, ggml_nbytes(tensor));
  2362. return tensor;
  2363. }
  2364. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2365. const int n = ggml_nrows(tensor);
  2366. const int nc = tensor->ne[0];
  2367. const size_t n1 = tensor->nb[1];
  2368. char * const data = tensor->data;
  2369. switch (tensor->type) {
  2370. case GGML_TYPE_Q4_0:
  2371. {
  2372. GGML_ASSERT(false);
  2373. } break;
  2374. case GGML_TYPE_Q4_1:
  2375. {
  2376. GGML_ASSERT(false);
  2377. } break;
  2378. case GGML_TYPE_I8:
  2379. {
  2380. assert(tensor->nb[0] == sizeof(int8_t));
  2381. for (int i = 0; i < n; i++) {
  2382. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2383. }
  2384. } break;
  2385. case GGML_TYPE_I16:
  2386. {
  2387. assert(tensor->nb[0] == sizeof(int16_t));
  2388. for (int i = 0; i < n; i++) {
  2389. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2390. }
  2391. } break;
  2392. case GGML_TYPE_I32:
  2393. {
  2394. assert(tensor->nb[0] == sizeof(int32_t));
  2395. for (int i = 0; i < n; i++) {
  2396. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2397. }
  2398. } break;
  2399. case GGML_TYPE_F16:
  2400. {
  2401. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2402. for (int i = 0; i < n; i++) {
  2403. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2404. }
  2405. } break;
  2406. case GGML_TYPE_F32:
  2407. {
  2408. assert(tensor->nb[0] == sizeof(float));
  2409. for (int i = 0; i < n; i++) {
  2410. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2411. }
  2412. } break;
  2413. case GGML_TYPE_COUNT:
  2414. {
  2415. GGML_ASSERT(false);
  2416. } break;
  2417. }
  2418. return tensor;
  2419. }
  2420. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2421. const int n = ggml_nrows(tensor);
  2422. const int nc = tensor->ne[0];
  2423. const size_t n1 = tensor->nb[1];
  2424. char * const data = tensor->data;
  2425. switch (tensor->type) {
  2426. case GGML_TYPE_Q4_0:
  2427. {
  2428. GGML_ASSERT(false);
  2429. } break;
  2430. case GGML_TYPE_Q4_1:
  2431. {
  2432. GGML_ASSERT(false);
  2433. } break;
  2434. case GGML_TYPE_I8:
  2435. {
  2436. assert(tensor->nb[0] == sizeof(int8_t));
  2437. for (int i = 0; i < n; i++) {
  2438. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2439. }
  2440. } break;
  2441. case GGML_TYPE_I16:
  2442. {
  2443. assert(tensor->nb[0] == sizeof(int16_t));
  2444. for (int i = 0; i < n; i++) {
  2445. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2446. }
  2447. } break;
  2448. case GGML_TYPE_I32:
  2449. {
  2450. assert(tensor->nb[0] == sizeof(int32_t));
  2451. for (int i = 0; i < n; i++) {
  2452. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2453. }
  2454. } break;
  2455. case GGML_TYPE_F16:
  2456. {
  2457. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2458. for (int i = 0; i < n; i++) {
  2459. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2460. }
  2461. } break;
  2462. case GGML_TYPE_F32:
  2463. {
  2464. assert(tensor->nb[0] == sizeof(float));
  2465. for (int i = 0; i < n; i++) {
  2466. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2467. }
  2468. } break;
  2469. case GGML_TYPE_COUNT:
  2470. {
  2471. GGML_ASSERT(false);
  2472. } break;
  2473. }
  2474. return tensor;
  2475. }
  2476. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2477. switch (tensor->type) {
  2478. case GGML_TYPE_Q4_0:
  2479. {
  2480. GGML_ASSERT(false);
  2481. } break;
  2482. case GGML_TYPE_Q4_1:
  2483. {
  2484. GGML_ASSERT(false);
  2485. } break;
  2486. case GGML_TYPE_I8:
  2487. {
  2488. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2489. return ((int8_t *)(tensor->data))[i];
  2490. } break;
  2491. case GGML_TYPE_I16:
  2492. {
  2493. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2494. return ((int16_t *)(tensor->data))[i];
  2495. } break;
  2496. case GGML_TYPE_I32:
  2497. {
  2498. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2499. return ((int32_t *)(tensor->data))[i];
  2500. } break;
  2501. case GGML_TYPE_F16:
  2502. {
  2503. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2504. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2505. } break;
  2506. case GGML_TYPE_F32:
  2507. {
  2508. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2509. return ((float *)(tensor->data))[i];
  2510. } break;
  2511. case GGML_TYPE_COUNT:
  2512. {
  2513. GGML_ASSERT(false);
  2514. } break;
  2515. }
  2516. return 0.0f;
  2517. }
  2518. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_Q4_0:
  2521. {
  2522. GGML_ASSERT(false);
  2523. } break;
  2524. case GGML_TYPE_Q4_1:
  2525. {
  2526. GGML_ASSERT(false);
  2527. } break;
  2528. case GGML_TYPE_I8:
  2529. {
  2530. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2531. ((int8_t *)(tensor->data))[i] = value;
  2532. } break;
  2533. case GGML_TYPE_I16:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2536. ((int16_t *)(tensor->data))[i] = value;
  2537. } break;
  2538. case GGML_TYPE_I32:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2541. ((int32_t *)(tensor->data))[i] = value;
  2542. } break;
  2543. case GGML_TYPE_F16:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2546. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2547. } break;
  2548. case GGML_TYPE_F32:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2551. ((float *)(tensor->data))[i] = value;
  2552. } break;
  2553. case GGML_TYPE_COUNT:
  2554. {
  2555. GGML_ASSERT(false);
  2556. } break;
  2557. }
  2558. }
  2559. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2560. switch (tensor->type) {
  2561. case GGML_TYPE_Q4_0:
  2562. {
  2563. GGML_ASSERT(false);
  2564. } break;
  2565. case GGML_TYPE_Q4_1:
  2566. {
  2567. GGML_ASSERT(false);
  2568. } break;
  2569. case GGML_TYPE_I8:
  2570. {
  2571. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2572. return ((int8_t *)(tensor->data))[i];
  2573. } break;
  2574. case GGML_TYPE_I16:
  2575. {
  2576. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2577. return ((int16_t *)(tensor->data))[i];
  2578. } break;
  2579. case GGML_TYPE_I32:
  2580. {
  2581. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2582. return ((int32_t *)(tensor->data))[i];
  2583. } break;
  2584. case GGML_TYPE_F16:
  2585. {
  2586. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2587. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2588. } break;
  2589. case GGML_TYPE_F32:
  2590. {
  2591. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2592. return ((float *)(tensor->data))[i];
  2593. } break;
  2594. case GGML_TYPE_COUNT:
  2595. {
  2596. GGML_ASSERT(false);
  2597. } break;
  2598. }
  2599. return 0.0f;
  2600. }
  2601. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2602. switch (tensor->type) {
  2603. case GGML_TYPE_Q4_0:
  2604. {
  2605. GGML_ASSERT(false);
  2606. } break;
  2607. case GGML_TYPE_Q4_1:
  2608. {
  2609. GGML_ASSERT(false);
  2610. } break;
  2611. case GGML_TYPE_I8:
  2612. {
  2613. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2614. ((int8_t *)(tensor->data))[i] = value;
  2615. } break;
  2616. case GGML_TYPE_I16:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2619. ((int16_t *)(tensor->data))[i] = value;
  2620. } break;
  2621. case GGML_TYPE_I32:
  2622. {
  2623. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2624. ((int32_t *)(tensor->data))[i] = value;
  2625. } break;
  2626. case GGML_TYPE_F16:
  2627. {
  2628. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2629. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2630. } break;
  2631. case GGML_TYPE_F32:
  2632. {
  2633. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2634. ((float *)(tensor->data))[i] = value;
  2635. } break;
  2636. case GGML_TYPE_COUNT:
  2637. {
  2638. GGML_ASSERT(false);
  2639. } break;
  2640. }
  2641. }
  2642. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2643. return tensor->data;
  2644. }
  2645. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2646. assert(tensor->type == GGML_TYPE_F32);
  2647. return (float *)(tensor->data);
  2648. }
  2649. struct ggml_tensor * ggml_view_tensor(
  2650. struct ggml_context * ctx,
  2651. const struct ggml_tensor * src) {
  2652. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2653. }
  2654. ////////////////////////////////////////////////////////////////////////////////
  2655. // ggml_dup
  2656. struct ggml_tensor * ggml_dup_impl(
  2657. struct ggml_context * ctx,
  2658. struct ggml_tensor * a,
  2659. bool inplace) {
  2660. bool is_node = false;
  2661. if (!inplace && (a->grad)) {
  2662. is_node = true;
  2663. }
  2664. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2665. result->op = GGML_OP_DUP;
  2666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2667. result->src0 = a;
  2668. result->src1 = NULL;
  2669. return result;
  2670. }
  2671. struct ggml_tensor * ggml_dup(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a) {
  2674. return ggml_dup_impl(ctx, a, false);
  2675. }
  2676. struct ggml_tensor * ggml_dup_inplace(
  2677. struct ggml_context * ctx,
  2678. struct ggml_tensor * a) {
  2679. return ggml_dup_impl(ctx, a, true);
  2680. }
  2681. // ggml_add
  2682. struct ggml_tensor * ggml_add_impl(
  2683. struct ggml_context * ctx,
  2684. struct ggml_tensor * a,
  2685. struct ggml_tensor * b,
  2686. bool inplace) {
  2687. GGML_ASSERT(ggml_are_same_shape(a, b));
  2688. bool is_node = false;
  2689. if (!inplace && (a->grad || b->grad)) {
  2690. is_node = true;
  2691. }
  2692. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2693. result->op = GGML_OP_ADD;
  2694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2695. result->src0 = a;
  2696. result->src1 = b;
  2697. return result;
  2698. }
  2699. struct ggml_tensor * ggml_add(
  2700. struct ggml_context * ctx,
  2701. struct ggml_tensor * a,
  2702. struct ggml_tensor * b) {
  2703. return ggml_add_impl(ctx, a, b, false);
  2704. }
  2705. struct ggml_tensor * ggml_add_inplace(
  2706. struct ggml_context * ctx,
  2707. struct ggml_tensor * a,
  2708. struct ggml_tensor * b) {
  2709. return ggml_add_impl(ctx, a, b, true);
  2710. }
  2711. // ggml_sub
  2712. struct ggml_tensor * ggml_sub_impl(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a,
  2715. struct ggml_tensor * b,
  2716. bool inplace) {
  2717. GGML_ASSERT(ggml_are_same_shape(a, b));
  2718. bool is_node = false;
  2719. if (!inplace && (a->grad || b->grad)) {
  2720. is_node = true;
  2721. }
  2722. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2723. result->op = GGML_OP_SUB;
  2724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2725. result->src0 = a;
  2726. result->src1 = b;
  2727. return result;
  2728. }
  2729. struct ggml_tensor * ggml_sub(
  2730. struct ggml_context * ctx,
  2731. struct ggml_tensor * a,
  2732. struct ggml_tensor * b) {
  2733. return ggml_sub_impl(ctx, a, b, false);
  2734. }
  2735. struct ggml_tensor * ggml_sub_inplace(
  2736. struct ggml_context * ctx,
  2737. struct ggml_tensor * a,
  2738. struct ggml_tensor * b) {
  2739. return ggml_sub_impl(ctx, a, b, true);
  2740. }
  2741. // ggml_mul
  2742. struct ggml_tensor * ggml_mul_impl(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * a,
  2745. struct ggml_tensor * b,
  2746. bool inplace) {
  2747. GGML_ASSERT(ggml_are_same_shape(a, b));
  2748. bool is_node = false;
  2749. if (!inplace && (a->grad || b->grad)) {
  2750. is_node = true;
  2751. }
  2752. if (inplace) {
  2753. GGML_ASSERT(is_node == false);
  2754. }
  2755. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2756. result->op = GGML_OP_MUL;
  2757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2758. result->src0 = a;
  2759. result->src1 = b;
  2760. return result;
  2761. }
  2762. struct ggml_tensor * ggml_mul(
  2763. struct ggml_context * ctx,
  2764. struct ggml_tensor * a,
  2765. struct ggml_tensor * b) {
  2766. return ggml_mul_impl(ctx, a, b, false);
  2767. }
  2768. struct ggml_tensor * ggml_mul_inplace(
  2769. struct ggml_context * ctx,
  2770. struct ggml_tensor * a,
  2771. struct ggml_tensor * b) {
  2772. return ggml_mul_impl(ctx, a, b, true);
  2773. }
  2774. // ggml_div
  2775. struct ggml_tensor * ggml_div_impl(
  2776. struct ggml_context * ctx,
  2777. struct ggml_tensor * a,
  2778. struct ggml_tensor * b,
  2779. bool inplace) {
  2780. GGML_ASSERT(ggml_are_same_shape(a, b));
  2781. bool is_node = false;
  2782. if (!inplace && (a->grad || b->grad)) {
  2783. is_node = true;
  2784. }
  2785. if (inplace) {
  2786. GGML_ASSERT(is_node == false);
  2787. }
  2788. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2789. result->op = GGML_OP_DIV;
  2790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2791. result->src0 = a;
  2792. result->src1 = b;
  2793. return result;
  2794. }
  2795. struct ggml_tensor * ggml_div(
  2796. struct ggml_context * ctx,
  2797. struct ggml_tensor * a,
  2798. struct ggml_tensor * b) {
  2799. return ggml_div_impl(ctx, a, b, false);
  2800. }
  2801. struct ggml_tensor * ggml_div_inplace(
  2802. struct ggml_context * ctx,
  2803. struct ggml_tensor * a,
  2804. struct ggml_tensor * b) {
  2805. return ggml_div_impl(ctx, a, b, true);
  2806. }
  2807. // ggml_sqr
  2808. struct ggml_tensor * ggml_sqr_impl(
  2809. struct ggml_context * ctx,
  2810. struct ggml_tensor * a,
  2811. bool inplace) {
  2812. bool is_node = false;
  2813. if (!inplace && (a->grad)) {
  2814. is_node = true;
  2815. }
  2816. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2817. result->op = GGML_OP_SQR;
  2818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2819. result->src0 = a;
  2820. result->src1 = NULL;
  2821. return result;
  2822. }
  2823. struct ggml_tensor * ggml_sqr(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a) {
  2826. return ggml_sqr_impl(ctx, a, false);
  2827. }
  2828. struct ggml_tensor * ggml_sqr_inplace(
  2829. struct ggml_context * ctx,
  2830. struct ggml_tensor * a) {
  2831. return ggml_sqr_impl(ctx, a, true);
  2832. }
  2833. // ggml_sqrt
  2834. struct ggml_tensor * ggml_sqrt_impl(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a,
  2837. bool inplace) {
  2838. bool is_node = false;
  2839. if (!inplace && (a->grad)) {
  2840. is_node = true;
  2841. }
  2842. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2843. result->op = GGML_OP_SQRT;
  2844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2845. result->src0 = a;
  2846. result->src1 = NULL;
  2847. return result;
  2848. }
  2849. struct ggml_tensor * ggml_sqrt(
  2850. struct ggml_context * ctx,
  2851. struct ggml_tensor * a) {
  2852. return ggml_sqrt_impl(ctx, a, false);
  2853. }
  2854. struct ggml_tensor * ggml_sqrt_inplace(
  2855. struct ggml_context * ctx,
  2856. struct ggml_tensor * a) {
  2857. return ggml_sqrt_impl(ctx, a, true);
  2858. }
  2859. // ggml_sum
  2860. struct ggml_tensor * ggml_sum(
  2861. struct ggml_context * ctx,
  2862. struct ggml_tensor * a) {
  2863. bool is_node = false;
  2864. if (a->grad) {
  2865. is_node = true;
  2866. }
  2867. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2868. result->op = GGML_OP_SUM;
  2869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2870. result->src0 = a;
  2871. result->src1 = NULL;
  2872. return result;
  2873. }
  2874. // ggml_mean
  2875. struct ggml_tensor * ggml_mean(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a) {
  2878. bool is_node = false;
  2879. if (a->grad) {
  2880. GGML_ASSERT(false); // TODO: implement
  2881. is_node = true;
  2882. }
  2883. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2884. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2885. result->op = GGML_OP_MEAN;
  2886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2887. result->src0 = a;
  2888. result->src1 = NULL;
  2889. return result;
  2890. }
  2891. // ggml_repeat
  2892. struct ggml_tensor * ggml_repeat(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. struct ggml_tensor * b) {
  2896. GGML_ASSERT(ggml_can_repeat(a, b));
  2897. bool is_node = false;
  2898. if (a->grad) {
  2899. is_node = true;
  2900. }
  2901. if (ggml_are_same_shape(a, b) && !is_node) {
  2902. return a;
  2903. }
  2904. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2905. result->op = GGML_OP_REPEAT;
  2906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2907. result->src0 = a;
  2908. result->src1 = b;
  2909. return result;
  2910. }
  2911. // ggml_abs
  2912. struct ggml_tensor * ggml_abs_impl(
  2913. struct ggml_context * ctx,
  2914. struct ggml_tensor * a,
  2915. bool inplace) {
  2916. bool is_node = false;
  2917. if (!inplace && (a->grad)) {
  2918. is_node = true;
  2919. }
  2920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2921. result->op = GGML_OP_ABS;
  2922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2923. result->src0 = a;
  2924. result->src1 = NULL;
  2925. return result;
  2926. }
  2927. struct ggml_tensor * ggml_abs(
  2928. struct ggml_context * ctx,
  2929. struct ggml_tensor * a) {
  2930. return ggml_abs_impl(ctx, a, false);
  2931. }
  2932. struct ggml_tensor * ggml_abs_inplace(
  2933. struct ggml_context * ctx,
  2934. struct ggml_tensor * a) {
  2935. return ggml_abs_impl(ctx, a, true);
  2936. }
  2937. // ggml_sgn
  2938. struct ggml_tensor * ggml_sgn_impl(
  2939. struct ggml_context * ctx,
  2940. struct ggml_tensor * a,
  2941. bool inplace) {
  2942. bool is_node = false;
  2943. if (!inplace && (a->grad)) {
  2944. is_node = true;
  2945. }
  2946. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2947. result->op = GGML_OP_SGN;
  2948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2949. result->src0 = a;
  2950. result->src1 = NULL;
  2951. return result;
  2952. }
  2953. struct ggml_tensor * ggml_sgn(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a) {
  2956. return ggml_sgn_impl(ctx, a, false);
  2957. }
  2958. struct ggml_tensor * ggml_sgn_inplace(
  2959. struct ggml_context * ctx,
  2960. struct ggml_tensor * a) {
  2961. return ggml_sgn_impl(ctx, a, true);
  2962. }
  2963. // ggml_neg
  2964. struct ggml_tensor * ggml_neg_impl(
  2965. struct ggml_context * ctx,
  2966. struct ggml_tensor * a,
  2967. bool inplace) {
  2968. bool is_node = false;
  2969. if (!inplace && (a->grad)) {
  2970. is_node = true;
  2971. }
  2972. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2973. result->op = GGML_OP_NEG;
  2974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2975. result->src0 = a;
  2976. result->src1 = NULL;
  2977. return result;
  2978. }
  2979. struct ggml_tensor * ggml_neg(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. return ggml_neg_impl(ctx, a, false);
  2983. }
  2984. struct ggml_tensor * ggml_neg_inplace(
  2985. struct ggml_context * ctx,
  2986. struct ggml_tensor * a) {
  2987. return ggml_neg_impl(ctx, a, true);
  2988. }
  2989. // ggml_step
  2990. struct ggml_tensor * ggml_step_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. bool inplace) {
  2994. bool is_node = false;
  2995. if (!inplace && (a->grad)) {
  2996. is_node = true;
  2997. }
  2998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2999. result->op = GGML_OP_STEP;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src0 = a;
  3002. result->src1 = NULL;
  3003. return result;
  3004. }
  3005. struct ggml_tensor * ggml_step(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a) {
  3008. return ggml_step_impl(ctx, a, false);
  3009. }
  3010. struct ggml_tensor * ggml_step_inplace(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. return ggml_step_impl(ctx, a, true);
  3014. }
  3015. // ggml_relu
  3016. struct ggml_tensor * ggml_relu_impl(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a,
  3019. bool inplace) {
  3020. bool is_node = false;
  3021. if (!inplace && (a->grad)) {
  3022. is_node = true;
  3023. }
  3024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3025. result->op = GGML_OP_RELU;
  3026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3027. result->src0 = a;
  3028. result->src1 = NULL;
  3029. return result;
  3030. }
  3031. struct ggml_tensor * ggml_relu(
  3032. struct ggml_context * ctx,
  3033. struct ggml_tensor * a) {
  3034. return ggml_relu_impl(ctx, a, false);
  3035. }
  3036. struct ggml_tensor * ggml_relu_inplace(
  3037. struct ggml_context * ctx,
  3038. struct ggml_tensor * a) {
  3039. return ggml_relu_impl(ctx, a, true);
  3040. }
  3041. // ggml_gelu
  3042. struct ggml_tensor * ggml_gelu_impl(
  3043. struct ggml_context * ctx,
  3044. struct ggml_tensor * a,
  3045. bool inplace) {
  3046. bool is_node = false;
  3047. if (!inplace && (a->grad)) {
  3048. is_node = true;
  3049. }
  3050. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3051. result->op = GGML_OP_GELU;
  3052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3053. result->src0 = a;
  3054. result->src1 = NULL;
  3055. return result;
  3056. }
  3057. struct ggml_tensor * ggml_gelu(
  3058. struct ggml_context * ctx,
  3059. struct ggml_tensor * a) {
  3060. return ggml_gelu_impl(ctx, a, false);
  3061. }
  3062. struct ggml_tensor * ggml_gelu_inplace(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a) {
  3065. return ggml_gelu_impl(ctx, a, true);
  3066. }
  3067. // ggml_silu
  3068. struct ggml_tensor * ggml_silu_impl(
  3069. struct ggml_context * ctx,
  3070. struct ggml_tensor * a,
  3071. bool inplace) {
  3072. bool is_node = false;
  3073. if (!inplace && (a->grad)) {
  3074. is_node = true;
  3075. }
  3076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3077. result->op = GGML_OP_SILU;
  3078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3079. result->src0 = a;
  3080. result->src1 = NULL;
  3081. return result;
  3082. }
  3083. struct ggml_tensor * ggml_silu(
  3084. struct ggml_context * ctx,
  3085. struct ggml_tensor * a) {
  3086. return ggml_silu_impl(ctx, a, false);
  3087. }
  3088. struct ggml_tensor * ggml_silu_inplace(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a) {
  3091. return ggml_silu_impl(ctx, a, true);
  3092. }
  3093. // ggml_norm
  3094. struct ggml_tensor * ggml_norm_impl(
  3095. struct ggml_context * ctx,
  3096. struct ggml_tensor * a,
  3097. bool inplace) {
  3098. bool is_node = false;
  3099. if (!inplace && (a->grad)) {
  3100. GGML_ASSERT(false); // TODO: implement backward
  3101. is_node = true;
  3102. }
  3103. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3104. result->op = GGML_OP_NORM;
  3105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3106. result->src0 = a;
  3107. result->src1 = NULL; // TODO: maybe store epsilon here?
  3108. return result;
  3109. }
  3110. struct ggml_tensor * ggml_norm(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a) {
  3113. return ggml_norm_impl(ctx, a, false);
  3114. }
  3115. struct ggml_tensor * ggml_norm_inplace(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a) {
  3118. return ggml_norm_impl(ctx, a, true);
  3119. }
  3120. struct ggml_tensor * ggml_rms_norm_impl(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a,
  3123. bool inplace) {
  3124. bool is_node = false;
  3125. if (!inplace && (a->grad)) {
  3126. GGML_ASSERT(false); // TODO: implement backward
  3127. is_node = true;
  3128. }
  3129. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3130. result->op = GGML_OP_RMS_NORM;
  3131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3132. result->src0 = a;
  3133. result->src1 = NULL; // TODO: maybe store epsilon here?
  3134. return result;
  3135. }
  3136. struct ggml_tensor * ggml_rms_norm(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a) {
  3139. return ggml_rms_norm_impl(ctx, a, false);
  3140. }
  3141. struct ggml_tensor * ggml_rms_norm_inplace(
  3142. struct ggml_context * ctx,
  3143. struct ggml_tensor * a) {
  3144. return ggml_rms_norm_impl(ctx, a, true);
  3145. }
  3146. // ggml_mul_mat
  3147. struct ggml_tensor * ggml_mul_mat(
  3148. struct ggml_context * ctx,
  3149. struct ggml_tensor * a,
  3150. struct ggml_tensor * b) {
  3151. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3152. GGML_ASSERT(!ggml_is_transposed(a));
  3153. bool is_node = false;
  3154. if (a->grad || b->grad) {
  3155. is_node = true;
  3156. }
  3157. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3158. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3159. result->op = GGML_OP_MUL_MAT;
  3160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3161. result->src0 = a;
  3162. result->src1 = b;
  3163. return result;
  3164. }
  3165. // ggml_scale
  3166. struct ggml_tensor * ggml_scale_impl(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a,
  3169. struct ggml_tensor * b,
  3170. bool inplace) {
  3171. GGML_ASSERT(ggml_is_scalar(b));
  3172. GGML_ASSERT(ggml_is_padded_1d(a));
  3173. bool is_node = false;
  3174. if (!inplace && (a->grad || b->grad)) {
  3175. GGML_ASSERT(false); // TODO: implement backward
  3176. is_node = true;
  3177. }
  3178. // TODO: when implement backward, fix this:
  3179. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3180. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3181. result->op = GGML_OP_SCALE;
  3182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3183. result->src0 = a;
  3184. result->src1 = b;
  3185. return result;
  3186. }
  3187. struct ggml_tensor * ggml_scale(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a,
  3190. struct ggml_tensor * b) {
  3191. return ggml_scale_impl(ctx, a, b, false);
  3192. }
  3193. struct ggml_tensor * ggml_scale_inplace(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a,
  3196. struct ggml_tensor * b) {
  3197. return ggml_scale_impl(ctx, a, b, true);
  3198. }
  3199. // ggml_cpy
  3200. struct ggml_tensor * ggml_cpy_impl(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b,
  3204. bool inplace) {
  3205. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3206. bool is_node = false;
  3207. if (!inplace && (a->grad || b->grad)) {
  3208. GGML_ASSERT(false); // TODO: implement backward
  3209. is_node = true;
  3210. }
  3211. // make a view of the destination
  3212. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3213. result->op = GGML_OP_CPY;
  3214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3215. result->src0 = a;
  3216. result->src1 = b;
  3217. return result;
  3218. }
  3219. struct ggml_tensor * ggml_cpy(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a,
  3222. struct ggml_tensor * b) {
  3223. return ggml_cpy_impl(ctx, a, b, false);
  3224. }
  3225. struct ggml_tensor * ggml_cpy_inplace(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b) {
  3229. return ggml_cpy_impl(ctx, a, b, true);
  3230. }
  3231. // ggml_reshape
  3232. struct ggml_tensor * ggml_reshape(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a,
  3235. struct ggml_tensor * b) {
  3236. GGML_ASSERT(ggml_is_contiguous(a));
  3237. GGML_ASSERT(ggml_is_contiguous(b));
  3238. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3239. bool is_node = false;
  3240. if (a->grad || b->grad) {
  3241. GGML_ASSERT(false); // TODO: implement backward
  3242. is_node = true;
  3243. }
  3244. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3245. result->op = GGML_OP_RESHAPE;
  3246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3247. result->src0 = a;
  3248. result->src1 = NULL;
  3249. return result;
  3250. }
  3251. struct ggml_tensor * ggml_reshape_2d(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a,
  3254. int ne0,
  3255. int ne1) {
  3256. GGML_ASSERT(ggml_is_contiguous(a));
  3257. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3258. bool is_node = false;
  3259. if (a->grad) {
  3260. GGML_ASSERT(false); // TODO: implement backward
  3261. is_node = true;
  3262. }
  3263. const int ne[2] = { ne0, ne1 };
  3264. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3265. result->op = GGML_OP_RESHAPE;
  3266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3267. result->src0 = a;
  3268. result->src1 = NULL;
  3269. return result;
  3270. }
  3271. struct ggml_tensor * ggml_reshape_3d(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a,
  3274. int ne0,
  3275. int ne1,
  3276. int ne2) {
  3277. GGML_ASSERT(ggml_is_contiguous(a));
  3278. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3279. bool is_node = false;
  3280. if (a->grad) {
  3281. GGML_ASSERT(false); // TODO: implement backward
  3282. is_node = true;
  3283. }
  3284. const int ne[3] = { ne0, ne1, ne2 };
  3285. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3286. result->op = GGML_OP_RESHAPE;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src0 = a;
  3289. result->src1 = NULL;
  3290. return result;
  3291. }
  3292. // ggml_view_1d
  3293. struct ggml_tensor * ggml_view_1d(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. int ne0,
  3297. size_t offset) {
  3298. if (a->grad) {
  3299. GGML_ASSERT(false); // gradient propagation is not supported
  3300. }
  3301. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3302. result->op = GGML_OP_VIEW;
  3303. result->grad = NULL;
  3304. result->src0 = a;
  3305. result->src1 = NULL; // TODO: maybe store the offset here?
  3306. return result;
  3307. }
  3308. // ggml_view_2d
  3309. struct ggml_tensor * ggml_view_2d(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. int ne0,
  3313. int ne1,
  3314. size_t nb1,
  3315. size_t offset) {
  3316. if (a->grad) {
  3317. GGML_ASSERT(false); // gradient propagation is not supported
  3318. }
  3319. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3320. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3321. result->nb[1] = nb1;
  3322. result->nb[2] = result->nb[1]*ne1;
  3323. result->nb[3] = result->nb[2];
  3324. result->op = GGML_OP_VIEW;
  3325. result->grad = NULL;
  3326. result->src0 = a;
  3327. result->src1 = NULL; // TODO: maybe store the offset here?
  3328. return result;
  3329. }
  3330. // ggml_permute
  3331. struct ggml_tensor * ggml_permute(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a,
  3334. int axis0,
  3335. int axis1,
  3336. int axis2,
  3337. int axis3) {
  3338. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3339. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3340. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3341. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3342. GGML_ASSERT(axis0 != axis1);
  3343. GGML_ASSERT(axis0 != axis2);
  3344. GGML_ASSERT(axis0 != axis3);
  3345. GGML_ASSERT(axis1 != axis2);
  3346. GGML_ASSERT(axis1 != axis3);
  3347. GGML_ASSERT(axis2 != axis3);
  3348. bool is_node = false;
  3349. if (a->grad) {
  3350. GGML_ASSERT(false); // TODO: implement backward
  3351. is_node = true;
  3352. }
  3353. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3354. int ne[GGML_MAX_DIMS];
  3355. int nb[GGML_MAX_DIMS];
  3356. ne[axis0] = a->ne[0];
  3357. ne[axis1] = a->ne[1];
  3358. ne[axis2] = a->ne[2];
  3359. ne[axis3] = a->ne[3];
  3360. nb[axis0] = a->nb[0];
  3361. nb[axis1] = a->nb[1];
  3362. nb[axis2] = a->nb[2];
  3363. nb[axis3] = a->nb[3];
  3364. result->ne[0] = ne[0];
  3365. result->ne[1] = ne[1];
  3366. result->ne[2] = ne[2];
  3367. result->ne[3] = ne[3];
  3368. result->nb[0] = nb[0];
  3369. result->nb[1] = nb[1];
  3370. result->nb[2] = nb[2];
  3371. result->nb[3] = nb[3];
  3372. result->op = GGML_OP_PERMUTE;
  3373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3374. result->src0 = a;
  3375. result->src1 = NULL; // TODO: maybe store the permutation here?
  3376. return result;
  3377. }
  3378. // ggml_transpose
  3379. struct ggml_tensor * ggml_transpose(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a) {
  3382. bool is_node = false;
  3383. if (a->grad) {
  3384. GGML_ASSERT(false); // TODO: implement backward
  3385. is_node = true;
  3386. }
  3387. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3388. result->ne[0] = a->ne[1];
  3389. result->ne[1] = a->ne[0];
  3390. result->nb[0] = a->nb[1];
  3391. result->nb[1] = a->nb[0];
  3392. result->op = GGML_OP_TRANSPOSE;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src0 = a;
  3395. result->src1 = NULL;
  3396. return result;
  3397. }
  3398. // ggml_get_rows
  3399. struct ggml_tensor * ggml_get_rows(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a,
  3402. struct ggml_tensor * b) {
  3403. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3404. bool is_node = false;
  3405. if (a->grad || b->grad) {
  3406. GGML_ASSERT(false); // TODO: implement backward
  3407. is_node = true;
  3408. }
  3409. // TODO: implement non F32 return
  3410. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3411. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3412. result->op = GGML_OP_GET_ROWS;
  3413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3414. result->src0 = a;
  3415. result->src1 = b;
  3416. return result;
  3417. }
  3418. // ggml_diag_mask_inf
  3419. struct ggml_tensor * ggml_diag_mask_inf(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a,
  3422. int n_past) {
  3423. bool is_node = false;
  3424. if (a->grad) {
  3425. GGML_ASSERT(false); // TODO: implement backward
  3426. is_node = true;
  3427. }
  3428. // TODO: when implement backward, fix this:
  3429. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3430. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3431. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3432. result->op = GGML_OP_DIAG_MASK_INF;
  3433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3434. result->src0 = a;
  3435. result->src1 = b;
  3436. return result;
  3437. }
  3438. // ggml_soft_max
  3439. struct ggml_tensor * ggml_soft_max(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a) {
  3442. bool is_node = false;
  3443. if (a->grad) {
  3444. GGML_ASSERT(false); // TODO: implement backward
  3445. is_node = true;
  3446. }
  3447. // TODO: when implement backward, fix this:
  3448. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3449. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3450. result->op = GGML_OP_SOFT_MAX;
  3451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3452. result->src0 = a;
  3453. result->src1 = NULL;
  3454. return result;
  3455. }
  3456. // ggml_rope
  3457. struct ggml_tensor * ggml_rope(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. int n_past,
  3461. int n_dims,
  3462. int mode) {
  3463. GGML_ASSERT(n_past >= 0);
  3464. bool is_node = false;
  3465. if (a->grad) {
  3466. GGML_ASSERT(false); // TODO: implement backward
  3467. is_node = true;
  3468. }
  3469. // TODO: when implement backward, fix this:
  3470. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3471. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3472. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3473. ((int32_t *) b->data)[0] = n_past;
  3474. ((int32_t *) b->data)[1] = n_dims;
  3475. ((int32_t *) b->data)[2] = mode;
  3476. result->op = GGML_OP_ROPE;
  3477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3478. result->src0 = a;
  3479. result->src1 = b;
  3480. return result;
  3481. }
  3482. // ggml_conv_1d_1s
  3483. struct ggml_tensor * ggml_conv_1d_1s(
  3484. struct ggml_context * ctx,
  3485. struct ggml_tensor * a,
  3486. struct ggml_tensor * b) {
  3487. GGML_ASSERT(ggml_is_matrix(b));
  3488. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3489. GGML_ASSERT(a->ne[3] == 1);
  3490. bool is_node = false;
  3491. if (a->grad || b->grad) {
  3492. GGML_ASSERT(false); // TODO: implement backward
  3493. is_node = true;
  3494. }
  3495. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3496. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3497. result->op = GGML_OP_CONV_1D_1S;
  3498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3499. result->src0 = a;
  3500. result->src1 = b;
  3501. return result;
  3502. }
  3503. // ggml_conv_1d_2s
  3504. struct ggml_tensor * ggml_conv_1d_2s(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b) {
  3508. GGML_ASSERT(ggml_is_matrix(b));
  3509. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3510. GGML_ASSERT(a->ne[3] == 1);
  3511. bool is_node = false;
  3512. if (a->grad || b->grad) {
  3513. GGML_ASSERT(false); // TODO: implement backward
  3514. is_node = true;
  3515. }
  3516. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3517. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3518. result->op = GGML_OP_CONV_1D_2S;
  3519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3520. result->src0 = a;
  3521. result->src1 = b;
  3522. return result;
  3523. }
  3524. // ggml_flash_attn
  3525. struct ggml_tensor * ggml_flash_attn(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * q,
  3528. struct ggml_tensor * k,
  3529. struct ggml_tensor * v,
  3530. bool masked) {
  3531. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3532. // TODO: check if vT can be multiplied by (k*qT)
  3533. bool is_node = false;
  3534. if (q->grad || k->grad || v->grad) {
  3535. GGML_ASSERT(false); // TODO: implement backward
  3536. is_node = true;
  3537. }
  3538. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3539. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3540. result->op = GGML_OP_FLASH_ATTN;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src0 = q;
  3543. result->src1 = k;
  3544. result->opt[0] = v;
  3545. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3546. return result;
  3547. }
  3548. // ggml_flash_ff
  3549. struct ggml_tensor * ggml_flash_ff(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a,
  3552. struct ggml_tensor * b0,
  3553. struct ggml_tensor * b1,
  3554. struct ggml_tensor * c0,
  3555. struct ggml_tensor * c1) {
  3556. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3557. // TODO: more checks
  3558. bool is_node = false;
  3559. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3560. GGML_ASSERT(false); // TODO: implement backward
  3561. is_node = true;
  3562. }
  3563. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3564. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3565. result->op = GGML_OP_FLASH_FF;
  3566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3567. result->src0 = a;
  3568. result->src1 = b0;
  3569. result->opt[0] = b1;
  3570. result->opt[1] = c0;
  3571. result->opt[2] = c1;
  3572. return result;
  3573. }
  3574. ////////////////////////////////////////////////////////////////////////////////
  3575. void ggml_set_param(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * tensor) {
  3578. tensor->is_param = true;
  3579. GGML_ASSERT(tensor->grad == NULL);
  3580. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3581. }
  3582. // ggml_compute_forward_dup
  3583. static void ggml_compute_forward_dup_f16(
  3584. const struct ggml_compute_params * params,
  3585. const struct ggml_tensor * src0,
  3586. struct ggml_tensor * dst) {
  3587. GGML_ASSERT(params->ith == 0);
  3588. GGML_ASSERT(ggml_is_contiguous(dst));
  3589. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3591. return;
  3592. }
  3593. const int ne00 = src0->ne[0];
  3594. const int ne01 = src0->ne[1];
  3595. const int ne02 = src0->ne[2];
  3596. const int ne03 = src0->ne[3];
  3597. const size_t nb00 = src0->nb[0];
  3598. const size_t nb01 = src0->nb[1];
  3599. const size_t nb02 = src0->nb[2];
  3600. const size_t nb03 = src0->nb[3];
  3601. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3602. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3603. return;
  3604. }
  3605. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3606. if (dst->type == GGML_TYPE_F16) {
  3607. size_t id = 0;
  3608. const size_t rs = ne00*nb00;
  3609. for (int i03 = 0; i03 < ne03; i03++) {
  3610. for (int i02 = 0; i02 < ne02; i02++) {
  3611. for (int i01 = 0; i01 < ne01; i01++) {
  3612. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3613. char * dst_ptr = (char *) dst->data + id*rs;
  3614. memcpy(dst_ptr, src0_ptr, rs);
  3615. id++;
  3616. }
  3617. }
  3618. }
  3619. } else if (dst->type == GGML_TYPE_F32) {
  3620. size_t id = 0;
  3621. float * dst_ptr = (float *) dst->data;
  3622. for (int i03 = 0; i03 < ne03; i03++) {
  3623. for (int i02 = 0; i02 < ne02; i02++) {
  3624. for (int i01 = 0; i01 < ne01; i01++) {
  3625. for (int i00 = 0; i00 < ne00; i00++) {
  3626. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3627. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3628. id++;
  3629. }
  3630. }
  3631. }
  3632. }
  3633. } else {
  3634. GGML_ASSERT(false); // TODO: implement
  3635. }
  3636. } else {
  3637. //printf("%s: this is not optimal - fix me\n", __func__);
  3638. if (dst->type == GGML_TYPE_F32) {
  3639. size_t id = 0;
  3640. float * dst_ptr = (float *) dst->data;
  3641. for (int i03 = 0; i03 < ne03; i03++) {
  3642. for (int i02 = 0; i02 < ne02; i02++) {
  3643. for (int i01 = 0; i01 < ne01; i01++) {
  3644. for (int i00 = 0; i00 < ne00; i00++) {
  3645. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3646. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3647. id++;
  3648. }
  3649. }
  3650. }
  3651. }
  3652. } else if (dst->type == GGML_TYPE_F16) {
  3653. size_t id = 0;
  3654. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3655. for (int i03 = 0; i03 < ne03; i03++) {
  3656. for (int i02 = 0; i02 < ne02; i02++) {
  3657. for (int i01 = 0; i01 < ne01; i01++) {
  3658. for (int i00 = 0; i00 < ne00; i00++) {
  3659. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3660. dst_ptr[id] = *src0_ptr;
  3661. id++;
  3662. }
  3663. }
  3664. }
  3665. }
  3666. } else {
  3667. GGML_ASSERT(false); // TODO: implement
  3668. }
  3669. }
  3670. }
  3671. static void ggml_compute_forward_dup_f32(
  3672. const struct ggml_compute_params * params,
  3673. const struct ggml_tensor * src0,
  3674. struct ggml_tensor * dst) {
  3675. GGML_ASSERT(params->ith == 0);
  3676. GGML_ASSERT(ggml_is_contiguous(dst));
  3677. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3679. return;
  3680. }
  3681. const int ne00 = src0->ne[0];
  3682. const int ne01 = src0->ne[1];
  3683. const int ne02 = src0->ne[2];
  3684. const int ne03 = src0->ne[3];
  3685. const size_t nb00 = src0->nb[0];
  3686. const size_t nb01 = src0->nb[1];
  3687. const size_t nb02 = src0->nb[2];
  3688. const size_t nb03 = src0->nb[3];
  3689. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3690. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3691. return;
  3692. }
  3693. if (src0->nb[0] == sizeof(float)) {
  3694. if (dst->type == GGML_TYPE_F32) {
  3695. size_t id = 0;
  3696. const size_t rs = ne00*nb00;
  3697. for (int i03 = 0; i03 < ne03; i03++) {
  3698. for (int i02 = 0; i02 < ne02; i02++) {
  3699. for (int i01 = 0; i01 < ne01; i01++) {
  3700. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3701. char * dst_ptr = (char *) dst->data + id*rs;
  3702. memcpy(dst_ptr, src0_ptr, rs);
  3703. id++;
  3704. }
  3705. }
  3706. }
  3707. } else if (dst->type == GGML_TYPE_F16) {
  3708. size_t id = 0;
  3709. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3710. for (int i03 = 0; i03 < ne03; i03++) {
  3711. for (int i02 = 0; i02 < ne02; i02++) {
  3712. for (int i01 = 0; i01 < ne01; i01++) {
  3713. for (int i00 = 0; i00 < ne00; i00++) {
  3714. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3715. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3716. id++;
  3717. }
  3718. }
  3719. }
  3720. }
  3721. } else {
  3722. GGML_ASSERT(false); // TODO: implement
  3723. }
  3724. } else {
  3725. //printf("%s: this is not optimal - fix me\n", __func__);
  3726. if (dst->type == GGML_TYPE_F32) {
  3727. size_t id = 0;
  3728. float * dst_ptr = (float *) dst->data;
  3729. for (int i03 = 0; i03 < ne03; i03++) {
  3730. for (int i02 = 0; i02 < ne02; i02++) {
  3731. for (int i01 = 0; i01 < ne01; i01++) {
  3732. for (int i00 = 0; i00 < ne00; i00++) {
  3733. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3734. dst_ptr[id] = *src0_ptr;
  3735. id++;
  3736. }
  3737. }
  3738. }
  3739. }
  3740. } else if (dst->type == GGML_TYPE_F16) {
  3741. size_t id = 0;
  3742. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3743. for (int i03 = 0; i03 < ne03; i03++) {
  3744. for (int i02 = 0; i02 < ne02; i02++) {
  3745. for (int i01 = 0; i01 < ne01; i01++) {
  3746. for (int i00 = 0; i00 < ne00; i00++) {
  3747. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3748. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3749. id++;
  3750. }
  3751. }
  3752. }
  3753. }
  3754. } else {
  3755. GGML_ASSERT(false); // TODO: implement
  3756. }
  3757. }
  3758. }
  3759. static void ggml_compute_forward_dup(
  3760. const struct ggml_compute_params * params,
  3761. const struct ggml_tensor * src0,
  3762. struct ggml_tensor * dst) {
  3763. switch (src0->type) {
  3764. case GGML_TYPE_F16:
  3765. {
  3766. ggml_compute_forward_dup_f16(params, src0, dst);
  3767. } break;
  3768. case GGML_TYPE_F32:
  3769. {
  3770. ggml_compute_forward_dup_f32(params, src0, dst);
  3771. } break;
  3772. case GGML_TYPE_Q4_0:
  3773. case GGML_TYPE_Q4_1:
  3774. case GGML_TYPE_I8:
  3775. case GGML_TYPE_I16:
  3776. case GGML_TYPE_I32:
  3777. case GGML_TYPE_COUNT:
  3778. {
  3779. GGML_ASSERT(false);
  3780. } break;
  3781. }
  3782. }
  3783. // ggml_compute_forward_add
  3784. static void ggml_compute_forward_add_f32(
  3785. const struct ggml_compute_params * params,
  3786. const struct ggml_tensor * src0,
  3787. const struct ggml_tensor * src1,
  3788. struct ggml_tensor * dst) {
  3789. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3790. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3791. return;
  3792. }
  3793. const int ith = params->ith;
  3794. const int nth = params->nth;
  3795. const int n = ggml_nrows(src0);
  3796. const int nc = src0->ne[0];
  3797. const size_t nb00 = src0->nb[0];
  3798. const size_t nb01 = src0->nb[1];
  3799. const size_t nb10 = src1->nb[0];
  3800. const size_t nb11 = src1->nb[1];
  3801. const size_t nb0 = dst->nb[0];
  3802. const size_t nb1 = dst->nb[1];
  3803. GGML_ASSERT( nb0 == sizeof(float));
  3804. GGML_ASSERT(nb00 == sizeof(float));
  3805. if (nb10 == sizeof(float)) {
  3806. const int j0 = (n/nth)*ith;
  3807. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3808. for (int j = j0; j < j1; j++) {
  3809. ggml_vec_add_f32(nc,
  3810. (float *) ((char *) dst->data + j*nb1),
  3811. (float *) ((char *) src0->data + j*nb01),
  3812. (float *) ((char *) src1->data + j*nb11));
  3813. }
  3814. } else {
  3815. // src1 is not contiguous
  3816. for (int j = ith; j < n; j += nth) {
  3817. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3818. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3819. for (int i = 0; i < nc; i++) {
  3820. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3821. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3822. }
  3823. }
  3824. }
  3825. }
  3826. static void ggml_compute_forward_add(
  3827. const struct ggml_compute_params * params,
  3828. const struct ggml_tensor * src0,
  3829. const struct ggml_tensor * src1,
  3830. struct ggml_tensor * dst) {
  3831. switch (src0->type) {
  3832. case GGML_TYPE_F32:
  3833. {
  3834. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3835. } break;
  3836. case GGML_TYPE_Q4_0:
  3837. case GGML_TYPE_Q4_1:
  3838. case GGML_TYPE_I8:
  3839. case GGML_TYPE_I16:
  3840. case GGML_TYPE_I32:
  3841. case GGML_TYPE_F16:
  3842. case GGML_TYPE_COUNT:
  3843. {
  3844. GGML_ASSERT(false);
  3845. } break;
  3846. }
  3847. }
  3848. // ggml_compute_forward_sub
  3849. static void ggml_compute_forward_sub_f32(
  3850. const struct ggml_compute_params * params,
  3851. const struct ggml_tensor * src0,
  3852. const struct ggml_tensor * src1,
  3853. struct ggml_tensor * dst) {
  3854. assert(params->ith == 0);
  3855. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3857. return;
  3858. }
  3859. const int n = ggml_nrows(src0);
  3860. const int nc = src0->ne[0];
  3861. assert( dst->nb[0] == sizeof(float));
  3862. assert(src0->nb[0] == sizeof(float));
  3863. assert(src1->nb[0] == sizeof(float));
  3864. for (int i = 0; i < n; i++) {
  3865. ggml_vec_sub_f32(nc,
  3866. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3867. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3868. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3869. }
  3870. }
  3871. static void ggml_compute_forward_sub(
  3872. const struct ggml_compute_params * params,
  3873. const struct ggml_tensor * src0,
  3874. const struct ggml_tensor * src1,
  3875. struct ggml_tensor * dst) {
  3876. switch (src0->type) {
  3877. case GGML_TYPE_F32:
  3878. {
  3879. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3880. } break;
  3881. case GGML_TYPE_Q4_0:
  3882. case GGML_TYPE_Q4_1:
  3883. case GGML_TYPE_I8:
  3884. case GGML_TYPE_I16:
  3885. case GGML_TYPE_I32:
  3886. case GGML_TYPE_F16:
  3887. case GGML_TYPE_COUNT:
  3888. {
  3889. GGML_ASSERT(false);
  3890. } break;
  3891. }
  3892. }
  3893. // ggml_compute_forward_mul
  3894. static void ggml_compute_forward_mul_f32(
  3895. const struct ggml_compute_params * params,
  3896. const struct ggml_tensor * src0,
  3897. const struct ggml_tensor * src1,
  3898. struct ggml_tensor * dst) {
  3899. assert(params->ith == 0);
  3900. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3902. return;
  3903. }
  3904. const int n = ggml_nrows(src0);
  3905. const int nc = src0->ne[0];
  3906. assert( dst->nb[0] == sizeof(float));
  3907. assert(src0->nb[0] == sizeof(float));
  3908. assert(src1->nb[0] == sizeof(float));
  3909. for (int i = 0; i < n; i++) {
  3910. ggml_vec_mul_f32(nc,
  3911. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3912. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3913. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3914. }
  3915. }
  3916. static void ggml_compute_forward_mul(
  3917. const struct ggml_compute_params * params,
  3918. const struct ggml_tensor * src0,
  3919. const struct ggml_tensor * src1,
  3920. struct ggml_tensor * dst) {
  3921. switch (src0->type) {
  3922. case GGML_TYPE_F32:
  3923. {
  3924. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3925. } break;
  3926. case GGML_TYPE_Q4_0:
  3927. case GGML_TYPE_Q4_1:
  3928. case GGML_TYPE_I8:
  3929. case GGML_TYPE_I16:
  3930. case GGML_TYPE_I32:
  3931. case GGML_TYPE_F16:
  3932. case GGML_TYPE_COUNT:
  3933. {
  3934. GGML_ASSERT(false);
  3935. } break;
  3936. }
  3937. }
  3938. // ggml_compute_forward_div
  3939. static void ggml_compute_forward_div_f32(
  3940. const struct ggml_compute_params * params,
  3941. const struct ggml_tensor * src0,
  3942. const struct ggml_tensor * src1,
  3943. struct ggml_tensor * dst) {
  3944. assert(params->ith == 0);
  3945. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3947. return;
  3948. }
  3949. const int n = ggml_nrows(src0);
  3950. const int nc = src0->ne[0];
  3951. assert( dst->nb[0] == sizeof(float));
  3952. assert(src0->nb[0] == sizeof(float));
  3953. assert(src1->nb[0] == sizeof(float));
  3954. for (int i = 0; i < n; i++) {
  3955. ggml_vec_div_f32(nc,
  3956. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3957. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3958. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3959. }
  3960. }
  3961. static void ggml_compute_forward_div(
  3962. const struct ggml_compute_params * params,
  3963. const struct ggml_tensor * src0,
  3964. const struct ggml_tensor * src1,
  3965. struct ggml_tensor * dst) {
  3966. switch (src0->type) {
  3967. case GGML_TYPE_F32:
  3968. {
  3969. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3970. } break;
  3971. case GGML_TYPE_Q4_0:
  3972. case GGML_TYPE_Q4_1:
  3973. case GGML_TYPE_I8:
  3974. case GGML_TYPE_I16:
  3975. case GGML_TYPE_I32:
  3976. case GGML_TYPE_F16:
  3977. case GGML_TYPE_COUNT:
  3978. {
  3979. GGML_ASSERT(false);
  3980. } break;
  3981. }
  3982. }
  3983. // ggml_compute_forward_sqr
  3984. static void ggml_compute_forward_sqr_f32(
  3985. const struct ggml_compute_params * params,
  3986. const struct ggml_tensor * src0,
  3987. struct ggml_tensor * dst) {
  3988. assert(params->ith == 0);
  3989. assert(ggml_are_same_shape(src0, dst));
  3990. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3991. return;
  3992. }
  3993. const int n = ggml_nrows(src0);
  3994. const int nc = src0->ne[0];
  3995. assert( dst->nb[0] == sizeof(float));
  3996. assert(src0->nb[0] == sizeof(float));
  3997. for (int i = 0; i < n; i++) {
  3998. ggml_vec_sqr_f32(nc,
  3999. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4000. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4001. }
  4002. }
  4003. static void ggml_compute_forward_sqr(
  4004. const struct ggml_compute_params * params,
  4005. const struct ggml_tensor * src0,
  4006. struct ggml_tensor * dst) {
  4007. switch (src0->type) {
  4008. case GGML_TYPE_F32:
  4009. {
  4010. ggml_compute_forward_sqr_f32(params, src0, dst);
  4011. } break;
  4012. case GGML_TYPE_Q4_0:
  4013. case GGML_TYPE_Q4_1:
  4014. case GGML_TYPE_I8:
  4015. case GGML_TYPE_I16:
  4016. case GGML_TYPE_I32:
  4017. case GGML_TYPE_F16:
  4018. case GGML_TYPE_COUNT:
  4019. {
  4020. GGML_ASSERT(false);
  4021. } break;
  4022. }
  4023. }
  4024. // ggml_compute_forward_sqrt
  4025. static void ggml_compute_forward_sqrt_f32(
  4026. const struct ggml_compute_params * params,
  4027. const struct ggml_tensor * src0,
  4028. struct ggml_tensor * dst) {
  4029. assert(params->ith == 0);
  4030. assert(ggml_are_same_shape(src0, dst));
  4031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4032. return;
  4033. }
  4034. const int n = ggml_nrows(src0);
  4035. const int nc = src0->ne[0];
  4036. assert( dst->nb[0] == sizeof(float));
  4037. assert(src0->nb[0] == sizeof(float));
  4038. for (int i = 0; i < n; i++) {
  4039. ggml_vec_sqrt_f32(nc,
  4040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4042. }
  4043. }
  4044. static void ggml_compute_forward_sqrt(
  4045. const struct ggml_compute_params * params,
  4046. const struct ggml_tensor * src0,
  4047. struct ggml_tensor * dst) {
  4048. switch (src0->type) {
  4049. case GGML_TYPE_F32:
  4050. {
  4051. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4052. } break;
  4053. case GGML_TYPE_Q4_0:
  4054. case GGML_TYPE_Q4_1:
  4055. case GGML_TYPE_I8:
  4056. case GGML_TYPE_I16:
  4057. case GGML_TYPE_I32:
  4058. case GGML_TYPE_F16:
  4059. case GGML_TYPE_COUNT:
  4060. {
  4061. GGML_ASSERT(false);
  4062. } break;
  4063. }
  4064. }
  4065. // ggml_compute_forward_sum
  4066. static void ggml_compute_forward_sum_f32(
  4067. const struct ggml_compute_params * params,
  4068. const struct ggml_tensor * src0,
  4069. struct ggml_tensor * dst) {
  4070. assert(params->ith == 0);
  4071. assert(ggml_is_scalar(dst));
  4072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4073. return;
  4074. }
  4075. assert(ggml_is_scalar(dst));
  4076. assert(src0->nb[0] == sizeof(float));
  4077. const int ne00 = src0->ne[0];
  4078. const int ne01 = src0->ne[1];
  4079. const int ne02 = src0->ne[2];
  4080. const int ne03 = src0->ne[3];
  4081. const size_t nb01 = src0->nb[1];
  4082. const size_t nb02 = src0->nb[2];
  4083. const size_t nb03 = src0->nb[3];
  4084. for (int i03 = 0; i03 < ne03; i03++) {
  4085. for (int i02 = 0; i02 < ne02; i02++) {
  4086. for (int i01 = 0; i01 < ne01; i01++) {
  4087. ggml_vec_sum_f32(ne00,
  4088. (float *) (dst->data),
  4089. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4090. }
  4091. }
  4092. }
  4093. }
  4094. static void ggml_compute_forward_sum(
  4095. const struct ggml_compute_params * params,
  4096. const struct ggml_tensor * src0,
  4097. struct ggml_tensor * dst) {
  4098. switch (src0->type) {
  4099. case GGML_TYPE_F32:
  4100. {
  4101. ggml_compute_forward_sum_f32(params, src0, dst);
  4102. } break;
  4103. case GGML_TYPE_Q4_0:
  4104. case GGML_TYPE_Q4_1:
  4105. case GGML_TYPE_I8:
  4106. case GGML_TYPE_I16:
  4107. case GGML_TYPE_I32:
  4108. case GGML_TYPE_F16:
  4109. case GGML_TYPE_COUNT:
  4110. {
  4111. GGML_ASSERT(false);
  4112. } break;
  4113. }
  4114. }
  4115. // ggml_compute_forward_mean
  4116. static void ggml_compute_forward_mean_f32(
  4117. const struct ggml_compute_params * params,
  4118. const struct ggml_tensor * src0,
  4119. struct ggml_tensor * dst) {
  4120. assert(params->ith == 0);
  4121. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4122. return;
  4123. }
  4124. assert(src0->nb[0] == sizeof(float));
  4125. const int ne00 = src0->ne[0];
  4126. const int ne01 = src0->ne[1];
  4127. const int ne02 = src0->ne[2];
  4128. const int ne03 = src0->ne[3];
  4129. const size_t nb01 = src0->nb[1];
  4130. const size_t nb02 = src0->nb[2];
  4131. const size_t nb03 = src0->nb[3];
  4132. const int ne0 = dst->ne[0];
  4133. const int ne1 = dst->ne[1];
  4134. const int ne2 = dst->ne[2];
  4135. const int ne3 = dst->ne[3];
  4136. assert(ne0 == 1);
  4137. assert(ne1 == ne01);
  4138. assert(ne2 == ne02);
  4139. assert(ne3 == ne03);
  4140. UNUSED(ne0);
  4141. UNUSED(ne1);
  4142. UNUSED(ne2);
  4143. UNUSED(ne3);
  4144. const size_t nb1 = dst->nb[1];
  4145. const size_t nb2 = dst->nb[2];
  4146. const size_t nb3 = dst->nb[3];
  4147. for (int i03 = 0; i03 < ne03; i03++) {
  4148. for (int i02 = 0; i02 < ne02; i02++) {
  4149. for (int i01 = 0; i01 < ne01; i01++) {
  4150. ggml_vec_sum_f32(ne00,
  4151. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4152. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4153. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4154. }
  4155. }
  4156. }
  4157. }
  4158. static void ggml_compute_forward_mean(
  4159. const struct ggml_compute_params * params,
  4160. const struct ggml_tensor * src0,
  4161. struct ggml_tensor * dst) {
  4162. switch (src0->type) {
  4163. case GGML_TYPE_F32:
  4164. {
  4165. ggml_compute_forward_mean_f32(params, src0, dst);
  4166. } break;
  4167. case GGML_TYPE_Q4_0:
  4168. case GGML_TYPE_Q4_1:
  4169. case GGML_TYPE_I8:
  4170. case GGML_TYPE_I16:
  4171. case GGML_TYPE_I32:
  4172. case GGML_TYPE_F16:
  4173. case GGML_TYPE_COUNT:
  4174. {
  4175. GGML_ASSERT(false);
  4176. } break;
  4177. }
  4178. }
  4179. // ggml_compute_forward_repeat
  4180. static void ggml_compute_forward_repeat_f32(
  4181. const struct ggml_compute_params * params,
  4182. const struct ggml_tensor * src0,
  4183. struct ggml_tensor * dst) {
  4184. assert(params->ith == 0);
  4185. assert(ggml_can_repeat(src0, dst));
  4186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4187. return;
  4188. }
  4189. // TODO: implement support for rank > 2 tensors
  4190. assert(src0->ne[2] == 1);
  4191. assert(src0->ne[3] == 1);
  4192. assert( dst->ne[2] == 1);
  4193. assert( dst->ne[3] == 1);
  4194. const int nc = dst->ne[0];
  4195. const int nr = dst->ne[1];
  4196. const int nc0 = src0->ne[0];
  4197. const int nr0 = src0->ne[1];
  4198. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4199. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4200. // TODO: support for transposed / permuted tensors
  4201. assert( dst->nb[0] == sizeof(float));
  4202. assert(src0->nb[0] == sizeof(float));
  4203. // TODO: maybe this is not optimal?
  4204. for (int i = 0; i < nrr; i++) {
  4205. for (int j = 0; j < ncr; j++) {
  4206. for (int k = 0; k < nr0; k++) {
  4207. ggml_vec_cpy_f32(nc0,
  4208. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4209. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4210. }
  4211. }
  4212. }
  4213. }
  4214. static void ggml_compute_forward_repeat(
  4215. const struct ggml_compute_params * params,
  4216. const struct ggml_tensor * src0,
  4217. struct ggml_tensor * dst) {
  4218. switch (src0->type) {
  4219. case GGML_TYPE_F32:
  4220. {
  4221. ggml_compute_forward_repeat_f32(params, src0, dst);
  4222. } break;
  4223. case GGML_TYPE_Q4_0:
  4224. case GGML_TYPE_Q4_1:
  4225. case GGML_TYPE_I8:
  4226. case GGML_TYPE_I16:
  4227. case GGML_TYPE_I32:
  4228. case GGML_TYPE_F16:
  4229. case GGML_TYPE_COUNT:
  4230. {
  4231. GGML_ASSERT(false);
  4232. } break;
  4233. }
  4234. }
  4235. // ggml_compute_forward_abs
  4236. static void ggml_compute_forward_abs_f32(
  4237. const struct ggml_compute_params * params,
  4238. const struct ggml_tensor * src0,
  4239. struct ggml_tensor * dst) {
  4240. assert(params->ith == 0);
  4241. assert(ggml_are_same_shape(src0, dst));
  4242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4243. return;
  4244. }
  4245. const int n = ggml_nrows(src0);
  4246. const int nc = src0->ne[0];
  4247. assert(dst->nb[0] == sizeof(float));
  4248. assert(src0->nb[0] == sizeof(float));
  4249. for (int i = 0; i < n; i++) {
  4250. ggml_vec_abs_f32(nc,
  4251. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4252. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4253. }
  4254. }
  4255. static void ggml_compute_forward_abs(
  4256. const struct ggml_compute_params * params,
  4257. const struct ggml_tensor * src0,
  4258. struct ggml_tensor * dst) {
  4259. switch (src0->type) {
  4260. case GGML_TYPE_F32:
  4261. {
  4262. ggml_compute_forward_abs_f32(params, src0, dst);
  4263. } break;
  4264. case GGML_TYPE_Q4_0:
  4265. case GGML_TYPE_Q4_1:
  4266. case GGML_TYPE_I8:
  4267. case GGML_TYPE_I16:
  4268. case GGML_TYPE_I32:
  4269. case GGML_TYPE_F16:
  4270. case GGML_TYPE_COUNT:
  4271. {
  4272. GGML_ASSERT(false);
  4273. } break;
  4274. }
  4275. }
  4276. // ggml_compute_forward_sgn
  4277. static void ggml_compute_forward_sgn_f32(
  4278. const struct ggml_compute_params * params,
  4279. const struct ggml_tensor * src0,
  4280. struct ggml_tensor * dst) {
  4281. assert(params->ith == 0);
  4282. assert(ggml_are_same_shape(src0, dst));
  4283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4284. return;
  4285. }
  4286. const int n = ggml_nrows(src0);
  4287. const int nc = src0->ne[0];
  4288. assert(dst->nb[0] == sizeof(float));
  4289. assert(src0->nb[0] == sizeof(float));
  4290. for (int i = 0; i < n; i++) {
  4291. ggml_vec_sgn_f32(nc,
  4292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4294. }
  4295. }
  4296. static void ggml_compute_forward_sgn(
  4297. const struct ggml_compute_params * params,
  4298. const struct ggml_tensor * src0,
  4299. struct ggml_tensor * dst) {
  4300. switch (src0->type) {
  4301. case GGML_TYPE_F32:
  4302. {
  4303. ggml_compute_forward_sgn_f32(params, src0, dst);
  4304. } break;
  4305. case GGML_TYPE_Q4_0:
  4306. case GGML_TYPE_Q4_1:
  4307. case GGML_TYPE_I8:
  4308. case GGML_TYPE_I16:
  4309. case GGML_TYPE_I32:
  4310. case GGML_TYPE_F16:
  4311. case GGML_TYPE_COUNT:
  4312. {
  4313. GGML_ASSERT(false);
  4314. } break;
  4315. }
  4316. }
  4317. // ggml_compute_forward_neg
  4318. static void ggml_compute_forward_neg_f32(
  4319. const struct ggml_compute_params * params,
  4320. const struct ggml_tensor * src0,
  4321. struct ggml_tensor * dst) {
  4322. assert(params->ith == 0);
  4323. assert(ggml_are_same_shape(src0, dst));
  4324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4325. return;
  4326. }
  4327. const int n = ggml_nrows(src0);
  4328. const int nc = src0->ne[0];
  4329. assert(dst->nb[0] == sizeof(float));
  4330. assert(src0->nb[0] == sizeof(float));
  4331. for (int i = 0; i < n; i++) {
  4332. ggml_vec_neg_f32(nc,
  4333. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4334. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4335. }
  4336. }
  4337. static void ggml_compute_forward_neg(
  4338. const struct ggml_compute_params * params,
  4339. const struct ggml_tensor * src0,
  4340. struct ggml_tensor * dst) {
  4341. switch (src0->type) {
  4342. case GGML_TYPE_F32:
  4343. {
  4344. ggml_compute_forward_neg_f32(params, src0, dst);
  4345. } break;
  4346. case GGML_TYPE_Q4_0:
  4347. case GGML_TYPE_Q4_1:
  4348. case GGML_TYPE_I8:
  4349. case GGML_TYPE_I16:
  4350. case GGML_TYPE_I32:
  4351. case GGML_TYPE_F16:
  4352. case GGML_TYPE_COUNT:
  4353. {
  4354. GGML_ASSERT(false);
  4355. } break;
  4356. }
  4357. }
  4358. // ggml_compute_forward_step
  4359. static void ggml_compute_forward_step_f32(
  4360. const struct ggml_compute_params * params,
  4361. const struct ggml_tensor * src0,
  4362. struct ggml_tensor * dst) {
  4363. assert(params->ith == 0);
  4364. assert(ggml_are_same_shape(src0, dst));
  4365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4366. return;
  4367. }
  4368. const int n = ggml_nrows(src0);
  4369. const int nc = src0->ne[0];
  4370. assert(dst->nb[0] == sizeof(float));
  4371. assert(src0->nb[0] == sizeof(float));
  4372. for (int i = 0; i < n; i++) {
  4373. ggml_vec_step_f32(nc,
  4374. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4375. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4376. }
  4377. }
  4378. static void ggml_compute_forward_step(
  4379. const struct ggml_compute_params * params,
  4380. const struct ggml_tensor * src0,
  4381. struct ggml_tensor * dst) {
  4382. switch (src0->type) {
  4383. case GGML_TYPE_F32:
  4384. {
  4385. ggml_compute_forward_step_f32(params, src0, dst);
  4386. } break;
  4387. case GGML_TYPE_Q4_0:
  4388. case GGML_TYPE_Q4_1:
  4389. case GGML_TYPE_I8:
  4390. case GGML_TYPE_I16:
  4391. case GGML_TYPE_I32:
  4392. case GGML_TYPE_F16:
  4393. case GGML_TYPE_COUNT:
  4394. {
  4395. GGML_ASSERT(false);
  4396. } break;
  4397. }
  4398. }
  4399. // ggml_compute_forward_relu
  4400. static void ggml_compute_forward_relu_f32(
  4401. const struct ggml_compute_params * params,
  4402. const struct ggml_tensor * src0,
  4403. struct ggml_tensor * dst) {
  4404. assert(params->ith == 0);
  4405. assert(ggml_are_same_shape(src0, dst));
  4406. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4407. return;
  4408. }
  4409. const int n = ggml_nrows(src0);
  4410. const int nc = src0->ne[0];
  4411. assert(dst->nb[0] == sizeof(float));
  4412. assert(src0->nb[0] == sizeof(float));
  4413. for (int i = 0; i < n; i++) {
  4414. ggml_vec_relu_f32(nc,
  4415. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4416. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4417. }
  4418. }
  4419. static void ggml_compute_forward_relu(
  4420. const struct ggml_compute_params * params,
  4421. const struct ggml_tensor * src0,
  4422. struct ggml_tensor * dst) {
  4423. switch (src0->type) {
  4424. case GGML_TYPE_F32:
  4425. {
  4426. ggml_compute_forward_relu_f32(params, src0, dst);
  4427. } break;
  4428. case GGML_TYPE_Q4_0:
  4429. case GGML_TYPE_Q4_1:
  4430. case GGML_TYPE_I8:
  4431. case GGML_TYPE_I16:
  4432. case GGML_TYPE_I32:
  4433. case GGML_TYPE_F16:
  4434. case GGML_TYPE_COUNT:
  4435. {
  4436. GGML_ASSERT(false);
  4437. } break;
  4438. }
  4439. }
  4440. // ggml_compute_forward_gelu
  4441. static void ggml_compute_forward_gelu_f32(
  4442. const struct ggml_compute_params * params,
  4443. const struct ggml_tensor * src0,
  4444. struct ggml_tensor * dst) {
  4445. GGML_ASSERT(ggml_is_contiguous(src0));
  4446. GGML_ASSERT(ggml_is_contiguous(dst));
  4447. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4449. return;
  4450. }
  4451. const int ith = params->ith;
  4452. const int nth = params->nth;
  4453. const int nc = src0->ne[0];
  4454. const int nr = ggml_nrows(src0);
  4455. // rows per thread
  4456. const int dr = (nr + nth - 1)/nth;
  4457. // row range for this thread
  4458. const int ir0 = dr*ith;
  4459. const int ir1 = MIN(ir0 + dr, nr);
  4460. for (int i1 = ir0; i1 < ir1; i1++) {
  4461. ggml_vec_gelu_f32(nc,
  4462. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4463. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4464. #ifndef NDEBUG
  4465. for (int k = 0; k < nc; k++) {
  4466. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4467. UNUSED(x);
  4468. assert(!isnan(x));
  4469. assert(!isinf(x));
  4470. }
  4471. #endif
  4472. }
  4473. }
  4474. static void ggml_compute_forward_gelu(
  4475. const struct ggml_compute_params * params,
  4476. const struct ggml_tensor * src0,
  4477. struct ggml_tensor * dst) {
  4478. switch (src0->type) {
  4479. case GGML_TYPE_F32:
  4480. {
  4481. ggml_compute_forward_gelu_f32(params, src0, dst);
  4482. } break;
  4483. case GGML_TYPE_Q4_0:
  4484. case GGML_TYPE_Q4_1:
  4485. case GGML_TYPE_I8:
  4486. case GGML_TYPE_I16:
  4487. case GGML_TYPE_I32:
  4488. case GGML_TYPE_F16:
  4489. case GGML_TYPE_COUNT:
  4490. {
  4491. GGML_ASSERT(false);
  4492. } break;
  4493. }
  4494. //printf("XXXXXXXX gelu\n");
  4495. }
  4496. // ggml_compute_forward_silu
  4497. static void ggml_compute_forward_silu_f32(
  4498. const struct ggml_compute_params * params,
  4499. const struct ggml_tensor * src0,
  4500. struct ggml_tensor * dst) {
  4501. GGML_ASSERT(ggml_is_contiguous(src0));
  4502. GGML_ASSERT(ggml_is_contiguous(dst));
  4503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4505. return;
  4506. }
  4507. const int ith = params->ith;
  4508. const int nth = params->nth;
  4509. const int nc = src0->ne[0];
  4510. const int nr = ggml_nrows(src0);
  4511. // rows per thread
  4512. const int dr = (nr + nth - 1)/nth;
  4513. // row range for this thread
  4514. const int ir0 = dr*ith;
  4515. const int ir1 = MIN(ir0 + dr, nr);
  4516. for (int i1 = ir0; i1 < ir1; i1++) {
  4517. ggml_vec_silu_f32(nc,
  4518. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4519. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4520. #ifndef NDEBUG
  4521. for (int k = 0; k < nc; k++) {
  4522. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4523. UNUSED(x);
  4524. assert(!isnan(x));
  4525. assert(!isinf(x));
  4526. }
  4527. #endif
  4528. }
  4529. }
  4530. static void ggml_compute_forward_silu(
  4531. const struct ggml_compute_params * params,
  4532. const struct ggml_tensor * src0,
  4533. struct ggml_tensor * dst) {
  4534. switch (src0->type) {
  4535. case GGML_TYPE_F32:
  4536. {
  4537. ggml_compute_forward_silu_f32(params, src0, dst);
  4538. } break;
  4539. case GGML_TYPE_Q4_0:
  4540. case GGML_TYPE_Q4_1:
  4541. case GGML_TYPE_I8:
  4542. case GGML_TYPE_I16:
  4543. case GGML_TYPE_I32:
  4544. case GGML_TYPE_F16:
  4545. case GGML_TYPE_COUNT:
  4546. {
  4547. GGML_ASSERT(false);
  4548. } break;
  4549. }
  4550. }
  4551. // ggml_compute_forward_norm
  4552. static void ggml_compute_forward_norm_f32(
  4553. const struct ggml_compute_params * params,
  4554. const struct ggml_tensor * src0,
  4555. struct ggml_tensor * dst) {
  4556. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4558. return;
  4559. }
  4560. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4561. const int ith = params->ith;
  4562. const int nth = params->nth;
  4563. const int ne00 = src0->ne[0];
  4564. const int ne01 = src0->ne[1];
  4565. const int ne02 = src0->ne[2];
  4566. const int ne03 = src0->ne[3];
  4567. const size_t nb01 = src0->nb[1];
  4568. const size_t nb02 = src0->nb[2];
  4569. const size_t nb03 = src0->nb[3];
  4570. const size_t nb1 = dst->nb[1];
  4571. const size_t nb2 = dst->nb[2];
  4572. const size_t nb3 = dst->nb[3];
  4573. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4574. // TODO: optimize
  4575. for (int i03 = 0; i03 < ne03; i03++) {
  4576. for (int i02 = 0; i02 < ne02; i02++) {
  4577. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4578. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4579. ggml_float mean = 0.0;
  4580. for (int i00 = 0; i00 < ne00; i00++) {
  4581. mean += x[i00];
  4582. }
  4583. mean /= ne00;
  4584. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4585. ggml_float sum2 = 0.0;
  4586. for (int i00 = 0; i00 < ne00; i00++) {
  4587. ggml_float v = x[i00] - mean;
  4588. y[i00] = v;
  4589. sum2 += v*v;
  4590. }
  4591. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4592. ggml_vec_scale_f32(ne00, y, scale);
  4593. }
  4594. }
  4595. }
  4596. }
  4597. static void ggml_compute_forward_norm(
  4598. const struct ggml_compute_params * params,
  4599. const struct ggml_tensor * src0,
  4600. struct ggml_tensor * dst) {
  4601. switch (src0->type) {
  4602. case GGML_TYPE_F32:
  4603. {
  4604. ggml_compute_forward_norm_f32(params, src0, dst);
  4605. } break;
  4606. case GGML_TYPE_Q4_0:
  4607. case GGML_TYPE_Q4_1:
  4608. case GGML_TYPE_I8:
  4609. case GGML_TYPE_I16:
  4610. case GGML_TYPE_I32:
  4611. case GGML_TYPE_F16:
  4612. case GGML_TYPE_COUNT:
  4613. {
  4614. GGML_ASSERT(false);
  4615. } break;
  4616. }
  4617. }
  4618. static void ggml_compute_forward_rms_norm_f32(
  4619. const struct ggml_compute_params * params,
  4620. const struct ggml_tensor * src0,
  4621. struct ggml_tensor * dst) {
  4622. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4624. return;
  4625. }
  4626. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4627. const int ith = params->ith;
  4628. const int nth = params->nth;
  4629. const int ne00 = src0->ne[0];
  4630. const int ne01 = src0->ne[1];
  4631. const int ne02 = src0->ne[2];
  4632. const int ne03 = src0->ne[3];
  4633. const size_t nb01 = src0->nb[1];
  4634. const size_t nb02 = src0->nb[2];
  4635. const size_t nb03 = src0->nb[3];
  4636. const size_t nb1 = dst->nb[1];
  4637. const size_t nb2 = dst->nb[2];
  4638. const size_t nb3 = dst->nb[3];
  4639. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4640. // TODO: optimize
  4641. for (int i03 = 0; i03 < ne03; i03++) {
  4642. for (int i02 = 0; i02 < ne02; i02++) {
  4643. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4644. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4645. ggml_float mean = 0.0;
  4646. for (int i00 = 0; i00 < ne00; i00++) {
  4647. mean += x[i00] * x[i00];
  4648. }
  4649. mean /= ne00;
  4650. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4651. memcpy(y, x, ne00 * sizeof(float));
  4652. // for (int i00 = 0; i00 < ne00; i00++) {
  4653. // y[i00] = x[i00];
  4654. // }
  4655. const float scale = 1.0/sqrt(mean + eps);
  4656. ggml_vec_scale_f32(ne00, y, scale);
  4657. }
  4658. }
  4659. }
  4660. }
  4661. static void ggml_compute_forward_rms_norm(
  4662. const struct ggml_compute_params * params,
  4663. const struct ggml_tensor * src0,
  4664. struct ggml_tensor * dst) {
  4665. switch (src0->type) {
  4666. case GGML_TYPE_F32:
  4667. {
  4668. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4669. } break;
  4670. case GGML_TYPE_Q4_0:
  4671. case GGML_TYPE_Q4_1:
  4672. case GGML_TYPE_I8:
  4673. case GGML_TYPE_I16:
  4674. case GGML_TYPE_I32:
  4675. case GGML_TYPE_F16:
  4676. case GGML_TYPE_COUNT:
  4677. {
  4678. GGML_ASSERT(false);
  4679. } break;
  4680. }
  4681. }
  4682. // ggml_compute_forward_mul_mat
  4683. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4684. // helper function to determine if it is better to use BLAS or not
  4685. // for large matrices, BLAS is faster
  4686. static bool ggml_compute_forward_mul_mat_use_blas(
  4687. const struct ggml_tensor * src0,
  4688. const struct ggml_tensor * src1,
  4689. struct ggml_tensor * dst) {
  4690. //const int ne00 = src0->ne[0];
  4691. //const int ne01 = src0->ne[1];
  4692. const int ne10 = src1->ne[0];
  4693. const int ne0 = dst->ne[0];
  4694. const int ne1 = dst->ne[1];
  4695. // TODO: find the optimal values for these
  4696. if (ggml_is_contiguous(src0) &&
  4697. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4698. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4699. return true;
  4700. }
  4701. return false;
  4702. }
  4703. #endif
  4704. static void ggml_compute_forward_mul_mat_f32(
  4705. const struct ggml_compute_params * params,
  4706. const struct ggml_tensor * src0,
  4707. const struct ggml_tensor * src1,
  4708. struct ggml_tensor * dst) {
  4709. int64_t t0 = ggml_perf_time_us();
  4710. UNUSED(t0);
  4711. const int ne00 = src0->ne[0];
  4712. const int ne01 = src0->ne[1];
  4713. const int ne02 = src0->ne[2];
  4714. const int ne03 = src0->ne[3];
  4715. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4716. const int ne10 = src1->ne[0];
  4717. #endif
  4718. const int ne11 = src1->ne[1];
  4719. #ifndef NDEBUG
  4720. const int ne12 = src1->ne[2];
  4721. const int ne13 = src1->ne[3];
  4722. const int ne0 = dst->ne[0];
  4723. const int ne1 = dst->ne[1];
  4724. const int ne2 = dst->ne[2];
  4725. const int ne3 = dst->ne[3];
  4726. const int nb00 = src0->nb[0];
  4727. #endif
  4728. const int nb01 = src0->nb[1];
  4729. const int nb02 = src0->nb[2];
  4730. const int nb03 = src0->nb[3];
  4731. #ifndef NDEBUG
  4732. const int nb10 = src1->nb[0];
  4733. #endif
  4734. const int nb11 = src1->nb[1];
  4735. const int nb12 = src1->nb[2];
  4736. const int nb13 = src1->nb[3];
  4737. const int nb0 = dst->nb[0];
  4738. const int nb1 = dst->nb[1];
  4739. const int nb2 = dst->nb[2];
  4740. const int nb3 = dst->nb[3];
  4741. const int ith = params->ith;
  4742. const int nth = params->nth;
  4743. assert(ne02 == ne12);
  4744. assert(ne03 == ne13);
  4745. assert(ne2 == ne12);
  4746. assert(ne3 == ne13);
  4747. // we don't support permuted src0 or src1
  4748. assert(nb00 == sizeof(float));
  4749. assert(nb10 == sizeof(float));
  4750. // dst cannot be transposed or permuted
  4751. assert(nb0 == sizeof(float));
  4752. assert(nb0 <= nb1);
  4753. assert(nb1 <= nb2);
  4754. assert(nb2 <= nb3);
  4755. assert(ne0 == ne01);
  4756. assert(ne1 == ne11);
  4757. assert(ne2 == ne02);
  4758. assert(ne3 == ne03);
  4759. // nb01 >= nb00 - src0 is not transposed
  4760. // compute by src0 rows
  4761. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4762. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4763. if (params->ith != 0) {
  4764. return;
  4765. }
  4766. if (params->type == GGML_TASK_INIT) {
  4767. return;
  4768. }
  4769. if (params->type == GGML_TASK_FINALIZE) {
  4770. return;
  4771. }
  4772. for (int i03 = 0; i03 < ne03; i03++) {
  4773. for (int i02 = 0; i02 < ne02; i02++) {
  4774. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4775. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4776. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4777. // zT = y * xT
  4778. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4779. ne11, ne01, ne10,
  4780. 1.0f, y, ne10,
  4781. x, ne10,
  4782. 0.0f, d, ne01);
  4783. }
  4784. }
  4785. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4786. return;
  4787. }
  4788. #endif
  4789. if (params->type == GGML_TASK_INIT) {
  4790. return;
  4791. }
  4792. if (params->type == GGML_TASK_FINALIZE) {
  4793. return;
  4794. }
  4795. // parallelize by src0 rows using ggml_vec_dot_f32
  4796. // total rows in src0
  4797. const int nr = ne01*ne02*ne03;
  4798. // rows per thread
  4799. const int dr = (nr + nth - 1)/nth;
  4800. // row range for this thread
  4801. const int ir0 = dr*ith;
  4802. const int ir1 = MIN(ir0 + dr, nr);
  4803. for (int ir = ir0; ir < ir1; ++ir) {
  4804. // src0 indices
  4805. const int i03 = ir/(ne02*ne01);
  4806. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4807. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4808. for (int ic = 0; ic < ne11; ++ic) {
  4809. // src1 indices
  4810. const int i13 = i03;
  4811. const int i12 = i02;
  4812. const int i11 = ic;
  4813. // dst indices
  4814. const int i0 = i01;
  4815. const int i1 = i11;
  4816. const int i2 = i02;
  4817. const int i3 = i03;
  4818. ggml_vec_dot_f32(ne00,
  4819. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4820. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4821. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4822. }
  4823. }
  4824. //int64_t t1 = ggml_perf_time_us();
  4825. //static int64_t acc = 0;
  4826. //acc += t1 - t0;
  4827. //if (t1 - t0 > 10) {
  4828. // printf("\n");
  4829. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4830. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4831. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4832. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4833. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4834. //}
  4835. }
  4836. static void ggml_compute_forward_mul_mat_f16_f32(
  4837. const struct ggml_compute_params * params,
  4838. const struct ggml_tensor * src0,
  4839. const struct ggml_tensor * src1,
  4840. struct ggml_tensor * dst) {
  4841. int64_t t0 = ggml_perf_time_us();
  4842. UNUSED(t0);
  4843. const int ne00 = src0->ne[0];
  4844. const int ne01 = src0->ne[1];
  4845. const int ne02 = src0->ne[2];
  4846. const int ne03 = src0->ne[3];
  4847. const int ne10 = src1->ne[0];
  4848. const int ne11 = src1->ne[1];
  4849. const int ne12 = src1->ne[2];
  4850. const int ne13 = src1->ne[3];
  4851. const int ne0 = dst->ne[0];
  4852. const int ne1 = dst->ne[1];
  4853. const int ne2 = dst->ne[2];
  4854. const int ne3 = dst->ne[3];
  4855. //const int ne = ne0*ne1*ne2*ne3;
  4856. const int nb00 = src0->nb[0];
  4857. const int nb01 = src0->nb[1];
  4858. const int nb02 = src0->nb[2];
  4859. const int nb03 = src0->nb[3];
  4860. const int nb10 = src1->nb[0];
  4861. const int nb11 = src1->nb[1];
  4862. const int nb12 = src1->nb[2];
  4863. const int nb13 = src1->nb[3];
  4864. const int nb0 = dst->nb[0];
  4865. const int nb1 = dst->nb[1];
  4866. const int nb2 = dst->nb[2];
  4867. const int nb3 = dst->nb[3];
  4868. const int ith = params->ith;
  4869. const int nth = params->nth;
  4870. GGML_ASSERT(ne02 == ne12);
  4871. GGML_ASSERT(ne03 == ne13);
  4872. GGML_ASSERT(ne2 == ne12);
  4873. GGML_ASSERT(ne3 == ne13);
  4874. // TODO: we don't support permuted src0
  4875. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4876. // dst cannot be transposed or permuted
  4877. GGML_ASSERT(nb0 == sizeof(float));
  4878. GGML_ASSERT(nb0 <= nb1);
  4879. GGML_ASSERT(nb1 <= nb2);
  4880. GGML_ASSERT(nb2 <= nb3);
  4881. GGML_ASSERT(ne0 == ne01);
  4882. GGML_ASSERT(ne1 == ne11);
  4883. GGML_ASSERT(ne2 == ne02);
  4884. GGML_ASSERT(ne3 == ne03);
  4885. // nb01 >= nb00 - src0 is not transposed
  4886. // compute by src0 rows
  4887. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4888. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4889. GGML_ASSERT(nb10 == sizeof(float));
  4890. if (params->ith != 0) {
  4891. return;
  4892. }
  4893. if (params->type == GGML_TASK_INIT) {
  4894. return;
  4895. }
  4896. if (params->type == GGML_TASK_FINALIZE) {
  4897. return;
  4898. }
  4899. float * const wdata = params->wdata;
  4900. for (int i03 = 0; i03 < ne03; i03++) {
  4901. for (int i02 = 0; i02 < ne02; i02++) {
  4902. {
  4903. size_t id = 0;
  4904. for (int i01 = 0; i01 < ne01; ++i01) {
  4905. for (int i00 = 0; i00 < ne00; ++i00) {
  4906. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4907. }
  4908. }
  4909. }
  4910. const float * x = wdata;
  4911. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4912. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4913. // zT = y * xT
  4914. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4915. ne11, ne01, ne10,
  4916. 1.0f, y, ne10,
  4917. x, ne10,
  4918. 0.0f, d, ne01);
  4919. }
  4920. }
  4921. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4922. return;
  4923. }
  4924. #endif
  4925. if (params->type == GGML_TASK_INIT) {
  4926. ggml_fp16_t * const wdata = params->wdata;
  4927. size_t id = 0;
  4928. for (int i13 = 0; i13 < ne13; ++i13) {
  4929. for (int i12 = 0; i12 < ne12; ++i12) {
  4930. for (int i11 = 0; i11 < ne11; ++i11) {
  4931. for (int i10 = 0; i10 < ne10; ++i10) {
  4932. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4933. }
  4934. }
  4935. }
  4936. }
  4937. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4938. return;
  4939. }
  4940. if (params->type == GGML_TASK_FINALIZE) {
  4941. return;
  4942. }
  4943. // fp16 -> half the size, so divide by 2
  4944. // TODO: do not support transposed src1
  4945. assert(nb10/2 == sizeof(ggml_fp16_t));
  4946. // parallelize by src0 rows using ggml_vec_dot_f16
  4947. // total rows in src0
  4948. const int nr = ne01*ne02*ne03;
  4949. // rows per thread
  4950. const int dr = (nr + nth - 1)/nth;
  4951. // row range for this thread
  4952. const int ir0 = dr*ith;
  4953. const int ir1 = MIN(ir0 + dr, nr);
  4954. ggml_fp16_t * wdata = params->wdata;
  4955. for (int ir = ir0; ir < ir1; ++ir) {
  4956. // src0 indices
  4957. const int i03 = ir/(ne02*ne01);
  4958. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4959. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4960. const int i13 = i03;
  4961. const int i12 = i02;
  4962. const int i0 = i01;
  4963. const int i2 = i02;
  4964. const int i3 = i03;
  4965. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4966. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4967. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4968. for (int ic = 0; ic < ne11; ++ic) {
  4969. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4970. }
  4971. }
  4972. //int64_t t1 = ggml_time_us();
  4973. //static int64_t acc = 0;
  4974. //acc += t1 - t0;
  4975. //if (t1 - t0 > 10) {
  4976. // printf("\n");
  4977. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4978. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4979. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4980. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4981. //}
  4982. }
  4983. static void ggml_compute_forward_mul_mat_q4_0_f32(
  4984. const struct ggml_compute_params * params,
  4985. const struct ggml_tensor * src0,
  4986. const struct ggml_tensor * src1,
  4987. struct ggml_tensor * dst) {
  4988. int64_t t0 = ggml_perf_time_us();
  4989. UNUSED(t0);
  4990. const int ne00 = src0->ne[0];
  4991. const int ne01 = src0->ne[1];
  4992. const int ne02 = src0->ne[2];
  4993. const int ne03 = src0->ne[3];
  4994. const int ne10 = src1->ne[0];
  4995. const int ne11 = src1->ne[1];
  4996. const int ne12 = src1->ne[2];
  4997. const int ne13 = src1->ne[3];
  4998. const int ne0 = dst->ne[0];
  4999. const int ne1 = dst->ne[1];
  5000. const int ne2 = dst->ne[2];
  5001. const int ne3 = dst->ne[3];
  5002. const int nb00 = src0->nb[0];
  5003. const int nb01 = src0->nb[1];
  5004. const int nb02 = src0->nb[2];
  5005. const int nb03 = src0->nb[3];
  5006. const int nb10 = src1->nb[0];
  5007. const int nb11 = src1->nb[1];
  5008. const int nb12 = src1->nb[2];
  5009. const int nb13 = src1->nb[3];
  5010. const int nb0 = dst->nb[0];
  5011. const int nb1 = dst->nb[1];
  5012. const int nb2 = dst->nb[2];
  5013. const int nb3 = dst->nb[3];
  5014. const int ith = params->ith;
  5015. const int nth = params->nth;
  5016. GGML_ASSERT(ne02 == ne12);
  5017. GGML_ASSERT(ne03 == ne13);
  5018. GGML_ASSERT(ne2 == ne12);
  5019. GGML_ASSERT(ne3 == ne13);
  5020. // we don't support permuted src0 or src1
  5021. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5022. GGML_ASSERT(nb10 == sizeof(float));
  5023. // dst cannot be transposed or permuted
  5024. GGML_ASSERT(nb0 == sizeof(float));
  5025. GGML_ASSERT(nb0 <= nb1);
  5026. GGML_ASSERT(nb1 <= nb2);
  5027. GGML_ASSERT(nb2 <= nb3);
  5028. GGML_ASSERT(ne0 == ne01);
  5029. GGML_ASSERT(ne1 == ne11);
  5030. GGML_ASSERT(ne2 == ne02);
  5031. GGML_ASSERT(ne3 == ne03);
  5032. // nb01 >= nb00 - src0 is not transposed
  5033. // compute by src0 rows
  5034. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5035. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5036. if (params->ith != 0) {
  5037. return;
  5038. }
  5039. if (params->type == GGML_TASK_INIT) {
  5040. return;
  5041. }
  5042. if (params->type == GGML_TASK_FINALIZE) {
  5043. return;
  5044. }
  5045. float * const wdata = params->wdata;
  5046. for (int i03 = 0; i03 < ne03; i03++) {
  5047. for (int i02 = 0; i02 < ne02; i02++) {
  5048. {
  5049. size_t id = 0;
  5050. for (int i01 = 0; i01 < ne01; ++i01) {
  5051. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5052. id += ne00;
  5053. }
  5054. }
  5055. const float * x = wdata;
  5056. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5057. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5058. // zT = y * xT
  5059. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5060. ne11, ne01, ne10,
  5061. 1.0f, y, ne10,
  5062. x, ne10,
  5063. 0.0f, d, ne01);
  5064. }
  5065. }
  5066. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5067. return;
  5068. }
  5069. #endif
  5070. if (params->type == GGML_TASK_INIT) {
  5071. char * wdata = params->wdata;
  5072. for (int i13 = 0; i13 < ne13; ++i13) {
  5073. for (int i12 = 0; i12 < ne12; ++i12) {
  5074. for (int i11 = 0; i11 < ne11; ++i11) {
  5075. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5076. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5077. }
  5078. }
  5079. }
  5080. return;
  5081. }
  5082. if (params->type == GGML_TASK_FINALIZE) {
  5083. return;
  5084. }
  5085. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5086. // total rows in src0
  5087. const int nr = ne01*ne02*ne03;
  5088. // rows per thread
  5089. const int dr = (nr + nth - 1)/nth;
  5090. // row range for this thread
  5091. const int ir0 = dr*ith;
  5092. const int ir1 = MIN(ir0 + dr, nr);
  5093. void * wdata = params->wdata;
  5094. for (int ir = ir0; ir < ir1; ++ir) {
  5095. // src0 indices
  5096. const int i03 = ir/(ne02*ne01);
  5097. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5098. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5099. const int i13 = i03;
  5100. const int i12 = i02;
  5101. const int i0 = i01;
  5102. const int i2 = i02;
  5103. const int i3 = i03;
  5104. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5105. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5106. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5107. assert(ne00 % 32 == 0);
  5108. for (int ic = 0; ic < ne11; ++ic) {
  5109. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5110. }
  5111. }
  5112. //int64_t t1 = ggml_time_us();
  5113. //static int64_t acc = 0;
  5114. //acc += t1 - t0;
  5115. //if (t1 - t0 > 10) {
  5116. // printf("\n");
  5117. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5118. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5119. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5120. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5121. //}
  5122. }
  5123. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5124. const struct ggml_compute_params * params,
  5125. const struct ggml_tensor * src0,
  5126. const struct ggml_tensor * src1,
  5127. struct ggml_tensor * dst) {
  5128. int64_t t0 = ggml_perf_time_us();
  5129. UNUSED(t0);
  5130. const int ne00 = src0->ne[0];
  5131. const int ne01 = src0->ne[1];
  5132. const int ne02 = src0->ne[2];
  5133. const int ne03 = src0->ne[3];
  5134. const int ne10 = src1->ne[0];
  5135. const int ne11 = src1->ne[1];
  5136. const int ne12 = src1->ne[2];
  5137. const int ne13 = src1->ne[3];
  5138. const int ne0 = dst->ne[0];
  5139. const int ne1 = dst->ne[1];
  5140. const int ne2 = dst->ne[2];
  5141. const int ne3 = dst->ne[3];
  5142. const int nb00 = src0->nb[0];
  5143. const int nb01 = src0->nb[1];
  5144. const int nb02 = src0->nb[2];
  5145. const int nb03 = src0->nb[3];
  5146. const int nb10 = src1->nb[0];
  5147. const int nb11 = src1->nb[1];
  5148. const int nb12 = src1->nb[2];
  5149. const int nb13 = src1->nb[3];
  5150. const int nb0 = dst->nb[0];
  5151. const int nb1 = dst->nb[1];
  5152. const int nb2 = dst->nb[2];
  5153. const int nb3 = dst->nb[3];
  5154. const int ith = params->ith;
  5155. const int nth = params->nth;
  5156. GGML_ASSERT(ne02 == ne12);
  5157. GGML_ASSERT(ne03 == ne13);
  5158. GGML_ASSERT(ne2 == ne12);
  5159. GGML_ASSERT(ne3 == ne13);
  5160. // we don't support permuted src0 or src1
  5161. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5162. GGML_ASSERT(nb10 == sizeof(float));
  5163. // dst cannot be transposed or permuted
  5164. GGML_ASSERT(nb0 == sizeof(float));
  5165. GGML_ASSERT(nb0 <= nb1);
  5166. GGML_ASSERT(nb1 <= nb2);
  5167. GGML_ASSERT(nb2 <= nb3);
  5168. GGML_ASSERT(ne0 == ne01);
  5169. GGML_ASSERT(ne1 == ne11);
  5170. GGML_ASSERT(ne2 == ne02);
  5171. GGML_ASSERT(ne3 == ne03);
  5172. // nb01 >= nb00 - src0 is not transposed
  5173. // compute by src0 rows
  5174. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5175. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5176. if (params->ith != 0) {
  5177. return;
  5178. }
  5179. if (params->type == GGML_TASK_INIT) {
  5180. return;
  5181. }
  5182. if (params->type == GGML_TASK_FINALIZE) {
  5183. return;
  5184. }
  5185. float * const wdata = params->wdata;
  5186. for (int i03 = 0; i03 < ne03; i03++) {
  5187. for (int i02 = 0; i02 < ne02; i02++) {
  5188. {
  5189. size_t id = 0;
  5190. for (int i01 = 0; i01 < ne01; ++i01) {
  5191. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5192. id += ne00;
  5193. }
  5194. }
  5195. const float * x = wdata;
  5196. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5197. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5198. // zT = y * xT
  5199. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5200. ne11, ne01, ne10,
  5201. 1.0f, y, ne10,
  5202. x, ne10,
  5203. 0.0f, d, ne01);
  5204. }
  5205. }
  5206. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5207. return;
  5208. }
  5209. #endif
  5210. if (params->type == GGML_TASK_INIT) {
  5211. char * wdata = params->wdata;
  5212. for (int i13 = 0; i13 < ne13; ++i13) {
  5213. for (int i12 = 0; i12 < ne12; ++i12) {
  5214. for (int i11 = 0; i11 < ne11; ++i11) {
  5215. //for (int i10 = 0; i10 < ne10; ++i10) {
  5216. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5217. //}
  5218. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5219. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5220. }
  5221. }
  5222. }
  5223. return;
  5224. }
  5225. if (params->type == GGML_TASK_FINALIZE) {
  5226. return;
  5227. }
  5228. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5229. // total rows in src0
  5230. const int nr = ne01*ne02*ne03;
  5231. // rows per thread
  5232. const int dr = (nr + nth - 1)/nth;
  5233. // row range for this thread
  5234. const int ir0 = dr*ith;
  5235. const int ir1 = MIN(ir0 + dr, nr);
  5236. void * wdata = params->wdata;
  5237. for (int ir = ir0; ir < ir1; ++ir) {
  5238. // src0 indices
  5239. const int i03 = ir/(ne02*ne01);
  5240. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5241. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5242. const int i13 = i03;
  5243. const int i12 = i02;
  5244. const int i0 = i01;
  5245. const int i2 = i02;
  5246. const int i3 = i03;
  5247. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5248. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5249. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5250. assert(ne00 % 32 == 0);
  5251. for (int ic = 0; ic < ne11; ++ic) {
  5252. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5253. }
  5254. }
  5255. //int64_t t1 = ggml_time_us();
  5256. //static int64_t acc = 0;
  5257. //acc += t1 - t0;
  5258. //if (t1 - t0 > 10) {
  5259. // printf("\n");
  5260. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5261. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5262. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5263. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5264. //}
  5265. }
  5266. static void ggml_compute_forward_mul_mat(
  5267. const struct ggml_compute_params * params,
  5268. const struct ggml_tensor * src0,
  5269. const struct ggml_tensor * src1,
  5270. struct ggml_tensor * dst) {
  5271. switch (src0->type) {
  5272. case GGML_TYPE_Q4_0:
  5273. {
  5274. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5275. } break;
  5276. case GGML_TYPE_Q4_1:
  5277. {
  5278. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5279. } break;
  5280. case GGML_TYPE_F16:
  5281. {
  5282. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5283. } break;
  5284. case GGML_TYPE_F32:
  5285. {
  5286. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5287. } break;
  5288. case GGML_TYPE_I8:
  5289. case GGML_TYPE_I16:
  5290. case GGML_TYPE_I32:
  5291. case GGML_TYPE_COUNT:
  5292. {
  5293. GGML_ASSERT(false);
  5294. } break;
  5295. }
  5296. #if 0
  5297. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5298. static int first = 8;
  5299. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5300. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5301. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5302. if (first) {
  5303. --first;
  5304. } else {
  5305. for (int k = 0; k < dst->ne[1]; ++k) {
  5306. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5307. for (int i = 0; i < 16; ++i) {
  5308. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5309. }
  5310. printf("\n");
  5311. }
  5312. printf("\n");
  5313. }
  5314. printf("\n");
  5315. exit(0);
  5316. }
  5317. } else {
  5318. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5319. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5320. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5321. }
  5322. #endif
  5323. }
  5324. // ggml_compute_forward_scale
  5325. static void ggml_compute_forward_scale_f32(
  5326. const struct ggml_compute_params * params,
  5327. const struct ggml_tensor * src0,
  5328. const struct ggml_tensor * src1,
  5329. struct ggml_tensor * dst) {
  5330. GGML_ASSERT(ggml_is_contiguous(src0));
  5331. GGML_ASSERT(ggml_is_contiguous(dst));
  5332. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5333. GGML_ASSERT(ggml_is_scalar(src1));
  5334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5335. return;
  5336. }
  5337. // scale factor
  5338. const float v = *(float *) src1->data;
  5339. const int ith = params->ith;
  5340. const int nth = params->nth;
  5341. const int nc = src0->ne[0];
  5342. const int nr = ggml_nrows(src0);
  5343. // rows per thread
  5344. const int dr = (nr + nth - 1)/nth;
  5345. // row range for this thread
  5346. const int ir0 = dr*ith;
  5347. const int ir1 = MIN(ir0 + dr, nr);
  5348. for (int i1 = ir0; i1 < ir1; i1++) {
  5349. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5350. }
  5351. }
  5352. static void ggml_compute_forward_scale(
  5353. const struct ggml_compute_params * params,
  5354. const struct ggml_tensor * src0,
  5355. const struct ggml_tensor * src1,
  5356. struct ggml_tensor * dst) {
  5357. switch (src0->type) {
  5358. case GGML_TYPE_F32:
  5359. {
  5360. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5361. } break;
  5362. case GGML_TYPE_Q4_0:
  5363. case GGML_TYPE_Q4_1:
  5364. case GGML_TYPE_I8:
  5365. case GGML_TYPE_I16:
  5366. case GGML_TYPE_I32:
  5367. case GGML_TYPE_F16:
  5368. case GGML_TYPE_COUNT:
  5369. {
  5370. GGML_ASSERT(false);
  5371. } break;
  5372. }
  5373. }
  5374. // ggml_compute_forward_cpy
  5375. static void ggml_compute_forward_cpy(
  5376. const struct ggml_compute_params * params,
  5377. const struct ggml_tensor * src0,
  5378. struct ggml_tensor * dst) {
  5379. ggml_compute_forward_dup(params, src0, dst);
  5380. }
  5381. // ggml_compute_forward_reshape
  5382. static void ggml_compute_forward_reshape(
  5383. const struct ggml_compute_params * params,
  5384. const struct ggml_tensor * src0,
  5385. struct ggml_tensor * dst) {
  5386. // NOP
  5387. UNUSED(params);
  5388. UNUSED(src0);
  5389. UNUSED(dst);
  5390. }
  5391. // ggml_compute_forward_view
  5392. static void ggml_compute_forward_view(
  5393. const struct ggml_compute_params * params,
  5394. const struct ggml_tensor * src0) {
  5395. // NOP
  5396. UNUSED(params);
  5397. UNUSED(src0);
  5398. }
  5399. // ggml_compute_forward_permute
  5400. static void ggml_compute_forward_permute(
  5401. const struct ggml_compute_params * params,
  5402. const struct ggml_tensor * src0) {
  5403. // NOP
  5404. UNUSED(params);
  5405. UNUSED(src0);
  5406. }
  5407. // ggml_compute_forward_transpose
  5408. static void ggml_compute_forward_transpose(
  5409. const struct ggml_compute_params * params,
  5410. const struct ggml_tensor * src0) {
  5411. // NOP
  5412. UNUSED(params);
  5413. UNUSED(src0);
  5414. }
  5415. // ggml_compute_forward_get_rows
  5416. static void ggml_compute_forward_get_rows_q4_0(
  5417. const struct ggml_compute_params * params,
  5418. const struct ggml_tensor * src0,
  5419. const struct ggml_tensor * src1,
  5420. struct ggml_tensor * dst) {
  5421. assert(params->ith == 0);
  5422. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5423. return;
  5424. }
  5425. const int nc = src0->ne[0];
  5426. const int nr = ggml_nelements(src1);
  5427. assert( dst->ne[0] == nc);
  5428. assert( dst->ne[1] == nr);
  5429. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5430. for (int i = 0; i < nr; ++i) {
  5431. const int r = ((int32_t *) src1->data)[i];
  5432. dequantize_row_q4_0(
  5433. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5434. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5435. }
  5436. }
  5437. static void ggml_compute_forward_get_rows_q4_1(
  5438. const struct ggml_compute_params * params,
  5439. const struct ggml_tensor * src0,
  5440. const struct ggml_tensor * src1,
  5441. struct ggml_tensor * dst) {
  5442. assert(params->ith == 0);
  5443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5444. return;
  5445. }
  5446. const int nc = src0->ne[0];
  5447. const int nr = ggml_nelements(src1);
  5448. assert( dst->ne[0] == nc);
  5449. assert( dst->ne[1] == nr);
  5450. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5451. for (int i = 0; i < nr; ++i) {
  5452. const int r = ((int32_t *) src1->data)[i];
  5453. dequantize_row_q4_1(
  5454. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5455. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5456. }
  5457. }
  5458. static void ggml_compute_forward_get_rows_f16(
  5459. const struct ggml_compute_params * params,
  5460. const struct ggml_tensor * src0,
  5461. const struct ggml_tensor * src1,
  5462. struct ggml_tensor * dst) {
  5463. assert(params->ith == 0);
  5464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5465. return;
  5466. }
  5467. const int nc = src0->ne[0];
  5468. const int nr = ggml_nelements(src1);
  5469. assert( dst->ne[0] == nc);
  5470. assert( dst->ne[1] == nr);
  5471. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5472. for (int i = 0; i < nr; ++i) {
  5473. const int r = ((int32_t *) src1->data)[i];
  5474. for (int j = 0; j < nc; ++j) {
  5475. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5476. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5477. }
  5478. }
  5479. }
  5480. static void ggml_compute_forward_get_rows_f32(
  5481. const struct ggml_compute_params * params,
  5482. const struct ggml_tensor * src0,
  5483. const struct ggml_tensor * src1,
  5484. struct ggml_tensor * dst) {
  5485. assert(params->ith == 0);
  5486. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5487. return;
  5488. }
  5489. const int nc = src0->ne[0];
  5490. const int nr = ggml_nelements(src1);
  5491. assert( dst->ne[0] == nc);
  5492. assert( dst->ne[1] == nr);
  5493. assert(src0->nb[0] == sizeof(float));
  5494. for (int i = 0; i < nr; ++i) {
  5495. const int r = ((int32_t *) src1->data)[i];
  5496. ggml_vec_cpy_f32(nc,
  5497. (float *) ((char *) dst->data + i*dst->nb[1]),
  5498. (float *) ((char *) src0->data + r*src0->nb[1]));
  5499. }
  5500. }
  5501. static void ggml_compute_forward_get_rows(
  5502. const struct ggml_compute_params * params,
  5503. const struct ggml_tensor * src0,
  5504. const struct ggml_tensor * src1,
  5505. struct ggml_tensor * dst) {
  5506. switch (src0->type) {
  5507. case GGML_TYPE_Q4_0:
  5508. {
  5509. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5510. } break;
  5511. case GGML_TYPE_Q4_1:
  5512. {
  5513. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5514. } break;
  5515. case GGML_TYPE_F16:
  5516. {
  5517. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5518. } break;
  5519. case GGML_TYPE_F32:
  5520. {
  5521. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5522. } break;
  5523. case GGML_TYPE_I8:
  5524. case GGML_TYPE_I16:
  5525. case GGML_TYPE_I32:
  5526. case GGML_TYPE_COUNT:
  5527. {
  5528. GGML_ASSERT(false);
  5529. } break;
  5530. }
  5531. //static bool first = true;
  5532. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5533. //if (first) {
  5534. // first = false;
  5535. //} else {
  5536. // for (int k = 0; k < dst->ne[1]; ++k) {
  5537. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5538. // for (int i = 0; i < 16; ++i) {
  5539. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5540. // }
  5541. // printf("\n");
  5542. // }
  5543. // printf("\n");
  5544. // }
  5545. // printf("\n");
  5546. // exit(0);
  5547. //}
  5548. }
  5549. // ggml_compute_forward_diag_mask_inf
  5550. static void ggml_compute_forward_diag_mask_inf_f32(
  5551. const struct ggml_compute_params * params,
  5552. const struct ggml_tensor * src0,
  5553. const struct ggml_tensor * src1,
  5554. struct ggml_tensor * dst) {
  5555. assert(params->ith == 0);
  5556. assert(src1->type == GGML_TYPE_I32);
  5557. assert(ggml_nelements(src1) == 1);
  5558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5559. return;
  5560. }
  5561. const int n_past = ((int32_t *) src1->data)[0];
  5562. // TODO: handle transposed/permuted matrices
  5563. const int n = ggml_nrows(src0);
  5564. const int nc = src0->ne[0];
  5565. const int nr = src0->ne[1];
  5566. const int nz = n/nr;
  5567. assert( dst->nb[0] == sizeof(float));
  5568. assert(src0->nb[0] == sizeof(float));
  5569. for (int k = 0; k < nz; k++) {
  5570. for (int j = 0; j < nr; j++) {
  5571. for (int i = n_past; i < nc; i++) {
  5572. if (i > n_past + j) {
  5573. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5574. }
  5575. }
  5576. }
  5577. }
  5578. }
  5579. static void ggml_compute_forward_diag_mask_inf(
  5580. const struct ggml_compute_params * params,
  5581. const struct ggml_tensor * src0,
  5582. const struct ggml_tensor * src1,
  5583. struct ggml_tensor * dst) {
  5584. switch (src0->type) {
  5585. case GGML_TYPE_F32:
  5586. {
  5587. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5588. } break;
  5589. case GGML_TYPE_Q4_0:
  5590. case GGML_TYPE_Q4_1:
  5591. case GGML_TYPE_I8:
  5592. case GGML_TYPE_I16:
  5593. case GGML_TYPE_I32:
  5594. case GGML_TYPE_F16:
  5595. case GGML_TYPE_COUNT:
  5596. {
  5597. GGML_ASSERT(false);
  5598. } break;
  5599. }
  5600. }
  5601. // ggml_compute_forward_soft_max
  5602. static void ggml_compute_forward_soft_max_f32(
  5603. const struct ggml_compute_params * params,
  5604. const struct ggml_tensor * src0,
  5605. struct ggml_tensor * dst) {
  5606. GGML_ASSERT(ggml_is_contiguous(src0));
  5607. GGML_ASSERT(ggml_is_contiguous(dst));
  5608. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5609. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5610. return;
  5611. }
  5612. // TODO: handle transposed/permuted matrices
  5613. const int ith = params->ith;
  5614. const int nth = params->nth;
  5615. const int nc = src0->ne[0];
  5616. const int nr = ggml_nrows(src0);
  5617. // rows per thread
  5618. const int dr = (nr + nth - 1)/nth;
  5619. // row range for this thread
  5620. const int ir0 = dr*ith;
  5621. const int ir1 = MIN(ir0 + dr, nr);
  5622. for (int i1 = ir0; i1 < ir1; i1++) {
  5623. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5624. #ifndef NDEBUG
  5625. for (int i = 0; i < nc; ++i) {
  5626. //printf("p[%d] = %f\n", i, p[i]);
  5627. assert(!isnan(p[i]));
  5628. }
  5629. #endif
  5630. float max = -INFINITY;
  5631. ggml_vec_max_f32(nc, &max, p);
  5632. ggml_float sum = 0.0;
  5633. uint16_t scvt;
  5634. for (int i = 0; i < nc; i++) {
  5635. if (p[i] == -INFINITY) {
  5636. p[i] = 0.0f;
  5637. } else {
  5638. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5639. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5640. memcpy(&scvt, &s, sizeof(scvt));
  5641. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5642. sum += val;
  5643. p[i] = val;
  5644. }
  5645. }
  5646. assert(sum > 0.0f);
  5647. sum = 1.0/sum;
  5648. ggml_vec_scale_f32(nc, p, sum);
  5649. #ifndef NDEBUG
  5650. for (int i = 0; i < nc; ++i) {
  5651. assert(!isnan(p[i]));
  5652. assert(!isinf(p[i]));
  5653. }
  5654. #endif
  5655. }
  5656. }
  5657. static void ggml_compute_forward_soft_max(
  5658. const struct ggml_compute_params * params,
  5659. const struct ggml_tensor * src0,
  5660. struct ggml_tensor * dst) {
  5661. switch (src0->type) {
  5662. case GGML_TYPE_F32:
  5663. {
  5664. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5665. } break;
  5666. case GGML_TYPE_Q4_0:
  5667. case GGML_TYPE_Q4_1:
  5668. case GGML_TYPE_I8:
  5669. case GGML_TYPE_I16:
  5670. case GGML_TYPE_I32:
  5671. case GGML_TYPE_F16:
  5672. case GGML_TYPE_COUNT:
  5673. {
  5674. GGML_ASSERT(false);
  5675. } break;
  5676. }
  5677. }
  5678. // ggml_compute_forward_rope
  5679. static void ggml_compute_forward_rope_f32(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. const struct ggml_tensor * src1,
  5683. struct ggml_tensor * dst) {
  5684. assert(params->ith == 0);
  5685. assert(src1->type == GGML_TYPE_I32);
  5686. assert(ggml_nelements(src1) == 3);
  5687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5688. return;
  5689. }
  5690. const int n_past = ((int32_t *) src1->data)[0];
  5691. const int n_dims = ((int32_t *) src1->data)[1];
  5692. const int mode = ((int32_t *) src1->data)[2];
  5693. //const int ne0 = src0->ne[0];
  5694. const int ne1 = src0->ne[1];
  5695. const int ne2 = src0->ne[2];
  5696. const int ne3 = src0->ne[3];
  5697. const int nb0 = src0->nb[0];
  5698. const int nb1 = src0->nb[1];
  5699. const int nb2 = src0->nb[2];
  5700. const int nb3 = src0->nb[3];
  5701. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5702. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5703. assert(nb0 == sizeof(float));
  5704. // TODO: optimize
  5705. for (int i3 = 0; i3 < ne3; i3++) {
  5706. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5707. const int p = (mode == 0 ? n_past + i2 : i2);
  5708. for (int i1 = 0; i1 < ne1; i1++) {
  5709. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5710. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5711. const double cos_theta = cos(p*theta);
  5712. const double sin_theta = sin(p*theta);
  5713. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5714. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5715. double x0 = src[0];
  5716. double x1 = src[1];
  5717. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5718. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5719. }
  5720. }
  5721. }
  5722. }
  5723. }
  5724. static void ggml_compute_forward_rope_f16(
  5725. const struct ggml_compute_params * params,
  5726. const struct ggml_tensor * src0,
  5727. const struct ggml_tensor * src1,
  5728. struct ggml_tensor * dst) {
  5729. assert(params->ith == 0);
  5730. assert(src1->type == GGML_TYPE_I32);
  5731. assert(ggml_nelements(src1) == 3);
  5732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5733. return;
  5734. }
  5735. const int n_past = ((int32_t *) src1->data)[0];
  5736. const int n_dims = ((int32_t *) src1->data)[1];
  5737. const int mode = ((int32_t *) src1->data)[2];
  5738. //const int ne0 = src0->ne[0];
  5739. const int ne1 = src0->ne[1];
  5740. const int ne2 = src0->ne[2];
  5741. const int ne3 = src0->ne[3];
  5742. const int nb0 = src0->nb[0];
  5743. const int nb1 = src0->nb[1];
  5744. const int nb2 = src0->nb[2];
  5745. const int nb3 = src0->nb[3];
  5746. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5747. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5748. assert(nb0 == sizeof(ggml_fp16_t));
  5749. for (int i3 = 0; i3 < ne3; i3++) {
  5750. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5751. const int p = (mode == 0 ? n_past + i2 : i2);
  5752. for (int i1 = 0; i1 < ne1; i1++) {
  5753. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5754. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5755. const double cos_theta = cos(p*theta);
  5756. const double sin_theta = sin(p*theta);
  5757. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5758. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5759. double x0 = ggml_fp16_to_fp32(src[0]);
  5760. double x1 = ggml_fp16_to_fp32(src[1]);
  5761. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5762. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5763. }
  5764. }
  5765. }
  5766. }
  5767. }
  5768. static void ggml_compute_forward_rope(
  5769. const struct ggml_compute_params * params,
  5770. const struct ggml_tensor * src0,
  5771. const struct ggml_tensor * src1,
  5772. struct ggml_tensor * dst) {
  5773. switch (src0->type) {
  5774. case GGML_TYPE_F16:
  5775. {
  5776. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5777. } break;
  5778. case GGML_TYPE_F32:
  5779. {
  5780. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5781. } break;
  5782. case GGML_TYPE_Q4_0:
  5783. case GGML_TYPE_Q4_1:
  5784. case GGML_TYPE_I8:
  5785. case GGML_TYPE_I16:
  5786. case GGML_TYPE_I32:
  5787. case GGML_TYPE_COUNT:
  5788. {
  5789. GGML_ASSERT(false);
  5790. } break;
  5791. }
  5792. }
  5793. // ggml_compute_forward_conv_1d_1s
  5794. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5795. const struct ggml_compute_params * params,
  5796. const struct ggml_tensor * src0,
  5797. const struct ggml_tensor * src1,
  5798. struct ggml_tensor * dst) {
  5799. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5800. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5801. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5802. int64_t t0 = ggml_perf_time_us();
  5803. UNUSED(t0);
  5804. const int ne00 = src0->ne[0];
  5805. const int ne01 = src0->ne[1];
  5806. const int ne02 = src0->ne[2];
  5807. //const int ne03 = src0->ne[3];
  5808. const int ne10 = src1->ne[0];
  5809. const int ne11 = src1->ne[1];
  5810. //const int ne12 = src1->ne[2];
  5811. //const int ne13 = src1->ne[3];
  5812. //const int ne0 = dst->ne[0];
  5813. //const int ne1 = dst->ne[1];
  5814. //const int ne2 = dst->ne[2];
  5815. //const int ne3 = dst->ne[3];
  5816. //const int ne = ne0*ne1*ne2*ne3;
  5817. const int nb00 = src0->nb[0];
  5818. const int nb01 = src0->nb[1];
  5819. const int nb02 = src0->nb[2];
  5820. //const int nb03 = src0->nb[3];
  5821. const int nb10 = src1->nb[0];
  5822. const int nb11 = src1->nb[1];
  5823. //const int nb12 = src1->nb[2];
  5824. //const int nb13 = src1->nb[3];
  5825. //const int nb0 = dst->nb[0];
  5826. const int nb1 = dst->nb[1];
  5827. //const int nb2 = dst->nb[2];
  5828. //const int nb3 = dst->nb[3];
  5829. const int ith = params->ith;
  5830. const int nth = params->nth;
  5831. const int nk = ne00;
  5832. const int nh = nk/2;
  5833. const int ew0 = ggml_up32(ne01);
  5834. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5835. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5836. GGML_ASSERT(nb10 == sizeof(float));
  5837. if (params->type == GGML_TASK_INIT) {
  5838. // TODO: fix this memset (wsize is overestimated)
  5839. memset(params->wdata, 0, params->wsize);
  5840. // prepare kernel data (src0)
  5841. {
  5842. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5843. for (int i02 = 0; i02 < ne02; i02++) {
  5844. for (int i01 = 0; i01 < ne01; i01++) {
  5845. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5846. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5847. for (int i00 = 0; i00 < ne00; i00++) {
  5848. dst_data[i00*ew0 + i01] = src[i00];
  5849. }
  5850. }
  5851. }
  5852. }
  5853. // prepare source data (src1)
  5854. {
  5855. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5856. for (int i11 = 0; i11 < ne11; i11++) {
  5857. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5858. ggml_fp16_t * dst_data = wdata;
  5859. for (int i10 = 0; i10 < ne10; i10++) {
  5860. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5861. }
  5862. }
  5863. }
  5864. return;
  5865. }
  5866. if (params->type == GGML_TASK_FINALIZE) {
  5867. return;
  5868. }
  5869. // total rows in dst
  5870. const int nr = ne02;
  5871. // rows per thread
  5872. const int dr = (nr + nth - 1)/nth;
  5873. // row range for this thread
  5874. const int ir0 = dr*ith;
  5875. const int ir1 = MIN(ir0 + dr, nr);
  5876. for (int i1 = ir0; i1 < ir1; i1++) {
  5877. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5878. for (int i0 = 0; i0 < ne10; ++i0) {
  5879. dst_data[i0] = 0;
  5880. for (int k = -nh; k <= nh; k++) {
  5881. float v = 0.0f;
  5882. ggml_vec_dot_f16(ew0, &v,
  5883. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5884. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5885. dst_data[i0] += v;
  5886. }
  5887. }
  5888. }
  5889. }
  5890. static void ggml_compute_forward_conv_1d_1s_f32(
  5891. const struct ggml_compute_params * params,
  5892. const struct ggml_tensor * src0,
  5893. const struct ggml_tensor * src1,
  5894. struct ggml_tensor * dst) {
  5895. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5896. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5897. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5898. int64_t t0 = ggml_perf_time_us();
  5899. UNUSED(t0);
  5900. const int ne00 = src0->ne[0];
  5901. const int ne01 = src0->ne[1];
  5902. const int ne02 = src0->ne[2];
  5903. //const int ne03 = src0->ne[3];
  5904. const int ne10 = src1->ne[0];
  5905. const int ne11 = src1->ne[1];
  5906. //const int ne12 = src1->ne[2];
  5907. //const int ne13 = src1->ne[3];
  5908. //const int ne0 = dst->ne[0];
  5909. //const int ne1 = dst->ne[1];
  5910. //const int ne2 = dst->ne[2];
  5911. //const int ne3 = dst->ne[3];
  5912. //const int ne = ne0*ne1*ne2*ne3;
  5913. const int nb00 = src0->nb[0];
  5914. const int nb01 = src0->nb[1];
  5915. const int nb02 = src0->nb[2];
  5916. //const int nb03 = src0->nb[3];
  5917. const int nb10 = src1->nb[0];
  5918. const int nb11 = src1->nb[1];
  5919. //const int nb12 = src1->nb[2];
  5920. //const int nb13 = src1->nb[3];
  5921. //const int nb0 = dst->nb[0];
  5922. const int nb1 = dst->nb[1];
  5923. //const int nb2 = dst->nb[2];
  5924. //const int nb3 = dst->nb[3];
  5925. const int ith = params->ith;
  5926. const int nth = params->nth;
  5927. const int nk = ne00;
  5928. const int nh = nk/2;
  5929. const int ew0 = ggml_up32(ne01);
  5930. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5931. GGML_ASSERT(nb00 == sizeof(float));
  5932. GGML_ASSERT(nb10 == sizeof(float));
  5933. if (params->type == GGML_TASK_INIT) {
  5934. // TODO: fix this memset (wsize is overestimated)
  5935. memset(params->wdata, 0, params->wsize);
  5936. // prepare kernel data (src0)
  5937. {
  5938. float * const wdata = (float *) params->wdata + 0;
  5939. for (int i02 = 0; i02 < ne02; i02++) {
  5940. for (int i01 = 0; i01 < ne01; i01++) {
  5941. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5942. float * dst_data = wdata + i02*ew0*ne00;
  5943. for (int i00 = 0; i00 < ne00; i00++) {
  5944. dst_data[i00*ew0 + i01] = src[i00];
  5945. }
  5946. }
  5947. }
  5948. }
  5949. // prepare source data (src1)
  5950. {
  5951. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5952. for (int i11 = 0; i11 < ne11; i11++) {
  5953. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5954. float * dst_data = wdata;
  5955. for (int i10 = 0; i10 < ne10; i10++) {
  5956. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5957. }
  5958. }
  5959. }
  5960. return;
  5961. }
  5962. if (params->type == GGML_TASK_FINALIZE) {
  5963. return;
  5964. }
  5965. // total rows in dst
  5966. const int nr = ne02;
  5967. // rows per thread
  5968. const int dr = (nr + nth - 1)/nth;
  5969. // row range for this thread
  5970. const int ir0 = dr*ith;
  5971. const int ir1 = MIN(ir0 + dr, nr);
  5972. for (int i1 = ir0; i1 < ir1; i1++) {
  5973. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5974. for (int i0 = 0; i0 < ne10; ++i0) {
  5975. dst_data[i0] = 0;
  5976. for (int k = -nh; k <= nh; k++) {
  5977. float v = 0.0f;
  5978. ggml_vec_dot_f32(ew0, &v,
  5979. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5980. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5981. dst_data[i0] += v;
  5982. }
  5983. }
  5984. }
  5985. }
  5986. static void ggml_compute_forward_conv_1d_1s(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. const struct ggml_tensor * src1,
  5990. struct ggml_tensor * dst) {
  5991. switch (src0->type) {
  5992. case GGML_TYPE_F16:
  5993. {
  5994. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5995. } break;
  5996. case GGML_TYPE_F32:
  5997. {
  5998. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5999. } break;
  6000. case GGML_TYPE_Q4_0:
  6001. case GGML_TYPE_Q4_1:
  6002. case GGML_TYPE_I8:
  6003. case GGML_TYPE_I16:
  6004. case GGML_TYPE_I32:
  6005. case GGML_TYPE_COUNT:
  6006. {
  6007. GGML_ASSERT(false);
  6008. } break;
  6009. }
  6010. }
  6011. // ggml_compute_forward_conv_1d_2s
  6012. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6013. const struct ggml_compute_params * params,
  6014. const struct ggml_tensor * src0,
  6015. const struct ggml_tensor * src1,
  6016. struct ggml_tensor * dst) {
  6017. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6018. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6019. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6020. int64_t t0 = ggml_perf_time_us();
  6021. UNUSED(t0);
  6022. const int ne00 = src0->ne[0];
  6023. const int ne01 = src0->ne[1];
  6024. const int ne02 = src0->ne[2];
  6025. //const int ne03 = src0->ne[3];
  6026. const int ne10 = src1->ne[0];
  6027. const int ne11 = src1->ne[1];
  6028. //const int ne12 = src1->ne[2];
  6029. //const int ne13 = src1->ne[3];
  6030. //const int ne0 = dst->ne[0];
  6031. //const int ne1 = dst->ne[1];
  6032. //const int ne2 = dst->ne[2];
  6033. //const int ne3 = dst->ne[3];
  6034. //const int ne = ne0*ne1*ne2*ne3;
  6035. const int nb00 = src0->nb[0];
  6036. const int nb01 = src0->nb[1];
  6037. const int nb02 = src0->nb[2];
  6038. //const int nb03 = src0->nb[3];
  6039. const int nb10 = src1->nb[0];
  6040. const int nb11 = src1->nb[1];
  6041. //const int nb12 = src1->nb[2];
  6042. //const int nb13 = src1->nb[3];
  6043. //const int nb0 = dst->nb[0];
  6044. const int nb1 = dst->nb[1];
  6045. //const int nb2 = dst->nb[2];
  6046. //const int nb3 = dst->nb[3];
  6047. const int ith = params->ith;
  6048. const int nth = params->nth;
  6049. const int nk = ne00;
  6050. const int nh = nk/2;
  6051. const int ew0 = ggml_up32(ne01);
  6052. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6053. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6054. GGML_ASSERT(nb10 == sizeof(float));
  6055. if (params->type == GGML_TASK_INIT) {
  6056. // TODO: fix this memset (wsize is overestimated)
  6057. memset(params->wdata, 0, params->wsize);
  6058. // prepare kernel data (src0)
  6059. {
  6060. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6061. for (int i02 = 0; i02 < ne02; i02++) {
  6062. for (int i01 = 0; i01 < ne01; i01++) {
  6063. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6064. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6065. for (int i00 = 0; i00 < ne00; i00++) {
  6066. dst_data[i00*ew0 + i01] = src[i00];
  6067. }
  6068. }
  6069. }
  6070. }
  6071. // prepare source data (src1)
  6072. {
  6073. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6074. for (int i11 = 0; i11 < ne11; i11++) {
  6075. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6076. ggml_fp16_t * dst_data = wdata;
  6077. for (int i10 = 0; i10 < ne10; i10++) {
  6078. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6079. }
  6080. }
  6081. }
  6082. return;
  6083. }
  6084. if (params->type == GGML_TASK_FINALIZE) {
  6085. return;
  6086. }
  6087. // total rows in dst
  6088. const int nr = ne02;
  6089. // rows per thread
  6090. const int dr = (nr + nth - 1)/nth;
  6091. // row range for this thread
  6092. const int ir0 = dr*ith;
  6093. const int ir1 = MIN(ir0 + dr, nr);
  6094. for (int i1 = ir0; i1 < ir1; i1++) {
  6095. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6096. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6097. dst_data[i0/2] = 0;
  6098. for (int k = -nh; k <= nh; k++) {
  6099. float v = 0.0f;
  6100. ggml_vec_dot_f16(ew0, &v,
  6101. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6102. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6103. dst_data[i0/2] += v;
  6104. }
  6105. }
  6106. }
  6107. }
  6108. static void ggml_compute_forward_conv_1d_2s_f32(
  6109. const struct ggml_compute_params * params,
  6110. const struct ggml_tensor * src0,
  6111. const struct ggml_tensor * src1,
  6112. struct ggml_tensor * dst) {
  6113. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6114. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6115. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6116. int64_t t0 = ggml_perf_time_us();
  6117. UNUSED(t0);
  6118. const int ne00 = src0->ne[0];
  6119. const int ne01 = src0->ne[1];
  6120. const int ne02 = src0->ne[2];
  6121. //const int ne03 = src0->ne[3];
  6122. const int ne10 = src1->ne[0];
  6123. const int ne11 = src1->ne[1];
  6124. //const int ne12 = src1->ne[2];
  6125. //const int ne13 = src1->ne[3];
  6126. //const int ne0 = dst->ne[0];
  6127. //const int ne1 = dst->ne[1];
  6128. //const int ne2 = dst->ne[2];
  6129. //const int ne3 = dst->ne[3];
  6130. //const int ne = ne0*ne1*ne2*ne3;
  6131. const int nb00 = src0->nb[0];
  6132. const int nb01 = src0->nb[1];
  6133. const int nb02 = src0->nb[2];
  6134. //const int nb03 = src0->nb[3];
  6135. const int nb10 = src1->nb[0];
  6136. const int nb11 = src1->nb[1];
  6137. //const int nb12 = src1->nb[2];
  6138. //const int nb13 = src1->nb[3];
  6139. //const int nb0 = dst->nb[0];
  6140. const int nb1 = dst->nb[1];
  6141. //const int nb2 = dst->nb[2];
  6142. //const int nb3 = dst->nb[3];
  6143. const int ith = params->ith;
  6144. const int nth = params->nth;
  6145. const int nk = ne00;
  6146. const int nh = nk/2;
  6147. const int ew0 = ggml_up32(ne01);
  6148. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6149. GGML_ASSERT(nb00 == sizeof(float));
  6150. GGML_ASSERT(nb10 == sizeof(float));
  6151. if (params->type == GGML_TASK_INIT) {
  6152. // TODO: fix this memset (wsize is overestimated)
  6153. memset(params->wdata, 0, params->wsize);
  6154. // prepare kernel data (src0)
  6155. {
  6156. float * const wdata = (float *) params->wdata + 0;
  6157. for (int i02 = 0; i02 < ne02; i02++) {
  6158. for (int i01 = 0; i01 < ne01; i01++) {
  6159. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6160. float * dst_data = wdata + i02*ew0*ne00;
  6161. for (int i00 = 0; i00 < ne00; i00++) {
  6162. dst_data[i00*ew0 + i01] = src[i00];
  6163. }
  6164. }
  6165. }
  6166. }
  6167. // prepare source data (src1)
  6168. {
  6169. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6170. for (int i11 = 0; i11 < ne11; i11++) {
  6171. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6172. float * dst_data = wdata;
  6173. for (int i10 = 0; i10 < ne10; i10++) {
  6174. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6175. }
  6176. }
  6177. }
  6178. return;
  6179. }
  6180. if (params->type == GGML_TASK_FINALIZE) {
  6181. return;
  6182. }
  6183. // total rows in dst
  6184. const int nr = ne02;
  6185. // rows per thread
  6186. const int dr = (nr + nth - 1)/nth;
  6187. // row range for this thread
  6188. const int ir0 = dr*ith;
  6189. const int ir1 = MIN(ir0 + dr, nr);
  6190. for (int i1 = ir0; i1 < ir1; i1++) {
  6191. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6192. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6193. dst_data[i0/2] = 0;
  6194. for (int k = -nh; k <= nh; k++) {
  6195. float v = 0.0f;
  6196. ggml_vec_dot_f32(ew0, &v,
  6197. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6198. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6199. dst_data[i0/2] += v;
  6200. }
  6201. }
  6202. }
  6203. }
  6204. static void ggml_compute_forward_conv_1d_2s(
  6205. const struct ggml_compute_params * params,
  6206. const struct ggml_tensor * src0,
  6207. const struct ggml_tensor * src1,
  6208. struct ggml_tensor * dst) {
  6209. switch (src0->type) {
  6210. case GGML_TYPE_F16:
  6211. {
  6212. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6213. } break;
  6214. case GGML_TYPE_F32:
  6215. {
  6216. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6217. } break;
  6218. case GGML_TYPE_Q4_0:
  6219. case GGML_TYPE_Q4_1:
  6220. case GGML_TYPE_I8:
  6221. case GGML_TYPE_I16:
  6222. case GGML_TYPE_I32:
  6223. case GGML_TYPE_COUNT:
  6224. {
  6225. GGML_ASSERT(false);
  6226. } break;
  6227. }
  6228. }
  6229. // ggml_compute_forward_flash_attn
  6230. static void ggml_compute_forward_flash_attn_f32(
  6231. const struct ggml_compute_params * params,
  6232. const struct ggml_tensor * q,
  6233. const struct ggml_tensor * k,
  6234. const struct ggml_tensor * v,
  6235. const bool masked,
  6236. struct ggml_tensor * dst) {
  6237. int64_t t0 = ggml_perf_time_us();
  6238. UNUSED(t0);
  6239. const int neq0 = q->ne[0];
  6240. const int neq1 = q->ne[1];
  6241. const int neq2 = q->ne[2];
  6242. const int neq3 = q->ne[3];
  6243. const int nek0 = k->ne[0];
  6244. const int nek1 = k->ne[1];
  6245. //const int nek2 = k->ne[2];
  6246. //const int nek3 = k->ne[3];
  6247. //const int nev0 = v->ne[0];
  6248. const int nev1 = v->ne[1];
  6249. //const int nev2 = v->ne[2];
  6250. //const int nev3 = v->ne[3];
  6251. const int ne0 = dst->ne[0];
  6252. const int ne1 = dst->ne[1];
  6253. //const int ne2 = dst->ne[2];
  6254. //const int ne3 = dst->ne[3];
  6255. const int nbk0 = k->nb[0];
  6256. const int nbk1 = k->nb[1];
  6257. const int nbk2 = k->nb[2];
  6258. const int nbk3 = k->nb[3];
  6259. const int nbq0 = q->nb[0];
  6260. const int nbq1 = q->nb[1];
  6261. const int nbq2 = q->nb[2];
  6262. const int nbq3 = q->nb[3];
  6263. const int nbv0 = v->nb[0];
  6264. const int nbv1 = v->nb[1];
  6265. const int nbv2 = v->nb[2];
  6266. const int nbv3 = v->nb[3];
  6267. const int nb0 = dst->nb[0];
  6268. const int nb1 = dst->nb[1];
  6269. const int nb2 = dst->nb[2];
  6270. const int nb3 = dst->nb[3];
  6271. const int ith = params->ith;
  6272. const int nth = params->nth;
  6273. const int D = neq0;
  6274. const int N = neq1;
  6275. const int P = nek1 - N;
  6276. const int M = P + N;
  6277. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6278. GGML_ASSERT(ne0 == D);
  6279. GGML_ASSERT(ne1 == N);
  6280. GGML_ASSERT(P >= 0);
  6281. GGML_ASSERT(nbq0 == sizeof(float));
  6282. GGML_ASSERT(nbk0 == sizeof(float));
  6283. GGML_ASSERT(nbv0 == sizeof(float));
  6284. GGML_ASSERT(neq0 == D);
  6285. GGML_ASSERT(nek0 == D);
  6286. GGML_ASSERT(nev1 == D);
  6287. GGML_ASSERT(neq1 == N);
  6288. GGML_ASSERT(nek1 == N + P);
  6289. GGML_ASSERT(nev1 == D);
  6290. // dst cannot be transposed or permuted
  6291. GGML_ASSERT(nb0 == sizeof(float));
  6292. GGML_ASSERT(nb0 <= nb1);
  6293. GGML_ASSERT(nb1 <= nb2);
  6294. GGML_ASSERT(nb2 <= nb3);
  6295. if (params->type == GGML_TASK_INIT) {
  6296. return;
  6297. }
  6298. if (params->type == GGML_TASK_FINALIZE) {
  6299. return;
  6300. }
  6301. // parallelize by q rows using ggml_vec_dot_f32
  6302. // total rows in q
  6303. const int nr = neq1*neq2*neq3;
  6304. // rows per thread
  6305. const int dr = (nr + nth - 1)/nth;
  6306. // row range for this thread
  6307. const int ir0 = dr*ith;
  6308. const int ir1 = MIN(ir0 + dr, nr);
  6309. const float scale = 1.0/sqrt((double) D);
  6310. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6311. for (int ir = ir0; ir < ir1; ++ir) {
  6312. // q indices
  6313. const int iq3 = ir/(neq2*neq1);
  6314. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6315. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6316. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6317. for (int i = M; i < Mup; ++i) {
  6318. S[i] = -INFINITY;
  6319. }
  6320. for (int ic = 0; ic < nek1; ++ic) {
  6321. // k indices
  6322. const int ik3 = iq3;
  6323. const int ik2 = iq2;
  6324. const int ik1 = ic;
  6325. // S indices
  6326. const int i1 = ik1;
  6327. ggml_vec_dot_f32(neq0,
  6328. S + i1,
  6329. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6330. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6331. }
  6332. // scale
  6333. ggml_vec_scale_f32(nek1, S, scale);
  6334. if (masked) {
  6335. for (int i = P; i < M; i++) {
  6336. if (i > P + iq1) {
  6337. S[i] = -INFINITY;
  6338. }
  6339. }
  6340. }
  6341. // softmax
  6342. {
  6343. float max = -INFINITY;
  6344. ggml_vec_max_f32(M, &max, S);
  6345. float sum = 0.0f;
  6346. {
  6347. #ifdef GGML_SOFT_MAX_ACCELERATE
  6348. max = -max;
  6349. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6350. vvexpf(S, S, &Mup);
  6351. ggml_vec_sum_f32(Mup, &sum, S);
  6352. #else
  6353. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6354. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6355. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6356. float * SS = S + i;
  6357. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6358. if (SS[j] == -INFINITY) {
  6359. SS[j] = 0.0f;
  6360. } else {
  6361. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6362. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6363. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6364. sump[j] += val;
  6365. SS[j] = val;
  6366. }
  6367. }
  6368. }
  6369. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6370. sum += sump[i];
  6371. }
  6372. #endif
  6373. }
  6374. assert(sum > 0.0f);
  6375. sum = 1.0/sum;
  6376. ggml_vec_scale_f32(M, S, sum);
  6377. #ifndef NDEBUG
  6378. for (int i = 0; i < M; ++i) {
  6379. assert(!isnan(S[i]));
  6380. assert(!isinf(S[i]));
  6381. }
  6382. #endif
  6383. }
  6384. for (int ic = 0; ic < nev1; ++ic) {
  6385. // dst indices
  6386. const int i1 = iq1;
  6387. const int i2 = iq2;
  6388. const int i3 = iq3;
  6389. ggml_vec_dot_f32(nek1,
  6390. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6391. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6392. S);
  6393. }
  6394. }
  6395. }
  6396. static void ggml_compute_forward_flash_attn_f16(
  6397. const struct ggml_compute_params * params,
  6398. const struct ggml_tensor * q,
  6399. const struct ggml_tensor * k,
  6400. const struct ggml_tensor * v,
  6401. const bool masked,
  6402. struct ggml_tensor * dst) {
  6403. int64_t t0 = ggml_perf_time_us();
  6404. UNUSED(t0);
  6405. const int neq0 = q->ne[0];
  6406. const int neq1 = q->ne[1];
  6407. const int neq2 = q->ne[2];
  6408. const int neq3 = q->ne[3];
  6409. const int nek0 = k->ne[0];
  6410. const int nek1 = k->ne[1];
  6411. //const int nek2 = k->ne[2];
  6412. //const int nek3 = k->ne[3];
  6413. //const int nev0 = v->ne[0];
  6414. const int nev1 = v->ne[1];
  6415. //const int nev2 = v->ne[2];
  6416. //const int nev3 = v->ne[3];
  6417. const int ne0 = dst->ne[0];
  6418. const int ne1 = dst->ne[1];
  6419. //const int ne2 = dst->ne[2];
  6420. //const int ne3 = dst->ne[3];
  6421. const int nbk0 = k->nb[0];
  6422. const int nbk1 = k->nb[1];
  6423. const int nbk2 = k->nb[2];
  6424. const int nbk3 = k->nb[3];
  6425. const int nbq0 = q->nb[0];
  6426. const int nbq1 = q->nb[1];
  6427. const int nbq2 = q->nb[2];
  6428. const int nbq3 = q->nb[3];
  6429. const int nbv0 = v->nb[0];
  6430. const int nbv1 = v->nb[1];
  6431. const int nbv2 = v->nb[2];
  6432. const int nbv3 = v->nb[3];
  6433. const int nb0 = dst->nb[0];
  6434. const int nb1 = dst->nb[1];
  6435. const int nb2 = dst->nb[2];
  6436. const int nb3 = dst->nb[3];
  6437. const int ith = params->ith;
  6438. const int nth = params->nth;
  6439. const int D = neq0;
  6440. const int N = neq1;
  6441. const int P = nek1 - N;
  6442. const int M = P + N;
  6443. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6444. GGML_ASSERT(ne0 == D);
  6445. GGML_ASSERT(ne1 == N);
  6446. GGML_ASSERT(P >= 0);
  6447. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6448. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6449. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6450. GGML_ASSERT(neq0 == D);
  6451. GGML_ASSERT(nek0 == D);
  6452. GGML_ASSERT(nev1 == D);
  6453. GGML_ASSERT(neq1 == N);
  6454. GGML_ASSERT(nek1 == N + P);
  6455. GGML_ASSERT(nev1 == D);
  6456. // dst cannot be transposed or permuted
  6457. GGML_ASSERT(nb0 == sizeof(float));
  6458. GGML_ASSERT(nb0 <= nb1);
  6459. GGML_ASSERT(nb1 <= nb2);
  6460. GGML_ASSERT(nb2 <= nb3);
  6461. if (params->type == GGML_TASK_INIT) {
  6462. return;
  6463. }
  6464. if (params->type == GGML_TASK_FINALIZE) {
  6465. return;
  6466. }
  6467. // parallelize by q rows using ggml_vec_dot_f32
  6468. // total rows in q
  6469. const int nr = neq1*neq2*neq3;
  6470. // rows per thread
  6471. const int dr = (nr + nth - 1)/nth;
  6472. // row range for this thread
  6473. const int ir0 = dr*ith;
  6474. const int ir1 = MIN(ir0 + dr, nr);
  6475. const float scale = 1.0/sqrt((double) D);
  6476. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6477. for (int ir = ir0; ir < ir1; ++ir) {
  6478. // q indices
  6479. const int iq3 = ir/(neq2*neq1);
  6480. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6481. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6482. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6483. for (int i = M; i < Mup; ++i) {
  6484. S[i] = -INFINITY;
  6485. }
  6486. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6487. for (int ic = 0; ic < nek1; ++ic) {
  6488. // k indices
  6489. const int ik3 = iq3;
  6490. const int ik2 = iq2;
  6491. const int ik1 = ic;
  6492. // S indices
  6493. const int i1 = ik1;
  6494. ggml_vec_dot_f16(neq0,
  6495. S + i1,
  6496. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6497. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6498. }
  6499. } else {
  6500. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6501. // k indices
  6502. const int ik3 = iq3;
  6503. const int ik2 = iq2;
  6504. const int ik1 = ic;
  6505. // S indices
  6506. const int i1 = ik1;
  6507. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6508. S + i1,
  6509. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6510. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6511. }
  6512. }
  6513. // scale
  6514. ggml_vec_scale_f32(nek1, S, scale);
  6515. if (masked) {
  6516. for (int i = P; i < M; i++) {
  6517. if (i > P + iq1) {
  6518. S[i] = -INFINITY;
  6519. }
  6520. }
  6521. }
  6522. // softmax
  6523. {
  6524. float max = -INFINITY;
  6525. ggml_vec_max_f32(M, &max, S);
  6526. float sum = 0.0f;
  6527. {
  6528. #ifdef GGML_SOFT_MAX_ACCELERATE
  6529. max = -max;
  6530. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6531. vvexpf(S, S, &Mup);
  6532. ggml_vec_sum_f32(Mup, &sum, S);
  6533. #else
  6534. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6535. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6536. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6537. float * SS = S + i;
  6538. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6539. if (SS[j] == -INFINITY) {
  6540. SS[j] = 0.0f;
  6541. } else {
  6542. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6543. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6544. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6545. sump[j] += val;
  6546. SS[j] = val;
  6547. }
  6548. }
  6549. }
  6550. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6551. sum += sump[i];
  6552. }
  6553. #endif
  6554. }
  6555. assert(sum > 0.0f);
  6556. sum = 1.0/sum;
  6557. ggml_vec_scale_f32(M, S, sum);
  6558. #ifndef NDEBUG
  6559. for (int i = 0; i < M; ++i) {
  6560. assert(!isnan(S[i]));
  6561. assert(!isinf(S[i]));
  6562. }
  6563. #endif
  6564. }
  6565. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6566. for (int i = 0; i < M; i++) {
  6567. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6568. }
  6569. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6570. for (int ic = 0; ic < nev1; ++ic) {
  6571. // dst indices
  6572. const int i1 = iq1;
  6573. const int i2 = iq2;
  6574. const int i3 = iq3;
  6575. ggml_vec_dot_f16(nek1,
  6576. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6577. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6578. S16);
  6579. }
  6580. } else {
  6581. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6582. // dst indices
  6583. const int i1 = iq1;
  6584. const int i2 = iq2;
  6585. const int i3 = iq3;
  6586. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6587. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6588. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6589. S16);
  6590. }
  6591. }
  6592. }
  6593. }
  6594. static void ggml_compute_forward_flash_attn(
  6595. const struct ggml_compute_params * params,
  6596. const struct ggml_tensor * q,
  6597. const struct ggml_tensor * k,
  6598. const struct ggml_tensor * v,
  6599. const bool masked,
  6600. struct ggml_tensor * dst) {
  6601. switch (q->type) {
  6602. case GGML_TYPE_F16:
  6603. {
  6604. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6605. } break;
  6606. case GGML_TYPE_F32:
  6607. {
  6608. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6609. } break;
  6610. case GGML_TYPE_Q4_0:
  6611. case GGML_TYPE_Q4_1:
  6612. case GGML_TYPE_I8:
  6613. case GGML_TYPE_I16:
  6614. case GGML_TYPE_I32:
  6615. case GGML_TYPE_COUNT:
  6616. {
  6617. GGML_ASSERT(false);
  6618. } break;
  6619. }
  6620. }
  6621. // ggml_compute_forward_flash_ff
  6622. static void ggml_compute_forward_flash_ff_f16(
  6623. const struct ggml_compute_params * params,
  6624. const struct ggml_tensor * a, // F16
  6625. const struct ggml_tensor * b0, // F16 fc_w
  6626. const struct ggml_tensor * b1, // F32 fc_b
  6627. const struct ggml_tensor * c0, // F16 proj_w
  6628. const struct ggml_tensor * c1, // F32 proj_b
  6629. struct ggml_tensor * dst) {
  6630. int64_t t0 = ggml_perf_time_us();
  6631. UNUSED(t0);
  6632. const int nea0 = a->ne[0];
  6633. const int nea1 = a->ne[1];
  6634. const int nea2 = a->ne[2];
  6635. const int nea3 = a->ne[3];
  6636. const int neb00 = b0->ne[0];
  6637. const int neb01 = b0->ne[1];
  6638. //const int neb02 = b0->ne[2];
  6639. //const int neb03 = b0->ne[3];
  6640. const int neb10 = b1->ne[0];
  6641. const int neb11 = b1->ne[1];
  6642. //const int neb12 = b1->ne[2];
  6643. //const int neb13 = b1->ne[3];
  6644. const int nec00 = c0->ne[0];
  6645. const int nec01 = c0->ne[1];
  6646. //const int nec02 = c0->ne[2];
  6647. //const int nec03 = c0->ne[3];
  6648. const int nec10 = c1->ne[0];
  6649. const int nec11 = c1->ne[1];
  6650. //const int nec12 = c1->ne[2];
  6651. //const int nec13 = c1->ne[3];
  6652. const int ne0 = dst->ne[0];
  6653. const int ne1 = dst->ne[1];
  6654. const int ne2 = dst->ne[2];
  6655. //const int ne3 = dst->ne[3];
  6656. const int nba0 = a->nb[0];
  6657. const int nba1 = a->nb[1];
  6658. const int nba2 = a->nb[2];
  6659. const int nba3 = a->nb[3];
  6660. const int nbb00 = b0->nb[0];
  6661. const int nbb01 = b0->nb[1];
  6662. const int nbb02 = b0->nb[2];
  6663. const int nbb03 = b0->nb[3];
  6664. const int nbb10 = b1->nb[0];
  6665. //const int nbb11 = b1->nb[1];
  6666. //const int nbb12 = b1->nb[2];
  6667. //const int nbb13 = b1->nb[3];
  6668. const int nbc00 = c0->nb[0];
  6669. const int nbc01 = c0->nb[1];
  6670. const int nbc02 = c0->nb[2];
  6671. const int nbc03 = c0->nb[3];
  6672. const int nbc10 = c1->nb[0];
  6673. //const int nbc11 = c1->nb[1];
  6674. //const int nbc12 = c1->nb[2];
  6675. //const int nbc13 = c1->nb[3];
  6676. const int nb0 = dst->nb[0];
  6677. const int nb1 = dst->nb[1];
  6678. const int nb2 = dst->nb[2];
  6679. const int nb3 = dst->nb[3];
  6680. const int ith = params->ith;
  6681. const int nth = params->nth;
  6682. const int D = nea0;
  6683. //const int N = nea1;
  6684. const int M = neb01;
  6685. GGML_ASSERT(ne0 == nea0);
  6686. GGML_ASSERT(ne1 == nea1);
  6687. GGML_ASSERT(ne2 == nea2);
  6688. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6689. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6690. GGML_ASSERT(nbb10 == sizeof(float));
  6691. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6692. GGML_ASSERT(nbc10 == sizeof(float));
  6693. GGML_ASSERT(neb00 == D);
  6694. GGML_ASSERT(neb01 == M);
  6695. GGML_ASSERT(neb10 == M);
  6696. GGML_ASSERT(neb11 == 1);
  6697. GGML_ASSERT(nec00 == M);
  6698. GGML_ASSERT(nec01 == D);
  6699. GGML_ASSERT(nec10 == D);
  6700. GGML_ASSERT(nec11 == 1);
  6701. // dst cannot be transposed or permuted
  6702. GGML_ASSERT(nb0 == sizeof(float));
  6703. GGML_ASSERT(nb0 <= nb1);
  6704. GGML_ASSERT(nb1 <= nb2);
  6705. GGML_ASSERT(nb2 <= nb3);
  6706. if (params->type == GGML_TASK_INIT) {
  6707. return;
  6708. }
  6709. if (params->type == GGML_TASK_FINALIZE) {
  6710. return;
  6711. }
  6712. // parallelize by a rows using ggml_vec_dot_f32
  6713. // total rows in a
  6714. const int nr = nea1*nea2*nea3;
  6715. // rows per thread
  6716. const int dr = (nr + nth - 1)/nth;
  6717. // row range for this thread
  6718. const int ir0 = dr*ith;
  6719. const int ir1 = MIN(ir0 + dr, nr);
  6720. for (int ir = ir0; ir < ir1; ++ir) {
  6721. // a indices
  6722. const int ia3 = ir/(nea2*nea1);
  6723. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6724. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6725. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6726. for (int ic = 0; ic < neb01; ++ic) {
  6727. // b0 indices
  6728. const int ib03 = ia3;
  6729. const int ib02 = ia2;
  6730. const int ib01 = ic;
  6731. // S indices
  6732. const int i1 = ib01;
  6733. ggml_vec_dot_f16(nea0,
  6734. S + i1,
  6735. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6736. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6737. }
  6738. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6739. //ggml_vec_gelu_f32(neb01, S, S);
  6740. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6741. for (int i = 0; i < M; i++) {
  6742. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6743. }
  6744. ggml_vec_gelu_f16(neb01, S16, S16);
  6745. {
  6746. // dst indices
  6747. const int i1 = ia1;
  6748. const int i2 = ia2;
  6749. const int i3 = ia3;
  6750. for (int ic = 0; ic < nec01; ++ic) {
  6751. ggml_vec_dot_f16(neb01,
  6752. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6753. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6754. S16);
  6755. }
  6756. ggml_vec_add_f32(nec01,
  6757. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6758. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6759. (float *) c1->data);
  6760. }
  6761. }
  6762. }
  6763. static void ggml_compute_forward_flash_ff(
  6764. const struct ggml_compute_params * params,
  6765. const struct ggml_tensor * a,
  6766. const struct ggml_tensor * b0,
  6767. const struct ggml_tensor * b1,
  6768. const struct ggml_tensor * c0,
  6769. const struct ggml_tensor * c1,
  6770. struct ggml_tensor * dst) {
  6771. switch (b0->type) {
  6772. case GGML_TYPE_F16:
  6773. {
  6774. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6775. } break;
  6776. case GGML_TYPE_F32:
  6777. {
  6778. GGML_ASSERT(false); // TODO
  6779. } break;
  6780. case GGML_TYPE_Q4_0:
  6781. case GGML_TYPE_Q4_1:
  6782. case GGML_TYPE_I8:
  6783. case GGML_TYPE_I16:
  6784. case GGML_TYPE_I32:
  6785. case GGML_TYPE_COUNT:
  6786. {
  6787. GGML_ASSERT(false);
  6788. } break;
  6789. }
  6790. }
  6791. /////////////////////////////////
  6792. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6793. GGML_ASSERT(params);
  6794. switch (tensor->op) {
  6795. case GGML_OP_DUP:
  6796. {
  6797. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6798. } break;
  6799. case GGML_OP_ADD:
  6800. {
  6801. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6802. } break;
  6803. case GGML_OP_SUB:
  6804. {
  6805. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6806. } break;
  6807. case GGML_OP_MUL:
  6808. {
  6809. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6810. } break;
  6811. case GGML_OP_DIV:
  6812. {
  6813. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6814. } break;
  6815. case GGML_OP_SQR:
  6816. {
  6817. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6818. } break;
  6819. case GGML_OP_SQRT:
  6820. {
  6821. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6822. } break;
  6823. case GGML_OP_SUM:
  6824. {
  6825. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6826. } break;
  6827. case GGML_OP_MEAN:
  6828. {
  6829. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6830. } break;
  6831. case GGML_OP_REPEAT:
  6832. {
  6833. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6834. } break;
  6835. case GGML_OP_ABS:
  6836. {
  6837. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6838. } break;
  6839. case GGML_OP_SGN:
  6840. {
  6841. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6842. } break;
  6843. case GGML_OP_NEG:
  6844. {
  6845. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6846. } break;
  6847. case GGML_OP_STEP:
  6848. {
  6849. ggml_compute_forward_step(params, tensor->src0, tensor);
  6850. } break;
  6851. case GGML_OP_RELU:
  6852. {
  6853. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6854. } break;
  6855. case GGML_OP_GELU:
  6856. {
  6857. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6858. } break;
  6859. case GGML_OP_SILU:
  6860. {
  6861. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6862. } break;
  6863. case GGML_OP_NORM:
  6864. {
  6865. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6866. } break;
  6867. case GGML_OP_RMS_NORM:
  6868. {
  6869. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6870. } break;
  6871. case GGML_OP_MUL_MAT:
  6872. {
  6873. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6874. } break;
  6875. case GGML_OP_SCALE:
  6876. {
  6877. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6878. } break;
  6879. case GGML_OP_CPY:
  6880. {
  6881. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6882. } break;
  6883. case GGML_OP_RESHAPE:
  6884. {
  6885. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6886. } break;
  6887. case GGML_OP_VIEW:
  6888. {
  6889. ggml_compute_forward_view(params, tensor->src0);
  6890. } break;
  6891. case GGML_OP_PERMUTE:
  6892. {
  6893. ggml_compute_forward_permute(params, tensor->src0);
  6894. } break;
  6895. case GGML_OP_TRANSPOSE:
  6896. {
  6897. ggml_compute_forward_transpose(params, tensor->src0);
  6898. } break;
  6899. case GGML_OP_GET_ROWS:
  6900. {
  6901. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6902. } break;
  6903. case GGML_OP_DIAG_MASK_INF:
  6904. {
  6905. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6906. } break;
  6907. case GGML_OP_SOFT_MAX:
  6908. {
  6909. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6910. } break;
  6911. case GGML_OP_ROPE:
  6912. {
  6913. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6914. } break;
  6915. case GGML_OP_CONV_1D_1S:
  6916. {
  6917. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6918. } break;
  6919. case GGML_OP_CONV_1D_2S:
  6920. {
  6921. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6922. } break;
  6923. case GGML_OP_FLASH_ATTN:
  6924. {
  6925. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6926. GGML_ASSERT(t == 0 || t == 1);
  6927. bool masked = t != 0;
  6928. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6929. } break;
  6930. case GGML_OP_FLASH_FF:
  6931. {
  6932. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6933. } break;
  6934. case GGML_OP_NONE:
  6935. {
  6936. // nop
  6937. } break;
  6938. case GGML_OP_COUNT:
  6939. {
  6940. GGML_ASSERT(false);
  6941. } break;
  6942. }
  6943. }
  6944. ////////////////////////////////////////////////////////////////////////////////
  6945. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6946. struct ggml_tensor * src0 = tensor->src0;
  6947. struct ggml_tensor * src1 = tensor->src1;
  6948. switch (tensor->op) {
  6949. case GGML_OP_DUP:
  6950. {
  6951. if (src0->grad) {
  6952. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6953. }
  6954. } break;
  6955. case GGML_OP_ADD:
  6956. {
  6957. if (src0->grad) {
  6958. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6959. }
  6960. if (src1->grad) {
  6961. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6962. }
  6963. } break;
  6964. case GGML_OP_SUB:
  6965. {
  6966. if (src0->grad) {
  6967. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6968. }
  6969. if (src1->grad) {
  6970. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6971. }
  6972. } break;
  6973. case GGML_OP_MUL:
  6974. {
  6975. if (src0->grad) {
  6976. src0->grad =
  6977. ggml_add_impl(ctx,
  6978. src0->grad,
  6979. ggml_mul(ctx, src1, tensor->grad),
  6980. inplace);
  6981. }
  6982. if (src1->grad) {
  6983. src1->grad =
  6984. ggml_add_impl(ctx,
  6985. src1->grad,
  6986. ggml_mul(ctx, src0, tensor->grad),
  6987. inplace);
  6988. }
  6989. } break;
  6990. case GGML_OP_DIV:
  6991. {
  6992. if (src0->grad) {
  6993. src0->grad =
  6994. ggml_add_impl(ctx,
  6995. src0->grad,
  6996. ggml_div(ctx, tensor->grad, src1),
  6997. inplace);
  6998. }
  6999. if (src1->grad) {
  7000. src1->grad =
  7001. ggml_sub_impl(ctx,
  7002. src1->grad,
  7003. ggml_mul(ctx,
  7004. tensor->grad,
  7005. ggml_div(ctx, tensor, src1)),
  7006. inplace);
  7007. }
  7008. } break;
  7009. case GGML_OP_SQR:
  7010. {
  7011. if (src0->grad) {
  7012. src0->grad =
  7013. ggml_add_impl(ctx,
  7014. src0->grad,
  7015. ggml_mul(ctx,
  7016. ggml_mul(ctx, src0, tensor->grad),
  7017. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7018. inplace);
  7019. }
  7020. } break;
  7021. case GGML_OP_SQRT:
  7022. {
  7023. if (src0->grad) {
  7024. src0->grad =
  7025. ggml_add_impl(ctx,
  7026. src0->grad,
  7027. ggml_div(ctx,
  7028. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7029. tensor),
  7030. inplace);
  7031. }
  7032. } break;
  7033. case GGML_OP_SUM:
  7034. {
  7035. if (src0->grad) {
  7036. src0->grad =
  7037. ggml_add_impl(ctx,
  7038. src0->grad,
  7039. ggml_repeat(ctx, tensor->grad, src0->grad),
  7040. inplace);
  7041. }
  7042. } break;
  7043. case GGML_OP_MEAN:
  7044. {
  7045. GGML_ASSERT(false); // TODO: implement
  7046. } break;
  7047. case GGML_OP_REPEAT:
  7048. {
  7049. if (src0->grad) {
  7050. src0->grad =
  7051. ggml_add_impl(ctx,
  7052. src0->grad,
  7053. ggml_sum(ctx, tensor->grad),
  7054. inplace);
  7055. }
  7056. } break;
  7057. case GGML_OP_ABS:
  7058. {
  7059. if (src0->grad) {
  7060. src0->grad =
  7061. ggml_add_impl(ctx,
  7062. src0->grad,
  7063. ggml_mul(ctx,
  7064. ggml_sgn(ctx, src0),
  7065. tensor->grad),
  7066. inplace);
  7067. }
  7068. } break;
  7069. case GGML_OP_SGN:
  7070. {
  7071. if (src0->grad) {
  7072. // noop
  7073. }
  7074. } break;
  7075. case GGML_OP_NEG:
  7076. {
  7077. if (src0->grad) {
  7078. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7079. }
  7080. } break;
  7081. case GGML_OP_STEP:
  7082. {
  7083. if (src0->grad) {
  7084. // noop
  7085. }
  7086. } break;
  7087. case GGML_OP_RELU:
  7088. {
  7089. if (src0->grad) {
  7090. src0->grad = ggml_sub_impl(ctx,
  7091. src0->grad,
  7092. ggml_mul(ctx,
  7093. ggml_step(ctx, src0),
  7094. tensor->grad),
  7095. inplace);
  7096. }
  7097. } break;
  7098. case GGML_OP_GELU:
  7099. {
  7100. GGML_ASSERT(false); // TODO: not implemented
  7101. } break;
  7102. case GGML_OP_SILU:
  7103. {
  7104. GGML_ASSERT(false); // TODO: not implemented
  7105. } break;
  7106. case GGML_OP_NORM:
  7107. {
  7108. GGML_ASSERT(false); // TODO: not implemented
  7109. } break;
  7110. case GGML_OP_RMS_NORM:
  7111. {
  7112. GGML_ASSERT(false); // TODO: not implemented
  7113. } break;
  7114. case GGML_OP_MUL_MAT:
  7115. {
  7116. if (src0->grad) {
  7117. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7118. GGML_ASSERT(false);
  7119. }
  7120. if (src1->grad) {
  7121. src1->grad =
  7122. ggml_add_impl(ctx,
  7123. src1->grad,
  7124. // TODO: fix transpose, the node will break the graph connections
  7125. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7126. inplace);
  7127. }
  7128. } break;
  7129. case GGML_OP_SCALE:
  7130. {
  7131. GGML_ASSERT(false); // TODO: not implemented
  7132. } break;
  7133. case GGML_OP_CPY:
  7134. {
  7135. GGML_ASSERT(false); // TODO: not implemented
  7136. } break;
  7137. case GGML_OP_RESHAPE:
  7138. {
  7139. GGML_ASSERT(false); // TODO: not implemented
  7140. } break;
  7141. case GGML_OP_VIEW:
  7142. {
  7143. GGML_ASSERT(false); // not supported
  7144. } break;
  7145. case GGML_OP_PERMUTE:
  7146. {
  7147. GGML_ASSERT(false); // TODO: not implemented
  7148. } break;
  7149. case GGML_OP_TRANSPOSE:
  7150. {
  7151. GGML_ASSERT(false); // TODO: not implemented
  7152. } break;
  7153. case GGML_OP_GET_ROWS:
  7154. {
  7155. GGML_ASSERT(false); // TODO: not implemented
  7156. } break;
  7157. case GGML_OP_DIAG_MASK_INF:
  7158. {
  7159. GGML_ASSERT(false); // TODO: not implemented
  7160. } break;
  7161. case GGML_OP_SOFT_MAX:
  7162. {
  7163. GGML_ASSERT(false); // TODO: not implemented
  7164. } break;
  7165. case GGML_OP_ROPE:
  7166. {
  7167. GGML_ASSERT(false); // TODO: not implemented
  7168. } break;
  7169. case GGML_OP_CONV_1D_1S:
  7170. {
  7171. GGML_ASSERT(false); // TODO: not implemented
  7172. } break;
  7173. case GGML_OP_CONV_1D_2S:
  7174. {
  7175. GGML_ASSERT(false); // TODO: not implemented
  7176. } break;
  7177. case GGML_OP_FLASH_ATTN:
  7178. {
  7179. GGML_ASSERT(false); // not supported
  7180. } break;
  7181. case GGML_OP_FLASH_FF:
  7182. {
  7183. GGML_ASSERT(false); // not supported
  7184. } break;
  7185. case GGML_OP_NONE:
  7186. {
  7187. // nop
  7188. } break;
  7189. case GGML_OP_COUNT:
  7190. {
  7191. GGML_ASSERT(false);
  7192. } break;
  7193. }
  7194. }
  7195. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7196. if (node->grad == NULL) {
  7197. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7198. // it can also happen during forward pass, if the user performs computations with constants
  7199. if (node->op != GGML_OP_NONE) {
  7200. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7201. }
  7202. }
  7203. // check if already visited
  7204. for (int i = 0; i < cgraph->n_nodes; i++) {
  7205. if (cgraph->nodes[i] == node) {
  7206. return;
  7207. }
  7208. }
  7209. for (int i = 0; i < cgraph->n_leafs; i++) {
  7210. if (cgraph->leafs[i] == node) {
  7211. return;
  7212. }
  7213. }
  7214. if (node->src0) {
  7215. ggml_visit_parents(cgraph, node->src0);
  7216. }
  7217. if (node->src1) {
  7218. ggml_visit_parents(cgraph, node->src1);
  7219. }
  7220. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7221. if (node->opt[i]) {
  7222. ggml_visit_parents(cgraph, node->opt[i]);
  7223. }
  7224. }
  7225. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7226. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7227. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7228. cgraph->leafs[cgraph->n_leafs] = node;
  7229. cgraph->n_leafs++;
  7230. } else {
  7231. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7232. cgraph->nodes[cgraph->n_nodes] = node;
  7233. cgraph->grads[cgraph->n_nodes] = node->grad;
  7234. cgraph->n_nodes++;
  7235. }
  7236. }
  7237. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7238. if (!expand) {
  7239. cgraph->n_nodes = 0;
  7240. cgraph->n_leafs = 0;
  7241. }
  7242. const int n0 = cgraph->n_nodes;
  7243. UNUSED(n0);
  7244. ggml_visit_parents(cgraph, tensor);
  7245. const int n_new = cgraph->n_nodes - n0;
  7246. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7247. if (n_new > 0) {
  7248. // the last added node should always be starting point
  7249. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7250. }
  7251. }
  7252. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7253. ggml_build_forward_impl(cgraph, tensor, true);
  7254. }
  7255. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7256. struct ggml_cgraph result = {
  7257. /*.n_nodes =*/ 0,
  7258. /*.n_leafs =*/ 0,
  7259. /*.n_threads =*/ 0,
  7260. /*.work_size =*/ 0,
  7261. /*.work =*/ NULL,
  7262. /*.nodes =*/ { NULL },
  7263. /*.grads =*/ { NULL },
  7264. /*.leafs =*/ { NULL },
  7265. /*.perf_runs =*/ 0,
  7266. /*.perf_cycles =*/ 0,
  7267. /*.perf_time_us =*/ 0,
  7268. };
  7269. ggml_build_forward_impl(&result, tensor, false);
  7270. return result;
  7271. }
  7272. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7273. struct ggml_cgraph result = *gf;
  7274. GGML_ASSERT(gf->n_nodes > 0);
  7275. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7276. if (keep) {
  7277. for (int i = 0; i < gf->n_nodes; i++) {
  7278. struct ggml_tensor * node = gf->nodes[i];
  7279. if (node->grad) {
  7280. node->grad = ggml_dup_tensor(ctx, node);
  7281. gf->grads[i] = node->grad;
  7282. }
  7283. }
  7284. }
  7285. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7286. struct ggml_tensor * node = gf->nodes[i];
  7287. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7288. if (node->grad) {
  7289. ggml_compute_backward(ctx, node, keep);
  7290. }
  7291. }
  7292. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7293. struct ggml_tensor * node = gf->nodes[i];
  7294. if (node->is_param) {
  7295. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7296. ggml_build_forward_impl(&result, node->grad, true);
  7297. }
  7298. }
  7299. return result;
  7300. }
  7301. //
  7302. // thread data
  7303. //
  7304. // synchronization is done via busy loops
  7305. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7306. //
  7307. #ifdef __APPLE__
  7308. //#include <os/lock.h>
  7309. //
  7310. //typedef os_unfair_lock ggml_lock_t;
  7311. //
  7312. //#define ggml_lock_init(x) UNUSED(x)
  7313. //#define ggml_lock_destroy(x) UNUSED(x)
  7314. //#define ggml_lock_lock os_unfair_lock_lock
  7315. //#define ggml_lock_unlock os_unfair_lock_unlock
  7316. //
  7317. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7318. typedef int ggml_lock_t;
  7319. #define ggml_lock_init(x) UNUSED(x)
  7320. #define ggml_lock_destroy(x) UNUSED(x)
  7321. #define ggml_lock_lock(x) UNUSED(x)
  7322. #define ggml_lock_unlock(x) UNUSED(x)
  7323. #define GGML_LOCK_INITIALIZER 0
  7324. typedef pthread_t ggml_thread_t;
  7325. #define ggml_thread_create pthread_create
  7326. #define ggml_thread_join pthread_join
  7327. #else
  7328. //typedef pthread_spinlock_t ggml_lock_t;
  7329. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7330. //#define ggml_lock_destroy pthread_spin_destroy
  7331. //#define ggml_lock_lock pthread_spin_lock
  7332. //#define ggml_lock_unlock pthread_spin_unlock
  7333. typedef int ggml_lock_t;
  7334. #define ggml_lock_init(x) UNUSED(x)
  7335. #define ggml_lock_destroy(x) UNUSED(x)
  7336. #define ggml_lock_lock(x) UNUSED(x)
  7337. #define ggml_lock_unlock(x) UNUSED(x)
  7338. #define GGML_LOCK_INITIALIZER 0
  7339. typedef pthread_t ggml_thread_t;
  7340. #define ggml_thread_create pthread_create
  7341. #define ggml_thread_join pthread_join
  7342. #endif
  7343. struct ggml_compute_state_shared {
  7344. ggml_lock_t spin;
  7345. int n_threads;
  7346. // synchronization primitives
  7347. atomic_int n_ready;
  7348. atomic_bool has_work;
  7349. atomic_bool stop; // stop all threads
  7350. };
  7351. struct ggml_compute_state {
  7352. ggml_thread_t thrd;
  7353. struct ggml_compute_params params;
  7354. struct ggml_tensor * node;
  7355. struct ggml_compute_state_shared * shared;
  7356. };
  7357. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7358. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7359. const int n_threads = state->shared->n_threads;
  7360. while (true) {
  7361. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7362. atomic_store(&state->shared->has_work, false);
  7363. } else {
  7364. while (atomic_load(&state->shared->has_work)) {
  7365. if (atomic_load(&state->shared->stop)) {
  7366. return 0;
  7367. }
  7368. ggml_lock_lock (&state->shared->spin);
  7369. ggml_lock_unlock(&state->shared->spin);
  7370. }
  7371. }
  7372. atomic_fetch_sub(&state->shared->n_ready, 1);
  7373. // wait for work
  7374. while (!atomic_load(&state->shared->has_work)) {
  7375. if (atomic_load(&state->shared->stop)) {
  7376. return 0;
  7377. }
  7378. ggml_lock_lock (&state->shared->spin);
  7379. ggml_lock_unlock(&state->shared->spin);
  7380. }
  7381. // check if we should stop
  7382. if (atomic_load(&state->shared->stop)) {
  7383. break;
  7384. }
  7385. if (state->node) {
  7386. if (state->params.ith < state->params.nth) {
  7387. ggml_compute_forward(&state->params, state->node);
  7388. }
  7389. state->node = NULL;
  7390. } else {
  7391. break;
  7392. }
  7393. }
  7394. return 0;
  7395. }
  7396. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7397. const int n_threads = cgraph->n_threads;
  7398. struct ggml_compute_state_shared state_shared = {
  7399. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7400. /*.n_threads =*/ n_threads,
  7401. /*.n_ready =*/ 0,
  7402. /*.has_work =*/ false,
  7403. /*.stop =*/ false,
  7404. };
  7405. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7406. // create thread pool
  7407. if (n_threads > 1) {
  7408. ggml_lock_init(&state_shared.spin);
  7409. atomic_store(&state_shared.has_work, true);
  7410. for (int j = 0; j < n_threads - 1; j++) {
  7411. workers[j] = (struct ggml_compute_state) {
  7412. .thrd = 0,
  7413. .params = {
  7414. .type = GGML_TASK_COMPUTE,
  7415. .ith = j + 1,
  7416. .nth = n_threads,
  7417. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7418. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7419. },
  7420. .node = NULL,
  7421. .shared = &state_shared,
  7422. };
  7423. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7424. GGML_ASSERT(rc == 0);
  7425. UNUSED(rc);
  7426. }
  7427. }
  7428. // initialize tasks + work buffer
  7429. {
  7430. size_t work_size = 0;
  7431. // thread scheduling for the different operations
  7432. for (int i = 0; i < cgraph->n_nodes; i++) {
  7433. struct ggml_tensor * node = cgraph->nodes[i];
  7434. switch (node->op) {
  7435. case GGML_OP_DUP:
  7436. {
  7437. node->n_tasks = 1;
  7438. } break;
  7439. case GGML_OP_ADD:
  7440. {
  7441. node->n_tasks = n_threads;
  7442. } break;
  7443. case GGML_OP_SUB:
  7444. case GGML_OP_MUL:
  7445. case GGML_OP_DIV:
  7446. case GGML_OP_SQR:
  7447. case GGML_OP_SQRT:
  7448. case GGML_OP_SUM:
  7449. case GGML_OP_MEAN:
  7450. case GGML_OP_REPEAT:
  7451. case GGML_OP_ABS:
  7452. case GGML_OP_SGN:
  7453. case GGML_OP_NEG:
  7454. case GGML_OP_STEP:
  7455. case GGML_OP_RELU:
  7456. {
  7457. node->n_tasks = 1;
  7458. } break;
  7459. case GGML_OP_GELU:
  7460. {
  7461. node->n_tasks = n_threads;
  7462. } break;
  7463. case GGML_OP_SILU:
  7464. {
  7465. node->n_tasks = n_threads;
  7466. } break;
  7467. case GGML_OP_NORM:
  7468. case GGML_OP_RMS_NORM:
  7469. {
  7470. node->n_tasks = n_threads;
  7471. } break;
  7472. case GGML_OP_MUL_MAT:
  7473. {
  7474. node->n_tasks = n_threads;
  7475. // TODO: use different scheduling for different matrix sizes
  7476. //const int nr0 = ggml_nrows(node->src0);
  7477. //const int nr1 = ggml_nrows(node->src1);
  7478. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7479. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7480. size_t cur = 0;
  7481. if (node->src0->type == GGML_TYPE_F16 &&
  7482. node->src1->type == GGML_TYPE_F32) {
  7483. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7484. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7485. node->n_tasks = 1; // TODO: this actually is doing nothing
  7486. // the threads are still spinning
  7487. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7488. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7489. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7490. //printf("cur = %zu\n", cur);
  7491. } else {
  7492. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7493. }
  7494. #else
  7495. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7496. #endif
  7497. } else if (node->src0->type == GGML_TYPE_F32 &&
  7498. node->src1->type == GGML_TYPE_F32) {
  7499. cur = 0;
  7500. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7501. node->src1->type == GGML_TYPE_F32) {
  7502. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7503. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7504. node->n_tasks = 1;
  7505. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7506. } else {
  7507. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7508. }
  7509. #else
  7510. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7511. #endif
  7512. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7513. node->src1->type == GGML_TYPE_F32) {
  7514. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7515. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7516. node->n_tasks = 1;
  7517. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7518. } else {
  7519. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7520. }
  7521. #else
  7522. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7523. #endif
  7524. } else {
  7525. GGML_ASSERT(false);
  7526. }
  7527. work_size = MAX(work_size, cur);
  7528. } break;
  7529. case GGML_OP_SCALE:
  7530. {
  7531. node->n_tasks = n_threads;
  7532. } break;
  7533. case GGML_OP_CPY:
  7534. case GGML_OP_RESHAPE:
  7535. case GGML_OP_VIEW:
  7536. case GGML_OP_PERMUTE:
  7537. case GGML_OP_TRANSPOSE:
  7538. case GGML_OP_GET_ROWS:
  7539. case GGML_OP_DIAG_MASK_INF:
  7540. {
  7541. node->n_tasks = 1;
  7542. } break;
  7543. case GGML_OP_SOFT_MAX:
  7544. {
  7545. node->n_tasks = n_threads;
  7546. } break;
  7547. case GGML_OP_ROPE:
  7548. {
  7549. node->n_tasks = 1;
  7550. } break;
  7551. case GGML_OP_CONV_1D_1S:
  7552. case GGML_OP_CONV_1D_2S:
  7553. {
  7554. node->n_tasks = n_threads;
  7555. GGML_ASSERT(node->src0->ne[3] == 1);
  7556. GGML_ASSERT(node->src1->ne[2] == 1);
  7557. GGML_ASSERT(node->src1->ne[3] == 1);
  7558. size_t cur = 0;
  7559. const int nk = node->src0->ne[0];
  7560. if (node->src0->type == GGML_TYPE_F16 &&
  7561. node->src1->type == GGML_TYPE_F32) {
  7562. cur = sizeof(ggml_fp16_t)*(
  7563. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7564. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7565. );
  7566. } else if (node->src0->type == GGML_TYPE_F32 &&
  7567. node->src1->type == GGML_TYPE_F32) {
  7568. cur = sizeof(float)*(
  7569. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7570. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7571. );
  7572. } else {
  7573. GGML_ASSERT(false);
  7574. }
  7575. work_size = MAX(work_size, cur);
  7576. } break;
  7577. case GGML_OP_FLASH_ATTN:
  7578. {
  7579. node->n_tasks = n_threads;
  7580. size_t cur = 0;
  7581. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7582. if (node->src1->type == GGML_TYPE_F32) {
  7583. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7584. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7585. }
  7586. if (node->src1->type == GGML_TYPE_F16) {
  7587. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7588. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7589. }
  7590. work_size = MAX(work_size, cur);
  7591. } break;
  7592. case GGML_OP_FLASH_FF:
  7593. {
  7594. node->n_tasks = n_threads;
  7595. size_t cur = 0;
  7596. if (node->src1->type == GGML_TYPE_F32) {
  7597. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7598. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7599. }
  7600. if (node->src1->type == GGML_TYPE_F16) {
  7601. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7602. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7603. }
  7604. work_size = MAX(work_size, cur);
  7605. } break;
  7606. case GGML_OP_NONE:
  7607. {
  7608. node->n_tasks = 1;
  7609. } break;
  7610. case GGML_OP_COUNT:
  7611. {
  7612. GGML_ASSERT(false);
  7613. } break;
  7614. }
  7615. }
  7616. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7617. GGML_ASSERT(false); // TODO: better handling
  7618. }
  7619. if (work_size > 0 && cgraph->work == NULL) {
  7620. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7621. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7622. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7623. }
  7624. }
  7625. const int64_t perf_start_cycles = ggml_perf_cycles();
  7626. const int64_t perf_start_time_us = ggml_perf_time_us();
  7627. for (int i = 0; i < cgraph->n_nodes; i++) {
  7628. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7629. struct ggml_tensor * node = cgraph->nodes[i];
  7630. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7631. //if (node->grad == NULL && node->perf_runs > 0) {
  7632. // continue;
  7633. //}
  7634. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7635. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7636. // INIT
  7637. struct ggml_compute_params params = {
  7638. /*.type =*/ GGML_TASK_INIT,
  7639. /*.ith =*/ 0,
  7640. /*.nth =*/ node->n_tasks,
  7641. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7642. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7643. };
  7644. ggml_compute_forward(&params, node);
  7645. // COMPUTE
  7646. if (node->n_tasks > 1) {
  7647. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7648. atomic_store(&state_shared.has_work, false);
  7649. }
  7650. while (atomic_load(&state_shared.has_work)) {
  7651. ggml_lock_lock (&state_shared.spin);
  7652. ggml_lock_unlock(&state_shared.spin);
  7653. }
  7654. // launch thread pool
  7655. for (int j = 0; j < n_threads - 1; j++) {
  7656. workers[j].params = (struct ggml_compute_params) {
  7657. .type = GGML_TASK_COMPUTE,
  7658. .ith = j + 1,
  7659. .nth = node->n_tasks,
  7660. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7661. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7662. };
  7663. workers[j].node = node;
  7664. }
  7665. atomic_fetch_sub(&state_shared.n_ready, 1);
  7666. while (atomic_load(&state_shared.n_ready) > 0) {
  7667. ggml_lock_lock (&state_shared.spin);
  7668. ggml_lock_unlock(&state_shared.spin);
  7669. }
  7670. atomic_store(&state_shared.has_work, true);
  7671. }
  7672. params.type = GGML_TASK_COMPUTE;
  7673. ggml_compute_forward(&params, node);
  7674. // wait for thread pool
  7675. if (node->n_tasks > 1) {
  7676. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7677. atomic_store(&state_shared.has_work, false);
  7678. }
  7679. while (atomic_load(&state_shared.has_work)) {
  7680. ggml_lock_lock (&state_shared.spin);
  7681. ggml_lock_unlock(&state_shared.spin);
  7682. }
  7683. atomic_fetch_sub(&state_shared.n_ready, 1);
  7684. while (atomic_load(&state_shared.n_ready) != 0) {
  7685. ggml_lock_lock (&state_shared.spin);
  7686. ggml_lock_unlock(&state_shared.spin);
  7687. }
  7688. }
  7689. // FINALIZE
  7690. if (node->n_tasks > 1) {
  7691. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7692. atomic_store(&state_shared.has_work, false);
  7693. }
  7694. while (atomic_load(&state_shared.has_work)) {
  7695. ggml_lock_lock (&state_shared.spin);
  7696. ggml_lock_unlock(&state_shared.spin);
  7697. }
  7698. // launch thread pool
  7699. for (int j = 0; j < n_threads - 1; j++) {
  7700. workers[j].params = (struct ggml_compute_params) {
  7701. .type = GGML_TASK_FINALIZE,
  7702. .ith = j + 1,
  7703. .nth = node->n_tasks,
  7704. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7705. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7706. };
  7707. workers[j].node = node;
  7708. }
  7709. atomic_fetch_sub(&state_shared.n_ready, 1);
  7710. while (atomic_load(&state_shared.n_ready) > 0) {
  7711. ggml_lock_lock (&state_shared.spin);
  7712. ggml_lock_unlock(&state_shared.spin);
  7713. }
  7714. atomic_store(&state_shared.has_work, true);
  7715. }
  7716. params.type = GGML_TASK_FINALIZE;
  7717. ggml_compute_forward(&params, node);
  7718. // wait for thread pool
  7719. if (node->n_tasks > 1) {
  7720. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7721. atomic_store(&state_shared.has_work, false);
  7722. }
  7723. while (atomic_load(&state_shared.has_work)) {
  7724. ggml_lock_lock (&state_shared.spin);
  7725. ggml_lock_unlock(&state_shared.spin);
  7726. }
  7727. atomic_fetch_sub(&state_shared.n_ready, 1);
  7728. while (atomic_load(&state_shared.n_ready) != 0) {
  7729. ggml_lock_lock (&state_shared.spin);
  7730. ggml_lock_unlock(&state_shared.spin);
  7731. }
  7732. }
  7733. // performance stats (node)
  7734. {
  7735. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7736. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7737. node->perf_runs++;
  7738. node->perf_cycles += perf_cycles_cur;
  7739. node->perf_time_us += perf_time_us_cur;
  7740. }
  7741. }
  7742. // join thread pool
  7743. if (n_threads > 1) {
  7744. atomic_store(&state_shared.stop, true);
  7745. atomic_store(&state_shared.has_work, true);
  7746. for (int j = 0; j < n_threads - 1; j++) {
  7747. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7748. GGML_ASSERT(rc == 0);
  7749. UNUSED(rc);
  7750. }
  7751. ggml_lock_destroy(&state_shared.spin);
  7752. }
  7753. // performance stats (graph)
  7754. {
  7755. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7756. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7757. cgraph->perf_runs++;
  7758. cgraph->perf_cycles += perf_cycles_cur;
  7759. cgraph->perf_time_us += perf_time_us_cur;
  7760. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7761. __func__, cgraph->perf_runs,
  7762. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7763. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7764. (double) perf_time_us_cur / 1000.0,
  7765. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7766. }
  7767. }
  7768. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7769. for (int i = 0; i < cgraph->n_nodes; i++) {
  7770. struct ggml_tensor * grad = cgraph->grads[i];
  7771. if (grad) {
  7772. ggml_set_zero(grad);
  7773. }
  7774. }
  7775. }
  7776. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7777. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7778. GGML_PRINT("=== GRAPH ===\n");
  7779. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7780. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7781. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7782. for (int i = 0; i < cgraph->n_nodes; i++) {
  7783. struct ggml_tensor * node = cgraph->nodes[i];
  7784. perf_total_per_op_us[node->op] += node->perf_time_us;
  7785. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7786. i,
  7787. node->ne[0], node->ne[1], node->ne[2],
  7788. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7789. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7790. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7791. (double) node->perf_time_us / 1000.0,
  7792. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7793. }
  7794. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7795. for (int i = 0; i < cgraph->n_leafs; i++) {
  7796. struct ggml_tensor * node = cgraph->leafs[i];
  7797. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7798. i,
  7799. node->ne[0], node->ne[1],
  7800. GGML_OP_LABEL[node->op]);
  7801. }
  7802. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7803. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7804. }
  7805. GGML_PRINT("========================================\n");
  7806. }
  7807. // check if node is part of the graph
  7808. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7809. if (cgraph == NULL) {
  7810. return true;
  7811. }
  7812. for (int i = 0; i < cgraph->n_nodes; i++) {
  7813. if (cgraph->nodes[i] == node) {
  7814. return true;
  7815. }
  7816. }
  7817. return false;
  7818. }
  7819. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7820. for (int i = 0; i < cgraph->n_nodes; i++) {
  7821. struct ggml_tensor * parent = cgraph->nodes[i];
  7822. if (parent->grad == node) {
  7823. return parent;
  7824. }
  7825. }
  7826. return NULL;
  7827. }
  7828. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7829. char color[16];
  7830. FILE * fp = fopen(filename, "w");
  7831. GGML_ASSERT(fp);
  7832. fprintf(fp, "digraph G {\n");
  7833. fprintf(fp, " newrank = true;\n");
  7834. fprintf(fp, " rankdir = LR;\n");
  7835. for (int i = 0; i < gb->n_nodes; i++) {
  7836. struct ggml_tensor * node = gb->nodes[i];
  7837. if (ggml_graph_get_parent(gb, node) != NULL) {
  7838. continue;
  7839. }
  7840. if (node->is_param) {
  7841. snprintf(color, sizeof(color), "yellow");
  7842. } else if (node->grad) {
  7843. if (ggml_graph_find(gf, node)) {
  7844. snprintf(color, sizeof(color), "green");
  7845. } else {
  7846. snprintf(color, sizeof(color), "lightblue");
  7847. }
  7848. } else {
  7849. snprintf(color, sizeof(color), "white");
  7850. }
  7851. fprintf(fp, " \"%p\" [ \
  7852. style = filled; fillcolor = %s; shape = record; \
  7853. label=\"%d [%d, %d] | <x>%s",
  7854. (void *) node, color,
  7855. i, node->ne[0], node->ne[1],
  7856. GGML_OP_SYMBOL[node->op]);
  7857. if (node->grad) {
  7858. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7859. } else {
  7860. fprintf(fp, "\"; ]\n");
  7861. }
  7862. }
  7863. for (int i = 0; i < gb->n_leafs; i++) {
  7864. struct ggml_tensor * node = gb->leafs[i];
  7865. snprintf(color, sizeof(color), "pink");
  7866. if (ggml_nelements(node) == 1) {
  7867. fprintf(fp, " \"%p\" [ \
  7868. style = filled; fillcolor = %s; shape = record; \
  7869. label=\"<x>%.1e\"; ]\n",
  7870. (void *) node, color, ggml_get_f32_1d(node, 0));
  7871. } else {
  7872. fprintf(fp, " \"%p\" [ \
  7873. style = filled; fillcolor = %s; shape = record; \
  7874. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7875. (void *) node, color,
  7876. i, node->ne[0], node->ne[1]);
  7877. }
  7878. }
  7879. for (int i = 0; i < gb->n_nodes; i++) {
  7880. struct ggml_tensor * node = gb->nodes[i];
  7881. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7882. if (node->src0) {
  7883. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7884. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7885. parent0 ? (void *) parent0 : (void *) node->src0,
  7886. parent0 ? "g" : "x",
  7887. parent ? (void *) parent : (void *) node,
  7888. parent ? "g" : "x",
  7889. parent ? "empty" : "vee",
  7890. parent ? "dashed" : "solid");
  7891. }
  7892. if (node->src1) {
  7893. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7894. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7895. parent1 ? (void *) parent1 : (void *) node->src1,
  7896. parent1 ? "g" : "x",
  7897. parent ? (void *) parent : (void *) node,
  7898. parent ? "g" : "x",
  7899. parent ? "empty" : "vee",
  7900. parent ? "dashed" : "solid");
  7901. }
  7902. }
  7903. for (int i = 0; i < gb->n_leafs; i++) {
  7904. struct ggml_tensor * node = gb->leafs[i];
  7905. if (node->src0) {
  7906. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7907. (void *) node->src0, "x",
  7908. (void *) node, "x");
  7909. }
  7910. if (node->src1) {
  7911. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7912. (void *) node->src1, "x",
  7913. (void *) node, "x");
  7914. }
  7915. }
  7916. fprintf(fp, "}\n");
  7917. fclose(fp);
  7918. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7919. }
  7920. ////////////////////////////////////////////////////////////////////////////////
  7921. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7922. int i = 0;
  7923. for (int p = 0; p < np; ++p) {
  7924. const int ne = ggml_nelements(ps[p]) ;
  7925. // TODO: add function to set tensor from array
  7926. for (int j = 0; j < ne; ++j) {
  7927. ggml_set_f32_1d(ps[p], j, x[i++]);
  7928. }
  7929. }
  7930. }
  7931. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7932. int i = 0;
  7933. for (int p = 0; p < np; ++p) {
  7934. const int ne = ggml_nelements(ps[p]) ;
  7935. // TODO: add function to get all elements at once
  7936. for (int j = 0; j < ne; ++j) {
  7937. x[i++] = ggml_get_f32_1d(ps[p], j);
  7938. }
  7939. }
  7940. }
  7941. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7942. int i = 0;
  7943. for (int p = 0; p < np; ++p) {
  7944. const int ne = ggml_nelements(ps[p]) ;
  7945. // TODO: add function to get all elements at once
  7946. for (int j = 0; j < ne; ++j) {
  7947. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7948. }
  7949. }
  7950. }
  7951. //
  7952. // ADAM
  7953. //
  7954. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7955. //
  7956. static enum ggml_opt_result ggml_opt_adam(
  7957. struct ggml_context * ctx,
  7958. struct ggml_opt_params params,
  7959. struct ggml_tensor * f,
  7960. struct ggml_cgraph * gf,
  7961. struct ggml_cgraph * gb) {
  7962. GGML_ASSERT(ggml_is_scalar(f));
  7963. gf->n_threads = params.n_threads;
  7964. gb->n_threads = params.n_threads;
  7965. // these will store the parameters we want to optimize
  7966. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7967. int np = 0;
  7968. int nx = 0;
  7969. for (int i = 0; i < gf->n_nodes; ++i) {
  7970. if (gf->nodes[i]->is_param) {
  7971. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7972. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7973. ps[np++] = gf->nodes[i];
  7974. nx += ggml_nelements(gf->nodes[i]);
  7975. }
  7976. }
  7977. // constants
  7978. const float alpha = params.adam.alpha;
  7979. const float beta1 = params.adam.beta1;
  7980. const float beta2 = params.adam.beta2;
  7981. const float eps = params.adam.eps;
  7982. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7983. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7984. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7985. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7986. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7987. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7988. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7989. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7990. // initialize
  7991. ggml_vec_set_f32(nx, m, 0.0f);
  7992. ggml_vec_set_f32(nx, v, 0.0f);
  7993. // update view
  7994. ggml_opt_get_params(np, ps, x);
  7995. // compute the function value
  7996. ggml_graph_reset (gf);
  7997. ggml_set_f32 (f->grad, 1.0f);
  7998. ggml_graph_compute(ctx, gb);
  7999. float fx_prev = ggml_get_f32_1d(f, 0);
  8000. if (pf) {
  8001. pf[0] = fx_prev;
  8002. }
  8003. int n_no_improvement = 0;
  8004. float fx_best = fx_prev;
  8005. // run the optimizer
  8006. for (int t = 0; t < params.adam.n_iter; ++t) {
  8007. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8008. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8009. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8010. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8011. for (int i = 0; i < np; ++i) {
  8012. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8013. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8014. }
  8015. const int64_t t_start_wall = ggml_time_us();
  8016. const int64_t t_start_cpu = ggml_cycles();
  8017. UNUSED(t_start_wall);
  8018. UNUSED(t_start_cpu);
  8019. {
  8020. // update the gradient
  8021. ggml_opt_get_grad(np, ps, g1);
  8022. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8023. ggml_vec_scale_f32(nx, m, beta1);
  8024. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8025. // g2 = g1^2
  8026. ggml_vec_sqr_f32 (nx, g2, g1);
  8027. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8028. ggml_vec_scale_f32(nx, v, beta2);
  8029. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8030. // m^hat = m_t / (1 - beta1^t)
  8031. // v^hat = v_t / (1 - beta2^t)
  8032. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8033. ggml_vec_cpy_f32 (nx, mh, m);
  8034. ggml_vec_cpy_f32 (nx, vh, v);
  8035. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8036. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8037. ggml_vec_sqrt_f32 (nx, vh, vh);
  8038. ggml_vec_acc1_f32 (nx, vh, eps);
  8039. ggml_vec_div_f32 (nx, mh, mh, vh);
  8040. ggml_vec_sub_f32 (nx, x, x, mh);
  8041. // update the parameters
  8042. ggml_opt_set_params(np, ps, x);
  8043. }
  8044. ggml_graph_reset (gf);
  8045. ggml_set_f32 (f->grad, 1.0f);
  8046. ggml_graph_compute(ctx, gb);
  8047. const float fx = ggml_get_f32_1d(f, 0);
  8048. // check convergence
  8049. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8050. GGML_PRINT_DEBUG("converged\n");
  8051. return GGML_OPT_OK;
  8052. }
  8053. // delta-based convergence test
  8054. if (pf != NULL) {
  8055. // need at least params.past iterations to start checking for convergence
  8056. if (params.past <= t) {
  8057. const float rate = (pf[t%params.past] - fx)/fx;
  8058. if (fabs(rate) < params.delta) {
  8059. return GGML_OPT_OK;
  8060. }
  8061. }
  8062. pf[t%params.past] = fx;
  8063. }
  8064. // check for improvement
  8065. if (params.max_no_improvement > 0) {
  8066. if (fx_best > fx) {
  8067. fx_best = fx;
  8068. n_no_improvement = 0;
  8069. } else {
  8070. ++n_no_improvement;
  8071. if (n_no_improvement >= params.max_no_improvement) {
  8072. return GGML_OPT_OK;
  8073. }
  8074. }
  8075. }
  8076. fx_prev = fx;
  8077. {
  8078. const int64_t t_end_cpu = ggml_cycles();
  8079. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8080. UNUSED(t_end_cpu);
  8081. const int64_t t_end_wall = ggml_time_us();
  8082. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8083. UNUSED(t_end_wall);
  8084. }
  8085. }
  8086. return GGML_OPT_DID_NOT_CONVERGE;
  8087. }
  8088. //
  8089. // L-BFGS
  8090. //
  8091. // the L-BFGS implementation below is based on the following implementation:
  8092. //
  8093. // https://github.com/chokkan/liblbfgs
  8094. //
  8095. struct ggml_lbfgs_iteration_data {
  8096. float alpha;
  8097. float ys;
  8098. float * s;
  8099. float * y;
  8100. };
  8101. static enum ggml_opt_result linesearch_backtracking(
  8102. struct ggml_context * ctx,
  8103. const struct ggml_opt_params * params,
  8104. int nx,
  8105. float * x,
  8106. float * fx,
  8107. float * g,
  8108. float * d,
  8109. float * step,
  8110. const float * xp,
  8111. struct ggml_tensor * f,
  8112. struct ggml_cgraph * gf,
  8113. struct ggml_cgraph * gb,
  8114. const int np,
  8115. struct ggml_tensor * ps[]) {
  8116. int count = 0;
  8117. float width = 0.0f;
  8118. float dg = 0.0f;
  8119. float finit = 0.0f;
  8120. float dginit = 0.0f;
  8121. float dgtest = 0.0f;
  8122. const float dec = 0.5f;
  8123. const float inc = 2.1f;
  8124. if (*step <= 0.) {
  8125. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8126. }
  8127. // compute the initial gradient in the search direction
  8128. ggml_vec_dot_f32(nx, &dginit, g, d);
  8129. // make sure that d points to a descent direction
  8130. if (0 < dginit) {
  8131. return GGML_LINESEARCH_FAIL;
  8132. }
  8133. // initialize local variables
  8134. finit = *fx;
  8135. dgtest = params->lbfgs.ftol*dginit;
  8136. while (true) {
  8137. ggml_vec_cpy_f32(nx, x, xp);
  8138. ggml_vec_mad_f32(nx, x, d, *step);
  8139. // evaluate the function and gradient values
  8140. {
  8141. ggml_opt_set_params(np, ps, x);
  8142. ggml_graph_reset (gf);
  8143. ggml_set_f32 (f->grad, 1.0f);
  8144. ggml_graph_compute(ctx, gb);
  8145. ggml_opt_get_grad(np, ps, g);
  8146. *fx = ggml_get_f32_1d(f, 0);
  8147. }
  8148. ++count;
  8149. if (*fx > finit + (*step)*dgtest) {
  8150. width = dec;
  8151. } else {
  8152. // Armijo condition is satisfied
  8153. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8154. return count;
  8155. }
  8156. ggml_vec_dot_f32(nx, &dg, g, d);
  8157. // check the Wolfe condition
  8158. if (dg < params->lbfgs.wolfe * dginit) {
  8159. width = inc;
  8160. } else {
  8161. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8162. // regular Wolfe conditions
  8163. return count;
  8164. }
  8165. if(dg > -params->lbfgs.wolfe*dginit) {
  8166. width = dec;
  8167. } else {
  8168. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8169. return count;
  8170. }
  8171. return count;
  8172. }
  8173. }
  8174. if (*step < params->lbfgs.min_step) {
  8175. return GGML_LINESEARCH_MINIMUM_STEP;
  8176. }
  8177. if (*step > params->lbfgs.max_step) {
  8178. return GGML_LINESEARCH_MAXIMUM_STEP;
  8179. }
  8180. if (params->lbfgs.max_linesearch <= count) {
  8181. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8182. }
  8183. (*step) *= width;
  8184. }
  8185. return GGML_LINESEARCH_FAIL;
  8186. }
  8187. static enum ggml_opt_result ggml_opt_lbfgs(
  8188. struct ggml_context * ctx,
  8189. struct ggml_opt_params params,
  8190. struct ggml_tensor * f,
  8191. struct ggml_cgraph * gf,
  8192. struct ggml_cgraph * gb) {
  8193. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8194. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8195. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8196. return GGML_OPT_INVALID_WOLFE;
  8197. }
  8198. }
  8199. gf->n_threads = params.n_threads;
  8200. gb->n_threads = params.n_threads;
  8201. const int m = params.lbfgs.m;
  8202. // these will store the parameters we want to optimize
  8203. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8204. int np = 0;
  8205. int nx = 0;
  8206. for (int i = 0; i < gf->n_nodes; ++i) {
  8207. if (gf->nodes[i]->is_param) {
  8208. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8209. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8210. ps[np++] = gf->nodes[i];
  8211. nx += ggml_nelements(gf->nodes[i]);
  8212. }
  8213. }
  8214. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8215. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8216. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8217. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8218. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8219. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8220. float fx = 0.0f; // cost function value
  8221. float xnorm = 0.0f; // ||x||
  8222. float gnorm = 0.0f; // ||g||
  8223. float step = 0.0f;
  8224. // initialize x from the graph nodes
  8225. ggml_opt_get_params(np, ps, x);
  8226. // the L-BFGS memory
  8227. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8228. for (int i = 0; i < m; ++i) {
  8229. lm[i].alpha = 0.0f;
  8230. lm[i].ys = 0.0f;
  8231. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8232. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8233. }
  8234. // evaluate the function value and its gradient
  8235. {
  8236. ggml_opt_set_params(np, ps, x);
  8237. ggml_graph_reset (gf);
  8238. ggml_set_f32 (f->grad, 1.0f);
  8239. ggml_graph_compute(ctx, gb);
  8240. ggml_opt_get_grad(np, ps, g);
  8241. fx = ggml_get_f32_1d(f, 0);
  8242. }
  8243. if (pf) {
  8244. pf[0] = fx;
  8245. }
  8246. float fx_best = fx;
  8247. // search direction = -gradient
  8248. ggml_vec_neg_f32(nx, d, g);
  8249. // ||x||, ||g||
  8250. ggml_vec_norm_f32(nx, &xnorm, x);
  8251. ggml_vec_norm_f32(nx, &gnorm, g);
  8252. if (xnorm < 1.0f) {
  8253. xnorm = 1.0f;
  8254. }
  8255. // already optimized
  8256. if (gnorm/xnorm <= params.lbfgs.eps) {
  8257. return GGML_OPT_OK;
  8258. }
  8259. // initial step
  8260. ggml_vec_norm_inv_f32(nx, &step, d);
  8261. int j = 0;
  8262. int k = 1;
  8263. int ls = 0;
  8264. int end = 0;
  8265. int bound = 0;
  8266. int n_no_improvement = 0;
  8267. float ys = 0.0f;
  8268. float yy = 0.0f;
  8269. float beta = 0.0f;
  8270. while (true) {
  8271. // store the current position and gradient vectors
  8272. ggml_vec_cpy_f32(nx, xp, x);
  8273. ggml_vec_cpy_f32(nx, gp, g);
  8274. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8275. if (ls < 0) {
  8276. // linesearch failed - go back to the previous point and return
  8277. ggml_vec_cpy_f32(nx, x, xp);
  8278. ggml_vec_cpy_f32(nx, g, gp);
  8279. return ls;
  8280. }
  8281. ggml_vec_norm_f32(nx, &xnorm, x);
  8282. ggml_vec_norm_f32(nx, &gnorm, g);
  8283. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8284. if (xnorm < 1.0) {
  8285. xnorm = 1.0;
  8286. }
  8287. if (gnorm/xnorm <= params.lbfgs.eps) {
  8288. // converged
  8289. return GGML_OPT_OK;
  8290. }
  8291. // delta-based convergence test
  8292. if (pf != NULL) {
  8293. // need at least params.past iterations to start checking for convergence
  8294. if (params.past <= k) {
  8295. const float rate = (pf[k%params.past] - fx)/fx;
  8296. if (fabs(rate) < params.delta) {
  8297. return GGML_OPT_OK;
  8298. }
  8299. }
  8300. pf[k%params.past] = fx;
  8301. }
  8302. // check for improvement
  8303. if (params.max_no_improvement > 0) {
  8304. if (fx < fx_best) {
  8305. fx_best = fx;
  8306. n_no_improvement = 0;
  8307. } else {
  8308. n_no_improvement++;
  8309. if (n_no_improvement >= params.max_no_improvement) {
  8310. return GGML_OPT_OK;
  8311. }
  8312. }
  8313. }
  8314. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8315. // reached the maximum number of iterations
  8316. return GGML_OPT_DID_NOT_CONVERGE;
  8317. }
  8318. // update vectors s and y:
  8319. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8320. // y_{k+1} = g_{k+1} - g_{k}.
  8321. //
  8322. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8323. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8324. // compute scalars ys and yy:
  8325. // ys = y^t \cdot s -> 1 / \rho.
  8326. // yy = y^t \cdot y.
  8327. //
  8328. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8329. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8330. lm[end].ys = ys;
  8331. // find new search direction
  8332. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8333. bound = (m <= k) ? m : k;
  8334. k++;
  8335. end = (end + 1)%m;
  8336. // initialize search direction with -g
  8337. ggml_vec_neg_f32(nx, d, g);
  8338. j = end;
  8339. for (int i = 0; i < bound; ++i) {
  8340. j = (j + m - 1) % m;
  8341. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8342. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8343. lm[j].alpha /= lm[j].ys;
  8344. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8345. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8346. }
  8347. ggml_vec_scale_f32(nx, d, ys/yy);
  8348. for (int i = 0; i < bound; ++i) {
  8349. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8350. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8351. beta /= lm[j].ys;
  8352. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8353. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8354. j = (j + 1)%m;
  8355. }
  8356. step = 1.0;
  8357. }
  8358. return GGML_OPT_DID_NOT_CONVERGE;
  8359. }
  8360. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8361. struct ggml_opt_params result;
  8362. switch (type) {
  8363. case GGML_OPT_ADAM:
  8364. {
  8365. result = (struct ggml_opt_params) {
  8366. .type = GGML_OPT_ADAM,
  8367. .n_threads = 1,
  8368. .past = 0,
  8369. .delta = 1e-5f,
  8370. .max_no_improvement = 100,
  8371. .print_forward_graph = true,
  8372. .print_backward_graph = true,
  8373. .adam = {
  8374. .n_iter = 10000,
  8375. .alpha = 0.001f,
  8376. .beta1 = 0.9f,
  8377. .beta2 = 0.999f,
  8378. .eps = 1e-8f,
  8379. .eps_f = 1e-5f,
  8380. .eps_g = 1e-3f,
  8381. },
  8382. };
  8383. } break;
  8384. case GGML_OPT_LBFGS:
  8385. {
  8386. result = (struct ggml_opt_params) {
  8387. .type = GGML_OPT_LBFGS,
  8388. .n_threads = 1,
  8389. .past = 0,
  8390. .delta = 1e-5f,
  8391. .max_no_improvement = 0,
  8392. .print_forward_graph = true,
  8393. .print_backward_graph = true,
  8394. .lbfgs = {
  8395. .m = 6,
  8396. .n_iter = 100,
  8397. .max_linesearch = 20,
  8398. .eps = 1e-5f,
  8399. .ftol = 1e-4f,
  8400. .wolfe = 0.9f,
  8401. .min_step = 1e-20f,
  8402. .max_step = 1e+20f,
  8403. .linesearch = GGML_LINESEARCH_DEFAULT,
  8404. },
  8405. };
  8406. } break;
  8407. }
  8408. return result;
  8409. }
  8410. enum ggml_opt_result ggml_opt(
  8411. struct ggml_context * ctx,
  8412. struct ggml_opt_params params,
  8413. struct ggml_tensor * f) {
  8414. bool free_ctx = false;
  8415. if (ctx == NULL) {
  8416. struct ggml_init_params params_ctx = {
  8417. .mem_size = 16*1024*1024,
  8418. .mem_buffer = NULL,
  8419. };
  8420. ctx = ggml_init(params_ctx);
  8421. if (ctx == NULL) {
  8422. return GGML_OPT_NO_CONTEXT;
  8423. }
  8424. free_ctx = true;
  8425. }
  8426. enum ggml_opt_result result = GGML_OPT_OK;
  8427. // build forward + backward compute graphs
  8428. struct ggml_cgraph gf = ggml_build_forward (f);
  8429. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8430. switch (params.type) {
  8431. case GGML_OPT_ADAM:
  8432. {
  8433. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8434. } break;
  8435. case GGML_OPT_LBFGS:
  8436. {
  8437. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8438. } break;
  8439. }
  8440. if (params.print_forward_graph) {
  8441. ggml_graph_print (&gf);
  8442. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8443. }
  8444. if (params.print_backward_graph) {
  8445. ggml_graph_print (&gb);
  8446. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8447. }
  8448. if (free_ctx) {
  8449. ggml_free(ctx);
  8450. }
  8451. return result;
  8452. }
  8453. ////////////////////////////////////////////////////////////////////////////////
  8454. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8455. const int nb = k / qk;
  8456. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8457. const size_t row_size = nb*bs;
  8458. assert(k % qk == 0);
  8459. char * pdst = (char *) dst;
  8460. for (int j = 0; j < n; j += k) {
  8461. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8462. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8463. quantize_row_q4_0_reference(src + j, pd, k);
  8464. for (int i = 0; i < nb; i++) {
  8465. for (int l = 0; l < qk; l += 2) {
  8466. const uint8_t vi0 = pb[l/2] & 0xF;
  8467. const uint8_t vi1 = pb[l/2] >> 4;
  8468. hist[vi0]++;
  8469. hist[vi1]++;
  8470. }
  8471. pb += bs;
  8472. }
  8473. }
  8474. return (n/k)*row_size;
  8475. }
  8476. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8477. const int nb = k / qk;
  8478. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8479. const size_t row_size = nb*bs;
  8480. assert(k % qk == 0);
  8481. char * pdst = (char *) dst;
  8482. for (int j = 0; j < n; j += k) {
  8483. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8484. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8485. quantize_row_q4_1(src + j, pd, k);
  8486. for (int i = 0; i < nb; i++) {
  8487. for (int l = 0; l < qk; l += 2) {
  8488. const uint8_t vi0 = pb[l/2] & 0xF;
  8489. const uint8_t vi1 = pb[l/2] >> 4;
  8490. hist[vi0]++;
  8491. hist[vi1]++;
  8492. }
  8493. pb += bs;
  8494. }
  8495. }
  8496. return (n/k)*row_size;
  8497. }
  8498. ////////////////////////////////////////////////////////////////////////////////
  8499. int ggml_cpu_has_avx(void) {
  8500. #if defined(__AVX__)
  8501. return 1;
  8502. #else
  8503. return 0;
  8504. #endif
  8505. }
  8506. int ggml_cpu_has_avx2(void) {
  8507. #if defined(__AVX2__)
  8508. return 1;
  8509. #else
  8510. return 0;
  8511. #endif
  8512. }
  8513. int ggml_cpu_has_avx512(void) {
  8514. #if defined(__AVX512F__)
  8515. return 1;
  8516. #else
  8517. return 0;
  8518. #endif
  8519. }
  8520. int ggml_cpu_has_fma(void) {
  8521. #if defined(__FMA__)
  8522. return 1;
  8523. #else
  8524. return 0;
  8525. #endif
  8526. }
  8527. int ggml_cpu_has_neon(void) {
  8528. #if defined(__ARM_NEON)
  8529. return 1;
  8530. #else
  8531. return 0;
  8532. #endif
  8533. }
  8534. int ggml_cpu_has_arm_fma(void) {
  8535. #if defined(__ARM_FEATURE_FMA)
  8536. return 1;
  8537. #else
  8538. return 0;
  8539. #endif
  8540. }
  8541. int ggml_cpu_has_f16c(void) {
  8542. #if defined(__F16C__)
  8543. return 1;
  8544. #else
  8545. return 0;
  8546. #endif
  8547. }
  8548. int ggml_cpu_has_fp16_va(void) {
  8549. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8550. return 1;
  8551. #else
  8552. return 0;
  8553. #endif
  8554. }
  8555. int ggml_cpu_has_wasm_simd(void) {
  8556. #if defined(__wasm_simd128__)
  8557. return 1;
  8558. #else
  8559. return 0;
  8560. #endif
  8561. }
  8562. int ggml_cpu_has_blas(void) {
  8563. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8564. return 1;
  8565. #else
  8566. return 0;
  8567. #endif
  8568. }
  8569. int ggml_cpu_has_sse3(void) {
  8570. #if defined(__SSE3__)
  8571. return 1;
  8572. #else
  8573. return 0;
  8574. #endif
  8575. }
  8576. int ggml_cpu_has_vsx(void) {
  8577. #if defined(__POWER9_VECTOR__)
  8578. return 1;
  8579. #else
  8580. return 0;
  8581. #endif
  8582. }
  8583. ////////////////////////////////////////////////////////////////////////////////